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Abstract

Due to the rapid growth of the Internet, routers require increasing amounts of memory

to forward packets to their destinations. Lack of sufficient memory can cause routers

to crash, reject new routing information, or enter into an indeterminate state, as cur-

rent protocols and systems do not deal gracefully with memory exhaustion. Current

“solutions” are often ineffective. Techniques such as over-provisioning memory are

expensive, since networks may have thousands of routers needing upgrades; more-

over, over-provisioning may be infeasible in cases where the routers are not physically

accessible (e.g., routers on satellites). Other methods, such as restricting the set of

routes that can be learned, are impractical; such restrictions must be loose to allow

sufficient connectivity to other domains (which may be needed when primary routes

fail and backup routes are required). Moreover, routers typically have two different

memory structures that are at risk of overflow: a Routing Information Base (RIB)

for tracking available paths, and a Forwarding Information Base (FIB) for moving

packets toward their destinations.

Our study measures the deployment and characteristics of routing protocols and

proposes new mechanisms to curtail associated burden. We design two different ways

to reduce the two different router memory requirements, and additionally investigate

how router memory requirements might change in the future, due to emerging proto-

cols. First, we examine how to reduce RIB table size in our work known as Forgetful

Routing. We explore a space-time trade-off between memory needed to store the

RIB and time needed to compute a forwarding path from among all possible paths.

We demonstrate how RIB memory can potentially be reduced by a factor of 3 or

more. Second, we reduce the size of the FIB with a Memory Management System

(MMS). The MMS can modify routing behavior such that memory is saved without

introducing aberrant behavior (i.e., without routing loops). The Memory Manage-

ment System allows operators to adjust forwarding behavior in a controlled manner.
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The system can also operate in a transparent mode, where no forwarding behavior

is changed but memory is still reduced. The MMS can reduce memory usage up

to a factor of 3. Finally, we examine the growth trends of emerging protocols such

as IPv6 and multicast; IPv6 is being deployed to solve the address shortage prob-

lem, and multicast’s one-to-many model has become a popular means to distribute

content to many receivers, such as with IPTV. By measuring these protocols, we

better understand where they are headed, and thus better understand future routing

requirements.
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Chapter 1

Prologue

Without a doubt, the Internet is one of the defining inventions of the 20th century.

By providing a common mechanism for machines in completely different parts of

the world (or even outer space) to communicate with each other, the Internet has

revolutionized the way computers interact with each other. However, the popularity

of the Internet has led to the concern that it could, figuratively speaking, collapse

under its own weight. In order to maintain its rapid growth, “better” routers are

needed, where better often means faster, with more memory.

The memory resource problem is surprisingly complex. For example, a doubling

in the number of reachable Internet addresses does not necessarily result in a doubling

of the amount of memory needed. This phenomenon is due to the fact that as the

number of machines on the Internet grows, there are associated increases in both

the number of addresses and the number of paths that can transit traffic between

end-points. Both impact router memory growth.

Understanding how these factors affect memory resources can be difficult. When

viewing the Internet as a “cloud”, where machines plug in (or connect wirelessly) and

somehow manage to successfully send data back and forth, the aforementioned issues

are invisible. However, the resource problem becomes more apparent after looking
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Figure 1.1: An example of how ASes interconnect. The two computers can potentially
communicate over the AS paths (1, 2, 3, 5, 6), (1, 2, 4, 5, 6), or (1, 2, 5, 6). However,
business agreements or other external factors may cause an AS to prefer one neighbor
over another (or even to ignore a neighbor altogether) during routing.

at the Internet as a collection of Autonomous Systems (ASes). Each AS represents

a network operated by a single entity, such as an Internet service provider (ISP)

or university (hence why these clouds are called autonomous). The way in which

these ASes interconnect determine how data is sent across the Internet, as shown in

Figure 1.1. When an AS receives packets of data, it determines if the destination is

located on its network. If so, it routes the traffic internally in its network. Otherwise,

it routes the traffic to an appropriate neighboring AS; the neighboring AS repeats

the same steps until the traffic finally reaches its destination.

The resource problem exists for two primary reasons. First, as more and more

machines connect to the Internet, each AS must remember the locations of all these

machines (otherwise, it will not know where to send the information). Second, as

increasing numbers of devices connect to the Internet, more ASes may arise to manage

them. Each AS may need to further interconnect to ensure it has a wide diversity

2



of paths for each destination. Thus, more information about the different paths may

need to be maintained.

A router level view of the Internet better illustrates the specifics of the problem.

Examining how an individual router tracks reachability to destinations, as well as

maintains backup routes in the event of a networking failure, reveals the precise

nature of the resource exhaustion problem. Moreover, understanding the problem in

detail is necessary to understand how it can be mitigated.

1.1 A Router Level View of the Internet

Routers are the fundamental building blocks of today’s Internet. They are special-

ized machines with multiple incoming and outgoing interfaces (usually provided by

line cards that plug into the system), where each interface is connected to another

machine’s interface via a link (usually a cable). Figure 1.2 shows the design of a

typical high-end router. Routers aggregate addresses into sets known as prefixes,

which are primitives used both internally and for communicating with other ma-

chines. Each router has three primary methods of interacting with the world around

it (also known as the planes that a router operates within): talking to other routers

(the control plane), receiving configuration information from network operators (the

management plane), and forwarding packets (the data plane).

As previously mentioned, routers operate over prefixes (rather than individual

addresses) when storing and transmitting routing information. A prefix is a compact

representation of a set of addresses. For example, in the IPv4 protocol, the prefix

1.2.0.0/16 represents all IPv4 addresses whose first 16 bits start with 1.2. The reason

for using prefixes (over individual addresses) is done for practical reasons. ISPs and

other organizations are assigned contiguous blocks from Regional Internet Registries

(RIRs). These registries collectively own the IP address space and are responsible
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for delegating it to others. Without some form of aggregation, a router would need

memory that is proportional in size to all addresses in use. Billions of routing table

entries would be needed as of today, which would make routing infeasible, given

current technology. However, with prefixes, the number of entries is reduced by

orders of magnitude. However, prefixes suffer the drawback that they complicate

forwarding decisions, as there may be two prefixes that overlap but use different

outgoing interfaces. For example, the prefix 1.0.0.0/8 may forward traffic to one

interface, and 1.2.0.0/16 may forward traffic to a different interface. In the event of

ambiguities, the more-specific prefix (that is, the prefix that specifies more bits) is

given preference.

To disseminate information about prefixes, a router talks to its neighbors via

control messages that it sends through the control plane. These messages come in

across the line cards and are sent to the processor; such messages usually describe

the discovery of new routing paths (and various characteristics of those paths, such

as the lists of ASes they traverse) and the removal of old paths. These changes are

stored in a data structure known as the Routing Information Base (RIB) in main

memory.

In addition to control messages, operators may interact with the routers (either

remotely or through a local terminal) and give them special instructions on how

to operate. Such instructions are also sent to the processor and, depending on the

specific router implementation, possibly effect changes in the RIB. At this point, the

router has all necessary information to actually forward packets.

The router will then contact each line card and provide it with specific forward-

ing information, used for the forwarding plane. From the control and management

planes, the RIB now contains a list of possible routes for each Internet destination;

a single route per destination among all possibilities is chosen and installed in the

FIB. When packets now come into the router that are not control or management

4



Figure 1.2: Modern routers have three main components: a processing unit, a switch-
ing fabric, and a series of line cards.

packets, the associated line card will perform a lookup and determine the appropriate

outgoing interface. Packets are then moved across the switching fabric from ingresses

to egresses.

The RIB and the FIB are crucial components of any router. The RIB deter-

mines how a router sends traffic to a destination, and the FIB performs the actual

forwarding. Because the RIB and the FIB have different goals, they store different

information and have different requirements. For example, for a set of destinations,

the RIB will store all known possible paths to it. Information about each path, known

as attributes, is also kept. These attributes can be used for a multitude of purposes,

such as approximating latency, load balancing traffic across a network, or determining

which routes will generate the most revenue. As such, the RIB needs sufficient mem-

ory to capture 1.) all the destinations, 2.) all the routes to each destination, and 3.)

all the attributes for each route. The FIB, on the other hand, matches IP addresses

to outgoing links. As such, it does not care about path attributes or alternate paths
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Figure 1.3: Growth of the FIB. “BGP entries” refers to the number of prefixes in use.
Graph taken from the CIDR report [84].

to a destination – that is the RIB’s responsibility. However, once the RIB informs

it of a routing decision, the FIB must be able to perform this match at very high

speeds (in order to keep up with the vast amount of traffic that ISPs see). Thus, the

FIB needs memory that is 1.) extremely fast, and 2.) large enough to associate all

destinations with outgoing links.

1.2 Memory Exhaustion: The Irony of Success

The widespread success of the Internet has led to an explosion in terms of the number

of prefixes that can be reached and to the number of ways each prefix can be reached.

As such, memory requirements for both the RIB and the FIB have skyrocketed. For

example, Figure 1.3 shows increases in a FIB data structure, which is due to prefix
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growth (note that prefix growth also affects the RIB). From 1989 to 1993, the Internet

was still nascent, but signs of exponential growth were present. Fearing a shortage

of addresses, a new addressing scheme known as CIDR [70] was introduced in an

attempt to more efficiently aggregate addresses into prefixes. CIDR proved to only

be temporarily effective, reducing growth to linear rates between 1993 and 1998; soon

afterward, rapid growth resumed. Other than a brief hiatus between 2001 and 2002

(probably due to fallout from the dot-com burst), the number of different prefixes

that are reachable has been growing at an approximately exponential rate. Possible

reasons for such an increase include address fragmentation (caused by load balancing

and customers moving to different ISPs while retaining their old IP addresses) and

increases in the total amount of IP address space used (as more and more devices

connect to the Internet). Note that the RIB suffers from additional growth factors

separate from the FIB, such as multi-homing (where a network connects to multiple

ISPs to improve uptime) [43], which can increase the number of alternate paths.

The RIB and FIB are essential for the proper functioning of a router; if memory

is exhausted, these data structures (and the router) will not be able to operate cor-

rectly. A previous study has shown that during such duress, a router may engage in a

number of bad activities, such as crashing, rejecting new routes, or continuously clos-

ing and opening connections with neighboring routes [48]. Moreover, memory usage

often spikes during events known as “route leaks.” A route leak is an attack (either

accidental or intentional) on neighboring routers that can completely fill up memory

and cause memory exhaustion. Such route leaks have been responsible for several

major Internet outages, including the massive outage on April 25th, 1997 (known as

the AS7007 event [39]) and the WorldCom outage of October 3rd, 2002 [123].

Finally, the growth of new protocols, such as IPv6 and multicast, only exacerbate

the problem. Such protocols run on top of routers and are currently offered as services

to customers. As of today, their usage is little, and the associated memory they use
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is small. However, it is speculated that these protocols may soon become widespread,

changing the landscape of routing and driving memory requirements even higher.

1.3 Current “Solutions” are Not Enough

There have been many solutions proposed to combat memory inflation, but none have

proven to be panaceas. Such propositions generally fall into two categories: changing

router configuration, or changing routing protocols.

Router configuration changes include all things that an operator can do to a

router. Such solutions often assume that today’s routing protocols and routers are,

for the most part, fixed and cannot be easily changed. As such, these solutions are

very pragmatic in nature, asking, “what can we do with networks as they exist to-

day?” These solutions have the benefit of being immediately deployable and usable.

However, they also provide the least amount of benefit; they typically do not signifi-

cantly reduce memory consumption, providing few safeguards against the possibility

of memory overflow. These solutions range from simply upgrading more memory, to

configuring routers to limit the number of routes they accept, to physically altering

a network to prevent total route propagation.

In each instance, problems such as cost, feasibility, and manageability have pre-

vented these solutions from becoming successful. For example:

• Memory upgrades are often infeasible because 1.) the cost is considerable, con-

sidering that thousands of routers may exist in a network, and that router

memory is much more expensive than commodity RAM, 2.) routers have phys-

ical and design limitations that prevent them from upgrading beyond a fixed

amount of memory, and 3.) in the case of routers in outer space, such as routers

on satellites, installing the memory may not be an option.
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• Route filters can be installed to discard routes that do not meet certain criteria.

In fact, the Regional Internet Registries (RIR) publish guidelines for the max-

imum prefix lengths for various parts of the IP address space [82]. However,

these guidelines are merely suggestions, and many ISPs ignore them. This cre-

ates a catch-22, where ASes do not filter based on RIR guidelines since so many

ASes violate them, leading ASes to feel little pressure to obey them. Addition-

ally, a hard limit on the number of prefixes accepted from each neighbor can be

imposed. However, unless extremely conservative limits are imposed, the router

remains vulnerable to learning too many routes across all of its neighbors [115].

• Route reflectors can be deployed by operators [38]. These machines alter the

basic structure of their networks to prevent route table growth, through their

deployment at strategically located positions. Route reflectors act as internal

accumulation points, which collect routing updates from a subset of border

routers, and only advertise the most preferred route to a subset of their neigh-

bors. Unfortunately, the use of route reflectors introduces a set of problems.

They can induce persistent forwarding loops and oscillations if deployed improp-

erly [37]. They require additional work for network operators to maintain, as

they must be reconfigured to match changes in the underlying network topology.

While route reflectors reduce memory usage, they do not reduce the number of

prefixes in the routing table.

On the other end of the spectrum, the research community has investigated clean

slate designs to reduce the total amount of memory needed by routers. In such

designs, the constraints of today’s real routing systems are ignored. These ideas

focus on protocol change; that is, they seek to alter the underlying mechanisms in

use on today’s Internet. For example, architectures such as CRIO [137] and compact

routing [131] introduce “controlled deflection” into the network architecture; routes in

these systems typically experience minor path inflation (where the forwarding paths
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are not as short as they could be), but allow for significant memory savings under

these conditions. Moreover, work such as the LISP architecture [62], which separates

the notions of identity from location, could aggregate routes better than current

methods today. However, while clean slate designs are quite nice and may serve

useful in the future, they do not help with the problems of today. Service providers

are reluctant to deploy such solutions because they typically require the cooperation

of other organizations before there is benefit. Coupled with the cost of implementing

such changes, ASes face a bootstrapping problem: until others deploy such changes,

there is no incentive for an individual AS to modify its network.

In addition to these problems, there is growing concern about how emerging pro-

tocols, such as IPv6 and multicast, will change the routing landscape. Because these

protocols are not yet widespread, operators are not even sure how they are currently

being used. It is extremely difficult, if not impossible, to gauge potential impact with

so little information known about them.

1.4 Contributions of the Thesis

Given the deficiencies of previous solutions, this thesis approaches these problems

with a focus on backwards compatibility. A backwards compatible solution is one that

will inter-operate with other networks, even if no other networks deploy the solution.

As such, the inter-AS protocols are not changed. However, protocol implementations

can be changed to perform the same tasks in more efficient ways. These solutions give

extra emphasis to practicality. For example, applying a software upgrade to every

router on the Internet is infeasible, but applying a software upgrade to every router in

an Autonomous System can be feasible since, by definition, a single point of authority

controls the network. The goal of this thesis is to answer the question, “what can a
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single AS do to reduce its memory consumption while remaining inter-operable with

its neighbors?”

Given everything that has already been done, it is clear that to appropriately

attack this problem, a two pronged approach must be used. First, for existing and

widespread protocols, both backwards compatible and feasibly implementable solu-

tions must be devised. Second, emerging protocols must be studied so that researchers

can better understand how they are evolving and how they will impact routing in the

future.

This thesis takes this two pronged approach. The focus is on solutions that op-

erators can feasibly deploy on their networks. Rather than trying to change routing

protocols, we examine the memory usage of such protocols and change their imple-

mentation. Our goal is to develop new algorithms to push today’s networks closer

to their optimal operating efficiency. Additionally, we measure and characterize up-

coming protocols. We study data traffic to understand how people are using these

protocols. By doing so, we can better understand trends that we see and suggest pos-

sible mechanisms for containing their memory growth when they become widespread.

In the first part of the thesis, we explore how to reduce both the RIB and FIB

while remaining interoperable with current protocols. We developed a scheme known

as Forgetful Routing that allows routers to distributively share their RIBs, reducing

redundant entries and significantly saving memory. We then describe a separate

scheme called the Memory Management System (MMS) that saves FIB memory by

coalescing prefixes that have the same forwarding address. The MMS can also be

configured to allow suboptimal routes in exchange for greater memory reduction.

These schemes, optimized for today’s routing protocols, can be used to fight the

problem of memory exhaustion.

In the second part of the thesis, we quantify the IPv6 and multicast protocols,

characterizing their usage patterns. These protocols are very important because they
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have the potential to significantly increase memory requirements on routers. However,

because they have not been widely deployed and so little is known about them, it

is difficult to try and develop methods for reducing their memory usage. In fact,

because so little is known about them, it is necessary to characterize the behavior of

these protocols, in order to allow such research to proceed. We study them through

measurements taken from a tier 1 ISP and publicly available sources, and give our

findings. As of the present time, we cannot draw significant conclusions about how

they will change routing and how we can combat future memory growth – however,

our study sheds light on their deployment and current usage, and (for multicast)

suggests how some of its behavior could be optimized to consume less memory.

By addressing memory growth for routers through incrementally deployable so-

lutions, we provide network operators with solutions to the problems they currently

face. The RIB and the FIB are two primary router resources that can suffer from

memory exhaustion, and our solutions are aimed at these data structures. Moreover,

by investigating upcoming protocols, we can provide a starting point for future re-

search concerning memory reduction. Our goals are to provide feasible, deployable

solutions for the problems of today while keeping an eye to the problems of tomorrow.
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Chapter 2

Using Forgetful Routing to Control

RIB Table Size

The successful delivery of traffic through the Internet depends on the smooth op-

eration of the routing protocols running in and between thousands of Autonomous

Systems. The responsibility for stitching these disparate ASes together into a single,

coherent network falls to the Border Gateway Protocol, the Internet’s interdomain

routing protocol. BGP enables routers to learn paths through other ASes to reach re-

mote destination address blocks, or prefixes. A router stores the BGP routes it learns

for each destination prefix in RIB, and selects a single “best” route for forwarding

data traffic; all other routes are “alternates,” used when the primary path becomes

unavailable.

Running the Border Gateway Protocol (BGP), the Internet’s interdomain routing

protocol, consumes a large amount of memory. A BGP-speaking router typically

stores one or more routes, each with multiple attributes, for many prefixes. When

the router does not have enough memory to store a new route, it may crash or enter

into other unspecified behavior, causing serious disruptions for the data traffic.
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The focus of this chapter is RIB memory. The chapter proposes and discusses

a new mechanism for routers to handle memory limitations without modifying the

underlying routing protocol. Upon running out of memory, the router simply discards

information about some alternate routes, and requests a “refresh” from its neighbors

later if necessary. An optimal offline algorithm is presented that decides which al-

ternate routes to evict, which is used to evaluate the trade-off between RIB memory

size and refresh overhead using a large BGP message trace. Based on these promising

results, efficient online algorithms are designed and evaluated that achieve most of

the performance benefits.

Section 2.2 presents a formalism for describing BGP, providing the background

knowledge needed to understand Forgetful Routing; this leads directly into a discus-

sion of Forgetful Routing itself. Section 2.3 analyzes the trade-off between memory

savings and refreshes by evaluating an optimal, offline algorithm over a large BGP

message trace. Section 2.4 proposes and evaluates several efficient, online algorithms

for deciding which alternate routes to evict when the RIB memory is full. In Sec-

tion 2.5 we examine which ASes would most benefit from deploying Forgetful Routing.

We discuss related work in Section 2.6, and conclude the chapter in Section 2.7.

Forgetful Routing has been previously published in the proceedings of the CoNEXT

2006 conference, under the title Using Forgetful Routing to Control BGP Table Size.

2.1 Introduction

2.1.1 Memory Limits and Current Workarounds

Given the relatively low cost of memory, and the fact that even desktop PCs often

have hundreds of megabytes of main memory, the notion that routers would encounter

memory limits may seem surprising. Even taking into account that today’s routers

must store BGP routes for many prefixes, and growing [43, 84], the amount of space
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needed seems small. For example, a router with 10 neighbors, with each neighbor

announcing a route for each prefix, with 300,000 prefixes, would need approximately

240 megabytes of memory (assuming 80 bytes to store routing entry information). So

why the concern?

The problem with these back-of-the-envelope calculations is that they’re a lower

bound on memory, and in practice more memory is needed for various reasons. First,

the number of prefixes is sometimes much higher, such as when configuration errors

or malicious attacks trigger route leaks, where a router receives BGP announcements

for address blocks that are not normally visible. As examples: on April 25th, 1997,

AS7007 leaked 23,000 routes, causing enough instability to create massive Internet

outages [39]; on October 3rd, 2002, 20% of WorldCom’s customers lost connectivity

due to a configuration error that “...propagated more route-broadcasts than the af-

fected routers could handle” [123]; on December 24, 2004, AS9121 leaked over 100,000

prefixes [115], etc. From 1994 to 2004, there have been more than 60 threads about

route leaks on the North American Network Operators’ Group (NANOG) mailing list

alone [64]. Second, a router may learn multiple BGP routes for a prefix, especially

as ASes increasingly connect to the Internet in multiple locations for better fault tol-

erance and more flexible load balancing. Third, operating system upgrades generally

provide new features and consume more memory, adding to the problem. Fourth,

data structure overhead and other implementation details consume additional space.

Considering all these factors, the BGP routing table can grow quite large, up to a

gigabyte in size, with the risk that an unexpected route leak may drive the memory

requirements significantly higher.

There are many partial solutions to the memory problem, but no panaceas, such

as:

• Adding more memory. RIB memory is much more expensive than conventional

SDRAM, often between one to two orders of magnitude more in price. Moreover,
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determining how much memory to add is very challenging. Thus, upgrading

the memory for every router in a large AS to some “acceptable” level is quite

expensive. In other cases, such as routers deployed in a satellite network, adding

memory may be impossible.

• Using secondary storage. Swapping parts of the RIB to secondary storage may

seem appealing, but many routers do not have disk drives; network operators

are reluctant to rely on disks, as they have relatively high failure rates [44].

Even when secondary storage is available, excellent virtual-memory techniques

need to be used to prevent thrashing.

• Using compression. Applying compression techniques to the RIB data may yield

some memory savings, at the expense of computational overhead in handling

new update messages. Since routers need to respond quickly to routing changes,

any compression scheme would need to be simplistic and operate only over local

chunks of data, severely constraining any savings.

• Filtering routes. Route filters can be installed to discard routes that do not

meet certain criteria. In fact, the Regional Internet Registries (RIR) publish

guidelines for the maximum prefix lengths for various parts of the IP address

space [82]. However, these guidelines are merely suggestions, and many ISPs

ignore them. This creates a catch-22, where ASes do not filter based on RIR

guidelines since so many ASes violate them, leading ASes to feel little pressure

to obey them.

• Enforcing prefix limits. By imposing a hard limit on the number of prefixes

accepted from each neighbor, and tearing down the BGP session when the

number is exceeded, a router can avoid dedicating too much memory to a single

neighbor. However, unless extremely conservative limits are imposed, the router

remains vulnerable to learning too many routes across all of its neighbors [115].
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In sum, existing technologies that control BGP table growth are either only ap-

plicable in specialized circumstances or are generally ineffective.

2.1.2 Practical Constraints on Extending BGP

Unfortunately, devising solutions to BGP’s memory problem is not an easy feat.

Since BGP is the glue that holds the disparate parts of the Internet together, having

a “flag day” to replace BGP with a new protocol is infeasible. Any solution must

be incrementally deployable, where one AS can upgrade the software on its routers

even if other ASes do not. In addition, upgrading the software needs to offer clear

benefits to the early adopters, rather than relying on a large-scale deployment before

any memory savings are realized. We argue that a good, practical solution should

have the following three properties:

• Backwards compatibility with existing systems. In today’s Internet, an AS must

assume that its neighbors will speak BGP. As such, any new scheme must

remain backwards compatible with BGP. Changes to BGP’s route selection

and advertisement process must prevent forwarding loops and unexpected loss

of connectivity.

• Memory savings for ASes that deploy the solution. Since interdomain routing is

tied to the dynamics of businesses, economic incentives drive the deployment of

BGP modifications. Upgrading all the routers in an AS is time consuming and

expensive. An AS that deploys the new software should see memory savings,

even if no other ASes have deployed the solution.

• No significant increase in routing convergence delay. The scheme must not

significantly affect the time it takes for routing changes to propagate across a

network, also known as convergence delay. During convergence, multiple routers

recalculate their routing tables in response to a topology or policy change, and
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transient forwarding loops or black holes (where packets are lost) may occur. An

increase in convergence delay translates into additional time when data traffic

may be lost or delayed.

2.1.3 Our Contribution

With these constraints in mind, we propose a new approach that we dub Forgetful

Routing. To avoid exceeding the available memory, a forgetful router can selectively

discard one or more alternate routes. If a discarded route is needed sometime in the

future, the router requests a “refresh” from the neighbor responsible for announcing

the route.

Our solution exploits several important aspects of the BGP routing system. First,

alternate routes are not needed while the primary route is in use. This enables our

scheme to offer significant memory savings by potentially discarding all alternate

routes. If a router has, on average, n routes per prefix, it can reduce its total mem-

ory usage by a factor n. Second, every alternate route is some neighbor’s best route.

Thus, every forgotten route is available for re-transmission later. This allows a router

to always re-construct its original routing table when needed and thus select the same

best routes as conventional BGP. Third, BGP’s route-refresh feature can be used to

trigger a refresh from a neighbor. BGP’s route-refresh capability [50] has been a stan-

dard for many years and is already deployed in many large ASes. Although designed

for a different purpose, it can be used to ask a router to resend BGP announcements.

While it would need modification to only send information pertinent to a single prefix,

the current feature helps to lower the barrier to deploying Forgetful Routing.

Moreover, our solution does not require any changes to the BGP protocol – only

software upgrades on the routers themselves; in addition, one AS could deploy For-

getful Routing even if other ASes do not. Even in the rare case where none of its

neighbors support the route-refresh feature, an AS can use Forgetful Routing to re-
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duce the amount of memory consumed by internally learned routes (i.e., in internal

BGP).

Forgetful Routing introduces a trade-off between memory size and refresh over-

head, leading to a sort of a “cache replacement” problem. Our goal is to create an

efficient eviction algorithm that minimizes the “miss rate,” i.e., the likelihood that

the best route for a prefix does not already reside in the routing table and will trigger

a route refresh. We first present an optimal offline algorithm that assumes perfect

knowledge of the future arrivals of BGP update messages. Experiments applying the

optimal algorithm to BGP message traces show that Forgetful Routing can achieve

substantial reductions in memory usage. The analysis of the measurement data also

provides important insights into the characteristics of BGP update dynamics. We

capitalize on these observations in creating two efficient online algorithms that evict

the least attractive alternate routes for prefixes that have not changed their best

routes for the longest time. Efficient data structures enable a forgetful router to

make eviction decisions in constant time, and our experiments show that the online

algorithms perform well over actual BGP data, reducing the memory footprint with

a moderate number of refresh operations.

2.2 Forgetful Routing

Describing all aspects of BGP would require an entire book [127], and many of these

details are irrelevant to memory management. We first present a simple formalism

that captures how BGP-speaking routers handle update messages and select routes;

this formalism is used throughout the chapter as a reference model. Then, we apply

this model to explain Forgetful Routing and introduce the cache replacement problem

that is the focus of the rest of the chapter.
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132.241.0.0/16AS 1

AS 2

AS 4

AS 3

AS RIB
AS 1 (132.241.0.0/16, AS3, 1 → 3 → 4 → ...)

(132.241.0.0/16, AS2, 1 → 2 → 4 → ...)
AS 2 (132.241.0.0/16, AS4, 2 → 4 → ...)
AS 3 (132.241.0.0/16, AS4, 3 → 4 → ...)
AS 4 (132.241.0.0/16, ..., 4 → ...)

Figure 2.1: A hypothetical network where AS 1 can route to 132.241.0.0/16. After
AS 4 announces a route to the prefix to its neighbors, AS 2 and AS 3 will be able
to route to it. They, in turn, generate announcements for AS 1. RIB entries for this
prefix are shown using the (p, n, r) notation. Note that AS 1 can always re-derive its
RIB entries by issuing route refreshes to its neighbors.

2.2.1 An Abstract Model of BGP

Initially, a router establishes a BGP session with each neighbor. Each router then

shares information about the best routes through update messages. After learning

new information from its neighbors, the router checks if better routes exist, and if so,

uses them. Upon changing its best route, the router must send an update message

to any neighbors that previously received an announcement for the replaced route,

indicating that the old route is no longer in use; this withdraw is then followed by an

announcement of the new route1. If connectivity to a prefix is lost, only a withdraw

message is sent.

All the information about routes is stored in the Routing Information Base. A

route is a three-tuple (p, n, r) containing a prefix, a neighbor that advertised the

prefix, and some route attributes (e.g., the number of hops required to reach the
1In practice, an announcement is an implicit withdrawal of the previous route, requiring only one

update message.
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while session exists:
(m, (p, n, r)) = get_message()
oldbest = m_best(p, RIB)
if m == ‘‘ANNOUNCE’’:

RIB = RIB + (p, n, r)
if m == ‘‘WITHDRAW’’:

RIB = RIB - (p, n, r)
newbest = m_best(p, RIB)
if oldbest != newbest:

generate_withdraw(oldbest)

generate_announce(newbest)
route_data_using(newbest)

(a) Regular Router Pseudocode

while session exists:
(m, (p, n, r)) = get_message()
oldbest = m_best(p, RIB)
if m == ‘‘ANNOUNCE’’:

while no memory available:
evict_route(RIB)

RIB = RIB + (p, n, r)
if m == ‘‘WITHDRAW’’:

RIB = RIB - (p, n, r)
newbest = m_best(p, RIB)
if oldbest != newbest:

generate_withdraw(oldbest)
if is_evicted(newbest):

refresh_route(newbest)
generate_announce(newbest)
route_data_using(newbest)

(b) Forgetful Router Pseudocode

Figure 2.2: Pseudocode describing how a regular router and how a forgetful router
would operate. These two code pieces are space-aligned to help highlight the differ-
ences.

destination, preference values, etc.). The RIB is a set of such routes. By default, we

assume that for every prefix p, the RIB contains a null route to that destination, i.e.,

the entry (p, ∅, ∅), signifying that the router cannot or does not want to route to it.

An announcement is an update message of the form:

(“ANNOUNCE ′′, (p, n, r))

that tells the router that neighbor n currently uses route r to reach prefix p. The

neighbor n can only advertise its best routes, and must be using the route r to reach

p. A withdraw is an update message of the form:

(“WITHDRAW ′′, (p, n, r))
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indicating that neighbor n can no longer reach prefix p using its previously announced

route. The RIB entry corresponding to (p, n, r) is removed. See Figure 2.1 for an

example of how the RIB becomes populated.

Once the RIB becomes populated with entries, the router must decide how to route

data to all accessible prefixes. The decision is calculated by using a total ordering2 over

each Rp, where Rp is the subset of RIB entries that route to prefix p. When picking a

“best” route for each prefix, BGP relies on a combination of custom routing policies

and the BGP Decision Process [52], a universally agreed-upon ranking function. An

example of a routing policy may be, “prefer routes learned from neighbor p over

neighbor q.” The BGP Decision Process is a multi-step procedure over the route

attributes: e.g., prefer routes with fewer AS hops to ones that have more; if a tie

exists, prefer routes that were learned earlier than ones learned later; if another tie

exists, prefer routes learned from ASes with a lower ID number.

In general, it is possible to think of these routing policies and the BGP decision

process as being represented by a single metric that compares all the routes. This

metric uses all the route attributes, along with these rules and policies, to rank them

in the same order as in BGP. We define mbest to be the metric that picks the routes

to use for forwarding traffic to prefix p:

mbest : Rp → (p, n, r)

mbest(Rp) ∈ Rp

∀e ∈ Rp, e � mbest(Rp)
2In practice, some ASes use the Multiple-Exit Discriminator (MED) attribute in a way that pre-

vents the formation of a total ordering [54]. This leads to other problems, such as non-deterministic
routing decisions and protocol oscillation. In our work, we assume that MED is not used, or is
configured to produce a deterministic outcome. When this assumption does not hold, the simplest
solution is to store all routes for a prefix if any route has the MED set.
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The first two equations state that mbest operates over Rp and always picks a RIB

entry from Rp; the last one describes how the “best” RIB entry has the highest rank

among all entries.

When the session closes, the router withdraws all routes advertised by the neigh-

bor, re-computes its new set of best routes, and sends updates as needed. As new

routes are learned and old ones are forgotten, the set of best routes will change over

time. Each time a best route changes, update messages are generated for appropriate

neighbors as long as the BGP session continues. See Figure 2.2(a) for pseudocode

describing how an ideal router acts.

2.2.2 Evicting and Refreshing Alternate Routes

Routers have fixed amounts of memory and can only store a limited number of RIB

entries. However, the BGP specification does not define how the protocol should

behave when a router runs out of memory. Furthermore, BGP is memory intensive.

It is prefix-based, and although this is more efficient than enumerating IP addresses,

there are many prefixes. Moreover, BGP is a path-vector protocol, forcing routers to

store the entire AS path for each router. In addition, BGP is a policy-based protocol,

with numerous route attributes that influence the selection and propagation of routes.

Finally, BGP is an incremental protocol: upon receiving an update message, a router

must compare the new information with all previously learned routes to select the

new best route; information cannot be arbitrarily discarded, since it may be needed

at a later time.

We thus propose the following behavior whenever a router experiences a dearth of

free memory: pick a (p, n, r) that is currently an alternate route and evict extraneous

information from r that is ignored bymbest. We define an evictor ev with the following
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properties:

ev : (p, n, r) → (p, n, r′)

sizeof r′ ≤ sizeof r

These equations tell us that ev modifies the additional routing information to possibly

consume less memory. Moreover, modifying our RIB such that one of the entries has

evicted information does not change the BGP decision process. See Figure 2.3 for an

example RIB entry and how it could be compressed.

The fact that BGP’s routing data can be compressed without affecting its decision

process is non-intuitive. For example, although the decision process favors routes with

fewer hops than those with more hops, BGP stores the entire AS path instead of the

length. BGP must do this so when it advertises a route, loop detection can occur.

Thus, while routes are not announced, they can be safely compressed; when they

are in use, all their original routing information must be retrieved and sent to all

neighbors.

Because the modified route contains enough information to allow mbest to rank it,

the routes chosen by this scheme always match the routes chosen by an equivalent,

regular router. However, if a modified route suddenly becomes “best,” it cannot

be announced until the complete non-metric routing information is retrieved, since

it might be relevant to other routers. Retrieving this route will require a refresh.

Since routers only advertise their best routes to their neighbors, every alternate route

is always some neighbor’s best route, so the additional routing information will be

retrievable.
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In order to decide which alternate routes to evict, we define an eviction mechanism

mevict:

mevict : R → (p, n, r)

mevict(R) ∈ R

∀p,mevict(R) 6= mbest(p,R)

These equations state that the eviction mechanism can choose any route in the

RIB, as long as it is an alternate and as long as it has not already had some of its

routing information evicted. Pseudocode used to describe a router’s behavior with

this extension is provided in Figure 2.2(b).

It is important to note that ev does not have to keep the metric relevant infor-

mation. For example, ev could simply delete all additional routing information. This

would force the router to issue a set of refreshes when it could not identify the new

best route. In fact, there is an interesting trade-off between ambiguity introduced

to the metric and potential savings. While we do not explore this trade-off, it holds

promise for future research.

2.2.3 Properties of Forgetful Routing

Forgetful Routing has three important properties: it does not alter the BGP decision

process, it is incrementally deployable, and we expect it to add minimal convergence

delay.

Because compressed RIB entries keep enough information to allow ranking, and

because evicted information is retrievable, a forgetful router acts exactly like a regular

router after convergence. Although a network of forgetful routers will act differently

than a network of regular routers during route exploration and route changes (due

to the fact that different routes may be announced at different times, due to delays
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PREFIX: 4 . 2 1 . 2 52 . 0/23
FROM: 194 . 8 5 . 4 . 5 5 AS3277
TIME: 2004−12−31 20 : 07 : 56
TYPE: MSG_TABLE_DUMP/AFI_IP
VIEW: 0 SEQUENCE: 440
STATUS: 1
ORIGINATED: Fr i Dec 31 06 : 26 : 51 2004
AS_PATH: 3277 13062 20764 701 6389 8063 19198
NEXT_HOP: 194 . 8 5 . 4 . 5 5
COMMUNITIES: 3277:13062 3277:65301 3277:65307 20764:3000

20764:3011 20764:3020 20764:3022

Figure 2.3: A BGP RIB entry from a Route Views table dump. All values other than
“prefix” and “from” are represented by r in our abstract model. Note that while the
path attributes would take at least 50 bytes to encode, the metric-relevant attributes
listed here (time and AS path length) could be encoded in about 5 bytes.

introduced by refreshes), the two systems will always converge to the same steady

state solution.

Moreover, it is possible for an Autonomous System to deploy Forgetful Routing

and obtain significant memory savings even if no other AS uses it. Since BGP already

has a route-refresh option [50], and since Forgetful Routing’s only assumption about

its neighbors is that they support a form of refreshing a route, there are fewer barriers

to deploying the system. However, it is important to note that the route-refresh mes-

sage triggers all prefixes to be re-advertised. This introduces a considerable amount

of overhead for a single prefix needing a refresh. However, a cooperative route fil-

tering capability [49] has been suggested that would allow individual prefixes to be

refreshed.

In addition, we believe that Forgetful Routing should not typically add significant

delay to the propagation of routes. This property is best illustrated through the

following example. Imagine a network with three routers, R1, R2, and R3, that can

all route to prefix P. R1 depends on R2 to reach P, R2 depends on R3, and R3 has

some mechanism to reach P; in other words, there is a chain of dependency. Now
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imagine that all alternates are discarded and R3 loses its primary route. While R3

is refreshing, it simultaneously sends a withdraw message to R2, allowing R2 to start

issuing its own refreshes in parallel. Likewise, R2 performs the same actions, allowing

R1 to start issuing its own refreshes as well. By the time R3 has recomputed its best

route and sent it out, R2 will have finished performing its refreshes and can propagate

the new routing information instantly. The same holds true for R1. The net effect in

this situation is that the expected, additional end-to-end delay increases by the time

of resolving a single refresh. Given that typical convergence delay on the Internet is on

the order of minutes, and given that a refresh may be processed in milliseconds, we feel

that the additional delay is negligible. However, we have also been able to formulate

scenarios where the convergence time increases proportionally to the length of the

dependency chain. Such instances require precise timing of network events, though,

in order to trigger this effect. While there may be other scenarios out there that

we have not considered, our thought experiments lead us to believe that Forgetful

Routing will probably impact the convergence time in a minimal way.

2.3 Optimal Offline Algorithm

Choosing an eviction policy for forgetful routing is a specialized instance of the cache

replacement problem. Since an eviction policy will depend highly on the RIB entries

and update messages seen, it is important to evaluate different policies and their

performance. In fact, some baseline is necessary even before evaluation of policies

can begin.

In order to investigate the trade-off curve and to obtain a gold standard for com-

paring other routing policies, we developed an offline algorithm that, given a RIB

dump (i.e., a set of (p, n, r) in the RIB at a specific time) and a stream of update

messages, determines the best possible trade-off between available memory and fre-
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Figure 2.4: The optimal trade-off curve from January 1, 2005 to July 1, 2005, with
number of refreshes issued as a function of memory.

quency of refreshes. For simplicity, we assume that every eviction frees an entire RIB

entry, and that all RIB entries consume the same amount of memory. The algorithm

is offline because in order to calculate the theoretical best trade-off, it must have

foresight of the future to influence decisions in the past.

2.3.1 Optimal Eviction Policy

The first step of the optimal algorithm computes the set usage times of all routes.

That is, each route is annotated with the set of times that it will be selected as “best.”

This is calculated by performing a pass through an initial RIB dump and a stream

of update messages, maintaining a hash table that maps from RIB entries to lists,

where each RIB entry has its associated list updated whenever it is chosen as best.
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Figure 2.5: Close-up of the optimal trade-off curve. The dotted line has a slope of -1
and is meant as reference.

A simulated router is used for determining usage for each RIB entry e:

use(e) = {t1, t2, . . . , tn}

Element ti represents the ith time that mbest chose the RIB entry e.

Once this calculation is complete, the eviction policy is straightforward: always

choose the alternate route that will be used last, i.e., furthest in the future. Given

that the current time is t when an eviction is about to occur, the route that will be

needed furthest in the future can be calculated and mevict can be implemented via
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the following statements:

nextuse(e, t) =





0 if e is best

minti>t use(e) if ∃ti > t

∞ otherwise

mevict(R) = maxarge∈R[nextuse(e, t)]

The function nextuse returns the earliest time after t when the route will be used.

Note that 0 is returned if e is currently best (ensuring the algorithm picks an alternate

route), and that routes that are never needed are given a time of infinity, making them

the best eviction candidates.

A proof of optimality has been omitted due to length constraints, but the intuition

behind the proof can be described concisely. By always choosing a route that is needed

furthest in the future, we can guarantee that we cannot do any worse than if we picked

any other route. This is because any route that is needed in the future will cause an

eventual refresh and, in the interim time, lowers the total amount of memory needed.

Given that routes are independent of each other in terms of their usage, it is not

possible to pick a route that will be needed earlier , and yet somehow causes other

routes to refresh less often; the route that is needed furthest in the future provides the

longest interval of memory relief, allowing other routes to remain in memory longer

before eviction.

Implementing this algorithm naïvely is easy: perform a pass through the RIB

dump and update stream to calculate a list of usage times for every route, and use

this information to evict routes. Implementing this scheme efficiently, however, is

much more complex. Without going into details, lazy evaluation of evictions can

be used to achieve the same results without as much computation; that is, instead

of calculating which route needs to be evicted at the very moment when memory
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capacity has been reached, the simulation can note that a route was forgotten and

later deduce the correct one by monitoring usage of alternate routes.

2.3.2 Evaluation on BGP Message Traces

The data set we use was obtained from Route Views [106] and consisted of a BGP

table dump on January 1st, 2005, and all BGP update information for six consecutive

months. Route Views was chosen primarily because it is publicly available, while

ISP feeds are proprietary and difficult to obtain. There were approximately 270,000

different prefixes announced over that period. We randomly sampled 1% of them and

their associated updates for our analysis. Our sampling is due to the fact that these

simulations take significant computational time – on the order of years when making

multiple scans through six month’s worth of update messages.

It is important to note that the data obtained from Route Views is not typical.

Route Views connects to many more neighbors than most routers and thus has many

more alternate routes, upwards of 40 per prefix. Rather than filter the Route Views

data to represent a “typical” AS, we included all feeds to capture the dynamics of

Forgetful Routing, as well as quantify how much memory savings are possible. Thus,

although our estimates of the amount of memory saved may be optimistic, Route

Views allows us to examine the general impact of forgetful routing. We leave analysis

of the gains typical ASes would see to Section 2.5.

Our results show that many alternate routes are never needed and can be safely

discarded without causing refreshes. In the best possible case, an average of one

alternate route per prefix is sufficient and will not cause any refreshes. The algo-

rithm’s trade-off curve can be seen in Figure 2.3. The first important item to note

is the reduction in BGP table size. At zero refreshes, the amount of memory needed

never exceeds 3,500 RIB entries, whereas a full table would require approximately
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68,000 entries. In other words, if the Route Views router had foresight and sufficient

additional computing power, it could reduce its memory footprint size by 95%.

The second important item to note is the initial one-to-one trade-off between

memory size and refreshes, as seen in Figure 2.3. Initially, lowering the total amount

of memory by one unit causes one refresh. In this part of the curve, the alternate

routes that are evicted in these cases belong to very stable prefixes, where alternates

are rarely used. After total memory has decreased by about 200 units, freeing one

unit of memory results in multiple refreshes. This occurs when we have evicted all

the alternate routes for stable prefixes and we must start evicting routes for unstable

ones. Since these alternate routes will be refreshed into memory much sooner, more

refreshes will be needed in the same period of time.

Even at a memory size of 2048 memory units, the number of required refreshes is

surprisingly small, given that sixteen million RIB entries were added and removed for

this six-month interval through update messages. Furthermore, this memory footprint

is 3% of the original size. All of these items demonstrate several important points:

1.) that tremendous memory savings are possible without significant increases in

bandwidth, 2.) that the majority of alternate routes are not used, and 3.) that the

best way to minimize refreshes is to keep the alternate routes for unstable prefixes

“in the cache.”

2.4 Online Algorithms

Although the results of the offline analysis are promising, the algorithm is not feasible

in practice; foresight of the future and infinite computing power are not luxuries

afforded to today’s routers. In this section, we devise efficient online algorithms that

approximate the optimal results. We evaluate these online algorithms in two parts.

First, we examine all algorithms under the assumptions that RIB entries have uniform
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size, that each eviction frees one RIB entry of space, and that memory overhead

from additional data structures is negligible; this yields raw performance information

for direct comparison with the optimal offline algorithm. Then, we re-examine the

algorithms under realistic assumptions.

2.4.1 Least Recently Refreshed and Updated

When first devising an online algorithm, it is important to see whether a very simple

scheme can achieve most of the savings. As such, our first strategy was constant-

size allocation, where each prefix is given a fixed amount of memory in advance. By

varying the amount of dedicated memory per prefix, and evicting the lowest-ranked

routes for each prefix when memory is tight, the memory-bandwidth trade-off can be

explored. We implemented such a scheme and found it to be too simplistic; prefixes
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with very stable primary routes are allocated too much space, while unstable prefixes

are allocated too little space, leading to frequent refreshes.

Our next strategy was to evaluate the canonical algorithm for cache replacement

problems: Least Recently Used (LRU). Our LRU algorithm uses a doubly-linked list,

where each cell has a RIB entry. RIB entries are added to the back (and removed

when their associated withdraw is received), and are picked for eviction from the

front. Thus, assuming four bytes per pointer with two pointers per linked list cell, all

decisions can be made in constant time with 8nr bytes of memory overhead, where nr

is the number of RIB entries. Unfortunately, 8nr overhead is rather steep, especially

considering our goal is to save memory, not consume it!

In order to achieve most of the benefits of LRU without the memory overhead,

some approximation is needed. We thus devised a variant called Least Recently
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Refreshed (LRR). Under LRR, we always evict the least desirable route of the prefix

that has not needed a refresh in the longest amount of time. In doing so, we can

replace our doubly-linked list of RIB entries with a doubly-linked list of prefixes.

Prefixes are put on the back of the list when they have just been discovered by the

router and when they are just refreshed. This enables all operations to complete in

constant time, while reducing memory overhead to 8np, where np is the number of

prefixes.

In addition, a variant of LRR called Least Recently Updated (LRUp) was imple-

mented. This variant uses the time since the last update message as the ranking

metric, rather than time since last refresh. It uses all the same memory structures as

the LRR algorithm and the same computational operations.

The results of fixed-size allocation, LRU, and LRR can be seen in Figure 2.4. Al-

though fixed size allocation performs reasonably well when a large amount of memory

is available, it quickly begins to fail as memory is driven lower and lower. From the

figure, it is clear that simple schemes cannot capture the dynamics of routes and their

refresh needs. Both LRU and LRR, on the other hand, perform competitively, within

an order of magnitude of the theoretical best. Although LRR’s data structures require

much less memory, the performance is nearly identical to LRU. For a small sacrifice

in the number of refreshes, a significant reduction in overhead can be achieved.

Surprisingly, LRUp performs much better than LRU or LRR. The reason behind

this phenomenon lies in the fact that any update activity is usually a sign of route

instability. By exploiting this fact, LRUp can anticipate which prefixes will need more

alternate routes available in memory. Still, a sizable gap remains between the LRUp

scheme and the optimal offline algorithm. Although some gap is inevitable, because

the offline algorithm has foresight of the future, we wanted to explore whether a more

sophisticated eviction policy could improve the effectiveness of forgetful routing.
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2.4.2 Quadratic Weights

Although LRU, LRR, and LRUp perform well, they rely on just a single variable

to rank routes for eviction. Moreover, none of these schemes consider the number of

alternate routes available. Often, when a relatively stable prefix has a routing change,

the router switches from the primary route to the first or second alternate route [118].

Keeping one or two alternate routes in the RIB, even for the relatively stable prefixes,

can help reduce the number of refreshes. At the expense of additional computational

complexity, an online algorithm can account for both of these factors: the time since

the last refresh and the number of alternate routes.

In doing so, we devise another online algorithm which we call quadratic weights

(QW). Instead of using time to order routes, we calculate a “goodness” value for each

prefix p, according to the formula n ∗ (n− 1) ∗ t, where n is the number of routes to

p and t is the time since the last refresh. Note that other multiplicative factors could

be used, such as linear or cubic. Depending on the dynamics of the network, such

factors may overlook or overstress the importance of alternate routes.3 After a factor

is chosen, routes are ordered by goodness and then appropriately evicted.

Although the quadratic-weights algorithm only consumes 8np bytes of memory in

additional data structures, it has O(np) computational overhead. Since each prefix’s

t value is constantly changing (even if no corresponding update messages have been

received), all prefixes must have their goodness values re-computed during an eviction.

The results of this algorithm can be seen in figure 2.4. Due to the computational

overhead, the quadratic weights algorithm was calculated over a 0.1% sampling and

then extrapolated for our 1% sampling. We believe this extrapolation to be fairly

accurate, as extrapolating the LRU algorithm from the same 0.1% sampling back to

a 1% sampling resulted in an almost perfect fit. Quadratic Weights is better than
3Our choice of a multiplicative, quadratic factor of n(n-1) came from theoretical analysis that

made simplifying assumptions about the types of updates seen and their frequency.
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any of the online algorithms, but not considerably; in particular, it is somewhat close

to the LRUp algorithm. Given that LRUp is very simple to implement in practice,

it is unclear that if a QW approximation algorithm would be desirable, as it would

most likely be more complicated.

2.4.3 Memory Usage

In order to understand how these algorithms would operate in practice, we extrapo-

lated total memory usage for each online algorithm. Drawing on analysis of memory

usage on several commercial routers, we assumed an average size of 45 bytes per RIB

entry. Any memory overhead from the algorithms’ data structures was taken into

account. Additionally, one byte per RIB entry of overhead was added for booking

which routes were forgotten. Lastly, we assumed that evicting a route leaves behind

four bytes of metric-relevant data.4.

The results can be seen in Figure 2.4. For reference, a regular router would need

to consume approximately 353 megabytes of space to store all of the routes, or 3.53

megabytes at a 1% sampling.

It is interesting to note that all the algorithms hardly deviate from their relative

positions. Moreover, the memory savings are still quite substantial. Approximately

10% of the memory savings is lost due to overhead costs, most of which stem from

the one additional byte per RIB entry and the four bytes of metric-relevant data left

behind. If one bit was used instead of one byte (to mark whether the routing data

was represented in a compact format or not) and fewer bytes of metric-relevant data

were used, this gap could be closed even further. Exploring the trade-off of throwing

out some metric data (and thus making it possible to have a set of possible next best
4Of these four bytes, one can be allocated for AS path length, one for ranking the time the route

was learned against other routes for this prefix, and two for compactly representing the other BGP
metric variables
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routes) and the increase in refreshes that would be required is an area of potential

future work.

2.5 Expected Memory Savings

Given that Forgetful Routing’s ability to save memory relies on network topology,

it is important to investigate how much savings real routers might see. Moreover,

observing how these gains vary by AS provides insight into the types of systems that

would see the most benefit from our scheme.

2.5.1 Challenges for Realistic Evaluation

Ideally, we would like to obtain the BGP message streams sent to a router and use

them to quantify the dynamics of Forgetful Routing. By sampling these feeds for

routers from ISPs, business customers, university networks, etc., we could build an

extremely accurate picture of how Forgetful Routing would affect a wide range of

BGP speakers, both in terms of memory and in terms of refreshes. Unfortunately,

it is very difficult to obtain accurate information about real-world memory savings.

Knowing how ASes’ connect and what messages they receive reveals valuable business

information. For this reason, companies do not publish their feeds nor do they make

them easily accessible.

While we do have Route Views as a source, it is not representative of any typical

AS. This is because it connects to over forty neighbors and receives full routes (i.e.,

routes for all destination prefixes) from many of them. While we can use Route Views

to evaluate different algorithms against each other, we cannot use it to evaluate

expected gains. Since obtaining dynamic feeds is out of the question, we cannot

deduce real world estimates of the refresh rates of Forgetful Routing. However, static

dumps of various RIBs are available, allowing us to quantify memory savings. First,

38



P
e

re
cn

t 
o

f 
A

S
e

s

Number of Neighboring Routers

45

40

35

30

25

20

15

10

5

0 1 2 3 64 5 7 or more

Figure 2.8: Percent of ASes with a given number of neighboring ASes.

we analyzed the RIB of the border router that connects Princeton University to the

rest of the Internet. The Princeton campus network connects to four other networks.

Based on a dump from April 6th, 2006, we observed that, on average, the Princeton

network has 2.4 alternate routes per prefix. Thus, a memory savings of nearly 70%

would be achievable for this router.

Next, we looked at BGP data from looking glass servers. A looking glass server

is a router that additionally runs a publicly available interface (such as a website

or a telnet connection) permitting anyone to query routing information from it. The

results of analyzing five looking glass servers [108] can be found in Table 2.1. For each

of these ASes except AS 7018, twenty prefixes were randomly sampled and the average

number of RIB entries calculated. For AS 7018, the first 20,000 prefixes in its RIB

table were used to compute its average. All of these ASes represent domains with high

connectivity. Unfortunately, looking glass servers are not very accurate indicators of

what real routers’ RIB tables look like. Because BGP information has business value,
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as describes how different competing organizations form alliances with each other,

looking glass servers tend to omit many RIB entries. For example, AS7018, which

is AT&T, is reported to have an average of 1.2 available routes per prefix, a number

which is absurdly low for a tier-1 provider.

2.5.2 Inference of BGP RIB Sizes

Looking at such a small number of static dumps is very limiting. Without a wider

breadth of routers’ RIBs, it is difficult to quantify what typical gains an AS might

see. However, we can infer other routers’ RIBs without direct access to them. If we

know the Internet’s topology, and if we know where prefixes originate, and if we know

the routing policies used between ASes, we can simulate the propagation of routing

information across all the unknown ASes’ routers and calculate what their RIBs look

like.

In order to infer Internet topology, all that is needed is a RIB dump from any

well-connected router. By looking at all AS paths for all routes in the dump, one

can deduce that there exists a link between each adjacent pair of ASes (e.g., if a

router receives a route advertisement that has an AS path of (41, 65, 45), then 41

and 65 connect to each other, as do 65 and 45). Doing so results in a conservative

count—there may be some links that were not represented in AS paths, depending

on the reference router’s isolation from other networks. Thus, any Internet topology

inference based on this scheme will, if anything, undercount various ASes’ RIBs in a

simulation, as well as the number of alternate routes available to prefixes.

Calculating where prefixes originate is a rather simple task. For each RIB entry

in a router dump, observe the prefix that it routes to as well as the last AS in the AS

path. By definition of BGP’s behavior, this AS will be the originator. Problems that

may arise include undercounting the number of prefixes available. Since these prefixes

and their origins are derived from a RIB dump, a router that is partitioned off from
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a significant section of the Internet may not know where certain prefixes originate, or

may not know that they even exist. Likewise with Internet topology, any inference

based on this scheme will undercount the number of RIB entries in a simulation, but

will not affect the count of alternate routes available to known prefixes.

Inferring an AS’s routing policies is difficult. By observing sets of AS paths,

one can examine how they constrain the possible relationships between organizations

and attempt to model them. A scheme that infers extremely liberal routing policies

will overcount the number of alternate routes per prefix, while a scheme that infers

extremely conservative routing policies will undercount the number of alternates.

To derive routing policies, we used the Gao inference algorithm [72] on a BGP

RIB dump obtained from Route Views [106] on February 10th, 2005. The Gao al-

gorithm defines three different types of business relationships: provider-customer,

peer-peer, and sibling-sibling. Provider-customer relationships represent one AS pur-

chasing connectivity from another AS. Providers almost always advertise all their

routing information to their customers, as they typically charge their customers for

traffic that flows between them. Peer-peer relationships represent two competing or-

ganizations that connect to each other in order to achieve greater reachability. Peers

generally only advertise their customer-learned routes and do not re-advertise routes

they learn from other peers. By doing so, their customers have great reachability

(and thus more traffic, generating more revenue), and they never need to transit

traffic meant for another peer (which would consume network resources without gen-

erating revenue). Sibling-sibling relationships indicate that the two ASes are actually

controlled by the same organization, either through mergers or buyouts. In some

sense, siblings should be treated as one large AS.

The results from our analysis can be seen in Figure 2.8. From this figure we can

identify three different categories of Autonomous Systems:
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• Single-homed ASes are Autonomous Systems that purchase their Internet con-

nectivity from a single, upstream provider. Based on our data, about 30% of all

ASes fall into this category. Because they only have one provider, they never

have alternate routes. For these systems, Forgetful Routing offers no benefits.

• Multi-homed ASes are Autonomous Systems that purchase their Internet con-

nectivity from two or more upstream providers. Approximately 40% of all

Autonomous Systems belongs to this labeling, including the Princeton network

mentioned earlier. The upstream providers are used either as emergency back-

ups or for load balancing. Multi-homed ASes are thus candidates for Forgetful

Routing.

• Providers are Autonomous Systems that have excellent connectivity and typ-

ically sell their reachability to single-homed or multi-homed customers. Some

of these providers may themselves be customers of larger ISPs. Approximately
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30% of all ASes fall into this category. For these systems, Forgetful Routing

could offer an order of magnitude of memory saved, or more.

Additionally, by analyzing the business relationships between ASes, we inferred

the number of alternate routes available to each Autonomous System for each prefix.

Using the business relationship data obtained from the Gao algorithm, along with

the BGP RIB data from Route Views to determine prefix origins, we simulated BGP

announcements over the derived topology. We assumed that providers always adver-

tise information to their customers, that customers do not advertise information to

their providers (unless they are originating a prefix), that peers only advertise their

customer learned routes, and that sibling ASes advertise all their information to each

other. Figure 2.9 shows the results. This CDF plot has three key areas:

• The No-Savings Zone. The first area contains all the single-homed ASes men-

tioned earlier, which never have any alternate routes. This explains the large

vertical offset of 30% in the graph. We also see that there are a few Autonomous

Systems that connect to multiple ASes, but have virtually no alternate routes

to choose from.

• The Savings Zone. The second area consists of the large spike from 2 to 20 on

the x-axis. The immediate jump at 2 represents multi-homed ASes, which have

alternate routing information for backup connectivity. Onward until 20 we see

a spectrum of values, representing other multi-homed ASes and providers.

• The Overestimated Zone. After 20 we see that there are a small number of ASes

which appear to have extreme numbers of alternate routes. This part of the

graph, from 20 onward on the x-axis, is actually an artifact of our simplistic

assumptions about routing policies. Many of these ASes in this region of the

graph connect to peering points, where hundreds of other organizations also

connect. Using the RIPE [13] Whois database, we discovered that many of
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AS Looking Glass
AS 3333 9.0
AS 6395 1.7
AS 6461 5.7
AS 7018 1.2
AS 9607 4.0

Table 2.1: A comparison of the number of RIB entries per prefix.

these peers have extremely strict import and export policies to avoid the RIB

table explosion as seen in the graph.

2.5.3 Discussion of Potential Savings

While the gains can vary from as low as nothing to as high as an order of magnitude,

it is important to evaluate these gains in the context of the likelihood of deploying

Forgetful Routing. Single-homed stub ASes only connect to one upstream provider

and receive all routes from their provider; since they have no alternates, they derive

no benefit from Forgetful Routing and would thus not deploy it. Multi-homed stub

ASes, like Princeton, generally have low connectivity, but receive almost all routing

information from every connection. Thus, these ASes may see a reduction in RIB size

from 33% to 75%. These ASes are likely to have older routers with smaller amounts

of fixed memory. Moreover, since their ISPs would most likely have the route-refresh

capability, they could deploy Forgetful Routing and obtain these memory savings.

It is also important to note that, for stub networks, Forgetful Routing has no

side-effects. Performance is unchanged, as well as convergence delay, as stubs never

re-transmit routing information. For these networks, Forgetful Routing can truly be

transparently deployed.

Transit providers generally have high connectivity, but do not always receive all

routing information from every connection. Our analysis estimates that providers

could see a reduction in RIB size of 75% to 95%. Moreover, if Forgetful Routing
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is deployed, incentives will then exist for increasing connectivity further, allowing

for greater reliability without significant increases to memory usage. In fact, many of

those ASes who peer with 100+ neighbors, but currently use extremely strict filters to

avoid RIB table explosion, could use Forgetful Routing to regain the lost connectivity

at a mere fraction of the memory cost.

It is important to note that providers may see additional gains not presented in

this analysis if they run Forgetful Routing inside the AS. Many ASes use a popular

variant of BGP called iBGP to internally store routes learned from their neighbors.

Under iBGP, every router within a single AS has a BGP session with every other

router and all information is shared between all routers, providing a global view

of the network. However, iBGP’s memory requirements grow very quickly; for n

routers in a network, each one would need up to n times more memory. Several

solutions have been proposed to scale back on the burdens iBGP introduces, with the

most notable being route reflectors and AS Confederations [38, 132]. Route reflectors

operate by dividing routers into two subsets: route reflectors and route reflector

clients. Clients connect to reflectors and rely on them to re-advertise their routes, as

well as to learn new routes [127]. However, reflectors make networks more vulnerable

to point failures and can cause inconsistent routing decisions, persistent loops, and

route oscillations [36, 61]. AS Confederations partition an AS into sub-ASes, where

each sub-AS maintains a full mesh within itself, with BGP sessions the between border

routers of each sub-AS. However, not only do AS Confederations make networks less

robust, they can also lead to instances of sub-optimal routing [61]. With Forgetful

Routing, it could be possible to maintain full iBGP connectivity without inflating the

memory requirements.

The most important insight from our analysis can be summed up in one statement:

having n neighbors does not always imply a factor of n savings. The type of network,

such as multi-homed stub, provider, etc., greatly affects the total amount of savings.
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However, in most cases, our results indicate that significant savings are possible. It is

difficult to say whether our estimates for memory savings are high or low. On the one

hand, our topology is almost certainly incomplete, undercounting total savings. On

the other hand, our inferred routing policies are liberal, overcounting total savings.

Because of the difficult nature of inference, covert policies and routing data, etc., this

area is one of potential future work.

2.6 Related Work

CRIO [137] is a mechanism which uses IP tunneling to reduce the memory needed

by BGP significantly, at the expense of longer paths. It operates by having tier-1

ISPs announce “virtual prefixes” that are very large (e.g., /8’s), and using tunnels to

directly connect routers as they forward packets. However, CRIO requires a globally

deployed system to operate and changes the way BGP functions. Our method is

incrementally deployable on a per-router basis and can be implemented using the

BGP route-refresh option and route filters. Additionally, CRIO sometimes reduces

path diversity and increases path lengths, while our mechanism does not reduce the

resilience and natural efficiency of BGP.

A similar endeavor is the atomized routing project by CAIDA [42]. Atomized

routing groups prefixes together into units called ‘atoms’ if they share the same AS

path in all their routes through any router in a network. These atoms are globally

computed and used to route packets. Studies have found that up to 78% of memory

can be saved using this technique. However, atomized routing has the same issues

as tunneled-BGP—it is not incrementally deployable and it requires modification to

BGP.

Draves et al. worked on a similar problem of reducing the Forwarding Information

Base (FIB) size of routers [60]. The FIB stores forwarding information for each prefix
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and is usually installed on fast line cards, unlike the main memory used by the

RIB. Draves et al. proposed an algorithm that constructs optimal trees to store

this information, guaranteeing maximal FIB savings. This work, however, is vastly

different from ours. It focuses on an entirely different memory system where all

information is local and operates using prefix aggregation. Unlike the FIB, the RIB’s

information may need to propagate to others and thus cannot be aggregated.

Research on shifting the burden of memory and computation to centralized servers

has been proposed by Caesar et al. in the development of a Routing Control Plat-

form (RCP) [46]. The RCP acts as a central server that collects BGP data from all

neighboring routes in the same AS. The RCP then has access to global information

and can make global routing decisions. It sends forwarding information back to each

router, moving the RIB memory burden and computation to a single machine. While

this can allow for different compression mechanisms (such as storing all unique AS

path tags across all routers in a single table, eliminating duplicates), such schemes

have not been fully developed yet. It is also important to note that a system such as

an RCP may run into memory problems itself if it attempts to store all routes for an

entire AS. Thus, a system such as the RCP may benefit from schemes like Forgetful

Routing that are modified for RCP to RCP communication.

Finally, earlier work on the EIGRP protocol [4] is related to Forgetful Routing.

EIGRP uses distance-vector routing along with a query/reply system to ensure loop-

free routing. For every route, each router stores each neighbor’s metric associated with

that route. The “best” route chosen is the one with the lowest metric. Whenever

that route becomes unavailable, the router checks if an alternate exists with the

same metric, and if so, uses it. Otherwise, it propagates a query message to all its

neighbors and recomputes its best route after it has heard back from all of them.

Although EIGRP has a similar “refresh” mechanism like forgetful routing, it has two

distinct differences. First, since EIGRP is a distance-vector protocol, it suffers from
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the “count to infinity” problem that must be resolved by setting a maximum hop

count. Second, unlike forgetful routing’s refresh mechanism, EIGRP’s refreshes are

executed in series rather than in parallel, resulting in convergence delays that increase

linearly with network size.

2.7 Conclusion

Today’s routers are susceptible to a wide range of memory problems. When a routing

table overflows, the router may enter unspecified behavior, including freezing, reject-

ing new routes, or entering into an infinite loop. It is not always possible to upgrade

router memory, due either to costs or limited access to the machines. Furthermore,

best common practices used by network operators only partially protect routers from

memory overflow, as they must often sacrifice safety for operability.

Our proposal of forgetful routing offers a unique solution to the problem with-

out modification to BGP. As memory is needed, alternate routes are forgotten and

requested back as needed. Since best routes are never forgotten, and an alternate

route is some neighbor’s best route, the route refresh option in BGP can be used to

help implement this mechanism. An offline analysis of BGP data shows that there is

much memory that can be saved; most alternate routes are never used. This analysis

motivated the development of an online algorithm that runs in constant time for each

message and approximates the optimal solution well. We believe that our scheme can

significantly improve the scalability and robustness of IP routers in the future.
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Chapter 3

Practical Network-wide

Compression of FIB Tables

The tremendous growth of the Internet has also led to increased FIB memory re-

quirements, resulting in increased costs. In this chapter, we push the boundaries

of current backwards compatible solutions and demonstrate that they can be much

more efficient and deployable than previously thought. Building on previous work,

we develop a Memory Management System (MMS) that reduces the number of FIB

entries by up to 65%, offers greater flexibility in route selection, and runs in real time.

The MMS can be deployed locally on each router or centrally on a route server. The

system can operate transparently, without requiring re-configuration in other ASes.

Our memory manager extends router lifetimes up to six years, given current prefix

growth trends.

The rest of the chapter proceeds as follows. Section 3.2 surveys Internet routing,

the kinds of state kept at routers, and challenges in reducing that state. Section 3.3

covers our research addressing these issues, along with a description of the MMS

deployed in local mode. We then discuss the setup of an AS-wide deployment of an

MMS in Section 3.4. Section 3.5 presents results using a simulated MMS over real

49



traces from tier 1 ISP routers. We discuss related work in Section 3.6 and conclude

in Section 3.7.

3.1 Introduction

3.1.1 Router Memory and its Problems

The continued growth of the Internet over the last decade has resulted in larger

state requirements for IP routers. As Autonomous Systems (ASes) have become

further inter-connected, the number of possible routes has grown, causing the memory

requirements to likewise increase. Moreover, these requirements are getting worse,

due to increased deaggregation (advertising more-specific routes) arising from load

balancing and security concerns [43, 126], the fact that routers run multiple routing

protocols simultaneously (each with their own routing state), and increasing demand

for Virtual Private Networks, which require multiple routing tables.

This memory growth is problematic for two reasons: safety concerns and increased

costs. Routing protocols typically rely on adjacent routers maintaining synchronized

state. When memory is exhausted, this synchrony breaks down, causing routing

protocols to behave incorrectly [48]. In addition, increased IP table size requires

more router memory, leading to additional expenses.

As previously mentioned, backwards compatible solutions are more likely to be

deployed in practice than clean slate designs. Among the backwards compatible

solutions, one piece of research stands out: Optimal Route Table Construction, also

known as ORTC [60]. The ORTC algorithm operates only on FIB memory, taking

a FIB as input and produces a FIB as output. It guarantees that the output FIB

has the exact same forwarding behavior as the input, and that the output FIB has

a provably minimal number of entries. Experimental tests have shown that it can

reduce the number of FIB entries by up to 50%. Despite this benefit, ORTC has
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not been adopted in practice, as it suffers from several major drawbacks. First, it

is computationally expensive (the original implementation takes approximately 500

milliseconds to run); if many routing updates are received each second, the algorithm

cannot keep up with the workload. Moreover, it is inflexible; it must always produce

an output that forwards exactly the same as the input. However, there may be

times when even a “compressed” FIB will not fit in memory. In this case, it may be

preferable to alter forwarding behavior if it can allow further compression. If these

two problems were fixed, ORTC could be a useful building block in a larger system

that managed memory.

3.1.2 The MMS as a Complete Solution

The focus of our research is to improve the ORTC algorithm to the point of where it

is feasible to run in practice, and then to extend it to a generic memory management

system (MMS) to manage the memory usage in the routers of an ISP’s network.

We apply several techniques to greatly boost the speed of the algorithm. Moreover,

the MMS provides multiple levels of compression, allowing for a trade-off between

unaltered routing and “maximal memory compression.”

The MMS can be deployed either locally on each router or in a central system that

monitors and compresses all routers in the AS-wide network. In local deployment,

each router locally performs the operations of an MMS over its own routing state. This

enables our system to run in a completely distributed fashion. However, this does

have some drawbacks. It requires router software upgrades and possible hardware

upgrades (if CPU power is lacking). Moreover, because each router has a local view

of the network and acts independently, there are limitations to the potential amount

of memory reduction.

To circumvent these problems, the MMS can also be deployed in an AS-wide

setting, where it runs on a set of logically-centralized servers that collectively assume
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responsibility for the routing interaction of an AS with neighboring ASes [46]. The

MMS receives routing updates from neighboring ASes, preprocesses these updates

before sending routes to routers within the MMS-enabled network, and communicates

selected routes to neighboring ASes. Neighboring ASes can be configured to send

updates directly to the MMS, rather than to the border routers. If neighboring ASes

do not wish to perform any re-configuration, border routers can act as proxies and

forward messages between the ASes and the MMS. Not only does this deployment

provide correctness and extra compression, but the logically-centralized approach

allows for additional amortization techniques to be applied.

3.1.3 The Benefits of the MMS

Our design has several benefits:

Flexibility: By default, MMS operates in a transparent fashion, with absolutely no

changes to the way routes are chosen and packets are forwarded. In this “transparent

mode” an external observer cannot tell the MMS has even been deployed. In such a

situation, the MMS can still provide about a 50% reduction in router memory across

the entire network, without altering forwarding behavior. If more memory savings

are desired, the MMS can shift paths to attain additional memory reduction, up to

65%. However, routes selected for forwarding may differ from the “transparent” case.

We provide algorithms to automatically perform a small set of routing changes that

increase compressibility without operator involvement. It is important to note that

even if paths are shifted, the system remains inter-operable with routing protocols

and does not introduce any routing loops.

Reduced Operational Cost: The MMS can simplify capacity planning and extends

the lifetimes of older routers. We demonstrate this through experimental results

conducted within a large tier-1 ISP backbone: memory usage can be reduced between

50% to 65%, the rate of increase of table growth is decreased by a factor of 2.2, and
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variation in table size is reduced by a factor of 2.6 (reducing variability increases the

accuracy of future provisioning predictions). Given current levels of routing table

growth [2], these reductions can be expected to increase lifetimes of routers needing

immediate replacement by up to 6 years. Moreover, since the MMS can operate in

the form of a logically-centralized cluster (or a small redundant set of clusters), it can

form a single location where resources may be upgraded, reducing expenses associated

with field deployment.

Safety: Routers near their memory limits can use the MMS to increase the amount

of available resources. This improves resilience to misconfigurations in neighboring

networks. Moreover, given that our compression techniques perform better with in-

creased levels of deaggregation, our approach could enable interdomain routing on

fully-deaggregated /24 prefixes, which has benefits in terms of routing flexibility and

mitigating hijacking attacks.

Incrementally Deployable: A single ISP can deploy an MMS while maintaining

interoperability with existing protocols and Autonomous Systems. Moreover, in AS-

wide deployment mode, our MMS design requires no changes to existing router hard-

ware. The MMS communicates routes to border routers using internal BGP (iBGP)

sessions, and maintains external BGP (eBGP) sessions to neighboring domains on

behalf of its border routers. Furthermore, this deployment may proceed in an incre-

mental fashion, by having the MMS only control a limited subset of routers within

the ISP. Finally, the MMS can be deployed and operate at its full capability without

cooperation from neighboring ISPs.

3.2 Memory Saving Approaches and Limitations

The primary goal of the MMS is to reduce router memory usage within an ISP.

To do this reduction, the MMS performs route coalescing, i.e., replacing groups of
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TIME: 2007-12-23 09:51:11
TYPE: BGP4MP/BGP4MP_MESSAGE AFI_IP
FROM: 12.0.1.63
TO: 128.223.51.102
BGP PACKET TYPE: UPDATE
ORIGIN: Incomplete
AS_PATH: 7018 8151
NEXT_HOP: 12.0.1.63
COMMUNITIES: 7018:2000
ANNOUNCED: 200.94.228.0/22
ANNOUNCED: 200.94.224.0/22

Figure 3.1: BGP update message from Route Views on Dec 23, 2007, announcing
that two prefixes are reachable through the same next-hop.

routes sharing the same next-hop with smaller, equivalent sets. Although this seems

like a simple procedure, several operational complexities of ISPs make this process

quite complex. In this section we describe the challenges in route coalescing through

several examples. We show that naïve approaches can introduce inconsistencies in

packet forwarding, and we motivate why our design decisions are necessary.

3.2.1 Routing across ISPs

BGP propagates routes for prefixes, which denote a collection of host addresses imme-

diately adjacent in the IP namespace. Prefixes specify reachability on multiple levels

of granularity, creating ambiguity in reachability information. For example, a route

to 12.0.0.0/8 could have a next hop of 1.1.1.1, while a route to 12.0.0.0/9 could use

2.2.2.2. To eliminate this ambiguity, routers select the longest matching prefix when

there are multiple choices. However, longest prefix matching significantly complicates

aggregation, i.e., the ability to take two prefixes with the same next hop information

and combine them into a single, larger prefix. An example of such a complication

with aggregation is shown in Figure 3.2. To avoid introducing such difficult-to-predict

side effects, ISPs are constrained in the types of aggregation they can perform.

Although ISPs cannot aggregate advertised routes (RIB), they can aggregate for-

warding entries (FIB). As previously shown, even if two prefixes have the same next-
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Figure 3.2: Aggregation can have unintended consequences: When no ASes perform
aggregation, AS 5 can route traffic to 12.1.0.0/16 via AS 3, and traffic to 12.0.0.0/16
to AS 4. However, if AS 3 decides to aggregate 12.1.0.0/16 and 12.0.0.0/16 into
12.0.0.0/15, AS 5 can no longer use the route via AS3. The reason is that all of
12.0.0.0/15 is covered by more specific prefixes that are reachable via alternate exit
points, and Internet routing always prefers more-specific prefixes.

hop, an ISP cannot announce an aggregate route, as it causes problems for other

ASes. However, in the case of forwarding, there are no negative effects from such ag-

gregation. Aggregating FIB entries is completely transparent to other routers; they

still see the same router forwarding packets in the same manner. Moreover, if we

choose routes from the RIB that have the same next-hop, we can aggregate these

entries in the FIB. In other words, our choices of routes in the RIB will determine

the compressibility of the FIB.

To summarize, Autonomous Systems cannot advertise compressed routes. While

forwarding entries can be coalesced, routing entries cannot.

3.2.2 Routing within an ISP

ISP networks earn revenue by providing transit service, i.e., by forwarding traffic

between their neighbors. Hence, ISPs must share reachability information received

from one neighbor with the others. This is often done by establishing BGP sessions

between border routers (when BGP is run within an ISP, it is often referred to as
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iBGP). Internal reachability between border routers is provided by an intra-domain

routing protocol such as OSPF [107] or IS-IS [110]. iBGP sessions are sometimes

established in a full-mesh configuration, where each border router maintains a session

to every other border router. However, since routers must maintain routing state sep-

arately for each iBGP session, full-mesh configurations have very large RIB memory

requirements. For example, if there are n border routers, then each border router

may need to store and maintain n − 1 internal routes for each of the hundreds of

thousands of prefixes in the routing table.

To circumvent this problem, larger networks often deploy route reflectors [38] at

strategic locations within their network. Route reflectors act as internal accumula-

tion points, which collect routing updates from a subset of border routers, and only

advertise the most preferred route to their iBGP neighbors; as such, border routers

only receive the most preferred routes from their associated route reflectors. Unfor-

tunately, the use of route reflectors introduces a set of problems. They can induce

persistent forwarding loops and oscillations if deployed improperly [37]. They require

additional work for network operators to maintain, as they must be reconfigured to

match changes in the underlying network topology. While route reflectors reduce

memory usage, they do not reduce the number of prefixes in the routing table. Hence

route reflectors do not reduce the size of the router’s forwarding table (which is com-

monly stored in expensive, fast memory).

3.2.3 Router-Level Routing

Routers are logically divided into a control plane and a data plane. The goal of the

control plane is to compute the set of routes the router should use locally, and of these,

which should be advertised to neighboring routers. The goal of the data plane is to

forward data packets, by selecting from a set of next-hops computed by the control

plane. Routers maintain two key data structures corresponding to each of these two
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planes: a Routing Information Base (RIB) for the control plane, and a Forwarding

Information Base (FIB) for the data plane.

The RIB stores the set of routes available to forward packets. The RIB is stored

as a map from the set of advertised prefixes to the next hop which may be used to

reach that prefix, along with additional state associated with the route (the AS-path,

cost metrics, attributes, etc). Routers typically need to store several routes per prefix.

This is done so that if the currently-used route fails, the router may use an alternative

route through a different neighbor to circumvent the failure.

Unfortunately, when routers run out of memory, they can continuously reboot,

crash, or begin behaving incorrectly [48]. Reducing RIB memory is quite difficult.

RIB entries contain routing information that may be vital when primary links fail and

backup routes are needed. Moreover, routing information is often exchanged between

routers and used to determine forwarding paths. As such, care must be taken when

attempting to reduce RIB memory – data cannot be simply discarded.

The other memory structure, the FIB, stores the set of routes which will be used

to forward packets to individual prefixes. The FIB must perform forwarding lookups

very fast, since it must forward data packets at high rates. Hence FIBs are typically

implemented in fast memory with low access times, such as SRAM or TCAM. The

contents of the FIB are populated by the RIB. Newer routers typically update the

FIB immediately after RIB changes.

There are two restrictions regarding FIB memory reduction. First, if the router

advertises it will forward packets a certain way, it must actually forward packets in

that manner. Prefixes can be coalesced if such actions do not change the forwarding

behavior advertised by the router. In other words, routing decisions in the RIB must

be honored by forwarding decisions the FIB. Figure 3.3 provides an example. Second,

FIB reduction techniques must be extremely fast. If an algorithm is too slow, a router

may not be able to stop an ever growing backlog of updates that need processing.
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3.3 The MMS in Local Deployment

There are fundamental problems with trying to compress routes: prefixes cannot be

coalesced when announced, FIB compression is limited by RIB decisions, compression

algorithms must be fast, etc. In this section, we discuss how our Memory Manage-

ment System can circumvent some of these problems when deployed in “local mode”

on individual routers. We demonstrate how the MMS can provide flexibility in ag-

gregation for the FIB without introducing network problems. Moreover, we show

how techniques such as parallelization and incremental computation can be used to

significantly speed-up the ORTC algorithm, which is used as a building block for the

MMS. The local mode MMS also serves as a basis for the AS-wide MMS, which is

discussed in the next section.

Although the MMS can be used to reduce FIB memory consumption, the RIB

cannot be easily compressed in “local mode.” A router may need backup routes and

may need to advertise this information to other routers. As such, we focus on FIB

compression. Later, during the discussion of “AS-wide mode,” we demonstrate how

the RIB can be compressed.

3.3.1 A Fast FIB Compression Implementation

Draves et al. [60] previously proposed an Optimal Routing Table Construction (ORTC)

algorithm, which takes a routing table as input, and computes the provably small-

est 1 routing table that performs forwarding in an equivalent manner. Figure 3.4

outlines their algorithm, which assumes a binary tree representation known as a trie

data structure. ORTC works by making three passes over the trie, in steps known

as normalization, prevalent hop set calculation, and next-hop selection. The authors

of [60] provide several optimizations to speed up this computation. They also extend

the algorithm to deal with multiple next-hops per prefix and default routes.
1With respect to the number of prefix/next-hop pairs.
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Figure 3.3: Example of prefix coalescing over tries, i.e., binary tree representations
of forwarding tables. The uncompressed FIB on the left represents prefix 128.0.0.0/1
mapping to next-hop A, and prefixes 0.0.0.0/2 and 64.0.0.0/2 mapping to B. The
FIB trie on the right forwards in the same manner, although it only has two prefixes:
0.0.0.0/0 mapping to A and 0.0.0.0/1 mapping to B.

Unfortunately, even with optimizations, ORTC is too slow to use in real time.

While the authors were able to optimize run time down to several hundred millisec-

onds for the smaller routing tables that existed when their paper was published,

these run times remain too slow. Core routers commonly process tens of updates

per second and bursts up to thousands of updates per second [106, 24]. We leverage

the techniques of parallelization and incremental updates to augment this algorithm,

speeding it up so it can be used with the MMS.

Parallelization

Parallel algorithms are becoming increasingly important as chip manufacturers move

to multi-core designs. Conventional wisdom is now to double the number of cores on a

chip with each silicon generation, while the speed of each core grows much more slowly

or remains constant [33]. Such trends in processor design can be exploited to help

compression algorithms keep pace with the increased computational load associated

with the growth and churn of Internet routing tables.

There has been substantial previous work on parallel algorithms for graph struc-

tures [116]. Our design is loosely based on these techniques and consists of two stages.

In the first stage, all nodes associated with /8 prefixes are added to a queue. When
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a thread becomes available to perform work, it selects a node from the head of the

queue, and performs compression on the sub-trie rooted at that node. To ensure

correctness, it is important that no other threads concurrently process any nodes in

that sub-trie. As a result, a thread locks all descendants of that node. In the second

stage, a single thread performs the rest of the remaining compression for the nodes

that have not been processed. Note that the second stage could be parallelized as

well to further decrease computational time.

Incremental Computation

The ability to incrementally update data structures is crucial for speed. The benefit

of an incremental approach is that changes to a single prefix do not require recom-

puting the router’s entire FIB. However, with ORTC compression, this is no longer

true – changing a single prefix may trigger other routes to become coalesced (or to

deaggregate). The naïve way to deal with this would be to rerun ORTC after every

received update. However, doing this would be wasteful, as the vast majority of routes

would not change after a particular update is received. Furthermore, some updates

do not require any recomputation (for example, an update that removes a route that

is not used by any routers in the network).

To improve processing time, traditional ORTC works by periodically processing

batches of updates at fixed intervals. However, such an approach increases the time

needed before a router can respond to a change in the network. To deal with this, we

developed an incremental algorithm (Figure 3.5), that only processes the portion of

the ORTC trie that is affected by the received update. When a routing update for a

prefix is received, the algorithm looks up the corresponding node and recurses up and

down the trie, stopping whenever it determines that no more changes are needed.

For example, consider a trie with two (prefix, next-hop) pairs: (0.0.0.0/0, 1.1.1.1),

and (0.0.0.0/1, 1.1.1.1). This trie can be compressed to a single (prefix, next-hop)
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entry: (0.0.0.0/0, 1.1.1.1). Now consider the announcement of a new route:

(128.0.0.0/1, 2.2.2.2). Adding this new route does not change forwarding behavior

of 0.0.0.0/1. The forwarding behavior does change for 0.0.0.0/0, though, and it

(along with new nodes) will need to be re-evaluated for compression gains. 0.0.0.0/1,

however, can be unaware of any such computations, as long as 0.0.0.0/0 still “cov-

ers” it by forwarding toward 0.0.0.0. The new compressed trie, (0.0.0.0/0, 1.1.1.1),

(255.0.0.0/1, 2.2.2.2), is optimal and does not require a full computation.

While parallelization and incremental updates could be combined, it is unclear

how well they would work together. Parallel algorithms work best with large sets of

data that can be processed independently, while the incremental algorithm attempts

to operate over small sets of nodes that may have inter-dependencies. As such,

the overhead from thread locks may outweigh the amount of possible parallelization

savings.

Thus, we consider these techniques to be complimentary and useful for different

situations. For example, if a router suddenly switched compression on, a parallelized

full computation would be faster than the incremental algorithm (since a full com-

putation is needed anyway, and a parallelized version has additional opportunity for

speedups). However, if a router is simply processing updates received in normal BGP

communication, the incremental version would most likely be the fastest algorithm

to use.

3.3.2 Selecting Routes to Improve Compression

Given this implementation, there is still a problem of flexibility. As previously men-

tioned, the RIB is responsible for all routing decisions. The RIB uses the BGP

decision process (Figure 3.6), which provides a way to select a single route for for-

warding from among many possible choices. It uses a series of rules to pick routes.

Each rule eliminates some set of routes, and rules are applied until a single route

61



Maximally compressed binary trie t:

// Normalization: all nodes to have 0 or 2 children.
for node N in t in preorder traversal:

if N has one child:
create missing child for N
child inherits N.rib_info

// Prevalent hop calculation: find the set of
// maximally aggregated next-hops.
for node N in t in postorder traversal:

if N has no children:
N.prev_set = {N.rib_info}

else:
N.prev_set is intersection of its children’s prev_sets
if N.prev_set == ∅:

N.prev_set is the union of its children’s prev_sets

// Next-hop selection.
for node N in t in preorder traversal:

if N is root of t:
N.next_hop = arbitrary element of N.prev_set

else:
clst = closest ancestor of N with non-NULL next-hop
if clst.next_hop ∈ N.prev_set:

N.next_hop = NULL
else:

N.next_hop = arbitrary elem in N.prev_set

Figure 3.4: Pseudo-code for the ORTC algorithm. Each node represents a different
prefix. rib_info represents the chosen route for a prefix (as dictated by the RIB).
NULL next-hop indicates no FIB entry needed for that prefix.

remains. The process is designed around business goals, such as maximizing revenue

(through local preference settings), attempting to minimize latency (through shortest

AS paths), load balancing (through IGP metrics), and so on. The last rule is an

exception, though, and exists simply to pick a “winner” if there are multiple routes

at the last stage.

The BGP decision process is very important because it dictates the routes that

will be installed into the FIB (and limits the amount of memory reduction that is

possible). The FIB blindly accepts the results of the BGP decision process, even if
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Incrementally update a trie t with an update u from neighboring
router u.neighbor:

// Update the node with the new routing information.
N = node in t associated with u.prefix
N.rib_info -= {old next_hop of u.neighbor}
if u is an announcement: N.rib_info += {u.next_hop}

// Normalize all affected children of N. Same as normalization in original
// ORTC, except if a node is not modified by normalization, do not
// normalize the children of that node.
mod_normalize(sub-trie rooted at N)

// Calculate the prevalent hop set. Same as the prevalent hop calculation
// in original ORTC, except if a node N has no children, set
// N.prev_set = N.rib_info
mod_calc_prev_set(sub-trie rooted at N)

// Normalize all affected ancestors of N. Ancestors are processed in
// ascending order. If a node was not modified by normalization, do not
// normalize its ancestors. Update ‘highest’ variable to reference the
// highest ancestor normalized.
highest = N
mod_ancestor_normalize(N, highest)

// Compute new next-hops as needed. Same as next-hop selection in original
// ORTC, except if the next_hop of a node is unchanged, do not process that
// node’s children.
mod_select_next_hop(sub-trie rooted at highest)

Figure 3.5: Pseudo-code for the incremental update algorithm. rib_info now repre-
sents the set of routes passed to a prefix from the RIB.

there are alternative routes that are nearly as good and provide better compression. If

a router allowed for more flexibility in route selection, it could achieve more memory

gain.

The MMS allows for such flexibility. Instead of having the RIB decide on a

single route per prefix, the MMS allows the RIB to decide on a set of routes that

are acceptable for use. Based on all these sets per prefix, the MMS can now pick

routes that coalesce. In particular, an operator configures the MMS with a threshold

level. The threshold level determines how many steps of the BGP decision process
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to execute. All routes that are equally good at a particular level are considered

possible routes for the FIB. A route coalescing algorithm is then computed over these

possibilities. For example, a “level 0” setting would not run any steps of the decision

process, and use all possible routes in the coalescing algorithm. A “level 1” setting

would select all routes that remain after applying step 1 of the decision process; a

“level 2” setting would select all routes that remain after applying steps 1 and steps

2; and so on.

It is important to note that such flexibility requires the use of tunnels between

border routers. Without tunnels, packets may be forwarded in a different manner

than expected. For example, consider the network depicted in Figure 3.7. Routers

A and B both use their external links to reach 1.2.0.0/16. It is possible for router D

to choose A for forwarding to this prefix, while router E choose B. However, both

D and E must go through C. If C decides to forward traffic to 1.2.0.0/16 through

A, then router E’s choice is invalidated. Since BGP specifies a single next-hop for

a given prefix, this problem is unavoidable. To overcome it, tunnels between border

routers can be used. Tunnels have the additional benefit of freeing memory in the

core of the network. Such “BGP-free cores” have been deployed in practice (e.g.,

through MPLS [121] tunnels) and are feasible to implement.

Flexibility in route selection may cause divergence from the original forwarding

behavior; such deviation may be tolerable in a number of circumstances. Higher levels

of compressibility may be achieved given. Moreover, the amount of divergence can be

tweaked, offering more divergence and savings in some situations and less divergence

and savings in others. In addition, this approach can be used as a fallback mechanism

if the level 7 (i.e., no divergence) compressed routing table size would exceed router

capacity.

However, deviating from the BGP decision process can lead to routing loops or

oscillation. These problems can occur at either the inter-AS level or intra-AS level.
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Figure 3.6: The BGP Decision Process.

Luckily, due to the relationships that exist between Autonomous Systems, such prob-

lems can be avoided at the inter-AS level as long as step 1 of the BGP decision

process is always applied. This is because step 1 is primarily used by ISPs to en-

code relationships, with customers often receiving higher local preference values than

peers, and peers receiving higher local preference values over providers. As long as

people are routing according to economic incentives, loops and oscillations should not

happen [73].

However, intra-AS loops and oscillations can occur if we are not careful and routers

act independently. For example, imagine two routers in a network that both have

external routes to the same set of prefixes, as well as routes to each other. If enough

BGP decision steps are ignored, router A might decide that it should simply forward

everything to B. Likewise, B might decide to forward everything to A, resulting in a

loop. To solve this problem, each MMS should be configured with a threshold value

of at least 5 (eBGP preferred over iBGP). This configuration prevents loops because,

due to the dynamics of iBGP, iBGP learned routes always point to a router that has

an eBGP learned route. Thus, all routers in a network fall into one of two cases:

• The router has at least one “equally good” eBGP-learned route. In this case, the

MMS forces the router to pick an external route, preventing intra-AS problems.

• The router’s set of “equally good” routes are all iBGP-learned. Using any of

these routes will send packets to a router that has at least one eBGP-learned
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Figure 3.7: An example network with four border routers and one internal router.
Dashed lines represent AS boundaries, solid lines indicate links, and dotted lines
represent paths to the AS that owns 1.2.0.0/16.

route. Once these packets arrive at these border routers with eBGP routes,

they are sent off the network, as in the previous case.

In summary, as long as the threshold level drops no lower than 5, both inter- and

intra-AS problems can be avoided. Moreover, the increased flexibility can lead to

better compression.

3.4 AS-Wide Deployment of the MMS

Alternatively, the MMS scheme may be deployed in a centralized fashion. The over-

all architecture of an AS-wide MMS is shown in Figure 3.8. It can be implemented

through a logically-centralized architecture which offloads memory management func-

tionality to a small set of servers. These servers are completely responsible for dissem-

inating routing information to routers within the ISP. This design draws on previous

work on the Routing Control Platform (RCP) [46]. The MMS directly maintains

peering sessions with neighboring ASes, offloading the responsibility from its asso-

ciated border routers. The Memory Management System has a network-wide view

and knows the routing preferences of all border routers. Thus, the MMS can locally

maintain a routing table on behalf of each BGP-speaking router in the network. The
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Figure 3.8: Solid lines represent physical connections, while dotted lines represent
virtual connections. Border routers at other autonomous systems speak directly to
the MMS, which is permissible as BGP is run over the TCP/IP protocol. The MMS
then sends coalesced information to its own routers for forwarding.

MMS can compress the routes and send the compressed information to the border

routers (while sending the uncompressed information to other autonomous systems).

This approach has several benefits. First, our centralized approach offloads com-

putation from routers, freeing up computational resources for other protocols or for

speeding convergence. Second, our approach requires minimal changes to existing

routers. Third, common computations across routing tables could be amortized to

yield further computational saving.

In a centralized deployment mode, the MMS should be replicated to improve fault

tolerance. We use an approach similar to the RCP, having one server act as a primary

in charge of distributing routes throughout the network, with the rest of servers acting

as failovers.
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3.4.1 Compressing FIB Entries

In AS-wide deployment mode, the MMS can obtain all the FIB compression benefits

from the local deployment mode. In its simplest setting, the AS-wide MMS can

run an instance of a local MMS for each router, performing all the computation on

behalf of the routers. Moreover, because the AS-wide MMS has a complete view of

the network, it can avoid the problem of routing loops caused by incomplete routing

information. The MMS can dictate all forwarding decisions such that no routing

loops occur.

In addition, the MMS can leverage an amortization speed boost when the thresh-

old level is set below 5. Below level 5, all routers with the same routing information

will make the exact same decisions regarding “equally good” routing sets. This phe-

nomenon occurs because the first four BGP decision process steps are always the

same for every router, if given the same set of routes. However, not every router

will have the same set. For example, if router 1.1.1.1 has an eBGP learned route r

with next-hop 2.2.2.2 and advertises it, all other routers will see r as having next-hop

1.1.1.1. However, if routers share similar sets, the computations can be amortized.

To efficiently compute the FIBs from the RIBs in an amortized fashion, the MMS

first compute sets of routes that are equally good according to the first N steps of

the BGP decision process, where N is the threshold level. All routers in the network

must select a route from this set. A smaller computation is then done to further select

routes on a per-router basis (that deviate from the ‘common’ case). This approach

consists of two separate stages:

Stage 1, compute common FIB: First, the MMS computes a compressed FIB that

all routers in the network share. In particular, the MMS logically creates a virtual

internal router, which receives all routes from every border router in the network.

The MMS then constructs a compressed FIB for this router.
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Threshold Level FIB Entries % of original size
1 110890 35.6%
2 119150 38.3%
7 130842 42.0%
Uncompressed 311466 100.0%

Table 3.1: Tier-1 results for a single router on a single day. Results were similar for
other routers in the network.

Stage 2, compute router-specific differences: At first glance, it appears that every

router in the network should use the common FIB computed in stage one. However,

this is not the case. For example, consider a network that picks next-hop 1.1.1.1

for prefix p. If 1.1.1.1 is a border-router in the network, then everyone can route

successfully except for 1.1.1.1. Since 1.1.1.1’s forwarding table would state that the

next-hop is 1.1.1.1, the router would forward packets to itself. To avoid this scenario,

the MMS computes (on behalf of 1.1.1.1) which one of 1.1.1.1’s outgoing links is best

suited for forwarding traffic to p, and sends that information to 1.1.1.1.

3.4.2 Compressing RIB Entries

The AS-wide MMS has the opportunity to reduce the amount of redundant routing

state in a network. For example, every time a route is announced and propagated, it

may be stored on every router that receives it. Individually, each router may not be

able to remove RIB entries, since it may need to transmit the information to ASes;

thus, reducing the redundancy may be difficult. However, the MMS can act as a

central database to store all such routes. Only one copy of the route need be stored

in this case.

Moreover, if the AS-wide MMS is responsible for routing advertisement, prefixes

can be coalesced and supernetted for both the RIB and the FIB. Since routers are no

longer advertising information, they can compress their RIBs through the same mech-

anism that FIBs are compressed. Attributes can be completely stripped (except for
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prefix and next-hop information), as the MMS would retain an original copy. As such,

the amount of RIB memory needed on border routers can be reduced dramatically.

In the AS-wide deployment mode, the MMS offers greater FIB compressibility

and more opportunity to reduce RIB memory requirements.

3.5 Evaluation

Data used to evaluate the MMS comes from a tier-1 ISP’s BGP feeds from January of

2008 to June of 2008. These feeds are input into a simulation of the MMS. The data

represent the actual loads seen by that ISP’s border routers, and thus these numbers

reflect a system running under “tier-1 stress.”

3.5.1 Compression Ratio

Figure 3.1 shows compression achieved across a router within the ISP. Here, the

compression techniques were run over a routing table snapshot that was collected on

June 1, 2008. The compression gains of this routing table snapshot were compared

with other routers in the network; no significance difference was seen. Moreover, the

router’s compression gains were studied over a two month period from April 15, 2008

to June 15, 2008; no significant variance was seen. As such, the data from Figure 3.1

can be considered representative. With Level 7 compression, routing table size is 42%

of its original size, without causing any changes in forwarding behavior. Lower levels

increase compression.

Route Views traces indicate that the number of more-specific prefixes is increasing

at a faster rate than less-specific prefixes, as shown in Figure 3.9. For example,

between January 1, 2002 and June 1, 2008, /24s were the fastest growing segment, in

terms of number of prefixes.
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Figure 3.9: Growth rate of three different prefix lengths, as observed from Route
Views.

3.5.2 Runtime

Figure 3.10 shows the speed up results from parallelization. In this experiment,

a single threaded version of ORTC was run, and timing information was recorded

for processing each node. These results were fed to a simulator that simulated a

multithreaded version of the ORTC algorithm. The simulator used the results from

the single threaded run to estimate the time that each thread spends when it processes

a node. Based on these results, significant speed up can occur. However, after about

20 threads, speed up becomes negligible. It is important to note that a speedup of

up to a factor of 8 (with approximately 20 threads) is significant.

Figure 3.11 demonstrates the benefits from incremental computation, i.e., only

recomputing the portion of the routing table that is affected by a received update.

The figure shows a time-series plot of update processing time, for both the incremental
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Figure 3.10: Parallelization and its effects on speed up.

algorithm and the traditional non-incremental ORTC algorithm. The incremental

computation significantly improves update processing time, both in terms of absolute

magnitude, as well as in terms of absolute variance. For example, over the one month

period from June 15, 2008, to July 15, 2008, the computation time decreased by a

factor of 9344 on average.

3.6 Related Work

Improving network scalability by reducing memory usage has been widely studied

in previous work. Hierarchical routing [107, 90], landmark routing [133, 68], and

geographic routing [98] embed topological information in addresses, so as to reduce

the number of routes required to be stored at routers. Alternatively, DHTs [129]

work by reducing the number of routes maintained by each participant in the system.
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Figure 3.11: Incremental computation speed up.

These techniques are more formally studied by compact routing [131], which provides

theoretical bounds on the amount of memory that can be saved for a given degree

of suboptimal routing. Commonly, such work focuses on minimizing routing table

size or control overhead while bounding path inflation. The MMS architecture differs

from previous work in these areas, in that it aims to operate within the confines of

existing IP routing protocols, rather than replacing them.

One practical method that can be used today (leveraging existing technologies) is

to use MPLS tunneling in an ISP’s core, while deploying route reflectors to exchange

routes amongst the edge routers. While this helps the memory requirements for both

border routers and ISP’s cores, it does require the deployment of route reflectors. As

previously mentioned in Section 3.2, route reflectors have their own set of problems

and limitations.

There has been other recent research in reducing memory consumption while re-

maining backwards compatible. The ViAggre [34] work demonstrates how to routers
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can be reconfigured to store a fraction of the routing table. The memory on each

router can be significantly reduced, although the route a packet takes may be subop-

timal. Another piece of work known as Route Relaying [96] demonstrated a similar

technique in the VPN setting, where edge routers forward to traffic to a collection of

“hub” nodes that store the full routing table. However, it is worth noting that such

deflection techniques can interfere with traffic engineering. In contrast, the MMS can

be configured to use IGP weights in the decision process, which are typically used for

traffic engineering.

The Routing Group (RRG) has also explored scalability issues with respect to

memory [14]. In particular, the work on Locator / ID splitting (LISP) has gathered

attention, where the IP address space is divided into separate spaces for end-hosts and

for organizations. Substantial memory savings are possible under this scheme [117].

However, this scheme has a deployment problem. A single ISP cannot deploy it

and realize the savings unless at least one other ISP cooperates, due to its use of

IP-in-IP tunneling. While it may be considered “incrementally deployable” from

the perspective that it builds on top of existing infrastructure, it does require some

coordination between ASes. As such, we consider this work complementary to the

MMS.

There has also been work on several technologies that enable the MMS design.

The Routing Control Platform (RCP) [46, 134] provided an architecture for logically

centralizing route selection within an RCP. The prototypes in [46, 134, 136] demon-

strated that this architecture can scale to the size of a large, tier-1 ISP. The RCP

aimed to compute and distribute BGP routes to routers within an ISP, and did not

aim to reduce table sizes at routers. However, the MMS algorithms may be deployed

on top of an RCP-like infrastructure.

Other related work includes Verkaik et. al.’s BGP Atoms [42], and Draves et. al.’s

Optimal Routing Table Constructor [60]. BGP Atoms can be used to reduce memory
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overhead by clustering prefixes based on policy, rather than supernets. Forgetful

Routing enables routers to distributively share their RIBs, reducing redundancy in a

network. The work by Draves et. al. served as a primary inspiration for our work.

The algorithmic contributions, architecture, and deployment strategies used in the

MMS can be viewed as a way to make ORTC practical in a modern-day network

environment. The MMS study also measures compression benefits over a range of

topologies and environments, including a large Tier-1 ISP.

3.7 Conclusions

Deploying an MMS within an ISP has several benefits. An MMS can prevent router

memory requirements from exceeding capacity, as well as extend the lifetime of

routers. Moreover, experimental results show substantial reduction of routers’ FIBs.

Reducing these requirements and safely preventing routers from becoming overloaded

reduces the need to upgrade them as often, decreasing operational costs and admin-

istrative work. The MMS is designed to be practical and even amenable to partial

deployment.

For future work, several items may be interesting to investigate. While the thresh-

old levels are assumed to be fairly static, a fully-automated “adaptive mode” could

be developed; the algorithm would automatically adjust the threshold level to stay

within memory bounds while deviating from the BGP decision process as little as

possible. Additional savings might be possible by developing protocols to perform

memory management across ISPs. Finally, if memory is still scarce after compres-

sion, the memory management system could be used to selectively filter less popular

routes to ensure that the most popular ones remain available.
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Chapter 4

Quantifying the Extent of IPv6

Deployment

The previously mentioned solutions have been specific to BGP and were evaluated in

the IPv4 Internet. Despite the dominance of these two protocols, there are indica-

tions that other protocols may soon challenge them. Unfortunately, because upcoming

protocols are so new, it is very difficult to guess their eventual effects. Instead of ex-

trapolating too far into the future, the next two chapters examine current deployment

and usage of two emerging protocols. This information helps lay the groundwork for

future research into these areas. In this chapter, we specifically look at the IPv6

protocol, designed to replace IPv4.

Our understanding of IPv6 deployment is surprisingly limited. In fact, it is not

even clear how we should quantify IPv6 deployment. A variety of data is analyzed to

characterize the penetration of IPv6. It shows that each analysis leads to somewhat

different conclusions. For example: registry data shows IPv6 address allocations

are growing rapidly, yet BGP table dumps indicate many addresses are either never

announced or announced long after allocation; Netflow records from a tier-1 ISP

show growth in native IPv6 traffic, but deeper analysis reveals most of the traffic is
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DNS queries and ICMP packets; a more detailed inspection of tunneled IPv6 traffic

uncovers many packets exchanged between IPv4-speaking hosts (e.g., to traverse NAT

boxes). Overall, the study suggests that (from these vantage points) current IPv6

deployment appears somewhat experimental and that the growth of IPv6 allocations,

routing announcements, and traffic volume probably indicate more operators and

users are preparing themselves for the transition to IPv6.

The chapter is organized as follows. Section 4.2 examines IPv6 address block

allocation and compares it against an analysis of address block announcements. Sec-

tion 4.3 looks at both native and tunneled IPv6, analyzing the types of technologies

used to enable IPv6 communication and the application mix. We discuss related work

in Section 4.4, and conclude with Section 4.5.

The IPv6 study has been previously published in the proceedings of the Passive

Active Measurement Conference 2009, under the title Quantifying the Extent of IPv6

Deployment.

4.1 Introduction

IPv4, the current Internet protocol, is showing its age. Addresses are becoming scarce,

with estimates of exhaustion within the next several years [11]. People are looking

toward IPv6, with its 2128 possible addresses, as the solution. While there has been

pressure to deploy IPv6, NAT technologies have extended IPv4’s life. Given the lack

of urgency to upgrade, coupled with the administrative and financial overhead of

becoming IPv6-enabled, it is difficult to say whether we have moved any closer to a

day when IPv6 is so dominant that IPv4 can be “switched off.”

Not only has IPv6 deployment has been slower than expected, but our understand-

ing of it is surprisingly limited as well. Questions such as, “are organizations actually
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using IPv6,” “what IPv6 transitional technologies are being used,” and, “what appli-

cations are using IPv6” remain largely unanswered.

To answer these questions, we looked at a variety of data sources, ranging from

regional Internet registry (RIR) logs to BGP dumps to Netflow records to packet

header traces. Along the way, we found several “gotchas,” where the surface level

analysis implies a different conclusion from the in-depth analysis. For example:

• RIR data indicates that IPv6 prefixes are being allocated at near exponential

rates, implying strong growth. However, longitudinal BGP analysis shows that

nearly half of these allocated prefixes are never announced, and the remainder

takes an average of 173 days to appear in the global routing system. In other

words, many people are acting as IPv6 speculators but not deployers.

• Native IPv6 traffic analysis of the enterprise customers of a US tier-1 ISP shows

considerable volume, yet most of the traffic is generated by DNS and ICMP;

this indicates a dearth of real IPv6 applications.

• A reasonable amount of tunneled IPv6 traffic is already observed on a US broad-

band ISP (0.001% of total traffic). However, further analysis indicates that

much traffic is between IPv4 clients, implying that IPv6 tunneling technologies

are primarily used to circumvent NAT and firewall restrictions.

4.2 Allocation and Announcement of IPv6 Address

Blocks

RIR and BGP data are important for understanding how IPv6 addresses are allocated

and announced, respectively.
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Figure 4.1: Number of IPv6 addresses allocated by RIRs. Each prefix is completely
deaggregated.

4.2.1 Data Sources

RIR allocations are important because they indicate the number of institutions re-

questing blocks, as well the sizes being allocated. For our analysis of IPv6 allocations,

we used the ARIN public FTP repository [1] that maintains information about the

five regional registries responsible for allocating IPv6 address blocks: APNIC, RIPE,

ARIN, LACNIC, and AFRINIC. Date ranges for the different repositories are: 1999-

8-13 to 2008-9-25 (APNIC); 1999-8-12 to 2008-9-26 (RIPE); 1999-8-03 to 2008-9-23

(ARIN); 2003-1-10 to 2008-9-22 (LACNIC); and 2004-12-14 to 2008-9-23 (AFRINIC).

In order to analyze how address blocks are announced, we used the Route Views

BGP data archives [106]. We collected routing table (RIB) snapshots at approxi-

mately 6 hour intervals from this web site. The BGP data obtained from Route

Views starts on 2003-5-3 and ends on 2008-9-28.

4.2.2 Why Address Allocation Statistics are Misleading

Looking at the distribution of allocated prefixes, along with the total number of

addresses allocated, seems like a reasonable method for quantifying the extent of

IPv6 deployment; however, we find that using such information can be misleading.
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First, one can incorrectly conclude that IPv6 address allocations are very volatile,

as seen by the gigantic spike and dip in the curve. Figure 4.1 shows the total number of

IPv6 addresses assigned by the RIRs. We count the number of allocated addresses by

deaggregating all prefixes into their corresponding sets of IPv6 addresses and taking

the union of all such sets. A couple points clearly stand out. On 2001-2-1, the number

of addresses doubles, due to the allocation of 2002:/16 to the 6to4 transitional tech-

nology [28], which reserved a part of the IPv6 space for 6to4; since this is a reservation,

it cannot be considered a true measure of IPv6 growth. Likewise, a gigantic drop is

seen on 2006-6-6, due to the decommissioning of the 6Bone (3FFE::/16). Since the

6Bone was experimental and decommissioned once IPv6 growth was observed [78], it

cannot be considered evidence of significant IPv6 constriction.

Second, one can incorrectly conclude that IPv6 growth has plateaued. The number

of allocated addresses only grew by 20% from 2006-6-7 to 2008-9-26, nearly a 2.5 year

period. However, growth is masked by a few extremely large prefixes that hide the

allocation of smaller ones. As of 2008-9-28, of the 2774 allocated prefixes, 31 had

a prefix length of 22 or shorter, compared to a median prefix length of 32. Since

such large address blocks are allocations (i.e., delegating responsibility of address

assignment to local or national registries) as opposed to assignments, they are not

true measures of growth. This delegation is the explanation for the plateau, and it is

incorrect to draw conclusions about IPv6 growth based on it.

4.2.3 Drawing Correct Conclusions from the RIR Allocation

What information can be gleaned from the RIR data? After further analysis, we find

that statistics concerning the number of prefix allocations provide insight into the

deployment of IPv6.
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year allocations mean mode 1st quartile median 3rd quartile
2005-3-3 1183 33.65 32 32 32 34
2006-3-3 1421 33.39 32 32 32 34
2007-3-3 1720 34.19 32 32 32 34
2008-3-3 2179 34.65 32 32 32 34

Table 4.1: Distribution of prefixes over time. Numbers are cumulative over time.

Why Analyzing Prefix Allocations is Better

Since looking at the number of allocated addresses is not particularly insightful, why

would looking at the number of allocated prefixes be appropriate? Moreover, is it

really fair to look at prefixes independent of their size, lumping the /64s with the

/48s and /32s, treating them as all “equal”?

Table 4.2.3 shows the distribution of various prefix lengths as a function of year.

As time passes, more and more /32 address blocks are present, and the statistics

indicate that it is the favorite for recent allocations. In fact, as of 2008-9-28, more

than 67% of all prefixes allocated were /32. We believe this heavy bias is due to RIR

policy changes in 2004, which made obtaining /32s easier [23, 27, 16].

Since so many prefixes are the same size, analyzing allocated prefixes will be

roughly fair (since most address blocks are the same size), and the results will not be

skewed by the few “heavy hitters” seen before.

Unfortunately, the sub-allocations are not recorded in the RIRs. Thus, if a /32 is

allocated to an organization, and that organization re-allocates it to others, only the

first entry is recorded. Thus, our prefix allocation analysis can potentially underesti-

mate the growth of IPv6.

Prefix Allocations Reveal Growth Trends

Figure 4.2 shows allocations of address blocks for the different registries. RIPE is

clearly dominant, and shows extremely large growth for 2008. Likewise, ARIN allo-

cations are also increasing at a very fast rate, causing it to surpass APNIC. APNIC
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Figure 4.2: Growth of the individual registries.

has many allocations, but has been growing slowly, and only starts to show signs of

acceleration toward the end of the study. LACNIC allocations remain approximately

linear. While AFRINIC has very few allocations, it shows signs of acceleration. Cu-

mulatively, there have been nearly 2800 address block allocations. Overall, it would

appear as if IPv6 growth has been somewhat stagnant, increasing at a mostly linear

rate, until recently.

One point on the graph requires explanation. In July of 2002, RIPENCC and

APNIC experienced abnormal growth. Investigation revealed that on July 1st, 2002,

RIPENCC and APNIC both instituted policy changes regarding IPv6 allocation [119];

this policy set new guidelines for how to allocate space, as well as guidelines for

allocating to new organizations desiring IPv6 space. For example, it defined clear

criteria for requesting IPv6 space, as well as a method for organizations to request

additional allocations. As such, we believe that these policy changes are responsible

for the sudden surge in allocations.

To summarize, IPv6 allocation has only recently started taking off; previous years

had mostly linear growth, while current growth could possibly be exponential. How-
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Figure 4.3: CDF of latency for the 36% of prefixes that eventually were announced
in the BGP data and were analyzable.

ever, since we are only at the beginning of the “knee” in the curve, we should be

careful in extrapolating too far into the future.

However, address allocations do not imply address usage. Is this allocation really

a good measure of IPv6 deployment?

4.2.4 Prefixes are Allocated, but Often not Used

We turn to BGP routing data, which documents which IPv6 addresses are currently

routable on the IPv6 Internet. Figure 4.3 shows how long it takes institutions to

announce their address blocks (or any sub-block) after they’ve been allocated, given

that they do eventually announce at some point. We call this “usage latency,” and is

defined as the difference in time between allocation and the prefix’s first appearance

in the BGP routing tables.
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Figure 4.4: CDF of latency for the 52% of prefixes that never announced themselves
in the BGP data and were analyzable.

There are a few points of note about Figure 4.4, which plots information about

organizations that never announce their connectivity. In particular, 52% of all allo-

cated prefixes never appears. Measuring latency for these prefixes is impossible, since

it is unknown when they will be used (if ever). Instead, we measure minimum latency,

i.e., the minimum amount of time before usage. We find that the average minimum

latency is 957 days (which is an underestimate for the true latency!). The kink in the

curve corresponds to the policy changes of APNIC and RIPENCC in July of 2002,

as mentioned earlier; many addresses allocated during that surge were never used.

When computing true latency for the remaining prefixes, we run across a snag.

Approximately 12% of all prefixes was allocated before 2003, when our BGP data

begins. As such, it is impossible to accurately measure latency for these prefixes. We

ignore such prefixes since they are a small minority.
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For the remaining 36% of prefixes, latency averages 173 days. For comparison,

we look to a study concerning usage latency in IPv4 in 2005 [105]. The study found

that 87% of all prefixes was eventually announced in BGP, and the average latency

for these prefixes was 52 days. Thus, there are fewer IPv6 users than their IPv4

counterpart, and they are also much slower to deploy.

Overall, there was some slight variation in latency between regions, but all regions

were within a factor of 1.5 of each other. RIPE averaged 141 day latency. LACNIC’s

latency was 159 days, and AFRINIC’s was 177 days. APNIC and ARIN were nearly

identical, at 202 and 211 days, respectively.

4.3 Traffic Analysis in a US Tier-1 ISP

While the RIR and BGP data capture the rate of IPv6 adoption, this ignores three

other aspects of IPv6 deployment – how people are transitioning their IPv4 networks

to IPv6, how IPv6 addresses are actually assigned to individual machines, and what

IPv6 applications are being used. Identifying transitional technologies helps us un-

derstand how IPv4 networks connect to the IPv6 world.

The upper 64-bits of an IPv6 address identify such mechanisms, as they each

have different IP ranges. Observing addresses tells us how organizations assign IPv6

addresses to individual interfaces. Since the low order 64 bits are reserved entirely

for host machines, we can use this to see how individual organizations number their

devices. To analyze the application mix, we look at the signature (source port, des-

tination port, protocol) to map it to an application name.

4.3.1 Data Sources

To analyze native IPv6 traffic, we use Netflow records collected from an IPv6 Internet

gateway router in a US tier-1 ISP with 11 IPv6 BGP neighbors. These records were
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name 2008-4 2008-5 2008-6 2008-7 2008-8 2008-9
Native IPv6 85.5% 90.5% 87.0% 74.2% 63.5% 75.2%
6to4 12.7% 7.1% 10.6% 23.4% 32.4% 20.8%
Teredo 1.7% 2.3% 2.4% 2.3% 4.1% 4.0%
Other 0.1% 0.1% 0.0% 0.0% 0.0% 0.0%

Table 4.2: Monthly averages of different types of IPv6 addresses, as seen in native
IPv6 records.

collected from 2008-4-1 to 2008-9-26, and are taken from the business customers. To

analyze tunneled traffic, we collected packet header traces from 2008-7-02 to 2008-8-

31 at an access router servicing approximately 20,000 DSL subscribers (different from

the business customers) in an ISP. In particular, we analyzed the IPv6 headers within

Teredo tunnels. Teredo [21] is an IPv6 tunneling technology created by Microsoft to

enable IPv6 communications for Windows users. Due to the prevalence of Windows

among typical Internet users, we assume that most tunneled IPv6 traffic destined for

these subscribers use Teredo.

Unfortunately, our records are not perfect, and have some holes. Note that 5th,

6th, 9th, 10th, and 11th of July are not analyzed for Netflow. Also note that for the

tunneled traffic, data from 2008-7-10 to 2008-7-21, along with 2008-8-19, 2008-8-23,

and 2008-8-26 are not included.

4.3.2 Identifying Transitional Technologies and Address Enu-

meration

We identify transitional technologies as follows. Teredo uses 2001:0000: for the first

32 bits [21] of an IPv6 address, making it easily identifiable. 6to4, another popular

encapsulating scheme, begin with 2002:. Although other transitional schemes exist

and can be identified (e.g., ISATAP, automatic tunnels, etc.), they are quite rare in

practice; as such, we lump them together as under the label “other”.
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name 2008-7 2008-8
Native IPv6 70.2% 44.2%
6to4 2.8% 4.8%
Teredo 26.7% 50.3%
Other 0.3% 0.7%

Table 4.3: Monthly averages of different types of IPv6 addresses, as seen in tunneled
IPv6 headers.

To discover how organizations assign addresses to devices, we use the same method-

ology as presented in [103]. The types of enumeration are: Teredo (Teredo encodes

options and routing information in the lower 64-bits), MAC address based (also called

auto-configuration), low (only using the last 12 bits), wordy (using words that can

be spelled in hexadecimal, like BEEF), privacy (all bits are randomly set, according to

the IPv6 privacy specification [109]), v4 based (when a corresponding IPv4 address

influences the choice of host address), and unidentified (for all others).

4.3.3 Transitional Technologies

The results of analyzing the IP address structure are presented in Table 4.2 and in

Table 4.3.2. Most of the native IPv6 addresses of the tier-1 ISP tended to commu-

nicate with other native IPv6 addresses; approximately 80% of addresses fell into

this category. 6to4 addresses were also significant, representing approximately 18%

of addresses seen. Teredo addresses constituted approximately 2%, and the remain-

ing technologies were almost negligible. These results also match those found for an

analysis done in 2007 [103]. As an important note, the data sets used in our anal-

ysis are quite different from those in [103] (which included web server traffic, name

server traffic, and traceroutes). Since we have a different vantage point and a differ-

ent time-frame, yet have the same results, we believe that the technologies used by

organizations remain unchanged for the past year.

From the tunneled perspective, we see that Teredo and native addresses are pop-

ular. Moreover, around 2008-8, a surge of Teredo-to-Teredo connections is seen.
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name 2008-4 2008-5 2008-6 2008-7 2008-8 2008-9
IPv4 Based 49.5% 28.7% 19.3% 5.9% 20.2% 6.1%
Low 22.0% 29.9% 32.5% 36.5% 31.0% 34.8%
Auto-configured 18.6% 29.2% 33.5% 40.3% 31.2% 42.6%
Teredo 1.7% 2.3% 2.4% 2.3% 4.1% 4.0%
Wordy 0.2% 0.2% 0.4% 0.3% 0.8% 0.3%
Privacy 1.0% 1.0% 1.3% 1.7% 1.5% 1.5%
Other 7.0% 8.6% 10.5% 11.8% 11.2% 10.7%

Table 4.4: Monthly averages of assignment schemes seen for the native IPv6 records.

4.3.4 Assigning Addresses to Machines

In addition to looking at transitional technologies, we looked at the breakdown of

IPv6 address assignment schemes. Table 4.4 demonstrates the ratios of various host

configurations. A few interesting trends emerge. First, IPv4 based addresses decline

sharply (although there is a spike in August that remains unexplained). Moreover,

privacy extensions remain relatively unused, occupying a small percentage of all ad-

dresses (possibly because some operating systems do not enable privacy extensions

by default).

4.3.5 Application Mix

Looking at the application breakdown yielded interesting results, as seen in Ta-

ble 4.3.5. Expected traffic, like web and mail, was surprisingly low – usually between

1% to 8% for web and 1% and 2% for mail. We performed DNS reverse lookups on

the few IPv6 addresses that used web protocols and found that popular sites include

an IPv6 deployment and tunnel broker and a backbone network for universities. On

average, about 85% of traffic is DNS queries and 8% ICMP messages. Overall, these

results are quite surprising. We believe there are two possible reasons. One could

be that people are mainly using probing applications over their IPv6 networks, and

not actual applications. Another is that operating systems like Windows Vista will

send an extra DNS request when IPv6 capabilities are turned on: one requesting the
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name 2008-4 2008-5 2008-6 2008-7 2008-8 2008-9
DNS/Domain 75.5% 86.0% 87.9% 85.3% 88.8% 93.1%
ICMP 11.0% 10.2% 6.9% 6.5% 7.3% 5.2%
Web 8.3% 1.9% 1.3% 2.7% 0.8% 0.4%
Mail 1.3% 0.4% 1.0% 1.5% 0.4% 0.3%
Other 3.9% 1.5% 2.9% 4.1% 2.7% 1.0%

Table 4.5: Monthly averages of applications, as seen in native IPv6 records; percent-
ages based on number of bytes.

IPv4 address and one requesting the IPv6 address [18]. Thus, the IPv6 interface may

send and receive DNS queries but not traffic. Despite the potential inflation of DNS

records in our data, there is still very little “real” traffic seen for IPv6. We believe that

this demonstrates, for at least this tier-1 ISP, customers view IPv6 as experimental.

For Teredo tunneled traffic, application breakdown was also interesting. Ta-

ble 4.3.5 shows that almost all traffic is unidentifiable UDP or TCP, indicating random

port numbers. Given the vast quantity of unidentifiable traffic, and the rise of Teredo

pairs, it is likely that these are P2P applications communicating with each other (as

random port numbers are characteristic of P2P traffic). Indeed, some applications

have turned to Teredo to solve the issue faced by end hosts that are limited by their

NAT/firewall technologies when they try to initiate communications with each other;

using the Teredo protocol, a client contacts a Teredo server, which acts as a broker

agent between Teredo clients, aiding in NAT/firewall hole punching, as well as provid-

ing unique IPv6 addresses. Several P2P clients have implemented IPv6 support [29],

such as uTorrent and Vuze (formerly Azureus); moreover, uTorrent has the ability

to set up Teredo automatically [25]. To summarize, it appears as if considerable

tunneled IPv6 traffic is a by-product of applications (such as P2P file-sharing) using

Teredo as a mechanism to bypass local NATs and firewalls, simplifying the application

developers’ jobs.
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name 2008-7 2008-8
Random TCP 30.6% 94.7%
Random UDP 67.3% 3.2%
Web 0.2% 0.03%
Other 1.9% 2.07%

Table 4.6: Monthly averages of applications as seen in tunneled IPv6 headers; per-
centages based on number of bytes.

4.4 Related Work

IPv6 topology has been investigated by CAIDA’s scamper work [83], as well Hoerdt

and Magoni’s Network Cartographer [80]. Because we did not investigate this aspect

of IPv6 deployment, we consider our work to be complementary to these studies.

Anomalous BGP behavior has been analyzed through Huston’s automatically gen-

erated IPv6 reports [85]. These reports include information about routing instability,

prefix aggregation, table sizes, and allocation sizes.

Testing the readiness of IPv6-enabled software occurred in February of 2008, when

NANOG shut off IPv4 access from their meeting for one hour [125]. It resulted in a

severe restriction of services, with end users often needing to re-configure their ma-

chines. It revealed that IPv6-enabling software is still somewhat user unfriendly [59].

We believe this work on how an individual can use IPv6 to be complementary to our

work on how organizations are using IPv6.

Regarding traffic analysis, Arbor Networks [88] found that IPv6 traffic is growing

at the same rate as IPv4 traffic. Savola [122] analyzed 6to4 traffic and found much

was experimental, and also noted a rise in P2P applications. Hei and Yamazaki [77]

analyzed 6to4 traffic on a relay in Japan and found that TCP traffic dominated UDP,

with a considerable amount of HTTP traffic (40% of total). Our work complements

these studies because we analyze different data sources, and offer a new perspective

by analyzing traffic from a tier-1 ISP.
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Finally, David Malone’s work on IPv6 addresses analyzed transitional technologies

and the assignment of IPv6 addresses to machines [103]. He looked at the breakdown

of types of IPv6 addresses (Teredo, 6to4, etc.), as well as the classification of the host

part of IPv6 addresses. While we do repeat some of the same analysis (and use some

of the same techniques), we believe there are key differences between our study and

his. We cover broader ground by looking at more data sources: RIR allocations, BGP

data, Netflow records, and packet header traces. We also perform additional analysis,

such as address space allocation and latency.

4.5 Conclusion

While IPv6 is beginning to see larger deployments, it still has some significant barri-

ers to overcome. IPv6 is still viewed as experimental by some, and often is deployed

in counter-intuitive ways. By analyzing RIR and BGP data, it appears that many

allocations are speculatory, and that autonomous systems wait significant amounts

of time before actual announcement. Moreover, although IPv6 traffic is growing, our

data from a US tier-1 ISP indicated that much of it is still DNS and ICMP pack-

ets, indicating a lack of true IPv6 applications from our vantage point; additionally,

tunneled traffic analysis shows much of the communication is between IPv4 pairs,

implying that applications like P2P file sharing are dominant.

Further work would include a longer study of these characteristics, as well as a

topological study involving more end hosts. Moreover, it would be interesting to track

operating system developments and their support for various transitional schemes, as

well as native support, to better understand how this software shapes the future of

IPv6.
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Chapter 5

Characterizing Enterprise

Multicast Traffic

Another upcoming protocol is multicast. IP multicast, after spending most of the last

20 years as the subject of research papers, protocol design efforts and limited exper-

imental usage, is finally seeing significant deployment in production networks. The

efficiency afforded by one-to-many network layer distribution is well-suited to such

emerging applications as IPTV, file distribution, conferencing, and the dissemination

of financial trading information. However, it is important to understand the behavior

of these applications in order to see if network protocols are appropriately supporting

them. In this chapter we undertake a study of enterprise multicast traffic as observed

from the vantage point of a large VPN service provider. We query multicast usage

information from provider edge routers for our analysis. To our knowledge, this is

the first study of production multicast traffic. Our purpose is both to understand

the characteristics of the traffic (in terms of flow duration, throughput, and receiver

dynamics) and to understand whether the current mechanisms to deliver multicast

to VPNs can be further improved. Our analysis reveals several classes of multicast

traffic that have ample opportunity for further multicast optimization.
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The rest of the chapter proceeds as follows. Section 5.2 discusses protocol specifics.

Section 5.3 discusses how the data is collected and challenges of inference. Section 5.4

shows our results. We compare our work with related research in Section 5.5, and

conclude in Section 5.6.

The multicast study will be published in the proceedings of the ACM SIGCOMM

Workshop: Research on Enterprise Networking 2009, under the title Multicast Redux:

A First Look at Enterprise Multicast Traffic.

5.1 Introduction

IP multicast [56, 58], which provides an efficient mechanism for the delivery of the

same data from a single source to multiple receivers, was first proposed more than two

decades ago. It was deployed experimentally on the MBone [111] in the early 1990s

and was the subject of a significant amount of research into scalable and robust intra-

and inter-domain routing protocols [57, 35, 135]. The MBone, an overlay used pri-

marily to support audio and video conferencing between multicast-capable networks

around the Internet, grew rapidly. However, the initial enthusiasm for multicast did

not translate into widespread success. The MBone eventually declined, and more

importantly, multicast was not adopted in any significant way by service providers.

The failure of multicast to achieve widespread adoption can be attributed to sev-

eral technical and economic factors. When sources and receivers were in different

domains, it was unclear how to appropriately charge for the service. Furthermore,

the de facto multicast protocol, PIM [57], presented challenges of its own for inter-

domain multicast, as it could create inter-provider dependencies. In particular, users

in one domain could rely on infrastructure in other domains to carry strictly intra-

domain traffic. Moreover, multicast protocols were new, quite complex, and difficult
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to manage. Finally, the lack of popular multicast applications translated to little

interest for deployment.

After languishing for many years on the Internet, multicast is experiencing a resur-

gence in two main contexts. First, within service provider networks, it is being used

to support IPTV applications which benefit from efficient one-to-many distribution.

Second, multicast is being deployed in enterprise networks, where the aforementioned

issues of management, billing and inter-provider dependencies, are mitigated. In en-

terprise networks, multicast is used to support a variety of applications, including file

distribution, conferencing, and dissemination of financial trading information. More-

over, many enterprises connect their geographically disparate sites via provider-based

VPNs. Hence, multicast is becoming increasingly available to VPN customers.

Since the use of multicast in production networks is a relatively recent phe-

nomenon, little is known about its traffic characteristics. However, gaining such

knowledge of traffic characteristics is important, as it can help researchers under-

stand whether protocols in the network are adequately supporting the applications.

Additionally, such knowledge is needed for proper network planning and provision-

ing. Moreover, today’s multicast VPN services are new and complex (as described in

Section 5.2), with many configuration options based on assumptions regarding usage,

engineering guidelines, rules of thumb, and controlled testing. Behavior “in the wild”

is poorly understood, yet is critical to uncovering possible issues and improvements

regarding design, operation, capacity planning, provisioning, resource usage, and per-

formance. A first step to resolving these issues requires an understanding of traffic in

the multicast VPN service.

Studying enterprise traffic from the vantage point of a service provider presents

both challenges and benefits. The provider does not have the same visibility into the

enterprise traffic as would be possible within the enterprise network itself. This derives

from the fact that the enterprise traffic is encapsulated as it crosses the provider
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network, thereby masking some relevant information. However, we believe that this

challenge is far outweighed by the benefits of scale and diversity that a provider

domain study affords. Specifically, rather than being limited to studying traffic within

a single enterprise, we are able to study traffic in many different enterprise networks.

Thus, our results are more general than they would be otherwise.

As such, we undertake a study of enterprise multicast traffic as observed from

the vantage point of a tier 1 ISP that provides multicast service to some of its VPN

customers. Our purpose is both to understand the characteristics of the traffic and

how the VPN service can more efficiently deliver multicast traffic to its customers.

By understanding how applications use multicast, we can better understand how to

design our networks. To our knowledge, this is the first broad study of production

multicast traffic. We collect usage data from provider edge routers that describe the

activity of their associated multicast groups. We analyze multiple traffic characteris-

tics, including flow duration, throughput, peak rates, and receiver dynamics. These

statistics compactly describe every multicast session and provide information about

the benefits (or lack thereof) that the provider network receives from multicast. We

also apply clustering techniques to classify flows according to their behavior, allowing

us to see if dominant usage patterns emerge.

5.2 Multicast VPN Overview

In this section we provide an overview of how multicast and Multicast VPNs (MVPNs)

are supported by the ISP. A description of the specification upon which the MVPN

service is based can be found in [120]. While MVPN service may evolve in the future,

the description provided here represents current industry practice.
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Figure 5.1: On top: a server sending data to clients using unicast. On bottom:
efficient distribution with multicast.

5.2.1 IP Multicast

With traditional unicast, every connection has exactly two endpoints; multicast, on

the other hand, replaces point-to-point delivery with the idea of groups. Multicast

groups use specially designated IP addresses, known as multicast addresses, taken

from the 224/4 address block [30]. Hosts can join or leave groups (on behalf of

applications) at will. Packets sent to the group address are forwarded to all members.

The requirement to deliver the exact same data to multiple end hosts provides

the opportunity to reduce network resource consumption. Multicast protocols create

a distribution tree on the network topology for every group 1. This tree reaches

all group members. When packets are transmitted to the group, a single copy is

sent along the initial branch from the source. When the tree branches, the router

at the branch point replicates packets and sends separate copies along each branch.
1For simplicity we omit many details of multicast routing; some trees may be specific to an

individual sender while others may be used by all senders to a group.
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Figure 5.1 demonstrates this capability. As a result, the amount of bandwidth needed

on shared path segments can be greatly reduced.

In general, every multicast tree requires a routing table entry on every router along

the tree. Thus, the total amount of routing state can potentially be proportional to

the number of multicast groups.

5.2.2 Multicast VPNs

In a VPN, the customer attaches to the provider network at one or more locations. At

each such provider location, one or more Customer Edge (CE) routers attaches to a

Provider Edge (PE) router, as depicted in Figure 5.2. The PE receives packets from

attached CEs and transports them across the backbone to other PEs, which then

deliver them to attached CEs. In the case of Multicast VPN, a customer multicast

packet entering at an ingress PE, may be destined to receivers at multiple customer

locations. Thus, the provider will be required to deliver the packet to one or more

egress PEs. The customer multicast packet is encapsulated using GRE [63] and

transported across the backbone to the PE routers using IP multicast. That is, the

customer multicast packet is encapsulated in a provider multicast packet between the

ingress and egress PEs.

Within the provider backbone, every VPN is assigned a unique multicast group,

called a Default MDT (Multicast Distribution Tree). When a customer attaches itself

to a set of PEs, those PEs join the associated multicast group. The Default MDT

acts as a broadcast channel among the PEs and serves two purposes. First, customer

domain multicast control messages are transmitted over the Default MDT. Second,

customer multicast packets (i.e., application traffic) are initially transmitted over the

Default MDT. These multicast packets are delivered to all PEs to which the customers

attach. However, some of these PEs may not have group members downstream of

their attached CEs. Packets that reach such PEs are dropped.
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Figure 5.2: Setup of an example MVPN network. Circle encloses the provider net-
work. Customer edge (CE) routers attach to provider edge (routers). The core
provider (P) routers do not interact with customer routers directly, but transit traffic
between PEs.

Since packets may be dropped at some PEs, this Default MDT mechanism has

the potential to waste bandwidth in the provider network. To mitigate this problem,

a second kind of multicast group, referred to as a Data MDT, is used in the backbone.

When an ingress PE detects that the sending rate of a sender to a group exceeds a

configured threshold (based on duration and throughput), that sender’s traffic to the

group is moved from the customer’s Default MDT to a customer-specific Data MDT

in the provider backbone. A PE will only join this announced Data MDT if there are

receivers for the corresponding customer group downstream of its attached CEs. The

Data MDT mechanism does not waste bandwidth; packets are only delivered to PEs

that have downstream receivers. However, Data MDTs consume additional resources

(in the form of routing table entries) in the provider network.
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5.3 Methodology

In this study, we collect and analyze data about enterprise VPN multicast traffic

seen on a large, tier-1 ISP. Along the way, we ran across several analysis issues. We

disclose our challenges and solutions here.

5.3.1 Data Collection

Between January 4, 2009 and February 8, 2009, we monitored multicast traffic using a

specially designed, lightweight poller. The poller contacts the PE routers that support

enterprise VPN traffic using SNMP [76]. We mine customer provisioning information

to configure the poller to understand the mapping between multicast groups and

associated PEs 2.

We refer to PEs that inject traffic into the backbone as senders, and PEs that

receive traffic from the backbone as receivers. Note that in our analysis, “receivers”

always refers to egress PEs. These definitions arise from the fact that we study

multicast traffic over a backbone network, with PEs on the boundary between the

backbone and the customers.

Each PE tracks the amount of data sent to and received from each Default and

Data MDT using a byte counter. Note that multicast groups are uniquely identified

by an (S,G) tuple, where S is the IP address of the sender and G is the multicast

group address. Due to the way in which multicast is configured in the provider

backbone, data received on Default MDTs at egress PEs is reported on a per-group

basis, rather than for each (S,G) pair. Data sent by ingress PEs is reported on a

per-source basis. Given this setup, the data we collect is a series of records in the

form of Figure 5.3.
2One multicast group is assigned per Default MDT per VPN, and one multicast group is assigned

per Data MDT per VPN. However, a VPN may have multiple Data MDTs.
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Timestamp: 1237114394
Group: 239.255.255.128
Source: 58.122.125.122
Receiver: 58.122.16.89
Counter: 16938168
Status: Okay

Figure 5.3: Format of the multicast information received from the poller. The entries
are synthesized for illustration.

We poll all the PEs at five minute intervals. While we would ideally like to poll at

a smaller interval, we were limited by the operational constraints of a large backbone

network. Routers were already supporting SNMP polling to support a wide variety

of management functions, and we needed to limit the additional load placed on them.

As a side note, not all successive polls were spaced exactly five minutes apart, due

to variability in the polling process. For the time frame of our study, actual polling

intervals ranged from 2.4 to 13.2 minutes. However, 99.7% of the poll intervals was

between 4.8 minutes and 5.2 minutes. Thus, except for a few outliers, the polling is

very consistent. Overall, we collected and analyzed approximately 88 million records.

The post-analysis of the polled results needs to handle two issues. As with any

polling-based approach, a poll may not return the requested data object. This can

occur for a variety of reasons. For example, SNMP requests or responses (and subse-

quent retransmissions) could be lost or the router could take too long to respond. In

such cases, the request is considered to have “timed out” and values are not reported.

Also, if configuration information is outdated, the poller may request information

for a multicast group that is no longer a part of a particular PE router. However,

in practice these problems occur infrequently. Approximately 99.3% of all polls was

successful; 0.4% failed due to time outs and 0.3% failed due to outdated configuration

information.

Second, in some cases we observed discrepancies (beyond what one would expect

due to packet loss) between the amount of data reported by senders and receivers for

100



a (S,G) pair. As a sanity check, we examined such discrepancies for a small sample

of the Default and Data MDT data. For the Default MDT, senders and receivers

usually agreed on the amount sent, although there was noticeable dissent as well. We

analyzed these dissenting cases and found several possible explanations. In some of

the cases, we identified the data as obviously incorrect (e.g., sending rates faster than

the line speed) which we believe were due to bugs in the way the data was reported.

We also found that our polling method did not always accurately report data when

a multicast group spans domains (as is the case for VPNs in the provider network

that have presence on multiple continents). There were also cases in which we could

not successfully identify the problem. When we could identify the cause of problems

they often were associated with the amount of data reported received at egress PEs

for Default MDTs. Thus, the analysis we can perform on the Default MDT is limited

to aggregate analysis based on sending data at ingress PEs. However, the Data MDT

had a higher rate of agreement. As such, we have general confidence in the accuracy

of the data.

5.3.2 Default MDT Analysis

Our analysis for the Default MDT is further limited by several factors:

• Every PE router in a VPN is always attached to the Default MDT. Thus, it is

impossible for us to study the dynamics of receivers that leave or join.

• Every PE router sends constant keep-alive messages (i.e., PIM Hello messages)

to the Default MDT. These messages are recorded by the PE routers as incoming

data. Thus, every PE is always sending data, and it is difficult to tell when a

true multicast flow starts or stops.

• Moderate to high bandwidth flows (which are of greater interest) are usually

transmitted on the Data MDT.

101



The first problem is unavoidable, given our setup. The second problem can be

solved using a threshold value, stating that flows that generate less than a certain

amount of data per interval have ended. Since the keep-alive messages are fairly

consistent in size and frequency, it is possible to model the background load generated

by them. However, determining the threshold accurately is difficult, as variability in

the messages raise the problem of accidentally filtering low bandwidth flows. Finally,

since the Default MDT typically only carries low bandwidth flows, the total impact

of it on the multicast network is limited. As such, we perform limited analysis on the

Default MDT (avoiding any per-flow results) and focus most of our attention on the

Data MDT.

5.3.3 Data MDT Analysis

For the Data MDT, we track flows (a.k.a. sessions) by observing the amount of data

transmitted by the source for a given multicast group. A flow is defined by the Data

MDT records associated with it, indicating its start and end times, as well as the

amount of data sent and receiver dynamics. We calculate the amount of data sent by

taking the difference between byte counters in successive sender records. We define

throughput as the total amount of bytes sent averaged over the entire flow duration.

We define peak rate as the maximum amount of bytes/second seen between any two

consecutive polling intervals. In addition, we keep track of the number of receiver PEs

joined to a particular group and record when a PE router joins or leaves the group.

We also cluster flows to determine if dominant behavior patterns emerge. We employ

a variant of the k-means algorithm [93] that applies a “simulated annealing”-style

approach to the problem, along with a local search heuristic. We take into account

the following characteristics: duration, throughput, peak rate, maximum number

of receivers, and average number of receivers. Because such clustering algorithms
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usually assume equal variance for each characteristic, we normalize all characteristics

to z-scores (i.e., mean of 0 and standard deviation of 1) before clustering.

Although this analysis may appear straightforward, there are many corner cases.

In particular, there are issues determining when a particular flow starts or stops,

and determining the amount of data sent during a session. Some of these issues

revolve around a condition we refer to as a counter reset, when a subsequent polling

record either has a byte value of 0 or has a lower value than the previous record.

These occur often in the data and may signify that a new flow has begun. However,

interpreting what they actually mean in a particular situation is quite difficult. This

problem is further complicated by the fact that some of the routers use a 32-bit byte

counter which may overflow. Thus, when we see a counter value that is less than

the previous one, did the session actually reset? Did the session end in-between a

polling interval, with a new session starting up and taking its place? Did the counter

overflow? Because of the difficulty in analyzing these cases, we adopted a simple rule

to classify when the flows start and stop in this situation: if the counter value is

zero, a new flow has begun; otherwise, it is the same flow. Note that in the case of a

counter reset, instead of subtracting two intervals (to get the amount of data sent),

we simply use the byte counter value of the last interval.

Another problem that arises is error messages (e.g., SNMP time outs). Although

they are rare, they can cause problems when analyzing when flows start and stop. If

one sees a valid flow record, a sequence of error messages for the following intervals,

and then another valid flow record, do we have two separate flows, or one longer

flow? For the Data MDT analysis, we consider flows separated by error messages

to be separate flows. Our analysis thus has a bias that reports more flows, each of

shorter duration.

Another related issue is receiving a partial result from a query, i.e., a router returns

part of an answer but “times out” before returning all records. For simplicity, flow
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entries missing from the partial result are considered to be terminated. Although we

did not quantify the number of such cases, we believe them to be sufficiently rare to

not warrant serious investigation.

Up until this point, we have assumed that we have consecutive records to calculate

quantities like duration, throughput, etc. However, for the Data MDT, it is possible

that very short lived flows (less than approximately 10 minutes) may only have a

single record associated with them. This behavior happens because of a temporary

sending spike, which will boost a Default MDT multicast session into the Data MDT

for a short period of time. Because we can only infer information from consecutive

pairs of records, these single record sessions are difficult to analyze. As such, we

label these flows as having 0 second duration with 0 kilobits/sec throughput and 0

kilobits/sec peak rate. This provides them with a unique identifier in our analysis.

5.4 Results

5.4.1 Default MDT Analysis

Figure 5.4 displays a range of the sending rates seen in the Default MDTs for each

(S,G) pair per polling interval. Not all sending rates are shown. For example,

there is a large step in the CDF at approximately 0.02 kilobits/sec, equivalent to

approximately 800 bytes per 5 minute interval. We highly suspect that this value is

related to the minimum amount of background PIM messages sent by every router in

the network. Likewise, we observed a very small number of rates (less than 0.05%) in

excess of 200 kilobits/sec. After manually inspecting several cases and finding them

to not be in agreement with the receiving records, we removed them for this analysis.

There are several important aspects. First, the vast majority of the Default MDT

rates are quite low, with approximately 99.5% of all rates less than 5 kilobits/sec.

Second, we notice a very small number of flows that consume moderate bandwidth,
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Figure 5.4: CDF of sending rates seen in the Default MDT between intervals.

surpassing 100 kilobits/sec. While it may seem odd for these “large” flows to be

transmitted on the Default MDT (as they should be switched to the Data MDT),

there are several reasons why we may see them here. A flow changes to the Data MDT

only if it maintains a certain throughput for a given duration. Thus, it is possible

that a very bursty flow may never meet the duration threshold, while still sending

large amounts of data. Another possibility is that these rates represent flows that

were eventually switched to the Data MDT; thus, these rates may reflect the short

period of time before these flows were changed (and thus had their traffic registered

in the Default MDT). It is also plausible that a router may be configured to never

promote flows from the Default MDT to the Data MDT. In the first two cases, by

reducing the duration threshold, these flows can properly be handled by the Data

MDT, at the potential cost of increased routing state churn (since more entries will

transition between the Default and Data MDTs and vice-versa).
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Figure 5.5: CDF of Data MDT session durations.

5.4.2 Data MDT Analysis

Figure 5.5 shows a CDF of flow durations. The stepwise nature arises from the fact

that almost all poll intervals are five minutes. A significant portion of flows (approx-

imately 70%) last 10 minutes or less. Ideally, such short lived flows, if sufficiently

low bandwidth, would be kept entirely in the Default MDT to prevent an increase in

routing state. Whether there exists a way to identify these flows and prevent them

from moving to the Data MDT remains an open problem. While most flows are

short-lived, a very small number lasts more than a week.

Figure 5.6 displays the average throughput seen in the Data MDT flows (as com-

pared with Figure 5.4 for the Default MDT). Quite surprisingly, we see many flows

(more than 70%) that send at less than 5 kilobits/sec. One reason for this phe-

nomenon is that a large percentage of flows (36%) are so short-lived that they only

have a single Data MDT record, and thus no accurate estimate for their throughput
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Figure 5.6: CDF of average throughput per Data MDT flow.

(and are defaulted to a value of 0 kilobits/sec). Since the Data MDT should primarily

have high throughput flows, future research on multicast might investigate different

mechanisms for switching flows to the Data MDT, as well as identifying situations

when such transitions are appropriate.

Figure 5.7 shows the distribution of peak rates for the Data MDT. Peak rates are

calculated by taking the maximum throughput seen across polling intervals. Peak

rates are, on average, approximately 1.6 times greater than the average throughput.

It is also interesting to note that for both peak rate and throughput, there are a small

percentage of high bandwidth flows, indicating that multicast Data MDT trees may

significantly reduce the amount of traffic sent over a network (relative to the Default

MDT).

Figure 5.8 tracks the dynamics of receivers per session, measuring the maximum

number of receivers seen, where a receiver is an egress PE in the backbone network.
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Figure 5.7: CDF of peak rates of Data MDT flows.

Surprisingly, a very large fraction of the flows (almost 50%) only have a single egress

PE. In other words, using unicast to transport these flows across the backbone would

use bandwidth just as efficiently (and incur less routing state overhead). These results

imply that there may be an opportunity to reduce multicast state overhead; if an

appropriate mechanism can be used to identify these flows in advance, a significant

amount of multicast overhead can be removed by using unicast encapsulation across

the backbone. As a separate note, there is a significant fraction (approximately 20%)

of flows that reach at least 10 different egress PEs during their lifetime.

Finally, we perform clustering analysis on these characteristics (as well as on the

average number of receivers seen per flow). In order to determine the number of

clusters, we plot the unexplained variance for various numbers of clusters. Figure 5.9

shows the amount of variance that can be explained with different clusters, where

variance is defined as the sum of the L2 norms from each flow to its closest cluster.
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Figure 5.8: CDF of maximum number of receivers per Data MDT session.

We choose to label our flows with 4 clusters, as k = 4 is at the knee of the curve;

it explains a significant fraction of variance while allowing us to label flows in a

manageable manner. The cluster points are described in Table 5.1. A short name is

given to each cluster point, highlighting its dominant characteristic. It is important

to keep in mind that each cluster represents an average of many flows, and there is

variance within a given cluster. From these points, we see many interesting aspects.

In the first cluster, called unicast, we see flows that are long-lived, very high

throughput, with few egress PEs (usually one). As such, these backbone flows are

not truly benefiting from multicast, but are adding routing state to the network.

Although there are only a few flows that fall in this cluster, there may be value in

investigating mechanisms to more efficiently support these flows, particularly if the

applications they represent become more common.
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Figure 5.9: Total variance explained for a given number of clusters for Data MDT
flows. L2 norm is used.

The second cluster, limited receivers, contains most flows. It represents flows

that are approximately 1 hour long, moderate bandwidth, with very few receivers.

In fact, this cluster typically has a maximum of 3 receivers and an average of 2.

Any improvements or optimizations that apply to these flows could be particularly

beneficial to a network, given the size of the cluster.

The third cluster, long lived, represents flows that lasted approximately 1 month

and consumed moderately high bandwidth. Moreover, the number of receivers, al-

though small, is large enough to imply that multicast technologies are a good mech-

anism for handling these flows. However, the total number of flows in this category

is very small. As such, the impact of these flows over the entire network is minimal.

Finally, we have a cluster, well-fitted, that represents moderate length, moderate

bandwidth flows with a large number of receivers. The flows in this cluster benefit
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Short Name “Unicast” “Limited rcv.” “Long lived” Well-fitted”
Duration 29 hours, 6 min 1 hour, 12 min 28 days, 2 hours, 10 min 59.3 min
Throughput 11.8 mbits/sec 39.7 kbits/sec 604.9 kbits/sec 20.5 kbits/sec
Peak rate 22.5 mbits/sec 56.3 kbits/sec 983.9 kbits/sec 30.7 kbits/sec
Max. Rcv. 1.4 2.7 9.5 25.4
Avg. Rcv. 1.2 2.1 3.1 19.6
Flows in cluster 0.1% 86.5% 0.05% 13.3%

Table 5.1: The four cluster centers.

greatly from using multicast. They are called well-fitted because these types of flows

are the ones that derive much benefit from multicast (given the number of receivers).

Reducing the router state imposed by these flows is tricky, as they represent “typical”

multicast traffic that the protocol was designed for. Although they are the second

largest cluster group, they are small in number, and thus are probably not a large

contribution to total resource consumption. As such, optimizing them may not be of

primary importance.

5.4.3 VPN Analysis

Finally, we analyze how individual customers (more precisely, the VPNs assigned to

them) use multicast.

Figure 5.10 depicts the amount of time each VPN spends with at least one flow

in the Data MDT, for a time period of one week. While there are a few VPNs that

hardly use the Data MDT (less than 30% of their total time), the majority spend at

least half of their time in the Data MDT.

Figure 5.11 plots the number of customers with active Data MDT entries over time.

Very strong diurnal and weekday/weekend patterns can be seen. This corresponds

roughly with what we would expect from enterprises, as they are more likely to be

active during business hours. There is significant traffic at night and on weekends as

well.

Figure 5.12 plots the CDF of the number of sessions per VPN. In this, we see

that most VPNs (50%) only engage in a small number of flows over the course of one
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Figure 5.10: CDF of time spent with activity in the Data MDT, on a customer basis.

month. However, there are several heavy hitters that engage in hundreds (and up to

a thousand or more) flows during this time period. Thus, although many VPNs use

the Data MDT, they often use it in varying amounts.

Lastly, we investigated whether types of companies (e.g., retailers, financial, etc.)

use the Data MDT in different ways. We label the VPNs with categories and look

at the clusters that they fall into. We summarize them in Table 5.2. Categories

consist of health related industries, manufacturers, retailers, finance, tech, information

services (including consulting and analysis firms), natural resources (either extraction

or conservation), and other.

Some interesting trends can be seen. First, the unicast style flows are almost

entirely confined to the manufacturers and financial companies. The limited receivers

category was prominent across all categories. For the long lived flows, we see a clear
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Figure 5.11: Time versus customers with Data MDT activity.

dominance in the health related industries. Finally, well-fitted flows were varying

across industries.

These results shed some light on our understanding of multicast. The fact that

many industries had many flows in the limited receivers category suggests that many

different kinds of applications have this behavior. In contrast, unicast and long lived

had clear dominators, possibly indicating this behavior is specialized to certain ap-

plications. Because of the variance in the well-fitted category, it is difficult to draw

hard conclusions about the types of traffic that fit this classification. Overall, these

results suggest that optimizations to general multicast networks should focus on the

limited receivers case, and that there is potential for optimizations to the unicast and

long lived flows for specialized cases.
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Figure 5.12: CDF of Data MDT sessions per customer.

5.5 Related Work

Our study is unique because, to our knowledge, there have been no other published

results analyzing real VPN multicast traffic. However, there have been several areas

of research related to multicast in general.

As previously mentioned, the MBone was a multicast backbone network that was

free to use. Because not all routers that interconnect networks were multicast enabled,

the MBone used tunnels between multicast islands. Unfortunately, this limitation

presented scaling challenges as the bandwidth efficiency of multicast can be reduced

when tunneling, rather than native multicast is used. While there have been studies

done on the MBone [32, 31], as well as general IP multicast [102], our work differs from

these since we evaluate VPN customers within a single ISP, as opposed to inter-ISP

multicast traffic.
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Category % of unicast % of limited receivers % of long lived % of well-fitted
Health Services 0 94.3 2.9 2.9
Manufacturers 0.3 78.5 0.03 21.1
Retailers 0 94 0 6
Finance 0.4 86.1 0.02 13.5
Tech 0 99.6 0 0.4
Information Services 0 75.1 0.04 24.8
Natural Resources 0 100 0 0
Other 0.3 98.5 0 1.2
Average 0.1 86.5 0.05 13.3

Table 5.2: A breakdown of how flows from each cluster center fall into different
enterprise categories. Average for all flows across all groups is given at bottom.

To better aid operators, a tool known as VMScope [40] was created to help with

network management. It can remotely monitor multicast VPNs and determine char-

acteristics such as packet loss and latency. Deployed at a single location in a network,

it provides a congenial interface for operators seeking high-level information about

multicast sessions. We consider this work tangential to ours, as we are primarily

concerned with longer-term characteristics such as flow duration and throughput.

Some research has continued on multicast protocol improvement. For example,

Chainsaw [112] is a peer-to-peer overlay multicast system that does not rely on trees

for message propagation. There has been information theoretic work on multicast in

coded packet networks, where outgoing packets are generated from incoming pack-

ets [101]. Additional theoretical work has been done to shown that re-encoding pack-

ets in the middle of a network can result in a large increase to the maximum sending

rate [91]. However, this research focuses on theoretical improvements to multicast.

Our work supplements this research by providing real usage information to guide

future work.

Finally, there has been a large amount of research concerning multicast support

for IPTV. For example, the channel surfing problem has been given considerable

study, where user behavior is expected to change during commercial breaks [51, 124].

Moreover, measurement studies have been done for IPTV multicast [89]. Because we
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study a different domain and are not focused on a single application, we consider this

work to be complementary to ours.

5.6 Conclusion

Due to the growth of VPN multicast traffic, it is extremely important to understand

how organizations are using multicast. Without this information, it is impossible to

know how this service will continue to grow and change over the years. Additionally,

such information can help us optimize multicast protocols to consume fewer resources.

Our results from a tier 1 ISP show several interesting aspects of multicast traffic.

We see a wide distribution of flow duration, although most flows tend to be short-

lived. Likewise, many flows use low or moderate amounts of bandwidth, with a small

number of flows with very high throughput. Moreover, we see potential opportunities

to make the Multicast VPN service more efficient. The large number of single egress

PE flows in the provider domain indicates that unicast could be used as a replacement,

resulting in no impact to efficiency but considerably less routing state. Likewise, a

significant number of flows only communicate with a handful of receivers; converting

these to unicast streams would decrease bandwidth efficiency, but greatly cutback on

memory requirements.

There is future work to consider. First, it would be interesting to do a longer, lon-

gitudinal study on multicast traffic to understand the evolution of enterprise customer

behavior. Second, this research does not extensively evaluate memory and bandwidth

trade-offs present in today’s networks. Further analysis to identify mechanisms for

optimizing multicast memory usage multicast should be considered. Finally, a lower

level application layer diagnosis of multicast traffic could provide insights into how

particular applications are leveraging multicast technologies.
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Chapter 6

Conclusion

Previous chapters have covered two kinds of router memory associated with BGP, the

RIB and the FIB, and discussed mechanisms to reduce their resource requirements.

Moreover, these chapters also provided insights into the emerging IPv6 and multicast

protocols and they are used in practice today. This chapter concludes the thesis by

discussing how Forgetful Routing and the MMS can be combined to simultaneously

protect the RIB and FIB; in addition, the chapter looks at possible future directions,

such as how the MMS could be used to enable other solutions, and how IPv6 and

multicast memory could be reduced in the future.

6.1 Simultaneously Reducing the RIB and FIB

Although Forgetful Routing and the Memory Management System were described

separately, it is possible to combine them within a single network. This hybrid can

reduce both RIB and FIB memory consumption. However, the mode of deployment

for the MMS directly affects its interactions with Forgetful Routing.

In the centralized mode, the MMS assumes responsibility of route propagation.

Routers in the network no longer make routing decisions, and their RIBs contain

stripped, coalesced entries. As such, these RIBs are already “compressed” and For-

117



getful Routing cannot be applied to these routers. However, the MMS itself can still

benefit. By using border routers as proxies, the MMS can issue refresh messages to

neighboring domains (as well as receive responses). Since the MMS stores an even

larger RIB than what a router maintains, Forgetful Routing may be able to provide

extra savings. Latency concerns and convergence delays become more problematic,

since the refreshed information will be multiple hops away. Future research could

determine if this extra delay is tolerable and/or reasonable.

In the distributed mode, Forgetful Routing may need some modification to work in

unison with the MMS. If the full BGP decision process is always used, Forgetful Rout-

ing can be applied without any changes. If the MMS skips some BGP decision steps,

Forgetful Routing must not evict “equally good” routes; otherwise, the router will be

overly constrained during the MMS’ coalescing process. However, other “worse” RIB

entries can be discarded. Moreover, while the selected route should have its attributes

preserved, the other “equally good” routes can be stripped of all attributes except

next− hop, saving some space.

With these precautions in mind, Forgetful Routing and the MMS can be combined

to reduce FIB and RIB memory consumption.

6.2 Enabling Clean Slate Design

The solutions proposed in this thesis attempt to push the limits of current protocols,

with respect to efficiency. Given the constraint of backwards compatibility, is it

possible to substantially reduce memory any further? If Forgetful Routing and the

MMS are nearly optimal solutions, then the only way to significantly shrink memory

is through backwards incompatible solutions. However, such clean slate designs have

trouble with deployment because of a bootstrapping problem: deploying the solution
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incurs expense, and an AS cannot reap any reward unless others deploy. Without a

critical mass of adopters, organizations will not to switch to these designs.

Although the MMS is backwards compatible, it can also act as a clean slate. If

multiple ASes deploy centralized MMSes, these MMSes can be configured to commu-

nicate with each other directly. The MMS would still use standard protocols (like

BGP) when communicating with legacy networks. However, the inter-MMS pro-

tocol has no constraints, and could support a clean slate design. Since the MMS

provides incentives for deployment, it could circumvent the aforementioned boot-

strapping problem.

6.3 Future Protocols and Memory Reduction

Forgetful Routing and MMS techniques can be equally applied to the IPv6 protocol.

The Border Gateway Protocol operates on top of an Internet Protocol. Although

this thesis evaluated BGP with IPv4, BGP operates in the same way with IPv6. The

amount of memory that can be saved, however, may differ, and will depend on several

questions. How fast does the number of prefixes grow in IPv6? Can IPv6 prefixes

be coalesced easily? How many routing paths will exist per prefix? If IPv6 grows to

replace IPv4, these questions can be answered and memory savings can be quantified.

Even if the savings are not substantial, as long as some savings are possible, these

techniques can be applied to reap the benefits.

However, Forgetful Routing and the Memory Management System do not appear

applicable to multicast. Forgetful Routing and the MMS are designed for BGP, a

fundamentally different protocol. A multicast router has no memory component that

is similar to a RIB, and a multicast router FIB uses (S,G) entries that may not

coalesce easily. Instead, the amount of memory needed for multicast can be reduced

by using different techniques, such as converting some multicast flows into unicast
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flows). However, because of the nascent nature of multicast, it is unclear if other

optimizations exist and how they should be applied. As such, the growth of multicast

should be monitored.

6.4 Summary

Through Forgetful Routing and the Memory Management System, router memory

today can be greatly reduced. Forgetful Routing introduces a space-time trade-off

to reduce RIB memory at the cost of additional time to apply the BGP decision

process. The Memory Management System provides a trade-off between FIB memory

reduction and path quality. Both are backwards compatible with BGP, the de facto

interdomain routing protocol of today.

The future, however, is uncertain. Upcoming protocols such as IPv6 and multicast

have potential to substantially change the routing landscape. Because these protocols

are nascent, it is difficult to evaluate their eventual impact. Instead of uncertain

extrapolations, this thesis quantifies their usage and helps lay the groundwork for

future research. In addition, preliminary analysis of multicast shows that there is

potential to reduce the routing state associated with it.

Forgetful Routing and the Memory Management System are techniques for con-

temporary routers. As of today, ASes can protect their networks from memory over-

flow with these optimizations. The IPv6 and multicast studies are observations about

the growth and usage of upcoming protocols; by studying how they evolve, operators

and researchers can prepare themselves for the challenges of tomorrow.
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