
Investigating Security Failures and their Causes:

An Analytic Approach to Computer Security

John Alexander Halderman

A D I S S E R TAT I O N

PRESENTED TO THE FACULTY OF

P R I N C E T O N U N I V E R S I T Y

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE BY THE

DEPARTMENT OF COMPUTER SCIENCE

Advisor: Edward W. Felten

June 2009

©
Copyright © 2009 by John Alexander Halderman

This work is licensed under the Creative Commons

Attribution-Noncommercial-No Derivative Works 3.0

United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

or send a letter to Creative Commons, 171 Second Street,

Suite 300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

iii

Abstract

This dissertation examines security failures in three classes of systems: compact disc (CD)

audio recordings containing digital rights management (DRM), touch-screen electronic

voting machines, and on-the-fly disk encryption software. In each case, we study a variety

of implementations developed by different parties; we analyze their security and discover a

range of security flaws, including several entirely new categories of attacks; and we propose

new mitigations and defenses for protecting related systems. Each of these studies has

already had significant real-world impact, and we extend them with a new methodology for

studying the underlying causes of security failures and drawing broader lessons for users,

developers, researchers, and policymakers.

We begin with CD-DRM systems—security mechanisms for audio CDs that are designed

to limit copying and other uses of the music. In the course of tracing the evolution of

these technologies over three generations, we discover a range of new attacks, including

numerous ways that attackers could bypass the anticopying measures and ways that disc

producers could free-ride on other vendors’ copy-protection systems to receive the benefits

without paying. We demonstrate a new class of threats, collateral damage to the security

of CD-owners’ PCs, and argue that they are an inherent risk of DRM. We discuss additional

factors that led to these failures, including differences between the incentives of CD-DRM

vendors and their record-label customers.

iv

Next, we turn our attention to electronic voting systems, specifically touch-screen direct

recording electronic (DRE) voting machines. We perform a detailed security evaluation of

two similar implementations, the Diebold AccuVote-TS and AccuVote-TSX, applying both

reverse engineering and source code review to reveal security flaws. We show how attackers

could exploit these flaws to tamper with election results or disrupt the voting process, and we

demonstrate a dangerous new attack vector, voting machine viruses. We compare security

problems uncovered in other DRE voting machines to suggest common causes and threats,

including failures in voting machine certification procedures and incentives that rewarded

features and time-to-market over robustness and security.

Finally, we demonstrate new threats to the security of on-the-fly disk encryption software,

which is designed to protect confidential data against an attacker who gains physical access

to the computer. We conduct a series of experiments to investigate memory remanence

in dynamic RAMs, a phenomenon largely unknown to security research that causes data

in RAM to remain intact for a short time after the memory chips lose power. Attackers

can exploit this effect to bypass operating system security and recover sensitive memory

contents, such as encryption keys. We demonstrate how this would allow an attacker to

defeat most popular disk-encryption products. We discuss how the widespread ignorance

of this basic hardware behavior relates to abstraction, a fundamental computer engineering

principle, and suggest other abstractions that might similarly conceal security threats.

In all three studies we apply new methodology that combines causal analysis with se-

curity engineering. We adopt the concept of informative causes of failure to organize and

direct our investigations. In the pursuit of causes, we compare security flaws across differ-

ent implementations to find supporting evidence in suggestive patterns of failures. Like the

search for flaws, the search for causes seems resistant to thorough systematization, but it

has been a useful tool for guiding us to the broader lessons of these security failures.

v

Contents

Abstract iii

1 Introduction 1

1.1 Why Study Failures? . 2

1.2 How We Study Failures . 4

1.3 The Analytic Approach . 9

1.4 In this Dissertation . 13

1.5 Funding Acknowledgments . 17

2 Security Failures in CD-DRM Systems 19

2.1 CD-DRM Technologies . 21

2.1.1 First Generation: Passive Protection . 21

2.1.2 Second Generation: Active Protection . 24

2.1.3 Third Generation: Aggressive Protection 25

2.2 Attacks: Content Copying . 30

2.2.1 Attacks Against Passive Protection . 31

2.2.2 Attacks Against Active Protection . 35

2.2.3 Attacks Against Authorized Players . 38

2.3 Attacks: Protection Cloning . 41

vi

2.3.1 Disc-Recognition Requirements . 43

2.3.2 Reverse-Engineering the MediaMax Watermark 44

2.3.3 Attacks on the MediaMax Watermark . 48

2.3.4 Mitigation: Cloning-Resistant Watermarks 50

2.4 Attacks: Collateral Damage . 53

2.4.1 Exploiting the XCP Rootkit . 53

2.4.2 Exploiting the MediaMax Player . 55

2.4.3 Privacy Concerns . 57

2.4.4 Exploiting the XCP and MediaMax Uninstallers 58

2.4.5 Mitigating Collateral Damage . 61

2.5 Causes of CD-DRM Security Failures . 64

2.5.1 The CD-DRM Problem . 66

2.5.2 Incentives for Underinvestment in Security 71

2.5.3 Tension between DRM and PC Security 75

2.6 Conclusion . 80

3 Security Failures in Electronic Voting Machines 83

3.1 The AccuVote TS and TSX . 86

3.1.1 Voting Machine Hardware and Software 87

3.1.2 Election Management . 89

3.1.3 Voting Machine Operation . 90

3.2 Selected Vulnerabilities . 94

3.2.1 Unauthenticated Software Update Mechanisms 94

3.2.2 Unprotected Hardware Debugging Features 97

3.2.3 Exploitable Buffer Overflows in BallotStation 99

3.2.4 Insecure Storage of Cryptographic Keys 101

vii

3.2.5 Poor Protection of Critical Election Data 102

3.3 Attack Scenarios . 104

3.3.1 Direct Attack Installation . 105

3.3.2 Voting Machine Viruses . 106

3.3.3 Vote-Stealing Attacks . 110

3.3.4 Denial-of-Service Attacks . 113

3.4 Systemic Problems . 115

3.4.1 Systemic Design Weakness . 115

3.4.2 Systemic Implementational Errors . 118

3.4.3 Deficient Engineering Practices . 120

3.5 Results from Other Studies . 122

3.6 High-Level Causes . 124

3.6.1 Time-to-Market Pressure . 124

3.6.2 Features and Complexity . 127

3.6.3 Certification and Testing . 129

3.7 Mitigation . 132

3.8 Conclusion . 137

4 Security Failures in On-the-Fly Disk Encryption Software 139

4.1 Previous Work . 142

4.2 DRAM Remanence . 144

4.3 Tools and Attacks . 151

4.4 Attacking Cryptographic Keys . 154

4.4.1 Reconstructing DES Keys . 157

4.4.2 Reconstructing AES Keys . 158

4.4.3 Reconstructing Tweak Keys . 159

viii

4.4.4 Reconstructing RSA Private Keys . 161

4.4.5 Automatically Identifying Keys in Memory 161

4.5 Attacking Disk Encryption Software . 163

4.6 Countermeasures and their Limitations . 168

4.7 Causes of Disk Encryption Security Failures . 172

4.7.1 Architectural Deficiencies . 172

4.7.2 Vendor Incentives . 176

4.7.3 Abstractions and Security . 178

4.8 Conclusions . 183

5 Conclusion 184

Bibliography 188

1

Chapter 1

Introduction

Modern computer systems are among the most complex objects ever devised by humankind,

yet lives and fortunes depend on their functioning correctly. As difficult as it is to build

reliable computer systems, it is even harder to build ones that are secure. A secure system

must work correctly even when facing an adversary, an intelligence that actively attempts

to make the system misbehave. Adversaries are not bound by the designers’ assumptions;

they may poke and probe the system using all methods at their disposal, whether this means

working around, “tunneling under,” or directly attacking the system’s defenses. Often we

attempt to improve reliability by testing the inputs and conditions that are likely to occur “in

nature,” during the normal operation of the system, but an adversary will seek to construct

inputs or conditions that bring about failure no matter how unusual or unnatural they may

be. This is a central challenge faced by the computer security field—how to predict and

avoid failures in computer systems in the presence of an adversary.

Most computer security research can be divided into two categories: defenses and attacks.

The first group devises new countermeasures, such as building blocks (e.g. cryptographic

functions and protocols), system-level defenses (e.g. firewalls and CAPTCHAs), and im-

plementational techniques (e.g. safer programming languages, formal verification). The

CHAPTER 1. INTRODUCTION 2

second group exposes and investigates flaws in existing designs; it is the subject of this

dissertation. Though these approaches may seem to work at cross purposes, they are in fact

symbiotic. New attacks motivate the development of improved defenses, which in turn pro-

vide fodder for innovative attacks. The mutual goal of both research areas is strengthened

security.

1.1 Why Study Failures?

Inquiries into failure and its causes are central to technical progress: they delineate the

practical boundaries of what we can achieve with current technology and highlight areas

that are ripe for further research [129, 130]. Studying failures has become a standard

practice in many engineering fields [46, 60, 127, 181]. When a bridge collapses [120] or a

building falls down [58], or a Space Shuttle burns up [37, 145], scientists and engineers are

called upon to understand what happened and seek lessons that will prevent such disasters

from reoccurring. Learning from failures is also common in areas of computer science.

Krsul et al. [96] cite numerous examples, including case studies of software faults, software

testing methodologies for detecting various kinds of flaws, and advances in compilers and

development tools in response to past problems.

Attack research examines computer security “through the lens” of failure. This strength-

ens security in several ways. Most directly, it can reveal flaws in real-world systems, allowing

developers and users to correct problems before attackers exploit them. It also puts pressure

on developers to be more diligent about security by increasing the odds that problems will

be publicly exposed. In offensive scenarios, it may be desirable to bring about the failure of

hostile systems—attack research can also strengthen our arsenal.

CHAPTER 1. INTRODUCTION 3

Beyond these, a large part of what we learn by studying security failures comes less

directly, from generalizing specific incidents to draw broader lessons. These lessons fall into

a diverse variety of categories, for instance:

• Lessons about where to look for problems. Failures in some systems can point to other

systems or scenarios in which similar failures are likely, helping direct the search for

vulnerabilities.

• Lessons about what we need to defend against. Attack researchers sometimes invent

new classes of attacks that can apply in many kinds of systems. Recognizing new kinds

of attacks can stimulate the development of novel countermeasures. Many studies that

introduce attacks also propose new defenses to combat them.

• Lessons about the practicability of defenses. Security usually comes at a cost. Sometimes

when systems exhibit security failures, we can point to defensive techniques proposed in

the research literature that seemingly would have prevented the failures if they had been

adopted. Careful investigation of why the defenses were not applied sometimes reveals

unforeseen costs or contours of the problem that limit the practicality of the proposed

solutions. This helps us make sure research approaches closely track the real needs of

defenders and directs us to areas where we need to further reduce the costs of security.

• Lessons about risks. Studying past failures can sharpen our intuitions about the relative

riskiness of different designs and implementational methods, helping us avoid dangerous

approaches and direct testing resources at likely trouble spots. This help designers

improve their threat models and allows users to more accurately assess risks and make

better cost-benefit tradeoffs.

• Lessons about our assumptions. Attacks are often made possible because system cre-

ators, in reasoning about security, made critical assumptions about the behavior of their

systems that turned out to be false. Even formal proofs that software is security depend

CHAPTER 1. INTRODUCTION 4

on models of how hardware will execute it and of how external systems will behave. By

uncovering mistakes in these assumptions and models, attack research helps improve

the correctness of future designs.

• Lessons about the human elements of security. Systems are built, used, and attacked

by people; their motivations, capabilities, and limitations have enormous security conse-

quences. We need to use models of human behavior alongside our models of computer

behavior in order to understand the full behavior of a system. For instance, researchers

need to understand how much we can expect from designers in terms of engineering

prowess and from users in terms of sound judgment about security concerns. Another

important question is how the actions of implementers and attacks are shaped by their

individual incentives, as this determines how much effort the parties can be expected

to invest in defenses and attacks. The answers to these questions can help shape both

technical and nontechnical approaches to security problems.

Done right, the study of security failures holds promise far beyond the mitigation of

immediate dangers. It can lead to better understanding of threats, safer approaches to

design, and new opportunities for discovery.

1.2 How We Study Failures

Computer security failures can be studied post mortem, by analyzing malicious attacks, or

ante delictum, by discovering new vulnerabilities before they are exploited. Researchers have

been doing both since the early days of the field. Designers have long studied attacks to

strengthen their systems; for example, in a 1979 paper about UNIX password security, Morris

and Thompson describe how its design “was the result of countering observed attempts to

penetrate the system.” [116] A decade later, some of the first studies to focus exclusively

CHAPTER 1. INTRODUCTION 5

on a particular assault came in response to the Internet worm unleashed by Morris’s son;

Eugene Spafford’s analysis reflected on the value of such endeavors: “What we learn from

this about securing our systems will help determine if this is the only such incident we

ever need to analyze.” [163] (Alas, it was not.) By the mid-1990s, so-called “attack papers”

were an established genre. Sometimes they combined the discovery of new attacks with

efforts to understand their causes. Dean et al. for instance, discuss how vulnerabilities

they discovered in the Java programming language “arise for several reasons, including

implementation errors, ... [and on] a deeper level, ... weaknesses in the design methodology

...” [42] These are just a few illustrations of a seasoned practice.

One of the leading exponents of learning from security failures has been Ross Anderson.

The practice has long been a focus of his work [5] and is a centerpiece of his book Security

Engineering [6]. He explains its importance in the preface to the first edition: “New systems

are often rapidly broken, and the same elementary mistakes are repeated in one application

after another. ... Many of these failures could have been foreseen if designers had just a

little bit more knowledge of what had been tried, and had failed, elsewhere.” Anderson

has developed ways to investigate the causes of failures using ideas from economics [7]

and social choice theory [153], such as by modeling different actors’ incentives. He and

his Cambridge colleagues have combined a lesson-drawing approach with the discovery

of new attacks involving emission security [98], smart cards [8], and electronic payment

systems [49], among other topics.

Though many security researchers acknowledge the importance of learning from fail-

ures, few studies apply a systematic approach to understanding them. Such approaches

have been proposed for certain kinds of failure analysis, and we mention a few of them

briefly. Vulnerability classification methods (e.g., [3, 12, 97, 99, 19]) create taxonomies

of flaws. Grouping failures using one set of characteristics can reveal hidden similarities

CHAPTER 1. INTRODUCTION 6

among other characteristics, which may illuminate shared causes or implications. It can

also be helpful to fit new flaws into preexisting taxonomies, since this can quickly point to

applicable lessons from previous failures. Another family of systematic approaches (e.g.,

[125, 142]) apply formal reasoning techniques such as model checking to determine how

a set of vulnerabilities might be used to violate a system’s security policies. Researchers

could use these techniques to discover new attacks or to rapidly determine the impact of a

new vulnerability. The last family we will consider encompasses root cause analysis (RCA)

techniques [20] and related problem solving methods. These are systematic but informal

methods for seeking out the causes of particular problems with the goal of preventing recur-

rence. RCA seeks to answer three questions: What happened, why did it happen, and what

can be done to prevent it from happening again? [170] It is regularly applied in psychol-

ogy [141] and in investigations of industrial accidents and defects [20], and increasingly in

the medical community [182]. RCA is sometimes used for investigating security breaches

in businesses [165], but it is rarely [89] applied in security research.

Unfortunately, there seems to be little consensus in contemporary security research

over how broader lessons should be drawn from observed failures. In particular, there is

widespread disagreement about five basic issues:

1. What questions should we ask?

2. How should we answer them?

3. How should we report the answers?

4. How should we evaluate whether purported answers are correct?

5. How should we value answers to these questions relative to other contributions?

In order to quantify the inconsistency of contemporary approaches to failure analysis,

we reviewed the proceedings of four major security conferences from the past two years,

CHAPTER 1. INTRODUCTION 7

NDSS [134, 135], Oakland [138, 139], CCS [132, 133], and USENIX Security [136, 137].

While 37 out of 252 papers (15%) focus on new attacks, 11 of these (30%) neglect to

draw any nonobvious lessons. Of the 26 that do draw some sort of broader lessons, only

half position such analysis as an important contributions by mentioning the lessons in

the abstract or featuring them prominently in the introduction. The papers that do draw

lessons do so in many different ways: some seek to understand why failures happened in

the past, others are only concerned with how we can prevent them from recurring; some

explicitly state that they are drawing such conclusions, others do so only implicitly; some

limit interpretation to its own section, others blend it with descriptions of the attacks. There

appears to be little agreement within the security field about how we should learn from

failures.

In contrast to the diverse and usually unstructured approaches to deriving broader

lessons, there is considerable uniformity in the way we study the direct lessons from failures.

Conferences often treat failure studies as a distinct genre, grouping them into dedicated

“attack sessions” even if their subjects are otherwise dissimilar. This uniformity exists because

the research community has developed a powerful organizing principle to structure such

work: the notion of an attack as a recipe for an assault.

This notion is so central to the way failures are investigated that most researchers do not

realize they are applying it, but we find evidence of its impact in the specialized meaning of

the word “attack” that has developed within the security community. Researchers sometimes

use the noun “attack” in much the same way as nontechnical speakers do, to refer to

an actual malicious assault1, or as military strategists do, to refer abstractly to a class of

assaults involving similar means2. Yet over the years, use of the word has changed, and

1 Vixie in 1995: “We learned of these weaknesses by studying some successful [malicious] attacks, not just
by a careful examination of the protocol and the BIND source code.” [173]

2 Spafford in 1988: “That is, some dictionary-based or brute-force attack was used to crack a selection of a
few hundred passwords taken from a small set of machines.” [163]

CHAPTER 1. INTRODUCTION 8

it has developed a third, specialized sense that refers to assault recipes. This sense may

have originated in contexts that explicitly framed the search for attacks as a role-playing

exercise3 —but authors have long employed it without this qualification4. Today this sense

sees widespread use (though some writers still consider it nonstandard), and it has been

added as a second definition in some respected security lexicons5

As a result, when researchers say they are describing a new attack, this usually means

something specific: that they have discovered a previously undocumented security flaw (or

a new way to utilize a known one) and documented it, that they have devised a way that an

attacker could leverage the vulnerability to cause harm, and often that they have confirmed

that the attack works in real systems by constructing a proof-of-concept exploit.

The notion of attacks as assault recipes finds widespread use because it provides valuable

structure for research activities. It frees us to reason abstractly about potential dangers, yet

it restrains our speculation by forcing us to maintain concrete ties to the harms we wish

to prevent. It provides a conceptual framework for the study of security failures, defining

the objective (to discover such attacks), the level of abstraction (not particular assaults or

general brittleness, but exploitable weaknesses), and the standard of evidence by which

results will be validated (demonstrable exploitability).

Returning to the five questions we mentioned earlier, we find that, as a result of this

concept, there is general agreement about how to answer four of them with respect to

the direct study of attacks. What question should we ask?—How can systems actually be

assaulted. How should we report the answers?—By describing specific recipes for assault.

How should we evaluate whether purported answers are correct?—By whether they can

3 Morris and Thompson in 1979: “To help develop a secure system, we have had a continuing competition
to devise new ways to attack the security of the system (the bad guy) and, at the same time, to devise new
techniques to resist the new attacks (the good guy).” [116]

4 Bellovin in 1989: “We describe a variety of attacks based on these flaws [in TCP/IP], including sequence
number spoofing, routing attacks, source address spoofing, and authentication attacks.” [17]

5 It it absent in the first edition of the Internet Security Glossary [155] but does appear in the second
edition [156].

CHAPTER 1. INTRODUCTION 9

be demonstrated on real systems. How should we value answers to this question?—We

recognize novel attacks as a substantial contribution. One question remain unanswered—

How should we discover attacks?—and we will return to it later.

Security research today lacks any parallel organizing concept to answer these questions

with respect to drawing broader lessons from failures. This is a lost opportunity. It results

in the huge variation in the terminology, approaches, and quality of lesson drawing that

we have observed in contemporary studies. Thus, we will now propose such an organizing

concept, and in subsequent chapters we will demonstrates its application.

1.3 The Analytic Approach

The concept we propose is the informative cause. In investigating failures, researchers should

seek to establish the informative causes that contributed to them. Mirroring the notion of

the attack, this new framework encompasses a goal, a level of abstraction, and a standard

of evidence. We now define it and explain how it provides an organizing framework that

structures the process of deriving broader lessons from security failures.

First, the goal. Just as we usually attempt to understand security failures in terms of

attacks, our preferred starting point for understanding the broader implications of failures

should be understanding the causes—factors that made the failures happen or that made

them more severe. The justification of focusing on causes is pragmatic: the concept is

flexible enough to restate many of the kinds of lessons described earlier, but, we will argue,

restrictive enough to focus our investigations and provide a standard of evidence. There

are many types of causes that underlie security failures, but we can classify them roughly

into two groups: human factors and technological factors. Human factors include counter-

secure incentives that motivate developers or testers to invest less heavily in security, or that

motivate attackers to invest more heavily in breaking it; misleading intuitions on the part

CHAPTER 1. INTRODUCTION 10

of developers or users about the nature of threats or the value of defenses; and dangerous

practices or engineering patterns that carry with them a higher probability of security failure.

Technological factors include those relating to the nature of the problem that the system at-

tempts to solve—some problems seem inherently more difficult to solve securely—; those

relating to the brittleness of the technique—some techniques are more prone to weakness—;

and those relating to the behavior of the supporting technologies on which the security of

the system depends.

Second, the level of abstraction. Just as the notion of attacks as assault recipes focuses

investigations on the technical causes of failure at a particular useful level of abstraction,

the notion of informative causes serves to focus investigations concerning the implications

of failures on the level of abstraction most useful for lesson drawing. By requiring that

the causes sought be informative, we mean that they should be generalizable but also

actionable.6 Causes are noninformative when they are too specific. The immediate cause

of a failure might be a particular bug or design flaw, but deriving useful lessons requires

following the chain of causality to find reasons why the mistake was made, why it went

undiscovered, or why it resulted in harm. On the other hand, causes that are too general are

not informative either. If we follow the chain of causality too far, we arrive at uninformative

conclusions. All humans make mistakes, all large programs contain bugs, entropy of systems

increases over time; while true, we already know these things, and restating them again is

of little use for guiding action and improving security. Informative causes, the causes that

teach us the most, lie at an intermediate level of abstraction.

Finally, the standard of evidence. The notion of attacks as assault recipes implies a

simple test by which we can tell whether a purported attack is correct: does the recipe

work against the systems that are claimed to be insecure? Likewise, to demonstrate an

6 Causation is a complex concept, and other areas such as law [161] have developed rich and subtle theories
to deal with it. We might compare our notion of the informative cause to the legal concept of the proximate
cause.

CHAPTER 1. INTRODUCTION 11

informative cause, investigators must establish a causal relationship between it and the

failures at issues. This has the effect of constraining our speculation about causes and

maintaining a concrete connection between the lessons drawn and the facts of the failures

under investigation. One way to establish causality is to argue that if a factor or set of

factors were not the case, the problem would not have occurred (or would have been less

severe). Doing so at an informative level of abstraction can be difficult, since there may

be many plausible causes, some of which are merely coincidental. One approach is to look

for similarities and differences in related failures. Such investigations may be latitudinal in

scope, closely examining one system and searching for patterns of failures, or longitudinal,

searching for similar problems in related systems.

Returning to our five questions, we see that the notion of informative causes, like the

notion of attacks as assaults, answers four of them. What questions should we ask?—We

should seek factors that made security failures possible or made them worse and that are

general enough to guide future action. How should we report the answers?—By detail-

ing specific causes and supporting them with evidence, such as patterns of failures. How

should we evaluate whether purported causes are correct?—By judging the strength of the

causal connection. How should we value answers to these questions?—Focusing on causes

emphasizes that they are a valuable contribution.

Neither the concept of the attack nor our notion of the informative cause answers the

last question—How should we discover attacks/causes? The process of finding attacks is

usually a creative rather than mechanical exercise. In general, it involves understanding

the system’s operation across all layers, identifying areas that may be prone to weakness,

identifying critical assumptions in these areas, and attempting to violate these assumption.

There are many parallels between finding attacks and finding causes. Both involve a di-

rected search through a broad space of possibilities, guided by past experience, and both

CHAPTER 1. INTRODUCTION 12

involve the creative formulation of hypotheses—original attacks and causes—which are

then tested against the facts. It seems likely that the search for causes, like the search for

attacks, is inherently resistant to systematization beyond a certain point. The value of both

concepts stems from the structure they provide, not from their ability to provide a precise

investigatory roadmap.

Combining the notion of attacks as assault recipes with the notion of informative causes

gives us a new template for studies of security failures. The most critical change is that it

places understanding the broader implications of failures on an equal footing with discov-

ering attacks, highlighting its importance for improving security. Studies in this framework

might involve the following components:

1. Investigating the security of a system or a group of related systems with the goal of

discovering new attacks.

2. Performing analyses looking for patterns of failures (longitudinally and/or latitudinally)

and other factors that reveal informative causes.

3. Discussing the implications of the attacks and causes, drawing further lessons, making

predictions, and proposing mitigations.

Shifting the emphasis of failure investigations to co-emphasize attacks and their causes

calls for a different term to denote such work, rather than simply “attack research.” We

propose analytic security research. Analytic derives from the Ancient Greek �ανάλυσις

(analusis), and in turn from �αναλύω (analuō), meaning “I unravel, investigate” [1]. This

seems appropriate, since analytic security research begins with complete systems and takes

them apart in search of attacks and their causes. The term naturally meshes with the ex-

isting lexicon. Some security researchers draw a distinction between “synthesis” (system

design) and “analysis” (attack investigation), and code-breaking has long been called “crypt-

analysis.”

CHAPTER 1. INTRODUCTION 13

Analytic security research is an approach to investigating security failures that couples

the organizing concept of the attack with the organizing concept of the cause. It thus

provides an intellectual template for studying security failures in terms of both their direct

and broader lessons.

1.4 In this Dissertation

This dissertation contributes by studying security failures and their causes in three classes

of systems: digital rights management systems for audio compact discs (CD-DRM systems),

direct-recording electronic (DRE) voting machines, and on-the-fly hard disk encryption

software. For each class, we apply the analytic security research methodology. We analyze

several deployed implementations and identify previously unknown vulnerabilities that pose

significant threats to the systems’ security. We compare these security failures longitudinally

within each implementation and latitudinally across implementations from the same group

to inquire into the causes of the failures and to derive broader lessons and implications.

We then recommend mitigations both for the specific vulnerabilities and for the deeper

problems that germinated them.

Our first case study concerns security failures in CD-DRM systems (Chapter 2), copy

protection systems intended to control the use of music distributed on compact discs. We

trace the development of this technology through three generations and compare imple-

mentations from several vendors. Examining these systems, we discover three classes of

attacks: content copying attacks, which defeat the copy protection; protection cloning at-

tacks, which allow music distributors to take advantage of the protections without paying;

and collateral damage, side-effects caused by the DRM that weaken the security of end-

users’ PCs. By analyzing these failures, we find three groups of causes that contributed to

them or amplified their severity: the intractable nature of the CD copy protection problem,

CHAPTER 1. INTRODUCTION 14

mismatched incentives between CD-DRM vendors and their customers, and fundamental

tension between DRM and PC security. These findings carry broader lessons for security

beyond the context of DRM.

The attacks on first- and second-generation CD-DRM schemes originally appeared in

“Evaluating New Copy-Prevention Techniques for Audio CDs,” which was presented at

DRM 2002 [72], and in “Analysis of the MediaMax CD3 Copy-Prevention System,” a tech-

nical report [73]. The attacks on third-generation schemes and portions of their analysis

originally appeared in “Lessons from the Sony CD-DRM Episode,” joint work with Ed Felten,

which was presented at USENIX Security 2006 [74]. Additional analysis in Section 2.5

derives from “Digital Rights Management, Spyware, and Security,” also joint work with Ed

Felten, which first appeared in IEEE Security and Privacy [63].

Our second case study concerns security failures in direct-recording electronic (DRE)

voting machines (Chapter 3). We analyze the security of two generations of systems from

the same manufacturer, the Diebold AccuVote-TS and AccuVote-TSX. We uncover weak-

nesses that enable three classes of attacks: attacks on the integrity of the election results,

attacks on the secrecy of voters’ ballots, and attacks on the availability of the voting system.

All three could be carried out on a wide scale by a malicious party with minimal access to

the voting system—perhaps only temporary access to a single machine or memory card. We

find several mechanisms by which malicious software could spread from a point of infection

to compromise other voting machines and central election administration systems, and we

demonstrate this attack by constructing a vote-stealing virus. Comparing our results with

the findings of other studies that examined voting machines from different manufacturers,

we find evidence that vulnerabilities like these are widespread in electronic voting system

designs. This trend suggest several informative causes for e-voting security failures, includ-

ing market incentives that push manufacturers to prioritize features and time-to-market

CHAPTER 1. INTRODUCTION 15

over security and testing. We discuss the implications of these problems and conclude that

new approaches to involving technology in the election process are necessary.

Chapter 3 incorporates attacks and analysis of the Diebold AccuVote-TS that originally

appeared in “Security Analysis of the Diebold AccuVote-TS Voting Machine,” joint work with

Ari Feldman and Ed Felten, which was presented at EVT 2007 [61]. It also incorporates

attacks and analysis of the AccuVote-TSX that originally appeared in “Source Code Review

of the Diebold Voting System,” joint work with Joe Calandrino, Ari Feldman, David Wagner,

Harlan Yu, and Bill Zeller, which was part of the voting systems review commissioned by

California Secretary of State Debra Bowen [28].

Our final case study is about security failures in on-the-fly disk encryption software

(Chapter 4), which is commonly used to protect sensitive data against physical attacks such

as laptop theft. We investigate memory remanence, a physical phenomenon, little known

in the security community, that causes data stored in a DRAM to decay gradually when

power is lost rather than being immediately erased. Our findings indicate that residual

memory contents can often be recovered after seconds without power, and after minutes

if the memory device is first cooled. An attacker could exploit this phenomenon to steal

encryption keys, such as those used in disk encryption applications, by quickly cutting

power to the machine, then rebooting and running memory imaging tools like ones we have

developed. Some amount of decay may be unavoidable in certain attack scenarios, but we

have found algorithms for locating keys in partially decayed memory and for correcting

the errors. We demonstrate that these attacks compromise the security of five widely used

disk encryption utilities, and we suspect that most similar software is also vulnerable. We

identify several causes that underlie these failures, including deficiencies in common PC

architectures, which provide no safe place for software to store secrets that are in active

use, and the role of abstraction in computer engineering, which had the effect of concealing

CHAPTER 1. INTRODUCTION 16

security-critical details about computer operation from disk encryption designers. These

causes provide motivation for changes to memory architecture and other aspects of PC

design. They also imply that security problems may arise in other settings where abstractions

mask complex behavior.

With the exception of Section 4.7, the results in Chapter 4 first appeared in “Lest We

Remember: Cold Boot Attacks on Encryption Keys,” which was presented at USENIX Security

2008 [75], and in an extended abstract by the same name that appeared in the May 2009

issue of Communications of the ACM [76]. Both are joint work with Seth Schoen, Nadia

Heninger, Will Clarkson, Bill Paul, Joe Calandrino, Ari Feldman, Jake Appelbaum, and Ed

Felten.

The findings in this dissertation have already had significant real-world impacts. Our

work on CD-DRM led to the recall of millions of CDs containing dangerous copy protection

software, lawsuits and government investigations into the problems, and it may have con-

tributed to a shift in the music industry’s business strategy away from the use of the DRM for

music purchases. Our initial voting machine study prompted a number of states to conduct

security evaluations of election technology, revise their election procedures, or abandon the

use of DRE voting machines altogether. Our work on disk encryption changed the security

community thinks about the threat model for physical attacks on memory, prompted users

who rely on this technology to reassess the risks they face, and even entered popular culture

in dramatizations on two prime-time television programs.

In revisiting these works, we have adapted them to apply our new analytic methodology.

Our revisions highlight the value of placing emphasis on both attacks and causes. Lessons

scattered throughout the papers now come together in one place, a section describing

causes, making them more readily accessible to the reader. Lessons that were implied

but not expressly stated are made more explicit by the added structure. The practice of

CHAPTER 1. INTRODUCTION 17

basing lessons on causes forced us to draw crisper, concise statements of each cause, and

it exposed ambiguities in some of the lessons that we drew before, prompting us to refine

them. Perhaps most interestingly, the consistent approach now applied across the three case

studies highlights causal factors that were common across different classes of systems, such

as the role of misleading intuitions about system behavior, the impact of vendor incentives

on investment in security and testing, and the disruptive impact of technological change on

users’ understanding of risks. In future investigations we hope to more fully explore these

common causes and their implications for security.

Of course, this exercise is only an initial step in the development of our proposed method-

ology. Validating and refining it will require significantly more practice, and, in particular,

applying it from the start in new investigations rather than retrofitting it to past work. Sig-

nificant questions remain. Does it provide too much structure, confining our lesson drawing,

or does it provide too little structure to make a meaningful impact on the quality of the

results? Is there more than can be done to systematize the search for causes? Can we

more rigorously define causes and provide a stricter standard by which to judge them? We

hope to shed light on these and other questions as we apply the analytic approach to future

studies.

1.5 Funding Acknowledgments

This material is based in part upon work supported under National Science Foundation

Graduate Research Fellowships. Any opinions, findings, conclusions or recommendations

expressed in this dissertation are those of the author and do not necessarily reflect the views

of the National Science Foundation.

Portions of this research were performed under an appointment to the Department

of Homeland Security (DHS) Scholarship and Fellowship Program, administered by the

CHAPTER 1. INTRODUCTION 18

Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement

between the U.S. Department of Energy (DOE) and DHS. ORISE is managed by Oak Ridge

Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All

opinions expressed in this dissertation are the author’s and do not necessarily reflect the

policies and view of DHS, DOE, or ORAU/ORISE.

This work was supported in part by the Charlotte Elizabeth Procter honorific fellowship.

19

Chapter 2

Security Failures in CD-DRM Systems

Compact disc digital rights management (CD-DRM) is a form of copy protection designed

to restrict the use and dissemination of music stored on audio CDs. This chapter presents an

analytic security study of CD-DRM systems. We analyze the security of six implementations

from four different vendors, examining how each of them was intended to work and how

they all ultimately failed, and we investigate the causes of these failures. Many of the

lessons that emerge are valuable not only for CD-DRM but for DRM generally and for other

security applications.

We begin by introducing a taxonomy for CD-DRM systems (Section 2.1). We classify

them into three generations: passive protection, active protection, and aggressive protection.

This framework allows us to trace the technology’s evolution from its inception in 2001

through its demise in 2005. Our analysis reveals how each generation was developed in

response to problems with the previous generation’s security mechanisms but ended up

introducing problems of its own.

Next we evaluate the systems’ security, describe attacks against them, and explore possi-

ble defenses. We divide the attacks into three categories, each involving a different attacker

and victim. The first are content copying attacks (Section 2.2), which allow CD owners

CHAPTER 2. CD-DRM SYSTEMS 20

Gen. Year Method Implementations Common Vulnerabilities

Copying Cloning Collateral

1st 2001 Passive Midbar CDS-200 X
Sony Key2Audio

SunnComm MediaCloQ

2nd 2003 Active SunnComm MediaMax 3 X X

3rd 2005 Aggressive First4Internet XCP X X X
SunnComm MediaMax 5

Table 2.1—Taxonomy of CD-DRM Systems We classify CD-DRM implementations into three
generations based on the techniques they use to prevent copying. This table lists the systems we
studied from each generation and the kinds of attacks we found.

to bypass the usage restrictions established by content distributors, negating CD-DRM’s

raison d’être. The systems from all three generations were subject to such attacks. The

second group, protection cloning attacks (Section 2.3), allow disc producers to benefit from

a CD-DRM platform without paying the developers. Both the second- and third-generation

systems were susceptible. The final group of threats involve third-party attackers, who,

rather than targeting CD-DRM systems directly, exploit weaknesses in them to attack CD

owners’ computers; we call these collateral damage (Section 2.4). Only the third-generation

systems we studied exhibited this kind of failure.

Armed with an understanding of these attacks, we conduct an analysis in search of

underlying causes that induced or aggravated them (Section 2.5). Our examination traces

security failures both latitudinally across contemporary systems and longitudinally across

generations. Causes we identify include the nature of CD-DRM’s copy protection goal,

which faces an uphill battle against Moore’s law; the incentives of CD-DRM developers,

who underinvest in protecting users due to the structure of outsourcing arrangements; and

CHAPTER 2. CD-DRM SYSTEMS 21

inherent characteristics of DRM software, such as tension between content security and user

security. The causes we identify predict that other kinds of DRM software will cause security

problems. We conclude by summarizing the implications of our findings and pondering the

ultimate fate of CD-DRM technology (Section 2.6).

2.1 CD-DRM Technologies

CD-DRM systems must meet difficult requirements. Copy-protected discs must be reason-

ably compliant with the CD digital audio (CDDA) standard so that they can play in ordinary

CD players. They must be unreadable by almost all computer programs in order to prevent

copying, yet the DRM vendor’s own software must be able to read them in order to give the

user some access to the music. Different CD-DRM vendors addressed these challenges in

different ways that evolved hand-in-hand with changes in the marketplace and the devel-

opment of new attacks. In order to make sense of the resulting array of systems, we group

them into three technological generations based on the kinds of protection mechanisms

they employed (see Table 2.1).

2.1.1 First Generation: Passive Protection

The first generation CD-DRM systems were released around 2001. They employed inten-

tional deviations from the CDDA specification that were designed to cause errors when discs

were read with PCs [72]. We refer to these methods as passive protection techniques.

Understanding how passive protection works requires some background about CD data

formats and their history [107]. The CDDA format was invented by Sony and Philips in the

late 1970s. It was extended in the early 1980s with the compact disc read-only memory (CD-

ROM) standard, which provided for discs that could store data as well as audio. Recordable

(CD-R) and rewritable (CD-RW) disc formats were introduced in the late 1980s and early

CHAPTER 2. CD-DRM SYSTEMS 22

1990s by replacing the pitted aluminum in regular CDs with specialized dyes that could be

marked by low-power lasers.

The information stored on a CD is organized into functional units called tracks. An audio

CD usually contains one audio track for each song. The CD-ROM format allows discs to

mix audio tracks with data tracks storing arbitrary files, and introduces a track type flag to

distinguish between the two. A header before the first track holds a table of contents (TOC),

which specifies the number of tracks, their starting positions, and whether each contains

audio or data [53, 85].

Older standalone CD players are unaware of the data CD standards and interpret all

discs according to the CDDA format. If a CD-ROM is inserted into one of these players,

the player emits static, since it does not recognize that the tracks have been marked as

data and treats the raw bytes as audio samples. Many passive protection schemes exploit

such behavioral differences between computer CD drives and CD players. For example, the

MediaCloQ system deliberately mismarks every audio tracks as data. Standalone CD players

often ignore this designation and play the tracks normally, but most CD ripping applications

recognize it and refuse to process them as music [72].

The CD-R and CD-RW writable disc formats have more complicated structures that

provide other opportunities for distinguishing between standalone players and drives. CD-R

media cannot be erased, so the standards allow data to be written incrementally until the

disc is filled. One way to do this is to write several sessions, each with its own header and

tracks; discs encoded in this way are called multisession CDs. Every session has its own TOC

that describes the tracks it contains. A new TOC field points to the beginning of the TOC

from the previous session. Most CD drives treat the TOCs as a linked list, starting with the

last session TOC and iteratively following the links to the previous ones [121]. However,

CHAPTER 2. CD-DRM SYSTEMS 23

audio CD players and older CD-ROM devices that do not recognize the multisession format

read just the TOC from the first session and only see tracks listed there.

Many passive protection schemes exploit these differences to make audio tracks inacces-

sible from CD drives. One widespread technique (used, e.g., by CDS-200 and Key2Audio)

involves creating a disc with two sessions but leaving out the TOC entry that would nor-

mally link them. CD drives read only the second session TOC, which on these discs omits

the audio tracks or contains corrupted entries for them, while CD players read only the first,

accurate TOC and play the disc correctly [72].

In addition to TOC errors, copy prevention schemes may place errors in the track data

area, either in the audio samples, in error-correcting bits, or in other metadata. For instance,

CD-DRM vendor Midbar holds a patent describing how to inject corrupt audio samples

while concealing them from audio CD players using CDDA metadata [157]. Other proposed

techniques involve writing corrupt audio samples along with incorrect error correcting

codes to simulate scratches on the disc. These errors are unrecoverable, so audio CD

players interpolate over them, but older CD drives designed primarily for data access do not

support interpolation and return faulty samples instead [72].

As passive protection became more broadly adopted, users increasingly reported prob-

lems playing protected discs in devices such as DVD players, video game systems, and newer

car CD players [72]. Often these devices are powered by general purpose CPUs and are

architecturally more similar to PCs than to older ASIC-based CD player hardware; they

sometimes contain the same CD drive hardware found in PCs. As one might expect, there

were fewer behavioral differences between these devices and PCs, making it harder for pas-

sive protection systems to accurately target computers. The growing compatibility problems

that resulted forced CD-DRM designers to turn to a radically different technique [73].

CHAPTER 2. CD-DRM SYSTEMS 24

2.1.2 Second Generation: Active Protection

Around 2003, a second generation of CD-DRM systems emerged. These designs are marked

by a totally different protection mechanism: rather than relying on PCs to behave differently

from CD players, they install and execute software on the computer to block read requests

from other programs. We call this mechanism active protection.

Active protection software must be installed on the computer somehow. This is usually

accomplished with the Windows AutoRun feature, which (when enabled) automatically

executes software from a disc when it is inserted into the computer’s drive. AutoRun lets

the DRM vendor’s software run or install immediately after the user loads the CD.

Once installed, every time a new CD is inserted the CD-DRM software runs a recognition

algorithm to determine whether the disc is associated with the same DRM scheme. If it

is, the active protection software interferes with all read requests to audio portion of the

disc, except for those originating from the vendor’s own music player application. This

proprietary player application, which is shipped on the disc, gives the user limited access to

the music while enforcing an access policy specified by the record label [73].

The first widely adopted second generation system was SunnComm’s MediaMax 3.

MediaMax 3 leaves the standard CD audio portion of the disc unprotected, relying en-

tirely on its active protection software to block PC-based copying. If a disc containing

MediaMax 3 is placed in a PC with AutoRun enabled, Windows runs a file on the disc called

LaunchCD.exe, which installs a new Windows service called SbcpHid. The service interposes

between the operating system kernel and drivers for CD drives. It examines each CD placed

in the machine, and when it recognizes a title protected with MediaMax, interferes with

attempts to read the audio tracks by introducing random skips and pauses [73].

When AutoRun first starts the MediaMax 3 software, it presents an end user license

agreement (EULA). Before displaying the EULA, MediaMax installs the Sbcphid service in a

CHAPTER 2. CD-DRM SYSTEMS 25

temporary fashion, with its startup-type parameter set to “Manual.” This protects the disc

during the current session, but the service will not reactivate after the computer shuts down.

If the user accepts the EULA, MediaMax installs the software permanently by changing its

startup type to “Auto” so that it reloads on each subsequent boot [73]. This design appears

to be a compromise between DRM security requirements and legal concerns about installing

software without consent (and without the additional protections granted to the developers

by the license agreement).

Second generation techniques like MediaMax 3 offer only weak protection, because, as

we will discuss in Section 2.2, users can easily disable their active protection components

or block them from installing in the first place [73]. Pressure to close these holes eventually

spawned third generation CD-DRM techniques.

2.1.3 Third Generation: Aggressive Protection

The third generation of CD-DRM systems were introduced in 2005. Like second generation

schemes they employ software-based protection, but they are distinguished by aggressive

countermeasures against attempts to block or disable this active protection. The most

notable examples of these aggressive protection schemes are SunnComm’s MediaMax 5 and

First4Internet’s Extended Copy Protection (XCP).

Sony deployed XCP on 52 titles (representing more than 4.7 million CDs) [36]. We

examined three of them in detail: Acceptance, Phantoms (2005); Susie Suh, Susie Suh

(2005); and Switchfoot, Nothing is Sound (2005). MediaMax was deployed on 37 Sony

titles (over 20 million CDs) as well as dozens of titles from other labels [36]. We studied

three albums that used MediaMax version 5—Peter Cetera, You Just Gotta Love Christmas

(Viastar, 2004); Babyface, Grown and Sexy (Arista/Sony, 2005); and My Morning Jacket, Z

(ATO/Sony, 2005).

CHAPTER 2. CD-DRM SYSTEMS 26

MediaMax 5

MediaMax 5 employs active protection software similar to that used by MediaMax 3, but it

takes additional steps to head off attempts to block the software from installing.

CD-DRM systems have few defenses against users who permanently disable AutoRun

before using any protected discs. However, AutoRun is enabled by default (in Windows

versions prior to Vista), and many users will not be aware that they own a CD-DRM album

until after they try unsuccessfully to rip or copy it. As a result, the software on the CD

will probably be invoked at least once before the user can discover it and begin blocking

AutoRun. MediaMax 5 uses this window of opportunity to permanently establish itself on

the system.

MediaMax 5’s installation behavior reflects a different balance between security require-

ments and legal concerns. It differs from MediaMax 3 in two ways. First, it permanently

copies almost 12 MB of programs and data onto the user’s system, including the active pro-

tection service, before even displaying the EULA; these files remain installed even if the user

rejects the agreement. Second, under some common circumstances MediaMax 5 installs

its active protection service permanently even if the user always rejects the EULA. This

behavior is triggered when:

• A user who previously inserted a MediaMax 3 album inserts a MediaMax 5 album,

• A user who previously inserted a MediaMax 5 album inserts a MediaMax 3 album, or

• A user who previously inserted a MediaMax 5 album and eventually rebooted inserts

the same album or another MediaMax 5 album.

These steps do not have to take place in a single session (though the first two can). Weeks

or months might elapse between using the first and second disc.

CHAPTER 2. CD-DRM SYSTEMS 27

This behavior might be an unintentional bug in code that was intended to upgrade the

active protection software if an older version was consensually installed, but it could also

be explained by a deliberate attempt to exploit the window of opportunity while AutoRun

is enabled. Even if poor testing is the explanation for activating the software without

consent, it is clear that SunnComm deliberately chose to install the MediaMax 5 software

on the user’s system even if the user did not consent. These decisions are difficult to

reconcile with the ethical and legal requirements on software companies, but they are

easy to reconcile with the vendor’s strategic interests—strengthening security pleases their

rights-holder customers, while placing their software on as many computers as possible

builds a potentially lucrative platform. We discuss this platform building strategy in detail

in Section 2.3.

XCP

XCP combines active and passive protection methods for a multilayered defense. It contains

the most notorious example of aggressive protection behavior, a rootkit-like mechanism

intended to block attempts to remove its active protection software.

XCP’s active protection software consists of a pair of filter drivers called crater.sys and

cor.sys that attach to the CD-ROM and IDE devices [147]. It examines each disc that is

inserted into the computer to determine whether access should be restricted. If the disc is

recognized as copy protected with XCP, the drivers monitor for attempts to read the audio

tracks, as would occur during a playback, rip, or disc copy operation, and replace the audio

returned by the drive with random noise.

When XCP installs its active protection software, it also installs a second program—

essentially a rootkit—that conceals any files, processes, or registry keys with names begin-

ning with a particular prefix, sys [147]. The result is that XCP’s installation directory,

CHAPTER 2. CD-DRM SYSTEMS 28

registry keys, files, and processes become invisible and inaccessible from normal programs

and administration tools.

The rootkit is a kernel-level service named sysaries that is configured to automat-

ically load early in the boot process. When the rootkit starts, it hooks several Windows

system calls by modifying the system service dispatch table (the kernel’s KeServiceDescrip-

torTable structure), which is an array of pointers to the kernel functions that implement

basic system calls. The rootkit changes five of these addresses to point to functions within

the rootkit, so that calls to the patched system calls are handled by the rootkit rather than

the original kernel functions. These functions are NtQueryDirectoryFile, NtCreateFile,

NtQuerySystemInformation, NtEnumerateKey, and NtOpenKey. In each case, code in the

rootkit calls the real kernel function with the same parameters and then filters the results to

remove entries marked with the trigger prefix before returning them to the original caller.

Before the filtering step, the rootkit checks whether the name of the calling process begins

with the magic sys string; if so, the rootkit returns the unadulterated results from the real

kernel function. This allows XCP’s own processes to have an accurate view of the system.

Beyond protecting its active protection software, XCP revives the idea of passive pro-

tection, incorporating a mild form of it for an added layer of content security. Like most

of the first-generation passive protection schemes, XCP’s technique exploits a quirk in the

way different systems handle multisession discs. Some commercial discs use a variant of

the multisession format to combine CD audio and computer accessible files on a single CD.

These discs adhere to the Blue Book or “stamped multisession” format [13]. According to

the Blue Book specification, stamped multisession discs must contain two sessions: a first

session with 1–99 CD audio tracks, and a second session with one data track. The Windows

CD audio API contains special support for Blue Book discs, which presents the CD to player

CHAPTER 2. CD-DRM SYSTEMS 29

and ripper applications as if it were a normal audio CD. Windows treats other multisession

discs as data-only CDs.

XCP discs deviate from the Blue Book format by adding a second data track in the second

session. This causes Windows to treat the disc as a regular multisession CD, so the primary

data track is mounted as a file system, but the audio tracks are invisible to player and ripper

applications that use the Windows CD audio API. This includes Windows Media Player,

iTunes, and most other widely used CD applications. This passive protection provides some

degree of defense even if the user declines to install the active protection service, deactivates

it, or permanently disables AutoRun.

Authorized Players

Increasingly, PCs and portable playback devices that attach to them are users’ primary means

of organizing, transporting, and enjoying their music collections. The second- and third-

generation CD-DRM vendors recognized this trend. Rather than inhibit all use with PCs,

as some earlier schemes do [72], XCP and MediaMax provide their own proprietary media

players, shipped on each protected CD, that allow certain limited uses of the music subject

to restrictions imposed by the music label.

The XCP and MediaMax players launch automatically using AutoRun when a protected

disc is inserted. Both players have similar feature sets. They provide a rudimentary playback

interface that allows users to listen to protected albums, and they allow access to “bonus

content” such as album art, liner notes, song lyrics, and links to artist web sites. The players

bypass the copy protection to access music on the disc by using a special backdoor interface

in the active protection software.

XCP and MediaMax 5 both permit users to burn copies of the entire album a limited

number of times (typically three). These copies are created using a proprietary burning

CHAPTER 2. CD-DRM SYSTEMS 30

application integrated into the player. The copies include the player applications and the

same active (and passive, for XCP) protection as the original album, but they do not allow

any subsequent generations of copying. [74]

Another feature of the player applications allows users to rip the tracks from the CD

to their hard disks, but only in DRM-enabled audio formats. Both schemes support the

Windows Media Audio format by using a Microsoft product, the Windows Media Data

Session Toolkit [113], to deliver DRM licenses that are bound to the PC where the files

were ripped. The licenses allow the music to be transferred to portable devices that support

Windows Media DRM or burned onto CDs, but the files will not be playable if they are

copied to another PC.

2.2 Attacks: Content Copying

All CD-DRM systems share the same principal goal: restricting particular uses of audio

content. We find that all three generations are vulnerable to attacks that allow disc owners

to bypass these restrictions with ease.

Any evaluation of such attacks must consider the record labels’ objectives in deploying

CD-DRM. They would ideally like to prevent the music from being made available on peer-

to-peer (P2P) file sharing networks, but this goal is not feasible [18]. If even one user can rip

and upload an unprotected copy, it will be available to the whole world; in practice, every

commercially valuable song becomes available in this way immediately upon its release, if

not sooner. No DRM system can achieve this level of protection.

The record labels surely recognize this (and sometimes acknowledge it in public), so we

assume their actual goals are more realistic: erecting barriers to disc-to-disc copying and

other local uses of the music.1 Henceforth we will call this the modest protection goal. They

1 Another content industry goal might be to invoke legal protection under 1201(b) of the DMCA, which
essentially prohibits trafficking in products that circumvent copy protection measures. Using even a weak

CHAPTER 2. CD-DRM SYSTEMS 31

most likely believe that some people who are deterred from making their own copies will

buy copies instead. By controlling other local uses, such as transferring songs to an iPod, the

labels may hope to be able to charge for these capabilities à la carte. How well do CD-DRM

systems satisfy these more modest goals? The answer depends on the cost and difficulty of

attacking them. We now evaluate several content copying attacks in these terms.

Every CD-DRM system we have studied suffers from vulnerabilities that facilitate at-

tacks by users who want to copy the music illegally or who want to make uses allowed

by copyright law but blocked by the DRM. The user can defeat passive protection by any

of several means, block active protection software from installing, disable installed active

protection software, capture music from the DRM vendor’s authorized player application,

or uninstall the protection software, among other methods. Many of these circumventions

can be conducted easily by a user of average technical skill, defeating even the industry’s

modest protection goal.

We consider attacks against passive protection measures in Section 2.2.1 and against

active protection measures in Section 2.2.2. Since our class of aggressive CD-DRM schemes

employ active and/or passive security measures, we discuss them in both subsections. Fi-

nally, in Section 2.2.3, we focus on attacks that circumvent protection measures in the

authorized player software included in some CD-DRM systems.

2.2.1 Attacks Against Passive Protection

Passive protection schemes exploit differences between the way computers interpret the CD

format and the way CD players do. These differences most often stem from deficiencies

in computer software and hardware, such as programming errors, design limitations, or

insufficiently robust error handling.

form of DRM could allow the industry to control the market for products that interoperate with their
content. Products made without the industry’s cooperation would have to defeat the DRM, and selling
them would potentially violate 1201(b).

CHAPTER 2. CD-DRM SYSTEMS 32

Initially, some passive protection schemes were quite effective. Soon after the first gen-

eration schemes were released, our testing found that they consistently prevented copying

with the most popular consumer ripping and copying software [72]. Yet over time, this

effectiveness declined as drive and software vendors improved their products. Today, some

users experience no effects from the schemes, while many others are able to bypass them

at no expense by downloading new or updated software. There are at least three ways to

bypass passive protection: replacing CD drives with hardware that does not suffer from the

deficiencies employed by the CD-DRM, using updated or substitute software programs that

work around the protections, and modifying the discs to obscure protection-related data

areas.

Using Robust Hardware

A disc owner who wants to bypass passive protection first needs compatible hardware. Some

CD drives are particularly fragile, with buggy firmware that locks up when presented with

CD-DRM discs that utilize malformed TOC entries [72]. Better drives handle corrupted data

gracefully whether in headers like the TOC or in the audio stream itself. Either they repair

the problems on-the-fly or they provide the calling application with a detailed error report

to allow it to take corrective action. These behaviors are not specific to copy-prevention

systems—rather, they improve performance with all damaged or poorly recorded discs [72].

Though uncommon when the first passive protection schemes were introduced, in-

creased drive robustness has since become the norm, and many drives are now specifically

optimized for audio extraction. Nonetheless, this attack does not entirely frustrate the music

industry’s modest protection goal, since users with older drives may find upgrading their

hardware too inconvenient or expensive.

CHAPTER 2. CD-DRM SYSTEMS 33

Using Different Software

While the only way to fix an incompatible drive might be to replace it, repairing a defi-

cient application can be as easy as downloading a patch; this makes most software-based

attacks on passive protection easy and cheap, defeating the industry’s modest protection

goal. Software makers can be expected to quickly patch any problems exploited by passive

protection schemes if they impact a significant number of users. Changes targetted at de-

feating particular CD-DRM schemes might run afoul of the DMCA, but as with hardware,

the most important improvements for software are general-purpose, such as increased ro-

bustness and better modes of failure. For maximum compatibility, CD reading and copying

programs can be modified to detect and correct data errors and to recover gracefully even

when certain areas of a disc are unreadable.

One effective software countermeasure against passive protection schemes that use

erroneous TOC information is to ignore the TOC entirely, and instead to derive a table of

contents directly from the audio. Analyzing regions of the disc shows whether they contain

audio samples or are transitions between songs, so a simple binary search can reveal where

each track begins and ends. This approach combined with improved error correction would

defeat nearly all first generation schemes [72].

As early as 2002, many ripper programs had already adapted to passive protection.

Feurio 1.64 added special routines for handling defective CDs [65], and EAC 0.9x could

detect CD structure using a variation of the binary search method described above [57];

both already supported extended error correction mechanisms. Version 4.0 of the CloneCD

copying software added a special mode for audio CDs, which greatly improved its success

rate in our tests compared to earlier releases. Coupled with hardware that is compatible

with the discs, these programs were able to bypass the content protection features of the

CDS-200, Key2Audio, and MediaCloQ schemes [72].

CHAPTER 2. CD-DRM SYSTEMS 34

XCP, a third-generation CD-DRM scheme, uses mild passive protection as a secondary

defense. It is vulnerable to a variety of attacks involving the use of substitute software.

Since this protection mechanism is specific to the Windows CD API, one trivial work around

is to use a non-Windows platform, such as Mac OS X or Linux, that interprets the CD format

more robustly. Another approach is to use advanced ripping and copying applications that

avoid the Windows CD API altogether and issue commands directly to the drive. Widely

available programs such as Nero [122] and Exact Audio Copy [179] use this approach and

are able to read XCP audio tracks (assuming the active protection is also defeated) [74].

Modifying Protected Discs

Most of the protection schemes that we studied make use of the multisession CD format

described in Section 2.1.1. Typically, these schemes store the audio tracks in the disc’s

first session, which is formatted like a normal audio CD in order to ensure compatibility

with standalone CD players. They also include a second session with a TOC header that

contains misleading or corrupted descriptions for the audio tracks or other deviations from

CD standards. CD players typically do not understand the multisession format and fall back

to reading only the first session. Multisession-aware CD drives encounter the erroneous data

in the second session, which by various means renders the audio tracks unreadable [72].

This mechanism suffers from a very powerful attack that is easy to carry out, costs

practically nothing, and defeats the modest protection goal for nearly all CD-DRM schemes,

active and passive. A user can physically modify the CD so that the area where the second

session is stored is unreadable. This can be accomplished in a reversible manner using

adhesive tape [72], or more permanently using a felt-tipped marker [176]. Most CD drives,

when unable to read the second session, fall back to reading the first session alone, just as

CD players do. They then have full, unprotected access to the audio.

CHAPTER 2. CD-DRM SYSTEMS 35

The only nontrivial part of this attack is determining where to place the tape or markings.

CDs record data in a continuous spiral beginning near the central hole, so the second session

is stored in a ring towards the outside of the disc [107]. An attacker could proceed by

trial and error, starting at the outside edge and obscuring progressively greater portions

of the surface until the audio becomes readable. A shortcut may also be available: many

discs exhibit a visible band between the sessions. This region, the lead-out and lean-in area,

stores a repeated pattern of bits that causes different reflectance than the high-entropy audio

samples stored elsewhere, and can show the attacker exactly which area to obscure [72].

The CDS-200 and Key2Audio schemes are vulnerable to this attack, as are MediaCloQ

discs when used with certain CD drives [72]. The passive protection mechanism used by

XCP can also be defeated in this way [74], as can all active protection schemes, which

depend on installing software stored in the second session.

2.2.2 Attacks Against Active Protection

Active protection methods install and run software components that interfere with accesses

to the audio portion of the CD. They are vulnerable to attacks that block the software from

installing and ones that later deactivate it. Either kind of attack can be executed easily and

at low cost, effectively defeating the modest protection goal.

Preventing Installation

The installation phase is the Achilles’ heel of every active protection scheme. Users have

practically no incentive to install the active protection software, since its primary purpose is

to reduce their access to the content. Therefore, the schemes rely on the operating system

to launch the software automatically when a protected disc is inserted. This is accomplished

CHAPTER 2. CD-DRM SYSTEMS 36

using the Windows AutoRun feature, which allows a CD to specify a file to execute when it

is inserted.

There are four main ways that users can bypass active protection installation: [73, 74]

1. Most non-Windows operating systems, including Mac OS X and Linux, do not have an

equivalent to the AutoRun feature. CD-DRM systems cannot automatically install on

these systems, so their users will not be affected by the protections.

2. Windows Vista, which was released after the CD-DRM systems considered in this study,

replaces AutoRun with a new feature called AutoPlay. AutoPlay asks for permission

before launching the software on the CD [112], so users who understand what the active

protection software does can decline to install it.

3. Users of earlier Windows versions can disable AutoRun using a variety of methods [111].

Many experts recommend doing so as a security precaution apart from CD-DRM con-

cerns.

4. Windows users who do not wish to disable AutoRun can suspend it temporarily each time

they use a disc containing active protection by holding the shift key for a few seconds

while inserting the CD [111].

Each of these methods will allow the disc to be copied normally, as if it did not contain

active protection, provided that the method is used consistently and the software is never

allowed to install. If it is installed, the user must take additional steps to disable it.

Deactivating Protection Software

Users can remove or deactivate active protection software by using standard system admin-

istration tools that are designed to find, characterize, and control the programs installed on

CHAPTER 2. CD-DRM SYSTEMS 37

a machine. This is difficult to prevent if the user has system administrator privileges, but

some schemes such as XCP attempt to do so by taking aggressive countermeasures.

The MediaMax 3 and MediaMax 5 active protection software is simple to deactivate

since it is a single service named sbcphid. Services can be manipulated using the Windows

command line service control utility sc.exe. To check the status of the service, a user can

open a command prompt and issue the command sc query sbcphid; if the reported state

is RUNNING then the MediaMax service is active. It can be deactivated using the command

sc stop sbcphid. To permanently remove it, a user can issue the command sc delete

sbcphid, then delete %windir%\system32\drivers\sbcphid.sys, the service’s program file.

Once the service is deactivated, MediaMax-protected albums can be accessed as if they were

unprotected [73, 74].

XCP’s active protection is more complicated to deactivate than MediaMax’s, because it

comprises several processes that are more deeply entangled in the system configuration and

that are hidden by the XCP rootkit. However, the necessary steps could be automated to

create a “point-and-click” removal tool that would be easy even for novices. For further

details, see [74].

Ultimately, there is little a CD-DRM vendor can do to stop users from deactivating active

protection software. Vendors’ attempts to frustrate users’ control of their machines are

harmful and will trigger a strong backlash from users. In practice, vendors will probably

have to provide some kind of uninstaller—users will insist on it, and some users will need

it to deal with the bugs and incompatibilities that crop up inevitably in complex software.

Once an uninstaller is released, the vendor can no longer aspire to prevent its users from

removing the DRM software, and, once it is removed, determined users will be able to keep

it off of their machines.

CHAPTER 2. CD-DRM SYSTEMS 38

2.2.3 Attacks Against Authorized Players

The XCP and MediaMax 5 players were designed to enforce usage restrictions specified by

the record label. In practice, they provide minimal security because there are many ways

that users can bypass the limitations.

For instance, because the XCP and MediaMax 5 players create Windows Media files,

they are vulnerable to any attack that can defeat Windows Media DRM (several have been

available over the years). DRM interoperation often allows attacks on one system to defeat

other systems as well, by allowing the attacker to transfer protected content into the system

of her choice in order to extract it.

Another notable class of attacks targets the limited number of burned copies permitted

by the players. Both players are designed to enforce this limit without communicating with

any remote trusted server; thus, the player must track how many allowed copies remain in

state on the local machine.

It is well known that DRM systems like this are vulnerable to rollback attacks [74]. A

rollback attack backs up the state of the machine before performing the limited operation

(in this case, burning the copy). When the operation is complete, the old system state is

restored, and the DRM software is not able to determine that the operation has occurred.

This kind of attack is easy to perform with virtual machine software like VMWare, which

allows the entire state of the system to be saved or restored in a few clicks. XCP and

MediaMax both fail under this attack, which allows unlimited copies to be burned with their

players.

A refined variation of this attack targets only the specific pieces of state that the CD-DRM

system uses to remember the number of copies remaining. The XCP player uses a single file,

%windir%\system32\sysfilesystem\sysparking, to record how many copies remain

for every XCP album that has been used on the system. (This file is hidden and protected

CHAPTER 2. CD-DRM SYSTEMS 39

by the XCP rootkit, which must be disabled before attacking it.) Rolling back this file after a

disc copy operation would restore the original number of copies remaining [74].

A more advanced attack modifies the sysparking file to set the counter to an arbitrary

value [74]. The file consists of a 16 byte header followed by a series of 177 byte structures.

For each XCP disc used on the machine, the file contains a whole-disc structure and an

individual structure for each track. Each disc structure stores the number of permitted

copies remaining for the disc as a 32-bit integer beginning 100 bytes from the start of the

structure.

The file is protected by primitive encryption. Each structure is XORed with a repeat-

ing 256-bit pad. The pad—a single pad is used for all structures—is randomly chosen

when XCP is first installed and stored in the system registry in the key HKLM\SOFTWARE\-

sysreference\ClassID. Note that this key, which is hidden by the rootkit, is intentionally

misnamed “ClassID” to confuse investigators. Instead of a ClassID, it contains the 32 bytes

of pad data.

Hiding the pad does not increase the security of the design. An attacker who knows

only the format of the sysparking file and the current number of copies remaining can

change the counter to an arbitrary value without needing to know the pad. Suppose the

counter indicates that there are x copies remaining and the attacker wants to set it to y

copies remaining. Without decrypting the structure, she can XOR the padded bytes where

the counter is stored with the value x ⊕ y. If the original value was padded with p, the new

value will be (x ⊕ p)⊕ (x ⊕ y) = y ⊕ p, which is y padded with p.

Mitigating Player Vulnerabilities

Given that the DRM vendor must include some kind of limited back door in the mechanisms

so that its authorized player can reliably access the music, we ask how this might be accom-

CHAPTER 2. CD-DRM SYSTEMS 40

plished securely. The active protection software will have an interface that can be called to

get access to the raw data from the disc, or to temporarily deactivate the active protection.

This back door interface must be protected so that an ordinary program cannot use it to

access the music.

There are at least three ways to protect the back door: [74]

1. Secret interface. The back door interface can be kept secret so that ordinary programmers

do not know how to call it. This method is disfavored because its security by obscurity

method violates Kerckhoffs’s Principle [91].

2. Secret key passed as argument. There can be a secret key that must be passed to the back

door interface, and the active protection software can be programmed to ignore requests

that do not contain the correct key. This is superior to the secret interface method because

it relies on the secrecy of the key rather than secrecy of algorithm information. However,

an adversary who can interpose himself into the back door interface can observe the

key, and can act as a man in the middle to modify the calls being made to the active

protection software.

3. Cryptographic protocol. The vendor’s application software can use a cryptographic pro-

tocol to communicate with the active protection software. The sort of protocol used for

secure remote procedure call on a network would be suitable, with the network mes-

sages replaced by calls across the back door interface, so that each back-and-forth pair

of messages in the protocol was replaced by a single call and return. This approach

makes interface snooping and interposition attacks useless (assuming that the protocol

is properly secure). However, it cannot stop an adversary from reverse engineering the

vendor’s application-level software to learn the protocol and extract any keys.

It seems none of these methods is likely to withstand a sophisticated attack. Stronger

security might be possible by adding support to CD drive hardware or by utilizing Trusted

CHAPTER 2. CD-DRM SYSTEMS 41

Computing functionality [159], but these methods would require users to shoulder addi-

tional costs and limit the use of the player software to a smaller number of compatible

PCs.

2.3 Attacks: Protection Cloning

Once installed from a single disc, the active protection systems employed by XCP and

MediaMax restrict access not just to the original disc, but to any disc that is protected by

the same scheme. This requires some mechanism for identifying these discs.

Disc identification is potentially vulnerable to a variety of attacks. For example, by

preventing active protection software from identifying a disc as protected, an attacker can

gain unrestricted access to the content. However, since there are many easier ways to bypass

active protection (see Section 2.2.2), we focus now on a different kind of attack wherein the

attacker attempts to manufacture a new disc, containing different content, that activates a

particular active protection system.

To see why this attack is important, consider the CD-DRM vendor’s business strategy.

The vendor seeks over time to build a protection platform—an installed base of as many

computers as possible running the vendor’s active protection software. This is valuable

because of the difficulty of getting the software installed in the first place and the vulnera-

bility that exists when it is not present. New albums can be more secure if they leverage a

large preexisting installed base, allowing the protection vendor to charge a premium for its

product.

However, if the mark that the vendor’s scheme uses to recognize protected discs can

be forged, then a record label or rival vendor could mark its discs without the vendor’s

permission, thereby taking advantage of the platform without paying. We call this kind

CHAPTER 2. CD-DRM SYSTEMS 42

of free-riding a protection cloning attack [74]. All second- and third-generation CD-DRM

systems are potentially susceptible to it.

Forging only a mark is probably not copyright infringement. Unlike the musical work in

which it is embedded, the mark itself is functional and contains little or no expression, and

therefore seems unlikely to qualify for copyright protection. In principle, the mark recogni-

tion process could be covered by a patent, but we are unaware of any such patent relating

to XCP or MediaMax. Even if the vendor does have a legal remedy, it seems worthwhile to

design the mark to prevent forgery if the cost of doing so is low.

There are advantages and disadvantages for an entity placing unauthorized marks. Copy-

right would prohibit rogue publishers from distributing an installer for the active protection

software, though they might depend on the existing installed base if the software was in-

cluded on many widely sold titles. They would also be prevented from employing the

components of the protection software that allow users to access restricted copies of the mu-

sic; however, they could create their own software to provide this capability if they desired.

On the other hand, free riding publishers would not be restricted to marking their disc for

only one scheme. By identifying their discs as copy protected with a number of schemes (say,

both XCP and MediaMax), they could invoke multiple layers of security and enjoy stronger

protection than is available with any single technique, all without paying. Preventing pro-

tection cloning requires some kind of disc authentication mechanism to control access to

the active protection platform—a meta-copy protection technique, if you will.

The remainder of this section discusses the security requirements for CD-DRM disc

recognition systems, describes the design of the actual recognition mechanism employed by

MediaMax, and shows how this mechanism is vulnerable to protection cloning and other at-

tacks. We conclude by presenting an improved design that better satisfies the requirements.

CHAPTER 2. CD-DRM SYSTEMS 43

2.3.1 Disc-Recognition Requirements

Any disc recognition system detects some mark or other distinctive feature of discs pro-

tected by a particular copy protection scheme. Ideally, such a feature would satisfy these

requirements:

1. Correctness. The feature should identify protected discs without accidentally triggering

the copy protection on unprotected titles.

2. Detectability. It should be possible for the active protection drivers running on client

systems to reliably and quickly detect the feature in protected discs. In practice, this

limits the amount of audio or data that can be read before deciding whether to apply

protection.

3. Indelibility. The feature should be hard to remove without substantially degrading the

quality of the audio; that is, it should be difficult to physically modify the disc to ob-

scure the mark, or to make a copy of the protected disc that does not itself trigger the

protection.

4. Unforgeability. It should be difficult to apply the feature to an unprotected album without

the cooperation of the protection vendor, even if the adversary has access to protected

discs.

The correctness and detectability requirements are necessary for basic functionality, and

indelibility is required to secure the content. Unforgeability is a defense against protection

cloning attacks and may also be important for safeguarding access to “bonus” content that

is made available only when a marked disc is present.

CHAPTER 2. CD-DRM SYSTEMS 44

2.3.2 Reverse-Engineering the MediaMax Watermark

To find out how well the disc recognition mechanisms employed by CD-DRM systems meet

the ideal requirements, we examined the recognition system built into MediaMax 3 and

MediaMax 5 [74]. This system drew our attention because MediaMax’s creators have touted

their advanced disc identification capabilities, including the ability to identify individual

tracks within a compilation as protected [108]. XCP appears to use a less sophisticated

disc recognition system based on a marker stored in the data track of protected discs; these

markers can be trivially duplicated, so we did not study them further.

We determined how MediaMax identifies protected albums by tracing the commands

sent to the CD drive with and without the active protection software running. These exper-

iments took place on a Windows XP VMWare virtual machine running on top of a Fedora

Linux host system, which we modified by patching the kernel IDE-SCSI driver to log all CD

device activity.

With this setup we observed that the MediaMax software executes a disc recognition

procedure immediately upon the insertion of a CD. It reads two sectors of audio at a specific

offset from the beginning of audio tracks—approximately 365 and 366 frames in (a CD

frame stores 1/75 second of sound). On unprotected discs, the software scans through

every track in this way, but on MediaMax-protected albums, it stops after the first three

tracks, apparently having detected an identifying feature. The software decides whether

or not to block read access to the audio solely on the basis of information in this region,

so we inferred that the identifying mechanism takes the form of an inaudible watermark

embedded in this part of the audio stream. Locating the watermark nearly five seconds after

the start of the track rather than at the very beginning is a logical choice, since it reduces

the likelihood that it will occur in a very quiet passage (where it might be more audible)

and makes cropping it out more destructive.

CHAPTER 2. CD-DRM SYSTEMS 45

The Rosetta Stone

CHAPTER 2. CD-DRM SYSTEMS 46

Locating the watermark amid megabytes of audio might have been difficult, but we had

the advantage of a virtual Rosetta Stone. The actual Rosetta Stone—a 1500 lb. granite

slab, unearthed in Rosetta, Egypt, in 1799—is inscribed with the same text written in three

languages: ancient hieroglyphics, demotic (simplified) hieroglyphics, and Greek. Compar-

ing these inscriptions provided the key to deciphering Egyptian hieroglyphic texts. Our

Rosetta Stone was a single album, Velvet Revolver’s Contraband, released in three different

versions: a U.S. release protected with MediaMax, a European release protected with a

passive scheme developed by Macrovision, and a Japanese release with no copy protection.

We decoded the MediaMax watermark by examining the differences between the audio on

these three discs. Binary comparison revealed no differences between the releases from

Europe and Japan; however, the MediaMax-protected U.S. release differed slightly from the

other two in certain parts of the recording. By carefully analyzing these differences—and

repeatedly attempting to create new watermarked discs using the active protection software

as an oracle—we were able to deduce the structure of the watermark.

The MediaMax watermark is embedded in the audio of each track in 30 clusters of

modified audio samples. Each cluster is made up of 288 marked 16-bit audio samples

followed by 104 unaltered samples. Three clusters exactly fit into one 2352-byte CD audio

frame. The watermark is centered at approximately frame 365 of the track; though the

detection routine in the software only reads two frames, the mark extends several frames

on either side of the designated read target to cope with inexpensive CD drives, which often

suffer from imprecise seeking in the audio portion of a disc. The MediaMax software detects

the watermark if at least one mark cluster is present in the region read by the detector.

A sequence of 288 bits that we call the raw watermark is embedded into the 288 marked

audio samples of each cluster. One bit of the raw watermark is embedded into each un-

marked audio sample by setting one of the three least-significant bits to the new bit value

CHAPTER 2. CD-DRM SYSTEMS 47

Original bits Marked bits
0 0 0 1 1 1

. 111 011 101 110 111 111 111

. 110 011 101 110 110 110 111

. 101 011 101 100 101 110 101

. 100 011 100 100 100 110 101

. 011 011 001 010 100 011 011

. 010 010 001 010 100 010 011

. 001 001 001 000 100 010 001

. 000 000 000 000 100 010 001

Table 2.2—MediaMax
Watermark Bit Storage
To store a bit, the Media-
Max watermark encoder
overwrites one of the three
least-significant bits of
an audio sample. It then
alters less-significant bits
(underlined) when this will
reduce the change from the
original value.

and then setting the two other bits according to Table 2.2. This design lessens the audible

distortion caused by setting the watermark value. The change in the other two bits reduces

the magnitude of the difference from the original audio sample, but it also introduces a

highly uneven distribution in the three least significant bits that makes the watermark easier

for a naïve adversary to detect or remove.

The position of the embedded bit in each sample follows a fixed, apparently pseudoran-

dom sequence for every mark cluster. Each of the 288 bits is embedded in the first-, second-,

or third-least-significant bit position of the sample according to the sequence shown in

Table 2.3. [74]

The active protection software reads the raw watermark by reading the first, second,

or third bit from each sample according to the sequence discussed above. It determines

whether the resulting 288-bit sequence is a valid watermark by checking certain properties

of the sequence, as shown in Table 2.4. It requires 64 positions in the sequence to have

a fixed value, either 0 or 1. Another 192 positions are divided into 32 groups of linked

values, each corresponding to a bit ai. Within each group, three positions are equal to ai

and three share the complement value, āi. This allows the scheme to encode a 32-bit value

(vector A), though in the discs we studied A appears to take a different random value in

CHAPTER 2. CD-DRM SYSTEMS 48

each mark cluster of each protected title. The final 32 bits of the raw watermark may have

arbitrary values and encode a second 32-bit value (vector B). MediaMax 5 uses this value

to distinguish between original discs and backup copies burned using its proprietary player

application. [74]

2.3.3 Attacks on the MediaMax Watermark

The MediaMax watermark fails to satisfy the indelibility and unforgeability requirements

of an ideal disc recognition system. Far from being indelible, the mark is surprisingly brit-

tle. Most advanced designs for robust audio watermarks [40, 39] manipulate audio in the

frequency domain and try to resist removal attempts that use lossy compression, multiple

conversions between digital and analog formats, and other common transformations. In

contrast, the MediaMax watermark is applied in the time domain and is rendered unde-

tectable by even minor changes to the file. An adversary without any knowledge of the

watermark’s design could remove it by converting the tracks to a lossy format like MP3 and

then burning them back to a CD. While this would result in some minor loss of fidelity, a

more sophisticated adversary could prevent the mark from being detected with almost no

degradation by flipping the least-significant bit of just one carefully chosen sample from

each of the 30 watermark clusters, thereby preventing the mark from exhibiting the pattern

required by the detector.

The watermark also fails to satisfy the unforgeability requirement. Its only defense

against forgery is its complicated, unpublished design, but as is often the case, this secu-

rity by obscurity has proved tedious rather than impossible to defeat. As it turns out, an

adversary needs only limited knowledge of the watermark—its location within a protected

track and its confinement to the three least-significant bits of each sample—to forge it with

minimal loss of fidelity. Such an attacker could transplant the three least-significant bits

CHAPTER 2. CD-DRM SYSTEMS 49

2, 3, 1, 1, 2, 2, 3, 3, 2, 3, 3, 3, 1, 3, 2, 3, 2, 1, 3, 2, 2, 3, 2, 2, 2, 1, 3, 3, 2, 1, 2, 3,
3, 1, 2, 2, 3, 1, 2, 3, 3, 1, 1, 2, 2, 1, 1, 3, 3, 1, 2, 3, 1, 2, 3, 3, 1, 3, 3, 2, 1, 1, 2, 3,
2, 2, 3, 3, 3, 1, 1, 3, 1, 2, 1, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 1, 3, 1, 3, 2, 1, 1, 2, 1, 1, 1,
2, 3, 2, 1, 1, 2, 3, 2, 1, 3, 2, 2, 2, 3, 1, 2, 1, 3, 3, 3, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 3,
1, 2, 3, 2, 1, 3, 1, 2, 2, 3, 1, 1, 3, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 1, 3, 1, 3,
3, 3, 1, 1, 2, 1, 1, 2, 1, 3, 3, 2, 3, 3, 2, 2, 1, 1, 1, 2, 2, 1, 3, 3, 3, 3, 3, 1, 3, 1, 1, 3,
2, 2, 3, 1, 2, 1, 2, 3, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 1, 3, 3, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 1,
1, 1, 3, 2, 1, 3, 1, 1, 2, 2, 3, 2, 3, 1, 1, 2, 1, 3, 2, 3, 3, 1, 1, 3, 2, 1, 3, 1, 2, 2, 3, 1,
1, 3, 2, 1, 2, 2, 2, 1, 3, 3, 1, 2, 3, 3, 3, 1, 2, 2, 3, 1, 2, 3, 1, 1, 3, 2, 2, 1, 3, 2, 1, 3

Table 2.3—MediaMax Watermark Placement The 288 bits of the MediaMax watermark are
embedded in successive audio samples by overwriting the first-, second-, or third-least-significant bit
according to the sequence shown here.

0, a0 a1, a2, a3, a4, 0, 0, a5, 0, a6, 0, a7, 0, a8, a3,
a9, ā9, a10, 0, a11, a12, 0, a13, a14, a15, ā4, a16, ā4, a17, 0, ā15,
a18, a3, ā12, a19, a20, a21, a22, a19, ā11, a0, a23, a2, a20, 0, ā17, a11,
a5, ā3, a21, 0, a12, 0, ā16, 0, a24, a2, a25, 0, a9, ā8, ā6, a26,
ā18, ā22, ā7, a21, a24, a13, 0, 0, ā7, ā9, ā20, a0, a27, 0, ā21, a6,
a9, 0, 0, ā27, ā8, a4, ā25, 0, a17, a28, ā0, a29, ā3, ā25, 0, ā21,
a30, 0, a23, a18, ā6, ā17, 0, ā1, a14, a1, a17, 0, a24, ā27, ā12, a7,
0, ā0, a13, ā5, ā19, 0, ā14, 0, ā28, ā30, ā4, 0, 0, ā10, ā2, ā23,
0, ā5, a15, a25, ā23, a8, 0, 0, a26, ā6, 0, 1, a22, ā19, ā13, ā22,
a8, 0, 0, ā9, a12, a23, a27, ā24, ā15, ā16, 0, 0, 0, a4, ā27, 0,
0, 1, a6, 0, a15, a11, 0, ā26, a19, a7, ā3, ā30, ā22, a28, ā29, 0,
ā15, a16, ā5, 0, 1, a31, 0, ā2, a31, ā26, ā18, ā1, ā28, a27, 0, a14,
0, a16, ā8, 0, 0, ā26, a18, a30, ā30, ā7, 0, ā10, ā13, ā31, a26, ā18,
ā25, ā13, ā2, ā14, ā1, 0, ā19, 0, ā24, ā21, 0, a31, ā14, 0, ā31, 0,
a20, a28, 0, ā24, a10, ā20, a25, ā29, ā16, a10, ā17, ā20, ā31, ā28, a11, a11,
a22, ā10, ā0, 0, ā29, 0, a30, ā12, a1, a5, 0, 0, ā23, a29, a29, 0,
b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15,
b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31

Table 2.4—MediaMax Watermark Coding and Constraints The MediaMax watermark en-
codes two 32-bit vectors A and B by expanding them into a 288-bit sequence. Some bit positions
have fixed values, while others are always equal to, or always opposite from, bits in the vectors.
These constraints allow the decoder to identify marked audio with a low false-positive rate, while
the redundancy potentially provides robustness against read errors.

CHAPTER 2. CD-DRM SYSTEMS 50

of each sample within the watermarked region of a protected track to the corresponding

sample from an unprotected one. Transplanting these bits would cause distortion more

audible than that caused by embedding the watermark, since the copied bits are likely to

differ by a greater amount from the original sample values; however, the damage to the

audio quality would be limited since the marked region is only 0.4 seconds in duration. A

more sophisticated adversary could apply a watermark to an unprotected track by deducing

the full details of the structure of the watermark, as we did; she could then embed the mark

in an arbitrary audio file just as well a licensed disc producer.

As a proof-of-concept, we created a utility called scmark that can detect, embed, or

remove the MediaMax watermark [74]. The program is invoked on one or more WAVE

audio files as follows:

scmark --detect [-p 〈position〉] [-c 〈count〉] 〈file.wav〉 . . .

--embed [[〈A〉] 〈B〉] [-p 〈position〉] [-c 〈count〉] 〈file.wav〉 . . .

--remove [-p 〈position〉] [-c 〈count〉] 〈file.wav〉 . . .

When scmark is executed with only the --detect switch on a track ripped from a

MediaMax-protected album, it detects the watermark almost instantaneously. The 〈position〉

parameter gives a hint as to the position of the watermark within the file; and the 〈count〉

parameter indicates how many mark clusters to read or write. For embedding, 〈A〉 and 〈B〉

are the two 32-bit vectors encoded in the watermark, as described above. The --remove

switch searches for an existing watermark and removes it by overwriting it with a random

raw watermark that lacks the properties required by the MediaMax detector.

2.3.4 Mitigation: Cloning-Resistant Watermarks

Having shown that the MediaMax watermark fails to provide either indelibility or unforge-

ability, we ask whether it is possible to securely accomplish either or both of these goals.

CHAPTER 2. CD-DRM SYSTEMS 51

As far as indelibility is concerned, prospects are bleak, since watermarking schemes have

a poor history of resisting removal [40, 93, 128]. This is especially true against an adversary

who has oracle access to the watermark detector, as is the case with a previous application of

watermarks to audio copy protection, SDMI [40], as well as with CD-DRM systems. Making

marks that are both indelible and unforgeable is likely much more difficult. There seems

to be tension between marks that are difficult to remove and ones that are hard to forge.

Enforcing both requirements creates two ways to fool the detector: by rendering the mark

invisible and by making it appear forged. If, as in CD-DRM systems, either situation leads

to the same result (no protection), the attacker’s power is magnified.

In contrast, a mark strongly robust to forgery is simple to create based on digital sig-

natures if we are not concerned with its being easy to remove. A simple scheme works as

follows:

1. To sign an audio track, the licensed publisher reads a fixed portion L of the audio data

(say, the first ten seconds), then computes a cryptographic hash of L and signs it using a

public key signature algorithm to derive the signature SL := SignKS
(Hash(L)). SL is then

stored at a second location in the track by setting the LSB of each sample in the region

to the corresponding bit in the signature. A 320-bit DSA signature could be embedded

in this way using approximately the same space as one mark cluster of the MediaMax

watermark.

2. The publisher keeps the signing key KS secret and builds the corresponding verification

key KV into the active protection software. When presented with a CD, the software

checks for a valid signature. First it reads the audio from the signed area of the track,

and it locates and extracts the signature stored in the LSBs in the second location. Next,

it hashes the audio and verifies the signature on the hash using KV . If the signature is

CHAPTER 2. CD-DRM SYSTEMS 52

correct, the watermark is valid and genuine; otherwise, forgery or data corruption is

indicated.

The scheme could be strengthened against natural errors by applying the mark to several

regions of the disc, as in the MediaMax watermark or by the user of error correcting codes.

Forging such a mark would require defeating the digital signature scheme or splicing

both L and SL from a legitimately marked album. Requiring L to be several seconds of audio

makes such splicing less appealing.

Clearly this watermark is highly vulnerable to removal. If even a single bit of the hashed

region is changed, the mark will not be recognized as valid. Yet the watermark MediaMax

actually uses is also vulnerable to corruption of a single bit (in each mark cluster) while

being far less resistant to forgery. Though robustness to removal could be improved by

various methods, we believe that robustness, while desirable in principle, is of limited value

in real CD-DRM applications, and should not be traded off against forgeability. Removal of

the watermark is unlikely to be the weakest link protecting the audio, and while the gains

from creating a more indelible watermark are slight, the loss to protection-cloning attacks

from an easily forgeable mark is potentially substantial.

This basic scheme can be elaborated and improved in various ways. For instance, the

scheme as presented is more vulnerable to false negatives due to data corruption than the

existing MediaMax mark, since, in our example, the signature is derived from audio data

that includes about 250 times the number of samples occupied by the MediaMax mark. We

could rectify this by applying an error correcting code to L and storing the syndrome in

low-order bits of subsequent samples [45].

CHAPTER 2. CD-DRM SYSTEMS 53

2.4 Attacks: Collateral Damage

While content-copying and protection-cloning attacks target the interests of parties that

deployed and designed the CD-DRM systems, unsuspecting end-users are the victims of a

third category of threats. Several CD-DRM systems contain designs flaws and implementa-

tional errors that can be exploited by third parties to attack the security of users’ computers.

In some cases, the computer becomes vulnerable as soon as a protected CD is inserted,

even if the user never consents to the installation of protection software. Though most of

these attacks stem from garden-variety security bugs, they are more alarming from users’

perspectives than typical failures, because CD-DRM software does not serve the interests of

the user, so it cannot be said from the users’ standpoint that the benefits justified the risks.

Instead, these attacks are collateral damage from aggressive protection techniques adopted

for the sole benefit of copyright holders and CD-DRM vendors.

In this section we describe several ways that the XCP and MediaMax 5 systems can

be exploited by third parties to harm the interests of end users, and then we consider a

number of strategies that future CD-DRM implementers might use to reduce the risk of such

threats. Only third-generation, aggressive protection schemes have been shown to cause

such collateral damage.

2.4.1 Exploiting the XCP Rootkit

XCP puts users’ computers at risk by installing a rootkit that allows any software—not just

the XCP active protection system—to hide from system administration tools [74]. Malware

authors can use the XCP rootkit to hide arbitrary files, registry keys, or processes by naming

them with the rootkit’s magic prefix, sys. This is especially harmful in circumstances

where OS privilege separation would prevent malware from installing its own rootkit.

CHAPTER 2. CD-DRM SYSTEMS 54

Only kernel-level processes can patch the Windows system service dispatch table, and

only privileged users—normally, members of the Administrators or Power Users groups—

can install such processes. (XCP itself requires these privileges to install.) Thus, malicious

code running as an unprivileged user cannot normally install a rootkit that intercepts system

calls. However, if the XCP rootkit is installed, it will hide all programs that adopt the sys

prefix so that even privileged users will be unable to see them.

This vulnerability has already been exploited by at least two malicious programs doc-

umented in the wild. A backdoor named Ryknos.B hides behind the XCP rootkit while

allowing remote parties to download and execute files [105]. A Trojan horse called Welo-

moch uses the rootkit to conceal a worm that spreads across file-sharing networks [87].

This rootkit facilitates another privilege escalation attack whereby an unprivileged ap-

plication can crash the system. Russinovich demonstrated this problem using an automated

testing (fuzzing) program he created called NTCRASH2 [148]. This utility makes repeated

system calls with randomly generated invalid parameters. The original Windows kernel

functions handle invalid inputs correctly and the system remains stable, but with the XCP

rootkit installed, certain invalid inputs result in a system crash.

We investigated the specific circumstances when these crashes occur. The rootkit’s

implementation of NtCreateFile can cause a crash if it is passed an invalid pointer as

its ObjectAttributes argument, or if it is passed a valid ObjectAttributes structure that

points to a ObjectName structure with an invalid Buffer pointer. It seem that through sheer

luck these flaws are not exploitable to execute code; however, they do allow an unprivileged

user to bring the system to an unsafe halt.

CHAPTER 2. CD-DRM SYSTEMS 55

Building a Better Rootkit?

Is it possible to build a rootkit like XCP’s without causing similar security problems? One

approach might be to use hard-coded names for the files and other objects to be hidden,

rather than a magic trigger prefix. (Alternatively, these names could be included in a

signed manifest file.) Though better than the original rootkit, this design is still risky: bugs

or permission errors might allow attackers to add files to hidden directories or to inject

code into hidden processes after they execute. Furthermore, such a rootkit would hinder

Windows system administration by complicating a privilege model already shown to be too

complex to manage without difficulty.

2.4.2 Exploiting the MediaMax Player

MediaMax 5 also exposes users’ computers to potential attacks. When a MediaMax CD

is inserted into a computer, Windows AutoRun launches an installer from the disc. Even

before displaying a license agreement, MediaMax copies almost twelve megabytes of files

and data related to the MediaMax player to the hard disk and stores them in a folder named

%programfiles%\Common Files\SunnComm Shared. Burns and Stamos [27] discovered that

the MediaMax installer assigns insecure access permissions to these files and directories,

allowing any user to modify them.

The lax permissions allow a nonprivileged user to replace the MediaMax executable files

with malicious code. If a privileged user later plays a MediaMax CD, the attack code will

execute with that user’s security privileges. The MediaMax player requires Power User or

Administrator privileges to run, so it’s likely that the attacker will be able to gain complete

control of the system.

We discovered a variation of the attack suggested by Burns and Stamos that allows

the attack code to be installed even if the user has never consented to the installation of

CHAPTER 2. CD-DRM SYSTEMS 56

MediaMax, and to be triggered immediately whenever the user inserts a MediaMax CD, even

without running the player. In the original attack, the user needs to accept the MediaMax

license agreement before attack code can be inserted or executed, because the code is placed

in a file called MMX.EXE that is not copied to the system until after the agreement is accepted.

In our attack, the attacker places hostile code in the DllMain procedure of a library called

MediaMax.dll, which MediaMax installs prior to displaying the EULA. The next time a

MediaMax CD is inserted, AutoRun executes the installer, which immediately attempts to

check the version of the installed MediaMax.dll file. In the process, it calls the Windows

LoadLibrary function, which is not safe to use on untrusted code because it invokes the

library’s DllMain procedure.

Normally, problems like these can be fixed by manually correcting the errant permissions.

However, MediaMax aggressively updates the installed player code each time the software

on a protected disc is started by AutoRun. As part of this update, the permissions on the

installation directory are reset to the insecure state, making repairs much more difficult.

To fix these problems permanently without losing the use of protected discs, users need

to install a software patch from SunnComm. Unfortunately, as we discovered, the first

version of this patch was capable of triggering precisely the kind of attack it was supposed

to prevent. In the process of updating MediaMax, the patch checked the version of Media-

Max.dll with the same insecure technique as the MediaMax installer. If this file was already

modified by an attacker, the process of applying the security patch would set off the attack

code. A MediaMax uninstaller that had been issued by SunnComm earlier also suffered

from this vulnerability, and the company corrected both it and the patch as a result of these

findings.

CHAPTER 2. CD-DRM SYSTEMS 57

2.4.3 Privacy Concerns

While not an attack in the same sense as the other collateral damage caused by CD-DRM,

XCP and MediaMax 5 both harm user privacy through spyware-like behavior. While the pre-

cise definition of “spyware” is has been debated, it was clear even when XCP was developed

that the term applies to software that is installed without the user’s informed consent, is

difficult to uninstall, and transmits information about the user’s activities without notice or

consent. Both XCP and MediaMax met this definition.

The systems exceed user consent in at least three ways. First, they load and at least

temporarily run active protection software before the user has agreed to anything. Second,

the license agreements ask the user to consent only to “a small proprietary software program

... intended to protect the audio files embodied on the CD,” a description that can hardly

be said to cover the full active protection systems, including behavior tracking (described

below) and, in XCP’s case, rootkit-style interference with system administration. Third,

although the EULA disclosures refer to the audio files on the current CD, the installed

software perpetually interferes with the use of all titles protected with the same CD-DRM

scheme without asking for further consent [63].

Moving on to the second criterion, we find that both XCP and MediaMax were clearly

designed to resist detection and removal. Both ship without any kind of uninstaller, and the

vendors at first made it exceedingly difficult for users to obtain one. XCP users, for example,

had to (1) fill out a Web form containing personal information, then wait days for a reply

email; (2) fill out another Web form and accept the installation of more software in the form

of a proprietary ActiveX control; (3) after waiting a few more days, at last receive a link to

a web page that would perform the removal. Even then, this link only worked for a limited

time and could only be used on the machine from which the original request was made.

CHAPTER 2. CD-DRM SYSTEMS 58

Beyond limiting access to the official uninstallers, both systems take steps to undermine

the user’s administrative control of the system: XCP uses the rootkit method described

earlier, and MediaMax makes its active protection service invisible in the normal Control

Panel GUI.

Finally, the third spyware criterion: both XCP and MediaMax surreptitiously “phone

home” to their creators with information about users’ listening habits. Both systems were

designed to contact a vendor or record label web site whenever the user inserted a pro-

tected disc. XCP discs contact a server operated by Sony, connected.sonymusic.com [146],

while MediaMax discs contact a server operated by SunnComm, license.sunncomm2.com.

Ostensibly the purpose of these connections was to download images or advertisements to

display while the music played, but it also created entries in the Web server logs, noting

the users’ IP addresses, which discs they had played, and the times, dates, and durations of

these uses. Despite this breach in privacy, the vendors’ web sites claimed that they did not

gather information about users’ activities.

This combination of undisclosed data collection, installation without informed consent,

and barriers to removal made XCP and MediaMax fit the consensus definition of spyware.

2.4.4 Exploiting the XCP and MediaMax Uninstallers

Users were outraged by the revelation of the rootkit and privacy problems. To appease them,

the makers of XCP and MediaMax reluctantly made their uninstallers easier to obtain. Rather

than distribute standalone removal utilities, both vendors chose to make these uninstallers

available as online applications built with ActiveX controls. Though the MediaMax and XCP

uninstallers were apparently developed independently of each other, we discovered that

both of them cause serious, persistent vulnerabilities on any computer where they are used.

CHAPTER 2. CD-DRM SYSTEMS 59

MediaMax Uninstaller Vulnerability

The MediaMax web-based uninstaller uses a proprietary ActiveX control, AxWebRemove.ocx,

created and signed by SunnComm. When users visit the MediaMax uninstaller site, the

browser prompts them to install the control. If they assent, code on the web page uses

the control to uninstall MediaMax. It calls a method called Remove, which takes two pa-

rameters: key, and validate_url. When Remove is called, it issues an HTTP GET request

to validate_url to validate key. If key is valid, the server responds with the message

true,<uninstall_url>, where uninstall_url is the web address of a DLL file containing

MediaMax removal code. The control retrieves this DLL from the Internet, saves it to a

temporary location, and calls a function in it named ECF7 to carry out the uninstallation.

If the function indicates success, the Remove routine issues a second HTTP GET request

to validate_url to report that uninstallation was completed and that the single-use key

should be retired.

This design is obviously insecure. The control accepts an arbitrary validate_url param-

eter and blindly trusts the DLL supplied by the server. It neither verifies the authenticity of

the server nor the code.

This flaw is amplified into a critical vulnerability by another careless implementational

choice. The ActiveX control is not itself removed during the uninstallation process, so its

methods can be invoked later by any web page without causing further browser security

prompts. An attacker can create a web page that invokes the Remove method and provides

a validate_url pointing to a site she controls. This server can accept whatever key is

presented and return an uninstall_url pointing to a DLL crafted by the attacker. If a user

visits the page on a PC that once ran the MediaMax uninstaller, the latent ActiveX control

will download the DLL and execute whatever code the attacker has written.

CHAPTER 2. CD-DRM SYSTEMS 60

XCP Uninstaller Vulnerability

We also found that the XCP web-based uninstaller contains the same design flaw and is only

slightly more difficult to exploit. It utilizes a proprietary ActiveX control named CodeSup-

port.ocx that is installed in the step two of the three-step XCP removal process documented

above. In this step, the control sends a random nonce to the XCP server and stores the same

value in the local system registry. Eventually, the user receives a personalized link to a web

page that uses the ActiveX control to remove XCP. The page uses the control to check that

the system’s registry contains the same nonce as in the original request, tethering the unin-

staller to the machine from which the request was made. As a consequence of this design,

the vulnerable control may be present on a user’s system even if she never completed the

final step to remove XCP.

Matti Nikki [123] was the first to notice that the XCP ActiveX control contains methods

such as InstallUpdate(url), Uninstall(url), and RebootMachine() and suspected that

these might be vulnerable. He also demonstrated that the control remained installed after

the XCP removal process completed, and that its methods (including one that rebooted the

computer) were scriptable from any web page without further browser security warnings.

We reverse engineered the InstallUpdate and Uninstall methods and discovered se-

rious flaws. Each takes as an argument a URL pointing to a specially formatted archive

that contains updater or uninstaller code and data files. When these methods are invoked,

the archive is retrieved from the provided URL and stored in a temporary location. The

InstallUpdate method then extracts a file named InstallLite.dll from the archive and

calls a function in it named InstallXCP.

Like the MediaMax ActiveX control, the XCP control does not validate the URL or the

downloaded archive. The only obstacle to attack is the proprietary format of the archive file.

We reverse engineered the format by disassembling the control. An XCP archive consists of

CHAPTER 2. CD-DRM SYSTEMS 61

several blocks of gzip-compressed data containing separate files, each preceded by a short

header. At the end of the archive, a catalog structure lists metadata for each block, including

a 32-bit CRC that the control checks before extracting the files.

With knowledge of this file format, we constructed an archive containing benign proof-of-

concept exploit code. The most difficult detail was the CRC, which seems to use a proprietary

algorithm. To avoid the tedious task of reverse engineering the CRC algorithm, we inserted

a break point in the verification code and ran the control on an archive containing files we

prepared. The verification procedure compares the CRC value stored in the archive to a

value it computes on the data; we read out this latter value and applied it to our archive.

Thus modified, the archive passed the CRC check and the ActiveX control executed our

code. This illustrated why digital signatures, not secret one-way functions, should be used

to validate code from untrusted sources.

Following the disclosure of these problems, SunnComm and First4Internet eventually

released standalone uninstaller programs that did not leave users’ systems vulnerable. These

new uninstallers also removed the exploitable ActiveX controls if they were present.

2.4.5 Mitigating Collateral Damage

Compared to other media on which software is distributed, audio CDs have a very long

expected life. Many albums will still be inserted into computers and other players decades

after they are first purchased. If a particular version of DRM software is shipped on a new

CD, that software version may well try to install and run twenty or thirty years after it was

developed.

Most software life cycles are so short that we have little experience from which to gauge

the risks of such ancient code, but, inevitably, it will carry the cumulative burden of security

flaws discovered over many years. It seems implausible that vendors will continue providing

CHAPTER 2. CD-DRM SYSTEMS 62

security over this long period, and the risks are further compounded by the likelihood that

some vendors will go out of business, possibly resulting in the loss of their source code.

CD-DRM developers must think carefully about their designs if they are to avoid com-

patibility problems that might damage future systems and to ensure that the vulnerabilities

that will inevitably be discovered over this long period can be corrected. In planning for this

extended term, conscientious CD-DRM designers will prioritize safety so as not to cause col-

lateral damage, and will also strive for lasting efficacy so that the anticopying goals continue

to be met.

Deactivating Old Software

Safety is arguably much more important than effectiveness, and it is easy to achieve if we are

willing to let the DRM protections expire in the future. One approach is to design the DRM

software to be inert and harmless on future systems. Both XCP and MediaMax effectively

have this property, because they depend on Windows AutoRun, which is being phased out

with the adoption of Vista and future Windows versions. On these newer systems, XCP

and MediaMax will not start unless the user take affirmitive steps to run them, rendering

them relatively inert. Since it is difficult to anticipate what features will be available on

future systems, a surer approach would be to take active measures to ensure inertness. One

technique is to build in a sunset date after which the software will make itself inert. Another

is to prepare a kill switch that the vendor can use to initiate deactivation.

Whether by design or by obsolescence, a sunset would greatly reduce long term risks. It

would have relatively little effect on record label revenue for most discs. From the buyer’s

perspective, most of the value of the disc is short term, after which the music loses its

novelty. Over the long term, the DRM cannot boost revenue because the customer no longer

care about making whatever uses the DRM attempts to stop. Thus, we expect nearly all

CHAPTER 2. CD-DRM SYSTEMS 63

revenue from a particular disc to have been extracted from the customer in a short time

after purchase. One way the music industry can extract additional revenue is to develop

new markets by introducing the music to other listeners. If substantial new markets appear

in the future, the producers could press more copies of the album, and these could have

updated DRM software with a later sunset.

Keeping DRM Up-to-Date

Both safety and efficacy can be supported by issuing software updates that correct flaws and

add countermeasures against new attacks. Updates can be subsequent pressings of the CDs,

but existing CDs, whether in the supply chain or a purchaser’s music collection, cannot be

modified retroactively. Updates for older discs can be delivered by download, like for most

PC software, or by replacing the CDs., as Sony-BMG did in a massive recall to rectify the

security problems in its XCP and MediaMax albums.

Users generally do cooperate with updates that help them by improving safety or making

the software more useful, but updates to retain the efficacy of the software’s usage controls

are a different matter. Usage controls provide no value to individual users but only reduce

what the user can do with music from a disc. Often some of the uses they restrict are

allowed under copyright law, so even law-abiding users have cause to reject updates that

prolong DRM efficacy.

Users have many ways to stop updates from downloading or installing, such as write-

protecting the installed software so that it cannot be updated, or blocking connections to the

vendor’s download servers using a personal firewall. System security tools of many kinds

might be useful for this purpose, since they are often designed to stop unwanted network

connections, downloads, and code execution. If customers widely regard CD-DRM software

as malware, makers of system security tools will have an incentive to provide tools capable

CHAPTER 2. CD-DRM SYSTEMS 64

of restraining it. These factors limit software updates’ ability to mitigate content-copying

attacks.

A DRM vendor who wants to deliver updates over the objection of users has no good

options. They could simply offer updates and hope some users will not bother to block them.

For the vendor and record label, this might be better than nothing. Alternatively, the vendor

could take more aggressive measures to force users to accept updates, such as blocking

all access to the audio content until the latest updates are installed. This is essentially

what BluRay’s AACS and similar “renewable” DRM systems do. They periodically change

the encryption keys used by software players so that outdated versions cannot access any

content released later.

This is a dangerous strategy. Locking down the content will not avoid collateral damage

due to vulnerabilities in the installed software, and with users refusing to install patches,

these dangers can only increase as new attacks come to light. Thus, attempts to boost long

term CD-DRM efficacy through software, besides being likely to fail, may actually harm

safety by leading users to block all updates to the products.

2.5 Causes of CD-DRM Security Failures

This chapter has been a case study of the design, implementation, and deployment of

CD-DRM technologies. We presented detailed technical analysis of the security failures of

three generations of systems developed by a number of vendors. This kind of investigation,

with its focus on discovering vulnerabilities, has significant intrinsic value. Our work has

benefited music labels and investors by exposing defective content security mechanisms and

encouraging vendors to be honest about their capabilities and limitations. It has reduced the

collateral harm from CD-DRM by revealing security holes that were subsequently corrected

through software patches and product recalls. We have established that DRM systems can

CHAPTER 2. CD-DRM SYSTEMS 65

pose a threat to user security, but users will be safer in the future because systems like the

ones we studied are certain to be thoroughly scrutinized.

Yet there is something lacking. The chapter has so far said little about how to prevent

systems from failing in the first place. Many different kinds of stakeholders are eager to

know what they can do to head off future problems—vendors and record labels, users and

system administrators, lawyers and policymakers, to name a few—and if we were to stop

our analysis here we would have little advice for any of them.

Thus, in this section we turn our attention away from our initial question—What is

wrong with the system?—and ask instead, Why did these failures occur? Our investigation

is guided by the analytic security research methodology that we introduced in Chapter 1.

We compare vulnerabilities in systems from different time periods and different vendors,

searching for patterns of failure that suggest an informative cause—technological trends,

behavioral patterns, organizational structures, theoretical limitations, or other factors that

made the observed security failures more likely to occur or increased the risks they posed.

Our approach to the development of causes from observed patterns of failure remains largely

free-form, like the development of new attacks, but we require that they are supported by

evidence from our attack investigation. We are most interested in those that have broad

implications and those that suggest specific, practicable remedies.

Several themes emerge. The content security vulnerabilities we observed appear to be

related to the inherent difficulty of retrofitting copy protection to an existing open format

such as the audio CD. Problems resulting in collateral damage to users’ security seem to

result from risks that the vendors took because of a market structure that insulated them

from liability. Finally, many of these security side effects were exacerbated because of

tensions between DRM’s goal of protecting content and consumers’ desire to secure their

PCs.

CHAPTER 2. CD-DRM SYSTEMS 66

From these themes we draw lessons for future CD-DRM systems and for broader content

security problems. Awareness of these causes, and their consequences for systems like those

we have studied, should help future designers of DRM and related security products avoid

making the same mistakes.

2.5.1 The CD-DRM Problem

An unmistakable pattern emerges across all three generations of systems: despite increasing

sophistication, every CD-DRM product we examined was vulnerable to content copying

attacks that undermined its central security goal. A pattern where every implementation

in a class of systems fails to achieve its primary security goal implicates the nature of the

problem that the systems attempt to solve, indicating that it may be fundamentally difficult,

or even impossible. This suggests that CD-DRM’s goal of selective incompatibility with PC

software is a factor in its failure.

Analysis CD-DRM is premised on the need for protected discs to be usable in standalone

CD players—otherwise, producers would encrypt the music and rely on more traditional

DRM techniques. Thus, all CD-DRM exploits differences between PCs and CD players in

order to block access to the plaintext audio only on the former.

However, as we discussed in Section 2.1, the line between PCs and CD players has in-

creasingly blurred, with CD players becoming more PC-like and PC hardware and software

outgrowing their initially brittle implementations. The past decade has seen broad adoption

of entire new categories of consumer electronics with support for CD playback—DVD and

BluRay players, advanced video game systems, personal video recorders (PVRs)—and this

has shifted what users think of as “CD players.” These devices often are built from commod-

ity CPUs and general purpose software, which bear little resemblance to the discrete logic

and ASICs inside 1980s-vintage CD players, and they frequently share CD drive components

CHAPTER 2. CD-DRM SYSTEMS 67

with commodity PCs. Commoditization has driven down costs to the point that even “CD

players” increasingly utilize such an architecture. At least on the hardware level, CD-DRM

designers are running out of reliable distinctions [73].

Software is a different matter. PCs exhibit software monoculture [67], with a small

number of operating systems and CD copying applications dominating the market; CD-

DRM can target behavioral quirks in these programs. Yet these behavioral differences are

not set in stone. Computers, a far more flexible technology than traditional CD players,

are adapting to make differences in their behavior harder to exploit. While CD players

are increasingly acting like PCs, PCs are learning to act like more drives, through software

updates that correct some of the telltale quirks.

The second- and third-generation CD-DRM schemes further distinguish PCs by their

ability to execute certain kinds of software, such as Windows applications. Though this is

fundamental feature of computers, it is a poor trigger for a content protection feature; this

is because of another capability that is not only fundamental to PCs but also essential to the

security, the ability to control which software is allowed to run. Thus, users can make their

computers appear more like CD players simply by declining to run CD-DRM software. There

is evidence that this, too, is becoming easier, thanks to improvements in desktop security.

The sum of these trends effects CD-DRM systems in two ways. First, they gradually

erode the effectiveness of each particular CD-DRM mechanism. We have discussed how

today’s CD drives are more likely to be compatible with first generation discs, while today’s

car CD players are more likely to be incompatible with them; the active protection systems

we studied provide little protection on systems running Windows Vista, since Microsoft

removed the AutoRun feature due to security concerns. Second, they leave the designers of

new CD-DRM systems with fewer distinguishing behaviors on which to base their schemes.

CHAPTER 2. CD-DRM SYSTEMS 68

This effect already forced designers to switch from passive to active protection methods. It

is possible that someday they will have no options left.

Cause 2.1: PCs and CD Players are Converging
As a result, CD-DRM’s principal goal—to produce audio CDs that are

unusable with most PC ripping and copying applications while remain-

ing compatible with almost all standalone CD players—is difficult to

achieve with lasting effectiveness.

Is effective CD-DRM ultimately impossible? By assumption it must be possible to read

the plaintext audio from the disc, so, of course, one could extract it with a microscope,

or tap the circuits of an old CD player with a logic analyzer, but these are well beyond

the capabilities of a typical user. However, we can conceive a more practical attack—one

feasible with commodity hardware—that nevertheless would allow PCs to simulate a CD

player from 1985 with almost arbitrary fidelity.

Our approach is based on the PC’s ability, as the more general purpose device, to emulate

the operation of simpler devices such as CD players. This task is made more difficult by the

fact that it involves hardware devices, but on a basic level PCs have hardware with equal or

greater capabilities than CD players, and hence differences in behavior that are driven by

software can be eliminated.

One way to do this involves patching the firmware of popular CD drives to add support

for a new read method. Patched drives would be able to download special “read control mi-

croprograms” from the host PC —software executed on a simple cross-drive virtual machine

with the ability to control the drive’s behavior at the lowest level. When instructed by the

host, the drive invokes the microprogram, which would typically cause the drive’s motor to

begin scanning the spiral grove of the disc from beginning to end, at the same speed as a

traditional CD player. The software could control the position of the drive’s optical pickup

CHAPTER 2. CD-DRM SYSTEMS 69

and would receive its raw output. The software would be responsible for decoding this data

stream—making out the pattern pits and lands, decoding them into bytes and samples, and

breaking them up into frames and tracks. In doing all this, the software could emulate a

CD player with arbitrary precision. A drive with a 150 MHz processor will have about 100

clock cycles per bit of audio, enough time to perform moderately sophisticated decoding

even with the overhead of the VM.

If the emulation failed to accurately simulate the behavior of a real CD player in some

way, CD-DRM system might be able to utilize this defect. However, the deficiency could be

corrected by installing an updated microprogram. These updates could be developed and

distributed inexpensively thanks to the virtual machine.

With no discernable differences between the drive’s emulation and various standalone

CD players, any CD-DRM disc would need to be readable by the drive or else unreadable

on a vast number of CD players. Though this attack consists entirely of software, it would

give a large fraction of users the perpetual ability to defeat any CD-DRM copy protection

that retained wide compatibility with CD players. This shows that CD-DRM’s security goal

cannot, in the limit, be achieved.

Of course, this analysis presumes that users have the ability to patch their drive firmware

and to run other necessary software. DRM proponents might try to head off this attack and

counteract the technological trends that are weakening CD-DRM. They might try to forge

agreements with hardware and software markers, persuade government to adopt technology

mandates, or both. The likely aim of these efforts would be to embed a form of CD-DRM

into hardware or software—having them recognize protected CDs and deny access—while

blocking efforts to read discs by lower-level channels. Hardware markers seem unlikely to

comply voluntarily, since such behavior would be a major competitive disadvantage and

several drive makers have already shipped products that tout their immunity to certain

CHAPTER 2. CD-DRM SYSTEMS 70

CD-DRM. Software makers would have similar disincentives, and such blocks could in any

case be bypassed by using open source software. The most significant of these possibilities—

though it seems quite remove—is government intervention resembling a “broadcast flag”

for audio CDs [44]. Without reciting the arguments against such a harmful policy, we can

conclude that in the long run, CD-DRM’s goals will be practically impossible to realize as

long as computer users retain the freedom to control the operation of their computers.

Cause 2.2: CD-DRM Attempts the Impossible
CD-DRM’s principal goal—to produce audio CDs that are unusable with

most PC ripping and copying applications while remaining compatible

with almost all standalone CD players will remain defeatable so long as

users retain control over their hardware and software.

Implications

• Future CD-DRM schemes will also fail. The protections provided by a given CD-DRM

system are at best temporary. Passive systems depend on incomplete or buggy implemen-

tations to differentiate between PCs and CD players, and active systems must rely for

their installation on insecure features like AutoRun or on exploitable security flaws; thus

in the long term, all schemes will diminish in effectiveness as hardware and software

mature. In the mean time, future CD-DRM schemes may take increasingly aggressive

and risky steps to prolong their effectiveness.

• CD players too are evolving, and the technical distinctions between standalone CD play-

ers and PCs are becoming less pronounced; thus, future CD-DRM systems are unlikely

to fare better than past ones at protecting content unless they accept the costs of an even

higher rate of incompatibility with non-PC players.

CHAPTER 2. CD-DRM SYSTEMS 71

• Since CD-DRM systems do not benefit the user, their operation creates demand for

hardware and software changes that render them less effective. If labels continue to

use CD-DRM over an extended period, countermeasures like our CD player emulation

strategy will develop; thus even the more limited goal of a temporary speed bump may

someday be unattainable.

2.5.2 Incentives for Underinvestment in Security

Our analysis of XCP and of the two versions of MediaMax reveals a pattern in the flaws that

resulted in collateral damage to users: time and again, they resulted from blatant or elemen-

tary mistakes—basic access permission errors, executing untrusted code from the Internet,

the obviously dangerous rootkit—what might be called “rookie” security errors. A profu-

sion of simple mistakes consistent across products or versions implicates the developers’

incentives, indicating that they had reasons to underinvest in security and testing.

Analysis The key to understanding CD-DRM producer incentives is the relationship be-

tween the companies that developed the DRM systems (the vendors) and the company

that deployed them (the record label). Both XCP and MediaMax were designed and engi-

neered by independent companies—First4Internet and SunnComm, respectively—whose

primary business activity was selling the copy protection. The vendors were small compa-

nies: SunnComm was a “penny stock,” with a market value in the range of $10 million at

the time of the rootkit incident, and First4Internet, while privately traded, apparently had

only a handful of employees at its peak. The vendors marketed their systems to large music

conglomerates including Sony, which had a market capitalization exceeding $35 billion in

December 2005.

The CD DRM vendors’ primary goal was to create value for the record labels in order

to maximize the price the labels would pay for the DRM technologies. In this respect, the

CHAPTER 2. CD-DRM SYSTEMS 72

vendors’ and labels’ incentives were aligned. However, the vendors’ incentives diverged

from the labels’ in at least two ways.

First, the vendors had a higher risk tolerance than most labels, because record labels

tend to be large, established businesses with valuable brand names, while the vendors

were start-up companies with few assets and not much brand equity. Start-ups face many

risks already and are therefore less averse to taking on one more risk. They were also

relatively isolated from liability if their products cause damage. With few assets, in the

worst case they could simply cease operations and declare bankruptcy–and, in fact, both

vendors have. Record labels, on the other hand, have much more capital and brand equity

to lose if something goes horribly wrong. Therefore, the vendors saw large upside from

making their products more attractive to labels by taking aggressive but dangerous copy

protection measures, but they faced limited downside from damage to users if the risks if

they took turned out unfavorably. Accordingly, we would expect the vendors to be much

more willing to accept security risks than most labels.

The second incentive difference is that the vendors could monetize the installed platform

in ways the record label could not. For example, once the vendors’ DRM software was

installed on a user’s system, the software could control use of other labels’ CDs, so a larger

installed base made the vendor’s technology more attractive to other labels. This extra

incentive to build the installed base made the vendors more aggressive about pushing the

software onto users’ computers than most labels would be.

We found evidence of these incentive differences in both XCP and MediaMax. Media-

Max’s aggressive installation served their platform building strategy and promoted the con-

tent security objectives that were the primary selling point of their product. For similar

reasons, both XCP and MediaMax employed uninstallers with atypically complex designs

in order to inhibit removal of the copy protection software. In each of these cases, the

CHAPTER 2. CD-DRM SYSTEMS 73

programmers made elementary security mistakes that caused vulnerabilities on computers

where the discs were used.

In short, incentive differences made the vendors more likely than the record labels to

(a) underinvest in security design and testing and accept security risks, and (b) push DRM

software onto more users’ computers. If a label had perfect knowledge about the vendors’

technology, this incentive gap would not be an issue—the label would have simply insisted

that the vendor protect the label’s interests. But if, as seems to have been the case, the

labels had imperfect knowledge of the technology, then the vendors would be expected

to sometimes act against the labels’ interests. (For a discussion of differing incentives in

another content protection context, see [66].)

Cause 2.3: Vendors were Insulated from Insecurity Risks
The CD-DRM vendors had limited exposure to the costs of collateral

damage caused by their software; this gave them incentives to underin-

vest in security and testing compared to typical application developers,

instead devoting resources to directly profitable aim, such as strength-

ening content security and building their protection platforms.

The labels were, in practice, poorly equipped to evaluate software security, since their

primary expertise was in the unrelated business of music production and distribution. We

find evidence for this the now-infamous public comments about the impact of the rootkit

by Thomas Hesse, president of Sony’s global digital business division: “Most people, I think,

don’t even know what a rootkit is, so why should they care about it?” [167] Assuming

that this reflects his genuine views about the seriousness of the situation, it illustrates that

Sony’s management were both ignorant of both the security risks and of their own inability

to competently assess them.

CHAPTER 2. CD-DRM SYSTEMS 74

Implications

• Incentives have a powerful effect on security. The CD-DRM vendors were the party best

equipped to reduce security risks by choosing safer designs, employing more careful

engineering practices, and conducting security reviews and testing. As Varian and others

have argued [171], if the party who is in the best position to prevent problems does not

have adequate incentives to do so, security suffers.

• Customers of DRM products (i.e., labels and end users) should be particularly cautious

about security. They should seek external review of the products’ security and the ven-

dors’ security practices before making purchasing decisions. Where vendors’ and labels’

incentives differ, DRM systems may not serve the labels interests; such costs may not

have been considered in the labels’ strategic calculus.

• Security consumers should be wary of other scenarios where producer incentives are

similarly misaligned or where the producer bears similarly little risk in case of catastro-

phe, such as other cases where software is built by small startups. This suggests negative

security implications from software outsourcing more generally.2

• One way to reduce risks of collateral damage in other DRM systems would be to force

vendors to share in the risks. Merely holding the vendors financially responsible after

the fact would not be sufficient, since, as we have noted, small start-ups tend to have few

assets. A better approach might be for the vendors’ customers to require them to carry

insurance in case of a security catastrophe. This would have two salutary effects. First,

it would help ensure that the victims of such damage would be made whole. Second,

it would encourage better security practices on the part of the vendors, since insurance

underwriters would presumably require an efficient investment in reducing security risk.

2 Other studies have discussed related security risks due to software outsourcing, such as the threat of
sabotage [109].

CHAPTER 2. CD-DRM SYSTEMS 75

• These problems could have been lessened or avoided through greater transparency about

the design and operation of the CD-DRM systems. The labels lacked the technical exper-

tise needed to evaluate the systems’ security risks. They could have cheaply harnessed

the widespread expertise of the security community by publishing details about how the

systems worked before deploying them. Feedback from researchers and other experts

would have highlighted many of the potential risks. However, as we discuss below, there

may be tradeoffs between the transparency required for PC security and the secrecy

needed to accomplish DRM objectives.

2.5.3 Tension between DRM and PC Security

Some collateral damage from the third-generation CD-DRM schemes reflects deliberate

choices by the vendors to adopt obviously risky or harmful designs. There can be little

question that XCP’s rootkit functionality, the installation without consent of MediaMax

software, and the lack of uninstallers were put in place deliberately by the vendors. These

problems are symptomatic of a tension between CD-DRM and PC security.

This tension takes two forms. First, there is an inherent conflict between the methods

that DRM producers need to employ in order to protect content using software and the

administrative practices that PC owners need to use in order to maintain security. Second,

in the name of protecting content, DRM producers employ techniques and mechanisms that

cause greater damage when they contain exploitable bugs than do those employed in most

typical application software.

Analysis The use of rootkits and other spyware-like tactics harms users by undermining

their ability to manage their computers. If users lose effective control over which programs

run on their computers, they can no longer correct vulnerabilities by patching programs,

CHAPTER 2. CD-DRM SYSTEMS 76

reduce their attack surface by removing unneeded software, or make informed decisions

about the security risks they face.

Concealed programs may contain security flaws, or they may contain faults that hamper

the operation of the computer. The XCP rootkit itself did both. As Russinovich and others

have pointed out, these problems illustrate the danger of installing software in secret. Users

experiencing system instability due to bugs in the rootkit would have great difficulty diag-

nosing the problem, since they likely would be unaware of the rootkit’s presence. Managing

a system is difficult enough without spyware tactics making it even harder.

Though it is no surprise that spyware tactics would be attractive to DRM designers, it

is a bit surprising that mass-market DRM vendors chose to use those tactics despite their

impact on users. If only one vendor had chosen to use such tactics, we could write it off as

an aberration, but we found evidence of it in both XCP and MediaMax 5. Why would they

do this? One possible explanation is that effectively implementing many kinds of DRM in

software requires employing techniques that limit the user’s ability to monitor and control

the operation of the PC.

The reason is simple: most DRM requires keeping secrets from the user. These might

include decryption keys for protected content, the plaintext content itself, or the mechanisms

for storing state associated with usage limitations. If users were able to monitor and fully

understand how the DRM software operated, they would be able to bypass its restrictions.

This is not the case for every DRM design. Systems that involve a secure hardware

component such as a TPM [166] could remain fully transparent except for some secret

stored in the hardware. Other designs might perform decryption in a secure output device,

allowing the software running on the main PC to be entirely open. However, DRM running

entirely in PC software has nowhere else to store secrets, so it needs to obscure parts of the

PC’s operation from the user.

CHAPTER 2. CD-DRM SYSTEMS 77

Though most examples of this are less blatant than the rootkit and surreptitious instal-

lation we observed in the context of CD-DRM, many other software DRM systems limit

users’ ability to understand the programs they install. SecuROM, a DRM system for PC

video games, detects administrative tools like Process Monitor as well as debuggers and

virtual machine monitors and refuses to allow access to protected content while they are

running [152]. Another PC game DRM system called SafeDisc was quietly bundled with

most versions of Windows XP systems, even those destined for business customers [114].

Some versions of iTunes for Mac OS X disable the OS’s system call tracing mechanism [101].

Many DRM systems use software obfuscation to conceal elements of their operation. These

examples harm users’ security by making it more difficult to search for security problems

in the DRM applications and harder to identify application behaviors that create potential

security risks.

Cause 2.4: Content Security Opposes User Security
Users need the ability to monitor, understand, and control the operation

of their computers in order to maintain effective security; DRM soft-

ware needs some component that the user cannot monitor, understand,

and/or control in order to effectively secure content. Thus, creating

secure DRM software requires tradeoffs that inevitably weaken user se-

curity.

A second way in which DRM tends to harm the security of users’ PCs is by behaviors that,

while not necessarily harmful in themselves, produce unusually severe security harm when

they contain vulnerabilities. Often these behaviors are employed to strengthen the content

protection mechanism, but they force the user to bear additional risks. Typical examples

include aggressive installation, running code in kernel mode, installing automatic updates

without user confirmation, and executing code from a remote system.

CHAPTER 2. CD-DRM SYSTEMS 78

Because of these risky techniques, small errors in the third generation CD-DRM schemes

caused disproportionately harmful collateral damage. For example, the MediaMax file per-

mission problem was made more severe because parts of the MediaMax software are in-

stalled automatically and without consent. Users who have declined the EULA likely assume

that MediaMax has not been installed, and so most will be unaware that they are vulnerable.

The same installer code performs a dangerous version check as soon as the CD is inserted,

leading to a privilege escalation vulnerability. A CD that prompted the user to accept a

license before installing code would give the user a chance to head off the attack. Similarly,

the vendors’ apparent desire to limit use of their uninstallers led to designs that relied on

downloading code using ActiveX controls—leaving users just one design flaw away from

being attacked. Indeed, these were such flaws: Both the XCP and MediaMax uninstallers

failed to verify the authenticity of the downloaded code, leading to remote code execution

vulnerabilities.

Obviously, these vulnerabilities could have been prevented by careful design and pro-

gramming. But they were only possible at all because the vendors chose to deliver the

uninstallers via this ActiveX method rather than using an ordinary download. We conjec-

ture that the vendors made this choice because they wanted to retain the ability to rewrite,

modify, or cancel the uninstaller later, in order to further their platform building strategies.

These aggressive installer and uninstaller designs were more difficult, compared to tra-

ditional installers and uninstallers, for both vendor and user, so the vendors must have

benefited from them somehow. One benefit is to the vendors’ content protection goals,

since CD-DRM content is most strongly protected with the active protection software run-

ning. Another benefit is to the vendors’ platform building strategy, which takes a step

backward every time a user uninstalls or declines to install the software. Customizing the

CHAPTER 2. CD-DRM SYSTEMS 79

uninstaller, for instance, allows the vendor to control who receives the uninstaller and to

change the terms under which it is delivered.

We have observed that successive generations of CD-DRM systems turned to increasingly

aggressive and risky techniques in order to maintain their effectiveness, and the pressure

to do so is sure to increase in response to the evolving technical environment. We would

expect future CD-DRM schemes to use even more aggressive installation strategies, such as

paying to bundle themselves with other software, as Macrovision paid Microsoft to include

its SafeDisc game DRM system with Windows, or perhaps even exploit actual security flaws

to install or to run privileged code. Rising costs of installation will increase the value of the

DRM platform, causing programs to install even more aggressively and resist uninstallation

even more tenaciously.

Cause 2.5: DRM Software Causes Elevated Security Risks
DRM software tends to engages in risky behaviors that, while not in-

herently harmful, expose users to unusually dangerous attacks if they

are implemented incorrectly. These behaviors include executing with

root privileges, installing updates without confirmation, and running

code from remote sources. Market pressures may drive vendors to take

increasing risks in the future.

Implications

• These tendencies to adopt risky techniques explain part of the outrage that users felt

in the wake of the Sony Rootkit debacle. Any piece of software carries security risks;

DRM is unique because it does not deliver a justificatory benefit to the user in return.

Many users did not expect audio CDs to contain software. Users did not want the

software, and they recognized that Sony-BMG chose to include it anyway. Unlike (say)

a web browser, which necessarily includes complex software components that might

CHAPTER 2. CD-DRM SYSTEMS 80

have bugs, CDs need not include software, so users are less willing to accept the risk of

security problems in order to get CDs.

• In light of DRM’s inherent tension with PC security and the elevated risks posed by

techniques that DRM vendors choose to adopt, vendors arguably owe their customers

a higher standard of care than do typical application developers. Unfortunately, as we

have noted, misaligned incentives between vendors and content distributors can lead

vendors to pay less attention to security than normal software creators would.

• The collateral damage caused by XCP and MediaMax surprised many observers. Though

millions of dangerous CDs were sold, the problems were not reported by security re-

searchers or security product vendors for seven months. Now that we are aware of

these tendencies, other DRM software deserves higher security scrutiny from users and

researchers, and we can expect that further severe vulnerabilities will come to light

in other DRM software. Unfortunately, the vendors’ intentional secrecy and the chill-

ing effects of the DMCA inhibit investigations in this area. There is a need for greater

transparency about DRM operation.

2.6 Conclusion

Our analysis of security failures in CD-DRM systems carries wider lessons for content com-

panies, DRM vendors, policymakers, end users, and the security community. We draw four

main conclusions.

First, the design of DRM systems is driven strongly by the incentives of the content

distributor and the DRM vendor, but these incentives are not always aligned. Where they

differ, the DRM design will not necessarily serve the interests of copyright owners, not to

mention artists. Policy changes may help realign these incentives.

CHAPTER 2. CD-DRM SYSTEMS 81

Second, DRM, even if backed by a major content distributor, can expose users to signif-

icant security and privacy risks. Incentives for aggressive platform building drive vendors

toward aggressive tactics that exacerbate these risks.

Third, there can be an inverse relation between the efficacy of DRM and the user’s ability

to defend her computer from unrelated security and privacy risks. The user’s best defense is

rooted in understanding and controlling which software is installed, but many DRM systems

rely on undermining this understanding and control.

Fourth, CD-DRM systems are mostly ineffective at controlling uses of content. Major

increases in complexity have not increased the effectiveness of second- and third-generation

schemes, and may in fact have made things worse by creating more avenues for attack. We

think it unlikely that future CD-DRM systems could do better.

We probably will not have a chance to find out, since it seems doubtful that any future

CD-DRM systems will be deployed. The disclosure in 2005 of the XCP rootkit and other

collateral damage caused by XCP and MediaMax sparked widespread public outrage, class

action suits against Sony, and investigations by the Federal Trade Commission and several

state attorneys general. Sony eventually recalled the CDs containing the dangerous DRM

and offered compensation to the affected customers. SunnComm and First4Internet left

the content protection business and apparently ceased operation, but not before Sony sued

SunnComm for negligence and breach of contract. Their main competitor, Macrovision,

seems to have quietly withdrawn from the CD-DRM market, and there have been no reports

of copy protected audio CDs being marketed in the United States since that time. By 2008,

the major record labels had completely shifted their strategy and began selling unencum-

bered MP3s of most their catalogs. DRM for purchased music appears to be a thing of the

past.

CHAPTER 2. CD-DRM SYSTEMS 82

Though other DRM makers and copyright owners will presumably tread more carefully

in the future, there remains a fundamental tension between DRM vendors’ desire to control

and limit how computers are used, and the need of users to manage their own systems.

Users and DRM distributors will continue to struggle for control of users’ computers, and

other DRM systems will inevitably cause collateral damage. Security researchers—and

policymakers—need to remain alert.

83

Chapter 3

Security Failures in

Electronic Voting Machines

This chapter is a security analysis of the Diebold voting system, which consists primarily of

the AccuVote-TS or AccuVote-TSX direct recording electronic (DRE) voting machines and

the GEMS election management system. It is based an examination of an AV-TS that we

obtained from a private party in 2006 [61], and on a study of the system’s source code that

we conducted at the request of the California Secretary of State as part of a “top-to-bottom”

review of California voting systems [28].

Our analysis shows that the Diebold system does not provide sufficient security to guar-

antee a trustworthy election. It contains vulnerabilities that could allow an attacker to install

malicious software on voting machines or on the election management system. Malicious

software could cause votes to be recorded incorrectly or to be miscounted, possibly altering

election results. It could also prevent voting machines from accepting votes, potentially

causing long lines or disenfranchising voters.

CHAPTER 3. ELECTRONIC VOTING MACHINES 84

Figure 3.1—Machines
We studied the Diebold
AccuVote-TS (top) and
AccuVote-TSX (bottom)
direct-recording electronic
(DRE) voting machines.

CHAPTER 3. ELECTRONIC VOTING MACHINES 85

Furthermore, the Diebold system is susceptible to computer viruses that propagate from

voting machine to voting machine and between voting machines and the election manage-

ment system. A virus could allow an attacker who only had access to a few machines or

memory cards, or possibly to only one, to spread malicious software to most, if not all, of a

county’s voting machines. Thus, large-scale election fraud in the Diebold system does not

necessarily require physical access to a large number of voting machines.

The remainder of this chapter is structured as follows:

Section 3.1 describes the overall architecture and individual components of the Diebold

election system and how the system is operated under typical election procedures. In Sec-

tion 3.2, we report specific vulnerabilities in the AccuVote-TS and AccuVote-TSX, and in

Section 3.3 we show how an attacker could combine them to steal votes, disrupt an elec-

tion, or spread a voting machine viruses. Section 3.4 takes a higher-level view, identifying

systemic problems in the design and implementation of the system.

All DREs face fundamental security challenges that are not easily overcome. Section 3.5

reviews other studies of DRE security, focusing on similar weaknesses discovered in systems

from other manufacturers. Patterns of failures suggest a number of causes that contributed

to the security failures in these systems, which we analyze in Section 3.6.

Section 3.7 discusses several technical and procedural strategies for improving the secu-

rity of the Diebold voting system, together with their limitations. However, the severity of

the design flaws in the Diebold system and many similar electronic voting systems, and our

lack of confidence in the ability of changes in election procedures to compensate for them,

leads us to conclude in Section 3.8 that the surest way to repair these systems is to redesign

them.

CHAPTER 3. ELECTRONIC VOTING MACHINES 86

3.1 The AccuVote TS and TSX

The Diebold1 AccuVote-TS (AV-TS) and its newer relative the AccuVote-TSX (AV-TSX) were

in recent years the most widely deployed direct-recording electronic (DRE) voting platform

in the United States. In the November 2006 general election, these machines were used

in 385 counties representing over 10% of registered voters [54]. The majority of these

counties—including all of Maryland and Georgia—employed the AccuVote-TS model. More

than 33,000 of the machines were in service nationwide at that time.

The AV-TS was launched in 2001 by Global Election Systems, which was purchased

by Diebold later that year. By 2006, it was the most widely used touch screen DRE in

the U.S. That year, we obtained an AV-TS from a private party and analyzed the machine’s

hardware and software for security problems. The machine came loaded with version 4.3.15

of BallotStation, the software that runs the election. We were aided by access to the source

code to an earlier version, 4.3.1, which leaked to the public two years before. We published

a full report [61] in September 2006.

In 2007 we were invited to participate in a new voting machine security study commis-

sioned by the Secretary of State of California and encompassing all the electronic voting

systems then in use in that state. As part of this study, we analyzed the security of the

Diebold voting system, including the AV-TSX, an updated model introduced in 2003. We

were given full source code access but no direct access to the hardware. Among the software

we evaluated was GEMS version 1.18.24.0 (Diebold’s election management software), Bal-

lotStation version 4.6.4, and the AccuVote bootloader BLR 7-1.2.1. The Secretary released

our findings [28] in July 2007.

1 Diebold’s election division has since rebranded itself “Premier Election Solutions.” We continue to use the
original name for consistency with our earlier reports.

CHAPTER 3. ELECTRONIC VOTING MACHINES 87

Before discussing vulnerabilities and attacks, we will first describe the design and op-

eration of the AV-TS and AV-TSX voting machines and the GEMS election management

system.

3.1.1 Voting Machine Hardware and Software

The AV-TS and AV-TSX are DRE voting machines. They interact with the voter via a touch-

screen LCD display, and they support audio ballots for increased accessibility. They authen-

ticate voters and election officials using a motorized smart card reader, which pulls in cards

after they are inserted and ejects them when commanded by software. They include built-in

rechargeable batteries to allow voting to continue if power is interrupted.

The machines are configured for each election by inserting a memory card into a slot

behind a locked door on the side of the machine. The memory card is a standard PCMCIA

flash storage card (a normal Compact Flash card and passive adapter may be substituted).

Before the election, the file system on the memory card stores the election definition and

other configuration information. After the election, poll workers remove the memory card

from the machine and send it to election headquarters so that the electronic vote records

can be uploaded for tabulation.

A lockable metal door limits physical access to the memory cards. On the AV-TS, the lock

is a standard pin-tumbler cylinder of a lightweight variety commonly used in desk drawers

and file cabinets. On the AV-TSX it is a tubular pin-tumbler design often found on bicycle

locks.

The AV-TS and AV-TSX both contain smaller thermal roll printers for recording initial

and final vote totals. The AV-TSX can also make use of a separate printer attachment for

generating a voter-verifiable paper audit trail (VVPAT) record for each cast ballot.

CHAPTER 3. ELECTRONIC VOTING MACHINES 88

Figure 3.2—AccuVote-TS Motherboard Components: (A) Hitachi SuperH SH7709A 133 MHz
RISC microprocessor; (B) Hitachi HD64465 Windows CE Intelligent Peripheral Controller; (C) Intel
Strata-Flash 28F640 8 MB flash memory chips (2); (D) Toshiba TC59SM716FT 16 MB SDRAM
chips; (E) M27C1001 128 KB erasable programmable read-only memory (EPROM), in 32-pin socket;
(F) startup jumper table; (G) “Flash Ext” connector; (H) touch sensitive LCD panel; (I) printer
port (connected to thermal roll printer, not shown); (J) Smart Card device connector (connected
to SecureTech ST-20F reader/writer, not shown); (K) D.C. power supply connector; (L) battery
connector; (M) PIC microcontroller; (N) IrDA transmitter and receiver; (O) serial keypad connector;
(P) headphone jack; (Q) power switch; (R) PS/2 keyboard port; (S) PC Card slots (2); (T) reset
switch; (U) PS/2 mouse port; (V) internal speaker.

CHAPTER 3. ELECTRONIC VOTING MACHINES 89

Internally, the hardware in both machines strongly resembles that of a laptop PC or

a Windows CE hand-held device. The AV-TS motherboard (see Figure 3.2), includes a

133 MHz SH-3 RISC processor, 32 MB of RAM, and 16 MB of nonvolatile flash storage.

The AV-TSX motherboard is somewhat more powerful, with a 32-bit Intel xScale processor,

64 MB of RAM, and 32 MB of flash storage. Both machines run Microsoft’s Windows CE

operating system; the AV-TS runs version 3.0 and the AV-TSX runs version 4.1.

In normal operation, when the machine is switched on, it loads a small, custom boot-

loader program from its on-board flash memory. The bootloader loads the operating system,

which then executes a proprietary application called BallotStation that provides the user

interface for voters and poll workers. BallotStation interacts with the voter, accepts and

records votes, counts the votes, and performs all other election-related processing.

3.1.2 Election Management

Election officials manage the voting process using a back-end application called GEMS

that runs on a desktop PC at the election headquarters. GEMS is used to conduct many

aspects of the election, including designing ballots, downloading election definition files to

voting machines, compiling election results, and reporting the election outcome. GEMS is

a Windows application, and it typically runs on a system configured by the vendor running

Windows 2000 or Windows XP.

At the election headquarters, one or more AccuVote units would typically be connected

to the GEMS PC by Ethernet. These machines are identical to units used in the polling

place, but they serve a different function: they are used to read and write voting machine

memory cards. Election staff insert a PCMCIA Ethernet card into one of the PCMCIA slots on

the voting machine and then connect it to an Ethernet hub. The BallotStation application

CHAPTER 3. ELECTRONIC VOTING MACHINES 90

Smart

Card

VC Encoder

AV
Memory

Card
AV

GEMS

Ethernet

Polling Place Election HQ

Figure 3.3—Components of the Diebold System In a typical county, there is a GEMS server
at the election headquarters that is connected via Ethernet to one or more central-office AccuVote
machines. These machines read and write memory cards, which are used to transfer ballots to
machines at the polling place and to read back election results. Polling places also contain voter card
encoders, which program smart cards that allow voters to access the voting machines.

interfaces with the GEMS server over the network and provides result upload and ballot

programming capabilities.

Before the election, staff use GEMS and the networked AccuVote units to write election

definition files onto memory cards. They must prepare one memory card per AccuVote unit

that will be deployed in the field by inserting a memory card into the networked AccuVote

and executing a programming function in GEMS. After the election, as poll workers return

memory cards to the election headquarters, workers use the networked AccuVote units to

read results files from the memory cards and upload them to GEMS for tabulation.

3.1.3 Voting Machine Operation

All of the machine’s voting-related functions are implemented by BallotStation, a user-space

Windows CE application. BallotStation operates in one of four modes: Pre-Download, Pre-

Election Testing, Election, and Post-Election. Each mode corresponds to a different phase of

the election process and is intended to have its own associated election procedures. Here

we describe the software’s operation under typical election procedures. Our understanding

CHAPTER 3. ELECTRONIC VOTING MACHINES 91

of election procedures is drawn from a number of sources including [150, 55, 164, 180]

and discussions with election workers from several states. Actual procedures may vary

somewhat from place to place.

Election Setup Prior to the election, poll workers may configure BallotStation by inserting

a memory card containing a ballot description—essentially, a list of races and candidates

for the current election—prepared earlier using GEMS. If, instead, a card containing no

recognizable election data is inserted into the machine, BallotStation enters Pre-Download

mode and awaits instructions from a GEMS server.

After election definitions have been installed, BallotStation enters Pre-Election Testing

mode. Among other functions, Pre-Election Testing mode allows poll workers to perform

so-called “logic and accuracy” (L&A) testing. During L&A testing, poll workers put the

machine into a simulation mode where they can cast several test votes and then tally them,

checking that the tally is correct. Because the voting software is in L&A mode, these votes

are not counted in the actual election. After any L&A testing is complete, the poll workers

put the machine into Election mode. The software prints a “zero tape” which tallies the

votes cast so far. Since no votes have been cast, all tallies should be zero. Poll workers check

that this is the case, and then sign the zero tape and save it.

Voting When a voter arrives at the polling place, she checks in at a front desk where several

poll workers are stationed. She is verified against a list of registered voters. Assuming the

voter is registered and has not yet voted, poll workers record that the voter has voted. At

this point the poll workers give the voter a “voter card,” a special smart card that signifies

that the voter is entitled to cast a vote. The voter waits until the voting machine is free and

then approaches the machine to cast her vote.

CHAPTER 3. ELECTRONIC VOTING MACHINES 92

Figure 3.4—Diebold BallotStation Software Screenshots depicting BallotStation’s four pri-
mary modes: (a) Pre-Download, (b) Pre-Election Testing, (c) Election, and (d) Post-Election.

CHAPTER 3. ELECTRONIC VOTING MACHINES 93

To cast a vote, the voter first inserts her voter card. The machine validates the voter card

and presents the voter with a user interface allowing her to express her vote by selecting

candidates and answering questions. (Voter using AV-TSX machines, before casting their

ballots, may have an opportunity to examine printed VVPAT records and confirm that they

accurately represent their intent.) After making and confirming her selections, the voter

pushes a button on the user interface to cast her vote. The machine modifies the voter card,

marking it as invalid, and then ejects it. After leaving the machine, the voter returns the

now-invalid voter card to the poll workers, who may re-enable it for use by another voter.

Post-Election Activities At the end of the election, poll workers insert a special smart card

called an “Ender Card” or “Supervisor Card” to tell the voting software to stop the election

and enter Post-Election Mode. Poll workers can then use the machine to print a “result tape”

showing the final vote tallies. The poll workers check that the total number of votes cast

is consistent with the number of voters who checked in at the front desk. Assuming no

discrepancy, the poll workers sign the result tape and save it. Members of the public are

invited to watch this procedure and to see the contents of the result tape, including the vote

tallies.

After the result tape is printed, the election results are transferred to the central GEMS

system. Most often this is done by physically transporting the memory cards back to the

election headquarters, though machines may be configured to upload results via modem

for faster returns. Once results from all machines have reached the central tabulator, the

tabulator can add up the votes and report a result for the election.

If a recount is ordered, the result tapes are rechecked for consistency with voter check-in

data, the result tapes are checked for consistency with the results stored on the memory

cards, and the tabulator is used again to sum up the results on the memory cards. Further

investigation may examine the state stored on memory cards and a machine’s on-board

CHAPTER 3. ELECTRONIC VOTING MACHINES 94

file system, such as the machine’s logs, to look for problems or inconsistencies. If AV-

TSX machines were used, workers may also perform a manual audit of the printed VVPAT

records.

3.2 Selected Vulnerabilities

We found numerous vulnerabilities in the AV-TS and AV-TSX machines that threaten the

accuracy of the count and the availability of the voting system. Here we describe a few of

these problems, focusing on ones that might be exploited as part of a large-scale attack.

3.2.1 Unauthenticated Software Update Mechanisms

Low-level software The AV-TS and AV-TSX include a software update mechanism that

allows new bootloader and operating system software to be installed from a memory card

inserted into the machine. When the machine boots, it searches the memory card for

specially named files. If it finds a file named fboot.nb0 (for the AV-TS) or eboot.nb0 (for

the AV-TSX), it replaces the bootloader software stored in its internal flash memory with

the contents of the file. If it finds a file named nk.bin (for either machine), it replaces the

Windows CE operating system image [28, 80, 61].

The machines have no effective mechanism for checking the authenticity of these soft-

ware updates [80]. While they do employ a simple checksum to make sure the files have

not been garbled in transmission, they fail to utilize a digital signature or other mechanism

that would prevent an attacker from using the software update feature to install malicious

code. This means that an attacker can create malicious software updates containing arbi-

trary code, and the software update mechanism will not be able to distinguish these from

legitimate upgrades.

CHAPTER 3. ELECTRONIC VOTING MACHINES 95

An attacker who has temporary physical access to a memory card—or control of any ma-

chine into which a memory card is inserted—can place his own malicious software update

files on the card, and this software will be installed on any AV-TS or AV-TSX machine that is

booted with that card in place. Alternately, an attacker with unsupervised physical access to

the machine for as little as a minute could replace the installed memory card with one con-

taining a malicious software update prepared earlier, boot the machine to install the update,

and then reinsert the original memory card. This attacker would need to bypass the lock on

the memory card door, but on either machine this is quickly accomplished [2, 61]. Tamper-

evident seals might be used to deter attacks, but, as Johnston has demonstrated [88], such

seals can usually be defeated with simple techniques.

The machines install these updates without asking the local user for confirmation. While

they do display a message indicating that an update is taking place, this message is displayed

in a small font and could easily be overlooked by poll workers. The lack of confirmation

increases the odds that this issue could be used to spread voting machine viruses.

Application software A second software update mechanism operates after the AV-TS

or AV-TSX boots into Windows CE. The Windows kernel launches a program called

taskman.exe, which eventually starts the BallotStation application. Before running Bal-

lotStation, taskman.exe searches the memory card for files with the extension .ins. These

are software update packages in a Diebold proprietary format. Each .ins file contains in-

structions for installing one or more files onto the machine’s file system, along with the data

to be placed in those files.

Like the bootloader-based update mechanisms described above, the .ins update mech-

anism does not attempt to verify the authenticity of the updates, and it does not maintain

a log of software updates that have been performed [80]. Unlike the other mechanisms,

it does ask the user to confirm each update by touching a button on the screen. How-

CHAPTER 3. ELECTRONIC VOTING MACHINES 96

ever, the system trusts update files to accurately describe their contents. Malicious updates

could inaccurately describe their purpose, possibly fooling operators into consenting to their

installation [28, 61].

Attackers could use the application software update mechanism to install arbitrary code

onto the voting machine. For example, they could replace the BallotStation executable file

with an altered version. They could also replace other files on the system or destroy data

by replacing it with garbage. Conducting such attacks would normally require the ability

to write the update file onto a memory card as well as the operator’s consent, but even this

safeguard can be bypassed because of the vulnerability we describe next.

The code in taskman.exe responsible for installing the application updates contains

multiple buffer overflows in the way it parses .ins files that could allow an attacker to

execute arbitrary code on the AV-TS and AV-TSX. For example, a malicious .ins file could

modify files in the machine’s filesystem or launch programs, and it could do these whether

or not the user consented to its installation. To exploit these vulnerabilities, an attacker

would need the ability to write files onto the memory card. Since the machine does not

verify the authenticity of .ins files, no secret keys would be required [28, 61].

Service back door The taskman.exe program in the AV-TS and older versions of the AV-

TSX contains a service feature that causes the system to boot into Windows Explorer instead

of the BallotStation application if a file named explorer.glb is present on the memory

card. Like the special update files that the bootloader recognizes, explorer.glb contains

no authentication of any kind; its contents are arbitrary. [61] Though some versions of the

AV-TSX software contain this feature [80], it was not present in the AV-TSX source code we

analyzed.

CHAPTER 3. ELECTRONIC VOTING MACHINES 97

This feature would allow an attacker with physical access to the machine to install and

run malicious software manually from a memory card he has prepared. He could also access

the Windows Start menu and control panels, as on an ordinary Windows CE machine.

3.2.2 Unprotected Hardware Debugging Features

AV-TSX The motherboard inside the AV-TSX contains a jumper header marked “Debug” [80].

When a jumper is installed here, the machine’s bootloader provides a service menu over its

serial port when the machine boots. A feature of the service menu called the “mini monitor”

allows arbitrary memory locations to be read or written over the serial port. Since the

system maps its internal flash memory into the address range 0xA0000000–0xA4000000,

the mini monitor can be used to extract or alter the data stored there. To access this feature,

an attacker would need physical access to the inside of the voting machine, which requires

removing a small number of screws. The attacker would then interact with the bootloader

by attaching a serial cable to the “VIBS Keypad” port in the rear of the machine.

An attacker with access to the inside of the machine’s case could also read and write the

internal flash memory using the motherboard’s JTAG interface. JTAG, the standard IEEE

1149.1 hardware debugging interface, provides faster reading and writing of flash data than

the serial port. Unlike the “mini monitor” feature, which is implemented in the bootloader,

the JTAG vulnerability cannot be corrected with a software update. We successfully used

the JTAG feature to backup and restore the AV-TSX flash memory using a Macraigor Wiggler

JTAG reader and a modified version of the open source JTag Tools software.

Using either the mini monitor or JTAG, an attacker could alter any part of the voting

machine’s software, including the bootloader, operating system, and BallotStation appli-

cation. These interfaces can also be used to create a perfect copy of the internal flash

CHAPTER 3. ELECTRONIC VOTING MACHINES 98

memory, including the machine’s software, cryptographic keys, and records retained from

past elections. These would be useful in constructing future attacks.

AV-TS Though the AV-TS does not contain a JTAG port or mini monitor software, it does

have a functionally similar vulnerability. A set of two switches and two jumpers on the

motherboard controls the source of the bootloader code that the machine runs when it

starts. On reset, the processor begins executing code beginning at address 0xA0000000. The

switches and jumpers control which of three storage devices—the on-board flash memory,

an EPROM chip in a socket on the board, or a proprietary flash memory module in the “ext

flash” slot—is mapped into that address range. A table printed on the motherboard lists

the switch and jumper configurations for selecting these devices [61].

An attacker with physical access to a machine could use this feature to install malicious

software or create a copy of the machine’s internal flash memory. He could create new

bootloader-level software that would modify or extract the flash memory. Then he could

copy this onto an EPROM chip, install the chip into the motherboard, set the jumpers to

boot from the EPROM, and start the machine.

We implemented these capabilities in the form of an EPROM-based bootloader that

can backup and restore the complete contents of the machine’s flash memory. We began

by disassembling the original bootloader (contained on the EPROM that came with the

machine) using IDA Pro Advanced [41], which supports the SH-3 instruction set. We

created a modified bootloader that searches any memory card in the PC Card slot for files

named backup.cmd and flash.img. If it finds a file named backup.cmd, it writes the contents

of the on-board flash to the first 16 MB of the memory card, and if it finds a file named

flash.img, it replaces the contents of the on-board flash with the contents of that file [61].

CHAPTER 3. ELECTRONIC VOTING MACHINES 99

3.2.3 Exploitable Buffer Overflows in BallotStation

The BallotStation software on the AV-TSX contains multiple buffer overflow errors in code

that processes untrusted data. An attacker could exploit these problems to execute arbitrary

code on the machine. (The AV-TS may contain identical or similar problems, but we did

not investigate this.) We describe these vulnerabilities briefly below, but the nondisclosure

agreement connected to the California Top-to-Bottom-Review (TTBR) prevents us from

providing further details.

Bug in assure.ini Processing When BallotStation starts, it reads the file assure.ini from

the memory card. The current election database is defined by whatever database is specified

as “current” in this configuration file. BallotStation assumes no line in the file is longer than

a short, fixed number of characters and only allocates a buffer of that length on the stack. If

a line exceeds this length, excess characters will be written past the end of the buffer. This

would allow an attacker to crash the machine and (most likely) execute arbitrary code soon

after boot.

This attack is especially serious because assure.ini is neither encrypted nor authenti-

cated. An attacker could modify this file without knowledge of any secret keys. An attacker

only needs to be able to insert a malicious memory card into a machine, or modify a legit-

imate memory card that will later be inserted into a machine, to successfully compromise

an AV-TSX machine.

Bugs in String-, Script-, and Bitmap-Resource Processing The AV-TSX displays text from

the election resource file on the memory card at various stages of the election. This text is

stored in language-specific RTF strings. One such string contains the text used to show the

current page number at the bottom of every ballot page (excluding the “cast ballot” screen).

This text includes two %d characters which are replaced with the current page number and

CHAPTER 3. ELECTRONIC VOTING MACHINES 100

the total number of pages in the current ballot using sprintf. For example, the text “Page

%d of %d” would be replaced with “Page 5 of 10” on page five of a ten-page ballot. The

adversary could instead provide a string like “Page %d of %d%s%s%s%s%s%s%s%s%s%s”,

which would very likely crash the machine, or other strings to potentially run malicious

code during the vote casting process.

Diebold uses a scripting language called AccuBasic to customize the format of reports

printed on the AV-TSX, such as the Election Zero report (printed before the election) or

the Election Results report (printed after the election). An AccuBasic script is stored on

the memory card in the ballot definition file, and the AV-TSX software interprets the script

from the card. Wagner, et al. reported buffer overflows and other flaws in the AccuBasic

interpreter that allow malicious scripts to execute arbitrary low-level code [174].

The AV-TSX displays bitmap images stored in the ballot definition file at various times

during the voting process. A bitmap file begins with header structures describing its data.

These headers contain a variety of information, including the size of the bitmap file and the

size of the bitmap data. The AV-TSX, assuming these values will be equivalent, creates a

buffer large enough to hold the bitmap data and then reads the entire bitmap file into that

buffer. A malicious bitmap file could be constructed that would lie about its size, claiming to

be smaller than it is. The AV-TSX’s buffer would be too small to hold the data in the bitmap

file, and a buffer overflow would occur during the voting process.

To exploit these vulnerabilities, an attacker would need either control of GEMS; control

over the relevant RTF files, AccuBasic scripts, or bitmap files stored on GEMS; or access to

the memory card. In some cases, the attacker would need to know a secret key called the

Data Key. We discuss how he might learn it later in this section.

Bugs in Election Uploading When an AV-TSX uploads election information to GEMS,

BallotStation calls a function that prints out an “election ticket” containing information

CHAPTER 3. ELECTRONIC VOTING MACHINES 101

drawn from the election database. There are three separate vulnerabilities in this ticket-

printing function that allow an attacker who is able to modify the election database to crash

the machine and possibly to execute malicious code.

1. The variables containing election attributes are combined using sprintf into a buffer

buf that is 512 bytes long. An attacker able to modify either of these variables could

overrun buf.

2. The very next statement uses buf as an argument to an sprintf-style formatting function

belonging to BallotStation’s printer class. This formatting function contains a format

string vulnerability that can be exploited by an attacker who is able to modify either

election attribute.

3. Later in the ticket-printing function, a similar formatting function is called every time a

file is uploaded. This formatting function contains a format string vulnerability that can

be exploited by an attacker who is able to modify a certain other election attribute.

An attacker able to compromise an AV-TSX machine could use this vulnerability to

execute malicious code on the central office AV-TSX when election results are uploaded to

GEMS.

3.2.4 Insecure Storage of Cryptographic Keys

The AV-TS and AV-TSX use secret keys for various security purposes, including authenticating

election definition files, encrypting and authenticating ballot results files, and generating

ballot serial numbers. Older Diebold software, like that used in the AV-TS we studied, used

hardcoded keys set when the software was compiled. The version of the software in the AV-

TSX that we studied retains those hardcoded keys but also allows county election officials

to change the 128-bit Data Key that the machine uses.

CHAPTER 3. ELECTRONIC VOTING MACHINES 102

The machine stores the Data Key in a file in its internal flash memory. This file, bs-

security.cf, resides in the same directory as BallotStation.exe. BallotStation encrypts

the contents of the file with a third key called the System Key. However, the value of

the System Key is not a secret—rather, it is the MD5 hash of the machine’s serial num-

ber. The serial number is stored in the machine’s registry (HKLM\Software\Global Election

Systems\AccuVote-TS4\MachineSN), displayed in the user interface (the parameter “SN” at

the bottom of every screen), and printed on the Results Report and other printouts.

As a result, any party with the ability to read data from the machine’s internal flash

memory can learn the values of Smart Card Key and Data Key. For example, an attacker

with temporary physical access to the inside of the machine’s case could exploit the hardware

debugging features (Section 3.2.2) or insecure update mechanisms (Section 3.2.1) to read

the contents of the bs-security.cf file and the registry key containing the machine serial

number. The attacker could then compute the System Key from the serial number and use

it to decrypt the other keys stored in the file.

This attack may be particularly damaging because the design of the Diebold system

makes it difficult to use different keys on different machines [28]. Consequentially, all

machines within a particular county most likely share the same Smart Card Key and Data

Key. An attacker who can extract the keys from a single machine can therefore use them to

attack all of the machines and memory cards in the county.

3.2.5 Poor Protection of Critical Election Data

Four types of data files are used in elections: election databases, election resource files,

ballot results files, and audit logs. These files are stored on the removable memory cards,

with backups stored in the machine’s internal flash memory. All files are contained in

CHAPTER 3. ELECTRONIC VOTING MACHINES 103

standard file systems, with no access control or integrity protection mechanisms. Any

process running on the machine can read or write the files arbitrarily.

Election database files (.edb files) contain information about races and candidates as

well as other ballot text. They are not encrypted, but they are authenticated using a kind

of message authentication code (MAC): The MD5 hash of the body of the file is encrypted

with the Data Key, and the machine requires this encrypted hash to match a value in the

header of the ballot definition.

Election resource files (.xtr files) contain RTF strings, AccuBasic scripts, audio, images,

and certain other data used during the election. The resources in these files are not en-

crypted, but each resource is individually authenticated using a MAC like the one used for

the election database.

Ballot results files (.brs files) contain a record of the votes for each ballot cast in the

election. The record of each vote is individually authenticated as in the election resource

files. Each vote record is also encrypted using the same Data Key.

Audit logs (.adt files) store a partial record of BallotStation’s operation. They are

authenticated and encrypted using a similar format as ballot results files, except that they

use the System Key in place of the Data Key.

An adversary who obtained access to the Data Key as described above could carry out

various attacks on these files:

• If the attacker had access to the memory card prior to the election, he could tamper with

election files and election resource files in order to exploit other security vulnerabilities

in BallotStation, including the vulnerabilities described above that allow the attacker to

execute arbitrary code on the voting machine during the election. The attacker could

also attempt to alter the ballots in subtle ways that would confuse voters or otherwise

disrupt the election.

CHAPTER 3. ELECTRONIC VOTING MACHINES 104

• If the attacker had access to the memory card after the election, he could carry out other

attacks by defeating the encryption and authentication of the ballot results files. If the

attacker accesses the memory card before the votes on it are loaded into GEMS, then he

can tamper with the ballot results file in order to exploit security vulnerabilities in the

central office AV-TSX connected to the GEMS server. Using this technique, he might be

able to infect a large number of voting machines with a voting machine virus.

• If, during or after the election, the attacker had access to the memory card or the files on

the voting machine, he could decrypt or tamper with audit logs. These are secured with

the System Key, which is not a closely guarded secret. By tampering with the logs, the

attacker could remove evidence of his activities. The audit logs also contain sensitive

debugging information, such as stack traces recorded during errors in the software, that

could help a malicious party develop further attacks.

Attacks like the ones described above could be carried out automatically by malicious

code installed on the voting machine. The code could automatically derive the Data Key, as

described above. In that case, the attacker would not need to have physical access to each

machine or memory card being attacked.

3.3 Attack Scenarios

Elections that rely on the Diebold DREs are vulnerable to several serious attacks. Many of

these vulnerabilities arise because the machine does not even attempt to verify the authen-

ticity of the code it executes. We begin by outlining several methods by which malicious

code can be injected. Then we describe two classes of attacks—vote stealing and denial-of-

service—that could be carried out by such code.

CHAPTER 3. ELECTRONIC VOTING MACHINES 105

3.3.1 Direct Attack Installation

An attacker with physical access to a machine would have at least three methods of installing

malicious software [81].

The first is to exploit the unprotected hardware debugging features described in Sec-

tion 3.2.2. On the AV-TSX, the attacker could write his malicious code into the machine’s

flash memory using a serial connection or the JTAG interface. On the AV-TS, he could create

an EPROM chip containing a program that will install the attack code and then open the

machine and install the chip.

The second method is to exploit the unauthenticated software update mechanisms de-

scribed in Section 3.2.1. The attacker could create a modified version of the machine’s

bootloader, OS kernel, or application software. He could then package it as a software

update, store it on a memory card, and boot the machine with the card inserted to install

the update. Alternatively, the attacker could exploit the service back door mechanism to

boot the machine into Windows Explorer, then install the malicious software by hand.

The third method is to exploit code execution vulnerabilities caused by errors in Diebold’s

software, such as those described in Section 3.2.3. Doing this would require modifying the

data files that are read by the software. Since some of these files are not authenticated, an

attacker could tamper with them to launch an attack without knowing any secret keys.

Carrying out the first method requires access to the inside of the machine. The attacker

would need to remove several screws and lift off the top of the machine to gain access to

the motherboard’s EPROM socket, debug jumper, or JTAG port. This can be accomplished

with a few minutes of physical access.

The other methods require access to the machine’s memory card. If memory cards ship

separately from machines, the attacker could intercept a card en route and copy his mali-

cious code onto the card. If, instead, machines ship with memory cards sealed in place, the

CHAPTER 3. ELECTRONIC VOTING MACHINES 106

attacker would need to gain physical access to the machine. Poll workers, election officials,

and technicians often do have such access. For instance, in a widespread practice called

“sleepovers,” machines are sent home with poll workers the night before the election [162].

In other instances, as Ed Felten has documented [62], voting machines are left unattended

in polling places the night before the election.

After gaining access to the machine, the attacker would break the seal and unlock the

lock, replace the memory card with one containing his malicious code, reboot the machine

to install the code, reinsert the original memory card, and relock the enclosure. On both the

AV-TS and AV-TSX, the lock protecting the memory card can be picked in a matter of seconds

by a person with moderate practice [2, 61]. In all, this process would require less than one

minute of physical access [2] in a manner that would likely raise minimal suspicion from

poll workers. The only physical evidence, if any, would be a broken seal.

3.3.2 Voting Machine Viruses

Like desktop PCs, computer voting machines are vulnerable to viruses. Viruses pose a partic-

ularly severe threat to voting security because they can spread invisibly in the background,

even when procedural safeguards that limit physical access to the machines are followed.

Once installed on a single “seed” machine, the virus would spread to other machines by

methods described below, allowing an attacker with physical access to a single machine (or

card) to infect a potentially large population of machines. The virus could be programmed

to install malicious software, such as a vote-stealing program or denial-of-service attack, on

every machine it infected.

To prove that this is possible, we constructed a demonstration virus for the AV-TS that

spreads automatically, installing our demonstration vote-stealing software on each infected

system. Our demonstration virus infects machines by exploiting the unauthenticated low-

CHAPTER 3. ELECTRONIC VOTING MACHINES 107

Memory

Card

AV
Memory

Card
AV GEMS

1.

2. 3.

Polling Place Election HQ

AV

AV

AV

AV

Memory

Card

Memory

Card

AV

GEMS

AV

4.5.

Polling Place Election HQ

Figure 3.5—Propagation of a Virus over the Course of Two Election Cycles

During the first election: (1) An attacker temporarily inserts a memory card containing a voting
machine virus into an AccuVote machine, infecting the machine. (2) After the election, poll workers
remove the memory card containing ballot results from the infected machine and send it to election
headquarters for tabulation; the virus has corrupted the files on the card, so inserting it into a
central-office AccuVote infects that machine. (3) The infected central-office AccuVote attacks the
GEMS PC over the Ethernet network by using known vulnerabilities in Windows; when the attack
succeeds, the virus infects the GEMS server.

During the next election cycle: (4) The virus running on the GEMS server infects memory cards
when officials download the new ballots; these cards are placed in voting machines throughout the
county. (5) On election day, the virus executes its payload, which may involve altering votes or
otherwise disrupting the election.

CHAPTER 3. ELECTRONIC VOTING MACHINES 108

level software update mechanism described in Section 3.2.1. An infected machine will

infect any memory card that is inserted into it by placing a firmware update file on the card.

An infected memory card will infect any machine that is powered up or rebooted with the

memory card inserted, since the machine will automatically install the firmware update.

Because cards are transferred between machines during vote counting and administrative

activities, such as software updates, the infected population will grow over time. If the virus

infects the central office AccuVote machines used to upload and download data from GEMS,

it could quickly spread to a large number of polling place voting machines.

Other vulnerabilities that we identified in this chapter create further avenues for spread-

ing viruses that are potentially more dangerous than mechanisms we exploited in our

demonstration virus. We now describe one such scenario where a voting machine virus

could spread throughout a county’s election system (see Figure 3.5). Many variations on

this scenario are possible.

The life cycle of such a virus would be a multistep process:

1. Initial infection of an AccuVote machine

The attacker, after developing the virus in advance of the election, would needs only

momentary physical access to a voting machine or memory card in order to initiate the

infection. He could use any of the direct injection methods described in Section 3.3.1.

2. Spread to the central-office AccuVote machine

On the initially infected voting machine, the virus can manipulate the election database

file stored on the memory card by exploiting the issues we describe in Section 3.2.3. The

attacker could design the virus to corrupt the file so that it will cause the execution of

arbitrary code during the result upload stage.

CHAPTER 3. ELECTRONIC VOTING MACHINES 109

Later, officials take the memory card with the manipulated election description and place

it into a central-office AccuVote machine. When officials initiate the upload function, the

attacker’s code executes and infects the central office voting machine with the virus.

3. Attacking the GEMS machine

As soon as the virus infects the central-office voting machine, it can begin attacking the

PC running the GEMS software. In a typical deployment, as described by Diebold, the

GEMS machine and the central-office AccuVote machines attach to a single Ethernet

switch and communicate using TCP/IP. This means that the GEMS PC exposes a large

attack surface to the machine. Vulnerabilities in the PC’s operating system (Windows),

network drivers, and network services could all be attacked. The hacker community

is already aware of exploitable flaws in some of these components. Even if automatic

patches exist for these commodity components, the PC’s software may not be up-to-date.

In the California Top-to-Bottom review, one team was able to use widely available exploit

tools to exploit holes in Windows and take control of the GEMS PC from another PC on

the same subnet [2]. A virus running on the central AV-TSX could be programmed to

perform a similar attack. After gaining control of the GEMS PC, the virus would install

itself and proceed to the next phase of its lifecycle. It could hide itself from system

administrators and from common security tools using rootkit techniques [79].

4. Spreading back to the field

At the beginning of the next election cycle, the infected GEMS system can spread the

virus to the voting machines used in the field. It might spread to AccuVote systems by

tampering with the election data files as they are downloaded to memory cards that will

be distributed to polling places. By introducing deliberate errors into these files, the

virus could exploit vulnerabilities that will allow virus code to execute on the systems

during voting. Since typical procedures call for every memory card used in the county to

CHAPTER 3. ELECTRONIC VOTING MACHINES 110

be created using the GEMS server, this step would allow the virus to infect every machine

used by voters.

What harm can a voting machine virus or other malicious code do? Among the most

dangerous payloads would be an attempt to shift a race by subtly stealing votes and an

attempt to disrupt an election by launching a large scale denial-of-service attack. We discuss

these attacks in the next two sections.

3.3.3 Vote-Stealing Attacks

An attacker could use a voting machine virus to reprogram a large number of voting ma-

chines to steal votes. When programming the attack, the attacker could decide which votes

to steal (e.g., from particular candidates, races, or parties), how to steal them (e.g., by

adding, deleting, or switching votes from one candidate to another), and when to execute

the attack (e.g., only in closely contested races, or only in precincts with certain voting

patterns).

Some AV-TSX machines are capable of producing a voter-verifiable paper audit trail

(VVPAT). Though this provides a valuable defense against electronic vote stealing, it will

not necessarily be able to detect and correct every kind of attack—particularly in races with

a narrow margin of victory.

In a close election, one particularly dangerous scenario would be a widely-spread virus

that subtly shifts votes between candidates on both the paper and electronic records. Sup-

pose the candidates are named Alice and Bob. A Bob supporter could reprogram the ma-

chines to look for voters who select Alice. One percent of the time, after the voter has

selected Alice, they machines could behave as if the voter had picked Bob, displaying a vote

for Bob on the confirmation screen and on the printed paper record. A cleverly designed

CHAPTER 3. ELECTRONIC VOTING MACHINES 111

virus would not interfere with an attempt to correct the problem, so voters who notice the

error could cancel the printed VVPAT record and change the selection back to Alice.

An attack like this might shift enough votes to cause the wrong result in a close election,

but could it really be done without being detected? Several factors favor the attacker. First,

assuming that only a small fraction of voters would carefully review the paper VVPAT record,

many voters would overlook the problem and allow incorrect votes to be recorded in both

the electronic and paper records. Second, while a few voters might report the problem

to poll workers, election officials would have difficulty determining whether the cause was

voter error or a problem with the machines. This is similar to problems that Sarasota County,

Florida experienced with its DRE voting machines in the November 2006 election [43]. In

one race during that election, hundreds of voters reported that the machines displayed the

wrong selection on the summary screen, or that they failed to show the race on the summary

screen at all. Some observers eventually concluded that the cause was voter error due to a

poorly designed ballot layout.

Even if officials suspect an electronic attack, the virus author could take countermeasures

to thwart later investigation. The attacker could tamper with the system logs to remove

traces of the virus’s activity, and remove the virus after the election when the machine

powers on again. By the time an investigation is commenced, most of the evidence of the

problem could be destroyed.

Finally, even in the best case when officials do detect the virus, they might have difficulty

undoing its effects without holding a new election—thus, the vote stealing attack becomes,

at best, a massive denial of service attack. It would probably be impossible to tell how many

votes had been shifted as a result of the attack, since the electronic and paper records would

both reflect the fraudulent result.

CHAPTER 3. ELECTRONIC VOTING MACHINES 112

Reprogramming the machine to steal votes is relatively straightforward. The machine

we studied maintains two records of each vote—one in its internal flash memory and one

on a removable memory card. These records are encrypted, but the encryption is not

an effective barrier to a vote-stealing attack because the encryption key is stored in the

voting machine’s memory where malicious software can easily access it (see Section 3.2.4).

Malicious software running on the machine would modify both redundant copies of the

record for each vote it altered. Although the voting machine also keeps various logs and

counters that record a history of the machine’s use, a successful vote-stealing attack would

modify these records so they were consistent with the fraudulent history that the attacker

was constructing.

Such malicious software can be grafted into the BallotStation election software (by

modifying and recompiling BallotStation if the attacker has the BallotStation source code,

or by modifying the BallotStation binary), it can be delivered as a separate program that runs

at the same time as BallotStation, it can be grafted into the operating system or bootloader,

or it can occupy a virtualized layer below the bootloader and operating system [92]. The

machine contains no security mechanisms that would detect a well designed attack using

any of these methods. However it is packaged, the attack software can modify each vote as

it is cast, or it can wait and rewrite the machine’s records later, as long as the modifications

are made before the election is completed.

By these methods, malicious code installed by an adversary could steal votes without

being detected by election officials.2 Vote counts would add up correctly, the total number

of votes recorded on the machine would be correct, and the machine’s logs and counters

would be consistent with the results reported—but the results would be fraudulent.

2 Officials might try to detect such an attack by parallel testing. As we describe in Section 3.7, an attacker
has various countermeasures to limit the effectiveness of such testing.

CHAPTER 3. ELECTRONIC VOTING MACHINES 113

Figure 3.6—Demonstration Attack
Our proof-of-concept vote-stealing software.

We have implemented a demonstration vote stealing attack on the AV-TS to prove that

this is possible. Our attack can be launched by exploiting the unprotected service back

door described in Section 3.2.1 and running a program from a removable memory card. It

displays a user interface, shown in Figure 3.6, that allows the attacker to select the winning

candidate and the percentage of votes that candidate will receive. In practice, a real attacker

would more likely design a vote-stealing program that functioned invisibly, without a user

interface.

3.3.4 Denial-of-Service Attacks

Rather than stealing votes directly, attackers might choose a more passive strategy and at-

tempt to disrupt the election process itself by disabling machines, destroying vote records,

or slowing down voting. These attacks could be targeted at precincts that are likely to sup-

port an opposing candidate, or even triggered only after the virus detects that the opposing

CHAPTER 3. ELECTRONIC VOTING MACHINES 114

candidate has won a certain portion of the votes on a machine. Alternatively, the attack

could be carried out indiscriminately in hopes of causing such widespread disruption that

the election would be postponed.

An attacker would have many choices about when and where to trigger an attack and

what kind of damage to do. Some attacks might be very difficult to distinguish from non-

malicious hardware and software malfunctions.

One style of such a denial-of-service attack would make voting machines unavailable on

election day. For example, malicious code could be programmed to make the machine crash

or malfunction at a pre-programmed time, perhaps only in certain polling places.

In an extreme example, an attack could strike on election day, perhaps late in the day,

and completely wipe out the state of the machine by erasing its flash memory. This would

destroy all records of the election in progress, as well as the bootloader, operating system,

and election software. The machine would refuse to boot or otherwise function. We have

created a demonstration denial-of-service attack for the AV-TS that operates in this way [61].

If carried out on a wide scale, such an attack could cause massive disruption. Restoring

the machine to a working state would require a service technician to open the machine and

restore the software using the EPROM slot or JTAG port. The result would be a fresh install

of the machine’s software, with all records of past and current elections still lost.

A similar style of attack would try to spoil an election by modifying the machine’s vote

counts or logs in a manner that would be easy to detect but impossible to correct, such as by

injecting malicious code that adds or removes so many votes that the results at the end of

the day are obviously wrong. A widespread attack of either style could require the election

to be redone.

CHAPTER 3. ELECTRONIC VOTING MACHINES 115

3.4 Systemic Problems

In our analysis of the Diebold system, we found significant systemic weaknesses in its design

and implementation as well as in the engineering practices used to develop it.

3.4.1 Systemic Design Weakness

Attack surface Experienced security practitioners often recommend analysis of the “attack

surface” of a software system. The attack surface is the interface that is exposed to the at-

tacker. Systems with a large attack surface tend to be more prone to security vulnerabilities.

The Diebold voting system has a large attack surface. Exposed interfaces include: (1)

the user interface on the voting machine; (2) the protocol spoken between the machine and

the smart card; (3) the content of election database and other files on the voting machine;

(4) the memory card, as read by AccuVote units in the field; (5) the content of the ballot

results files in the voting machine’s memory card, as read by other AccuVote units; and

(6) the data transmitted between GEMS and a central-office AccuVote machine, when the

two are connected by Ethernet. Some of these interfaces are complex and present many

opportunities for attack. All of them could potentially be manipulated by an attacker. Given

this, one would expect that the risk of exploitable vulnerabilities is high. That expectation

was borne out during our examination of the source code.

Complexity The Diebold system is a complex computing system. Complexity is the enemy

of security. All code has bugs; the only way to be sure that software will be secure is to

arrange for its design and implementation to be so simple and so small that one can inspect

all of it and be confident that all of the bugs and defects in the code are found.

By that criterion, the Diebold software is too complex to be secure. One crude measure

of software complexity involves counting lines of source code. The AV-TSX contains 136K

CHAPTER 3. ELECTRONIC VOTING MACHINES 116

source lines of code, excluding the Windows CE OS. GEMS contains another 116K source

lines of code. If the Diebold system were secure, it would be the first computing system of

this complexity that is fully secure.

One principle of secure design is to architect the software so that it has a small Trusted

Computing Base (TCB), that portion of the software whose correctness suffices to ensure

that the system security requirements will be met. The TCB must be protected from attack

and must be written to ensure that the rest of the system cannot violate the security policy

even if the rest of the system is compromised or malicious.

The Diebold software does not appear to have any clearly defined TCB. It is a monolithic

system, with no clear trust boundaries. Due to this architecture, a breach of any part of the

software may lead to security violations and breaches of the rest of the software. Because

code of any significant complexity or scale inevitably has bugs, defects, and flaws, this

architecture makes it all but inevitable that the Diebold voting software will have exploitable

security vulnerabilities.

Misplaced trust In our judgment, the Diebold software places too much trust in people

and other components of the system. For instance, the software trusts—relies upon—the

memory card to contain files from a legitimate, authorized source. In other words, the

software is written with the expectation that the contents of the memory card come from

a benign source, and the software does not effectively defend itself against malicious files

on the memory card. That trust seems misplaced: it is too easy for an attacker to tamper

with the contents of a memory card. When that expectation is violated, the integrity of the

software can be breached.

This theme appears throughout the voting system. In many places where two compo-

nents communicate, both components rely on each other to be benign, which renders them

vulnerable to attack if the security of the component happens to be breached. For instance,

CHAPTER 3. ELECTRONIC VOTING MACHINES 117

the GEMS server trusts the central-office AccuVote units and everything else that is con-

nected to its own Ethernet network. This trust is dangerous. While those devices might be

protected against physical tampering, they must handle data that comes from the field and

thus might be malicious. Those devices are at heightened risk of subversion, and it would

be safer if GEMS and other system components were written to defend against subversion

by malicious devices on the same network.

This type of pervasive trust makes the Diebold system brittle: a small security breach

can have large consequences out of proportion to the initial breach, or a breach in one part

of the system can put other parts at risk. That, in turn, places an unnecessary burden on

procedural protections, because even a brief violation of procedure or a small, seemingly

negligible breach of the chain of custody can have disproportionately harmful effects.

Bidirectional information flow The Diebold voting system includes a bidirectional flow

of data. Information flows from GEMS to every unit in the field (via memory cards), and

from all units in the field back to GEMS (again, via memory cards). This creates a significant

risk of viral infection. In particular, if (1) a memory card or unit in the field can be corrupted

and (2) there are any exploitable flaws in the handling of data on the memory card, then a

virus may be able to spread from one unit in the field to GEMS and then back to every unit

in the field. In practice, we found that both prerequisites are met. Due to the complexity

of the data on the memory card, any system of this architecture seems to be at high risk of

viral spread.

This is not a necessary property of a voting system. For instance, it would be possible

to have one central-office application for programming memory cards for distribution to

the field and a second application for reading memory cards from the field and tabulating

results, with firewalls to ensure that any penetration of the second application cannot affect

the first application. However, the Diebold voting system was not designed with those

CHAPTER 3. ELECTRONIC VOTING MACHINES 118

kinds of firewalls in place, and it was not constructed in a way that would provide inherent

resistance against the spread of virally propagating malicious code.

No way to verify code integrity The Diebold system does not provide any secure way

for an election official to verify whether the software resident on the voting machines has

been modified. For instance, a cautious election official might wish to occasionally spot-

check a random sample of machines to confirm that they have the correct software installed.

Unfortunately, GEMS and the AccuVote machines provide no way to do that securely.

Voting machines can be built that make violating code integrity more difficult. For

instance, the voting machine could be designed so that its bootloader is stored on write-

once storage (PROM or EPROM). The bootloader could make a record of the cryptographic

hash of the software that it loads and output that record on the machine’s printer. Or, the

bootloader could contain a public key and could check that the software is properly signed

before loading it. Or, the device could use a Trusted Platform Module or other secure

hardware technology, such as that standardized by the Trusted Computing Group [166].

Such a design would allow the operator to verify that the machine’s software has not been

modified or altered. Neither GEMS nor the AccuVote machines have this capability.

3.4.2 Systemic Implementational Errors

Input validation Input validation is one of the most important practices that developers

of security-critical software must follow. Some experts estimate that approximately half

of all software vulnerabilities can be attributed to failure to properly validate inputs from

untrusted sources. The best practice is to establish a discipline to ensure that all inputs are

validated, for instance, by checking all inputs against a template or white list as soon as

they are read from any untrusted source and before they are used for any purpose.

CHAPTER 3. ELECTRONIC VOTING MACHINES 119

We did not find a consistent pattern or discipline of input validation in their source code.

Untrusted inputs are occasionally compared against a white list or template describing

expected values but are more frequently not checked at all. Integers read from untrusted

sources are sometimes bounds-checked immediately after being read but sometimes not.

Strings are not usually checked for null-termination and are rarely matched against a white

list or regular expression.

Defensive programming Defensive programming is another recommended practice. It

involves checking all data provided by other software components just before using the data.

Even if one expects that the source of the data has already verified the correctness of the

data, each recipient also redundantly checks the data. The philosophy is that the program

should be constructed to be robust against unexpected inputs and should fail gracefully

even if other components contain unexpected bugs.

The use of defensive programming in the Diebold source code was variable. In a few

places, the source code was written defensively, carefully checked all inputs, and appeared

to be reasonably robust. In other places, the code made unchecked assumptions about the

data it used, was not written defensively, and did not appear to be as robust as it could have

been. We noticed that the latter appeared more frequently in places where the programmer

might not have been expecting malicious or erroneous inputs (e.g., some of the code that

handles data read from the election database or other files on the memory card) and in

non-core code (e.g., debugging or logging code, code that is used only to print reports, or

code for system administration tasks).

In many places, the failure to program defensively appeared to be of no particular im-

port. However, in some cases, the failure to program defensively led to serious, exploitable

security vulnerabilities. The reason that security engineers often recommend applying de-

fensive programming to all code, not just code that is known to be exposed to an attacker,

CHAPTER 3. ELECTRONIC VOTING MACHINES 120

is that programmers often make unjustified assumptions and fail to anticipate the ways

that attackers might be able to provide unexpected inputs. The failure to consistently ap-

ply defensive programming techniques probably contributed to the number of exploitable

implementation-level vulnerabilities that we found.

Programming languages The choice of programming language can have an influence on

the frequency of implementation-level vulnerabilities. The Diebold system uses assembly

languages, C, and C++. These programming languages are known to be prone to several

common types of security vulnerabilities, including buffer overflows, format string vulnera-

bilities, and integer overflows. We found instances of all these vulnerabilities in the source

code we analyzed.

Many security engineers recommend use of memory-safe, type-safe programming lan-

guages, because those languages have inherent resistance to several of the most common

types of security vulnerabilities. For instance, until recently, buffer overflows were consis-

tently the number one publicly reported vulnerability [35]. Memory-safe languages, like

Java or C#, effectively eliminate buffer overflow vulnerabilities, while programs written in

older languages like assembly, C and C++ are known to be at risk for these vulnerabilities.

3.4.3 Deficient Engineering Practices

Our analysis is further informed by an interview that we conducted with Talbot Iredale,

Software Development Manager for Diebold Election Systems [86]. We wish to thank Mr.

Iredale for his time and his useful insights. Based on what Mr. Iredale told us, Diebold’s

engineering practices seem to be similar to those of most small- to medium-sized software

development firms. These practices may be sufficient for ordinary commercial software, but

they are inadequate for meeting the rigorous security requirements of voting software.

CHAPTER 3. ELECTRONIC VOTING MACHINES 121

No formal threat model or security plan In our interview, Mr. Iredale stated that Diebold

has neither a formal written threat model nor a formal security plan for its voting systems.

Indeed, we found no evidence in the source code that systematic analysis of threats had

been performed. Instead, the security measures that are in place appeared to be ad hoc.

No formal security training Diebold has about 25 developers that work on electronic

voting systems, including those who focus on documentation, testing, and hardware. When

new developers arrive at the company, they do not receive any kind of formal security

training. Mr. Iredale states that some developers have security backgrounds but no one

is dedicated to handling security issues. They have two small groups of quality assurance

testers of approximately four people each, but none of them are dedicated specifically to

security or red-team testing.

Weak source code review process Diebold uses standard versioning software (CVS) to

manage the development of their source code. Any developer can check code into CVS and

the code is not reviewed by other developers before it is committed into the repository. Mr.

Iredale states that every CVS check-in causes an e-mail to be sent to developers who are

responsible for reviewing the code. Initially, they do “random checks” on most of the code

and do a “closer review” of the more critical portions. Although Mr. Iredale claims that 100%

of the code is reviewed by another Diebold employee within a few weeks, there seems to

be no formal procedure for assigning code to other employees for review. It seems possible

that, without formal procedures, some source code could remain unreviewed before release.

No unit testing or red team testing There is no formal requirement to develop a set of

unit tests that correspond to each piece of code checked into CVS—the option of doing this

is strictly up to individual developers. The testing group will later check for correctness

CHAPTER 3. ELECTRONIC VOTING MACHINES 122

based on standard test plans. Diebold also lacks any formal procedures for “red team”

testing, where the testers play the role of attackers and attempt to break into the system.

This type of testing can detect different types of bugs that “white box” unit and system tests

might not catch, such as illegal input handling and failure recovery.

3.5 Results from Other Studies

In this section we review past investigations of DRE security failures and place our work in

context. Systemic problems like the ones we found are not confined to the Diebold system;

numerous studies have reported similar problems in other electronic voting systems.

The first major study of DRE security was conducted in 2002 by Kohno et al. [94],

who examined a leaked version of the source code for Diebold’s BallotStation application.

They found numerous security flaws and concluded that the software’s design did not show

evidence of any sophisticated security thinking.

Public concern in light of Kohno’s study led the state of Maryland to authorize two

security studies of the Diebold system. The first study, by SAIC, reported in 2003 that the

system was “at high risk of compromise” [150]. RABA, a security consulting firm, was hired

to do another independent study of the Diebold machines. RABA had access to a number of

machines and some technical documentation. Their study [140] was generally consistent

with Kohno’s findings, and found some new vulnerabilities.

A further security assessment of was commissioned by the Ohio Secretary of State and

carried out by the Compuware Corporation [38], also in 2003. This study examined several

DRE systems, including the AV-TS, and concluded that several high risk security problems

were present.

In 2006, in response to reports that Harri Hursti had found flaws in Diebold’s AccuBasic

subsystem, the state of California asked Wagner, Jefferson, and Bishop to perform a study

CHAPTER 3. ELECTRONIC VOTING MACHINES 123

of AccuBasic security issues. Their report [174] found several vulnerabilities. Later in

2006, Hursti released a report describing several security weaknesses in Diebold’s software

relating to the automatic installation of unauthenticated software [81].

In 2006, we obtained and examined an AV-TS. In addition to confirming some of the

security flaws found in the previous works, we constructed demonstration vote stealing

software and a voting machine virus that spreads via the memory cards used to load the

ballot definition files and collect election results [61].

In 2007, California Secretary of State Debra Bowen launched a “top-to-bottom” review

of the electronic voting systems then in use in California. Voting machine vendors were

required to make available to independent reviewers documentation, source code, and

several voting machines. We participated and evaluated the Diebold system [28], while

other teams studied voting systems produced by Sequoia [21] and Hart InterCivic [83].

In all cases, pervasive problems were reported with the procedures, code, and hardware

reviewed.

Also in 2007, Ohio Secretary of State Jennifer Brunner ordered project EVEREST—

Evaluation and Validation of Election Related Equipment, Standards and Testing—as a

comprehensive review of Ohio’s electronic voting machines. As in California’s top-to-bottom

review, the reviewers had access to voting machines and source code. They examined sys-

tems manufactured by Diebold, ES&S, and Hart InterCivic, and, once more, critical security

flaws were discovered in all the machines [26].

In 2008, Appel et al. [10] evaluated the security of the Sequoia AVC Advantage machine,

which is widely used in New Jersey. Like the previous studies, Professor Appel’s found

significant problems, including systemic weaknesses in design and implementation and

vulnerabilities that could be exploited to spread a vote-stealing virus.

CHAPTER 3. ELECTRONIC VOTING MACHINES 124

As a result of these studies and others, attacks that can steal votes, disrupt elections,

compromise ballot secrecy, and spread malicious code virally have been documented in

systems made by virtually every major vendor, including Diebold [61, 28], ES&S [26], Hart

InterCivic [83], and Sequoia [10]. We now know that systemic security problems are not

confined to the products of any particular manufacturer, but are a pervasive problem in

currently deployed DRE voting systems.

3.6 High-Level Causes

In our analysis of the Diebold system, we found significant systemic weaknesses in its design

and implementation as well as in the engineering practices used to develop it. We can trace

these problems to high-level causes, such as market forces that create incentives to skimp

on security, customer demands that add complexity to the voting system, and deficiencies

in the testing and verification process. These high-level causes are likely to impact all DRE

systems, and they may explain the pervasiveness of the problems noted in the previous

section.

3.6.1 Time-to-Market Pressure

We saw in Chapter 2 how a vendor’s incentives can lead to underinvestment in security.

This effect appears to be at work in the electronic voting context. Diebold’s engineering

practices, and the systemic implementational errors they produced, may have been driven

by intense pressure to bring products to market quickly that gave the company incentives

to deprioritize security when developing its products.

CHAPTER 3. ELECTRONIC VOTING MACHINES 125

Analysis

One source of such pressure was the Help America Vote Act (HAVA) [169], which was

enacted by Congress in 2002 following the Florida recount debacle in the 2000 election.

Among other reforms, HAVA provided billions of dollars to the states to upgrade their elec-

tion equipment, but much of the money would only be available until November 2004. This

created a window of less than three years during which many states would purchase new

equipment. After that, it could be expected, demand would be correspondingly suppressed

for a long period of time. The result was a race to ready new products while demand was

high. Diebold introduced the AV-TS in 2001 and the AV-TSX only two years later; since then

the company has not produced any new voting machine models. Both products reflect this

intense time pressure in several ways.

First, the AccuVote machines and GEMS make extensive use of commercial off-the-shelf

(COTS) software, including Microsoft Windows. The use of COTS software significantly

shortened the product development time for Diebold, but it exposed the system to the

ever-growing number of attacks that target Windows.

Second, we found evidence of pervasive errors in the source code, such as the problems

we discussed in Section 3.2.3. These indicate that the software was developed rapidly and

tested incompletely. Similarly, other aspects of the system’s design and implementation,

such as the general lack of input validation and failure to apply defensive programming

practices, are consistent with the hypothesis that it was constructed with little emphasis on

security.

Third, our investigation into the company’s engineering practices revealed that Diebold

did not take the time to develop a formal threat model or security plan prior to implementing

the system, and that they spent only limited time on testing. These practices probably cut

the development time, but, in light of them, the security failures that appeared in the final

CHAPTER 3. ELECTRONIC VOTING MACHINES 126

products are unsurprising. Diebold’s principal goal seems to have been to ship the product

under deadline, rather than to meet a particular quality standard.

Cause 3.1: Vendors had Artificially Heightened Incentives to
Ship Products Quickly
The Help America Vote Act created tremendous incentives to bring vot-

ing machines to market in a short period of time. As a result, vendors

such as Diebold implemented their products quickly, targeting tight dead-

lines rather than benchmark levels of security.

Implications

• This incentive may have been reinforced by the invisible nature of security. Since the

vendors generally did not allow their customers to inspect the machines’ source code,

security problems could only be discovered after the devices were sold. Absent studies

like this one, they would only be discovered if the machines were actually attacked (and

the attacks were discovered). The vendors may have counted on their ability to improve

security at a later date, after the machines were sold but before they were attacked.

• Using COTS may be more dangerous in voting machines than in many other contexts. To

keep a Windows system secure, administrators must apply patches in a timely manner,

but the special circumstances associated with voting systems make it difficult, or even

dangerous, to do so. Software changes could introduce attacks against the voting system,

so patches need to be certified before they are applied [28]. Rather than relying on

COTS, voting machines should use software that is engineered to a stricter security

standard and does not depend on freqent patching to stay secure.

CHAPTER 3. ELECTRONIC VOTING MACHINES 127

3.6.2 Features and Complexity

Despite the intense time pressure that Diebold and other vendors faced, their products are

remarkably complex, containing hundreds of thousands of lines of code. This apparent

contradiction is explained by another aspect of the vendors’ incentives: purchases of voting

machines were driven primarily by features, not by security.

Analysis

Security was surely among the features that mattered to voting officials, but all the vendors

claimed that their products were secure, and, as we discuss below, their customers had

limited ability to evaluate these claims. The features on which the products primarily com-

peted were those that were most visible, such as attractive user interfaces and sophisticated

election management systems. Indeed, these were also responsible for a large part of the

complexity of the voting systems and a significant portion of their codebases.

Other features that were attractive to the vendors’ customers were low cost, ease of

deployment, and rapid reporting of election results. These drove the design of the high

level architecture of the Diebold system, particularly its bidirectional data flow. (Most other

vendors use a similar architecture.) Returning electronic records to the central office for

tabulation is not strictly necessary for a functioning DRE voting system—and it greatly

amplifies the risk of viral attack—but it does reduce the time and cost of counting the vote.

Complicating matters further were the widely varying requirements of different jurisdic-

tions. Since election laws vary from state to state, customers demanded a range of different

ballot styles, reporting formats, and deployment styles, and, due to the HAVA deadline, all

these requirements needed to be met in a short period of time. Much of the complexity of

the Diebold system seems to have resulted from these demands. For example, the AccuBa-

CHAPTER 3. ELECTRONIC VOTING MACHINES 128

sic interpreter was created to allow flexible ballot and report styles, but it also introduced

several exploitable vulnerabilities [174].

HAVA itself imposed additional requirements, which, though they were uniform across

all states, further complicated the products. To meet the law’s accessibility requirements,

vendors implemented features such as audio interfaces and larger fonts for the visually im-

paired. Implementing these features quickly motivated the use of complex COTS operating

systems and device drivers. They also drove vendors towards complex PC-style system archi-

tectures, which could more easily support graphics and sound, rather than simpler special

purpose hardware.

Cause 3.2: Complicated Requirements and Demand for
Features Magnified Complexity
The vendors’ customers demanded complicated and often diverse fea-

tures that would be difficult to satisfy with a simple design. The result

was a system that was too complicated to be implemented securely.

Implications

• Customers based their purchasing decisions mainly on visible features, giving vendors

a disincentive to invest in security improvement “under the hood.” This is reflected in

Diebold’s development practices, which appear to have emphasized features rather than

security.

• Another reason that some voting official may not have demanded security features is

such features can be costly and time consuming for officials to implement. Security

measures such as VVPATs and automatic manual recounts could detect many kinds of

attacks, but they also increase the workload of election staffers. By purchasing machines

CHAPTER 3. ELECTRONIC VOTING MACHINES 129

without a VVPAT, officials could conveniently ensure that there would be no records to

audit.

• Even if Diebold had invested more in security, the system was likely too complex to be

secure. It may have been impossible to securely implement the features that customers

wanted at a price they could afford.

3.6.3 Certification and Testing

In most states, voting machines are purchased by individual counties. Though most county

voting officials are well intentioned, they usually lack the technical expertise necessary to

evaluate the vendors’ security claims. Even if they could obtain this expertise, the vendors

typically refused to provide the machines’ source code for examination before purchase, and

they sometimes invoked NDAs to prevent counties from allowing outside experts to inspect

their machines.

Due to these constraints, most counties have been forced to rely on federal and state

voting machine certification processes to ensure that the machines offered for sale are secure.

Yet, despite their very serious security flaws, the Diebold DREs were certified according to

federal and state standards. This demonstrates that the certification processes are deficient.

Analysis

The machines were tested and certified under the Federal Election Commission’s 2002 Vot-

ing System Standards [59]. These say relatively little about security and focus instead on

the machine’s reliability if used non-maliciously.

In general, the certification process seems to rely more on testing than analysis. Testing—

i.e., reviewing the system’s compliance with a checklist of specific measurable properties—is

appropriate for some properties of interest, such as reliability in the face of heat, cold, and

CHAPTER 3. ELECTRONIC VOTING MACHINES 130

vibration, but it is ill-suited for finding security problems. As discussed by Anderson [6]

and many others, testing can only show that a system works under specific, predefined

conditions; it generally cannot ensure that there is no way for an attacker to achieve some

goal by violating these conditions. Only a competent and thorough security analysis can

provide any confidence that the system can resist the full range of realistic attacks.

Some of the weaknesses we discovered highlight why this kind of testing is insufficient.

Consider the mechanical lock used to protect the memory card on the AV-TS. If the required

test was only the presence of a lock, the machine would have passed. Yet, as we discovered,

the lock is easily picked, nullifying its security.

A better requirement would have been that the machine have a strong lock. Yet, even

if we had not been able to pick the lock, it would still have been insecure, because the key

used in every machine was widely sold on the Internet [25].

An even better requirement would have been that the machine have a strong lock with

a proprietary key. However, even in this case, the AV-TS still would not have been secure.

Diebold’s online store displayed a picture of the key with sufficient clarity to allow it to be

duplicated by an attacker [61]. Finally, even if there were a strong lock with control of the

keys, one can just remove the screws in the base of the machine’s case to gain access to the

motherboard and replace the bootloader EPROM.

This example illustrates that testing to any sort of security checklist, however well spec-

ified, cannot anticipate every sort of attack. A far more effective way to identify problems

is to subject the system to adversarial inspection by independent analysts. The many secu-

rity problems identified in “certified ” voting machines by the studies in Section 3.5 are a

testament to this difference.

CHAPTER 3. ELECTRONIC VOTING MACHINES 131

Cause 3.3: Established Testing and Certification Processes
were Insufficient to Detect Security Problems
Though the Diebold machines were certified under Federal standards,

the certification process relied on “checklist”-style security testing, which

is insufficient to detect unanticipated kinds of attacks. A better certifica-

tion regime would subject the machines to adversarial security analysis

by truly independent third parties.

• Weak certification would be less of a problem if information about the system’s design

were more widely available to the public. Researchers and other experts would be able

to provide valuable feedback on voting machine designs if they had the information to

do so. Ideally, strong certification procedures would be coupled with public scrutiny to

provide the highest assurance.

• No amount of analysis or testing can guarantee that a system is secure. Conducting

trustworthy elections using computer voting machines may require designing the voting

system to be software independent [143]; that is, so that an undetected change or error

in the software cannot cause an undetectable change or error in an election outcome.

• The U.S. Election Assistance Commission issued voluntary voting system guidelines [168]

in 2005. These are considerably more detailed, especially in the area of security, than

the FEC’s 2002 standards. Though it would not be entirely fair to apply the 2005 guide-

lines to the pre-2005 version of the AccuVote software we studied, we do note that the

AccuVote hardware architecture may make it impossible to comply with the 2005 guide-

lines, in particular with the requirement to detect unauthorized modifications to the

system software (see [168], Volume I, Section 7.4.6). In practice, a technology can be

deployed despite noncompliance with certification requirements if the testing agencies

fail to notice the problem.

CHAPTER 3. ELECTRONIC VOTING MACHINES 132

3.7 Mitigation

The vulnerabilities that we have described can be mitigated, to some extent, by changing

voting machine designs and election procedures. In this section we discuss several potential

mitigation strategies and their limitations.

Logic and accuracy testing Logic and accuracy testing provides little defense against

software-based attacks. Malicious software running on the machines can detect whether of-

ficials are performing logic and accuracy tests and can force the machine to behave normally

until the testing completes.

Commercial virus scanners Commercially available virus scanners provide little defense

against the kinds of attacks described in this report. They normally are only able to recognize

PC viruses that have been observed in the wild on many computers. However, they cannot

detect new attacks never seen before, and they are not designed to detect virally propagating

malicious code that targets voting equipment and voting software.

Stricter chain-of-custody measures We are not optimistic that stricter chain-of-custody

controls will prove effective in addressing the vulnerabilities identified in this report. We

were not able to identify any realistic procedures that would ensure that voting equipment

and memory cards remain under two-person control at all times. Leaving voting machines

unattended overnight in a polling place breaks the chain of custody and creates an oppor-

tunity for an attacker to tamper with the machines. Sending voting equipment home with

the chief poll worker allows that person unsupervised access to the equipment; since in

many counties essentially any registered voter who volunteers can become a poll worker, it

is difficult to prevent an attacker from becoming a poll worker. Since it might take only one

compromised machine to spread a virus to all the county’s voting machines, the prospects

CHAPTER 3. ELECTRONIC VOTING MACHINES 133

for devising chain-of-custody rules that will meet the necessary level of perfection in practice

seem dim.

Tamper-evident seals We do not expect that tamper-evident seals will be effective at

detecting tampering with voting equipment while it has been left unattended. First, the

Diebold polling place equipment does not appear to have been designed to meet this threat

model. Investigators have identified several ways that a voter might be able to tamper with

an AV-TSX machine while in the process of voting [2]. Second, most, if not all, tamper-

evident seals have known vulnerabilities that could allow an attacker to break them and

then replace them or restore them to a condition where the tampering is unlikely to be

detected [88]. Third, it is challenging to devise protocols that make it likely that poll

workers will detect and respond appropriately to tampering; few poll workers have prior

training as a seal inspector, and it is not practical to provide the kind of training that would

be needed in the already-rushed training that poll workers receive. Fourth, the false alarm

rate (where seals are broken or unverifiable for innocuous, ordinary reasons) is so high that

election workers may become inured to these issues; it may be difficult to ensure that broken

seals are consistently taken seriously enough. Since it only takes one compromised machine

to infect the entire county’s voting machines, we do not believe that tamper-evident seals

can prevent introduction of virally propagating malicious code.

Forensics Forensics performed after election day may be helpful to determine the cause

and nature of attacks. However, procedures to govern forensic analysis should be in place

before any problems are detected. Viruses and other malicious software could be designed

to remove traces of their activities from the voting machines at the end of the election, so

workers need to collect and preserve evidence even before they suspect an attack. Ideally,

CHAPTER 3. ELECTRONIC VOTING MACHINES 134

some number of voting machines and memory cards should be randomly selected and set

aside, unused, so that any attack software present will be preserved for analysis.

Parallel testing Parallel testing is another partial mitigation to consider. It involves select-

ing a random sample of DRE machines, taking them aside, and running a mock election

on election day using the equipment. By preparing a known voting slate, one can compare

the results from those machines against the inputs that mock voters entered. Parallel tests

are one way to detect bugs or malice in DRE software, if the faulty software is widespread

enough that the random sample is likely to pick at least one DRE that exhibits incorrect

behavior.

The reliability of parallel testing at detecting malicious code appears to be open to

debate. The effectiveness of parallel testing is heavily dependent upon the details of how

the testing is done. If malicious software can distinguish when it is being tested from normal

operations, for instance by looking for mistakes that inexperienced voters would make but

officials performing tests would not, then the malicious software can evade detection by

behaving correctly when it is under test.

Ultimately, parallel testing becomes an arms race between attack designers and officials

who plan realistic parallel tests [24]. The defenders attempt to design testing procedures

that mimic real elections as closely as possible, while we must assume the attackers will

try to design methods to detect when they are being tested. It is not clear who has the

advantage in this race. The problem with this kind of arms race is that it is difficult to know

who is winning. Thus, there is a risk that an attacker might develop a secret way to defeat

parallel testing, leaving the defenders with a false sense of security about election integrity.

Voter-verifiable paper records One of the critical security mechanisms for the Diebold

voting system is the voter-verifiable paper trail created by some AV-TSX machines. The idea

CHAPTER 3. ELECTRONIC VOTING MACHINES 135

is that, in case an attacker manages to replace the certified software on the AV-TSX with

malicious software, the paper trail will provide a way to detect misbehavior by the malicious

software. Any strategy to mitigate the Diebold system’s technical problems must take into

account the limitations of the paper trail system.

Voter-verifiable paper records (paper ballots and VVPATs) are perhaps the best defense

against vote-stealing attacks; however, they may not be adequate to detect and recover from

attacks that change only a small number of votes. The design of the paper audit trail greatly

influences its effectiveness. Voters should be strongly encouraged to review the contents of

the VVPAT record and to report any discrepancies to poll workers. Discrepancies should be

logged and reported to election officials and centrally tracked on election day to monitor

for signs of a widespread problem.

VVPATs provide little defense against most kinds of denial-of-service attacks, since the

machines cannot print VVPAT records if they are not operational. Attackers may also target

the VVPAT directly, for instance, by programming the machine to exhaust the supply of

paper.

Changes to the high-level architecture Another potential approach that is worth inves-

tigating involves deploying two separate GEMS installations at county headquarters, a

permanent GEMS and a sacrificial GEMS. This setup reduces the bidirectional data flow

(see Section 3.4) that enables viruses to spread quickly through the voting system.

The permanent GEMS installation would be used for laying out the ballot, defining the

election, and writing to memory cards before the election. The sacrificial GEMS installation

would be used for reading memory cards, accumulating and tabulating results, and produc-

ing reports. The latter installation can be reformatted after the election and is never used

to write memory cards, so if it is infected by a virus, at least the virus will not be able to

spread to every other voting machine in the county.

CHAPTER 3. ELECTRONIC VOTING MACHINES 136

This architecture is motivated by the observation that the key step in the propagation

of the virus in Section 3.3.3 is when an infected central-office voting machine is used to

write many memory cards destined for the field, infecting all of them. This step is what

causes the virus to spread so rapidly. If we can ensure that no infected central-office voting

machine is ever used to write memory cards, then we can prevent the rapid viral spread of

Section 3.3.3.

Getting the details right is challenging. For instance, the memory cards must be erased

before they are reused with the permanent GEMS system in the next election. Yet, as we will

discuss in Section 4.7.3, removable memory cards are intelligent storage devices, containing

their own microprocessors and firmware, that may be subject to attack. It might be possible

for an adversary to reprogram a memory card—or create his own lookalike memory card—

that would pretend to be erased but actually still contain a malicious payload. For a more

complete analysis of the dual-GEMS approach, see [77].

Building a voting system that is secure by design Given the costs of designing a new

voting system, leaving the Diebold software largely unmodified and relying on procedural

changes to mitigate the threats that we describe may seem attractive to policymakers. We

consider this to be a risky approach, however, because we are not convinced that it is

possible to fully resolve the security problems in the Diebold system through procedural

means. We are concerned that, because the Diebold system is vulnerable in so many ways,

the procedures needed to protect it would be extensive, complex, and hard to follow. We

worry that despite the best efforts and intentions of election officials, the procedures would

not be followed perfectly every time and the system would sometimes be left open to attack.

As a result, we believe that rather than attempting to retrofit security onto a flawed system,

it is safer to re-engineer the Diebold system so that it is secure by design.

CHAPTER 3. ELECTRONIC VOTING MACHINES 137

Building a secure voting system requires making security a central part of the design

process from the start. It also demands the involvement of election administrators, expe-

rienced software architects and developers, and experts in software security and physical

security. Such a system would need to use design techniques appropriate for security-critical

systems, such as threat modeling, attack surface reduction, defense in depth, and privilege

separation. It would need to apply sound, generally accepted engineering practices for

secure software, including input validation, defensive programming, and security testing

and assessment. Designing a secure voting system is an expensive proposition that requires

a long-term commitment, but the ultimate benefit of doing so is increased confidence in the

electoral process.

3.8 Conclusion

Our study of the Diebold voting system found that it does not meet the requirements for a

security-critical system. It is built upon an inherently fragile design and suffers from imple-

mentation flaws that can expose the entire voting system to attacks. These vulnerabilities,

if exploited, could jeopardize the integrity of elections. An attack could plausibly be ac-

complished by a single skilled individual with temporary access to a single voting machine.

The damage could be extensive—malicious code could spread to every voting machine

in polling places and to county election servers. Even with a paper trail, malicious code

might be able to subtly influence close elections, and it could disrupt elections by causing

widespread equipment failure on election day.

Our analysis has led us to conclude that the design and implementation of the Diebold

software does not meet the requirements for a security-critical system. We identified a

number of systemic issues that were pervasive throughout the source code or that reflected

CHAPTER 3. ELECTRONIC VOTING MACHINES 138

flaws in the design of the voting system. We also found that the Diebold system’s code fails

to consistently follow sound, generally accepted engineering practices for secure software.

Electronic voting machines have their advantages, but experience with the Diebold

system and other DREs shows that they tend to be complex systems that are prone to

very serious vulnerabilities. Making them safe, given the limitations of today’s technology,

will require safeguards beginning with software-independent design and truly independent

security evaluation.

139

Chapter 4

Security Failures in On-the-Fly

Disk Encryption Software

Contrary to popular assumption, dynamic RAM (DRAM), the main memory used in most

modern computers, commonly retains its contents for several seconds after power is lost,

even at room temperature and even when removed from a motherboard. In this chapter,

we show how this phenomenon, called memory remanence, limits the ability of an operating

system to protect cryptographic key material against an attacker with physical access to a

machine, and we demonstrate how it can be exploited to defeat several popular on-the-fly

disk encryption systems.

Most security practitioners have assumed that a computer’s memory is erased almost

immediately when it loses power, or that whatever data remains is difficult to retrieve

without specialized equipment. We show that these assumptions are incorrect. Without

power, DRAM loses its contents gradually over a period of seconds, and data will persist

for minutes or even hours if the chips are kept at low temperatures. Residual data can be

CHAPTER 4. DISK ENCRYPTION SOFTWARE 140

recovered using simple, nondestructive techniques that require only momentary physical

access to the machine.

We present a suite of attacks that exploit DRAM remanence to recover cryptographic

keys held in memory. They pose a particular threat to laptop users who rely on disk en-

cryption products. An adversary who steals a laptop while an encrypted disk is mounted

could employ our attacks to access the contents, even if the computer is screen-locked or

suspended when it is stolen.

On-the-fly disk encryption software operates between the file system and the storage

driver, encrypting disk blocks as they are written and decrypting them as they are read. The

encryption key is typically protected with a password typed by the user at login. The key

needs to be kept available so that programs can access the disk; most implementations store

it in RAM until the disk is unmounted.

The standard argument for disk encryption’s security goes like this: As long as the

computer is screen-locked when it is stolen, the thief will not be able to access the disk

through the operating system; if the thief reboots or cuts power to bypass the screen lock,

memory will be erased and the key will be lost, rendering the disk inaccessible. Yet, as we

show, memory is not always erased when the computer loses power, and an attacker can

exploit this to learn the encryption key and decrypt the disk. We demonstrate this risk by

defeating five popular disk encryption systems—BitLocker, TrueCrypt, FileVault, LoopAES,

and dm-crypt—and we expect many similar products are also vulnerable.

Our attacks come in three variants of increasing resistance to countermeasures. The

simplest is to reboot the machine and launch a custom kernel with a small memory footprint

that gives the adversary access to the residual memory. A more advanced attack is to briefly

cut power to the machine, then restore power and boot a custom kernel; this deprives

the operating system of any opportunity to scrub memory before shutting down. An even

CHAPTER 4. DISK ENCRYPTION SOFTWARE 141

stronger attack is to cut the power, transplant the DRAM modules to a second PC prepared

by the attacker, and use it to extract their state. This attack additionally deprives the original

BIOS and PC hardware of any chance to clear the memory on boot.

If the attacker is forced to cut power to the memory for too long, the data will become

corrupted. We examine two methods for reducing corruption and for correcting errors in

recovered encryption keys. The first is to cool the memory chips prior to cutting power,

which dramatically prolongs data retention times. The second is to apply algorithms we

have developed for correcting errors in private and symmetric keys. These techniques can

be used alone or in combination.

While our principal focus is disk encryption, any sensitive data present in memory when

an attacker gains physical access to the system could be subject to attack. For example,

we found that Mac OS X leaves the user’s login password in memory, where we were

able to recover it. SSL-enabled web servers are vulnerable, since they normally keep in

memory private keys needed to establish SSL sessions. DRM systems may also face potential

compromise; they sometimes rely on software to prevent users from accessing keys stored

in memory, but attacks like the ones we have developed could be used to bypass these

controls.

It may be difficult to prevent all the attacks that we describe even with significant

changes to the way encryption products are designed and used, but in practice there are

a number of safeguards that can provide partial resistance. We suggest a variety of miti-

gation strategies ranging from methods that average users can employ today to long-term

software and hardware changes. However, each remedy has limitations and trade-offs, and

we conclude that there is no simple fix for DRAM remanence vulnerabilities.

We analyze the reasons why these failures occurred, and find two major causes. First,

implementing disk encryption secure is difficult, because standard PC architectures provide

CHAPTER 4. DISK ENCRYPTION SOFTWARE 142

running software no safe place to keep secrets that are in active use. Second, disk encryption

developers were unaware of the threats posed by the memory remanence phenomenon,

because this behavior was concealed by widely used abstractions and mental models about

computer operation. We also investigate whether the vendors’ incentives played a role in

reducing their products’ security, with inconclusive results.

4.1 Previous Work

Though our investigation was, to our knowledge, the first security study to focus on DRAM

data remanence and the first to demonstrate how it can be used to conduct practical attacks

against real disk encryption systems, we were not the first to suggest that data in DRAM

might survive reboots or that this might have security implications. Hints that memory

behavior did not fit the widely held mental models can be found in the literature going back

more than thirty years. Why did it take so long for the mainstream security community to

assimilate these fundamental facts about how computers operate? We will return to this

question in Section 4.7. For now, before presenting our new results, we will briefly review

the state of knowledge about data remanence prior to February 2008.

Among electrical engineering circles, it has known since at least the 1970s that DRAM

cell contents survive to some extent even at room temperature and that retention times can

be increased by cooling. In a 1978 experiment [103], a DRAM showed no data loss for a

full week without refresh when cooled with liquid nitrogen.

The first mention we can find in the computer security literature comes from Ander-

son [6], who briefly discusses remanence in his 2001 book:

[A]n attacker can . . . exploit . . . memory remanence, the fact that many kinds of com-

puter memory retain some trace of data that have been stored there. . . . [M]odern

CHAPTER 4. DISK ENCRYPTION SOFTWARE 143

RAM chips exhibit a wide variety of memory remanence behaviors, with the worst of

them keeping data for several seconds even at room temperature. . .

Anderson cites Skorobogatov [158], who found significant data retention times with

static RAMs at room temperature. Our results for modern DRAMs show even longer reten-

tion in some cases.

Anderson’s main focus is on “burn-in" effects that occur when data is stored in RAM

for an extended period. Gutmann [70, 71] also examines “burn-in,” which he attributes

to physical changes that occur in semiconductor memories when the same value is stored

in a cell for a long time. Accordingly, Gutmann suggests that keys should not be stored

in one memory location for longer than several minutes. Our findings concern a different

phenomenon: the remanence effects we have studied occur in modern DRAMs even when

data is stored only momentarily. These effects do not result from the kind of physical

changes that Gutmann described, but rather from the capacitance of DRAM cells.

We owe the suggestion that modern DRAM contents can survive cold boot to Petters-

son [131], who seems to have obtained it from Chow, Pfaff, Garfinkel, and Rosenblum [34].

Pettersson suggested that remanence across cold boot could be used to acquire forensic

memory images and obtain cryptographic keys, although he did not experiment with the

possibility. Chow et al. discovered this property in the course of an experiment on data

lifetime in running systems. While they did not exploit the property, they remark on the

negative security implications of relying on a reboot to clear memory.

In a recent presentation, MacIver [106] stated that Microsoft considered memory re-

manence attacks in designing its BitLocker disk encryption system. He acknowledged that

BitLocker is vulnerable to having keys extracted by cold-booting a machine when it is used

in “basic mode” (where the encrypted disk is mounted automatically without requiring a

user to enter any secrets), but he asserted that BitLocker is not vulnerable in “advanced

CHAPTER 4. DISK ENCRYPTION SOFTWARE 144

modes” (where a user must provide key material to access the volume). He also discussed

cooling memory with dry ice to extend the retention time. MacIver apparently has not

published on this subject.

Other methods for obtaining memory images from live systems include using privileged

software running under the host operating system [172], or using DMA transfer on an

external bus [52], such as PCI [32], mini-PCI, Firewire [22, 47, 48], or PC Card. Unlike

these techniques, our attacks do not require access to a privileged account on the target

system, they do not require specialized hardware, and they are resistant to operating system

countermeasures. Sophisticated tools have been developed for analyzing memory images,

regardless of the acquisition method [175].

The intelligence community may well be aware of the attacks we describe here, but we

were unable to find any publications acknowledging this. A 1991 NSA report entitled “A

Guide to Understanding Data Remanence in Automated Information Systems” (the “Forest

Green Book”) makes no mention of remanence in RAM, discussing only remanence on other

storage media such as tapes and disks [118].

4.2 DRAM Remanence

A DRAM cell is essentially a capacitor that encodes a single bit when it is charged or dis-

charged [149, 71]. Over time, charge leaks out, and eventually the cell will lose its state,

or, more precisely, it will decay to its ground state, either zero or one depending on how the

cell is wired. To forestall this decay, each cell must be refreshed, meaning that the capacitor

must be recharged to hold its value—this is what makes DRAM “dynamic.” Manufacturers

specify a maximum refresh interval—the time allowed before a cell is recharged—that is

typically on the order of a few milliseconds. These times are chosen conservatively to ensure

extremely high reliability for normal computer operations where even infrequent bit errors

CHAPTER 4. DISK ENCRYPTION SOFTWARE 145

Memory Type Chip Maker Memory Density Make/Model Year

A SDRAM Infineon 128Mb Dell Dimension 4100 1999
B DDR Samsung 512Mb Toshiba Portégé 2001
C DDR Micron 256Mb Dell Inspiron 5100 2003
D DDR2 Infineon 512Mb IBM T43p 2006
E DDR2 Elpida 512Mb IBM x60 2007
F DDR2 Samsung 512Mb Lenovo 3000 N100 2007

Table 4.1—Test Systems We experimented with six test systems (designated A–F) that encom-
pass a range of recent DRAM architectures and circuit densities.

can cause problems, but, in practice, a failure to refresh any individual DRAM cell within

this time has only a tiny probability of actually destroying the cell’s contents.

We conducted a series of experiments to characterize DRAM remanence effects and

better understand the security properties of modern memories. We performed trials using

PC systems with different memory technologies, as shown in Table 4.1. These systems

included models from several manufacturers and ranged in age from 9 years to 6 months.

In each experiment, we filled representative memory regions with a pseudorandom test

pattern, and read back the data after suspending refreshes for varying periods of time by

cutting power to the machine. We measured the error rate for each sample as the number

of bit errors (the Hamming distance from the pattern we had written) divided by the total

number of bits. Fully decayed memory would have an error rate of approximately 50%,

since half the bits would match by chance.

Decay at operating temperature Our first tests measured the decay rate of each ma-

chine’s memory under normal operating temperature, which ranged from 25.5 ◦C to 44.1 ◦C.

We found that the decay curves from different machines had similar shapes, with an initial

period of slow decay, followed by an intermediate period of rapid decay, and then a final

period of slow decay, as shown in Figure 4.1.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 146

Seconds
Without Power

Average Error Rates (%)

(No Cooling) (−50 ◦C)

A
60 41 [no errors]

300 50 0.000095

B
360 50 [no errors]

600 50 0.000036

C
120 41 0.00105
360 42 0.00144

D
40 50 0.025
80 50 0.18

Table 4.2—Cooling
Prolongs Remanence
We measured DRAM er-
ror rates for systems A–D
after different intervals
without power, first at
normal operating tem-
peratures (no cooling)
and then at a reduced
temperature of −50 ◦C.
Decay occurred much
more slowly under the
colder conditions.

The dimensions of the decay curves varied considerably between machines, with the

fastest exhibiting complete data loss in approximately 2.5 seconds and the slowest taking

over a minute. Newer machines tended to exhibit a shorter time to total decay, possibly

because newer chips have higher density circuits with smaller cells that hold less charge,

but even the shortest times were long enough to enable some of our attacks. While some

attacks will become more difficult if this trend continues, manufacturers may attempt to

increase retention times to improve reliability or lower power consumption.

Decay at reduced temperature Colder temperatures are known to increase data reten-

tion times [103, 6, 183, 71, 159, 158]. We performed another series of tests to measure

these effects. On machines A–D, we loaded a test pattern into memory, and, with the com-

puter running, cooled the memory module to approximately −50 ◦C. We then cut power to

the machine and maintained this temperature until power and refresh were restored. As

expected, we observed significantly slower rates of decay under these reduced temperatures

(see Table 4.2). On all of our test systems, the decay was slow enough that an attacker who

cut power for 1 minute would recover at least 99.9% of bits correctly.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 147

0 50 100 150
0

5

10

15

20

25

30

35

40

45

50

Seconds without Power

%
 D

ec
ay

A Data
A Fit
C Data
C Fit

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Seconds without Power

%
 D

ec
ay

B Data
B Fit
F Data
F Fit

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

45

50

Seconds without Power

%
 D

ec
ay

D Data
D Fit
E Data
E Fit

Figure 4.1—DRAM Decay Curves
We measured DRAM decay curves for
the six test systems. These reflect the
average number of bits in a pseudoran-
dom test pattern that changed value
after a given interval without power.
Data and fits are shown here for ma-
chines A and C (top), B and F (mid-
dle), and D and E (bottom). All memo-
ries were running at normal operating
temperature—i.e., without any special
cooling. Note that graphs are at differ-
ent scales.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 148

As an extreme test of memory cooling, we performed another experiment using liquid

nitrogen as an additional cooling agent. We first cooled the memory module of machine A

to −50 ◦C using the “canned air” product. We then cut power to the machine, and quickly

removed the DRAM module and placed it in a canister of liquid nitrogen. We kept the

memory module submerged in the liquid nitrogen for 60 minutes, then returned it to the

machine. We measured only 14,000 bit errors within a 1 MB test region (0.17% decay).

This suggests that, even in modern memory modules, data may be recoverable for hours or

days with sufficient cooling.

Decay patterns and predictability We observed that the DRAMs we studied tended to

decay in highly nonuniform patterns. While these patterns varied from chip to chip, they

were very predictable in most of the systems we tested. Figure 4.2 shows the decay in one

memory region from machine A after progressively longer intervals without power.

There seem to be several components to the decay patterns. The most prominent is a

gradual decay to the “ground state” as charge leaks out of the memory cells. In the DRAM

shown in Figure 4.2, blocks of cells alternate between a ground state of 0 and a ground

state of 1, resulting in the series of horizontal bars. Other DRAM models and other regions

within this DRAM exhibited different ground states, depending on how the cells are wired.

We observed a small number of cells that deviated from the “ground state” pattern, pos-

sibly due to manufacturing variation. In experiments with 20 or 40 runs, a few “retrograde”

cells (typically ∼ 0.05% of memory cells, but larger in a few devices) always decayed to

the opposite value of the one predicted by the surrounding ground state pattern. An even

smaller number of cells decayed in different directions across runs, with varying probabili-

ties.

Apart from their eventual states, the order in which different cells decayed also appeared

to be highly predictable. At a fixed temperature, each cell seems to decay after a consistent

CHAPTER 4. DISK ENCRYPTION SOFTWARE 149

Figure 4.2—Visualizing Remanence and Decay We loaded a bitmap image into memory on
test machine A, then cut power for varying intervals. After 5 seconds (top left), the image is nearly
indistinguishable from the original; it gradually becomes more degraded, as shown after 30 seconds,
60 seconds, and 5 minutes. Even after this longest trial, traces of the original remain. Note patterns
due to ground states (horizontal bands) and physical variations in the chip (fainter vertical bands).

CHAPTER 4. DISK ENCRYPTION SOFTWARE 150

length of time without power. The relative order in which the cells decayed was largely

fixed, even as the decay times were changed by varying the temperature. This may also be

a result of manufacturing variations, which result in some cells leaking charge faster than

others.

To visualize this effect, we captured degraded memory images, including those shown

in Figure 4.2, after cutting power for intervals ranging from 1 second to 5 minutes, in

1 second increments. We combined the results into a video. Each test interval began with

the original image freshly loaded into memory. We might have expected to see a large

amount of variation between frames, but instead, most bits appear stable from frame to

frame, switching values only once, after the cell’s decay interval. The video also shows that

the decay intervals themselves follow higher order patterns, likely related to the physical

geometry of the DRAM.

BIOS footprints and memory wiping Even if memory contents remain intact while power

is off, the system BIOS may overwrite portions of memory when the machine boots. In the

systems we tested, the BIOS overwrote only relatively small fractions of memory with its

own code and data, typically a few megabytes concentrated around the bottom of the

address space.

On many machines, the BIOS can perform a destructive memory check during its Power-

On Self Test (POST). Most of the machines we examined allowed this test to be disabled or

bypassed (sometimes by enabling an option called “Quick Boot”).

On other machines, mainly high-end desktops and servers that support ECC memory, we

found that the BIOS cleared memory contents without any override option. ECC memory

must be set to a known state to avoid spurious errors if memory is read without being

initialized [15], and we believe many ECC-capable systems perform this wiping operation

whether or not ECC memory is installed.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 151

ECC DRAMs are not immune to retention effects, and an attacker could transfer them

to a non-ECC machine that does not wipe its memory on boot. Indeed, ECC memory could

turn out to help the attacker by making DRAM more resistant to bit errors.

4.3 Tools and Attacks

Extracting residual memory contents requires no special equipment. When the system is

powered on, the memory controller immediately starts refreshing the DRAM, reading and

rewriting each bit value; at this point, the values are fixed, decay halts, and programs

running on the system can read any residual data using normal memory-access instructions.

One challenge is that booting the system will necessarily overwrite some portions of

memory. While we observed in our tests that the BIOS typically overwrote only a small

fraction of memory, loading a full operating system would be very destructive. One solution

is to use tiny special-purpose programs that, when booted from either a warm or cold reset

state, copy the memory contents to some external medium with minimal disruption to the

original state.

Our memory-imaging tools make use of several different attack vectors to boot a system

and extract the contents of its memory. For simplicity, each saves memory images to the

medium from which it was booted.

PXE network boot Most modern PCs support network booting via Intel’s Preboot Execu-

tion Environment (PXE) [84], which provides rudimentary startup and network services.

We implemented a tiny (9 KB) standalone application that can be booted via PXE and whose

only function is streaming the contents of system RAM via a UDP-based protocol. Since PXE

provides a universal API for accessing the underlying network hardware, the same binary

image will work unmodified on any PC system with PXE support. In a typical attack setup,

CHAPTER 4. DISK ENCRYPTION SOFTWARE 152

a laptop connected to the target machine via an Ethernet crossover cable runs DHCP and

TFTP servers as well as a simple client application for receiving the memory data. We have

extracted memory images at rates up to 300 Mb/s (around 30 seconds for a 1 GB RAM)

with gigabit Ethernet cards.

USB drives Alternatively, most PCs can boot from an external USB device such as a USB

hard drive or flash device. We implemented a small (10 KB) plug-in for the SYSLINUX

bootloader [9] that can be booted from an external USB device or a regular hard disk.

It saves the contents of system RAM into a designated data partition on this device. We

succeeded in dumping 1 GB of RAM to a flash drive in approximately 4 minutes.

EFI boot Some recent computers, including all Intel-based Macintosh computers, imple-

ment the Extensible Firmware Interface (EFI) instead of a PC BIOS. We have also imple-

mented a memory dumper as an EFI netboot application. We have achieved memory extrac-

tion speeds up to 136 Mb/s, and we expect it will be possible to increase this throughput

with further optimizations.

iPods We have installed memory imaging tools on an Apple iPod (which behaves like a

USB disk) so that it can be used to covertly capture memory dumps without impacting its

functionality as a music player. This provides a plausible way to conceal the attack in the

wild.

An attacker could use tools like these in a number of ways, depending on his level

of access to the system and the countermeasures employed by hardware and software.

The simplest attack is to reboot the machine and configure the BIOS to boot the memory

extraction tool. A warm boot, invoked with the operating system’s restart procedure, will

normally ensure that refresh is not interrupted and the memory has no chance to decay,

CHAPTER 4. DISK ENCRYPTION SOFTWARE 153

Figure 4.3—Advanced Cold-
Boot Attack An advanced
cold-boot attack involves reduc-
ing the temperature of the mem-
ory chips while the computer
is still running, then physically
moving them to another ma-
chine that the attacker has con-
figured to read them without
overwriting any data. Before
powering off the computer, the
attacker can spray the chips with
“canned air,” holding the con-
tainer in an inverted position
so that it discharges cold liquid
refrigerant instead of gas (top).
This cools the chips to around
−50 ◦C (middle). At this temper-
ature, the data will persist for
several minutes after power loss
with minimal error, even if the
memory modules are removed
from the computer (bottom).

CHAPTER 4. DISK ENCRYPTION SOFTWARE 154

though software will have an opportunity to wipe sensitive data. A cold boot, initiated using

the system’s restart switch or by briefly removing power, may result in a small amount of

decay, depending on the memory’s retention time, but denies software any chance to scrub

memory before shutting down.

Even if an attacker cannot force a target system to boot memory extraction tools, or if

the target employs countermeasures that erase memory contents during boot, an attacker

with sufficient physical access can transfer the memory modules to a computer he controls

and use it to extract their contents. Cooling the memory before powering it off slows the

decay sufficiently to allow it to be transplanted with minimal data loss. Widely-available

“canned air” dusters, usually containing a compressed fluorohydrocarbon refrigerant, can

easily be used for this purpose. When the can is discharged in an inverted position, as

shown in Figure 4.3, it dispenses its contents in liquid form instead of as a gas. The rapid

drop in pressure inside the can lowers the temperature of the discharge, and the subsequent

evaporation of the refrigerant causes a further chilling. By spraying the contents directly

onto memory chips, we can cool their surfaces to −50 ◦C and below. If the DRAM is cooled

to this temperature before power is cut, and kept cold, we can achieve nearly lossless data

recovery even after the chip is out of the computer for several minutes.

4.4 Attacking Cryptographic Keys

The attacker’s task is more complicated when the memory is partially decayed, since there

may be errors in the cryptographic keys he extracts, but we find that attacks can remain

practical. We have developed algorithms for correcting errors in symmetric and private keys

that can efficiently reconstruct keys when as few as 27% of the bits are known, depending

on the type of key. We have also developed methods for automatically locating keys in

potentially decayed memory.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 155

The naïve approach to key error correction, a brute-force search over keys with a low

Hamming distance from the decayed key that was retrieved from memory, is computation-

ally burdensome even with a moderate amount of unidirectional error. For 128-bit keys at

a 10% unidirectional error, the expected number of keys to be searched is more than 256.

Our algorithms achieve significantly better performance by considering data other than

the raw form of the key. Most encryption programs speed up computation by storing data

precomputed from the encryption keys—for block ciphers, this is most often a key schedule,

with subkeys for each round; for RSA, this is an extended form of the private key which in-

cludes the primes p and q and several other values derived from d. This data contains much

more structure than the key itself, and we can use this structure to efficiently reconstruct

the original key even in the presence of errors.

These results imply an interesting trade-off between efficiency and security. All of the

disk encryption systems we studied (see Section 4.5) precompute key schedules and keep

them in memory for as long as the encrypted disk is mounted. While this practice saves

some computation for each disk block that needs to be encrypted or decrypted, we find that

it greatly simplifies key recovery attacks.

Our approach to key reconstruction has the advantage that it is completely self-contained,

in that we can recover the key without having to test the decryption of ciphertext. The data

derived from the key, and not the decoded plaintext, provides a certificate of the likelihood

that we have found the correct key.

We have found it useful to adopt terminology from coding theory. We may imagine that

the expanded key schedule forms a sort of error correcting code for the key, and the problem

of reconstructing a key from memory may be recast as the problem of finding the closest

code word (valid key schedule) to the data once it has been passed through a channel that

has introduced bit errors.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 156

Modeling the decay Our experiments showed that almost all memory bits tend to decay

to predictable ground states, with only a tiny fraction flipping in the opposite direction. In

describing our algorithms, we assume, for simplicity, that all bits decay to the same ground

state. (They can be implemented without this requirement, assuming that the ground state

of each bit is known.)

If we assume we have no knowledge of the decay patterns other than the ground state,

we can model the decay with the binary asymmetric channel, in which the probability of a 1

flipping to 0 is some fixed δ0 and the probability of a 0 flipping to a 1 is some fixed δ1.

In practice, the probability of decaying to the ground state approaches 1 as time goes on,

while the probability of flipping in the opposite direction remains relatively constant and

tiny (less than 0.1% in our tests). The ground state decay probability can be approximated

from recovered key schedules by counting the fraction of 1s and 0s, assuming that the

original key schedule contained roughly equal proportions of each value.

We also observed that bits tended to decay in a predictable order that could be learned

over a series of timed decay trials, although the actual order of decay appeared fairly random

with respect to location. An attacker with the time and physical access to run such a series

of tests could easily adapt any of the approaches in this section to take this order into

account and improve the performance of the error-correction. Ideally such tests would be

able to replicate the conditions of the memory extraction exactly, but knowledge of the

decay order combined with an estimate of the fraction of bit flips is enough to give a very

good estimate of an individual decay probability of each bit. This probability can be used

in our reconstruction algorithms to prioritize guesses.

For simplicity and generality, we will analyze the algorithms assuming no knowledge of

this decay order.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 157

4.4.1 Reconstructing DES Keys

We begin with a relatively simple application of these ideas: an error-correction technique

for DES keys. Before software can encrypt or decrypt data with DES, it must expand the

secret key K into a set of round keys that are used internally by the cipher. The set of round

keys is called the key schedule; since it takes time to compute, programs typically cache it

in memory as long as K is in use. The DES key schedule consists of 16 round keys, each a

permutation of a 48-bit subset of bits from the original 56-bit key. Every bit from the key is

repeated in about 14 of the 16 round keys.

In coding theory terms, we can treat the DES key schedule as a repetition code: the

message is a single bit, and the corresponding codeword is a sequence of n copies of this

bit.

We begin with a partially decayed DES key schedule. For each bit of the key, we consider

the n bits extracted from memory that were originally all identical copies of that key bit.

Since we know roughly the probability that each bit decayed 0 → 1 or 1 → 0, we can

calculate whether the extracted bits were more likely to have resulted from the decay of

reptitions of 0 or repetitions of 1.

If 5% of the bits in the key schedule have decayed to the ground state, the probability

that this technique will get any of the 56 bits of the key wrong is less than 10−8. Even if 25%

of the bits in the key schedule are in error, the probability that we can correctly reconstruct

the key without resorting to a brute force search is more than 98%.

This technique can be trivially extended to correct errors in Triple DES keys. Triple DES

applies the same key schedule algorithm to two or three 56-bit key components (depending

on the version of Triple DES). With 50% decay under our model, we can correctly decode

a 112-bit Triple DES key with at least 97% probability and a 168-bit key with at least 96%

probability.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 158

4.4.2 Reconstructing AES Keys

AES is a more modern cipher than DES, and it uses a key schedule with a more complex

structure, but nevertheless we can efficiently reconstruct keys. For 128-bit keys, the AES

key schedule consists of 11 round keys, each made up of four 32-bit words. The first round

key is equal to the key itself. Each subsequent word of the key schedule is generated either

by XORing two earlier words, or by performing an operation called the key schedule core

(in which the bytes of a word are rotated and each byte is mapped to a new value) on an

earlier word and XORing the result with another earlier word.

Instead of trying to correct an entire key at once, we can examine a smaller set of the

bits at a time and then combine the results. This separability is enabled by the high amount

of linearity in the key schedule. Consider a “slice” of the first two round keys consisting of

byte i from words 1–3 of the first two round keys, and byte i − 1 from word 4 of the first

round key (see Figure 4.4). This slice is 7 bytes long, but is uniquely determined by the

4 bytes from the first round key.

Our algorithm exploits this fact as follows. For each possible set of 4 key bytes, we

generate the relevant 3 bytes of the next round key, and we order these possibilities by the

likelihood that these 7 bytes might have decayed to the corresponding bytes extracted from

memory. Now we may recombine four slices into a candidate key, in order of decreasing

likelihood. For each candidate key, we calculate the key schedule. If the likelihood of this

key schedule decaying to the bytes we extracted from memory is sufficiently high, we output

the corresponding key.

When the decay is largely unidirectional, this algorithm will almost certainly output a

unique guess for the key. This is because a single flipped bit in the key results in a cascade

of bit flips through the key schedule, half of which are likely to flip in the “wrong” direction.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 159

Figure 4.4—Error Correction for AES Keys In the AES-128 key schedule, four bytes from
each round key completely determine three bytes of the next round key, as shown here. Our error
correction algorithm “slices” the key into four groups of bytes with this property. It computes a list
of likely candidate values for each slice, then checks each combination to see if it is a plausible key.

Our implementation of this algorithm is able to reconstruct keys with 7% of the bits

decayed in a fraction of a second. It succeeds within 30 seconds for about half of keys with

15% of bits decayed.

This idea can be extended to 256-bit keys by dividing the words of the key into two

sections—words 1–3 and 8, and words 4–7, for example—then comparing the words of

the third and fourth round keys generated by the bytes of these words and combining the

result into candidate round keys to check.

4.4.3 Reconstructing Tweak Keys

The same methods can be applied to reconstruct keys for tweakable encryption modes [104],

which are commonly used in disk encryption systems.

LRW LRW augments a block cipher E (and key K1) by computing a “tweak” X for each

data block and encrypting the block using the formula EK1
(P ⊕ X)⊕ X . A tweak key K2 is

used to compute the tweak, X = K2⊗ I , where I is the logical block identifier. The operations

⊕ and ⊗ are performed in the finite field GF(2128).

CHAPTER 4. DISK ENCRYPTION SOFTWARE 160

In order to speed tweak computations, implementations commonly precompute multi-

plication tables of the values K2 x i mod P, where x is the primitive element and P is an

irreducible polynomial over GF(2128) [90]. In practice, Qx mod P is computed by shifting

the bits of Q left by one and possibly XORing with P.

Given a value K2 x i, we can recover nearly all of the bits of K2 simply by shifting right

by i. The number of bits lost depends on i and the nonzero elements of P. An entire

multiplication table will contain many copies of nearly all of the bits of K2, allowing us to

reconstruct the key in much the same way as the DES key schedule.

As an example, we apply this method to reconstruct the LRW key used by the TrueCrypt

4 disk encryption system. TrueCrypt 4 precomputes a 4048-byte multiplication table con-

sisting of 16 blocks of 16 lines of 4 words of 4 bytes each. Line 0 of block 14 contains the

tweak key.

The multiplication table is generated line by line from the LRW key by iteratively apply-

ing the shift-and-XOR multiply function to generate four new values, and then XORing all

combinations of these four values to create 16 more lines of the table. The shift-and-XOR

operation is performed 64 times to generate the table, using the irreducible polynomial

P = x128+ x7+ x2+ x + 1. For any of these 64 values, we can shift right i times to recover

128− (8+ i) of the bits of K2, and use these recovered values to reconstruct K2 with high

probability.

XEX and XTS For XEX [144] and XTS [82] modes, the tweak for block j in sector I is

X = EK2
(I)⊗ x j, where I is encrypted with AES and x is the primitive element of GF(2128).

Assuming the key schedule for K2 is kept in memory, we can use the AES key reconstruction

techniques to reconstruct the tweak key.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 161

4.4.4 Reconstructing RSA Private Keys

An RSA public key consists of the modulus N and the public exponent e, while the private

key consists of the private exponent d and several optional values: prime factors p and q of

N , d mod (p− 1), d mod (q− 1), and q−1 mod p. Given N and e, any of the private values is

sufficient to efficiently generate the others. In practice, RSA implementations store some or

all of these values to speed computation.

In this case, the structure of the key information is the mathematical relationship be-

tween the fields of the public and private key. It is possible to iteratively enumerate potential

RSA private keys and prune those that do not satisfy these relationships. Subsequent to our

initial publication, Heninger and Shacham [78] showed that this leads to an algorithm that

is able to recover in seconds an RSA key with all optional fields when only 27% of the bits

are known.

4.4.5 Automatically Identifying Keys in Memory

After extracting the memory from a running system, an attacker needs some way to locate

the cryptographic keys. This is like finding a needle in a haystack, since the keys might

occupy only tens of bytes out of gigabytes of data. Simple approaches, such as attempting

decryption using every block of memory as the key, are intractable if the memory contains

even a small amount of decay.

We have developed fully automatic techniques for locating encryption keys in memory

images, even in the presence of errors. We target the key schedule instead of the key itself,

searching for blocks of memory that satisfy the properties of a valid key schedule.

Although previous approaches to key recovery do not require a key schedule to be

present in memory, they have other practical drawbacks that limit their usefulness for our

purposes. Shamir and van Someren [154] conjecture that keys have higher entropy than the

CHAPTER 4. DISK ENCRYPTION SOFTWARE 162

other contents of memory and claim that they should be distinguishable by a simple visual

test. However, even perfect copies of memory often contain large blocks of random-looking

data (e.g., compressed files). Pettersson [131] suggests locating program data structures

containing key material based on the range of likely values for each field. This approach

requires the manual derivation of search heuristics for each cryptographic application, and

it is not robust to memory errors.

We propose the following algorithm for locating scheduled AES keys in extracted mem-

ory:

1. Iterate through each byte of memory. Treat that address as the start of an AES key

schedule.

2. Calculate the Hamming distance between each word in the potential key schedule and

the value that would have been generated from the surrounding words in a real, unde-

cayed key schedule.

3. If the sum of the Hamming distances is sufficiently low, the region is close to a correct

key schedule; output the key.

We implemented this algorithm for 128- and 256-bit AES keys in an application called

keyfind. The program receives extracted memory and outputs a list of likely keys. It

assumes that key schedules are contiguous regions of memory in the byte order used in the

AES specification; this can be adjusted for particular cipher implementations. A threshold

parameter controls how many bit errors will be tolerated. We apply a quick test of entropy

to reduce false positives.

As described Section 4.5, we successfully used keyfind to recover keys from closed-

source disk encryption programs without having to reverse engineer their key data struc-

tures. In other tests, we even found key schedules that were partially overwritten after the

memory where they were stored was reallocated.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 163

This approach can be applied to many other ciphers, including DES. A similar method

works to identify the precomputed multiplication tables used for advanced cipher modes

like LRW (see Section 4.4.3). To locate RSA keys, we can search for known key data or

for characteristics of the standard data structure used for storing RSA private keys; we

successfully located the SSL private keys in memory extracted from a computer running

Apache 2.2.3 with mod_ssl. For details, see [75].

4.5 Attacking Disk Encryption Software

Encrypting hard drives is an increasingly common countermeasure against data theft, and

many users assume that disk encryption products will protect sensitive data even if an at-

tacker has physical access to the machine. A California law adopted in 2002 [30] requires

disclosure of possible compromises of personal information, but offers a safe harbor when-

ever data was “encrypted.” Though the law does not include any specific technical standards,

many observers have recommended the use of full-disk or file system encryption to obtain

the benefit of this safe harbor. (At least 38 other states have enacted data breach notification

legislation [119].) Our results below suggest that disk encryption, while valuable, is not

necessarily a sufficient defense.

We have applied some of the tools developed in this chapter to attack popular on-the-

fly disk encryption systems. The most time-consuming parts of these tests were generally

developing system-specific attacks and setting up the encrypted disks. Actually imaging

memory and locating keys took only a few minutes and were almost fully automated by our

tools. We expect that most disk encryption systems are vulnerable to such attacks.

BitLocker BitLocker, which is included with some versions of Windows Vista, operates

as a filter driver that resides between the file system and the disk driver, encrypting and

CHAPTER 4. DISK ENCRYPTION SOFTWARE 164

decrypting individual sectors on demand. The keys used to encrypt the disk reside in RAM,

in scheduled form, for as long as the disk is mounted.

In a paper released by Microsoft, Ferguson [64] describes BitLocker in enough detail

for us both to discover the roles of the various keys and to program an independent imple-

mentation of the BitLocker encryption algorithm without reverse engineering any software.

BitLocker uses the same pair of AES keys to encrypt every sector on the disk: a sector pad

key and a CBC encryption key. These keys are, in turn, indirectly encrypted by the disk’s

master key. To encrypt a sector, the plaintext is first XORed with a pad generated by en-

crypting the byte offset of the sector under the sector pad key. Next, the data is fed through

two diffuser functions, which use a Microsoft-developed algorithm called Elephant. The

purpose of these un-keyed functions is solely to increase the probability that modifications

to any bits of the ciphertext will cause unpredictable modifications to the entire plaintext

sector. Finally, the data is encrypted using AES in CBC mode using the CBC encryption key.

The initialization vector is computed by encrypting the byte offset of the sector under the

CBC encryption key.

We have created a fully-automated demonstration attack called BitUnlocker. It consists

of an external USB hard disk containing Linux, a custom SYSLINUX-based bootloader, and

a FUSD [56] filter driver that allows BitLocker volumes to be mounted under Linux. To use

BitUnlocker, one first cuts the power to a running Windows Vista system, connects the USB

disk, and then reboots the system off of the external drive. BitUnlocker then automatically

dumps the memory image to the external disk, runs keyfind on the image to determine

candidate keys, tries all combinations of the candidates (for the sector pad key and the CBC

encryption key), and, if the correct keys are found, mounts the BitLocker encrypted volume.

Once the encrypted volume has been mounted, one can browse it like any other volume

CHAPTER 4. DISK ENCRYPTION SOFTWARE 165

in Linux. On a modern laptop with 2 GB of RAM, we found that this entire process took

approximately 25 minutes.

BitLocker differs from other disk encryption products in the way that it protects the

keys when the disk is not mounted. In its default “basic mode,” BitLocker protects the

disk’s master key solely with the Trusted Platform Module (TPM) found on many modern

PCs. This configuration, which may be quite widely used [64], is particularly vulnerable

to our attack, because the disk encryption keys can be extracted with our attacks even if

the computer is powered off for a long time. When the machine boots, the keys will be

automatically loaded into RAM from the TPM before the login screen, without the user

having to enter any secrets.

It appears that Microsoft is aware of this problem [106] and recommends configuring

BitLocker in “advanced mode,” where it protects the disk key using the TPM along with

a password or a key on a removable USB device. However, even with these measures,

BitLocker is vulnerable if an attacker gets to the system while the screen is locked or the

computer is asleep (though not if it is hibernating or powered off).

FileVault Apple’s FileVault disk encryption software has been examined and reverse-

engineered in some detail [177]. In Mac OS X 10.4, FileVault uses 128-bit AES in CBC

mode. A user-supplied password decrypts a header that contains both the AES key and a

second key k2 used to compute IVs. The IV for a disk block with logical index I is computed

as HMAC-SHA1k2
(I).

We used our EFI memory imaging program to extract a memory image from an Intel-

based Macintosh system with a FileVault volume mounted. Our keyfind program automati-

cally identified the FileVault AES key, which did not contain any bit errors in our tests.

With the recovered AES key but not the IV key, we can decrypt 4080 bytes of each 4096

byte disk block (all except the first AES block). The IV key is present in memory. Assuming

CHAPTER 4. DISK ENCRYPTION SOFTWARE 166

no bits in the IV key decay, an attacker can identify it by testing all 160-bit substrings of

memory to see whether they create a plausible plaintext when XORed with the decryption

of the first part of the disk block. The AES and IV keys together allow full decryption of the

volume using programs like vilefault [178].

In the process of testing FileVault, we discovered that Mac OS X 10.4 and 10.5 keep mul-

tiple copies of the user’s login password in memory, where they are vulnerable to imaging

attacks. Login passwords are often used to protect the default keychain, which may protect

passphrases for FileVault disk images.

TrueCrypt TrueCrypt is a popular open-source disk encryption product for the Windows,

Mac OS, and Linux platforms. It supports a variety of ciphers, including AES, Serpent, and

Twofish. In version 4, all ciphers used LRW mode; in version 5, they use XTS mode (see

Section 4.4.3). TrueCrypt stores a cipher key and a tweak key in the volume header for each

disk, which is then encrypted with a separate key derived from a user-entered password.

We tested TrueCrypt versions 4.3a and 5.0a running on a Linux system. We mounted

a volume encrypted with a 256-bit AES key, then briefly cut power to the system and used

our memory imaging tools to record an image of the retained memory data. In both cases,

our keyfind program was able to identify the 256-bit AES encryption key, which did not

contain any bit errors. For TrueCrypt 5.0a, keyfind was also able to recover the 256-bit AES

XTS tweak key without errors.

To decrypt TrueCrypt 4 disks, we also need the LRW tweak key. We observed that

TrueCrypt 4 stores the LRW key in the four words immediately preceding the AES key

schedule. In our test memory image, the LRW key did not contain any bit errors. (Had

errors occurred, we could have recovered the correct key by applying the techniques we

developed in Section 4.4.3.)

CHAPTER 4. DISK ENCRYPTION SOFTWARE 167

dm-crypt Linux kernels starting with 2.6 include built-in support for dm-crypt, an on-the-

fly disk encryption subsystem. The dm-crypt subsystem handles a variety of ciphers and

modes, but defaults to 128-bit AES in CBC mode with non-keyed IVs.

We tested a dm-crypt volume created and mounted using the LUKS (Linux Unified Key

Setup) branch of the cryptsetup utility and kernel version 2.6.20. The volume used the

default AES-CBC format. We briefly powered down the system and captured a memory

image with our PXE kernel. Our keyfind program identified the correct 128-bit AES key,

which did not contain any bit errors. After recovering this key, an attacker could decrypt

and mount the dm-crypt volume by modifying the cryptsetup program to allow input of

the raw key.

Loop-AES Loop-AES is an on-the-fly disk encryption package for Linux systems. In its

recommended configuration, it uses a so-called “multi-key-v3” encryption mode, in which

each disk block is encrypted with one of 64 encryption keys. By default, it encrypts sectors

with AES in CBC mode, using an additional AES key to generate IVs.

We configured an encrypted disk with Loop-AES version 3.2b using 128-bit AES encryp-

tion in “multi-key-v3” mode. After imaging the contents of RAM, we applied our keyfind

program, which revealed the 65 AES keys. An attacker could identify which of these keys

correspond to which encrypted disk blocks by performing a series of trial decryptions. Then,

the attacker could modify the Linux losetup utility to mount the encrypted disk with the

recovered keys.

Loop-AES attempts to guard against the long-term memory burn-in effects described by

Gutmann [71] and others. For each of the 65 AES keys, it maintains two copies of the key

schedule in memory, one normal copy and one with each bit inverted. It periodically swaps

these copies, ensuring that every memory cell stores a 0 bit for as much time as it stores

a 1 bit. Not only does this fail to prevent the memory remanence attacks that we describe

CHAPTER 4. DISK ENCRYPTION SOFTWARE 168

here, but it also makes it easier to identify which keys belong to Loop-AES and to recover

the keys in the presence of memory errors. After recovering the regular AES key schedules

using a program like keyfind, the attacker can search the memory image for the inverted

key schedules. Since very few programs maintain both regular and inverted key schedules

in this way, those keys are highly likely to belong to Loop-AES. Having two related copies

of each key schedule provides additional redundancy that can be used to identify which bit

positions are likely to contain errors.

4.6 Countermeasures and their Limitations

Memory remanence attacks are difficult to prevent because cryptographic keys in active

use must be stored somewhere. Potential countermeasures focus on discarding or obscuring

encryption keys before an adversary might gain physical access, preventing memory extrac-

tion software from executing on the machine, physically protecting the DRAM chips, and

making the contents of memory decay more readily.

Suspending a system safely Simply locking the screen of a computer (i.e., keeping the

system running but requiring entry of a password before the system will interact with the

user) does not protect the contents of memory. Suspending a laptop’s state to RAM (“sleep-

ing”) is also ineffective, even if the machine enters a screen-locked state on awakening, since

an adversary could simply awaken the laptop, power-cycle it, and then extract its memory

state. Suspending to disk (“hibernating”) may also be ineffective unless an externally held

secret is required to decrypt the disk when the system is awakened.

With most disk encryption systems, users can protect themselves by powering off the

machine completely when it is not in use then guarding the machine for a minute or so until

the contents of memory have decayed sufficiently. Though effective, this countermeasure

CHAPTER 4. DISK ENCRYPTION SOFTWARE 169

is inconvenient, since the user will have to wait through the lengthy boot process before

accessing the machine again.

Suspending can be made safe by requiring a password or other external secret to

reawaken the machine and encrypting the contents of memory under a key derived from

the password. If encrypting all of memory is too expensive [34], the system could encrypt

only those pages or regions containing important keys. An attacker might still try to guess

the password and check his guesses by attempting decryption (an offline password-guessing

attack), so systems should encourage the use of strong passwords and employ password

strengthening techniques [23] to make checking guesses slower. Some existing systems,

such as Loop-AES, can be configured to suspend safely in this sense, although this is usually

not the default behavior [14].

Storing keys differently Our attacks show that using precomputation to speed crypto-

graphic operations can make keys more vulnerable, because redundancy in the precom-

puted values helps the attacker reconstruct keys in the presence of memory errors. To

mitigate this risk, implementations could avoid storing precomputed values, instead recom-

puting them as needed and erasing the computed information after use. This improves

resistance to memory remanence attacks but can carry a significant performance penalty.

(These performance costs are negligible compared to the access time of a hard disk, but disk

encryption is often implemented on top of disk caches that are fast enough to make them

matter.)

Implementations could transform the key as it is stored in memory in order to make

it more difficult to reconstruct in the case of errors. This problem has been considered

from a theoretical perspective; Canetti et al. [31] define the notion of an exposure-resilient

function (ERF) whose input remains secret even if all but some small fraction of the output

CHAPTER 4. DISK ENCRYPTION SOFTWARE 170

is revealed. This carries a performance penalty because of the need to reconstruct the key

before using it.

Physical defenses It may be possible to physical defend memory chips from being re-

moved from a machine, or to detect attempts to open a machine or remove the chips and

respond by erasing memory. In the limit, these countermeasures approach the methods

used in secure coprocessors [51] and could add considerable cost to a PC. However, a

small amount of memory soldered to a motherboard would provide moderate defense for

sensitive keys and could be added at relatively low cost.

Architectural changes Some countermeasures involve changes to the computer’s archi-

tecture that might make future machines more secure. DRAM systems could be designed

to lose their state quickly, though this might be difficult given the need to keep the proba-

bility of decay within a DRAM refresh interval vanishingly small. Key-store hardware could

be added—perhaps inside the CPU—to store a few keys securely while erasing them on

power-up, reset, and shutdown. Some proposed architectures would routinely encrypt the

contents of memory for security purposes [102, 100, 50]; these would prevent the attacks

we describe as long as the keys are reliably destroyed on reset or power loss.

Encrypting in the disk controller Another approach is to perform encryption in the disk

controller rather than in software running on the main CPU and to store the key in the

controller’s memory instead of the PC’s DRAM. In a basic form of this approach, the user

supplies a secret to the disk at boot, and the disk controller uses this secret to derive a

symmetric key that it uses to encrypt and decrypt the disk contents [151].

For this method to be secure, the disk controller must erase the key from its memory

whenever the computer is rebooted. Otherwise, an attacker could reboot into a malicious

CHAPTER 4. DISK ENCRYPTION SOFTWARE 171

kernel that simply reads the disk contents. For similar reasons, the key must also be erased

if an attacker attempts to transplant the disk to another computer.

While we leave an in-depth study of encryption in the disk controller to future work,

we did perform a cursory test of two hard disks with this capability, the Seagate Momentus

5400 FDE.2 and the Hitachi 7K200. We found that they do not appear to defend against

the threat of transplantation. We attached both disks to a PC and confirmed that every time

we powered on the machine, we had to enter a password via the BIOS in order to decrypt

the disks. However, once we had entered the password, we could disconnect the disks’

SATA cables from the motherboard (leaving the power cables connected), connect them to

another PC, and read the disks’ contents on the second PC without having to re-enter the

password.

Trusted computing Trusted Computing hardware, in the form of Trusted Platform Mod-

ules (TPMs) [166] is now deployed in some personal computers. Though useful against

some attacks, most TPMs deployed in PCs today do not prevent the attacks described here.

Such hardware generally does not perform bulk data encryption itself; instead, it moni-

tors the boot process to decide (or help other machines decide) whether it is safe to store

a key in RAM. If a software module wants to safeguard a key, it can arrange that the

usable form of that key will not be stored in RAM unless the boot process has gone as ex-

pected [106]. However, once the key is stored in RAM, it is subject to our attacks. Today’s

TPMs can prevent a key from being loaded into memory for use, but they cannot prevent it

from being captured once it is in memory.

In some cases using a TPM can make the problem worse. BitLocker, in its default “basic

mode,” protects the disk keys solely with Trusted Computing hardware. When the machine

boots, BitLocker automatically loads the keys into RAM from the TPM without requiring the

user to enter any secrets. Unlike other disk encryption systems we studied, this configuration

CHAPTER 4. DISK ENCRYPTION SOFTWARE 172

is at risk even if the computer has been shut down for a long time—the attacker needs only

power on the machine to have the keys loaded back into memory, where they are vulnerable

to our attacks.

4.7 Causes of Disk Encryption Security Failures

At this point we understand the threat posed to disk encryption by memory remanence

attacks. What remains is to understand the reasons why these vulnerabilities occurred and

why they went undiscovered. Our analysis is informed by the remarkable facts that every

disk encryption system we studied was vulnerable to such attacks, and that nearly every

vendor we contacted was caught off guard by the severity of the problem; the causes must

run deeper than any particular implementation.

This section examines several contributing causes that apply to all disk encryption soft-

ware. These fall into three groups. First, we discuss deficiencies in the architecture of most

PCs, which fail to give software any place to securely store secrets while they are in use.

Second, we focus on the incentives that motivated the different vendors. Third, we consider

the role of abstractions, which, though an indispensable engineering tool, have the ability to

conceal details of the computer’s operation that can impact its security. These causes point

to other kinds of systems that may be vulnerable to similarly widespread but undiscovered

attacks, and they reveal important lessons for broader security contexts.

4.7.1 Architectural Deficiencies

One design feature shared by all the systems we studied is that they retain the encryption

key or keys in main memory for as long as the computer is running with the encrypted disk

mounted. Discarding the key would be undesirable, since it would have to be reconstructed

from user input the next time any software needed to access the encrypted data. Under this

CHAPTER 4. DISK ENCRYPTION SOFTWARE 173

constraint, there is no obviously better place to store the key than in main memory, since

most PCs provide no secure place for software to store secrets that are in active use.

Analysis

Other than main memory, there are only a few places in typical PCs where software might

store the key. We will consider several of them: registers, the CPU cache, other external

memories, a TPM, the disk itself, or remotely on a network. Each has significant drawbacks.

Placing the key on the hard disk is not an adequate defense, of course. One of the threats

we wish to protect against is an attacker with physical access to the disk.

Peripheral memories, such as the hard disk’s internal cache or the graphics card’s on-

board RAM, are another possibility, but when these devices are removable, we face the

threat that an attacker could transfer them to a machine he controls without cutting power.

The key will be vulnerable unless the devices detect that they have been removed and

immediately erase it.1 Furthermore, these memories can be vulnerable to attacks using

DMA, which allows them to be read over Firewire and other buses [22].

Storing the key on a remote network device also seems insufficient. The computer needs

some way to authenticate to the device, and whatever authentication mechanism is used

faces the same challenge of safeguarding a secret from the attacker.

TPMs are a more promising possibility, since they have the ability to store a key so that

it will be accessible only to the original operating system kernel running on the original

machine. However, while TPM hardware is becoming widespread, it is not ubiquitous.

Furthermore, as we have already discussed, today’s TPMs do not provide bulk encryption

capabilities, so the key must be loaded from the TPM before it can be used; this is a very slow

operation compared to main memory accesses, taking on the order of a second [166]. One

1 Using graphics memory (or other RAM) soldered to the motherboard would make this attack much harder,
though an attacker might still cool and desolder the chips.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 174

solution would be to transfer the key from the TPM when it is needed and to discard it after

some period of inactivity. Unfortunately, this creates a window of vulnerability, particularly

if the attacker can force the key to be loaded into memory by triggering disk activity (e.g.,

by sending network traffic or attaching a new peripheral).

CPU registers and caches are more both promising solutions, since they are fast, tightly

integrated into the processor, and erased on boot. With registers, the challenge is to isolate

the key from unprivileged software running on the machine, which might leak it or overwrite

it. With caches, the system would need to prevent the key from ever being evicted or written

into main memory. A cache-based solution is under development by Jürgen Pabel [126].

Unfortunately, it requires disabling normal operation of the CPU cache for one core, which

may cause too severe a performance penalty for some applications.

All these potential solutions face another threat that may be more difficult to surmount

than poor performance. In this chapter so far, we have focused on attackers who seek to

extract the contents of main memory, but attackers may also be able to alter data stored

there while the system is running. Govindavajhala and Appel introduced attacks against

virtual machines based on introducing random memory faults by exposing DRAM chips

to intense heat and light [69]. An attacker might be able to make controlled changes

using methods similar to our cold boot attack—suspending the system to RAM, cooling

the DRAM modules, transplanting them to another machine, writing to them there, then

returning them to the original PC and resuming execution. A simpler approach, but one

that may be easier for software to defend against, is to rewrite parts of RAM using DMA

requests from an external device. Boileau has demonstrated this attack using Firewire [22].

An adversary who can rewrite the contents of RAM could replace parts of the system

kernel and other privileged code. He could thereby extract any secret accessible to the

CHAPTER 4. DISK ENCRYPTION SOFTWARE 175

running kernel—including keys stored in TPMs, registers, or CPU caches—or he could

simply unlock the system and access the disk directly.

Cause 4.1: Software has no place to securely store secrets
while they are in use
In today’s PCs, an attacker with physical access to a machine can read

(and potentially modify) the contents of main memory. By leveraging

these capabilities, the attacker can access any state that is accessible to

applications or the operating system.

Implications

• If we relax our threat model and suppose that attackers can read but not write main

memory, we can provide a secure data store with the addition of a single special-purpose

CPU register. The register would need to be large enough to store an encryption key,

accessible only to the OS kernel, and guaranteed to be discarded when the processor

resets. The OS could leverage this capability to provide an API for applications to

store their secrets, which, encrypted by the OS with this key, could be stored in regular

registers and RAM. This would be an effective countermeasure against attackers who

can read, but not write, main memory; however, an attacker who could modify the

memory of the running system could inject code that would cause the OS to decrypt

secrets thus protected.

• A more complete solution would be to provide memory confidentiality and integrity by

adding cryptography to the processor, as we discussed in Section 4.6. In some ways,

this would be simple. Key management would be trivial, since the CPU could choose

a random key on boot and discard it on reset. It would then use this key to MAC and

encrypt each cache line as it was evicted from the cache, and to decrypt and verify

CHAPTER 4. DISK ENCRYPTION SOFTWARE 176

each cache line read back in. Providing full encryption and integrity verification at the

speed of the memory bus might be a challenging performance problem, but it could be

accomplished at some cost with the addition of dedicated cryptographic circuitry.

4.7.2 Vendor Incentives

In previous chapters, we observed that differences in incentives between system vendors and

other parties contributed to security failures. Were similar factors at work here? To answer

this question, we compare the behavior of disk encryption vendors who faced different

kinds of incentives. We divide the vendors into two groups: (1) Microsoft and Apple, which

are large companies that integrated disk encryption features into their operating system

products; (2) the developers of Loop-AES, dm-crypt, and TrueCrypt, which are open source

projects, primarily run by volunteers and given away for free, with an exclusive focus

on providing security. These groups are motivated by greatly dissimilar incentives, so if

incentives contributed to some of the security failures, we would expect to see differences

between the impact of the problem on the products from each groups of vendors.

Analysis

One hypothesis is that incentives are most strongly aligned between users and developers

when the product’s primary purpose is security. When this is the case, there is intense

competitive pressure for the vendor to implement its product securely. Customers can easily

switch to a competing product, and many will do so if there is a major security failure.

On the other hand, the hypothesis continues, in cases where the disk encryption system is

simply a component of an operating system, the incentives for security are weaker. Security

failures will not necessarily drive customers to use a different OS. They select an operating

system on the basis of a basket of features, and once they have selected one OS, lock-in

CHAPTER 4. DISK ENCRYPTION SOFTWARE 177

makes it expensive for them to move to an alternative. Instead, most dissatisfied customers

will buy a third-party disk encryption product rather than a different OS.

We find some evidence to support this theory in differences between the way Microsoft

approached memory remanence attacks and the way the Loop-AES developers did. Mi-

crosoft was aware of memory remanence when it designed BitLocker (though they seem

not to have realized how easily the phenomenon could be exploited). Nevertheless, they

implemented “basic mode” in a way that amplifies its vulnerability, and they designed the

more secure “advanced modes” in a way that is difficult for users to configure. Furthermore,

the company did not communicate the relative risks of each mode to their customers clearly.

On the other hand, the developers of Loop-AES took steps to defend against residual key

data being recovered from memory, but they had an incomplete understanding of the physi-

cal effects involved. As we discussed in Section 4.6, their defense ended up aggravating the

problem rather than mitigating it.

Arguably, Loop-AES did their best to defend against the memory attacks as they under-

stood them, while Microsoft knew better but made things worse. Though differences in

incentives might explain these behaviors, the remaining products do not seem to fit the

pattern. Comparing the failures of TrueCrypt and dm-crypt with the failure of Apple’s Fil-

eVault, we find that they failed in essentially identical ways; none of the vendors involved

seem to have been aware of memory vulnerabilities, and none attempted to defend against

them. Thus, we are hesitant to draw a general conclusion about the role of incentives in

disk encryption security failures.

A competing explanation for Microsoft’s failure to communicate the risks of these attacks

to its customers has to do with widely held perceptions about physical attacks. When we

initially disclosed these vulnerabilities to Microsoft, their support representative dismissed

our concerns, pointing to the company’s “10 Immutable Laws of Security”: “Law #3: If

CHAPTER 4. DISK ENCRYPTION SOFTWARE 178

a bad guy has unrestricted physical access to your computer, it’s not your computer any-

more.” [110]. Of course, protecting data from theft by an adversary who has physical access

to the storage medium is the primary purpose of disk encryption! Perhaps this “Immutable

Law” led Microsoft’s user interface designers and documentation writers to take defenses

against remanence attacks less seriously, even though other employees at the company did

understand their importance.

This knee-jerk reaction reflects a bias in parts of the security community against dealing

with physical threats. This attitude is certainly not universal; there have been efforts to

produce physically tamper-resistant systems in a number of contexts, including military and

financial applications [160], DRM [166], smart cards [95], and mobile devices. Neverthe-

less, many people seem to regard efforts to defend against physical attacks as futile. Further

evidence comes from Slashdot commentors’ responses to a story about our memory rema-

nence attacks: “It’s a common tenant [sic.] in systems security that anyone with physical

access and sufficient time can disable or otherwise bypass any security system. ... Likewise,

software security means nothing if the hardware is vulnerable” [124]. “If the attacker has

physical control over the machine, the game is ... lost” [117]. Physical attacks seem to

be discounted because defending against them is hard, but this is not an excuse to ignore

them.

4.7.3 Abstractions and Security

These memory remanence attacks came a surprise to many in the computer security com-

munity, including many experts in the disk encryption field. I personally disclosed them to

the CTO of a major security firm that produced a disk encryption product; his jaw dropped.

The developers of all the products we tested appear to have been caught off guard—even

CHAPTER 4. DISK ENCRYPTION SOFTWARE 179

if they were cognizant of the remanence phenomenon, they seem not to have been aware

of the ease with which it can be exploited.

Yet not everyone was surprised. On another occasion, I mentioned these findings to the

president emeritus of a semiconductor firm, who happened to have been one of the first

DRAM designers. Of course memory behaves this way, he said, scolding me for suggesting

that remanence and the means to recovery residual data had been unknown. With marked

frustration, he told me that manufacturers could easily have made memory that decayed

almost immediately, but that nobody had ever specified this requirement.

What happens to RAM during a reboot is a basic aspect of computer behavior. How could

it have been unknown for so long to so many people who needed to know—especially when

it was well known in other parts of the computing field? The answers have to do with the

way engineering fields are structured and the tools that engineers use to reason about

complex behaviors.

Analysis

Abstraction is a critical tool in many engineering disciplines, including computer science.

We use it to compartmentalize the complex behavior of different parts of a system. Some

abstractions are formal specifications of behavior passed up from lower levels (e.g. APIs)

or passed down from higher levels (e.g. system requirements). Others are informal mental

models that more loosely describe component behaviors. Without such abstractions, it

would be impossible to make sense of a computer’s behavior.

Abstractions, formal and informal, are useful expedients for understanding complex

systems and necessary tools for achieving cooperation among different system components.

Unfortunately, they sometimes mask attributes of behavior that turn out to have dire security

implications. For example, we often think about TCP connections as if they were telephone-

CHAPTER 4. DISK ENCRYPTION SOFTWARE 180

like circuits to a remote end point. However, low-level details of TCP’s operation make

it susceptible to attacks like packet injection [16], which poorly fit the telephone analogy.

Hash functions are another example. We often think of them abstractly as if they were

random oracles, but hash functions based on the popular Merkle-Damgård construction are

subject to length extension attacks [115], whereby the attacker who knows the hash of a

message can derive the hash of the message concatenated with a chosen suffix. In both

cases, anticipating and defending against the attacks requires opening the “black box” of

the abstraction and understanding the lower level implementational details.

The idea that a PC’s memory is erased as soon as the machine is powered off is a similar

kind of informal abstraction. Users quickly come to understand that a power interruption

destroys their unsaved data. Like the prevalent mental models for TCP and hash functions,

this understanding is accurate enough for many scenarios, where developers are chiefly

concerned about reliability and data loss. As we have seen, it is not quite accurate, but it

fails only in a few cases such as security against physical attacks. As a result, most people

never investigated the details of memory’s behavior that made our attacks possible, and

the inaccurate intuitions they carried over from everyday experience with data loss mislead

them into believing their systems were secure.

Cause 4.2: Abstractions concealed security-critical behavior
Disk encryption developers built systems that depended on DRAM con-

tents being erased during a cold reboot because they relied on an abstrac-

tion about memory behavior. While accurate enough for most software

development scenarios, the intuition that memory is erased as soon as

it loses power ignores phenomena that turn out to be critical in some

security contexts.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 181

Implications

• Abstraction-related security failures highlight a lack of communication between the

developers of different layers of a system. It may be tempting to blame developers of

lower level components for not adequately documenting behaviors that are important to

security at higher levels, but the problem runs in both directions. Application designers

need to do a better job specifying the behaviors that the OS and hardware must provide

in order for the entire system to be secure.

• These communication failures are exacerbated by a lack of communication between

engineering disciplines. Memory remanence has been understood in the semiconductor

community for decades, but it proved shocking to many security experts. Likewise, the

semiconductor community seems to have been caught off guard by applications’ reliance

on memory volatility for security. We tend to erect abstractions at the boundaries be-

tween disciplines in order to separate the responsibilities of experts in each field. These

divisions are reinforced by differences in terminology, course work, and publication

venues within different fields. The best antidote may be to require a broad education

for engineering students. Merely understanding programming or circuit design is not

enough—students need to understand the behavior of higher and lower level systems

in order to achieve security.

• Other abstractions may also conceal vulnerabilities. By generalizing this lesson, we can

anticipate security failures in different contexts where widely held abstractions mask

important aspects of component behavior.

For example, programmers usually think of the CPU as executing commands in the

instruction set (e.g., x86) in which it is programmed, but many modern CPUs first

translate the instructions into a lower level microcode. Attacks may be possible that

CHAPTER 4. DISK ENCRYPTION SOFTWARE 182

exploit errors in the translation process or that reprogram the CPU via microcode updates

to induce insecure behavior.

Another example concerns nonvolatile storage. Many in the computer field think of

modern storage devices as if they were floppy disk drives—unintelligent hardware sup-

porting simple seeks, reads, and writes. In reality, many of today’s storage devices,

such as hard disks, solid-state drives, and compact flash cards are separate computers,

containing their own processors and programmable firmware. Subverting this firmware

could lead to a variety of attacks. A number of potential attacks involve programming the

compromised disk to respond differently to commands under different circumstances.

For instance, they might pretend to obey erasure commands while secretly retaining

sensitive data where an attacker could later access it; they might return a benign file

when read by a virus scanner but return malicious code when read by a program loader;

or they might insert the adversary’s login information when the password file is read at

a predetermined attack time. Many additional attacks are conceivable.

We hope to investigate these potential attacks and other abstraction-related failures in

future work.

• These findings highlight the value of security as an independent subfield within com-

puter science. Attackers are not confined by divisions between academic interest areas,

and mounting a strong defense requires a top-to-bottom view. As its own young subfield,

computer security has the potential to bridge the discipline’s entrenched abstractions

and seek to understand computers and their use at all levels, from silicon to social

institutions.

CHAPTER 4. DISK ENCRYPTION SOFTWARE 183

4.8 Conclusions

Contrary to common belief, DRAMs hold their values for surprisingly long intervals without

power or refresh. We show that this fact enables attackers to extract cryptographic keys and

other sensitive information from memory despite the operating system’s efforts to secure

memory contents. The attacks we describe are practical—for example, we have used them

to defeat several popular disk encryption systems. These results imply that disk encryption

on laptops, while beneficial, does not guarantee protection.

In recent work, Chan et al. [33] demonstrate a dangerous extension to our attacks. They

show how to reset a running computer, surgically alter its memory, and then restore the

machine to its previous running state. This allows the attacker to defeat a wide variety of

security mechanisms—including disk encryption, screen locks, and antivirus software—by

tampering with data in memory before reanimating the machine. This attack can potentially

compromise data beyond the local disk; for example, it can be executed quickly enough

to bypass a locked screen before any active VPN connections time out. Though it appears

that this attack would be technically challenging to execute, it illustrates that memory’s

vulnerability to physical attacks presents serious threats that security researchers are only

beginning to understand.

There seems to be no easy remedy for memory remanence attacks. Ultimately, it might

become necessary to treat DRAM as untrusted and to avoid storing sensitive data there, but

this will not be feasible until architectures are changed to give running software a safe place

to keep secrets.

184

Chapter 5

Conclusion

In this dissertation, we investigated the security of a variety of different systems and discov-

ered that they all suffered from serious vulnerabilities. The severity and prevalence of these

problems paint a grim portrait of security in contemporary computer systems. They might

lead some to conclude, pessimistically, that attack research is destined to remain little more

than a game of security whack-a-mole, correcting an endless stream of flaws one bug at a

time.

Though security problems are likely to remain a fact of life, we find reasons to be

hopeful about research’s potential to mitigate them. Rather than merely exposing flaws, our

investigations carry lessons much broader than the individual faults we discovered. In this

way, the study of security failures can have a multiplicative impact, improving security far

beyond the systems it examines.

We have already seen several classes of broader benefits from our research. It has

brought about significant changes in the ways the systems we studied are used. Record

labels recalled the dangerous CD-DRM systems, several states decertified the brittle DRE

voting machines, and many users reconsidered the trust they placed in disk encryption sys-

tems. It has altered implementers’ understanding of the threats they need to defend against,

CHAPTER 5. CONCLUSION 185

establishing DRM as a potential security risk to users’ PCs, proving that e-voting machines

are susceptible to viral attacks, and demonstrating that physical attacks on memory are a

practical attack vector. It has motivated new research directions in response to these threats,

such as the development of machine-assisted election auditing [29], which applies technol-

ogy to strengthen elections without forcing us to trust that technology, and the creation of

cryptographic primitives that are more secure against cold-boot attacks [4]. Clearly, the

flaws we exposed have resulted in security gains that are more fundamental than mere bug

fixes.

Studying security failures can also shed light on the reasons why these problems occur.

Our analyses have pointed to a number of generalizable factors—facts about technologies,

patterns of behavior, etc.—that apply to systems well beyond those we studied. Examples

include CD-DRM’s losing battle against the convergence of the PC and the CD player, sys-

temic problems with electronic voting machine certification, and the PC architecture’s lack

of a secure place for software to store secrets while they are in use. Future systems must

avoid these pitfalls in order to be secure.

Though drawing lessons like these is a time-honored practice in security research, we

have argued that the results have been weakened by the lack of a uniform approach to

learning from failures. We have proposed a new methodology to serve this role, which we

call the analytic approach to security research. Our approach coordinates the search for

security failures with the search for informative causes, factors that explain why failures

occurred and can help head off other problems in the future. This conceptual framework

helps to partially systematize (perhaps, to “civilize”) the process of learning from failures.

In this dissertation we applied it to our past work, and we found that it organized and honed

the lessons we drew and helped us expose new lessons.

CHAPTER 5. CONCLUSION 186

The greatest potential benefit of applying a more uniform approach to learning from

failures in different systems is that it can expose patterns of causes that are common across

dissimilar systems. Stepping back and examining these clusters of causes can carry deep

lessons for all security. Three overarching themes are apparent:

• Incentives play a powerful role in shaping security-critical behaviors—DRM vendors

took risky and aggressive actions because they were insulated from liability, voting

machine vendors focused on features instead of strong security because of heightened

pressure to bring products to market quickly. Understanding incentives may suggest

nontechnical approaches for improving security—imposing liability for failures, reduc-

ing risky mismatches in incentives among parties, avoiding creating inflated incentives

to skimp on security.

• Intuitions about the behavior of systems can be misleading, masking security dangers—

contrary to widespread beliefs, audio CDs can be an attack vector, electronic voting

machines are more similar to PCs than to mechanical voting machines, and memory

does not lose its contents immediately upon losing power. This may be a valuable

template for discovering other security failures; searching for similar misunderstandings

in unrelated systems will likely reveal other kinds of vulnerabilities.

• Tension between conflicting goals leads to security trade-off. Sometimes different kinds

of security are in conflict (e.g., stronger DRM versus stronger PC security), sometimes

security conflicts with system complexity (e.g., strengthened voting machines versus

administrative convenience and attractive UIs), and sometimes security conflicts with

performance (e.g., faster disk encryption versus heightened vulnerability to remanence

attacks). Security is almost never free, but understanding the costs involved helps us

make informed decisions about how much security to buy, and it helps focus our efforts

on reducing those costs.

CHAPTER 5. CONCLUSION 187

The analytic methodology that we have proposed and applied in this dissertation pro-

vides a starting point for systematizing the understanding of security failures, but much

remains to be done. Despite numerous attempts to devise systematic approaches for dis-

covering failures and causes, none is widely accepted, and these remain largely creative

exercises. While it seems unlikely that they can ever become fully mechanical, they would

surely be practiced more widely and consistently if formal techniques proved effective. For

the most part, our methodology operates at a higher level, providing a structure for direct-

ing and organizing investigations rather than a roadmap. Though we have found it to be

a promising tool, it still needs to be validated through further experience in other investi-

gations. The proof of the pudding, as they say, is in the eating. If we can demonstrate the

usefulness of these techniques in our own future work, we hope that they will be the basis

for a stronger consensus within the research community about how we should learn from

security failures.

Thus, we conclude optimistically that we are on the road to better security. Investigating

how systems fail helps us understand the reasons why they fail, and this ultimately teaches

us how to build stronger systems. By developing and applying new approaches to learning

from failures, we can transform security problems into opportunities for discovery.

188

Bibliography

[1] Analysis. In Wiktionary, May 2009.

[2] R. P. Abbot, M. Davis, J. Edmonds, L. Florer, E. Proebstel, B. Porter, and J. Stauffer.
Security evaluation of the Diebold voting system. Part of the California Secretary of
State’s Top-to-Bottom Voting Systems Review, July 2007.

[3] R. Abbott, J. Chin, J. Donnelley, W. Konigsford, S. Tokubo, and D. Webb. Security
analysis and enhancements of computer operating systems. NBSIR 76–1041, ICET,
National Bureau of Standards, Washington, DC, Apr. 1976.

[4] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In TCC, volume 5444 of Lecture Notes in
Computer Science, pages 474–495. Springer, 2009.

[5] R. Anderson. Why cryptosystems fail. In Proc. 1st ACM conference on Computer and
Communications Security, pages 215–227, 1993.

[6] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. Wiley, Jan. 2001.

[7] R. Anderson. Why information security is hard: An economic perspective. In Proc.
17th Annual Computer Security Applications Conference, Washington, DC, 2001.

[8] R. Anderson and M. Kuhn. Tamper resistance – A cautionary note. In Proc. Second
Usenix Workshop on Electronic Commerce, pages 1–11, Nov. 1996.

[9] H. P. Anvin. SYSLINUX. Online at http://syslinux.zytor.com/.

[10] A. W. Appel, M. Ginsburg, H. Hursti, B. W. Kernighan, C. D. Richards, and G. Tan.
Insecurities and inaccuracies of the Sequoia AVC Advantage 9.00H DRE voting ma-
chine, Oct. 2008.

[11] W. Arbaugh, D. Farber, and J. Smith. A secure and reliable bootstrap architecture.
In Proc. IEEE Symp. on Security and Privacy, pages 65–71, May 1997.

http://syslinux.zytor.com/

BIBLIOGRAPHY 189

[12] T. Aslam and E. H. Spafford. Use of a taxonomy of security faults. In Proc. 19th
National Information Systems Security Conference, Baltimore, Maryland, 1996.

[13] J. Baker. An Enhanced CD survival guide. Online at http://www.cdman.com/pdf/
ecd.pdf.

[14] A. Bar-Lev. Linux, Loop-AES and optional smartcard based disk encryption, Nov.
2007. Online at http://wiki.tuxonice.net/EncryptedSwapAndRoot.

[15] P. Barry and G. Hartnett. Designing Embedded Networking Applications: Essential
Insights for Developers of Intel IXP4XX Network Processor Systems, page 47. Intel Press,
first edition, May 2005.

[16] S. Bellovin. A look back at “Security problems in the TCP/IP protocol suite”. In Proc.
20th Computer Security Applications Conference, pages 229–249, 2004.

[17] S. M. Bellovin. Security problems in the TCP/IP protocol suite. SIGCOMM Comput.
Commun. Rev., 19(2):32–48, 1989.

[18] P. Biddle, P. England, M. Peinado, and B. Willman. The Darknet and the future of
content distribution. In Proc. 2002 ACM Workshop on Digital Rights Management,
Nov. 2002.

[19] R. Bisbey and D. Hollingworth. Protection analysis: Final report. Technical Re-
port ISI/SR-75–4, University of Southern California Information Sciences Institute,
Marina Del Rey, CA, Dec. 1978.

[20] J. Bishop and R. LaRhette. Managing human performance—INPO’s human perfor-
mance evaluation system. In Proc. IEEE Conference on Human Factors and Power
Plants, pages 471–474, Jun 1988.

[21] M. Blaze, A. Cordero, S. Engle, C. Karlof, N. Sastry, M. Sherr, T. Stegers, and K.-P. Yee.
Source code review of the Sequoia voting system. Part of the California Secretary of
State’s Top-to-Bottom Voting Systems Review, July 2007.

[22] A. Boileau. Hit by a bus: Physical access attacks with Firewire. Presentation, Ruxcon,
2006.

[23] X. Boyen. Halting password puzzles: Hard-to-break encryption from human-
memorable keys. In Proc. 16th USENIX Security Symposium, Aug. 2008.

[24] Brennan Center Task Force on Voting System Security. The machinery of democ-
racy: Protecting elections in an electronic world, 2006. Online at http://www.
brennancenter.org/programs/downloads/Full%20Report.pdf.

http://www.cdman.com/pdf/ecd.pdf
http://www.cdman.com/pdf/ecd.pdf
http://wiki.tuxonice.net/EncryptedSwapAndRoot
http://www.brennancenter.org/programs/downloads/Full%20Report.pdf
http://www.brennancenter.org/programs/downloads/Full%20Report.pdf

BIBLIOGRAPHY 190

[25] A. Broache. Diebold reveals ‘key’ to e-voting? CNet News.com, Jan. 2007. Online at
http://news.com.com/2061-10796_3-6153328.html.

[26] J. Brunner. Evaluation and validation of election-related equipment, standards and
testing (EVEREST), Dec. 2007.

[27] J. Burns and A. Stamos. MediaMax access control vulnerability, Nov. 2005. Online
at http://www.eff.org/IP/DRM/Sony-BMG/MediaMaxVulnerabilityReport.pdf.

[28] J. A. Calandrino, A. J. Feldman, J. A. Halderman, D. Wagner, H. Yu, and W. Zeller.
Source code review of the Diebold voting system. Part of the California Secretary of
State’s Top-to-Bottom Voting Systems Review, July 2007.

[29] J. A. Calandrino, J. A. Halderman, and E. W. Felten. Machine-assisted election
auditing. In Proc. 2007 USENIX/ACCURATE Electronic Voting Technology Workshop
(EVT 07), Aug. 2007.

[30] California Statutes. Cal. Civ. Code §1798.82, created by S.B. 1386, Aug. 2002.

[31] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient
functions and all-or-nothing transforms. In Advances in Cryptology – EUROCRYPT
2000, volume 1807/2000, pages 453–469, 2000.

[32] B. D. Carrier and J. Grand. A hardware-based memory acquisition procedure for
digital investigations. Digital Investigation, 1:50–60, Dec. 2003.

[33] E. M. Chan, J. C. Carlyle, F. M. David, R. Farivar, and R. H. Campbell. Bootjacker:
compromising computers using forced restarts. In Proc. 15th ACM Conference on
Computer and Communications Security, pages 555–564, Oct. 2008.

[34] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding your garbage: Reducing
data lifetime through secure deallocation. In Proc. 14th USENIX Security Symposium,
pages 331–346, Aug. 2005.

[35] S. Christey and R. A. Martin. Vulnerability type distributions in CVE, version 1.1,
May 2007. Online at http://cwe.mitre.org/documents/vuln-trends/index.html.

[36] Class action complaint. In Hull et al. v. Sony BMG et al., 2005.

[37] Columbia Accident Investigation Board. Final report, Aug. 2003.

[38] Compuware. Direct recording electronic (DRE) technical security assessment report,
Nov. 2003. Online at http://www.sos.state.oh.us/sos/hava/compuware112103.pdf.

http://news.com.com/2061-10796_3-6153328.html
http://www.eff.org/IP/DRM/Sony-BMG/MediaMaxVulnerabilityReport.pdf
http://cwe.mitre.org/documents/vuln-trends/index.html
http://www.sos.state.oh.us/sos/hava/compuware112103.pdf

BIBLIOGRAPHY 191

[39] I. Cox, J. Kilian, T. Leighton, and T. Shamoon. Secure spread spectrum watermarking
for multimedia. IEEE Transactions on Image Processing, 6(12):1673–1687, 1997.

[40] S. A. Craver, M. Wu, B. Liu, A. Stubblefield, B. Swartzlander, D. S. Wallach, D. Dean,
and E. W. Felten. Reading between the lines: Lessons from the SDMI challenge. In
Proc. 10th USENIX Security Symposium, Aug. 2001.

[41] DataRescue sa/nv. IDA Pro Disassembler. Online at http://www.datarescue.com/
idabase.

[42] D. Dean, E. W. Felten, and D. S. Wallach. Java security: From HotJava to Netscape
and beyond. In Proc. 1996 IEEE Symposium on Security and Privacy, pages 190–200,
1996.

[43] D. Dill and D. Wallach. Stones unturned: Gaps in the investigation of Sarasota’s
disputed congressional election, Apr. 2007. Online at http://www.cs.rice.edu/
~dwallach/pub/sarasota07.html.

[44] C. Doctorow. The 3-minute guide to the broadcast flag. Online at http://w2.eff.org/
IP/broadcastflag/three_minute_guide.php.

[45] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–137, 2008.

[46] D. Dorner. The Logic of Failure: Recognizing and Avoiding Error in Complex Situations.
Metropolitan Books, 1996.

[47] M. Dornseif. 0wned by an iPod. Presentation, PacSec, 2004.

[48] M. Dornseif. FireWire – All your memory are belong to us. Presentation,
CanSecWest/core05, May 2005.

[49] S. Drimer, S. Murdoch, and R. Anderson. Thinking inside the box: System-level
failures of tamper proofing. In IEEE Symp. on Security and Privacy, pages 281–295,
May 2008.

[50] J. Dwoskin and R. B. Lee. Hardware-rooted trust for secure key management and
transient trust. In Proc. 14th ACM Conference on Computer and Communications
Security, pages 389–400, Oct. 2007.

[51] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and
S. Weingart. Building the IBM 4758 secure coprocessor. Computer, 34:57–66, Oct.
2001.

http://www.datarescue.com/idabase
http://www.datarescue.com/idabase
http://www.cs.rice.edu/~dwallach/pub/sarasota07.html
http://www.cs.rice.edu/~dwallach/pub/sarasota07.html
http://w2.eff.org/IP/broadcastflag/three_minute_guide.php
http://w2.eff.org/IP/broadcastflag/three_minute_guide.php

BIBLIOGRAPHY 192

[52] K. Eckstein and M. Dornseif. On the meaning of ‘physical access’ to a computing
device: A vulnerability classification of mobile computing devices. Presentation,
NATO C3A Workshop on Network-Enabled Warfare, Apr. 2005.

[53] ECMA. Data interchange on read-only 120 mm optical data discs (CD-ROM). ECMA
standard 130, June 1996.

[54] Election Data Services. 2006 voting equipment study. Online at http://www.
edssurvey.com/images/File/ve2006_nrpt.pdf.

[55] Election Science Institute. DRE analysis for May 2006 primary, Cuyahoga County,
Ohio, Aug. 2006. Online at http://bocc.cuyahogacounty.us/GSC/pdf/esi_cuyahoga_
final.pdf.

[56] J. Elson and L. Girod. FUSD – a Linux framework for user-space devices. Online at
http://www.circlemud.org/~jelson/software/fusd/.

[57] Essay: Cactus Data Shield 200. CDR-Info, Jan. 2002. Online at http://www.cdrinfo.
com/Sections/News/Details.asp?RelatedID=1926.

[58] Federal Building and Fire Investigation of the World Trade Center Disaster. Final
report of the National Construction Safety Team on the Collapses of the World Trade
Center Tower. Technical Report NCSTAR 1, NIST, Sept. 2005.

[59] Federal Election Commission. Voting system standards, 2002. Online at http://
www.eac.gov/election_resources/vss.html.

[60] J. Feld and K. Carper. Construction Failure. Wiley, 2nd edition, 1997.

[61] A. J. Feldman, J. A. Halderman, and E. W. Felten. Security analysis of the Diebold
AccuVote-TS voting machine. In Proc. 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT 07), Aug. 2007.

[62] E. W. Felten. NJ election day: Voting machine status, June 2008. http://www.
freedom-to-tinker.com/blog/felten/nj-election-day-voting-machine-status.

[63] E. W. Felten and J. A. Halderman. Digital rights management, spyware, and security.
IEEE Security and Privacy, 4(1):18–23, January/February 2006.

[64] N. Ferguson. AES-CBC + Elephant diffuser: A disk encryption algorithm for Windows
Vista, Aug. 2006. Online at http://www.microsoft.com/downloads/details.aspx?
FamilyID=131dae03-39ae-48be-a8d6-8b0034c92555.

[65] Feurio version history, 1.64. Online at http://www.feurio.com/English/history_1_64.
shtml.

http://www.edssurvey.com/images/File/ve2006_nrpt.pdf
http://www.edssurvey.com/images/File/ve2006_nrpt.pdf
http://bocc.cuyahogacounty.us/GSC/pdf/esi_cuyahoga_final.pdf
http://bocc.cuyahogacounty.us/GSC/pdf/esi_cuyahoga_final.pdf
http://www.circlemud.org/~jelson/software/fusd/
http://www.cdrinfo.com/Sections/News/Details.asp?RelatedID=1926
http://www.cdrinfo.com/Sections/News/Details.asp?RelatedID=1926
http://www.eac.gov/election_resources/vss.html
http://www.eac.gov/election_resources/vss.html
http://www.freedom-to-tinker.com/blog/felten/nj-election-day-voting-machine-status
http://www.freedom-to-tinker.com/blog/felten/nj-election-day-voting-machine-status
http://www.microsoft.com/downloads/details.aspx?FamilyID=131dae03-39ae-48be-a8d6-8b0034c92555
http://www.microsoft.com/downloads/details.aspx?FamilyID=131dae03-39ae-48be-a8d6-8b0034c92555
http://www.feurio.com/English/history_1_64.shtml
http://www.feurio.com/English/history_1_64.shtml

BIBLIOGRAPHY 193

[66] A. Friedman, R. Baliga, D. Dasgupta, and A. Dreyer. Understanding the broadcast
flag: A threat analysis model. In Telecommunications Policy, volume 28, pages 503–
521, 2004.

[67] D. Geer, C. Pfleeger, B. Schneier, J. Quarterman, P. Metzger, R. Bace, and P. Gutmann.
CyberInsecurity: The cost of monopoly, 2003.

[68] R. Gonggrijp and W.-J. Hengeveld. Studying the Nedap/Groenendaal ES3B voting
computer: A computer security perspective. In Proc. 2007 USENIX/ACCURATE
Electronic Voting Technology Workshop.

[69] S. Govindavajhala and A. Appel. Using memory errors to attack a virtual machine.
In IEEE Symp. on Security and Privacy, 2003.

[70] P. Gutmann. Secure deletion of data from magnetic and solid-state memory. In Proc.
6th USENIX Security Symposium, pages 77–90, July 1996.

[71] P. Gutmann. Data remanence in semiconductor devices. In Proc. 10th USENIX
Security Symposium, pages 39–54, Aug. 2001.

[72] J. A. Halderman. Evaluating new copy-prevention techniques for audio CDs. In Proc.
2002 ACM Workshop on Digital Rights Management, Nov. 2002.

[73] J. A. Halderman. Analysis of the MediaMax CD3 copy-prevention system. Technical
Report TR-679-03, Princeton University Computer Science Department, Princeton,
NJ, Oct. 2003.

[74] J. A. Halderman and E. W. Felten. Lessons from the Sony CD DRM episode. In Proc.
15th USENIX Security Symposium, pages 77–92, Aug. 2006.

[75] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks
on encryption keys. In Proc. 17th USENIX Security Symposium, July 2008.

[76] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold-boot
attacks on encryption keys. Commun. ACM, 52(5):91–98, 2009.

[77] J. A. Halderman, H. Shacham, E. Rescorla, and D. Wagner. You go to elections with
the voting system you have: Stop-gap mitigations for deployed voting systems. In
Proc. 2008 USENIX/ACCURATE Electronic Voting Technology Workshop (EVT 08), July
2008.

[78] N. Heninger and H. Shacham. Improved RSA private key reconstruction for cold
boot attacks. Cryptology ePrint Archive, Report 2008/510, Dec. 2008.

BIBLIOGRAPHY 194

[79] G. Hoglund and J. Butler. Rootkits: Subverting the Windows Kernel. Addison-Wesley
Professional, 2005.

[80] H. Hursti. Critical security issues with Diebold TSx (unredacted), May 2006. Online
at http://www.wheresthepaper.org/reports/BBVreportIIunredacted.pdf.

[81] H. Hursti. Diebold TSx evaluation: Critical security issues with Diebold TSx, May
2006. Online at http://www.bbvdocs.org/reports/BBVreportIIunredacted.pdf.

[82] IEEE 1619 Security in Storage Working Group. IEEE P1619/D19: Draft standard for
cryptographic protection of data on block-oriented storage devices, July 2007.

[83] S. Inguva, E. Rescorla, H. Shacham, and D. S. Wallach. Source code review of
the Hart InterCivic voting system. Part of the California Secretary of State’s Top-to-
Bottom Voting Systems Review, July 2007.

[84] Intel. Preboot Execution Environment (PXE) specification version 2.1, Sept. 1999.

[85] International Electrotechnical Commission. Compact disc digital audio system. IEC
standard 60908, Feb. 1999.

[86] Interview with Talbot Iredale, Software Development Manager, Diebold Election Sys-
tems.

[87] K. Itabashi. Trojan.Welomoch technical description, Dec. 2005. Online at http://
securityresponse.symantec.com/avcenter/venc/data/trojan.welomoch.html.

[88] R. G. Johnston. Tamper-indicating seals. American Scientist, 94:515–523,
November-December 2006. Online at http://ephemer.al.cl.cam.ac.uk/~rja14/
johnson/newpapers/American%20Scientist%20(2006).pdf.

[89] K. Julisch. Clustering intrusion detection alarms to support root cause analysis. ACM
Transactions on Information and System Security, 6:443–471, 2002.

[90] C. Kent. Draft proposal for tweakable narrow-block encryption, 2004. Online at
https://siswg.net/docs/LRW-AES-10-19-2004.pdf.

[91] A. Kerckhoffs. La cryptographie militaire. J. des Sciences Militaires, 9:161–191,
1883.

[92] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch.
SubVirt: Implementing malware with virtual machines. In IEEE Symp. on Security
and Privacy, May 2006.

http://www.wheresthepaper.org/reports/BBVreportIIunredacted.pdf
http://www.bbvdocs.org/reports/BBVreportIIunredacted.pdf
http://securityresponse.symantec.com/avcenter/venc/data/trojan.welomoch.html
http://securityresponse.symantec.com/avcenter/venc/data/trojan.welomoch.html
http://ephemer.al.cl.cam.ac.uk/~rja14/johnson/newpapers/American%20Scientist%20(2006).pdf
http://ephemer.al.cl.cam.ac.uk/~rja14/johnson/newpapers/American%20Scientist%20(2006).pdf
https://siswg.net/docs/LRW-AES-10-19-2004.pdf

BIBLIOGRAPHY 195

[93] D. Kirovski and F. A. Petitcolas. Replacement attack on arbitrary watermarking
systems. In Proc. ACM Workshop on Digital Rights Management, 2002.

[94] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach. Analysis of an electronic
voting system. In IEEE Symp. on Security and Privacy, May 2004.

[95] O. Kömmerling and M. Kuhn. Design principles for tamper-resistant smartcard
processors. In Proc. USENIX Workshop on Smartcard Technology, pages 9–20, 1999.

[96] I. Krsul, E. Spafford, and M. Tripunitara. Computer vulnerability analysis. Technical
Report COAST TR 98-07, Purdue University, 1998.

[97] I. V. Krsul. Software Vulnerability Analysis. PhD thesis, West Lafayette, IN, 1998.

[98] M. Kuhn and R. Anderson. Soft tempest: Hidden data transmission using electromag-
netic emanations. Lecture Notes in Computer Science, 1525:124–142, 1998. Online
at citeseer.ist.psu.edu/article/kuhn98soft.html.

[99] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi. A taxonomy of
computer program security flaws. ACM Comput. Surv., 26(3):211–254, 1994.

[100] R. B. Lee, P. C. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang. Architecture for
protecting critical secrets in microprocessors. In Proc. Intl. Symp. on Computer
Architecture, pages 2–13, 2005.

[101] A. Leventhal. Mac OS X and the missing probes, Jan. 2008. Online at http://
blogs.sun.com/ahl/entry/mac_os_x_and_the.

[102] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant software. In
Symp. on Architectural Support for Programming Languages and Operating Systems,
pages 168–177, 2000.

[103] W. Link and H. May. Eigenschaften von MOS-Ein-Transistorspeicherzellen bei tiefen
Temperaturen. Archiv für Elektronik und Übertragungstechnik, 33:229–235, June
1979.

[104] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In Advances in
Cryptology – CRYPTO 2002, pages 31–46, 2002.

[105] Y. Liu. Backdoor.Ryknos.B technical description, Nov. 2005. Online at http://
securityresponse.symantec.com/avcenter/venc/data/backdoor.ryknos.b.html.

[106] D. MacIver. Penetration testing Windows Vista BitLocker drive encryption. Presenta-
tion, Hack In The Box, Sept. 2006.

citeseer.ist.psu.edu/article/kuhn98soft.html
http://blogs.sun.com/ahl/entry/mac_os_x_and_the
http://blogs.sun.com/ahl/entry/mac_os_x_and_the
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.ryknos.b.html
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.ryknos.b.html

BIBLIOGRAPHY 196

[107] A. McFadden. comp.publish.cdrom FAQ, June 2002. Online at http://www.cdrfaq.
org/.

[108] MediaMax Technology Corp. Annual report (S.E.C. Form 10-KSB/A), Sept. 2005.

[109] J. B. Michael, S. E. Roberts, J. M. Voas, and T. C. Wingfield. The role of policy in
balancing outsourcing and homeland security. IT Professional, 7(4):19–23, 2005.

[110] Microsoft. 10 immutable laws of security. Online at http://technet.microsoft.com/
en-us/library/cc722487.aspx.

[111] Microsoft. Enabling and disabling AutoRun. Online at http://msdn.microsoft.com/
en-us/library/cc144204.aspx.

[112] Microsoft. What’s the difference between AutoPlay and autorun? Windows Vista
Help. Online at http://windowshelp.microsoft.com/Windows/en-us/help/a19ac945-
1007-4638-9615-e2c3bfd92b751033.mspx.

[113] Microsoft. Windows Media data session toolkit. Online at http://
download.microsoft/com/download/a/1/a/a1a66a2c-f5f1-450a-979b-ddf790756f1d/
Data_Session_Datasheet.pdf.

[114] Microsoft. Security bulletin MS07-067 – Important: Vulnerability in Macrovision
driver could allow local elevation of privilege, Dec. 2007. Online at http://www.
microsoft.com/technet/security/Bulletin/MS07-067.mspx.

[115] I. Mironov. Hash functions: Theory, attacks, and applications. Technical Report
MSR-TR-2005-187, Microsoft Research, Nov. 2005.

[116] R. Morris and K. Thompson. Password security: A case history. Communications of
the ACM, 22:594–597, 1979.

[117] mxs. Re: Clear the DRAM?, Feb. 2008. Online at http://it.slashdot.org/comments.
pl?sid=461784&cid=22578400.

[118] National Computer Security Center. A guide to understanding data remanence in
automated information systems, Sept. 1991.

[119] National Conference of State Legislatures. State security breach notification laws,
Jan. 2008. Online at http://www.ncsl.org/programs/lis/cip/priv/breachlaws.htm.

[120] National Transportation Safety Board. Collapse of I-35W highway bridge, Minneapo-
lis, Minnesota, August 1, 2007. NTSB Accident Report HAR-08/03, Dec. 2008.

http://www.cdrfaq.org/
http://www.cdrfaq.org/
http://technet.microsoft.com/en-us/library/cc722487.aspx
http://technet.microsoft.com/en-us/library/cc722487.aspx
http://msdn.microsoft.com/en-us/library/cc144204.aspx
http://msdn.microsoft.com/en-us/library/cc144204.aspx
http://windowshelp.microsoft.com/Windows/en-us/help/a19ac945-1007-4638-9615-e2c3bfd92b751033.mspx
http://windowshelp.microsoft.com/Windows/en-us/help/a19ac945-1007-4638-9615-e2c3bfd92b751033.mspx
http://download.microsoft/com/download/a/1/a/a1a66a2c-f5f1-450a-979b-ddf790756f1d/Data_Session_Datasheet.pdf
http://download.microsoft/com/download/a/1/a/a1a66a2c-f5f1-450a-979b-ddf790756f1d/Data_Session_Datasheet.pdf
http://download.microsoft/com/download/a/1/a/a1a66a2c-f5f1-450a-979b-ddf790756f1d/Data_Session_Datasheet.pdf
http://www.microsoft.com/technet/security/Bulletin/MS07-067.mspx
http://www.microsoft.com/technet/security/Bulletin/MS07-067.mspx
http://it.slashdot.org/comments.pl?sid=461784&cid=22578400
http://it.slashdot.org/comments.pl?sid=461784&cid=22578400
http://www.ncsl.org/programs/lis/cip/priv/breachlaws.htm

BIBLIOGRAPHY 197

[121] NCITS. SCSI multimedia commands 3 (MMC-3). Working draft, revision 10g, Nov.
2001.

[122] Nero AG. Nero Burning ROM. Online at http://ww2.nero.com/enu/Products.html.

[123] M. Nikki. Muzzy’s research about Sony’s XCP DRM system, Dec. 2005. Online at
http://hack.fi/~muzzy/sony-drm/.

[124] orclevegam. Re: Clear the DRAM?, Feb. 2008. Online at http://it.slashdot.org/
comments.pl?sid=461784&cid=22504308.

[125] X. Ou, S. Govindavajhala, and A. W. Appel. MulVAL: A logic-based network security
analyzer. In Proc. 14th USENIX Security Symposium, 2005.

[126] J. Pabel. Frozen cache, Jan. 2009. Online at http://frozencache.blogspot.com/.

[127] C. Perrow. Normal Accidents: Living with High-Risk Technologies. Basic Books, 1984.

[128] F. A. Petitcolas, R. J. Anderson, and M. G. Kuhn. Attacks on copyright marking
systems. In Information Hiding, pages 218–238, 1998.

[129] H. Petroski. To Engineer Is Human: The Role of Failure in Successful Design. Basic
Books, 1984.

[130] H. Petroski. Success through Failure: The Paradox of Design. Princeton University
Press, 2006.

[131] T. Pettersson. Cryptographic key recovery from Linux memory dumps. Presentation,
Chaos Communication Camp, Aug. 2007.

[132] Proc. 14th ACM Conference on Computer and Communications Security (CCS). ACM,
2007.

[133] Proc. 15th ACM Conference on Computer and Communications Security (CCS). ACM,
2008.

[134] Proc. 15th Annual Network and Distributed System Security Symposium (NDSS). In-
ternet Society, 2007.

[135] Proc. 16th Annual Network and Distributed System Security Symposium (NDSS). In-
ternet Society, 2008.

[136] Proc. 16th USENIX Security Symposium. USENIX, 2007.

[137] Proc. 17th USENIX Security Symposium. USENIX, 2008.

http://ww2.nero.com/enu/Products.html
http://hack.fi/~muzzy/sony-drm/
http://it.slashdot.org/comments.pl?sid=461784&cid=22504308
http://it.slashdot.org/comments.pl?sid=461784&cid=22504308
http://frozencache.blogspot.com/

BIBLIOGRAPHY 198

[138] Proc. 2007 IEEE Symp. on Security and Privacy (Oakland). IEEE, 2007.

[139] Proc. 2008 IEEE Symp. on Security and Privacy (Oakland). IEEE, 2008.

[140] RABA Technologies. Trusted agent report: Diebold AccuVote-TS voting system, Jan.
2004. Online at http://www.raba.com/press/TA_Report_AccuVote.pdf.

[141] J. Reason. Human Error. Cambridge University Press, 1990.

[142] R. W. Ritchey and P. Ammann. Using model checking to analyze network vul-
nerabilities. In Proc. 2000 IEEE Symp. on Security and Privacy, Washington, DC,
2000.

[143] R. L. Rivest and J. P. Wack. On the notion of “software independence” in voting
systems, July 2006. Online at http://vote.nist.gov/SI-in-voting.pdf.

[144] P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In Advances in Cryptology – ASIACRYPT 2004, pages 16–31,
2004.

[145] Rogers commission. Presidential commission report on Space Shuttle Challenger
accident. Technical report, June 1986.

[146] M. Russinovich. More on Sony: Dangerous decloaking patch, EULAs and phoning
home, Nov. 2005. Online at http://www.sysinternals.com/blog/2005/11/more-on-
sony-dangerous-decloaking.htm.

[147] M. Russinovich. Sony, rootkits and digital rights management gone too far, Oct.
2005. Online at http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-
digital-rights.html.

[148] M. Russinovich. Sony’s rootkit: First 4 Internet responds, Nov. 2005. Online at
http://www.sysinternals.com/blog/2005/11/sonys-rootkit-first-4-internet.html.

[149] L. Z. Scheick, S. M. Guertin, and G. M. Swift. Analysis of radiation effects on
individual DRAM cells. IEEE Transactions on Nuclear Science, 47:2534–2538, Dec.
2000.

[150] Science Applications International Corporation. Risk assessment report: Diebold
AccuVote-TS voting system and processes (unredacted version), Sept. 2003. Online
at http://www.bradblog.com/?p=3731.

[151] Seagate. Drivetrust technology: A technical overview. Online at http://www.seagate.
com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf.

http://www.raba.com/press/TA_Report_AccuVote.pdf
http://vote.nist.gov/SI-in-voting.pdf
http://www.sysinternals.com/blog/2005/11/more-on-sony-dangerous-decloaking.htm
http://www.sysinternals.com/blog/2005/11/more-on-sony-dangerous-decloaking.htm
http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html
http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html
http://www.sysinternals.com/blog/2005/11/sonys-rootkit-first-4-internet.html
http://www.bradblog.com/?p=3731
http://www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf
http://www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf

BIBLIOGRAPHY 199

[152] SecuROM: Why they hate Process Explorer. Sysinternals Forum Posting, June 2007.
Online at http://forum.sysinternals.com/forum_posts.asp?TID=11000.

[153] A. Serjantov and R. Anderson. On dealing with adversaries fairly. In Third Workshop
on the Economics of Information Security, 2004.

[154] A. Shamir and N. van Someren. Playing “hide and seek” with stored keys. Lecture
Notes in Computer Science, 1648:118–124, 1999. Online at citeseer.ist.psu.edu/
vansomeren98playing.html.

[155] R. Shirley. Internet security glossary, version 1. RFC 2828, Internet Engineering Task
Force, May 2000.

[156] R. Shirley. Internet security glossary, version 2. RFC 4949, Internet Engineering Task
Force, Aug. 2007.

[157] P. Sinquin, P. Selve, and R. Alcalay. Anti-counterfeit compact disc. US Patent
6,208,598, Mar. 2001. Assignee: Midbar Tech Ltd.; filed Jan 13, 1999.

[158] S. Skorobogatov. Low-temperature data remanence in static RAM. University of
Cambridge Computer Laboratory Technical Report No. 536, June 2002. Online at
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-536.pdf.

[159] S. W. Smith. Trusted Computing Platforms: Design and Applications. Springer, first
edition, 2005.

[160] S. W. Smith and S. Weingart. Building a high-performance, programmable secure
coprocessor. In Computer Networks, pages 831–860, 1998.

[161] L. Solum. Legal theory lexicon 020: Causation, Jan. 2004. Online at http://
lsolum.typepad.com/legal_theory_lexicon/2004/01/legal_theory_le.html.

[162] M. Songini. E-voting security under fire in San Diego lawsuit. Computerworld, Aug.
2006.

[163] E. H. Spafford. The internet worm program: An analysis. Technical Report CSD-
TR-823, Purdue University Computer Science Department, West Lafayette, Indiana,
1988.

[164] State of Maryland. Code of Maryland regulations, title 33, State Board of Elections.
Online at http://www.dsd.state.md.us/comar/subtitle_chapters/33_Chapters.htm.

[165] P. Stephenson. Modeling of post-incident root cause analysis. International Journal
of Digital Evidence, 2, 2003.

http://forum.sysinternals.com/forum_posts.asp?TID=11000
citeseer.ist.psu.edu/vansomeren98playing.html
citeseer.ist.psu.edu/vansomeren98playing.html
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-536.pdf
http://lsolum.typepad.com/legal_theory_lexicon/2004/01/legal_theory_le.html
http://lsolum.typepad.com/legal_theory_lexicon/2004/01/legal_theory_le.html
http://www.dsd.state.md.us/comar/subtitle_chapters/33_Chapters.htm

BIBLIOGRAPHY 200

[166] Trusted Computing Group. Trusted Platform Module specification version 1.2, July
2007. Online at https://www.trustedcomputinggroup.org/specs/TPM/.

[167] N. Ulaby. Sony music CDs under fire from privacy advocates. NPR News inter-
view, Nov. 2005. Online at http://www.npr.org/templates/story/story.php?storyId=
4989260.

[168] United States Election Assistance Commission. Voluntary voting systems guidelines,
2005. Online at http://www.eac.gov/vvsg_intro.htm.

[169] US Congress. Help America Vote Act of 2002 (HAVA). Public Law No. 107-252, 116
Stat. 1666.

[170] US Department of Veterans Affairs, National Center for Patient Safety. Root Cause
Analysis (RCA). Online at http://www.va.gov/NCPS/rca.html.

[171] H. R. Varian. Managing online security risks. The New York Times, June 2000.

[172] T. Vidas. The acquisition and analysis of random access memory. Journal of Digital
Forensic Practice, 1:315–323, Dec. 2006.

[173] P. Vixie. DNS and BIND security issues. In Proc. 5th USENIX Security Symposium,
1995.

[174] D. Wagner, D. Jefferson, and M. Bishop. Security analysis of the Diebold AccuBasic
interpreter, Feb. 2006. Online at http://www.ss.ca.gov/elections/voting_systems/
security_analysis_of_the_diebold_accubasic_interpreter.pdf.

[175] A. Walters and N. L. P. Jr. FATKit: The forensic analysis toolkit. Online at http://
www.4tphi.net/fatkit/.

[176] B. Warner. ‘Copy-proof’ CDs cracked with 99-cent marker pen. Reuters; May 24,
2002.

[177] R.-P. Weinmann and J. Appelbaum. Unlocking FileVault. Presentation, 23rd Chaos
Communication Congress, Dec. 2006. Online at http://events.ccc.de/congress/
2006/Fahrplan/events/1642.en.html.

[178] R.-P. Weinmann and J. Appelbaum. VileFault, Jan. 2008. Online at http://
vilefault.googlecode.com/.

[179] A. Wiethoff. Exact Audio Copy. Online at http://www.exactaudiocopy.de/.

[180] B. J. Williams. Security in the Georgia voting system, Apr. 2003. Online at
http://macht.arts.cornell.edu/wrm1/gov317/diebold/georgia.pdf.

https://www.trustedcomputinggroup.org/specs/TPM/
http://www.npr.org/templates/story/story.php?storyId=4989260
http://www.npr.org/templates/story/story.php?storyId=4989260
http://www.eac.gov/vvsg_intro.htm
http://www.va.gov/NCPS/rca.html
http://www.ss.ca.gov/elections/voting_systems/security_analysis_of_the_diebold_accubasic_interpreter.pdf
http://www.ss.ca.gov/elections/voting_systems/security_analysis_of_the_diebold_accubasic_interpreter.pdf
http://www.4tphi.net/fatkit/
http://www.4tphi.net/fatkit/
http://events.ccc.de/congress/2006/Fahrplan/events/1642.en.html
http://events.ccc.de/congress/2006/Fahrplan/events/1642.en.html
http://vilefault.googlecode.com/
http://vilefault.googlecode.com/
http://www.exactaudiocopy.de/
http://macht.arts.cornell.edu/wrm1/gov317/diebold/georgia.pdf

BIBLIOGRAPHY 201

[181] R. Wood and R. Sweginnis. Aircraft Accident Investigation. Endeavor Books, 2nd
edition, 2006.

[182] A. W. Wu, A. K. M. Lipshutz, and P. J. Pronovost. Effectiveness and efficiency of root
cause analysis in medicine. J. Am. Med. Assoc., 299(6):685–687, 2008.

[183] P. Wyns and R. L. Anderson. Low-temperature operation of silicon dynamic random-
access memories. IEEE Transactions on Electron Devices, 36:1423–1428, Aug. 1989.

	Abstract
	1 Introduction
	1.1 Why Study Failures?
	1.2 How We Study Failures
	1.3 The Analytic Approach
	1.4 In this Dissertation
	1.5 Funding Acknowledgments

	2 Security Failures in CD-DRM Systems
	2.1 CD-DRM Technologies
	2.1.1 First Generation: Passive Protection
	2.1.2 Second Generation: Active Protection
	2.1.3 Third Generation: Aggressive Protection

	2.2 Attacks: Content Copying
	2.2.1 Attacks Against Passive Protection
	2.2.2 Attacks Against Active Protection
	2.2.3 Attacks Against Authorized Players

	2.3 Attacks: Protection Cloning
	2.3.1 Disc-Recognition Requirements
	2.3.2 Reverse-Engineering the MediaMax Watermark
	2.3.3 Attacks on the MediaMax Watermark
	2.3.4 Mitigation: Cloning-Resistant Watermarks

	2.4 Attacks: Collateral Damage
	2.4.1 Exploiting the XCP Rootkit
	2.4.2 Exploiting the MediaMax Player
	2.4.3 Privacy Concerns
	2.4.4 Exploiting the XCP and MediaMax Uninstallers
	2.4.5 Mitigating Collateral Damage

	2.5 Causes of CD-DRM Security Failures
	2.5.1 The CD-DRM Problem
	2.5.2 Incentives for Underinvestment in Security
	2.5.3 Tension between DRM and PC Security

	2.6 Conclusion

	3 Security Failures in Electronic Voting Machines
	3.1 The AccuVote TS and TSX
	3.1.1 Voting Machine Hardware and Software
	3.1.2 Election Management
	3.1.3 Voting Machine Operation

	3.2 Selected Vulnerabilities
	3.2.1 Unauthenticated Software Update Mechanisms
	3.2.2 Unprotected Hardware Debugging Features
	3.2.3 Exploitable Buffer Overflows in BallotStation
	3.2.4 Insecure Storage of Cryptographic Keys
	3.2.5 Poor Protection of Critical Election Data

	3.3 Attack Scenarios
	3.3.1 Direct Attack Installation
	3.3.2 Voting Machine Viruses
	3.3.3 Vote-Stealing Attacks
	3.3.4 Denial-of-Service Attacks

	3.4 Systemic Problems
	3.4.1 Systemic Design Weakness
	3.4.2 Systemic Implementational Errors
	3.4.3 Deficient Engineering Practices

	3.5 Results from Other Studies
	3.6 High-Level Causes
	3.6.1 Time-to-Market Pressure
	3.6.2 Features and Complexity
	3.6.3 Certification and Testing

	3.7 Mitigation
	3.8 Conclusion

	4 Security Failures in On-the-Fly Disk Encryption Software
	4.1 Previous Work
	4.2 DRAM Remanence
	4.3 Tools and Attacks
	4.4 Attacking Cryptographic Keys
	4.4.1 Reconstructing DES Keys
	4.4.2 Reconstructing AES Keys
	4.4.3 Reconstructing Tweak Keys
	4.4.4 Reconstructing RSA Private Keys
	4.4.5 Automatically Identifying Keys in Memory

	4.5 Attacking Disk Encryption Software
	4.6 Countermeasures and their Limitations
	4.7 Causes of Disk Encryption Security Failures
	4.7.1 Architectural Deficiencies
	4.7.2 Vendor Incentives
	4.7.3 Abstractions and Security

	4.8 Conclusions

	5 Conclusion
	Bibliography

