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Abstract

Line drawings are commonly used for sketches, animations, and technical illus-

trations because they are familiar, simple, and easy to draw, yet wide-ranging and

expressive. However, current tools for computer generation of line drawings do not

match the range and expressiveness available to a practiced human artist. In part,

these failings are due to technical limitations of current algorithms. However, there

is also a lack of formal understanding of how artists make drawings, and where these

drawings are effective.

This thesis describes recent work on line drawings, including two studies aimed at

a formal understanding of how people create and perceive line drawings of 3D shapes.

In the first study, we asked artists to create drawings under controlled conditions,

and in the second, we asked people to view the drawings and record their shape

impressions using a series of gauge figures. We conclude that most of the lines artists

draw can be explained by currently known definitions, and that line drawings based

on these definitions can successfully depict shape, though they usually fall short of

shaded depictions.

The final section of the thesis describes a system for drawing stylized lines, with

two novel and important features: it includes an effect called stylized focus that can

help direct the viewer’s gaze to important parts of the drawing, and it is fast enough

and has sufficient frame-to-frame coherence that it is suitable for rendering complex

models interactively.

The presented results can be applied across computer graphics, with benefits to

computer animation, visualization, design, and games.
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Chapter 1

Introduction

This thesis is about line drawings of 3D shapes. Line drawings are commonly used for

sketches, animations, and technical illustrations because they are familiar, simple, and

easy to draw, yet wide-ranging and expressive. However, current tools for computer

generation of line drawings do not match the range and expressiveness available to

a practiced human artist. Furthermore, current algorithms suffer from technical

problems that reduce their usefulness in interactive applications, the one area where

computer tools are indispensible.

This thesis aims to improve computer drawing algorithms by investigation in two

directions. The first direction is to develop solutions to the technical challenges

inherent in generating and animating drawings. The second direction is to conduct

empirical studies to more formally understand how people create and perceive

line drawings. Developments in the first direction yield better algorithms, while

developments in the second help inform computer graphics researchers and also

provide insights into human shape perception.
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a b c

Figure 1.1: Examples of drawing types. (a) pure line drawing by Picasso, (b) mass
and shading oriented drawing by Michelangelo, (c) drawing that uses elements of both
line and mass drawing by Rembrandt.

1.1 Why Line Drawings?

The term line drawing refers to drawings that are generally concerned with the

outlines of shapes (Figure 1.1a). Line drawing can be contrasted to mass drawing

(Figure 1.1b), which is concerned with the shading and bulk of a shape [69]. Most

work by artists combines some aspects of these two techniques (Figure 1.1c), so we

will sometimes refer to “line drawings” that actually include a mix of line and mass

drawing. For clarity, the term pure line drawing will be used to mean a drawing

without any shading at all.

Artists often learn to make line drawings first, and then advance to shading and

color. One important reason is that line drawings are easy and straightforward to

create. Most common drawing media (pens, pencils, with the exception perhaps of

watercolor) make lines in their most basic mode of use. Line drawings also require

much less ink than shaded pictures, and are therefore quicker for an artist to draw (for

example, it is much faster to draw four lines for a box than to carefully shade in the

same rectangle). For similar reasons, computer graphics began with line drawings

as well – the first graphics systems used monochrome, vector-based displays (e.g.,

2



Sketchpad [72]). Vector displays could draw lines easily but had difficulty shading,

for the exact same reason artists have difficulty shading with a pen or pencil: they

must build up the shading with many carefully placed strokes. For a while, creating

good line drawings using vector displays was an active area of research. A particularly

active area was the creation of drawings of 3D models with occluded lines removed

(“hidden line drawing”), a subject we will revisit in Chapter 5. The invention of raster

graphics and the z-buffer, however, made rendering shaded images fast and easy, and

sidelined line drawing in computer graphics. Recent work in shaded graphics has

enjoyed huge success, achieving near photorealism even in interactive applications.

Of course, there are other reasons to be interested in line drawings besides the

simplicity of drawing them. One of the most interesting properties of line drawings

is their power for abstraction, which can be loosely described as the ability to depict

only the essential details of a scene or object. A specific example of abstraction is a

pure line drawing’s ability to convey shape without conveying much, or perhaps any,

information about lighting or material. This is something that is, almost by definition,

impossible for a photorealistic rendering to do; a photograph of an object is precisely

a representation of the shading of an object. Photographers use an arsenal of tricks

such as fill lights, gobos, and light boxes to reduce the distractions generated by

unwanted shading effects [30], but can never eliminate shading information entirely.

In terms of the effect on the viewer, a pure line drawing can depict a “box,” while

a photograph can at best depict a “gray box.” Architects and designers exploit the

power of abstraction to call attention to the shape and organization of a project,

without focusing on details of its materials or construction (Figure 1.2). How artists

construct these drawings, and the success with which humans interpret the results,

are the subjects of the studies described in Chapters 3 and 4. Both studies explore

the pure line drawing style.

Beyond abstraction, line drawings have a range of practical benefits that make
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a b

Figure 1.2: Simple and complex design drawings. (b) architectural sketch by Tadao
Ando, (b) technical drawing of a Milwaukee Road EP-3 “Quill” electric locomotive.

them useful as a supplement to, or replacement for, shaded imagery in specific

cases. For example, lines are commonly used to aid comprehension in diagrams

or illustrations because of their ability to make shape features “pop” out of the

background. Lines can help visualize overlapping or hidden shapes without causing

excessive visual clutter [7]. Line drawings are also a good option when printing or

reproduction requirements limit artwork to few colors.

However, perhaps the best reason to study line drawings is because of their

incredible expressiveness in the hands of a master artist. The range of drawing styles

available to an artist is explored in Section 2.1.

1.2 Research Contributions

This thesis makes both pure research and applied algorithmic contributions to the

understanding and generation of line drawings.

Chapter 3 describes a study designed to learn about how people depict shape with

line drawings. As part of the study, we asked a group of artists to make drawings

of a set of 3D models. The artists made free-hand drawings, but also registered

their drawings to computer renderings of the shapes, allowing us to compare artists’

drawings to each other, and to computer-generated drawings of the same models.
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Around 80% of the lines drawn by artists can be explained by prominent geometric

or image features, while the remaining lines are apparently the result of higher-level

choices. This work was previously published in [13], and has already helped prompt

at least one new line drawing algorithm [83].

Chapter 4 describes a follow-up to our drawing collection project, in which we

conducted a perceptual study of how well people perceive shape in the artists’

drawings. The study methodology followed the gauge figure approach proposed by

Koenderink [39], though we gathered a very large amount of noisy data rather than

a small amount of very careful data. We included both hand-drawn and computer-

generated drawings. Among other conclusions, we found that the computer-generated

drawings often performed close to or as well as the drawings made by human artists.

This work will be published later this year in [14].

Finally, Chapter 5 describes technical details of an interactive system for drawing

stylized lines, using new techniques for computing visibility and for eliding lines. The

system also supports rendering effects meant to direct the viewer’s gaze. The effect

of this stylized focus is measured with an eye-tracking experiment. The visibility

algorithm was published in [12], and the stylized rendering effects were published in

[10].
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Chapter 2

Background

This thesis touches on several areas of computer science, art, and psychology. This

chapter explains the background for the basic themes that are common to all the

later chapters: drawings by artists, drawings by computers, and evaluation studies of

computer-generated imagery. Specific background information appears in the later

chapters where appropriate, but a knowledge of the subjects covered in this chapter

will be assumed.

2.1 Drawings by Artists

Artwork by human artists is the inspiration for most work in NPR, and line drawing

algorithms are no exception. The line work of a master is still far beyond the

capabilities of current algorithms, but understanding the range and expressiveness

of a skilled human artist can help computer scientists learn what is possible with the

medium, and what an ideal line drawing system might be capable of. This section

would almost certainly embarrass a historian of art. However, it should serve to give

some impression of the breadth of techniques available to a human artist, and some

context for the results that follow.

The range of line drawings as an art form can be nicely captured by comparing
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a b

Figure 2.1: Emotional and explanatory line drawings. (a) sketch by Michelangelo, (b)
Bosch Tools schematic diagram (from Li et al. [45]).

a sketch by Michelangelo (Figure 2.1a) with a technical illustration of a power tool

(Figure 2.1b). Both drawings create effects in the mind of the viewer that would be

very difficult to imitate with a photorealistic style. However, the drawings affect the

viewer in different ways – you can almost feel your brain switching gears as you look

from one to the other.

In the Michelangelo sketch, the faces and sometimes limbs of the people are simply

omitted, leaving the viewer to concentrate on the composition and motion of the

drawing. The drawing has mostly emotional content, and asks the viewer to fill

in the exact details with their imagination. The technical drawing, by contrast, is

completely explanatory. The shapes are all depicted thoroughly and precisely, and are

arranged so as to explain their positions in the final assembled piece. The drawing

is constructed precisely so that the viewer does not have to use their imagination

to fill in the geometry of the scene. The drawing invites the viewer to construct a

mental image of the arrangement of parts, and does not distract the viewer with any

extraneous details. Both drawings are effective examples of abstraction.

The exact techniques by which the respective artists achieved these effects are

the subject of centuries of study, and books on art instruction often do a good job

of explaining them (e.g., [25, 51, 63]). Some examples that are particularly salient,
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however, include loose and controlled drawing, sparse and developed drawing, and

abstract and veridical drawing.

When placing each line in a drawing, the artist can choose whether to make

the line hew closely to the exact shape of the subject, or make the line a loose

approximation. This decision is not based just on the time or effort required, though

those are important considerations. A loose, sketchy style conveys a certain kind of

abstraction: it indicates that there is more to the subject than is depicted on the

page (Figure 2.2a). A precise, controlled style, by contrast, tends to convey the idea

that what is on the page is a full representation of the subject, and does not leave

anything out (Figure 2.2b).

Similarly, the artist can choose how many lines to use to depict the subject. It

is almost always possible to add more detail to any part of a drawing, but such

detail will usually change the overall effect. A sparse style, like a loose style (they

are often combined) indicates that the artist is providing the gestalt impression of

a scene, rather than the details (Figure 2.2c). However, the details can make all

the difference: for example, the chains and gibbets in Figure 2.2d. Control over the

level of detail in a drawing is the aim of line elision techniques such as described in

Section 5.2.

Finally, an artist can create a careful line drawing that gives an abstract impression

conveying something beyond the literal shape of the subject (Figure 2.2e), or a

veridical, life-like impression (Figure 2.2f). Of all the techniques mentioned so far,

this type of abstraction is perhaps the most challenging for a computer to mimic,

because it requires a deep knowledge of the subject and an artistic flair that only a

few people possess.

8



(a, b)

(c, d)

(e, f)

Figure 2.2: Example drawings. loose and controlled (a and b, Canaletto), sparse and
developed (c, John Singer Sargent, and d, Piranesi), and abstract and veridical (e,
Picasso, and f, Gustave Moreau).
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2.2 Drawings by Computers

The ability of line drawings to convey ideas that are difficult or impossible for a

photograph to capture has led to a resurgence in their use in computer graphics,

as part of the field of non-photorealistic rendering (NPR). Common applications of

NPR line drawing algorithms are to aid comprehension and to evoke the feeling of a

drawing made by hand.

There are a variety of technical challenges involved in creating a system for making

line drawings, including mathematical definitions for lines, hidden line removal, line

rasterization and anti-aliasing, and level of detail control. In this section we briefly

review current mathematical definitions for drawing lines on 3D shapes, since these

definitions will appear in all the following chapters. The other technical areas will be

covered in Chapter 5.

When lines are used to directly convey shape, such as in a pure line drawing, the

lines must be given a mathematical definition in terms of the geometry of the surface

and position of the viewer.

The two fundamental geometric lines for 3D shapes are discontinuities in depth—

occluding contours [40, 50, 28], and discontinuities in surface orientation—sharp

creases [50, 64]. Both are classical elements in line drawings [77], and are commonplace

in systems for the non-photorealistic rendering of shape.

However, organic forms such as the human body are generally too smooth

to contain significant discontinuities in surface orientation, and discontinuities in

depth (occluding contours, Figure 2.3a) are generally insufficient to depict the shape

effectively (while this point is intuitive for many shapes, this thesis includes empirical

evidence that occluding contours alone cannot in general depict shape effectively —

see Chapter 4). In order to depict geometric features on smooth surfaces without

using shading, new mathematical definitions for lines are required. In the last few

years, a large number of such definitions have been proposed.

10



a c e g h

b d f i

Figure 2.3: Computer-generated line drawings. Various mathematical definitions
for lines, shown in their most favorable situations: (a) occluding contours [28], (b)
geometric ridges [54], (c) demarcating curves [42], (d) suggestive contours [17], (e)
apparent ridges [36], (f) laplacian lines [83], (g) abstracted shading [44], (h) principal
highlights [18], and (i) suggestive highlights [18].

Perhaps the most intuitive are ridge and valley lines (Figure 2.3b), which are

formed by local extrema of surface curvature in the principal directions of the shape

[31, 73, 56, 54]. Ridge and valley lines may be considered a generalization of sharp

creases to smooth surfaces.

Demarcating curves [42] are defined similarly to ridges and valleys, except

that they line along curvature inflection points rather than extrema. These

inflection points often seem to correspond with an intuitive segmentation of a shape

(Figure 2.3c).

Related to occluding contours are suggestive contours [17, 16], which can be

intuitively understood as “almost contours:” places where occluding contours appear

with a small change in viewpoint (Figure 2.3d).

Apparent ridges [36] aim to combine the best aspects of ridge and valley lines and

11



suggestive contours, by approximating ridges and valleys when the surface is viewed

straight-on, and extending occluding contours when the surface is foreshortened

(Figure 2.3e). Apparent ridges are defined as ridges and valleys of a view-dependent

curvature measurement that takes foreshortening into account.

Laplacian lines [83] are a geometric definition meant to appear in places where

the color of a shaded model would change quickly. In other words, they are geometric

lines meant to correspond to image edges (Figure 2.3f).

Some line definitions are meant to indicate or abstract shading highlights. These

include lines via abstract shading [44], which directly processed a shaded image to

produce lines (Figure 2.3g), and principal (Figure 2.3h) and suggestive highlights

(Figure 2.3i), which are defined solely in terms of the geometry of the shape and

position of the viewer [18].

It is natural to ask which of these many definitions are appropriate for a specific

situation, or which more closely resembles what a human would draw. Recent efforts

([36, 44, 18]) include direct comparisons between their results and artists’ renderings.

However, these comparisons are informal and generally intended to illustrate the

inspiration for the work, not to evaluate the results of the algorithm. This thesis

provides the first in-depth and formal studies of this topic in Chapters 3 and 4.

2.3 Evaluation of Effectiveness

There are several strategies to assess the effectiveness of NPR algorithms. One ap-

proach is to survey users to gather their subjective impressions. Schumann et al. [66],

for example, demonstrate that architects prefer sketchy renderings to depict the pre-

liminary nature of a design. Isenberg et al. [33] compared viewers’ perceptions of

hand-drawn versus computer-generated pen-and-ink illustrations by asking them to

perform several subjective ranking tasks, including pile sorting and answering survey-

12



style questions.

A second approach is to measure performance in some task. For example, Gooch

et al. [23] compare response times for recognition of faces in photographs and artistic

renderings. Heiser et al. [26] use a concrete task, and evaluate automatically generated

assembly instructions [1] by recording construction times for assembly of a piece

of furniture. Winnemoeller et al. [80] compared the speed with which participants

recognized shapes under several different shading styles by presenting them with an

animated set of objects and asking them to rapidly select certain specific shapes.

A third approach is to make use of techniques developed in perceptual psychology,

such as gauge figure studies [39]. This is the approach followed in the study described

in Chapter 4, and will be examined in detail there.

Finally, a fourth approach is available when we are concerned with how the images

guide a viewer’s attention: examining recordings of eye movements of viewers [19, 65].

A viewer’s overt attention is measured from eye movements, which are closely coupled

with cognitive processes [27]. The effectiveness of the rendering style in our interactive

line rendering system (Chapter 5) is evaluated in this way.

13



Chapter 3

Where Do People Draw Lines?

The goal of this chapter is to characterize the mathematical properties of line drawings

made by human artists. Specifically, we aim to draw relationships between the

locations of lines drawn by artists and properties of the surface geometry, lighting, and

viewing conditions at those locations. This type of analysis can both guide the future

development of line drawing algorithms in computer graphics, and provide artists and

observers with a precise vocabulary for characterizing and discussing where lines on

a model are drawn.

This chapter describes a study in which art students were asked to make line

drawings that “convey the shape” of 3D models shown to them as rendered images.

The study balances the competing concerns of allowing the artists to draw freely

and of acquiring useful data. Specifically, the artists were asked to draw in two

steps: first to draw in a blank area, then to register their drawing to a faint, photo-

realistic image of the model. The registered drawings can then be used to study

correlations between the locations of human-drawn and computer-generated lines

(Section 3.2.2), characterize the differences between specific artists (Section 3.2.3),

and provide training data for synthesis of new line drawings (Section 3.2.4).

While some books on art instruction explicitly identify known line types as

14



Figure 3.1: Where people draw lines. Average images composed of 107 drawings show
where artists most commonly drew lines in our study.

candidates for drawing (e.g., contours and ridges [68], or specific feature lines on

a known shape such as the nose [57]), little is said about general rules for where on

a figure to place lines in order to best convey shape. This decision making process

seems to be learned through trial and error over years of practice by individual artists.

We provide a statistical analysis of the locations where artists drew lines with

the geometric, viewpoint, and lighting characteristics of the underlying 3D scene.

The analysis supports several conclusions. First, human line drawings, made under

our controlled conditions, are quite consistent with each other. Second, most of

the areas where artists consistently drew lines can be described by well-known,

15



simple mathematical properties, such as the locations of occluding contours and large

gradients of image intensity. Third, current line drawing definitions can help explain

many of the lines that do not lie in those areas, but cannot explain all the artists’

lines.

Two recent studies also used drawings by human artists alongside computer

renderings of the same models. Isenberg et al. [33] compared viewers’ perceptions of

hand-drawn versus computer-generated pen-and-ink illustrations. Phillips et al. [58]

conducted a study similar to ours, in which artists were asked to draw synthetic,

blobby shapes from a range of prompt types. Among other differences from that

work, our study includes a separate tracing and registration step that allows greater

accuracy in the analysis of artists’ lines.

We believe that this study in no way exhausts the possible investigations that

can be performed with this data. We therefore make our drawings and models freely

available, in hopes that other researchers continue in this line of inquiry.

Overall, this chapter makes the following contributions:

• A study methodology that supports registration of human line drawings with

rendered images of 3D models.

• A dataset of 208 line drawings provided by 29 skilled artists covering a dozen

3D models, with two viewpoints and two lighting conditions for each model.

• Results of correlating local properties of 3D surfaces and rendered images with

the locations of lines in artists drawings.

• Characterization of which pixels drawn by recent automatic line drawing

algorithms are found in human line drawings.

• A method for predicting the probability of an artist drawing at a particular

location in an image and using that image to generate new line drawings.
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3.1 Study

The study is designed to capture the relationships between the locations where human

artists draw lines and the mathematical properties of the of the model’s surface and

appearance at those locations. To achieve this goal in a way that supports detailed

analysis, several important choices must be made: what drawing style to consider,

what models, views, and lighting conditions to use as prompts, how to present these

prompts to the artists, what instructions to give the artists, and how to scan and

process the drawings. The following sections describe each of our design decisions in

detail.

3.1.1 Artistic Style

The first challenge in designing the study is to decide on a style of drawing that

is narrow enough that all artists have roughly similar intentions while drawing, yet

flexible enough for each artist to exercise individual ingenuity.

We balance these goals by focusing on line drawing that includes only feature

lines, with no hatching or shading (examples appear in Figure 3.4). This choice

of style was made for two reasons. First, it is a simple style that is familiar to

most artists and yet expressive enough to depict shape. Second, it matches the style

generated by several NPR rendering algorithms recently proposed in the computer

graphics literature (e.g., [17, 36]). By asking the artists to draw in the same style

as the computer algorithms, we can learn both about the human drawings (by using

the vocabulary of the algorithms) and the computer drawings (by using statistical

correlations with human tendencies).

We give each artist verbal and written instructions to make drawings with “lines

that convey the shape” of an object. We do not provide instructions about whether

lines should represent shape features, lighting features, or anything else. However, we
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specifically ask the artists to refrain from including lines that represent area shading

or tone features, such as stippling or hatching.

3.1.2 Prompt Selection

A second design decision is to select 3D models and rendering parameters to use when

producing prompts (images depicting a shape for the artists to draw). In making this

choice, we use the following design criteria:

• Comprehension: our first concern is to provide images from which the

artists can easily infer shape. This consideration rules out overly abstract

3D surfaces (i.e., shapes unlike anything in common experience), complicated

concave shapes (e.g., with lots of occluded surfaces), and surfaces with spatially-

varying BRDFs (e.g., textures). It also suggests that multiple views of the shape

be provided as prompts, so that ambiguities in one view are resolved by another.

Finally, prompt images should be photorealistic, to avoid confusing artists that

are not familiar with classic CG rendering artifacts such as hard shadows and

lack of indirect illumination.

• Coverage: the set of prompts presented to each artist should have pixels that

cover a wide variety of mathematical properties (e.g., high image gradients,

surface critical points, etc.). This consideration rules out objects containing

only large, planar facets (few interesting surface features), convex objects (no

concave surface features), and other surfaces with few inflections. Rather, it

suggests blobby objects with many curved surfaces.

• Separation: the prompt images should have mathematical features of particu-

lar interest (e.g., suggestive contours, apparent ridges) in clearly distinguishable

positions within the image. This consideration rules out using headlights (a

point light centered at the viewer’s eye), since many interesting image features
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line up directly with object-space features in that case (e.g., suggestive contours

and image intensity valleys).

• Familiarity: the objects shown in prompts must be familiar to the artist (so

that he/she can understand it), but not so familiar to the that he/she applies

domain-specific knowledge when drawing. This consideration rules out objects

with strong semantic features (e.g., human faces) and ones commonly drawn in

art classes (e.g., fruit).

• Simplicity: the objects must be relatively simple, without much fine scale

detail. Otherwise, the artists may be tempted to abstract or simply omit

important features.

Based on these criteria, we select 12 models of four object types for our study:

(a) 4 bones, (b) 2 tablecloths, (c) 4 mechanical parts, and (d) 2 synthetic shapes

(Figure 3.2). We synthesize four prompt images for each model, one for each

combination of two different viewpoints and two lighting conditions. The two

viewpoints are always 30◦ apart (so that large parts of each model can be seen from

both viewpoints) and are carefully chosen to distribute surface features across the

image. By providing prompts with different lighting and different viewpoints for the

same model, we can analyze image-space properties in isolation from object-space

ones.

We generate our images using YafRay [82], a free raytracing package capable of

global illumination using monte carlo pathtracing. The models are rendered using a

fully diffuse, gray material, and thus take on the color of the lighting environment.

For lighting, we use the Eucalyptus Grove and Grace Cathedral high dynamic range

environment maps captured by Debevec [15].
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vertebra cervical tooth femur

screwdriver flange rockerarm pulley

twoboxcloth lumpcloth cubehole bumps

(a) 4 Bones

(b) 4 Mechanical Parts

(d) 2 Synthetic Shapes(c) 2 Tablecloths

Figure 3.2: Prompt models. The twelve models from our study, shown with one of
two views and one of two lighting conditions. Groups (a) and (b) are scanned meshes,
(c) and (d) are synthetic.

3.1.3 Line Drawing Registration

The final and most difficult part of the study design is to engineer a system that is

able to register line drawings made by artists to pixels of a prompt image with great

accuracy.

Designing such a system is challenging because there is a trade-off between

allowing the artist to draw in a natural manner (e.g., with pencil on a blank sheet

of paper) versus including constraints that facilitate accurate registration between
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prompts and line drawings. On one hand, the drawing process surely must not bias

the locations of lines made by the artist, and thus it is not a good idea to have the

artist compose a drawing directly over the image prompt. On the other hand, the

process must provide enough registration accuracy to distinguish between important

mathematical properties at nearby pixels in the prompt. This problem is particularly

difficult since free-hand drawings can be geometrically imprecise, and the intended

location of every line is only known by the artist.

Our design balances these trade-offs with a simple two step process. In the first

step, the artist is given a pencil and a blank sheet of paper and then asked to make a

free-hand line drawing that “conveys the shape” of the surface in the prompt. In the

second step, the artist is asked to re-create the same line drawing by tracing over a

faint copy of the prompt, being careful to redraw every line of the free-hand drawing

at the position corresponding to its originally intended location.

Figure 3.3: Making a drawing. With the drawing page folded in half, the artist makes
a free-hand drawing while refering to the prompt page (left). The completed drawing
page (right) contains a free-hand drawing and a registered drawing.

Specifically, the artist is given two sheets of paper for each line drawing

(Figure 3.3). The prompt page (shown on the left) contains multiple full color views

of the prompt shape, one of which is large across the top and is called the main view.
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The drawing page (shown on the right) contains two boxes, each the same size as

the main view. The top box is initially blank, while the bottom box contains a faint

version of the main view.

The artist is asked to complete the drawing page by first folding the page vertically

in half so that only the blank space at the top is visible (left of Figure 3.3). Using

the viewing page for reference, the artist draws the prompt shape in the blank space,

just as if they were making a normal sketch. When finished, the artist unfolds the

drawing page and copies their freehand drawing onto the faint image on the bottom

of the same page. During the copying step, the artist is asked to change the shape of

their lines to match the target rendering, but not to change the number or relative

position of the lines. In effect, the artist is asked to perform a non-linear warp of

their original drawing onto the target shape. A typical result is shown on the right

side of Figure 3.3.

We scan the drawing page with a flat-bed scanner, locate fiducials included in

the corners of the page, and then use the fiducials to register the traced lines with

the 3D model rendered from the main viewpoint. An adaptive thresholding method

is used to convert the scanned gray-scale image into a binary image so that all the

artist’s lines, regardless of strength, are included in the binary image. We then use a

thinning operator to narrow the lines in the binary image down to the width of one

pixel. The final result is a 1024×768 pixel binary image containing a single pixel wide

approximation of the human artist’s lines.

While this procedure takes up to twice as long as a single drawing (e.g., it requires

the artist to draw every line twice), it achieves a nice balance between the design

trade-offs: the line drawings are composed in a free-hand manner familiar to artists,

while the intended locations of every line on the 3D surface can be inferred with great

accuracy.
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Figure 3.4: Example drawings. Three drawings of the screwdriver model from the
same view (a,b,c), and the average of 14 drawings of the same view (d).

3.1.4 Data Collection

This line drawing and registration procedure was repeated for 29 artists, most of

whom were enrolled in one of four art classes (two composed of middle and high

school students, one of adult evening students, and another of college students). Two

of the participants were professional artists. Each artist completed up to 12 prompts.

Every participant completed a questionnaire listing his/her gender, age, and

number of years of art training. In all, there were 22 females and 7 males. The

ages ranged from 10 to 54 years, with an average of 22; and the participants reported

an average of 6 years of art training (this number should be taken with a grain of salt,

as some participants reported only training at the college level, while others reported

all art classes).

Every artist was provided a folder with one page of instructions, twelve prompt

pages, and twelve corresponding drawing pages (one for each model). The folders

were arranged such that no artist could draw the same model more than once, and
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prompts for models, viewpoints, and lighting conditions were arranged in shuffled

order to reduce effects of training on our analysis.

The artists were given brief verbal instructions (“draw lines that convey shape”

and “be sure to copy every line from your free-hand drawing over the faded image

below”) and then told to complete line drawings at their own pace for as long as

they had time. Most of the art classes were scheduled for a two hour block, and each

line drawing took 10-15 minutes, on average (with time split around 2/3 for drawing

free-hand and 1/3 for tracing lines over the faded image). Each participant completed

an average of 7.5 drawings – only one participant (a professional artist) completed all

twelve available in his folder.

In all, 208 line drawing images were collected. Generally speaking, the artists

followed the directions well, produced line drawings that convey shape effectively, and

were careful when tracing lines over the faded image (some example line drawings are

shown in Figure 3.4). However, in some cases, the artists clearly were not careful in

the registration step, failing to follow even the exterior outline of the shape. Since

accurate registration of lines to image features is essential for meaningful results, we

cull these tracings from our analysis. To do this in an unbiased way, we assume that

inclusion of the exterior outline is common to all human line drawings, and eliminate

from our data set any drawings where less than 90% of the exterior is within 1mm of

a human-drawn line. The remaining 170 line drawings form the basis for our analysis.

3.2 Results

We can investigate a number of questions by comparing how our captured line

drawings overlap with the synthetic images provided as prompts to the artists.

We ask not only how artists’ drawings overlap with one another, but also how they

overlap with lines generated by computer graphics algorithms, and how they can be
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predicted from local properties of the underlying surface and rendered image. The

latter two topics are of particular interest for computer graphics, as they provide a

characterization of artist line drawings in terms of line definitions (e.g., this drawing

is X% occluding contours, Y% suggestive contours, Z% apparent ridges, and so on)

and differential properties commonly used in the field (e.g., there is a high propensity

for lines when the view dependent curvature is large and its derivative is zero). We

believe that characterizing the relationships between artists’ drawings and these terms

is the most interesting aspect of our study.

All comparisons between drawings are based on overlaps of pixels, rather than

strokes or lines. This approximation is made for two practical reasons. First, since

artists’ drawings are scanned after they are complete, we have no robust method to tell

where line strokes begin and end (an artist may make several small strokes that merge

together into a single line). Second, since it is difficult to establish correspondences

between lines robustly, there is no obviously good measure of the overlap between

sets of lines. Rather, we compare line drawings based on proximity of pixels, an

approximation that is both simple and robust.

3.2.1 How similar are the artists’ drawings?

The first and most basic analysis we perform is to measure the similarity between

artists’ drawings of the same prompts.

We can show consistency between artists qualitatively by superposing drawings on

top of each other and visualizing how much they overlap (Figure 5.1). For example,

Figure 3.5a shows each artist’s drawing in a separate color. In this example, the

artists agree very closely with each other in most areas, especially along obvious

features such as boundaries and occluding contours, but differ in exactly where they

place lines in the right part of the rockerarm.

In order to quantify consistency, we compute a histogram of pairwise distances
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between artists’ drawings (Figure 3.5b). For every pixel in every drawing, we record

the distance to the closest pixel in every other drawing of the same prompt, and then

observe how often these distances lie within the tolerance of the tracing procedure

(1mm). Across all prompts, approximately 75% of human drawing pixels are within

1mm of a drawn pixel in all other drawings for that prompt.

3.2.2 Do known CG lines describe artists’ lines?

A natural question to ask is how well currently known line drawing algorithms

can describe the human artists’ lines. In our analysis, we consider the following

line drawing algorithms: image intensity edges [9], geometric ridges and valleys (as

defined by [54]), suggestive contours [17], and apparent ridges [36]. For the object

space methods (ridges and valleys, suggestive contours, and apparent ridges), we
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Figure 3.5: Consistency of artists’ lines. a) Five superimposed drawings by different
artists, each in a different color, showing that artists’ lines tend to lie near each other.
b) a histogram of pairwise closest distances between pixels for all 48 prompts. Note
that approximately 75% of the distances are less than 1mm.
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always include the exterior boundary and interior occluding contours in the generated

drawing. For Canny edge detection we always include the exterior, but not the interior

contours, since they are not necessarily image intensity edges.

Quantifying comparisons between drawings

In order to compare an artist’s drawing and a computer generated drawing quanti-

tatively, we use the standard information retrieval statistics of precision and recall

(PR). Here, precision is defined as the fraction of pixels in the CG drawing that are

near any pixel of the human drawing. Recall is defined as the fraction of pixels in

the human drawing that are near any line of the CG drawing. We define “near” by

choosing a distance threshold – we use 1mm.

As an example, consider comparing the set of five human drawings shown in

Figure 3.5a with the lines generated by the apparent ridges algorithm (Figure 3.6).

The output of the apparent ridges algorithm is not only a set of lines, but also a

“strength” value at each line point. In general, we expect stronger lines to be more

important and thus more likely to match the artists’ lines. We thus generate a series

of binary apparent ridges images, each consisting of all points with strength above a

given threshold. The PR of each drawing compared with this set of images is shown

as a dotted pink line in Figure 3.6. As the strength threshold is lowered more lines

are produced, typically causing recall to increase and precision to go down, yielding

a sloping line in the PR graph. For completeness, we allow the PR plot to extend

to P = 1.0, R = 0.0 (defined as a blank image), and directly downward to P = 0.0

from the highest recall obtained by the algorithm. Since each PR curve is defined for

P = [0, 1], we can compute an average curve by combining points along lines of fixed

precision. The PR values for occluding contours alone are plotted as black dots, and

are not averaged.

While computing precision and recall for the other object space definitions
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Figure 3.6: Precision and recall example. Left: apparent ridges are compared with
five artist drawings. Solid line (highlighted) is the average PR for the set of drawings.
Black dots indicate contours only. Right: an example drawing with overlapping
apparent ridges (widened by 1mm on each side). PR of the example is circled.

is performed similarly, computing PR for the Canny algorithm is slightly more

complicated. Canny also has a natural “strength” value (the intensity of the filter

response), but the algorithm has three free parameters: the size of the image filter,

and the low and high thresholds (l and h). For our analysis, we fix the filter σ at 2

pixels (a value we find produces reasonable results) and set l = 0.4h. We then vary

h to control the number of line pixels produced by the edge detector.
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In choosing the distance threshold, there is tension between

achieving high recall and causing nearby, but distinct, line definitions

to overlap. The figure inset right shows the cumulative recall over all

drawings of lines explained by distinct (colored, as in Figure 3.7)

versus overlapping (gray) definitions, as a function of threshold

distance. We find that the threshold of 1mm provides a good balance

between high recall and low overlap. Importantly, we find that while the exact recall

numbers change somewhat with the distance threshold, the qualitative behavior and

relative rankings of the CG lines do not.
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Comparing CG lines individually

Figure 3.7 shows the average precision and recall for four representative models. The

lines drawn on mechanical models such as the flange are classified readily into ridge-

like features (green and pink), and are also explained well by Canny edges (yellow).

The lines drawn on the cloth and bone models are largely occluding contours (black

dots), though suggestive contours (blue) explain relatively more of the lines on these

smooth models than on the other sets. The cubehole is almost completely explained

by the CG methods. The tightness of the group of occluding contour dots gives a

measure of how similar each drawing’s PR is to the others, since the unaveraged PR

lines (with the exception of Canny) pass through the contour dots.

We find that overall, Canny edges, apparent ridges, and geometric ridges and

valleys best match the human lines when taken individually. No single definition

matches the artists’ drawings perfectly. Even in theory, however, no single CG

algorithm with a single free parameter could match all the drawings, because the

drawings are different from one another.

To gauge how far the CG algorithms could possibly improve, we imagine a

computer algorithm to create an optimal CG drawing for a set of artists’ drawings.

The optimal drawing has the highest recall for a given precision of any possible CG

drawing (dotted red in Figure 3.7). Thus, it both describes how closely the original

drawings match each other, and puts a conservative ceiling on how well any CG

algorithm can match the human drawings.

The optimal CG drawing for precision P is created by the following procedure: for

each of n binary, thinned drawing images, make an image that contains all the pixels

within 1mm of any drawn pixel. Add these images to create an overlap image with

values in the range [0, n]. Sort the pixels of this overlap image, and choose pixels with

the highest value until precision falls below P . The blank image is defined to have

P = 1.0, so this procedure always produces a drawing. Since the value of a pixel in
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Figure 3.7: Average precision and recall. Lines further to the upper right represent
better matches between the artists’ and CG lines. The black dots represent occluding
contours only, and are not averaged. The slope of the curve generally falls off rapidly
after 80% precision. Red dotted line indicates theoretical maximum recall. Note:
axes begin at 20% recall and 40% precision.

the overlap image is exactly the precision of that pixel if added to the optimal drawing

(times n), this procedure will choose a drawing with the largest possible number of

pixels for a given precision.

Comparing CG lines in combination

Even with the theoretical ceiling imposed by the optimal CG drawing, the individual

CG algorithms do not match the artists’ lines particularly closely. In almost all human

drawings, however, there are examples of multiple classes of lines. For example, an

artist might draw mostly along image intensity edges, but still draw other semantically

important features. It is thus interesting to consider how different line definitions
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might explain the human drawings in combination.

In order to combine line definitions fairly, we use computer generated drawings

with a fixed 80% precision. We then classify each pixel in each human drawing by

the nearby CG lines. Pixels that lie near a single line definition are considered to be

explained only by that definition, while pixels that lie near multiple definitions are

considered explained by all the nearby definitions.

To visualize the results we create bar charts that partition the lines into object

space definitions (blue), image intensity edges (green), or both (brown). Looking

at the results in Figure 3.8a, we find that the large majority of lines are described

by both image intensity edges (Canny edges) and an object space definition. Of the

remainder, slightly more lines are explained by the combined object space approaches

than by image edges alone.
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(a) (b)

Figure 3.8: Categorizing artists’ lines. a) fraction of all lines explained by image
based lines only, object based lines only, and both. b) fraction of all lines explained
by the exterior contours, interior occluding contours, and all other object space lines.
Dotted red indicates theoretical maximum recall.

Lines that are explained only by image edges account for at most 5% of all classified

lines at 80% precision. We can therefore learn a good amount by examining the object

space lines alone. Analyzing object space lines is also more informative than analyzing

image edges, since the different definitions correspond to familiar geometric concepts.

For example, we can break down the human lines by intuitive categories, such as

exterior and interior occluding contours, and everything else (Figure 3.8b). Across
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all model groups, exterior contours alone account for between 35-50% of all classified

pixels. Interior occluding contours account for between 10-20% of all classified pixels,

while all other definitions make up 20-35%.

If we look at the object space lines that are not exterior or interior contours, we see

that in the mechanical and synthetic models, ridge and valley like features dominate

the remaining lines (green, yellow, and pink in Figure 3.9). Both apparent ridges and

geometric ridges and valleys contribute alone, but the majority of ridge like features

are classified both as apparent and geometric.
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SC & ARARRV & ARRVOther Overlap
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Figure 3.9: Non-contour lines. Categorization of artists’ lines that are not exterior or
interior occluding contours: geometric ridges and valleys (RV), apparent ridges (AR),
suggestive contours (SC), and combinations.

For the bone and cloth models, ridges and valleys are less important, though

the overall total of non-contour lines is approximately half that of the mechanical

and synthetic models. One particularly interesting combination of object space lines

is suggestive contours and apparent ridges (purple in Figure 3.9). Both suggestive

contours and apparent ridges extend contours, but are largely disjoint elsewhere.

Lines that are classified as both suggestive contours and apparent ridges, therefore,

are likely to be extensions of occluding contours. As might be expected, the folds in

the synthetic cloth lead to a disproportionately high amount of this combination.
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Figure 3.10: Comparison of two drawings by different artists. Two drawings of the
same prompt show significant visual differences. These differences are reflected in the
statistics, especially in the use of ridge-like lines (green).

3.2.3 Can CG lines characterize artists’ tendencies?

Given a way of describing an artist’s drawing in terms of CG line types, it is possible to

investigate whether those descriptions can characterize the similarities and difference

between artists’ styles or tendencies. For example, it may be possible to characterize

whether certain artists tend to draw certain geometric features (e.g., ridges) more

than other artists do. In such cases, the CG line definitions provide a vocabulary to

discuss features of human line drawings.

Figure 3.10 shows a simple example of this type. Two drawings of the same prompt

(twoboxcloth with Grace Cathedral lighting) are compared by the composition of CG

line types. As in Figure 3.9, the colored bars indicate the fraction of the drawing

made up by each line type. In this case, however, each set of bars represents a single

drawing. One immediate difference between the drawings is that artist A drew more

lines besides the contours. Non-contour lines account for 26% of artist A’s drawing,

33



and only 13% of artist B’s drawing. The bulk of the difference between the artists

is in the use of ridge-like lines (green, yellow, and pink bars). Artist A drew ridge-

like lines along the top of the shape, while artist B did not. This visual difference

is evident from the statistics, which show a large fraction of geometric ridges and

apparent ridges in artist A’s drawing, and almost none in artist B’s drawing.

While this analysis is instructive in some cases, we find that some individual

artists appear to have consistent tendencies that are not well explained by the CG

lines examined here. For example, artist C made seven drawings, in which 16% of

the lines are unexplained by the tested CG definitions at 80% precision. Over the

same seven prompts, all other artists averaged only 8% unexplained lines. As shown

by the examples in Figure 3.11, artist C made consistently distinct drawings. Artists

with different styles, such as artist C, may provide valuable data for future research

on line definitions and shape perception.

Artist C

others

Figure 3.11: Unusual drawings by an individual artist. CG definitions explain fewer
lines in artist C’s drawings than other artists’ drawings of the same prompts. However,
artist C’s drawings are careful and consistent.
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3.2.4 Can combined local properties explain lines?

While it is interesting to investigate the relationship between artists’ lines and the

lines commonly used in computer graphics, a more fundamental question is how

artists’ lines relate to differential properties of images and surfaces. The analysis

above addresses this question indirectly, since each CG definition is based on a set of

local properties, but it is restricted to the relationships suggested by the known line

drawing algorithms.

To address this question, we take a classic data mining approach. For every pixel

of every prompt, we compute: 1) a feature vector (x) of properties derived from the

3D surface and 2D rendered image, and 2) an estimated probability that a line will

be included at the corresponding location in an artist’s line drawing. Our goals are to

learn a function f(x) that estimates the probability p of an artist drawing at a point

(regression) and to understand which combinations of properties are most useful for

building such a function (feature importance).

Choosing local properties

To build the feature vector for each pixel, we compute 15 local properties of three types

commonly used in image processing, computer graphics, and differential geometry.

First, we consider four image-space properties of the photorealistically-rendered image

prompt: the luminance, the gradient magnitude after a Gaussian blur with σ=2

pixels (ImgGradMag), and the minimum and maximum eigenvalues of the image

Hessian (corresponding to the minimum and maximum directional second derivative

of luminance (ImgMinCurv and ImgMaxCurv, respectively). In general, we expect

that lines are more likely near image edges (ImgGradMag is large) and at ridges and

valleys of luminance (where ImgMinCurv and ImgMaxCurve are large).

Second, we consider view-independent, differential properties of the visible point

on the 3D surface, including the maximum (κ1), minimum (κ2), mean ((κ1 + κ2)/2),
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and Gaussian (κ1κ2) curvatures (SurfMaxCurv, SurfMinCurv, SurfMeanCurv, and

SurfGaussianCurv, respectively). In most cases, we expect lines to occur in areas

where these expressions are large, though it has also been observed that lines are

drawn near parabolic lines (κ1κ2 = 0).

Third, we consider view-dependent properties that correspond to specific defini-

tions for computer-generated lines. Corresponding to the definition of ridges and

valleys, we take the derivative of the largest principal curvature in the corresponding

principal direction (SurfMaxCurvDeriv), which is zero at ridges and valleys. Corre-

sponding to occluding contours, we compute the dot product between normal and

view vectors (N · V ). Corresponding to apparent ridges and valleys, we compute

the largest view-dependent principal curvature (ViewDepCurv) and its derivative in

the corresponding apparent principal direction (ViewDepCurvDeriv), which are large

and zero, respectively, at apparent ridges. Corresponding to suggestive contours, we

compute the radial curvature (RadialCurv) and its derivative in the radial direction

(RadialCurvDeriv), which are zero and large, respectively, at suggestive contours. Fi-

nally, corresponding to principal highlights, we compute radial torsion, which is zero

at principal highlights.

Finally, we estimate the probability, p, of an artist drawing at a pixel by averaging

the registered drawings of all artists for the same prompt and blurring with a Gaussian

filter to account for tracing errors (σ = 0.5mm).

Predicting lines by regression

While several of the computed properties clearly can be used to distinguish pixels

where artists draw from where they do not (Figure 3.12), the interesting question is

whether combinations of those properties can be used to predict where artists will

draw more accurately than any of them alone. To investigate this question we have

experimented with several regression models, including linear regression, radial basis
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functions, regression trees, and several others.
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Figure 3.12: Example local surface features. Top: the relative frequencies of pixels
near artists’ lines (blue), and away from artists’ lines (green). Bottom: the same
data, but shown as probabilities.

As an example, Figure 3.13a shows a regression tree built with the M5P package

in Weka [81] to predict the set of line drawings for one view of the twoboxcloth

model shown in Figure 3.2. In this visualization, branches of the tree are shown as

conditionals proceeding down the tree (indentation indicates level of the tree). If the

conditional at a branch is TRUE, then its descendent on the next line is evaluated;

otherwise, the one lower in the tree and connected by vertical bars is visited. Leaves

are drawn with two text strings, the first one (colored) indicates a predicted value of

p, while the second provides the count of pixels mapping to that leaf during training.

The two images to the right of the tree show how the tree is used for regression –

every pixel is sorted into the tree based on its properties and assigned the value stored

at the leaf. Figure 3.13a shows the prediction of p resulting from this simple tree,

while Figure 3.13b provides a visualization of which pixels sort into which leaves of

the tree (pixels in the image are colored to match the text of the leaf).

In this example, several properties are combined by the decision tree to predict p,

including ImgGradMag, RadialCurvDeriv, ViewDepCurvDeriv, SurfGaussianCurv,

ViewDepCurv, N · V , SurfMaxCurvDeriv, and SurfMinCurv. The set of properties
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Figure 3.13: Decision tree for predicting where artists will draw. (left) decision tree
learned from prompts of bones, (a) predicted probabilities of where artists will draw
for this view (black is high probability), (b) a visualization of which pixels fall into
which leaves of the tree. Note that this tree was purposely kept small for didactic
purposes, which causes the prediction to be coarse.

chosen is instructive, as it suggests that they provide the highest incremental value

in predicting p (at the start of tree building). Of course, many properties are

correlated, and the decision tree may be non-optimal, so an alternative tree may

have produced similar or better predictions. None the less, it is interesting to see how

non-trivial combinations of local properties can be used to make predictions – even

though the tree was purposely kept small in this example, it still is able to provide

a plausible (albeit coarse) prediction for where artists draw lines (Figure 3.13a). If

we consider deeper trees or other regression models, we are able to predict p from x

more accurately.

It is also possible to use image processing tools to find ridges in the predicted

probability distribution to produce a new line drawing. In the case shown in

Figure 3.14a, we predict the image p (top left) using linear regression. We

observe that this synthesis qualitatively resembles the composite of artists’ drawings

(Figure 3.14b). We then extract lines with a ridge finding algorithm to produce the
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(a) Drawing likelihood (b) User composite

(d) Extracted lines (e) Sample drawing

(c) Suggestive contours

(f ) Canny edges

Figure 3.14: Synthesis. Linear regression on the cervical model, trained on drawings
of other bone models, estimates the likelihood of an artist’s line appearing at each
pixel (a). The likelihood image resembles the overlaid artists’ drawings of the same
prompt (b). To synthesize a line drawing, ridges are extracted from the likelihood
image(d). This synthesis qualitatively compares with a sample human drawing (e).
Note that the synthesis could not have emerged from independently analyzing the
CG lines shown in (c),(f)

line drawing in Figure 3.14d. This line drawing is comparable to a sample artist’s

drawing from the data set (Figure 3.14e) and contains elements from multiple CG line

definitions. For comparison, the right two images (Figure 3.14c,f) show suggestive

contours and Canny edges for the same prompt with parameter settings tuned to

produce approximately the same line density as the artist’s drawing. Since the

probability predicted by our model combines the differential properties that lay the

foundations of these other algorithms, the fact that it exhibits features from more

than one of them is not surprising. However, it provides a practical way to combine

features from many automatic line drawing algorithms into a single framework where

thresholds are learned automatically.
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3.2.5 Which local properties are most important?

In our data mining framework, it is not only possible to predict where artists will

draw, but also to examine which local features are most important when building

such a regression model. For example, Random Forests [6] estimate the importance

of every feature to its model by building a large number of decision trees trained

on different subsets of the data [6]. For each feature m of each built tree, the error

observed in predictions for the “out of bag” data (the part held out of training) is

computed and compared to the error that is observed when values of feature m are

permuted. The difference between these errors, averaged and normalized, is reported

as the “importance” of feature m. Of course, the importance only measures an

average over many trees, and so it does not capture the importance of any single

feature at any single branch in the tree. Yet, it is interesting to use importance

estimates to study how much low-level features contribute on average to predictions

of line drawing locations. For this analysis, we make the assumption that almost all

occluding contours (N ·V = 0) are drawn by artists (Figure 3.12),and so exclude any

pixel within 1mm of a contour from the training set.

Table 3.1 shows the relative feature importance as computed with the Random

Forest implementation of Breiman and Cutler in R [61] for the remaining pixels of all

drawings in our study. The first four columns report the importance of features (rows)

estimated when training on models from each of one type (bones, cloth, mechanical,

and synthetic), while the rightmost column reports the average over the whole dataset.

The results indicate that image-space intensity gradient magnitude is the feature

amongst the tested set that is most useful in predicting the probability that an artist

will draw at a particular location in our study (e.g., the average prediction error

is largest if values of the image-space gradient magnitude are randomized). While

image-space discontinuities often appear at the same place as boundary contours and

occluding contours (N ·V = 0), the locations where those contours appear have been
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excluded from this study. So, this result suggests that image-space intensity gradients

away from the contours are also highly correlated with artist line locations. Of course,

this is not surprising, as ridges, valleys, and shadow boundaries are commonly drawn

by artists. However, it is a bit surprising how all the simple image-space features

(which do not require a 3D model to compute) are so important relative to the other

more complex properties that have been the focus of recent research in computer

graphics.

Feature Bone Cloth Mech Synth Avg

Im
a
g
e

S
p
a
c
e ImgGradMag 31.3 36.0 73.8 147.8 72.2

ImgMaxCurv 38.0 15.8 55.5 64.4 43.4
ImgMinCurv 15.1 15.3 23.4 56.6 27.6
ImgLuminance 20.2 19.8 33.9 33.6 26.9

V
ie

w
D

e
p
e
n
d
e
n
t N · V 23.6 13.9 31.3 36.9 26.4

ViewDepCurv 21.5 17.2 49.8 10.1 24.7
ViewDepCurvDeriv 22.8 14.4 31.9 9.5 19.7
RadialCurvDeriv 19.2 15.0 29.8 8.0 18.0
RadialTorsion 14.6 10.3 27.8 7.2 15.0
RadialCurv 14.8 10.3 26.2 7.2 14.6

V
ie

w
In

d
e
p
e
n
d
e
n
t SurfMaxCurvDeriv 16.9 11.0 27.3 8.9 16.0

SurfMaxCurv 13.9 8.8 25.1 7.6 13.9
SurfMinCurv 13.9 8.1 27.0 5.1 13.5
SurfMeanCurv 14.1 8.9 22.5 7.0 13.1
SurfGaussianCurv 13.1 8.5 25.7 4.9 13.1

Table 3.1: Property “importance.” This table shows the relative importance of local
properties in predicting the probability of an artist drawing at a particular location.
Columns show results for Random Forests trained on different subsets of the data.

3.2.6 Which CG lines are most important?

We can also use Random Forests to compute importance of the computer graphics

line definitions studied in Section 3.2.2 for predicting where artists draw lines. For

this analysis, we compute a new feature vector for every pixel storing the strength

for every CG line definition. Note that strength is only defined at pixels where the

algorithm would draw a line (e.g., zeros of maximum curvature derivative for ridges).

At all other pixels, strength is always zero. We then recompute the Random Forests
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with the new feature vectors.

From the results in Table 3.2, we see that strong image-space gradients in

illumination (Canny edges) still provide the strongest cues for artists to draw lines,

even in relation to other computer graphics line definitions.

Feature Bone Cloth Mech Synth Avg
Canny edges 18.2 37.2 50.9 145.0 53.4
Apparent Ridges 8.7 11.2 21.2 77.9 24.8
Ridges & valleys 6.8 7.4 24.4 77.1 24.5
Suggestive Contours 9.8 11.9 17.4 1.6 11.3

Table 3.2: CG line definition “importance.” This table shows results similar to thoe
ones in Table 3.1, but for features derived directly from CG line definitions.

3.3 Conclusion

Overall, we make the following conclusions from this study, some of which are obvious

and others of which are not.

First, we observe that artists in our study draw nearly 75% of their lines at a

location that is within 1mm of all other artists drawing from the same prompt. The

overlaps appear mainly at exterior and interior occluding contours, which comprise

57% of all lines drawn.

Amongst the other lines, large gradients in image intensity (as measured by image-

space gradient magnitude) provide the best single predictor for where artists will

draw under the conditions of our study. Lines generated by Canny edge detection

on a prompt image cover 76% of artists’ lines with 80% precision. These lines are

almost entirely overlapped (95%) by lines predicted by object-space line definitions

commonly found in computer graphics. The three object space definitions together

cover 81% of the artists’ lines at the same precision. We find that each of the four

CG line definitions we considered explains some artists’ lines that the others do not.

The cumulative output of the four line drawing algorithms considered here cover
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only 86% of artists lines. We believe that some of the remaining lines could be

explained by other line definitions based on local properties (e.g., lines from diffuse

shading [44], or a new definition net yet described), or by clever combinations of

current line definitions.

In some cases, however, it appears that artists select lines using criteria beyond

the local features we examine here. For example, Figure 3.15 shows two cases where

artists chose to draw lines on locally weak ridge and valley features, while omitting

lines along locally stronger ridges and valleys. This choice is consistent between

several artists.

While it may be that local surface features that we have not examined (or a

combination of them) could explain the artists’ choices in these cases, we believe it

is more likely that the artists used non-local criteria for selecting these lines. Indeed,

several artists mentioned that, for the flange drawing (Figure 3.15a), they omitted

lines that were “implied.” Since implied features depend on context, they are not

describable with local properties alone.

Limitations and Future Work

We identify the following limitations of our study, which suggest topics for further

work:

Potential bias. The possibility exists that our results carry some bias due to the

way we collected data. We believe that artists generally followed the given instructions

and faithfully copied their drawings from the drawing area to the tracing area, but

it is possible that they altered their lines when tracing over a faint version of the

prompt. Such alteration could contribute to the relatively high importance of image-

space features noted in our analysis (Sections 3.2.5 and 3.2.6). Note, however, that

the same image-space features in the faint images also appear in the prompt images.
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Limited data. This section draws a number of conclusions from the limited

data set we have acquired to date. Of course, those conclusions are limited to the

conditions of our study and the artists participating. In the future, we hope to expand

this study to provide more drawings per prompt and cover a greater range of subjects.

More data would reduce noise in the analysis, support a greater range of analyses,

and offer greater predictive power in machine-learning approaches to synthesis.

This chapter does not exhaust the possible analyses that could be performed with

the data presented here. Other possibilities include:

Local per-pixel analysis. Our analysis has to date only studied per pixel

properties of the strokes. We believe that studying such properties along the lengths

of strokes will be both challenging and fruitful. Moreover, it is known that humans

generally need a global view of a line drawing in order to fully understand it [75].

Likewise, Figure 3.15 suggests a global analysis might yield a better model for the

human lines.

View-dependence of lines. The two viewpoints selected for our prompts are

close enough to allow analysis of how lines move with changing views. One possible

way to approach this question would be to reproject lines drawn from one view to

compare with lines drawn in the other view.
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(a) (b)

(c) (d)

Figure 3.15: Artists’ sophisticated line selection. The red lines (solid boxes) in this
composite (a) are unexplained at 80% precision, but can be characterized as geometric
valleys. However, several artists have omitted locally stronger valley features (dotted
boxes), as shown by the maximum curvature of the model (b). The red lines in (c)
are also ridge like features, but the curvature strength in the area is very low relative
to the rest of the model (d).
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Chapter 4

How Well Do Line Drawings

Depict Shape?

Common experience tells us that people generally agree about what shape they see in

a wide range of line drawings; that some line drawings are more effective than others

at conveying shape; and that some shapes are difficult to draw effectively. However,

there is little scientific evidence in the literature for these observations. Moreover, as

mentioned in Section 2.2 automatic algorithms for line drawing are a popular topic

for reseach, but to date no objective way has existed to evaluate the effectiveness of

such algorithms in depicting shape.

At first, it seems difficult to study how well people interpret the shapes depicted

by line drawings. Aside from asking sculpters to craft the shape they see, how can we

know what shape is in a person’s mind? Koenderink et al. [39] have proposed several

strategies for providing evidence about perceived geometry, based on the collective

results of asking people many simple questions.

This chapter describes such a study, based on the gauge figure method, in which

the subject is asked to rotate a gauge (see Figure 4.3) until it appears to be tangent

to the surface, providing a perceived surface normal at that point. Studies of shape
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(a) shaded image (b) human drawing
(c) contours (d) apparent ridges

Figure 4.1: Gauge figure results. In this study different people were shown six different
renderings of a shape: (a) a shaded image, (b) a line drawing made from the shaded
image by a person, (c) contours, (d) apparent ridges, and (shown in Figure 4.7)
ridges/valleys and suggestive contours. Overlaid are representative “gauges” (discs
revealing the surface normal) oriented on the images by people in the study, colored
by how far they deviate from the ground truth.
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using gauge figures and other related methodologies have used photorealistic images of

diffusely shaded objects and shiny objects. With photos, researchers find that people

see shape accurately (up to a family of shapes related by the bas-relief ambiguity).

This study offers the first substantial evidence that people can interpret shapes

accurately when looking at drawings, and shows this for drawings made by both

artists and computer graphics algorithms. Not all drawings are equally effective in

this regard. We offer evidence that viewers interpret individual lines as conveying

particular kinds of shape features (e.g. ridges, valleys, or inflections). Where

different line drawing algorithms place different lines, the algorithms may be more

or less effective at conveying the underlying shape. This study offers both statistical

and anecdotal data regarding the performance of various algorithms and drawings

created by hand, with the goal of informing future development of computer graphics

algorithms.

These results have been made possible by two resources unavailable in earlier

research. One is the dataset of line drawings described in Chapter 3. The other is

the Amazon Mechanical Turk, which allowed us to distrbute the potentially tedious

gauge figure task out to more than 500 subjects. Via this service we collected more

than 275K gauge samples distributed over 72 images. This chapter only begins to

analyze this data, and there is plenty more to learn about it. The data is publicly

available to researchers for further analysis.

This chapter makes the following contributions:

• We show that different peoples’ interpretations of line drawings are roughly as

consistent as their interpretations of shaded images.

• We demonstrate that line drawings can be as effective as photorealistic

renderings at depicting shape, and that not all line drawings are equally effective

in this regard.
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• We provide new evidence that mathematical descriptions of surface features are

appropriate tools to derive lines to convey shape in drawings.

• We offer the first publicly available data set of gauge figures placed over a variety

of drawings of 3D shapes; we believe this to be the largest gauge figure data set

recorded to date.

4.1 Psychophysical Measurements of Shape

In order to understand the shape perceived when people look at a line drawing, we

rely on the gauge figure technique from visual psychophysics to obtain local estimates

of surface orientation at a large number of points spread over a picture [39, 41]. A

gauge figure is simply a circle and a line in 3D, parameterized by slant (orientation in

depth) and tilt (orientation in the image plane). When properly adjusted, it resembles

a “thumb tack” sitting on the surface: its base sits in the tangent plane, and its “pin”

is aligned with the outward-pointing surface normal. See Figure 4.3 for an example.

Gauge studies can document not only shape interpretation but also the priors, bias,

and information used by the human visual system. For instance, the direction of

illumination affects the perceived shape [55, 8], and specular reflections can improve

the perception of shape [21].

Most gauge figure studies consider diffuse imagery. The only precedent for gauge

figure study with line drawings is [38], who presented a single shape rendered as a

silhouette, a hand-crafted line drawing, and a shaded picture, and found that the

percept was better from the line drawing than the silhouette, and nearly as good as

the illuminated version. However, these results must be taken with a grain of salt,

since the single shape was a sculpture of a very recognizable shape (a nude female

torso).

To interpret our results, we also draw on the larger context of psychophysical
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research. For example, since people can successfully and consistently locate ridges

and valleys on diffusely rendered surfaces in stereoscopic views [59], it seems likely

that the visual system represents these features explicitly. Also, perceived shape is

likely an interaction between the global organization of line drawings and inherent

biases of the visual system [43, 49], such as preferences for convexity over concavity

in certain kinds of ambiguous imagery.

A final wrinkle concerns the inherent underdetermination of depth from imagery.

Given a shaded image, the 3D surface is determined only up to an affine transforma-

tion: individual points on the surface can slide along visual rays as long as planarity

is preserved. This is the bas-relief ambiguity [4]. Thus, to show the veridicality of

human percepts of diffuse images, it is necessary to correct for this ambiguity [41].

In cases where human perception is not successful, however, a bas-relief correction

is problematic, because it uses the best fit between subjects’ percepts and the true

scene geometry.

4.2 Study

The study is designed to determine how viewers interpret line drawings and shaded

images of the same shapes, and how consistent those interpretations are. The study is

also designed to be broad enough to allow general conclusions about the effectiveness

of line drawings. To achieve these goals, several issues must be decided: what images

and drawings to show, how to sample each image with gauges, and how to structure

the presentation to each participant so that a large amount of quality data can be

gathered.

50



4.2.1 Subject Matter

One of the chief subjects of interest for this study is the effectiveness of line drawings

by artists compared to computer generated line drawings. To compare human and

computer generated drawings we use the dataset collected by Cole, et al. [13].

Besides offering artists’ drawings registered to models, the dataset includes a useful

range of 3D shapes. Intuitively, it seems that the usefulness of a line drawing varies

with the type of shape depicted. For example, boxy shapes with hard edges are easy

to depict with lines, while smoothly varying shapes are more difficult. We test this

intuition by using the 12 models from the Cole dataset.

The study includes six different rendering styles: fully shaded, occluding contours

only, apparent ridges [36], geometric ridges and valleys [54], suggestive contours

[17], and a binarized human artist’s drawing. The shaded image was created using

global illumination and a completely diffuse BRDF with the eucalyptus grove HDR

environment map [15]. For the cubehole model, the suggestive contour and apparent

ridge styles are identical to the contour only and ridge and valley images, respectively,

and are therefore omitted.

We endeavoured to represent each drawing style as kindly as possible. For

computer generated drawings, we smoothed the model and chose thresholds to

produce clean, smooth, continuous lines. For the human drawings, we chose the

subjectively best drawing available for the model (Figure 4.6). Our choice of view

for each model was dictated by the view of the best drawing. Example computer-

generated and human drawings are shown in Figure 4.2.

4.2.2 Methodology

We follow the gauge placement protocol described by Koenderink et al.[39]. Partic-

ipants are shown a series of gauges in random order and asked to place each gauge

correctly before moving on to the next. The participants have no control over the
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a b

c d

Figure 4.2: Example prompts. (a) ridges and valleys, (b) suggestive contours, (c)
artist’s drawing, (d) shaded image.

position of the gauge, only its orientation. Each gauge is drawn as a small ellipse

representing a disc and a single line indicating the normal of the disc. The gauges are

superimposed over the drawing images and colored green for visibility (Figure 4.3).

To avoid cueing the participants to shape, the gauges do not penetrate or interact

with the 3D model at all. The initial orientations of the gauges are random.

Participants were shown a simple example shape that is not included in our dataset

in the instructions. The shape had examples of good and bad placement (Figure 4.3).

Each time the participant started a session, they were allowed to practice orienting
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good bad

Figure 4.3: Instructional example. Participants were shown images such as this pair
as part of the instructions for the study. Left: good gauge setting. Right: bad gauge
setting.

gauges on the example shape before moving on to the actual task. Participants were

asked to orient the gauge by dragging with the mouse, and to advance to the next

gauge by pressing the space bar. Participants were shown the total number of gauges

to place in the session and the number they had placed so far.

The placement of gauges for each shape is determined in advance and is the same

across the different rendering styles. We place gauges in two ways: evenly across the

entire model, and in tight strings across areas of particular interest.

The evenly spaced positions are generated by drawing positions from a quasi-

random Halton sequence across the entire rectangular image, and rejecting samples

that fall outside the silhouette of the shape. All 12 models have at least 90 quasi-

random gauge positions. Four representative models – the flange, screwdriver,

twoboxcloth, and vertebra – have 180 positions in order to better understand how

error is localized.

Four densely sampled lines of gauges (gauge strings) are also included in the study,

one each on the flange, screwdriver, twoboxcloth, and vertebra. The gauge strings

consist of 15 gauges spaced by 5 pixels along a straight line in screen space.
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4.2.3 Data Collection

Previous studies of this type have included small numbers of highly motivated

subjects. Each subject in the 2001 study by Koenderink et al. [41], for example,

was asked to perform approximately twelve hours of work, an impractical amount of

time for any but a tiny number of subjects. In previous studies, the authors often

provided all the data themselves. Our study has many subjects, but each is asked only

a small number of questions. Rather than relying on the motivation of our subjects,

we rely upon the robust statistics of many participants.

We used the Amazon Mechanical Turk as the source of participants in our

study. The Mechanical Turk is a internet service that allows requesters (such as

researchers) to create small, web-based tasks that may be performed by anonymous

workers. Each worker is typically paid between $0.05 and $0.25 to complete a task.

The number of workers on the service is such that particularly attractive tasks are

usually completed within minutes. Unfortunately, workers on the Mechanical Turk

are generally interested in work that takes around 5-10 minutes. This restriction

dictates the number of gauges that we can present to a single participant. We found

empirically that workers completed tasks at a satisfactory rate for up to 60 gauges in

a session, but with more gauges workers became likely to give up on our task without

completing it.

We asked each worker to set each gauge twice in order to estimate their precision.

Setting reliability provides a measure of the perceptual naturalness or vividness of the

observer’s shape interpretation [48]. If the observer clearly and consistently perceives

a specific shape in a line-drawing, then setting reliability will be high. If the percept

is weak, and the observer has to “guess” to some extent, then reliability will be low.

The 60 gauges in a session are two sets of the same 30 gauges, shuffled randomly and

presented back-to-back. For simplicity, the sets of 30 are defined as consecutive sets

in the Halton sequence for the 90 or 180 evenly spaced gauges. The statistics of each
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set of 30 are thus approximately equal.

To avoid training effects, each participant is allowed to see only a single style for

each model. A participant is allowed repeat the study until they have performed the

task once for each set of gauges. There are 52 distinct sets of 30 gauges across the 12

models, so a participant could theoretically perform the study 52 times.

Each worker is randomly assigned a stimulus from the available images each time

they begin a new session. To favor more uniform sampling across the dataset, we

weight more heavily the probability of receiving stimuli for which there is already

little data, as follows. Out of the set of available stimuli we select randomly with

probability proportional to 1/ki + 1 where ki is the number of participants who have

already successfully completed stimulus i.

Participants were told that the estimated time for completion was 5-10 minutes.

The maximum time allowed for each session was one hour. The average time spent

per session was 4 minutes.

In total, 560 people participated in our study and positioned a total of 275k gauges.

The most active 20% of workers (115 people) account for approximately 75% of all

data. The median number of sessions an individual performed was 4, but the median

for the most active 20% was 28. The average time all individuals spent setting a

gauge was 4 seconds.

4.2.4 Data Verification

Since we have no way of ensuring workers do a good job, we have to be careful to

filter obviously bad data. Since we are asking for information about interpretation,

however, there are no definitively wrong answers. We therefore base our rejection

criteria on the reliability with which the worker positions each gauge.

We assume that if a worker is making a good faith effort, each duplicate set of

gauges will be aligned in roughly the same orientation. Since each gauge is presented

55



in a random orientation, a worker who simply speeds through our task will end up

with their gauges positioned roughly randomly across the hemisphere. Therefore,

if a worker positions fewer than 70% of the duplicate gauges within 30 degrees of

each other, their data is rejected. These numbers were found empirically during

pilot testing and remove grossly negligent workers without removing many good faith

workers.

During pilot testing, we also noticed that through guile or misunderstanding some

workers oriented all gauges in a single direction (usually directly towards the screen).

This data passes our consistency check, but is useless. We therefore add an additional

check, whereby a worker’s data is discarded if the standard deviation of all gauge

positions in a session is less than 5 degrees.

In all, approximately 80% of the data that we gather passes our two criteria and

is included in the dataset. Each gauge in the study had an average of 15 opinions.

The minimum number of opinions was 9, and the maximum was 29.

4.2.5 Perspective Compensation

The dataset of Cole et al. [13] includes drawings made from a camera with a vertical

field of view of 30 degrees. To match the gauges most effectively with the shape,

the gauges should be drawn with the same perspective projection. However, drawing

gauges with perspective projection gives cues to the underlying shape. Instead, we

draw the gauges with an orthographic projection and compensate after the fact for

possible error due to projection.

The compensation method is as follows: create gauges for the ground truth

normals, project the ellipses of those gauges by the camera projection matrix,

reconstruct slant and tilt values from the projected ellipses, and finally reconstruct

a normal from slant and tilt in the same way as the gauges set by the partcipants.

Our comparisons against ground truth are made against these projected ground truth

56



normals.

4.2.6 Compensation for Ambiguity

Koenderink et al. [41] found that different subjects perceptions of photographs of

shape were related by bas-relief transformations [4]. As Koenderink did, we can factor

out this transformation before making comparisons between different participant’s

responses.

The bas-relief transform for an orthographic camera looking down the z-axis maps

the surface point [x, y, f(x, y)] to [x, y, λf(x, y)+µx+νy], given parameters for depth

scaling (λ) and shearing (µ, and ν). In determining the best fit of a set of gauges to

ground truth data, we need to find appropriate values of µ, ν and λ that map the

subject data to the ground truth.

Given a set of bas-relief parameters, we can transform a set of normal vectors (re-

normalizing them after the transformation). Thus, using a non-linear optimization

procedure (which we initialize to the identity, λ = 1 and µ = ν = 0), we find the

bas-relief parameters that minimize the L1 norm of angular differences between the

(normalized) transformed normals and the ground truth. We found the use of the L1

norm to be robust to spurious gauges.

4.3 Results

Our data allows us to investigate several broad questions. First, how closely do

people’s interpretations of the stimuli match the ground truth shape? Second, how

similar are two different peoples’ interpretations of the same stimulus? Third, when

compared with a shaded image, how effective are the line drawings in depicting shape?

Fourth, are there particular areas for each model that cause errors in interpretation,

and if so, can we describe them?
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4.3.1 How well do people interpret shaded objects?

Before examining the results for line drawings, we investigate how well our partici-

pants were able to interpret the objects under full shading. We expect that people

will perform most accurately on the shaded prompts, so the results for these prompts

provide a natural way to determine how successfully the average Mechanical Turk

worker performed our task.

Across all the shaded prompts, the mean error from ground truth is 24 degrees,

with a standard deviation of 17 degrees. After bas-relief fitting, mean error is 21

degrees, with a standard deviation of 16 degrees (Table 4.1). Histograms of the errors

for each style before and after bas-relief fitting are shown in Figure 4.4a and c.

For comparison, a worker placing gauges randomly in each of the same tasks would

have a mean error of 66 degrees, with a standard deviation of 31 degrees. After bas-

relief fitting, random data would have a mean of 42 degrees with a standard deviation

of 19 degrees. A worker rotating all gauges to face the camera (a situation we mark

as bad data) would have a mean error of 42 degrees before bas-relief fitting, and 40

degrees after.

The reliability or precision with which the participants positioned gauges can be

measured by comparing against the median vector for that gauge. If a gauge has n

settings vi, the median vector is vk that minimizes the total angular distance to every

other vi.

Given the median vectors for each gauge, we can plot the error from the median

(Figure 4.4b and d). In the case of the shaded prompts, the mean error from the

median vector was 16 degrees, with standard deviation 14 degrees(Table 4.2). These

numbers do not change significantly with bas-relief fitting.

The scatter plots in Figure 4.5 give an alternate visualization of the distribution

of errors for the shaded prompts. The orientations are shown using an equal-area

azimuthal projection, so the area of each ring matches the area of the corresponding
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Model S H AR RV SC C
cubehole 12 18 - 14 - 26
rockerarm 15 21 19 21 23 26
screwdriver 20 25 31 29 27 34
flange 21 26 25 22 32 32
pulley 21 29 27 29 29 30
bumps 22 29 27 27 36 36
femur 22 28 25 25 26 25
tooth 22 32 30 28 29 32
twoboxcloth 23 25 25 26 26 32
vertebra 24 38 42 35 37 42
cervical 25 37 35 35 37 38
lumpcloth 26 27 28 29 28 27
average 21 28 29 27 30 32

Table 4.1: Mean errors from ground truth for each model and style. Values shown are
after bas-relief fitting. Rows are ordered by the mean error of the shaded prompt.
Columns correspond to styles: S, shaded, H, human drawing, AR, apparent ridges,
RV, ridges and valleys, SC, suggestive contours, C, occluding contours only.

Model S H AR RV SC C
cubehole 11 15 - 12 - 17
rockerarm 11 13 13 14 13 8
lumpcloth 14 16 16 13 15 14
femur 15 17 16 17 16 15
pulley 15 16 15 16 15 15
flange 16 18 19 16 21 20
screwdriver 16 17 16 15 17 13
bumps 17 18 16 18 14 13
twoboxcloth 17 16 18 18 18 20
tooth 18 22 21 21 21 21
cervical 19 17 18 18 13 12
vertebra 19 20 18 22 20 18
average 16 17 17 17 17 16

Table 4.2: Mean errors from median orientations for each model and style. Values
shown are after bas-relief fitting. Rows are ordered by the mean error of the shaded
prompt. Columns are same as Table 4.1. Note that, unlike the errors from ground,
errors from median are sometimes lowest for the occluding contours drawing.
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a b

c d

Figure 4.4: Angular error distributions across all shapes. Errors from the ground
truth for each style of prompt are shown before bas-relief fitting (a) and after (b).
Note that the errors for the shaded prompts were considerably lower on average.
Errors from the median normal at each gauge are shown before bas-relief fitting (c)
and after (d). Compared with ground truth, the deviations from the medians are
relatively consistent across styles.

slice of the hemisphere. If the participants were placing gauges randomly, the points

would appear uniformly distributed across the disk. The participants’ settings,

however, are clustered towards the center of each plot: for error from ground, 75%

of the samples are within 31 degrees, or 14% of the area of the hemisphere, while for

error from the median, 75% are inside 23 degrees, or 8% of the area of the hemisphere.

There is variation in the accuracy and precision with which workers placed gauges

when seeing the shaded models, suggesting that some models were more difficult to

interpret than others even under shading. The models for which the viewers had most
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a b

Figure 4.5: Distribution visualization for shaded prompts. Errors for 1000 randomly
chosen settings. (a) errors from ground truth (blue distribution in Figure 4.4c),
(b) errors from median (blue distribution in Figure 4.4d). Radial distance indicates
magnitude of error, and compass direction indicates direction on the screen. Errors
are roughly uniform in all directions, and errors from ground truth are larger than
errors from the median.

difficulty are the smooth, blobby shapes such as the lumpcloth and the vertebra. For

the obvious shapes such as the cubehole, however, the viewers interpreted the shape

very closely to ground truth, lending confidence that viewers were able to perform

the task successfully and that errors from ground truth in the line drawings are not

simply the effect of negligent or confused participants.

4.3.2 How similarly do people interpret line drawings?

A simple way to examine how similarly our participants interpreted the line drawings

is to compare statistics of the distributions around the median vectors at each gauge.

We find that when seeing the line drawings, our participants set their gauges nearly

as close to the other participants’ as when seeing the shaded image (Figure 4.4b and

d, Table 4.2). This result suggests that the participants all had a roughly similar

interpretations of each line drawing, and positioned their gauges accordingly.
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cubehole rockerarm flange screwdriver twoboxcloth femur

tooth bumps lumpcloth pulley cervical vertebra

Figure 4.6: Distributions of angular errors from ground truth for all models. Colors
are as in Figure 4.4. Below the graphs are the human artists’ drawings used for the
models. Inset in each graph is a visualization of the p-values for significance (black:
p-value > 0.05) of difference between distributions, where the colors correspond to
the styles in the histogram. The table for the cubehole is incomplete and therefore
omitted. Images are ordered by the mean error for the human artist’s drawing.

To get a more complete picture of the differences between the error distributions,

we perform the Wilcoxon / Mann-Whitney non-parametric test for comparing the

medians of two samples. This test yields a p-value. The full pair-wise comparisons of

all error distributions are visualized in the inset of Figure 4.6. The colors match the

colors in the legend of Figure 4.4. Black indicates a p-value > 0.05, meaning that we

can not disprove the null hypothesis that those two distributions are the same. We

find a statistically significant difference in error between most pairs of line drawings.

This result suggests that while the interpretation of each drawing was similar across

viewers, the viewers usually had different interpretations for each drawing.

4.3.3 Do line drawing interpretations match ground truth?

Unlike precision, the accuracy with which our participants interpreted shape from

the line drawings varies considerably with the type of drawing and the model
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(Figures 4.6). In general, the performance of the occluding contours alone was

considerably worse than the other drawing types, while the performance of the other

drawing types (apparent ridges, ridges and valleys, suggestive contours, and the

human drawing) were roughly comparable, though still often statistically significantly

different.

The types of surfaces in the model has a large effect on the accuracy of

interpretation. For the cubehole, which is largely made up of flat surfaces joined

with ridges, the error from ground truth for all but the contours drawing is small:

approximately 15 degrees on average. For the vertebra and cervical models, which

are smooth and not obviously good candidates for line drawings, the errors for the

best drawings are much larger: 35-40 degrees on average. In these cases, even the

human artists were unable to effectively convey the shape with only lines.

Examining the statistical significance between distributions, in almost all cases

we find that the lit image did provide a statistically significant improvement over any

line drawing, suggesting that some information is lost in the translation from model

to line drawing. A notable exception is the flange model, for which the errors in the

shaded and apparent ridges versions are not reliably different (for a visualization, see

Figure 5.1).

4.3.4 Is error from ground truth localized?

Beyond the aggregate statistics for each model, we can inspect the individual gauges

to immediately determine if error is localized in a few important places, or if it is

evenly spread across the model. If it is highly localized, then it may be interesting

to examine high error areas in detail and attempt to form theories for why the errors

occured. In order to answer this question convincingly, we chose four representative

models and scattered 180 (rather than 90) gauges on their surfaces.

Figures 4.7 and 4.8 show gauges for the four representative models: the flange,
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ridges and valleys contours

suggestive contours artist’s drawing

flange screwdriver

Figure 4.7: Plots of error of median vector from ground truth (part 1). Each pair
of plots shows a different finding from our study. Flange: lines are in some cases
interpreted as ridges and valleys regardless of position, which can lead to error
when the lines are not positioned on ridges or valleys (e.g., suggestive contours).
Screwdriver: without additional lines, the screwdriver appears to be a cylindrical
solid (contours only). A skilled artist can depict the inflection points in the handles
(artist’s drawing). Red box: area of interest shown in detail in Figure 4.9.
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ridges and valleys artist’s drawing

suggestive contours shaded

twoboxcloth vertebra

Figure 4.8: Plots of error of median vector from ground truth (part 2). Each pair
of plots shows a different finding from our study. Twoboxcloth: errors in the folds
near the front of the shape appear both with lines (ridges and valleys) and without
(suggestive contours). Vertebra: some shapes are difficult for even a skilled artist
to depict with only lines. In such cases, the shaded image is significantly superior
(though not perfect). Red box: area of interest shown in detail in Figure 4.9.
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screwdriver, twoboxcloth, and vertebra. It is immediately apparent from the plots

that the errors from ground truth are not uniformly spread across the models, but

rather exist in hotspots that vary with the style of drawing. For example, on the

flange model we see heavy error in the suggestive contours drawing around the outer

rim and the neck of the model. For the screwdriver, error is localized in the handle

area. Error in the twoboxcloth model is localized around the folds near the front of

the shape, whether lines are drawn there (suggestive contours, upper image) or not

(apparent ridges, lower image). Error in the vertebra is large almost everywhere, even

for the human artist’s drawing, but relatively low in the flat area near the back of

the model.

4.3.5 How can the local errors be described?

Once we have established that error is often localized in particular areas of each

model, we can closely examine these areas by placing gauge strings. We chose four

areas of interest, one on each of the four representative models in Figures 4.7 and

4.8. The median vectors for each gauges string, colored by error from ground truth,

are visualized in the left and middle columns of Figure 4.9 (the images are shown

magnified for clarity, but the prompts were the same as for the random grids). Surface

curvature can be estimated by differentiating along the string and is shown in the

right column of Figure 4.9. Because our model of bas-relief ambiguity is global, we do

not apply a bas-relief transformation to the gauge string data. Global fitting applied

only to a small patch of local data is not well constrained, and can erroneously flatten

the surface (set λ = 0) if the gauge settings are inaccurate.

Looking at the gauge strings in detail, we can conjecture what types of shape

interpretation errors occur with each drawing style.
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Flange: The errors on the flange model suggest that lines can be interpreted as

representing particular geometic features, regardless of their exact location. The

neck area of the flange is roughly a surface of revolution and includes a ridge and

valley across the circumference of the shape. When presented with the ridge and

valley drawing (Figure 4.9b), viewers interpreted the shape about as accurately as

the shaded version. They were also quite consistent with each other, except where

the gauge string crosses the valley line. When presented with the suggestive contour

version (Figure 4.9a), however, viewers did poorly. It appears that viewers often

interpreted the two suggestive contour lines as a ridge and a valley. The median

absolute deviation for the suggestive contour gauge string is between 10-30 degrees,

however, suggesting that the viewers held strongly differing opinions.

Screwdriver: The gauge string on the screwdriver lies across an inflection point in

the surface. Without a line to depict the inflection point (Figure 4.9d), the change in

curvature is lost – the surface appears as an area of uniform positive curvature, similar

to a cylinder. The human artist managed to depict the inflection point effectively

(Figure 4.9c). Both these interpretations are relatively consistent: median absolute

deviation for each gauge in both drawings is 10 degrees or less.

Twoboxcloth: The fold on the front of the twoboxcloth provides a counterexample

to the misidentification effect on the neck of the flange. Here, viewers interpreted both

the the suggestive contour drawing (Figure 4.9e) and the ridge and valley drawing

(Figure 4.9f) roughly correctly, though they performed better on the suggestive

contour drawing. The median orientations indicate that viewers intepreted the ridge

and valley drawing roughly as a triangle, with gauges oriented similarly on either

side of the middle ridge. In the suggestive contour example, the viewers interpreted

the lines correctly as inflection points, leading to a more accurately rounded shape.

Viewers were roughly equally reliable in both of these interpretations.
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Vertebra: The string on the vertebra is an example where the artist appears to have

included a ridge line and an inflection point line (Figure 4.9h), but the depiction is

not successful. Viewers interpreted the shaded image (Figure 4.9g) roughly correctly,

but the drawing is completely misinterpreted. Viewers were also relatively unreliable

when interpreting the artist’s drawing: the median absolute deviation for the drawing

gauges is between 10-20 degrees, approximately double the value for the shaded image.

4.4 Conclusion

This study allows us to comment on several issues in line drawing and depiction that

have previously been speculative. In particular, we now have a partial answer to our

original question: how well do line drawings depict shape? Further work is necessary,

however, to answer other pertinent questions, such as how best to place lines for

shape depiction, and the relationship between the aesthetic quality of a drawing and

its effectiveness in depiction.

4.4.1 Main Findings

For about half the models we examined, the best line drawings depict shape very

nearly as well as the shaded image (difference in mean errors < 5 degrees). This

is true of the cubehole, rockerarm, flange, twoboxcloth, and femur. In the case of

the flange, we did not find a statistically significant difference in errors between the

shaded stimulus and the ridge and valley stimulus, while in the cases of the other

models we did find significant difference, but the difference was small. These results

suggest that viewers interpreted the shaded and drawn versions very similarly in these

cases.

In other cases, such as the cervical and the vertebra, viewers had trouble

interpreting the shaded image (mean error 24-25 degrees), but were completely lost
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suggestive contours ridges and valleys flange
a b

artist’s drawing contours screwdriver
c d

suggestive contours ridges and valleys twoboxcloth
e f

shaded artist’s drawing vertebra
g h

Figure 4.9: Gauge strings. Right column: curvatures along the string (green: left
image. red: right image. dashed: ground truth. dotted: zero curvature). Four points
of interest were studied in depth by placing tight strings of gauges. Flange: the
curvature valley for suggestive contours (a) is translated along the gauge. Screwdriver:
the artist’s drawing (c) depicts inflection points, while the contours only drawing (d)
does not. Twoboxcloth: suggestive contours (e) depict a smooth shape, ridges and
valleys (f) depict a pointy shape. Vertebra: the artist’s drawing (h) fails to depict
the shape, while the shaded image (g) depicts it closely. Note: bas-relief fitting is not
used for the strings.
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on the line drawings (mean error 35 to 42 degrees). Such shapes tended to be smooth,

blobby, and relatively unfamiliar to the eye. Viewers could not interpret these shapes

accurately even with a drawing made by a skilled human artist. While not conclusive,

this result supports the intuition that certain shapes are difficult or impossible to

effectively depict with a line drawing.

Even when viewers interpreted the shapes inaccurately, however, their interpreta-

tions were similar to each other. For some shapes, including the rockerarm, cervical,

and vertebra, the average error from ground for the occluding contours drawing was

50-75% higher than for the shaded prompt, but the error from median was slightly

lower. Only for the cubehole model was the average error from median and from

ground similar (11 and 12, respectively), suggesting that for most prompts, the view-

ers shared a common interpretation of the shape that differed from ground truth.

This study also indicates that line drawings based on differential properties of the

underlying surface can be as effective in depicting shape as the drawings made by

human artists. In fact, the best computer generated drawing had a slightly lower

mean error in every case except the screwdriver. However, different mathematical

line definitions can be effective or ineffective depending on context. For example,

suggestive contours appear to be confusing in the case of the gauge string on the

flange (Figure 4.9a), but quite effective in the case of the string on the folded cloth

(Figure 4.9d). The human artists drew lines in similar locations to the computer

algorithms, but appear capable of selecting the most appropriate lines in each case.

4.4.2 Limitations and Future Work

The gauge orientation task suffers from several limitations. First, there is no way

to distinguish between errors due to misunderstanding the orientation of the shape

and errors due to misunderstanding the orientation of the gauge. Second, the gauge

methodology rewards line drawings that register very closely with the ground truth
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shape. An artist could depict a shape feature extremely well, but if the feature

appeared 10 pixels from its true location, it would have high error. In other words, it

is impossible to distinguish a slightly offset but correct interpretation from a wrong

one. Finally, we use only global bas-relief fitting in our implementation of the gauge

figure study. Todd et al. [74] suggests that local bas-relief fitting may give a more

accurate model of perception of shape, but we collected too few settings at each gauge

for each viewer (two settings) to make this approach practical.

We would also like to extend this study to more drawings and more styles of

depiction. Our selection and generation of drawings is subjective, and while we

endeavoured to make the best drawings we could, we had no knowledge a prioriwhat

features would be successful. It is possible that different artists’ drawings, or slight

changes in algorithm parameters, could change our results. Beyond including more

drawings, however, we would like to include wide-ranging depiction styles. It is

possible, for example, that a different shading scheme could improve upon even the

global illumination renderings, since viewers had trouble interpreting some of the

shaded renderings.

As with many studies of this type, the results and analysis we have presented

are purely descriptive. A natural area for future work is to investigate prescriptive

results: for example, given a new shape, attempt to predict what lines will depict the

shape most accurately. This study indicates that line definitions such as ridges and

valleys and suggestive contours are effective in some cases and not in others, but it

does not formalize where each type is effective. Formal rules of this type depend on

an interpretation model of lines, which is an important long-range goal that this data

may help support. Developing such as model would help us determine how, not just

how well, line drawings depict shape.

Finally, artists create drawings to satisfy both functional and aesthetic goals.

A study of this type cannot comment on the latter; it may be possible that the
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“best” drawings for shape depiction are also “ugly.” Many factors can contribute to

an aesthetic judgement and these factors are difficult to tease apart, but such data

would be of tremendous value.
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Chapter 5

Interactive Line Drawing

Ironically, mimicking the easy, loose strokes of a hand-drawn sketch is a difficult

technical challenge. Even once the positions of the lines are determined, usually via

one of the definitions described in Section 2.2, it still remains to draw those lines in

an attractive and effective style.

While graphics libraries such as OpenGL provide basic line drawing capabilities,

their stylization options are limited. Desire to include effects such as texture, varying

thickness, or wavy paths has lead to techniques to draw lines using textured triangle

strips (strokes), for example those of Markosian, et al. [50]. Stroke-based techniques

provide a broad range of stylizations, as each stroke can be arbitrarily shaped and

textured.

Figure 5.1: Examples of models rendered with stylized lines. Stylized lines can provide
extra information with texture and shape, and are more aesthetically appealing than
conventional solid or stippled lines.
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This chapter describes a system for drawing stylized strokes with a variety of

rendering effects. As described in Chapter 2, artists have developed a set of principles

by which they adjust rendering qualities such as line density and contrast in order to

emphasize some areas of an illustration and de-emphasize other areas. Researchers

advocating non-photorealistic rendering (NPR) techniques often cite the ability to

direct the viewer’s attention as a benefit of NPR [22, 70]. Few systems, however, have

offered this ability automatically and with local control. DeCarlo and Santella [19, 65]

developed a system to automatically create abstract renderings from photographs,

based on where people tend to look in the photos. However, to date no equivalent

work has been performed for 3D rendering. This system provides control of emphasis

for 3D models using an effect called stylized focus, and does so efficiently enough

and with sufficient frame-to-frame coherence that it is suitable for rendering complex

models interactively.

The technical description of this system is broken into three sections: computing

line visibility (Section 5.1), controlling level of detail through line elision (Section 5.2),

and combining rendering effects to produce stylized focus (Section 5.3). We also

include the results of an eye-tracking experiment designed to verify that stylized

focus actual performs its intended purpose (Section 5.3.3).

Applications for this system include any context where interactive rendering of

high-quality lines from 3D models is appropriate, including games, design and archi-

tectural modeling, medical and scientific visualization and interactive illustrations.

An implementation of the system, called dpix, can be downloaded on the web.1

5.1 Visibility Computation

A major difficulty in drawing strokes is visibility computation, which has been the

subject of research since the 1960’s. Appel [2] introduced the notion of quantitative

1http://www.cs.princeton.edu/gfx/proj/dpix
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Figure 5.2: Per-fragment visibility vs. precomputed visibility. When drawing wide
lines using a naive per-fragment visibility test, only lines that lie entirely outside the
model will be drawn correctly (b and d). Lines a, c, e are partially occluded by the
model, even when some polygon offset is applied. Visibility testing along the spine of
the lines (red dots) prior to rendering strokes solves the problem.

invisibility, and computed it by finding changes in visibility at certain locations such

as line junctions.

The invention of the z-buffer made computing visibility straightforward for thin,

untextured lines (such as provided by OpenGL), but per-fragment visibility testing

is insufficient for wide, stylized strokes (Figure 5.2). Thus, Appel’s algorithm was

further improved and adapted to NPR by Markosian et al. [50], who showed it could

be performed at interactive frame rates for models of modest complexity.

Appel’s algorithm and its variants can be difficult to implement, however, and

are somewhat brittle when the lines are not in general position. To address these

problems, Northrup and Markosian [53] adapted the use of an item buffer (which had
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previously been used to accelerate ray tracing [76]) for the purpose of line visibility,

calling it an “ID reference image” in this context. In separate work, we improved the

item buffer algorithm by including multiple layers and a notion of partial visibility for

lines [11].

The item buffer approach, however, does not map well on to current graphics hard-

ware, and suffers from aliasing artifacts even in its multi-layer implementation. The

system described here introduces the first stroke visibility computation techniques to

make use of current graphics hardware, providing up to a 50× speedup over the item-

buffer for comparable quality (see Section 5.1.3). The two methods presented here

are a simple shader program (algorithm 1), which can be applied to a conventional

line drawing pipeline with minimal modification, and a new pipeline (algorithm 2)

using a segment atlas, a new data structure that stores visibility information for each

stroke.

5.1.1 Algorithm 1: Spine Test

Our first algorithm is simple to implement and provides good quality in many cases.

The method requires only a single pass to draw the depth buffer and a single pass to

draw the lines, so it can be easily added to an existing line rendering implementation.

However, the algorithm does not support some important stylization options. In

particular, because it generates an independent stroke for each line segment, it cannot

properly parameterize stroke paths with multiple segments such as the curved paths

seen in Figure 5.1; such paths require a parameterization if they are to be rendered

with texture.

The algorithm begins with a set of 3D line segments extracted from the model.

Most of our experiments have focused on lines that are fixed on the model, for example

creases or texture boundaries. However, our system also supports the extraction

of silhouette edges from a pool of faces whose normals are interpolated (e.g. the
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horizontal lines at the top of the clevis model shown on the left in Figure 5.1).

The line segments are passed to the GPU using standard OpenGL drawing calls

with the primitive type GL LINES. A geometry shader turns each line segment into a

rectangular stroke and assigns texture coordinates to each vertex. A fragment shader

then tests visibility at the nearest point on the spine of the stroke. This visibility test

can be a single depth probe or an average of many nearby probes. Finally, the alpha

value of each fragment is set to its visibility value.

Stroke Generation

Newer graphics processors such as NVIDIA’s 8800 series support geometry shaders,

which are GPU programs that execute between the vertex and fragment stages and

have the ability to add or remove vertices from a primitive. Geometry shaders are

thus a natural choice for creating stroke geometry on the GPU.

In the spine test algorithm, a geometry shader takes line segments as input

and produces rectangles as output, represented as triangle strips. The shader also

determines the screen-space length of the rectangle and assigns texture coordinates so

that the stroke texture is scaled appropriately. The examples in this chapter use 2D

images of marks in the style of pen, pencil, charcoal, etc., and are parameterized

uniformly in screen space. Uniform parameterization in screen space requires

perspective-correct texturing to be disabled, and control over perspective-correct

interpolation is provided by the GL EXT gpu shader4 extension, and by OpenGL

3.0.

To limit crawling artifacts, we use the simple strategy of fixing the “zero”

parameter value at the screen-space center of the stroke. A more sophisticated

strategy that seeks temporal coherence from frame to frame was described by

Kalnins et al. [37].

While not a specific contribution of our method, we note that generating strokes in
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this manner makes it very easy to rapidly extract silhouette edges from a portion of a

mesh whose normals are interpolated, such as the rounded top of the clevis on the left

in Figure 5.1. While generating a stroke for an edge, neighboring face normals may

be checked for a silhouette condition (one front-facing and one back-facing polygon).

If the edge is not a silhouette, it is discarded and no stroke is generated.

Unfortunately, when drawing stroke paths with many segments, there is no way to

know at the geometry shader level the proper parameterization of each segment, since

each segment is processed independently and in parallel. It is therefore impossible to

texture the entire path as one continuous stroke. This drawback is not very noticeable

for models with many long, straight strokes, but is objectionable for models with many

curving paths and short segments. In contrast, the segment atlas algorithm described

in Section 5.1.2 supports computation of arc length and avoids this problem.

Visibility Testing

Aliasing in the visibility test for lines can cause severe visual artifacts, especially under

animation. Unlike the item buffer approach, the spine test algorithm is not vulnerable

to interference among lines, because each line tests the depth buffer independently.

However, there are still two potential sources of aliasing error: aliasing of the per-

sample depth test, and aliasing in the depth buffer with respect to the original

polygons. Both these sources of aliasing can be addressed with supersampling.

In order to perform depth testing at the spine of the stroke, the depth buffer

must be drawn in a separate pass and loaded as a texture into the fragment shader.

The visibility of a sample is computed by comparing the projected depth value of

the sample with the depth value of the nearest polygon under the sample, much like

a conventional z-buffer scheme, except that fragment shader computes the nearest

point on the spine of the stroke and tests the fragment’s depth at that point. Using

a single test for this comparison produces aliasing (Figure 5.3a). Adding additional
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(a) (b)

(d)(c)

(e)

Figure 5.3: Aliasing in visibility test. Results for varying number of samples and scale
of depth buffer. (a) 1 sample, 1x depth buffer. (b) 16 samples, 1x depth buffer. (c)
1 sample, 3x depth buffer. (d) 16 samples, 3x depth buffer. Red box in (e) indicates
location of magnified area in the Falling Water model.
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probes in a box filter configuration around the sample gives a more accurate occlusion

value for the fragment (Figure 5.3b). Additional depth probes are usually very fast

(Table 5.1), but can become expensive on limited hardware. The relative cost of

additional probes increases with the width of the lines.

Any number of depth probes will not produce an accurate result if the underlying

depth buffer has aliasing error. While impossible to eliminate entirely, this source of

aliasing can be reduced through supersampling of the depth buffer by increasing the

viewport resolution. Simply scaling the depth buffer without adding additional depth

probes for each sample produces a marginal increase in image quality (Figure 5.3c),

but combining depth buffer scaling and depth test supersampling largely eliminates

aliasing artifacts (Figure 5.3d). Since typical applications are seldom fill rate bound

for simple operations like drawing the depth buffer, increasing the size of the buffer

typically has little impact on performance outside of an increase in memory usage.

5.1.2 Algorithm 2: Segment Atlas

The second visibility algorithm uses a new data structure called a segment atlas.

The algorithm is designed to support stylization effects such as endcaps, haloes, and

stylization for curved strokes, all of which require some non-local stroke information.

For example, each segment in a curved stroke must have texture coordinates based

on the entire arc length of the stroke. This information is costly to compute with

a single-pass algorithm such as the spine test, because much of the computation is

redundant across segments. The same observation holds for endcaps or haloes: while

in principle each fragment could check a large neighborhood to determine the closest

visibility discontinuity, it is much more efficient to store the visibility at the spine

in a structure such as a segment atlas. Additional effects can also be achieved by

precomputing visibility, and are explained at the end of this section.

The segment atlas algorithm is designed to efficiently compute and store the
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visibility information for every stroke in the scene. The input includes 3D line

segments, as with the spine test algorithm, but also line strips (stroke paths). The

output of the algorithm is a segment atlas containing visibility samples for each

projected and clipped stroke, spaced by a constant screen-space distance (usually 2

pixels).

The algorithm has three major stages, illustrated in Figure 5.4: line projection

and clipping, creation of the segment atlas, and visibility testing. All stages execute

on the GPU, and all data required for execution resides in GPU memory in the form

of OpenGL framebuffer objects or vertex buffer objects.

Projection and Clipping

The first stage of the pipeline begins with a set of candidate line segments, projects

them, and clips them to the viewing frustum. Ideally, we would use the GPU’s clipping

hardware to clip each segment. However, in current graphics hardware the output of

the clipper is not available until the fragment program stage, after rasterization has

already been performed. We therefore must use a fragment program to project and

clip the segments, using our own clipping code.

The input to the program is a six-channel framebuffer object packed with the 3D

coordinates of the endpoints of each segment (p,q) (Figure 5.4a). This buffer must be

updated at each frame with the positions of any moving line segments. The output of

the program is a nine-channel buffer containing the 4D homogeneous clip coordinates

(p′,q′) and the number of visibility samples l (Figure 5.4b). The number of visibility

samples l is determined by:

l = d||p′w − q′w||/ke (5.1)

where (p′w,q
′
w) are the 2D window coordinates of the segment endpoints, and k is

a screen-space sampling rate. The factor k trades off positional accuracy in the

visibility test against segment atlas size. We usually set k = 1 or 2, meaning visibility
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Figure 5.4: Pipeline. (a) The 3D line segments (pi,qi) are stored in a table. (b) A
fragment program projects and clips each segment to produce (p′i,q

′
i), and determines

a number of samples li proportional to its screen space length. (c) A scan operation
computes the atlas positions s from the running sum of l. (d) Sample positions v
are interpolated from (p′,q′) and written into the segment atlas at offset s. Visibility
values α for each sample are determined by probing the depth buffer (e) at v, and are
used to generate the final rendering (f). Note the schematic colors used throughout
for the blue-yellow and pink-green segments.
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is determined every 1 or 2 pixels along each line; there is diminishing visual benefit

in determining with any greater accuracy the exact position at which a line becomes

occluded.

A value of l = 0 is returned for segments that are entirely outside the viewing

frustum. Segments for which l ≤ 1 (i.e., sub-pixel sized segments) are discarded for

efficiency if not part of a path, but otherwise must be kept or the path will appear

disconnected.

Silhouette edges may also be extracted during the projection and clipping stage

by loading face normals alongside the vertex world coordinates and checking for a

silhouette edge condition at each segment. if the edge is not a silhouette, it is discarded

by setting l = 0. This method is similar to the approach of Brabec and Seidel [5] for

computing shadow volumes on the GPU.

Segment Atlas Creation

The segment atlas is a table of segment samples. Each segment is allocated l entries

in the atlas, and each entry consists of a clip space position v and a visibility value α

(Figure 5.4d). The interpolated sample positions v are created by drawing single-pixel

wide lines into the atlas, using the conventional OpenGL line drawing commands. A

fragment program performs the interpolation of p′ and q′ and the perspective division

step to produce each v, simultaneously checking the visibility at the sample.

Before the segment atlas can be constructed, we need to determine the offset s of

each segment into this data structure, which is the running sum of the sample counts

l (Figure 5.4c). The sum is calculated by performing an exclusive scan operation

on l [67]. Once the atlas position s is computed, each segment may be drawn in the

atlas independently and without overlap.

The most natural representation for the segment atlas is as a very long, 1D texture.

Unfortunately, current GPUs do not allow for arbitrarily long 1D textures, at least
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as targets for rendering. The segment atlas can be mapped to two dimensions by

wrapping the atlas positions at a predetermined width w, usually the maximum

texture width W allowed by the GPU (W = 4096 or 8192 texels is common). The

2D atlas s is given by:

s = (s mod w, bs/wc) (5.2)

The issue then becomes how to deal with segments that extend outside the texture,

i.e., segments for which (s mod w)+l > w. One way to address this problem is to draw

the segment atlas twice, once normally and once with the projection matrix translated

by (−w, 1). Long segments will thus be wrapped across two consecutive lines in the

atlas. Specifically, suppose L is the largest value of l, which can be conservatively

capped at the screen diagonal distance divided by k. If w > L, drawing the atlas

twice is sufficient, because we are guaranteed that each segment requires at most one

wrap. Drawing twice incurs a performance penalty, but as the visibility fragment

program is usually the bottleneck (and is still run only once per sample) the penalty

is usually small.

For some rendering applications, however, it is considerably more convenient if

segments do not wrap. In this case, we establish a gutter in the 2D segment atlas

by setting w = W − L. The atlas position is then only drawn once. This approach

is guaranteed to waste W − L texels per atlas line. Moreover, this loss exacerbates

the waste due to our need to preallocate a large block of memory for the segment

atlas without knowing how full it will become. Nevertheless, the memory usage of

the segment atlas (which is limited by the number of lines drawn on the screen) is

typically dominated by that of the 3D and 4D segment tables (which must hold all

lines in the scene).
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Visibility Computation

Once the position of each segment in the atlas is determined, the visibility of each

sample of the segment can be computed. The visibility test for each sample is

performed during the rasterization of the segments into the segment atlas. While

drawing the atlas, a fragment program computes an interpolated homogeneous clip

space coordinate for each sample and performs the perspective division step. The

resulting clip space z value is then compared to a depth buffer.

The visibility test itself is similar to the test in the spine test algorithm, with the

same configuration of multiple depth probes and supersampled depth buffer. Since

visibility is only tested once per spine sample, however, rather than once for every

fragment along the width of the stroke, even more depth probes can be efficiently

computed.

Stroke Rendering

After visibility is computed, all the information necessary to draw strokes is available

in the projected and clipped segment table and the segment atlas. The most efficient

way to render the strokes is to generate, on the host, a single point per segment. A

geometry shader then uses the point as an index and looks up the appropriate (p′,q′)

in the projected and clipped segment table. The geometry shader outputs a quad

for the segment, taking into account the pen width and proper mitreing for multi-

segment paths. A fragment shader then textures the quad with a 2D pen texture and

modulates the texture with the corresponding 1D visibility values from the segment

atlas.

Filtering and Additional Effects

By storing visibility for the entire stroke, the segment atlas also provides the

opportunity to filter the visibility information to fill small holes or remove short
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Figure 5.5: Variation in style. A different texture may be used for lines that fail the
visibility test (left), allowing visualization of hidden structures. Our method also
produces attractive results for solid, simple styles (right).

spurious sections. Other image processing operations can be performed on the atlas

as well. For example, erosion and dilation can produce line overshoot or undershoot

(haloing) effects (Figure 5.1). For operations such as dilation, it is necessary to add

padding around each segment in the atlas, so that the segment can dilate beyond its

normal length. Padding can be added easily by increasing the number of samples

when computing the atlas offset.

The segment atlas also can be used to store any type of per-sample information,

not just visibility. For example, it can store a measure of the density of lines in the

local area, as produced by stroke-based line density control scheme (Section 5.2).

Readback

The segment atlas can be read back to the host for any processing that cannot

be performed on the GPU. Reading back and processing the entire segment atlas

is inefficient, however, since for reasonably complex models the vast majority of

line samples in any given frame will have zero visibility. Thus we apply a stream

compaction operation [29] to the segment atlas visibility values. This yields a packed

buffer with only visible samples remaining, which is suitable for readback to the host.
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An added benefit of the this approach is that the samples in the compacted buffer

are ordered by path and segment. For models of moderate complexity, compaction

and readback adds an additional fixed cost of ∼ 20 ms per frame.

5.1.3 Timing

We implemented the two algorithms using OpenGL and GLSL, taking care to manage

GPU-side memory operations efficiently. For comparison we also implemented an

optimized conventional OpenGL rendering pipeline using line primitives, the item

buffer approach of Northrup and Markosian [53], and the improved, multi-layer

item buffer approach [11] (not included in this thesis). We did not use NVIDIA’s

CUDA architecture, because the segment atlas drawing step uses conventional line

rasterization and the rasterization hardware is unavailable from CUDA.

Table 5.1: Frame rates (FPS) for various models and methods.

Model clevis house ship office ship+s off.+s
# tris 1k 15k 300k 330k - -
# seg 1.5k 14k 300k 300k 500k 400k
OGL 1000+ 300+ 42 32 - -
IBlo 87 24 9.6 7.0 - -
IBhi 20 3.4 0.5 0.4 - -
STlo 900+ 146 26 28 19 23
SThi 300+ 75 24 25 19 21
SAlo 400+ 119 33 29 23 24
SAhi 200+ 76 25 24 22 21

Table 5.1 shows frame rates for four models ranging from 1k-500k line segments.

The clevis, house, ship and office models are shown in Figures 5-8. The “+s” indicates

silhouettes were extracted and drawn in addition to the fixed lines. Timings for clevis

and house are averaged over an orbit of the model, whereas timings for the ship and

office are averaged over a walkthrough sequence. All frames are rendered at 1024×768

using a commodity Dell PC running Windows XP with an Intel Core 2 Duo 2.4 GHz
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Figure 5.6: Ship model. The ship model has 300k triangles and 500k total line
segments, and can be rendered at high-quality and interactive frame rates using our
method.
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CPU and 2GB RAM, and an NVIDIA 8800GTS GPU with 512MB RAM.

We tested the following rendering algorithms: (OGL) conventional OpenGL lines;

(IBlo) single item buffer [Northrup2000]; (IBhi) 9× supersampled item buffer with

3 layers [Cole2008]; (STlo/SAlo) spine test shader and segment atlas, respectively,

with a single depth probe, which is comparable to IBlo; and (SThi/SAhi) spine test

shader and segment atlas, respectively, with 9 depth probes and 2× scaled depth

buffer, which is comparable to IBhi. For small models (clevis and house), both

the spine test and segment atlas algorithms are slower than conventional OpenGL

rendering by factors of 2− 4×, though overall speed is still high. Additional samples

and depth buffer scaling also incur a noticeable penalty for these models. For the

more complex models (ship and office), the penalty for using either method declines.

Both algorithms are within 50% of conventional OpenGL in the high-quality modes

(SThi/SAhi). The basic segment atlas (SAlo), which suffers from some aliasing

artifacts but still provides good quality, is within 75% of OpenGL on both the office

and ship models.

Both of the new methods are always considerably faster than the item buffer based

approach, but the most striking difference is when comparing the high quality modes

of each method. The item buffer approach with 9× supersampling and 3 layers, as

suggested by [11], gives similar image quality to our methods with 9 depth probes and

2× scaled depth buffer. The new methods, however, deliver performance increases of

up to 50× for complex models.

Both methods allow for easy extraction and rendering of silhouette edges on the

GPU. The last two rows of Table 5.1 show the performance impact when extracting

and rendering silhouettes. The increase in cost is roughly proportional to the increase

in the total number of potential line segments. We did not implement silhouette

extraction for the other methods. However, silhouette extraction can be a costly

operation when performed on the CPU.
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While accurate timing of the stages of our algorithm is difficult due to the deep

OpenGL pipeline, the major costs of the algorithm (∼80-90% of total) lie in the

sample visibility testing stage and depth buffer drawing stage. For small models, the

sample visibility testing is dominant, while for large models, the depth buffer creation

is the primary single cost. Projection, clipping, and stroke rendering are minor costs.

5.2 Line Elision

With visibility testing addressed, the system can now rapidly and accurately render

all visible strokes in a scene. As described in Section 2.1, however, artists often vary

the complexity of their lines to achieve abstraction or a desired level of tone. Our

system so far gives no such control; lines are drawn wherever the mathematical line

definition – usually based on local properties – determines they should be drawn. This

leads to undesirable effects, such as excessively dense lines in highly detailed areas of

the model (Figure 5.7a). Furthermore, simply controlling the density of lines without

changing their style can effectively place visual emphasis in a scene (Figure 5.7b).

For these reasons, level of detail algorithms for lines have been a focus of recent

research in NPR. In comparision to previous work, the method presented here provides

local control over line elision for general models, and temporal coherence suitable for

animation.

5.2.1 Background

Most LOD work has focused on reducing detail for efficiency while affecting perception

as little as possible [47]. In contrast, the goal in NPR is to change the impression

of the image by reducing unnecessary detail. In NPR, unnecessary detail often takes

the form of overly dense or cluttered lines. Most line density control schemes are

specialized to the type of lines being drawn. For example, Deussen and Strothotte [20]
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a b

Figure 5.7: Without and with line elision. (a) lack of control over line density can
produce undesirable blobs of lines. (b) with control of line density, emphasis can be
placed while maintaining a uniform line style.

proposed a method to control the drawing of tree leaves and branches. While

specialized, their method is effective and provides good temporal coherence.

For rendering architectural models in a pen-and-ink style, the method of Winken-

bach and Salesin [79] reduces line clutter using “indication”: rather than drawing a

complicated texture over an entire surface, only a few patches marked by the user

are drawn with high detail. Their method also provides local control over line den-

sity, primarily for the purpose of controlling tone. However, such hand-crafted line

textures are not amenable to rendering with temporal coherence. The system of

Strothotte et al. [71] offers a similar interface – with similar benefits and limitations

– to that of Winkenbach and Salesin with the explicit goal of directing the attention

of the viewer. Praun et al. [60] introduced a temporally-coherent hatching method

based on blended textures that provides control of line density for reproducing tone.

These methods are intended to deal with clutter and shading, not abstraction; they

are effective at simplifying repetitive or stochastic textures, but not at abstracting

larger structures.

Jeong et al. [35, 52] developed a method for abstraction based on a series of

representations of a 3D model, with varying complexity (created by simplifying the
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Figure 5.8: Item and priority buffer. The item buffer (top left) determines line
visibility (bottom left). The priority buffer (top middle and top right) determines
line density (bottom middle and bottom right). Lines are drawn in unique colors in
order from low- to high-priority, so the highest priority line in any region will prevail.
To emphasize the left side of the image (middle), narrower lines are drawn on the left
side of the priority buffer, leading to higher line density. The same approach is used
to emphasize the right side of the image (right).

original model). Their algorithm rendered the model with varying LOD, depending on

importance or distance. However, such methods do not provide explicit local control

of line density; rather it emerges as a by-product of mesh simplification. Furthermore,

the scheme based on simplification does not perform well on “boxy” meshes such as

architectural models. A method introduced by Wilson et al. [78] does offer local

control of line LOD based on line priority, like the method described herein. The

method of Grabli et al. [24] operates similarly to that of Wilson et al., but adds a

more sophisticated measure of line density. These two methods only drop strokes in

areas of high density. In contrast, the simplification work of Barla et al. [3] simplifies

strokes by replacing groups of strokes with fitted, simplified versions. However, none

of these methods addressed temporal coherence, inhibiting their use in an interactive

setting.
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5.2.2 Priority Buffer

Our density control method is inspired by the item buffer data structure discussed in

Section 5.1. In the item buffer, no more than one line can be present at each pixel.

This restriction causes aliasing when the item buffer is used for visibility testing, but

provides a minimal level of control over line density. There is, however, no local

control; the item buffer essentially sets a global maximum line density. We would

like the ability to control this maximum line density at a local level. For example, we

wish to stipulate that for a particular region in the illustration, no two lines will be

closer than 10 pixels. Furthermore, since we must remove lines to reduce line density,

we want to select the least important lines (in some sense) for removal. To achieve

this goal, we introduce a new data structure inspired by the item buffer, which we

call the priority buffer.

The priority buffer shares its general appearance with the item buffer (Figure 5.8):

it is an offscreen buffer, consisting of lines colored by ID. The priority buffer departs

from the item buffer in two major respects: first, the lines are sorted in the priority

buffer by an arbitrary “priority” value, not by depth. Higher priority lines will be

drawn on top of lower priority lines, even if the lower priority lines are closer in 3D to

the camera. Second, lines in the priority buffer may vary dramatically in width. The

width of the priority buffer line is inversely proportional to the desired line density in

the region. Thus, in areas of low density, lines will be drawn wider; in high density

areas, lines will be drawn narrower. Wide, high priority lines will carve a broad

swath through the image, overwriting any other lines in their neighborhood. The

exact width of the priority buffer lines is controlled by the user through a transfer

function (Section 5.3).

We implement the priority buffer algorithm as follows. After we compute the

visibility for each line, we sort the visible lines by priority. The priority quantity can

be any measure of how important the individual lines are. In our experiments we
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have used a simple heuristic to assign priority: the length of the original line in the

3D model, before visibility testing has been performed. We assume, in other words,

that long lines correspond to important features. This heuristic seems to work well

for architectural models, but one can imagine more sophisticated methods that might

consider, for example, exterior silhouettes to be of high importance. In our tests the

O(n log n) time required to sort the lines is negligible; however it would be easy to

remove this overhead by assigning depths based on priority and using the z-buffer to

perform the sort while rendering to the priority buffer.

Once we have rendered the priority buffer, we can use it to decide which visible

lines to render and which lines to omit. Similar to the item buffer test, a line should be

visible in the final rendering if its associated color is visible in the priority buffer. The

item buffer test makes a binary decision about line visibility: either the line is visible,

or it is not. If we use a similar test with the priority buffer, we produce effective

imagery, but with one caveat – weak temporal coherence. Lines tend to “pop” in

and out, particularly when groups of parallel lines alias with rows and columns of

pixels in the buffer. Our solution to this problem is straightforward: we test a w×w

region (we use w = 5) centered around the projected sample point. We count the

number of pixels in this region with the appropriate ID, and divide by the number

we would expect to see if the line were fully visible. For example, if the line were

three pixels wide, we would expect 3× 5 or 15 appropriately colored pixels to appear

in our window. The ratio of visible to expected pixels gives us a degree of visibility

v between 0 and 1. We then multiply the opacity of the line by v when rendering,

creating a continuous falloff of visibility. This strategy provides reasonable temporal

coherence, while not forfeiting the interactive frame rates available with the priority

buffer.
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5.3 Stylized Focus

We now have tools for effectively rendering lines with proper visibility and screen-

space density. This section explains how we apply these tools, along with several

simpler rendering effects, to create stylized emphasis.

The stylized emphasis effect is based on the notion of focus, which is a scalar

value that determines intensity of each rendering effect. We present two models for

calculating focus, and describe how the level of focus impacts colors and lines in the

image. Many of the rendering policies described here are motivated by principles

developed by artists and codified in numerous texts, for example [25, 46, 51].

Briefly, we control four qualities to emphasize or de-emphasize part of an illustration:

contrast, color saturation, line density, and line sharpness. These strategies are of

course interrelated; for example, sharper lines can yield higher contrast.

Our system supports a range of styles composed of lines and shading (suggestive

of pen and ink combined with watercolor) but many of the mechanisms we describe

should be applicable in a spectrum of media ranging from cel animation to colored

pencil.

5.3.1 Focus Models

The degree of emphasis at every part of the image is specified by the normalized

scalar focus value f(p), which indicates how much emphasis to place at every point p.

Following the general framework for expressing focus described by Isenberg et al. [32],

our system provides two intuitive focus models:

2D Focal point. In this model, the artist picks a 2D point pf and the focus f(p)

is taken to be the 2D distance ||p− pf ||. This model produces a foveal effect, which

can feel quite natural, especially when used in concert with an animated “focus pull.”

Note that when working from still imagery such a photographs (as were DeCarlo and
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Figure 5.9: From top to bottom: color effects (desaturation, fade, blur); line effects
(opacity, texture, density); all six combined.

Santella [19]) this may be the only viable option. However, for some compositions

this effect appears unnaturally symmetrical, and we find the next model to be more

pleasing.

3D Focal point. In this model, the artist chooses a 3D point pf from which

the focus falls off radially in 3D: f(p) = ||p− pf ||. This focal model is perhaps most

intuitive for 3D scenes, and distinguishes our work from the bulk of previous methods

for placing emphasis in illustrations, as they generally did not have access to 3D

information.

5.3.2 Rendering Effects

We implement eight effects that respond locally to emphasis f(p) in the image. Three

are color effects (desaturation, fade, and blur) while five adjust line qualities (texture,
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width, opacity, density and overshoot), some of which are shown in Figure 5.9. These

effects are generally used in combination, though their relative impacts are under

artistic control. Each effect has its own transfer function from the normalized focus

value f(p) to the final intensity of the effect. Aside from the obvious benefit of

aesthetic flexibility, varying each effect individually also tends to “break up” the image

so that derivative discontinities are not noticeable. Adjusting the transfer function for

each effect is quite intuitive, and the parameters can be saved and restored (together

with others settings) collectively in a “style.”

Given a model, camera, point of emphasis, and style, the overall rendering process

is as follows. First, line visibility and elision are computed as in Sections 5.1 and 5.2.

Next, colors are rendered into the frame buffer using a pixel shader. Finally, the

lines are drawn over the resulting color image as textured triangle strips. In order

to provide emphasis cues, the width, opacity and textures are modulated along the

lengths of these triangle strips. The line textures are interpolated among two or more

2D textures τi.

The pixel shader for color rendering first renders the color of the model at every

pixel. During the same rendering pass, the shader also computes pixel-accurate values

for emphasis using one of the focus models described in Section 5.3.1. The shader

first desaturates the color, and then fades the color by interpolating towards the

background color, in both cases by an amount appropriate to the style and emphasis.

Optionally, the shader may blur the image using a variable filter kernel. When applied

in combination, these color effects provide a natural cue for emphasis.

5.3.3 Evaluation

The goal of stylized focus is to construct imagery that subtly guides the attention

of the viewer to specific places in a scene. A natural question to ask is: how

effective are these renderings at achieving this objective? We measure the overt
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Figure 5.10: Evaluation. Tracked eye-movements in the hotel scene (left) follow the
emphasis. Eye-movements in the city-scape (right) only loosely respond to emphasis.

visual attention given to emphasized regions using eye tracking, comparing viewings

for emphasized and uniform images. Results of this evaluation indicate that viewers

examine emphasized regions more than they examine the same location in a uniformly

rendered image of the same scene (p-value < 0.001).

Our experimental design follows that of Santella and DeCarlo [65]. Thirteen

(student) viewers examined a series of 18 rendered scenes in a variety of styles, with

and without emphasis. The viewers were asked to rate how much they liked each

image. This task served to motivate viewers to look at the images, but resulting

scores were too sparse and noisy to analyze quantitatively. Each image was displayed

for eight seconds on a 19-inch LCD display. The screen was viewed at a distance

of approximately 86 cm, subtending a visual angle of approximately 25 degrees

horizontally x 19 degrees vertically. Eye movements were monitored using an ISCAN

ETL-500 tabletop eye-tracker (with a RK-464 pan/tilt camera). The pan/tilt unit

was not active during the experiment. Instead, subjects placed their heads in an

optometric chin rest to minimize head movements. Viewers saw renderings with:

1. color and lines with uniform level of focus in the scene

2. uniform color only, no lines
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3. uniform lines only, no color

4. emphasis of color and lines, based on a single focal point

5. emphasis in color only, with uniform lines

6. emphasis in lines only, with uniform color

7. emphasis in color only, no lines

8. emphasis in lines only, no color

We chose two different focal points in each scene, leading to two versions of each type

of emphasized image (types 4-8). This resulted in a total of 13 versions of each of

the 18 scenes. Use of two focal points for each scene provides evidence that the effect

of emphasis is not limited to the single most natural focal point in the scene. Each

viewer saw only one (randomly chosen) version of each scene.

Recall that we have a focus value f(p) at every point p in a rendering. When a

viewer fixates at p, the value f(p) tells us how emphasized that region is. We can use

this value, sampled under fixations, to measure how much the viewer looked at the

emphasized regions. Suppose the viewer’s fixations in an emphasized image followed

a path p(t) from time t0 to time t1. Then we can measure the average emphasis Ef

under those fixations by:

Ef =
1

(t1 − t0)

∫ t1

t0

f(p(t))dt

Of course we cannot simply claim success if Ef is greater than the average f(p) in

the scene. The viewer might have looked in places of high f(p) independently of the

emphasis, perhaps because they were interesting parts of the image. However, for a

given focal point we can control for such cases by evaluating Ef using the same f(p)

measured over the fixation path from the corresponding uniformly-emphasized image
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(types 1-3). This provides a (control) measure of how much those emphasized areas

are examined even without emphasis. If emphasis increases attention on an area,

Ef will be greater for the fixation path in the emphasized (test) image than for the

fixation path of the uniformly emphasized (control) image. On the other hand, if the

viewer looks in un-emphasized areas in a test image, then Ef will not be higher than

that of the control. Likewise, if the viewer examines emphasized regions in the test,

but also looks in the same regions in the control, then Ef will be similar for both

images.

For each type of emphasized image (test images, types 4-8), values of Ef were

compared with those in a corresponding unemphasized image (controls, types 1-

3), collapsing over all scenes and both emphasis points for each scene. A two way

condition cross scene ANOVA for all conditions was conducted followed by multiple

comparisons between each test and control condition. Emphasized locations were

more heavily examined in all styles of emphasis (types 4-8) (p-value < 0.001). As we

hypothesized, emphasis of color and lines (stimuli type 5 and 6) each had a significant

effect individually. These effects were individually weaker (p-value < 0.001) than their

combined effect (type 4). Finally, matching our subjective impression, the effect of

emphasizing color with uniform lines (type 5) was stronger (p-value < 0.01) than that

of emphasizing lines with uniform color (type 6).

We conclude from this experiment that our method is effective. In all rendering

types it shifts viewer attention to the emphasized point. This is a general effect,

found in multiple styles and for multiple points of emphasis in the scene. Emphasis

works in styles that contain just color or lines alone. It is also effective when images

contain both color and lines, but only one is emphasized, though it is most effective

when emphasis of both are combined.
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5.4 Summary and Future Work

The system described in this chapter allows rendering of high-quality stylized lines

at speeds approaching those of the conventional OpenGL rendering pipeline, and

interactive control of visual emphasis using a range of rendering effects called stylized

focus. It provides improved temporal coherence with less aliasing (sparkle) than

previous approaches, along with control over line elision, making it suitable for

animation of complex scenes. In addition, there is eye-tracking data to indicate

that the stylized focus effect actually works.

There are several areas for future work suggested by the results of this system:

Stylized focus with feedback. While the system attempts to emphasize some

areas of the illustration and de-emphasize others, it does not evaluate whether or not

such effects were achieved. For example, when a striking feature exists outside the

emphasis in the scene, it may require stronger de-emphasis than would automatically

take place. Our system has no mechanism to notice such situations, which may explain

the weak result in Figure 5.10 (right). Computational models of visual salience [34]

can estimate the prominence of features in an emphasized rendering, and could allow

the system to iteratively adjust emphasis until the desired result is achieved.

Other uses for full visibility. The ability to store full visibility information

for all lines from one frame to the next affords several possibilities for future

work. Just as this system supports stylized focus as an artistic effect inspired by

photorealistic defocus effects, we can imagine a “stylized motion blur” effect inspired

by photorealistic motion blur. Given the segment atlases from previous frames, we

could blur the visibility values from consecutive frames rather than the final rendered

strokes. Blurring visibility could, for example, allow a disappearing stroke to break

up into shrinking splotches of ink, rather than simply fading out.
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Improved elision control. Other future work in this area may include improving

the line elision control method described in Section 5.2 to operate more effectively

on the GPU. Our current implementation exhibits some sparkling artifacts under

animation, and causes a hit in performance. One challenge is that these approaches

do not take into account partial visibility of lines, which is necessary for smooth

animation.

View-dependent lines. While not a direct extension of our method, we would

also like it to handle other view-dependent lines such as smooth silhouettes [28],

suggestive contours [17], and apparent ridges [36]. Including these line types at a

reasonable performance cost may require an extraction algorithm that executes on

the GPU. In contrast to lines that are fixed on the model, consistent parameterization

of such lines from frame to frame presents its own challenge [37].
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Figure 5.11: Office model. The office model has five levels, each with detailed
furniture, totaling 330k triangles and 400k line segments.
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Chapter 6

Conclusion

This thesis has presented several novel results related to computer-generated line

drawings. In terms of impact on future research in computer graphics, the most

important are the results of the two empirical studies (Chapters 3 and 4). These two

studies are particularly significant for future research into automatic line drawing

algorithms, but may also be relevant for studying how (as opposed to how well)

humans perceive line drawings. The new rendering algorithms presented in Chapter 5

are more limited in scope, but will help to make the line drawing style more broadly

useful in computer graphics.

The remainder of this section describes the significance of these results and

describes several avenues for future work.

6.1 Results for Pure Line Drawings

In the study presented in Chapter 3, we found that the large majority of lines drawn

by artists can be explained by known definitions based on local properties of the

surface and image. However, the exact thresholds and combinations of definitions

for these lines appear to be the result of choices based on the global shape. This

is a significant result, because it suggests that further research into local definitions
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may suffer from diminishing returns. It may be more productive to instead examine

better thresholding conditions, or algorithms for intelligently combining different line

definitions. Our machine learning algorithm described in Section 3.2.4 is a step in

this direction, but considerably more work is required to develop an algorithm that

automatically creates artwork comparable to that of a human artist.

The results of the study presented in Chapter 4, however, suggest that this goal

may may be within reach for certain classes of shape. The computer-generated

drawings used in that study were created with a semi-automatic process: the

algorithm decided where to place lines based on current smoothing and thresholding

parameters, and the user tweaked those parameters until the desired result was

achieved. Remarkably, these semi-automatically generated drawings were often as

effective as the human artists’ drawings. It is plausible, therefore, that automating

the smoothing and thresholding process could produce a complete algorithm for

generating effective pure line drawings, at least for the class of models we examined

in our study. Automating the choice of thresholds, however, is a challenging problem,

and may require building an interpretation model for the human perception of lines.

Our current results are only relevant to how well drawings depict 3D shape,

and how well a drawing depicts shape is a very different matter from how “good”

a drawing is. For example, human perception may be able to identify and ignore

noisy or extraneous lines when considering only shape, even though those lines are

considered “ugly.” Moreover, a line drawing may be considered a “good” drawing

without depicting its subject effectively at all (Figure 6.1). The difference between

an effective depiction and a “good” drawing is a challenging area for future work.
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6.2 Future Work in Art and Perception

Our experimental techniques should be sufficient to investigate many further open

questions in art and perception. Here are two examples:

When Do Line Drawings Succeed or Fail?

In our gauge study in Chapter 4, drawings of the mechanical parts were more likely

to be accurately perceived than drawings of the smooth shapes such as vertebrae.

This pattern held even when the subjective quality of the drawings was similar

(Figure 6.1). It is not clear whether this pattern is due to the symmetries in the

shapes, the familiarity of the shapes, some quality of the line drawings themselves, or

some other effect. Future perceptual studies could examine the issue of familiarity by

including smooth, but familiar shapes such as eyes, and examine the issue of context

by progressively cropping drawings used for stimuli.

Figure 6.1: More and less successful drawings. Subjects achieved approximately twice
the accuracy when placing gauges on the rockerarm (left) compared with the vertebra
(right). Subjectively, however, the quality of both drawings is similar.

What About Shading?

In our investigations we have tightly restricted artistic style to pure line drawing, using

solid, thin, dark, feature lines with no shading. This style is actually uncommon in
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art in general (Section 2.1), especially when the subject shape is smooth. Even in

our studies, artists sometimes chafed against the restrictions on shading.

Effective shading, of course, is perhaps even more difficult than line drawing.

Artists have developed techniques such as false light or counterchange to enhance

their drawings, and these techniques have been the focus of work in NPR (Figure 6.2).

To our knowledge, however, no study has examined the effects of these techniques

on perceptual accuracy. Reproducing our drawing collection and perceptual studies

with different restrictions on drawing style, or without any restrictions, could begin

to answer that type of question.

Figure 6.2: Exaggerated shading. Techniques such as exaggerated shading [62] are
inspired by artistic techniques, but their perceptual impact is unclear.

6.3 Further Technical Challenges

Currently, only a small number of commercial applications (such as Google SketchUp)

use the stylized stroke rendering style described in Chapter 5, and none currently use

sophisticated line definitions such as suggestive contours or apparent ridges. It seems

likely that the lack of acceptance is not due to a lack of demand, but to the technical

challenges involved in producing a fast, robust, flexible, high-quality line drawing

system.
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The new line visibility algorithms presented in this thesis are significant improve-

ments over previous work, and are simple and robust enough to find acceptance in

commercial applications. However, visibility testing is only part of the line drawing

pipeline. The line elision method presented in Section 5.2 works well in many cases,

but suffers when the priority ranking function does not rank lines in order of semantic

importance: a poor match between priority and artistic intuition can produce incom-

prehensible drawings. Future work in this area could examine selection of lines based

on perceptual importance.

Additionally, while our empirical studies show that line definitions such as

suggestive contours and apparent ridges can be very effective at depicting shape,

creating effective drawings using these definitions is currently quite difficult. These

definitions depend on accurate and smooth estimation of curvature derivatives,

and a dense and regular tessellation for the shape, both of which can be hard to

acquire. The best known method is for an expert user (usually the researcher who

invented the line definition) to hand-tweak the model through careful smoothing and

subdivision, producing a model that is just smooth enough so that curvature estimates

produce clean results without obliterating necessary detail. Research into more robust

curvature estimation could make these line definitions more broadly useful.

6.4 Final Remarks

It is something of a tradition when presenting a new rendering approach to jokingly

paraphrase Jim Kajiya, and claim “In ten years, all rendering will be <insert your

rendering scheme here>.” 1

But in ten years, computer-generated line drawing will still be a specialized branch

of computer graphics, because line drawings are a specialized form of rendering. Even

in this specialized branch, it is unlikely that automatically generated line drawings

1Kajiya remarked in 1991, “In ten years, all rendering will be volume rendering.”
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will ever approach the work of the great masters, for the simple reason that no one has

yet formalized artistic genius, the way physicists have formalized optics (and thereby

paved the way for photorealistic rendering).

However, we can hope that computer-generated line drawings will become more

useful for the task to which they are uniquely suited: creating effective, abstract

depictions with an aesthetically appealing style. The results presented in this thesis

are a step forward, but are by no means a final answer. We hope that the scientific

investigations we have presented are closer to the first words on the subject than the

last, and believe that the technical innovations we have presented will be superseded

by better algorithms in the future. Still, we hope that this thesis will provide useful

results for current practitioners, and inspiration for future researchers.
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