
Algorithms for the Identification of

Functional Sites in Proteins

John Anthony Capra

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Mona Singh

June 2009



c© Copyright by John Anthony Capra, 2009.

All Rights Reserved



Abstract

Proteins play an essential role in nearly every process carried out by the cell. In accomplishing

this incredibly diverse array of functions, proteins interact with one another and other molecules

in their environments. The interactions of proteins with other molecules are mediated by specific

amino acids. For a given protein, the identification of the residues that participate in its interactions

can be a crucial step in understanding its function. Knowledge of these so-called functional sites

can guide further experimental analysis of the protein and aid drug design and development. The

large number of protein sequences and structural models that have become available over the past

10 years present an exceptional opportunity to use the methods of computer science and statistics

to identify protein functional sites, and thereby further biological understanding.

This dissertation investigates the computational prediction of functional sites from protein se-

quence and structure data. First, we consider the estimation of evolutionary sequence conservation

from a multiple sequence alignment of homologous proteins—a common first step in the identifi-

cation of functionally important sites. We introduce a fast, information theoretic algorithm for

scoring conservation and demonstrate that it provides state-of-the-art performance in predicting

catalytic sites, ligand binding sites, and protein-protein interface residues. Second, we examine

the identification of a class of functional residues that cannot be identified by considering sequence

conservation alone: those that determine functional substrate specificity within homologous protein

families. We combine sequence information with structural models to build the first large dataset

of these specificity determining positions (SDPs). This dataset enabled the first large-scale analysis

of sequence-based SDP prediction methods. We demonstrate that GroupSim, a new method we

developed, outperforms existing approaches. Finally, we focus on the prediction of ligand binding

sites when both evolutionary sequence information and structural models are available. We intro-

duce ConCavity, a new algorithm which directly integrates sequence conservation information into

structure-based surface pocket identification. This algorithm provides significant improvement over

earlier methods and establishes the complementarity of sequence and structural evidence in ligand

binding site prediction. Overall, our work significantly improves our ability to identify functional

sites from protein sequences and structures.
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Chapter 1

Introduction

1.1 Motivation

Protein molecules are ubiquitous in the cell. They come in a dazzling variety of shapes and sizes and

perform thousands of different functions crucial for life. Enzymes catalyze chemical reactions that

drive essential processes related to cell growth, maintenance, and death. Other proteins transport

materials within cells and between cells and their environments. Proteins like tubulin and collagen

help determine the shape and structure of cell types. Transcription factor proteins control the tran-

scription of DNA to RNA, and thus play a central role in the cell’s ability to process hereditary

information. These examples represent only a small fraction of the wide range of functions pro-

teins perform. Incredibly, this astonishing diversity of protein function and form arises out of the

combination of a simple set of building blocks: the 20 amino acids.

Proteins accomplish nearly all of their functions by interacting with other molecules. The nature

of and participants in these interactions are as varied as the functions in which they are involved.

Many proteins combine with other proteins to form stable functional complexes, while other proteins

interact with each other in brief transient contacts. A significant number of proteins bind small

molecules found in their environments. Still others, like the transcription factors, bind very specific

positions on DNA and RNA molecules.

In each of these examples, a subset of the protein’s amino acids participate in the interaction. A

change of the identity of the amino acid residue found in one of these positions can have a large effect

on the protein’s function. The resulting changes in structure and chemistry might neutralize the

protein’s ability to bind the substrate or potentially cause the protein to bind a different molecule
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more favorably. In extreme cases, the mutation could cause the protein to not fold properly at

all. In contrast, some other amino acid positions are tolerant of such changes in residue identity; a

mutation at one of these positions may have little effect on the protein’s function.

Our goal is the analysis and prediction of these “functionally important” sites—positions which

directly participate in a protein’s functions by interacting with other molecules. Identification of

these sites is an important step towards fully understanding the molecular mechanisms by which

proteins accomplish their functions. In addition to providing direct evidence about the mechanism

of protein function, knowledge of functionally important sites can improve the transfer of molecular

function annotations between similar proteins by focusing comparisons on the relevant regions of the

sequence or structure. Accurate information about functionally important positions can provide a

starting point and framework for carrying out experimental analysis, e.g., with targeted mutations.

Models of functionally important positions are also useful to drug design and development; knowledge

of the relevant binding sites can guide the design of inhibitors and antagonists.

1.2 Data

Specific amino acid residues can play a wide range of roles in a protein. In other words, there are

many different types of functionally important residues. Some residues will be necessary to maintain

the proper overall fold of the protein. Others will participate directly in the protein’s interactions

with other molecules and its environment. Often an amino acid will have multiple roles. Residues

involved in different functions have different properties. For example, catalytic sites—residues in

enzyme active sites that directly participate in substrate binding and the catalytic mechanism of the

enzyme—exhibit an amino acid distribution skewed towards charged residues and are usually found

in concave pockets on the protein surface.

There are several sources of data which can be used to distinguish functionally important sites by

defining properties in which sets of functional residues may differ from those that are not involved

in the function. The most basic and widely available is the primary amino acid sequence of the

protein. With the current state of sequencing technology, it is possible to obtain the sequence of

nearly any protein of interest. The primary sequence itself contains relevant information about

the function of individual residues that can be obtained by analyzing patterns and motifs in the

sequence. For example, it is possible to identify the signature of certain structural motifs and to

predict the secondary structure with reasonably high accuracy.

Once the primary sequence of a protein is known, it is informative to search for other proteins
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with similar sequences. With nearly 1000 genomes completely sequenced and several thousand more

in progress [1, 2], it is very common to find a number of similar proteins. If such proteins are

found, it is likely that they evolved from a recent common ancestor. As a result, the similarities

and differences between their sequences contain a font of information about the relative mutability

of each position. Because of their importance to maintaining the functions of the protein, the sites

we seek are often not tolerant to mutation. In a sense, nature tests how sensitive each amino acid

position in a protein is to mutation as sequences evolve away from a common ancestor. Comparison

of homologous protein sequences in a multiple sequence alignment, which attempts to align the

corresponding positions in each protein, provides a window into this “natural experiment”. Amino

acid positions in these alignments which have accumulated a number of mutations since the last

common ancestor are unlikely to be functionally important because these changes have not had a

significant effect on the fitness of the organism. On the other hand, columns that are very conserved,

i.e., do not exhibit a range of amino acids, are likely to be important, because few mutations have

been accepted at these positions. This evolutionary conservation analysis assumes an accurate

alignment, but is a very common and powerful approach to investigating the function of proteins

and their residues. Each project described in this dissertation makes use of estimates of sequence

conservation.

The 3D conformation of a protein is crucial to its function. 3D models of protein structure

contain much information about the spatial relationships between residues that is not apparent when

considering only the primary protein sequence; parts of the protein that are distant in sequence

may fold up to be nearby in space. Thus knowledge of the 3D structure of a protein provides a

wealth of information about the functional role of residues. Techniques such as nuclear magnetic

resonance (NMR) spectroscopy and X-ray crystallography allow models of the 3D structure of many

proteins to be determined. There are currently over 50,000 structures deposited in the PDB [3], and

this number is increasing rapidly as a result of “structural genomics” projects such as the Protein

Structure Initiative [4]. These models of protein 3D structure provide many hints about the function

of residues within proteins. Residues that are important for maintaining the structural stability and

proper fold of the protein are often very hydrophobic and found buried in the core of the structure.

Residues involved in interactions with other proteins are usually found in large, relatively flat surface

patches. Positions that bind small molecules are found in concave pockets on the protein surface.

The arrangement and organization of secondary structure motifs also provides relevant information.

For example, sites that bind ligands are much more likely to be found in the less structured loop

regions between stable secondary structure motifs (alpha helices and beta sheets). These data and
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observations can be used to improve the prediction of functional sites in general and the assignment

of particular functions to specific residues. The projects described in Chapters 3 and 4 combine

analysis of protein 3D structures with sequence data.

1.3 Contributions

This dissertation considers the computational prediction of a range of functional sites from protein

sequence and structure data. Though we focus on several specific methods and types of functional

sites, two general, high-level questions motivate the work: What can a given type of information

about a position, e.g., evolutionary sequence conservation or a structural feature, tell us about its

functional role in the protein? And how can this feature be used to improve the prediction of such

residues in realistic settings? We present the results of three projects related to these questions in

three self-contained chapters. The first two are joint work with Mona Singh and were previously

published in Bioinformatics [5, 6]. The third is joint work with Mona Singh and Tom Funkhouser

and is in submission. We now highlight our main contributions.

First, we introduce a new method for the estimation of evolutionary sequence conservation from

a multiple sequence alignment of homologous proteins based on an information-theoretic measure

called the Jensen-Shannon divergence (JSD). We demonstrate that our JSD method provides state-

of-the-art performance in three common real-world prediction tasks, and that it does so in a small

fraction of the time required by the previous best method. Conservation analysis is one of the most

common and powerful approaches to identifying functionally important sites from sequence data,

so our method represents a significant and widely-applicable advance. In spite of the prevalence

of conservation analysis, there are few agreed upon best practices for its use. As a result, tens

of conservation measures have been introduced across a range of prediction settings over the past

20 years. To address this problem and evaluate JSD, we developed a comprehensive evaluation

framework for conservation methods that is grounded in common real-world prediction tasks—

the identification of catalytic sites, ligand binding sites, and protein protein interaction interfaces

(PPI). This framework enables us to make meaningful statements about the performance of different

methods in different settings. For example, though many methods perform quite well in ligand

binding site and catalytic site prediction, they all have more difficulty identifying protein-protein

interaction interfaces. Due to its running time and performance, our JSD algorithm is the method

of choice in each setting. Its speed enables fast genome-scale analysis and the ability to modify

alignments on the fly.
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Next, we turn our attention to identifying residues that determine protein substrate specificity.

These so-called specificity determining positions (SDPs) are those in which a properly chosen amino

acid substitution can change the preferred ligand or interaction partner of the protein. This type

of functional site provides a fascinating challenge; they can rarely be predicted by traditional con-

servation analysis alone. The differences between proteins within the same protein family that bind

similar ligands are often so small that current clustering and alignment methods that consider se-

quence information alone cannot distinguish them. The prediction and analysis of SDPs has also

been significantly hindered by a dramatic lack of known SDPs. Obtaining reliable experimental in-

formation about the effect of amino acid substitutions on substrate binding is a painstaking process

that requires extensive site-directed mutagenesis followed by binding assays. Our first contribu-

tion in this area is the development of a bioinformatics approach that combines information from

sequence, structure, and experimental data to automate an analysis often undertaken by hand to

identify likely SDPs in enzymes. The properties of the resulting dataset are in good agreement with

those of known SDPs, and our method identifies several previously known SDPs. This large dataset

of over 400 enzyme SDPs allows us to characterize their physicochemical and evolutionary proper-

ties; SDPs show significant differences from both catalytic sites and the overall residue background

in this analysis. The dataset, created by integrating sequence, structure, and experimental data,

also enables the evaluation of SDP prediction methods based on sequence information alone (the

most common situation faced by researchers). We find that GroupSim, a fast, baseline method we

developed, outperforms a representative set of previous approaches. By releasing our method and

the new dataset, we have not only improved SDP prediction, but provided a foundation upon which

future improvement can be built.

Finally, we return to the prediction of small molecule ligand binding sites, but we now consider

the situation in which both evolutionary and structural evidence are available. To identify ligand

binding pockets and residues, we introduce ConCavity, a new approach that directly integrates

evolutionary sequence conservation data into structure-based pocket prediction. This is one of the

first algorithms to directly integrate these two common approaches. In comprehensive comparisons

of both sequence and structure based methods, we demonstrate that ConCavity vastly outperforms

both types of previous method. In addition, we find that the best performing methods based on

structural information alone outperform the best of those that only consider conservation data. Next,

by analyzing the predictions of a representative set of methods, we explore the relationship between

evolutionary sequence conservation, structure, and function. Overall, sequence and structure based

algorithms predict many different positions, but these predictions provide largely complementary
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information about ligand binding. For example, considering sequence conservation identifies many

positions throughout the protein that are evolutionarily conserved for a variety of reasons not related

to ligand binding. Similarly, structural pocket prediction methods find many surface pockets that

do not bind ligands. Combining these two features in ConCavity yields significant improvement over

either alone, and significantly extends the state-of-the-art in predicting ligand binding sites.

1.4 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce our new

evolutionary sequence conservation estimation method, and demonstrate that it provides excellent

performance in several common settings. In the third chapter, we describe the creation of the first

large dataset of specificity determining positions (SDPs) and highlight several resulting insights

about SDP properties and prediction. Chapter 4 gives the details of ConCavity, a new approach for

predicting ligand binding sites that combines sequence conservation with structural features. In the

final chapter, we summarize our conclusions and discuss some of the implications of these projects.

We close by highlighting some potential avenues for further work.
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Chapter 2

Predicting Functionally Important

Residues from Sequence

Conservation

2.1 Introduction

One of the most important and widely studied problems in protein sequence analysis is identifying

which residues in a protein are responsible for its function. Knowledge of a protein’s function-

ally important sites has immediate relevance for predicting function, guiding experimental analysis,

analyzing molecular mechanisms, and understanding protein interactions.

Many computational methods have been developed to predict functionally important residues

given a protein sequence. In this chapter, we focus on one of the most common approaches: the

analysis of a multiple sequence alignment (MSA) of the protein and homologous sequences in order

to find columns that are preferentially conserved. These sites are presumed to be functionally

or structurally important because they have accepted fewer mutations relative to the rest of the

alignment.

Conservation analysis has proven to be a powerful indicator of functional importance and has

been used to detect residues involved in ligand binding [7, 8], in protein-protein interaction interfaces

[9–11], in maintaining structure [12–14], and in determining protein functional specificity [15–17].

Conservation analysis has also been used in conjunction with structural information in many of these
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applications (e.g., [18, 19]).

Computational methods for identifying functional residues that do not use conservation exist,

but they typically require structural information and are usually employed in the unusual case where

there is an absence or paucity of sequence homologs. Such structural approaches (review, [20]) work

by either identifying local shared structural patterns (e.g., [21–23]) or by identifying residues in the

protein structure with unusual electrostatic and ionization properties(e.g., [24, 25]). Many recent

methods have used conservation along with other predictors of functional importance (e.g., solvent

accessibility, secondary structure, catalytic propensities of amino acids, etc.) in a statistical learning

framework [26–28]. It has been found that conservation is the single most powerful attribute in

predicting functional importance in these settings [29].

While analysis of conservation is a very common approach with an intuitive basis [30], there is

no universally agreed upon technique. Here, we introduce and evaluate a new information-theoretic

measure for estimating sequence conservation that is motivated by the notion that conserved po-

sitions are under significant evolutionary pressure, and that positions under pressure are expected

to have amino acid distributions very different from those of columns under no pressure [31]. We

quantify this difference using the Jensen-Shannon divergence and an appropriate background “no

pressure” distribution. We also give a window-based extension of our algorithm that incorporates

the estimated conservation of sequentially adjacent residues into the score for each column; this

window approach can be applied to any conservation scoring method that gives columnwise scores.

To compare the Jensen-Shannon divergence conservation measure to previously proposed meth-

ods, we create three data sets that correspond to different types of functional residues—catalytic

residues, residues close to ligands, and residues in protein-protein interfaces—and give the first

large-scale evaluation of several popular conservation measures in identifying functional sites.

We consider six previously introduced methods for estimating the conservation of a column

within an MSA. The first and most commonly used method estimates conservation by calculating

the Shannon entropy of the amino acid distribution of each column [32]. The second attempts

to take amino acid similarity into account by partitioning the amino acids into stereochemically

similar groups and then calculating the Shannon entropy in terms of this partition [33, 34]. The

third incorporates the similarities between amino acids by adapting the von Neumann entropy to

operate on an substitution matrix [9]. The fourth calculates the relative entropy [35] between a

column distribution and a background distribution [31]; it is similar to our measure in that it

attempts to identify sites that have amino acid distributions very different from those of columns

under no evolutionary pressure. The fifth takes all pairs of amino acids in a column and sums their
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pairwise similarity according to a similarity matrix [12]. The sixth, Rate4Site, is a sophisticated,

computationally intensive approach that builds a phylogenetic tree for a family of protein sequences

and infers the rate of evolution at each site [36].

We evaluate how well these seven conservation measures perform in identifying functional sites

using ROC curves and by analyzing how often functional sites are within the top ranking sites.

Our main findings are: (1) Jensen-Shannon divergence and Rate4Site perform similarly, and are

not significantly outperformed by any other method on any data set. However, Jensen-Shannon

divergence is several orders of magnitude faster, suggesting its use in many applications, such as

genome-scale analyses. (2) The performance of Jensen-Shannon divergence improves when using

our approach for incorporating the conservation of neighboring positions in the protein sequence.

Incorporating the signal from neighboring residues also improves the performance of the other six

methods. While considering the conservation of positions neighboring in 3D has been previously

shown to improve predictions [18], structural information is often unavailable. As a result, this

finding has immediate relevance in conservation analysis. (3) Many of the conservation methods that

explicitly incorporate amino acid similarity fail to consistently improve upon the simple Shannon

entropy method. (4) As compared to identifying catalytic sites and residues near ligands, all the

conservation methods tested are only weakly predictive in identifying residues in the protein-protein

interface. This confirms previous analyses [9, 11] and suggests that conservation should only be used

as one component in ensemble methods for predicting interaction interfaces [27, 28].

Overall, our testing demonstrates that Jensen-Shannon divergence, used with our window method

to incorporate information from sequential amino acids, provides a fast, state-of-the art method for

identifying functionally important residues via conservation analysis. This combined approach per-

forms significantly better than Shannon entropy, which is likely the most commonly used method

in conservation analysis. Moreoever, we find that our simple heuristic for incorporating the con-

servation scores from sequentially neighboring amino acids results in improved performance for all

methods tested; this suggests that further development of conservation analysis methods should

focus on better exploiting the signal from neighboring residues. Finally, our data sets and test-

ing methodology provide a comprehensive framework for gaining an empirical understanding of the

real-world performance of using conservation scores to identify functionally important sites, and

analysis similar to the one performed here should be useful in evaluating new proposed conservation

measures.
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2.2 Methods and Algorithms

2.2.1 Conservation scores

Brief descriptions of all methods, previous and new, are given below. For most methods, there are

a number of parameters to optimize. We have explored the space of reasonable settings and report

the best found parameter settings below. See Valdar [30] for a more complete discussion of similar

methods and their evolution.

Preliminaries

Each method takes as input a MSA M of length L over N sequences. Let MC denote the C-th

column of the alignment, and MCi denote the symbol in column C of sequence i. MCi ∈ AA, where

AA is the 21 element set of amino acids plus the gap symbol.

Gaps. Any column that is more than 30% gaps is ignored in the analysis presented here, because a

column with many gaps is unlikely to be functionally important. Additionally, a simple gap penalty

was applied to all methods except Rate4Site, which handles gaps in its software. In particular,

each raw column score is multiplied by the fraction of non-gapped positions in the column [30]. If

sequence weighting is used, the gap penalty is weighted as well. We also performed the analyses

ignoring all columns with gaps, and our overall conclusions did not change (data not shown).

Sequence Weighting. An alignment will often contain sequences at a range of evolutionary dis-

tances. If an alignment consists of several very similar sequences, all columns may look conserved,

and it will be difficult to discriminate positions under evolutionary pressure from those that are

not. We implemented the sequence weighting method proposed in Henikoff and Henikoff [37] that

rewards sequences that are “surprising.” Sequence weighting is used with all methods and results

given below, except for Rate4Site, which builds an evolutionary tree as the first part of its analysis.

Estimating probabilities. Let pC be the distribution of the set AA in column C; pC is com-

puted below using the observed (weighted) frequency of each symbol of AA in the column, with a

pseudocount of 10−6.

Previous Methods

We first describe the six previous methods.

Shannon Entropy of Residues. Shannon entropy (SE) [35] is the one of the simplest and most
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common measures of conservation at a site (e.g., [38, 39]). It is defined for a column C as:

SE(pC) = −
∑
α∈AA

pC(α) log pC(α). (2.1)

The SE is smallest for a column with complete conservation.

Shannon Entropy of Residue Properties. The previous method does not take into account

biochemical similarity between amino acids. Instead of treating the amino acids as distinct symbols

in the entropy calculation, several groups [33, 34] have proposed partitioning the amino acids into

stereochemically defined sets, and then computing the entropy of the column with respect to these

sets. We refer to this conservation scoring method as property entropy (PE). We use the following

grouping [34]: aliphatic [AVLIMC], aromatic [FWYH], polar [STNQ], positive [KR], negative [DE],

and [P].

Von Neumann Entropy. Caffrey et al. [9] introduced the use of von Neumann entropy (VNE) [40],

a concept from quantum mechanics, as an information-theoretic measure of conservation that incor-

porates the physicochemical similarity between amino acids. The VNE of a column C is computed

as:

V NE(C) = −Tr(ρ log ρ) (2.2)

where ρ is the density matrix of column C normalized so that Tr(ρ) = 1. The density matrix of a

column is computed by creating a matrix where the diagonal elements are the relative frequencies

of amino acids in each column (ignoring gaps and without a pseudocount), and all other entries are

zero, and multiplying this by target frequencies for an amino acid similarity matrix. We use the

BLOSUM62 matrix as suggested in Caffrey et al. [9].

Relative Entropy. Relative entropy (RE), or the Kullback-Leibler divergence, is often used to

compare probability distributions [35]. The relative entropy conservation score for a column is

defined as:

RE(pC,q) =
∑
α∈AA

pC(α) log
pC(α)
q(α)

. (2.3)

If the background distribution, q, lacks gaps (as it does here), then pC will ignore gaps as well.

Magliery and Regan [7] have applied relative entropy in order to identify unconserved hypervariable

positions, and Wang and Samudrala [31] have applied relative entropy to the problem of finding

conserved positions. Unless otherwise stated, we use the overall amino acid distribution in the

BLOSUM62 alignments as the background distribution.
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Sum-of-pairs measures. The sum-of-pairs (SP) method scores the conservation of a column using

a similarity matrix S, where S(x, y) is the similarity score between amino acids x and y. Typically

S is a matrix such as one from the BLOSUM series [41]. The SP method encapsulates the overall

pairwise similarity between amino acids in a column. The SP measure for a column C is given by:

SP (C) =
1∑N

i

∑N
j>i wi · wj

·
N∑
i

N∑
j>i

wi · wj · S(Ci, Cj), (2.4)

where wi and wj are the sequence weights for the i-th and j-th sequences respectively. While trans-

formations have been proposed to make all diagonal elements equal to one [12], or to give immutable

amino acids greater self-similarity than mutable ones [30], we have found that untransformed ma-

trices yielded the best performance. All results presented below use the untransformed BLOSUM62

matrix, unless otherwise indicated.

Rate4Site. In contrast to the methods described above, the Rate4Site (R4S) algorithm [36] uses a

statistical model of evolution to estimate the rate of evolution, and thus the conservation, at each

site. Briefly, a phylogenetic tree is constructed for the input alignment. The rates of evolution are

assumed to follow a Gamma distribution, and this distribution is used as the prior in a Bayesian

inference scheme. A low rate of evolution means high conservation at a position. We use the freely

available source code with the default parameters.

New methods

We describe a new conservation scoring method and an extension that can be applied to any of the

methods.

Jensen-Shannon Divergence Score. The Jensen-Shannon divergence (JSD) [42] quantifies the

similarity between probability distributions. As compared to relative entropy, it has the advantages

of being symmetric and bounded with a range of zero to one. A “background” amino acid distribution

q, estimated from a large sequence set, can be used to approximate the distribution of amino

acid sites subject to no evolutionary pressure. Then, positions in an alignment that are found to

have amino acid distributions very different from this background distribution are proposed to be

functionally important or constrained by evolution. JSD is defined for a column C as:

DJS(C) = λRE(pC, r) + (1− λ)RE(q, r) (2.5)

where: r = λpC + (1− λ)q, RE is relative entropy, pC is the column amino acid distribution, q is
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a background distribution, and λ is a prior weight. We use λ = 1
2 and have found that it performs

better than other options. Unless otherwise stated, we use the overall amino acid distribution in

the BLOSUM62 alignments as the background distribution. Using alignment specific backgrounds

can provide a slight improvement, but we have found it is not great enough to justify the added

complexity.

While to the best of our knowledge, this is the first use of JSD to assess sequence conservation,

it has been previously used in the context of comparing sequence profiles [43].

Incorporating sequential residues. Positions near in space and sequence to functionally im-

portant residues are known to be more conserved than average [44]. The conservation of spatial

neighbors can be exploited to improve prediction of functionally important residues [18]. The con-

servation of spatial neighbors is stronger than that of positions near in sequence, but 3D structures

are often unavailable. Thus we developed the following heuristic method to incorporate the conser-

vation of positions near in sequence into the score for a column:

WindowScore(C) = λS(C) + (1− λ)
∑
i∈window S(i)
|window|

(2.6)

where S(i) is the raw score of column i (in this case DJS(i)) and window is a set containing the

indices of all columns in the window around column C. We find λ = 1
2 and a window size of three

residues on either side of C works well. This window technique can be applied to any conservation

scoring method that gives columnwise scores. When discussing the windowed version of a method,

we will append “+W” to the name of the method. Additionally, we call the non-windowed version

of a method “basic.”

2.2.2 Data Sets

We have created three data sets that reflect varying contexts in which conservation-based analysis

is commonly applied. The data sets are by nature imperfect, as we rarely know all the functionally

important residues in a protein. Indeed it is often not clear how to define “functionally important.”

Moreover, it is difficult to determine whether a position that appears to be conserved, but is not

known to be functionally important, is constrained or simply has not had enough time to diverge.

To account for this uncertainty, we construct the data sets to include different types of functional

sites, with the hope that the shortcomings of one will be less prevalent in another. We will look for

consistent results across these data sets, using various performance metrics, to judge the performance

of conservation measures.
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Catalytic Site Data Set. We created the first data set using known catalytic sites obtained from

the Catalytic Site Atlas (CSA) [45], a literature derived database of enzyme active sites and catalytic

residues. For each literature based entry in the CSA as of June 8, 2006, we obtained the 3D structure

of the protein chain from the Protein Data Bank (PDB) [3]. The structures’ sequences were then

clustered at 95% sequence identity and redundant structures were removed. Sequence alignments

for each remaining structure were then obtained from HSSP [46]. These alignments were filtered

to improve alignment quality by removing sequences with more than 95% sequence similarity to

the original CSA sequence or whose length was more than two standard deviations away from it.

Any alignment with fewer than five sequences was removed. After filtering, 645 alignments with

an average of ∼79 sequences per alignment and ∼1900 catalytic sites remained. The annotated

catalytic sites for each protein serve as positives (i.e., functionally important residues), and all other

residues are negatives.

We note that many positions in protein cores are conserved for structural reasons. We do not

want to penalize methods for giving these likely non-catalytic positions high scores. However, many

catalytic sites have low relative solvent accessibility (RSA); for example 5% of catalytic sites have 0%

RSA [44]. To resolve this tension between leaving out known positives and excluding positions that

are likely important but unannotated, we performed the analysis both with and without residues

that have RSA less than 1%. There was little change in the relative performance of the measures on

all data sets (see Supplementary Data). The results presented here include all columns and catalytic

sites. Most sequences do not have known structures, thus this represents the more common scenario

in which conservation analysis is applied.

Ligand Distance. The second data set is based on a less restrictive definition of functionally

important. The increased conservation found in the binding sites of enzyme ligands [44] is used to

compare methods without making many assumptions about the type of functional site sought.

The Enzyme Commission (EC) [47, 48] provides a classification of known enzymes into functional

groups. For each EC class, we retrieve all structures present in the PDB. For each structure with

resolution better than 2.5Å, we check to see if it contains bound ligands similar to the substrates

required for the reaction catalyzed by the enzyme, using a similarity cutoff of 50% as defined by

PDBSum [49]. The structures’ sequences are then clustered at the level of 95% sequence identity

within each EC class, and a non-redundant set is kept for analysis. For each structure that remains

in each EC class, we download the alignment from HSSP and filter it as for the catalytic site data set.

For each structure, we put all residues within 4Å of any ligand atom into the set of putative positive
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residues. This may include some positions that are not functionally important, but the area around

the active site contains a strong enough conservation signal that we are able to distinguish between

methods by the number of highly conserved positions each predicts near ligands. All remaining

residues comprise our set of negatives. We are left with 789 alignments with an average of ∼92

sequences per alignment. The alignments span 495 EC classes and provide an average of ∼1.6

alignments per class. We also performed the analysis excluding all residues that have less than 1%

solvent accessibility and obtained similar results (see Supplementary Data).

Protein-Protein Interfaces. We use the data set of Caffrey et al. [9] consisting of 64 protein-

protein interfaces: 42 homodimers, 12 heterodimers, and 10 transient complexes. For each interface,

they provide an alignment of close homologs and an alignment of diverse homologs. We present

results for the close homolog alignments; performance is similar on the diverse alignments (Sup-

plementary Data). Interface residues, comprising the set of positives, are defined as those losing

more than 1% relative solvent accessibility on complex formation; as done by Caffrey et al. [9], we

compute relative solvent accessibility using NACCESS [50, 51] with a probe size of 1.4Å. All other

residues are the negatives. We also evaluated the methods by removing all positions that have less

than 1% solvent accessibility in the monomer; results were similar on this modified data set (see

Supplementary Data).

2.2.3 Evaluation Methods

Conservation scoring methods are compared on each data set by considering how well they rank the

positive set of functionally important residues, as well as by computing receiver operator character-

istic (ROC) curves.

For ROC analysis, a ROC curve is constructed for each method on each alignment, and all the

ROC curves for a method are averaged across all alignments to obtain its overall curve. For the

ligand distance data set, ROC curves are first averaged over each EC class and then averaged across

classes; this is done because some EC classes have more alignments than others. We report the area

under the ROC curve (AUC) at a range of false positive rates: 0.1 (AUC0.1), 0.5 (AUC0.5) and 1.0

(AUC1). The higher the AUC, the better the method has done at identifying functional residues.

In the rank analysis, for each alignment, we compute the conservation scores for all columns and

note the rank of the known functionally important columns. We report the fraction of the top 30

ranked columns that are functionally important [31]; however, since the number of positives may be

less than 30, we normalize the statistic so that perfect performance (i.e., all possible positives in the
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top 30 predictions) gets a score of one. These top-30 statistics are averaged over all alignments, and

in the case of the ligand distance data set, are first averaged over EC class and then averaged over

the classes.

We use the Friedman test, as implemented in Matlab, to judge whether the performance statistics

(e.g., AUC1) for the methods are significantly different. For the CSA and PPI data sets, when

judging each statistic, comparisons of its value on each alignment are considered; for the ligand

distance data, comparisons are made between its averaged value for each EC class. Since for each

statistic, the values for all pairwise combinations of methods are compared, we further apply a

Bonferroni correction to judge significance. The difference in performance of two methods using a

particular statistic is called statistically significant if the p-value computed using the Friedman test

with a Bonferroni correction is less 0.05.

2.3 Results

We evaluate the seven representative methods on their ability to identify functional sites in the

three data sets. The performance statistics—averaged AUCs and top-30—for all basic methods

are summarized for the catalytic site (CSA) data set in Table 2.1, the ligand distance data set in

Table 2.2, and the close homolog protein-protein interface (PPI) data set in Table 2.3. The relative

performance of these methods using the AUC1 performance statistic is also depicted graphically for

the CSA and ligand distance data sets in Figure 2.2. These relationships are not shown for the

PPI data set, as the only significant differences on it between methods at the AUC1 level involve

comparisons with the worst performing method. The top-30 improvement provided by using the

window heuristic on each method on each data set is given in Table 2.5. We now describe our main

findings in detail.

JSD is not significantly outperformed by any other basic method. Tables 2.1, 2.2, and 2.3

show that JSD, RE and R4S perform better than the other four basic methods when considering

any of the performance statistics on any of the data sets. The significance chart in Figure 2.2

illustrates that JSD and R4S perform significantly better at the AUC1 level on both the CSA and

ligand distance data sets than all the other methods, including RE. For the CSA data set, JSD

outperforms R4S on all criteria, whereas on the ligand distance data set, R4S outperforms JSD

using all criteria (Tables 2.1 and 2.2). The differences between these methods on the PPI data set

are not significant, but Table 2.3 shows that JSD and RE are the best performing methods on this

data set. Overall, the results are similar if we consider the top-30 statistic; JSD, RE, and R4S are all
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Figure 2.1: High confidence region of the ROC curves for Shannon entropy, JS divergence, Rate4Site,
and relative entropy on the catalytic site data set. The three methods all perform significantly better
than Shannon entropy.

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0524 0.4248 0.9235 0.6783
Property entropy 0.0338 0.3780 0.8749 0.4328
von Neumann entropy 0.0499 0.4211 0.9166 0.6462
Sum of pairs 0.0528 0.4291 0.9271 0.6374
Relative entropy 0.0599 0.4436 0.9428 0.7120
Rate4Site 0.0615 0.4451 0.9412 0.7240
JS divergence 0.0623 0.4464 0.9440 0.7338

Table 2.1: Performance statistics for all methods on the catalytic site data set. Area under the ROC
curve is given for the 0.1 (AUC0.1), 0.5 (AUC0.5) and 1.0 (AUC1) false positive rates. Top-30 is the
normalized fraction of the top 30 scoring sites that are functionally important (see text). The best
scores are in bold.
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Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0093 0.3238 0.8036 0.3960
Property entropy 0.0049 0.2813 0.7590 0.2822
von Neumann Entropy 0.0089 0.3138 0.7934 0.3816
Sum of pairs 0.0086 0.3141 0.7898 0.3759
Relative entropy 0.0098 0.3311 0.8119 0.4076
Rate4Site 0.0109 0.3394 0.8238 0.4312
JS divergence 0.0107 0.3345 0.8153 0.4220

Table 2.2: Performance statistics for all methods on the ligand distance data set. See Table 2.1 for
a description of the statistics.

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0060 0.1352 0.5203 0.1692
Property entropy 0.0037 0.1160 0.4968 0.1225
von Neumann entropy 0.0059 0.1367 0.5265 0.1670
Sum of pairs 0.0069 0.1380 0.5217 0.1806
Relative entropy 0.0079 0.1529 0.5468 0.1948
Rate4Site 0.0075 0.1466 0.5433 0.1772
JS divergence 0.0079 0.1516 0.5437 0.1960

Table 2.3: Performance statistics for all methods on the close homolog protein interface data set.
See Table 2.1 for a description of the statistics.
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Figure 2.2: Significance relationships at AUC1 level for the (a) catalytic site and (b) ligand distance
data sets. An edge from method X to method Y means that method X performs significantly better
than method Y . A path between two nodes implies a significant difference as well.

significantly better than the other methods on the catalytic site and ligand distance data sets. Note

that while SE is probably the most commonly used method for identifying functionally important

residues via conservation analysis, our evaluation shows that in all settings tested it is outperformed

by other methods (e.g., Figure 2.1).

JSD performs similarly to R4S, but is much faster. Overall, JSD and R4S perform similarly;

none of the differences in performance observed between them on any of the data sets using any of

the statistics are significant (Figure 2.2). However, JSD and the other information-theoretic methods

have a significant advantage over R4S when considering run time. Table 2.4 gives (processor) running

time statistics for several methods on a benchmark set of 25 randomly chosen alignments from the

CSA data set. R4S took over 2.5 hours (9563.22 seconds) to score these 25 alignments while JSD

required only 11.81 seconds; JSD finishes scoring all 25 in less time than R4S needs to score the

smallest alignment. RE’s running time is similar to JSD’s. In light of this and the performance

results, JSD is the best method for the estimation of conservation in contexts where speed is an

issue, such as large, genome-scale analysis.

Incorporating the conservation of sequentially adjacent positions improves performance.

Our heuristic for exploiting conservation scores within a sequence window around the residue of in-
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Method Min Time Max Time Average Total

Shannon entropy 0.18s 1.18s 0.45s 11.18s
JS divergence 0.20s 1.21s 0.47s 11.81s
Rate4Site 18.66s 1976.38s 382.53s 9563.22s

Table 2.4: Running time on a set of 25 alignments randomly selected from the catalytic site data
set. The Jensen-Shannon divergence takes several orders of magnitude less time than Rate4Site and
provides competitive performance. All information theoretic methods have similar running times.

terest can be applied to any scoring method that produces independent column scores. Using a

window of size seven (three residues on either side of the current residue), all methods improve on

each of the three data sets (Table 2.5), as judged by top-30. The results are similar for the other

statistics (see Supplementary Data for all performance statistics for windowed approaches). Note

that the window method improves predictions for all types of functional sites, not just those with low

conservation. In fact, as Table 2.5 shows, the improvement is greater for sites with high conservation

(catalytic residues and residues near ligands) than for sites in protein interfaces.

Figure 2.3 shows the improvement on the CSA data set for SE and JSD when our window ap-

proach is used. The figure depicts the high-confidence region of the ROC curve. The difference

between JSD+W and SE illustrates the improvement provided by methods introduced in this chap-

ter; at a false positive rate of 2%, JSD+W identifies over 50% of the true positives while SE finds

only about 30%. Note that when SE is extended to incorporate the conservation of sequentially

adjacent positions, it performs nearly as well as the basic JSD method. This highlights the power

of simply using the window approach with existing scoring methods. The consistent improvement

provided by the window heuristic suggests that it can improve predictions in a range of settings.

Incorporating relationships between amino acids is not always helpful. Three of the

methods considered, VNE, SP and PE, attempt to incorporate information about the similarity

of amino acids. One would expect that, since pairs of amino acids have differing physicochemical

similarities, incorporation of such information would improve upon other methods that do not. Our

evaluation framework allows us to assess this claim by characterizing the performance of VNE, SP

and PE relative to the commonly used SE.

Figure 2.2 shows that using the AUC1 criterion, SE is significantly better than VNE, PE and

SP on the ligand distance data set, and significantly better than VNE and PE on the CSA data

set. While SP performs better than SE using the AUC1 criterion, the difference is not statistically

20



0%

10%

20%

30%

40%

50%

60%

70%

0% 1% 2% 3% 4% 5%

Tr
ue

 P
os

itiv
e 

Ra
te

False Positive Rate

Window JS divergence
JS divergence

Window Shannon entropy
Shannon entropy

Figure 2.3: High confidence ROC curves demonstrating the improvement for Shannon entropy and
JS divergence when used with the window method on the CSA set. The difference between Shannon
entropy (dotted black) and Window JS Divergence (solid red) is the improvement provided by
methods introduced in this chapter. Similar improvement is seen across methods and data sets.
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Method CSA Ligand PPI

Shannon entropy 0.6783 0.3960 0.1692
Shannon entropy+W 0.7077 0.4583 0.2000

Property entropy 0.4328 0.2822 0.1225
Propert entropy+W 0.5928 0.3840 0.1772

von Neumann entropy 0.6462 0.3816 0.1670
von Neumann entropy+W 0.6979 0.4422 0.1960

Sum of pairs 0.6374 0.3759 0.1806
Sum of pairs+W 0.6995 0.4264 0.2034

Relative entropy 0.7120 0.4076 0.1948
Relative entropy+W 0.7507 0.4546 0.2205

Rate4Site 0.7240 0.4312 0.1772
Rate4Site+W 0.7197 0.4795 0.2205

JS divergence 0.7338 0.4220 0.1960
JS divergence+W 0.7539 0.4703 0.2205

Table 2.5: Improvement in top-30 performance provided by the window heuristic for all methods.
The better score between the basic method and its windowed version is in bold. Full statistics are
provided in the Supplementary Data.
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significant. The differences between these methods on the PPI data set are not significant; however,

SE performs best of the three as judged by top-30, SP performs best as judged by AUC0.1 and

AUC0.5, and VNE performs best as judged by AUC1.

We also evaluated using different BLOSUM matrices with VNE and SP. We found that the choice

of matrix does not change our overall results. For the SP method, we additionally experimented with

alignment-specific matrices. In particular, for each alignment considered, we computed the average

pairwise sequence identity and selected the nearest of BLOSUM45, BLOSUM62, and BLOSUM80.

This scheme also did not improve overall performance (see Supplementary Table 2.13).

These results highlight the need for large-scale evaluation. While it might be expected that PE,

VNE, and SP would improve on SE, none provide any significant gain. In fact, in several settings,

some perform significantly worse than SE. VNE was introduced for the prediction of protein-protein

interface residues [9], but is not significantly better on the PPI data set as judged by any of the four

statistics tested. PE was introduced for the analysis of ligand recognition in transport proteins, and

SP for the analysis of DNA-binding proteins. It is possible that these methods could achieve better

performance in other specific settings, but the three contexts investigated here are quite common

and similar to those in which they were introduced.

Identifying residues in the protein-protein interfaces from conservation alone is difficult.

Recently, conservation analysis has been employed to predict and analyze protein-protein interaction

sites [9, 10, 27]. Several of these groups have found that it is difficult to predict the interface using

various measures of conservation. Here, we find that none of the seven conservation measures

studied perform particularly well in identifying residues in protein interfaces (Table 2.3). We report

statistics from the close homolog alignments, but results are similar for the diverse homolog set

(see Supplementary Data). The AUC1 values for all methods are approximately .55, as compared

to much better performance in identifying catalytic site residues (AUC1 ≈ .95) and the sites near

ligands (AUC1 ≈ .80). However, while the conservation signal on the interface is weak, it is still

detectable; all methods other than PE performed significantly better than random guessing. This

suggests that conservation alone should not be used to predict residues in protein-protein interfaces.

However, it is an important component of ensemble based approaches [28].

2.4 Discussion and Conclusion

Despite the prevalence of conservation based analysis, there are few agreed upon best practices.

This work establishes an empirical understanding of the relationships between approaches. We
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describe several methods for quantifying conservation and introduce a method based on the Jensen-

Shannon divergence, as well as a heuristic for incorporating the conservation signal from sequentially

neighboring residues. We then quantitatively compare the performance of all methods in three

realistic settings: the identification of catalytic sites, residues near ligands, and residues comprising

protein-protein interfaces.

Our evaluation demonstrates that methods such as JSD and RE that incorporate a background

amino acid distribution are preferable to SE (Figure 2.1). R4S also provides similar improvement

over SE, but is quite slow in comparison to the information theoretic methods (Table 2.4). The

speed of JSD would allow researchers to modify alignments and re-predict functional sites on the

fly. It also makes large-scale analysis faster and more appealing. While JSD and RE are similar

measures, overall RE does not perform quite as well as JSD. RE is unbounded; events that are

unlikely according to the background or column distributions tend to contribute more to the RE

score than to the JSD score, and this likely causes the difference in performance between the two

methods.

We also demonstrate that our window heuristic provides a way to boost the conservation signal,

and thus performance, even in the absence of structural information. This improvement is seen

across methods and data sets. The approach is fast, flexible, and can be applied to any method that

produces column scores.

Perhaps most surprisingly, we find that several methods that intend to improve conservation

estimation by incorporating amino acid similarity fail to provide any significant improvement over

methods that ignore the underlying chemistry. In fact, some perform significantly worse than Shan-

non entropy. While it may be the case that incorporating amino acid similarity is not critical for

identifying functional sites, it is more likely that the existing set of methods are not adequate, and

other as yet undeveloped methods, may be able to exploit better the similarities between amino

acids. Additionally, it is possible that the data sets of known functional sites are biased towards ab-

solutely conserved residues, and thus incorporating relationships between amino acids is not essential

for good performance on them.

The poor performance of all methods on the protein-protein interface data set demonstrates that

the difficulties encountered in previous attempts [9, 27] exist across a range of conservation methods.

It is likely that the results could be improved by dividing the data set into transient and obligate

interactions [11] and further dividing the interface into central and peripheral residues. Nevertheless,

it is clear that conservation alone is insufficient to predict all residues in protein-protein interfaces.

When interpreting the predictions made by a conservation-based method, it is natural to ask

24



whether a site is important for maintaining structure, for catalysis, or for binding ligands, other

proteins or DNA. Conservation alone cannot distinguish among these possibilities; however, features

such as amino acid composition, electrostatic potential, and known or predicted structural properties

(e.g., secondary structure and solvent accessibility), used along with conservation, can be used within

machine learning methods to identify particular types of functional residues (e.g., [27, 29]).

Overall our results highlight the necessity for rigorous evaluation of conservation methods. Con-

servation analysis is beginning to be applied in settings where the signal is not strong (e.g., the

prediction of protein interaction sites). Thus, comprehensive analyses such as the one performed

here are increasingly important in order to develop an empirical understanding of the strengths and

weaknesses of various methods; this understanding can then be used to guide development of more

powerful techniques for estimating sequence conservation in diverse biological settings.

2.5 Supplementary Data

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0524 0.4248 0.9235 0.6783
Shannon entropy+W 0.0613 0.4414 0.9374 0.7077

Property entropy 0.0338 0.3780 0.8749 0.4328
Property entropy+W 0.0498 0.4138 0.9093 0.5928

von Neumann entropy 0.0499 0.4211 0.9166 0.6462
von Neumann entropy+W 0.0593 0.4376 0.9342 0.6979

Sum of pairs 0.0528 0.4291 0.9271 0.6374
Sum of pairs+W 0.0595 0.4509 0.9362 0.6995

Relative entropy 0.0599 0.4436 0.9428 0.7120
Relative entropy+W 0.0649 0.4484 0.9475 0.7507

Rate4Site 0.0615 0.4451 0.9412 0.7240
Rate4Site+W 0.0616 0.4442 0.9416 0.7197

JS divergence 0.0623 0.4464 0.9440 0.7338
JS divergence+W 0.0654 0.4676 0.9461 0.7539

Table 2.6: Comparison of performance statistics for all methods with and without windows on the
catalytic site dataset. Area under the ROC curve is given for the 0.1 (AUC0.1), 0.5 (AUC0.5) and
1.0 (AUC1) false positive rates. Top-30 is the normalized fraction of the top 30 scoring sites that
are functionally important (see text).
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Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0093 0.3238 0.8036 0.3960
Shannon entropy+W 0.0128 0.3461 0.8278 0.4583

Property entropy 0.0049 0.2813 0.7590 0.2822
Property entropy+W 0.0098 0.3193 0.7987 0.3840

von Neumann Entropy 0.0089 0.3138 0.7934 0.3816
von Neumann entropy+W 0.0122 0.3408 0.8223 0.4422

Sum of pairs 0.0086 0.3141 0.7898 0.3759
Sum of pairs+W 0.0107 0.3360 0.8140 0.4264

Relative entropy 0.0098 0.3311 0.8119 0.4076
Relative entropy+W 0.0121 0.3499 0.8336 0.4546

Rate4Site 0.0109 0.3394 0.8238 0.4312
Rate4Site+W 0.0135 0.3605 0.8474 0.4795

JS divergence 0.0107 0.3345 0.8153 0.4220
JS divergence+W 0.0132 0.3521 0.8349 0.4703

Table 2.7: Comparison of performance statistics for all methods with and without windows on the
ligand distance data set. See Table 2.6 for a description of the statistics.
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Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0060 0.1352 0.5203 0.1692
Shannon entropy+W 0.0091 0.1504 0.5382 0.2000

Property entropy 0.0037 0.1160 0.4968 0.1225
Property entropy+W 0.0068 0.1383 0.5234 0.1772

von Neumann entropy 0.0059 0.1367 0.5265 0.1670
von Neumann entropy+W 0.0092 0.1528 0.5440 0.1960

Sum of pairs 0.0069 0.1380 0.5217 0.1806
Sum of pairs+W 0.0092 0.1486 0.5332 0.2034

Relative entropy 0.0079 0.1529 0.5468 0.1948
Relative entropy+W 0.0097 0.1602 0.5548 0.2205

Rate4Site 0.0075 0.1466 0.5433 0.1772
Rate4Site+W 0.0105 0.1612 0.5618 0.2205

JS divergence 0.0079 0.1516 0.5437 0.1960
JS divergence+W 0.0105 0.1613 0.5548 0.2205

Table 2.8: Comparison of performance statistics for all methods with and without windows on the
close homolog protein interface data set. See Table 2.6 for a description of the statistics.

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0067 0.1399 0.5205 0.1823
Property entropy 0.0040 0.1223 0.5051 0.1242
von Neumann entropy 0.0064 0.1375 0.5201 0.1783
Sum of pairs 0.0076 0.1403 0.5162 0.1846
Relative entropy 0.0088 0.1483 0.5373 0.2064
Rate4Site 0.0079 0.1436 0.5309 0.1921
JS divergence 0.0086 0.1475 0.5339 0.2030

Table 2.9: Performance statistics for all methods on the diverse homolog protein interface data set.
See Table 2.6 for a description of the statistics. The best scores for each statistic are in bold.
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Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0567 0.4382 0.9352 0.7137
Property entropy 0.0446 0.4084 0.9065 0.5774
von Neumann entropy 0.0545 0.4307 0.9297 0.6946
Sum of pairs 0.0572 0.4396 0.9367 0.6962
Relative entropy 0.0634 0.4525 0.9487 0.7323
Rate4Site 0.0652 0.4509 0.9503 0.7384
JS divergence 0.0655 0.4625 0.9503 0.7422

Table 2.10: Performance statistics for all methods on the catalytic site data set ignoring columns
with less than 1% relative solvent accessibility. See Table 2.6 for a description of the statistics. The
best scores are in bold.

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0109 0.3461 0.8307 0.4751
Property entropy 0.0080 0.3245 0.8088 0.4152
von Neumann entropy 0.0105 0.3379 0.8229 0.4570
Sum of pairs 0.0097 0.3357 0.8161 0.4508
Relative entropy 0.0111 0.3468 0.8320 0.4734
Rate4Site 0.0126 0.3599 0.8486 0.5081
JS divergence 0.0120 0.3518 0.8370 0.4909

Table 2.11: Performance statistics for all methods on the ligand distance data set ignoring columns
with less than 1% relative solvent accessibility. See Table 2.6 for a description of the statistics. The
best scores are in bold.

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon entropy 0.0066 0.1501 0.5505 0.2182
Property entropy 0.0061 0.1463 0.5465 0.1977
von Neumann entropy 0.0065 0.1526 0.5587 0.2154
Sum of pairs 0.0076 0.1500 0.5471 0.2188
Relative entropy 0.0085 0.1591 0.5639 0.2336
Rate4Site 0.0085 0.1630 0.5746 0.2330
JS divergence 0.0084 0.1581 0.5625 0.2308

Table 2.12: Performance statistics for all methods on the close homolog protein interface data set
ignoring buried columns (see main text). See Table 2.6 for a description of the statistics. The best
scores for each statistic are in bold.
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Method CSA Lig. Dist. PPI

von Neumann entropy BL45 0.9152 0.7915 0.5252
von Neumann entropy BL62 0.9166 0.7934 0.5265
von Neumann entropy BL80 0.9177 0.7944 0.5276

Sum of pairs BL45 0.9216 0.7861 0.5248
Sum of pairs BL62 0.9271 0.7898 0.5217
Sum of pairs BL80 0.9287 0.7929 0.5230
Per-alignment sum of pairs 0.9241 0.7851 0.5256

Relative entropy BL45 0.9430 0.8123 0.5459
Relative entropy BL62 0.9428 0.8119 0.5468
Relative entropy BL80 0.9433 0.8121 0.5479

JS divergence BL45 0.9440 0.8153 0.5436
JS divergence BL62 0.9440 0.8153 0.5443
JS divergence BL80 0.9444 0.8153 0.5443

Table 2.13: AUC1 performance statistics for all data sets for all methods that use BLOSUM matrices
in some way. We have presented a range of BLOSUM distances to show that the choice of particular
matrix matters very little to the results. For the sum of pairs of method we also include the results
when an alignment specific matrix is used (designated by Per-alignment sum of pairs).
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Chapter 3

Characterization and Prediction of

Residues Determining Protein

Functional Specificity

3.1 Introduction

Proteins can be classified into thousands of families on the basis of similar sequence patterns, shared

structural motifs, experimentally determined common functions, or combinations thereof. The pro-

teins within a single family usually share a common general function, but can exhibit a range of

more specific functions. The enzymes provide many examples of this sort of family organization. For

example, all members of the nucleotidyl cyclase family transform nucleotide triphosphates into cyclic

monophosphates, but some act on ATP while others act on GTP. Similar behavior is seen among

DNA-binding proteins, proteins mediating protein-protein interactions, and membrane proteins.

A set of proteins within a family that, as described above, share a specific function that is not

common to the entire family have been called specificity groups [52]. Specificity groups within a

protein family can be determined in a number of ways; for example, within a homologous protein

family, the sets of orthologs can each comprise a specificity group. In many families, the amino acids

present in a small number of sequence positions determine the particular functional specificity of

member proteins. Identification of these specificity determining positions (SDPs) for a protein family

is important not only because it provides insight into the mechanisms by which nature achieves its
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astonishing functional diversity, but also because it enables the assignment of specific functions to

uncharacterized proteins [16]. In addition, since SDPs are usually involved in the identification

and binding of substrate molecules, knowledge of SDPs can be relevant to drug design, protein

engineering, and pathway analysis.

Nearly all computational methods for identifying SDPs attempt to identify columns in multiple

sequence alignments (MSAs) whose amino acid composition is related to the division of the sequences

into functional specificity groups. Several early computational methods apply a range of statistical

and phylogenetic techniques to the problem [15, 53, 54]. More recently, a number of information-

theoretic methods have been developed [16, 17, 52, 55–58]. Other statistical, evolutionary and

structural approaches have also been applied to the problem [59–66]. Several methods address the

more difficult problem of additionally identifying family subgroup definitions [54, 67–70].

While there are many SDP prediction methods, their further development has been hindered

by the small number of proteins for which exhaustive site-directed mutagenesis experiments have

identified residue substitutions that switch functional specificity. Previous computational studies

and evaluations have used from 2–13 alignments [16, 17, 58, 61–64, 67]. Perhaps as a result, dif-

ferent existing methods encode different assumptions about the column patterns in MSAs that are

indicative of a role in determining specificity: some reward columns showing amino acid conserva-

tion within specificity groups, and others reward columns with little amino acid overlap between

groups. Overall, it is not clear what types of amino acid column patterns in MSAs typify SDPs,

what physicochemical properties of SDPs should be exploited for prediction, or how well existing

approaches perform relative to each other.

This work addresses these problems by automating a process often undertaken by hand to rec-

ognize SDPs in the absence of mutation studies (e.g., see [16, 17]). We build a data set consisting of

hundreds of enzyme protein families annotated with specificity groupings and putative SDPs. Using

this large data set, we make the following contributions to the analysis and prediction of SDPs. First,

we find that putative SDP columns in MSAs are distinct from the residue background with respect

to their amino acid distribution, secondary structure distribution, and relative solvent accessibility.

In addition, the observed column patterns indicate that amino acid properties such as polarity and

size are less conserved between specificity groups in SDP columns than in all columns, suggesting

that these properties are used to distinguish among similar ligands. Second, we demonstrate that

alignment columns in which at least one specificity group displays both amino acid conservation and

low overlap in amino acid usage with other groups are likely important for indicating specificity.

This result from our large-scale column pattern analysis is consistent with the recent findings of [64]
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on a diverse experimentally-verified set of SDPs from 13 families. Third, we test a representative

set of current sequence-based methods that use MSAs and known specificity groupings to identify

SDPs [16, 17, 58, 62], and show that they provide surprisingly little improvement over GroupSim,

a simple method introduced here that uses the same information. Finally, we present a prediction

heuristic that considers the conservation of neighboring positions and demonstrate that it improves

the performance of all tested SDP prediction methods on our data set. In particular, GroupSim

combined with the conservation window heuristic outperforms all previous methods tested in pre-

dicting SDPs on our large data set of enzyme families. Our main findings regarding performance do

not change when considering the smaller set of experimentally-verified set of SDPs in [64], though

the size of our data set allows us to better distinguish between methods.

Overall, our data set and testing methodology provide a framework for gaining an understanding

of SDPs and SDP prediction methods, and have allowed us to show that even the simple GroupSim

method introduced here exhibits state-of-the art performance. This suggests ample opportunities

for further method development and performance improvement, and our framework provides the

necessary foundation upon which this progress can be built.

3.2 Methods and Data

3.2.1 Data Set

Here we describe the computational pipeline used to build a data set of over 400 alignments of

homologous enzyme domains each consisting of two specificity groups with columns likely important

for specificity, as well as specificity groupings, identified. We refer to this data set as the EC-Pfam

data set. While we apply our procedure to only enzymes here, it can be easily adapted to other

protein types in the presence of a reliable classification of functional specificity.

We integrate data from several bioinformatics resources: protein sequences downloaded from

SwissProt [71] on Jan. 23, 2007, 3D structures from the PDB [3], domain families from release

21.0 of Pfam [72], enzyme function classification from release 23 of the Enzyme (EC) database [48],

and experimentally determined catalytic sites from release 2.2.1 of the Catalytic Site Atlas [45]. By

defining families and specificity using a combination of Pfam, EC numbers, and sequence similarity,

we avoid problems inherent in each approach. Pei et al. [67] attempted a large scale comparative

analysis of SDP prediction methods, in which specificity groups were built by sequence similarity

and all positions near ligands were considered positives. This previous approach has two problems.
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First, specificity does not always follow sequence similarity [62, 73], and thus specificity groupings

cannot reliably be obtained in this manner. Second, most residues near ligands are not important

for specificity; in particular, many of these residues are well conserved and so a method that selects

conserved residues would not identify any SDPs but would perform very well in their evaluation.

We describe below how we address these problems.

Alignment Building. We build alignments for families of homologous domains for which we have

a reliable way to divide the sequences into groups according to their functional specificity. We start

by combining domain data from Pfam and enzyme data from EC. The Enzyme database provides a

hierarchical classification of enzymes based on the reactions they catalyze. An enzyme is assigned

four numbers, each representing a more specific classification. The first three numbers taken together

usually identify the type of reaction catalyzed (e.g., 1.1.1.* identifies an oxidoreductase acting on

the CH-OH group of donors with NAD(+) or NADP(+) as an acceptor). The fourth number

identifies the particular substrate (e.g., 1.1.1.27 acts on L-lactate and 1.1.1.37 acts on malate). These

classifications are based mainly on experimental evidence and do not correspond to sequence identity.

By combining EC classifications with Pfam sequence motifs and the sequence similarity cutoffs

described below, we ensure that our homologous family and subgroup assignments are supported by

both experimental and sequence evidence.

For each Pfam domain, we find the EC assignments (if any) for each member sequence. We

consider all pairs of EC numbers present in the Pfam family that overlap through the third position,

e.g., 1.1.1.27 and 1.1.1.37; these represent enzymes with similar functions that are acting upon

different substrates. We then use BLASTCLUST [74] to cluster all sequences found in the EC group

pair by pairwise sequence identity; we require 30% sequence identity over at least 85% of the domain

sequence to be a member of a cluster. Now, each cluster contains domain sequences from the same

domain family with significant sequence identity and EC numbers that overlap through the third

position. Sequences in a cluster are assigned to specificity groups according to their fourth level

EC number, which corresponds to their specific substrate. For each specificity group, i.e., set of

sequences in a cluster with matching full EC numbers, we remove very similar sequences (those with

95% sequence identity over 85% of both sequences). Any chains from the PDB that contain the

domain, EC assignment, and relevant bound ligand or an experimentally identified catalytic site [45]

are included in the specificity group regardless of their sequence similarity to one another. A bound

ligand is considered relevant if it is at least 40% similar, as computed by the graph-match algorithm

used in PDBSum [49]), to the ligand specified by the EC number. We only keep clusters where
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both specificity groups contain at least four sequences. As some of the methods tested become very

slow on large alignments, we also limit each specificity group to 50 sequences (selecting sequences

uniformly at random if necessary). Finally, the cluster sequences are are aligned using ProbCons [75].

Selection of residues near ligands. In enzymes, SDPs are usually found around the active

site, near ligands. When evaluating SDP predictions in the absence of experimental data, many

researchers have used nearness to relevant ligands as a proxy for importance for specificity (e.g.,

see [16, 17]). We extend and improve this previous small-scale approach by developing an automated

procedure that uses structural information and sequence-based criteria to identify positions likely

important for specificity.

Each alignment described in the previous section includes chains from the PDB that contain the

relevant domain, EC assignment, and bound ligand or catalytic site. We select residues near ligands

in two ways. For each chain, if a relevant ligand is present, we find all residues with an atom within

5Å of a relevant ligand atom and add these to the set of “near ligand” residues. Since many enzymes

do not have 3D structures in complex with their substrate, we also use catalytic sites as a proxy for

the location of ligands and include all residues within 5Å of a catalytic site. When we refer to the

set of residues “near ligands,” we also include those found near catalytic sites unless we explicitly

state otherwise.

Sequence-based filtering of columns near ligands. The set of residues near ligands and

catalytic sites includes many sites that are not important for specificity—for example, sites that are

of functional importance to the whole family and thus are conserved across the specificity groups.

To remove columns that are unlikely to have an effect on specificity from the set of likely SDPs, we

consider three sequence alignment-based filters. Each filter corresponds to a column pattern that

has been suggested to indicate importance for specificity.

The low-overlap filter (L) seeks to remove all columns for which there is significant amino acid

overlap between the specificity groups. For the two group case, the specificity group with higher

Shannon entropy (lower conservation) is selected, and the fraction of sequences in the group whose

amino acids appear in the other group is found. If it is greater than 0.1, then the column is removed

from the putative SDP set. To better handle improperly annotated and poorly aligned sequences,

an amino acid must account for more than 5% of the more conserved group to count as a match.

Columns that are conserved across the groups are removed by this filter, as are columns which are

not conserved but have similar amino acid distributions within the groups. It can be extended to

columns with more than two groups by averaging the overlap for each pair of specificity groups.
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The one-group-conserved filter (O) imposes an additional constraint. A column passes this filter if

it passes the low-overlap filter and at least one of its specificity groups is conserved. Here we define

conservation as Shannon entropy less than 2
3 of a bit. (Shannon entropy of a column has a range of

0 for complete conservation to ≈ log2(20) bits when each amino acid is equally likely.) A column

passes the all-groups-conserved filter (A) if it passes the low-overlap filter and all of its groups are

conserved as defined above. This is the strictest filter. Each filter is a stricter version of the previous

(e.g., all columns passing the all-groups-conserved filter also pass the one-group-conserved filter).

Table 3.1 illustrates how the filters treat several example columns.

Columns Filter Requirements

G
ro

up
1 A H K D S

A L S D S Low-Overlap (L) low group overlap
A K R D S
A A K D S One-Group-Cons. (O) low group overlap

G
ro

up
2 A H A F N ≥ 1 group conserved

A L A Y N
A E C F N All-Groups-Cons. (A) low group overlap
A R V Y N all groups conserved

strictest filter passed:
∅ ∅ L O A

Table 3.1: Alignment column filter behavior on five example columns. The five example columns
contain two specificity groups. The empty set symbol, ∅, indicates that the first two columns do not
pass any filters. The strictest filters that the third, fourth, and fifth columns pass are (respectively)
the low-overlap, one-group-conserved, and all-groups-conserved filters.

The following analysis requires the distinction of “positive” and “negative” positions. We use

each of the filters along with structural evidence to define sets of columns that are likely to be

enriched with SDP. The set of positions within 5Å of a relevant ligand passing filter X is referred

to as SDPX . Each filter leads to a different set, but our results are robust to the filter used (see

Supplementary Analysis). Section 3.3.1 provides evidence that SDPO, corresponding to the one-

group-conserved filter, should be used as the positive set. The set of all columns that do not pass

any of the filters is used as the negative set.

Data set statistics. The raw data set consists of 435 alignments. To avoid biasing the data set to

larger families with many specific functions, we filter it so that each EC-Pfam pairing is included in

no more than one alignment. The full data set is available online. After filtering the 435 alignments,

106 with at least one column in SDPO remain. Since the observed column patterns depend on the

diversity of the alignments, we now provide some summary statistics. These alignments have an

average length of 279 positions and contain an average of 41 sequences with a minimum of 11 and
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a maximum of 100. The average pairwise sequence identities range from 27.2% to 66.2% with a

mean of 42.5% and a standard deviation of 8.5%. The average pairwise sequence identities within

specificity groups vary from 25.5% to 88.9% with a mean of 55.2% and a standard deviation of

14.2%. The filtered data set contains 489 putative SDPs.

Experimental Support for EC-Pfam data set. The Lactate/Malate dehydrogenase family

has experimentally-determined SDPs and is also found in the EC-Pfam data set. It thus provides

an opportunity to compare our data set with experimentally-determined results. A mutation of one

residue from Gln to Arg is known to switch the specificity from lactate to malate [16]. Two positions

in the alignment (Q117R and E123M) are placed in SDPO by our automated framework, and the

known SDP (Q117R) is in this set.

In addition, several statistical properties of our data set are similar to those of the largest available

data set of experimentally-determined SDPs [64]. The percent of alignment columns identified as

putative SDPs is 1.2 in the EC-Pfam data set and 1.7 in the experimental data set. In addition,

Section 3.3.1 shows that the same two SDP column patterns are over-represented in both data sets.

Though neither set of SDPs (computational or experimental) can be thought of as complete, the

similarity of these properties between them lends support to our automated approach for building

a data set of SDPs.

3.2.2 SDP Property Definitions

In the following analysis, we use amino acid property definitions from several sources. Secondary

structure and solvent accessibility (of all chains, ignoring ligands) are taken from DSSP [76]. The

eight DSSP states are reduced to helix (H, G, I), sheet (E, B), and loop/other (S, T, C). Amino acid

property partitions are adapted from the following sources: charge [(R, H, K), (D, E), (A, N, C, Q,

G, I, L, M, F, P, S, T, W, Y, V)] [30], hydrophobicity [(I, L, V, C, A, M, F), (G, Y, W, H, K, T, R,

E, Q, D, N, S, P)] [77], size [(A, G, C, S), (V, T, N, P, D), (Q, E, H, K, R, F, Y, W, M, I, L)] [30],

polarity [(H, R, K, E, D), (Q, T, S, N, C, Y, W), (A, G, V, L, I, P, F, M)] [44].

3.2.3 Evaluation Procedures

SDP prediction methods are compared by analyzing how well they rank the set of positive columns,

SDPO. We use both box plots and precision-recall (PR) curves. To create the box plots, for each

of the positives, we compute its rank by counting how many of the positive and negative columns

score better than it. We find the minimum, maximum, median, and quartile ranks of the positive
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columns for each method in each alignment. We then average each of these statistics over all the

alignments and present the results as a box plot. For the PR curves, precision (TP/TP+FP) is

plotted on the y-axis, and recall (TP/TP+FN) is plotted on the x-axis. In our PR analysis, a PR

curve is constructed for each method on each alignment, and all the PR curves for a method are

averaged across all alignments to obtain its overall curve. We use the method and code of Davis and

Goadrich [78] for calculating the area under the curve (AUC). Higher AUC corresponds to better

performance. Columns with more than 10% gaps overall or with a specificity group containing more

than 30% gaps are not considered.

3.2.4 SDP Prediction Methods

We evaluate the performance of a representative set of existing methods for predicting SDPs from a

MSA divided into specificity groups against a simple, baseline method. We do not include methods

that predict specificity groups as well as SDPs in the evaluation, though such an evaluation would

be possible with our data set.

Existing SDP Prediction Methods

Information theoretic methods are frequently used to predict SDPs, so we include several such meth-

ods in our evaluation. Relative entropy (RE) [16] was one of the first fully-automated information

theoretic approaches suggested. Our implementation calculates the average relative entropy between

all pairs of group amino acid distributions in a column.

SDPpred [17] has been shown to perform well in previous small-scale evaluations. It calculates

column scores by measuring the mutual information (MI) between specificity groups and amino

acids and comparing it to the MI of columns with shuffled amino acid compositions. We evaluate

both SDPpred and the use of MI without shuffling.

Sequence Harmony (SH) [58] scores columns using a linear combination of entropies that rewards

difference between the specificity groups without requiring conservation within each of the groups.

We include SH because it was one of the first methods to explicitly focus on group difference.

Columns with tie scores are differentiated by their nearness to other high scoring columns.

The Xdet method [62] is selected to represent a set of non-information theoretic methods with

similar motivations. It calculates, for each column, the correlation between the similarity of all

observed amino acid pairs and the functional similarity of the proteins they represent. Columns in

which proteins with similar amino acids have similar functions receive high scores. We use a zero-one
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functional similarity matrix with all pairs of proteins in the same specificity group receiving a one.

We use the identity matrix as the amino acid similarity matrix, because we found that it works

better than other similarity matrices (see Supplementary Analysis).

For SDPpred, the publicly accessible web server was used to score alignments. Source code for

Xdet and SH was obtained from the authors. Default parameters were used for all methods. In our

implementations of RE and MI, a pseudocount of one when estimating amino acid distributions was

found to yield the best performance.

GroupSim

As a baseline for comparison, we implemented a simple method that considers all pairs of amino

acids within and between groups. The average similarity between each pair of amino acids in a group

is calculated according to a similarity matrix for each specificity group in the alignment. To reward

difference between specificity groups, we compute for each group the average similarity (according to

the matrix) of all amino acid pairs containing one amino acid in the group and one not in the group.

This per group average is then averaged. The column score is the average within-group similarity

minus the average between-group similarity. Higher scores indicate a greater likelihood of being a

SDP. We tried a range of similarity matrices from the BLOSUM series [41], but as with Xdet, using

the identity matrix provided the best results. A simple gap penalty, multiplying the column score

by the fraction of non-gap positions in the column, is applied to the scores.

Conservation Window Heuristic

Positions important for determining specificity are often found near the active/interaction site. The

residues in enzyme active sites are known to be more conserved than average [44]. If two columns

have the same SDP score (according to any method), we might think that the one in the area of

greater conservation is likely to be of greater importance for specificity. In order to test this idea,

we developed a heuristic that incorporates the conservation of sequentially adjacent positions into

the SDP score:

ConsWin(C) = λSDP (C) + (1− λ)
∑
i∈win Cons(Ci)
|win|

(3.1)

where SDP (C) is an SDP score for column C, win is a set containing the indices of all columns in

a window around, but not including, column C. The second term is the average conservation of the

window; we use the Jensen-Shannon divergence [5] to estimate conservation. We find λ = 0.7 and a

window size of three residues on either side of C work well. Though the best parameters vary from
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method to method, the results are robust across choices of λ. When discussing a method to which

this heuristic has been applied, we will append “+ConsWin” to the method name.

3.3 Results

The size of the EC-Pfam data set allows us to describe properties of positions that are likely impor-

tant for specificity. In addition, it enables the comparison of SDP prediction methods on a much

larger scale than was possible previously.

3.3.1 Analysis of Positions Important for Specificity

In this section, we characterize a set of residues enriched with SDPs in terms of column amino

acid pattern, secondary structure, relative solvent accessibility (RSA), and amino acid property

differences observed between specificity groups in the same column. These observations should be

useful in future SDP prediction method development.

Two SDP column patterns are over-represented near ligands.

Columns that exhibit amino acid conservation within specificity groups and difference between them

have often been sought by SDP prediction methods. However, it has recently been argued that a

lack of overlap in amino acid distribution between specificity groups is sufficient to indicate that a

column is important for determining specificity [58].

Since there are too few experimentally-verified specificity determining positions to perform a

reliable analysis of observed column patterns, we instead use our EC-Pfam data set to address the

question. We assume that the set of residues within 5Å of the relevant ligand is enriched with

specificity determining residues relative to alignment columns more than 5Å from the ligand. We

then count the occurrence of each column pattern described in Table 3.1 in these two sets of positions.

If we see significantly more columns of a given pattern near ligands, we attribute this difference to

specificity-based pressures. Before performing this analysis, we removed all very conserved columns

(Shannon entropy ≤ 1
3 bit) from each set, because these columns are not important for determining

specificity and are over-represented near ligands (35.6% ≤5Å from ligand and 11.2% >5Å from

ligand).

Table 3.2 compares the distribution of column patterns in positions near ligands to the distri-

bution over positions not near ligands; each column is assigned to the strictest filter (pattern) it

passes and significance is calculated using the hypergeometric distribution. Two column patterns,
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one-group-conserved and all-groups-conserved, are significantly enriched in columns near ligands

(P -values of 5.577e-8 and 8.814e-47 respectively). This likely reflects pressure from specificity-based

constraints. In contrast, columns with the low-overlap pattern are significantly (P = 0.012) more

common outside of regions likely important for specificity (8.8%) than in them (6.6%). This suggests

that the low-overlap pattern alone is insufficient to indicate importance for specificity; a method that

rewards this column pattern is likely to select columns that are far from relevant ligands. These

results are consistent with a recent study of SDP in thirteen experimentally-characterized fami-

lies [64] that found Type II (all-groups-conserved) and Type I (one-group-conserved) columns to be

over-represented in SDPs as compared to non-SDPs.

Filter ≤ 5Å from > 5Å from
ligand ligand P -value

Low-Overlap (L) 0.066 (106) 0.088 (1550) 0.012
One-Group-Conserved (O) 0.174 (278) 0.125 (2196) 5.577e-8
All-Groups-Conserved (A) 0.132 (211) 0.034 (669) 8.814e-47

Table 3.2: Enrichment of column amino acid patterns near ligands. Each row gives the fraction
of positions ≤ and > 5Å from ligands having the given pattern. The raw count of each pattern is
given in parenthesis. Conserved positions were removed prior to the enrichment analysis, and each
position is counted only for the most specific filter it passes. P -values were calculated from the
hypergeometric distribution. Positions passing the one-group-conserved and all-groups-conserved
filters are significantly enriched near ligands. Significant enrichment is shown in bold.

Based on this enrichment, we use the SDPO set—all columns within 5Å of a relevant ligand

passing at least the one-conserved-filter—as positives in the following analysis and method evaluation

and refer to positions in this set as “putative SDPs”.

The amino acid distribution of putative SDPs is more polar than the background.

Catalytic sites are known to have an amino acid distribution with more charged residues than the

background distribution [44]. The amino acid distribution of putative SDPs is also quite different

from the background distribution observed in the alignments (χ2 test P -value = 4e-4 using the

distribution in all positions as the expected distribution). Table 3.3 gives these distributions relative

to a partition of the amino acids into charged (H, R, K, E, D), non-charged polar (Q, T, S, N, C,

Y, W), and all others.

In contrast to catalytic sites, the percentage of charged residues in putative SDPs is similar

to the background. However, putative SDPs exhibit more non-charged polar residues than either
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Charged AA Non-charged Polar AA Other AA

All Positions 0.24 0.24 0.52
Catalytic Sites 0.66 0.25 0.09
Putative SDPs 0.24 0.31 0.45

Table 3.3: Comparison of amino acid distributions. Putative SDPs are more likely to be a non-
charged polar residue than a residue chosen at random. Catalytic sites do not exhibit this bias;
instead they are more charged.

catalytic sites or the background. This suggests that the sites that determine specificity are rarely

involved in catalytic processes such as proton exchange, and are more likely to take part in the weak

non-covalent bonds that often mediate the interactions between enzymes and small molecules.

Putative SDPs are most likely to be found in loop regions.

Table 3.4 shows that the secondary structure distribution of columns likely important for specificity

in the EC-Pfam data set is also quite different from the background distribution observed in the

alignments. Putative SDPs are significantly more likely to be found in loops, i.e., not in alpha

helices or beta sheets, than would be expected by chance (χ2 test P -value = 3.44e-12 using the

distribution in all positions as the expected distribution). Catalytic sites have a similar distribution.

This suggests that considering secondary structure predictions could help identify SDPs, but unlike

amino acid distribution, might not help distinguish between SDPs and catalytic sites.

Alpha Helix Beta Sheet Loop

All Positions 0.41 0.22 0.37
Catalytic Sites 0.28 0.22 0.50
Putative SDPs 0.27 0.21 0.52

Table 3.4: Comparison of secondary structure distributions. Putative SDPs are much more likely
to be in loop regions than would be expected by chance. Catalytic sites show a similar secondary
structure bias.

The relative solvent accessibility profile of putative SDPs is different from that of all

residues.

The distribution of observed relative solvent accessibilities is markedly different between putative

SDPs and all residues in the data set. Figure 3.1 provides a histogram of the relative solvent
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accessibilities. Compared to all residues, SDPs are less likely to be extremely buried (30% in the

0-5% RSA range compared to 36% for all positions) or extremely exposed (only 12% at RSA≥40%

compared to 23% for all). However, the percentage of SDPs with 5-40% RSA is significantly greater

for putative SDP than for all columns. The majority of putative SDPs have relatively low solvent

exposure. A similar pattern was observed for catalytic sites [44], and similar forces may explain this

somewhat counter-intuitive result. SDPs often require precise positioning and are likely found in

large clefts on the protein that are important for binding substrates.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Fr
ac

tio
n 

of
 C

ol
um

ns

Relative Solvent Accessiblity

Relative Solvent Accessibility Histogram

Putative SDPs
All Positions

Figure 3.1: Comparison of the relative solvent accessibility (RSA) of putative SDPs (SDPO) to all
positions. The RSA range is divided into 20 equal size bins, e.g., the first bin corresponds to RSA
between 0 and 5%. Each point represents the fraction of the columns with RSA falling in the bin.

Some amino acid physiochemical properties are less conserved between specificity

groups in putative SDPs than expected.

Since SDPs distinguish between possible ligands, they often exhibit conservation of certain amino

acid properties within specificity groups and difference—relative to those properties—between them.

To identify what properties may be used to distinguish ligands, we analyzed the amino acid changes

observed between specificity groups in putative SDPs.

42



Each row in Table 3.5 represents a partition of the amino acids that corresponds to a property

which nature could use to distinguish between ligands. If the property is relevant, we would expect

to see amino acid differences that are not conservative, relative to the property partition, between

groups in putative SDPs. For each partition, the fraction of all amino acid pairs across specificity

groups in putative SDPs that do not conserve the property is reported. The “All Positions” column

gives the percentage of non-conservative pairs relative to each property partition over all align-

ment positions and serves as the background reference point for each partition and the significance

calculation.

Different Between Groups
Amino Acid Partition Putative SDPs All Positions

Polarity 0.656 0.418
Size 0.642 0.450

Hydrophobicity 0.376 0.279
Charge 0.369 0.274

Table 3.5: Average fraction of non-conservative (relative to each partition) amino acid differences
between specificity groups by position type . Each row gives the fraction of all amino acid pairs
between specificity groups that differ under the given amino acid property partition. All properties
are significantly less conserved between specificity groups in putative SDPs than over all positions.

Polarity, size, hydrophobicity, and charge are all significantly less conserved between groups

in putative SDPs than in the background. The binomial P -values for the observed differences

are infinitesimal. The difference is largest for polarity and size. This suggests that these residue

properties may commonly be used to establish different specificity in similar proteins.

3.3.2 SDP Prediction Method Evaluation

In this section we evaluate a representative set of recent methods—relative entropy (RE), mutual

information (MI), SDPpred, Sequence Harmony (SH), and Xdet—against our simple method, Group-

Sim.

GroupSim performs competitively with existing methods.

The performance of each method is judged via two complementary techniques. Figure 3.2 gives

box plots for each method, and Figure 3.3 shows their PR curves. In general, PR analysis rewards

accuracy in the first few predictions whereas the average rank analysis rewards performance equally

across all positives. All results reported here are over SDPO, but our main conclusions are not
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sensitive to the filters used to select the positives. See the Supplementary Analysis for results on

SDPL and SDPA.
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Figure 3.2: Box plots for the SDP prediction methods on the putative SDPs in the EC-Pfam data
set ordered by average minimum. Each box shows the average over all alignments of the five-number
summary (the minimum, lower quartile, median, upper quartile, and maximum) for a method. Lower
averages indicate better performance. The simple GroupSim outperforms the previous methods in
this evaluation, and GroupSim+ConsWin improves on it.

The box plots shown in Figure 3.2 demonstrate that when considering the ranks of SDPs, Group-

Sim gives lower average minimum, median, quartiles, and maximum than existing methods. For

example, the average rank over all alignments of the first positive found is 3.8 for GroupSim and 9.7

for SH. Similarly, the low average maximum of GroupSim implies that, compared to other methods,

it gives fewer positives very poor scores. In PR analysis (Figure 3.3), GroupSim’s AUC (.368) is

competitive with MI (.377) and RE (.369), and markedly better than Xdet (.328) and SH (.243).

Only SDPpred has a much greater AUC (.400).

The results in these evaluations suggest that none of GroupSim, RE, MI and SDPpred clearly

performs best in predicting SDPs in all contexts, but that they perform better than Xdet and SH.

GroupSim gives the best performance in the average rank analysis while SDPpred achieves the highest

PR-AUC. Since the PR-AUC focuses on accuracy on the first few positives, this indicates that if a

few SDPs are sought SDPpred might be better, while if all are sought, GroupSim could be better.
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Figure 3.3: Precision-Recall curves for representative SDP prediction methods on the putative SDPs
from the EC-Pfam data set. The simple GroupSim is competitive with the other methods; SDPpred
is the only method that substantially outperforms it. GroupSim+ConsWin outperforms all methods.

The conservation window heuristic significantly improves method performance.

Figures 3.2 and 3.3 include the GroupSim+ConsWin method, which is our basic GroupSim method

along with a heuristic that incorporates the conservation of neighboring amino acids. This heuristic

provides significant improvement over GroupSim (P -value 4.2e-7 using Friedman test on PR-AUC)

and outperforms all other methods in terms of AUC (.428) and average ranks.

ConsWin can be applied to any SDP scoring scheme that produces scores for each column of an

alignment. In addition to GroupSim, ConsWin provides improvement over the raw version of other

methods evaluated. Figures 3.4 and 3.5 illustrate the boost provided by ConsWin to RE, Xdet,

and SH. Results are similar to those observed with GroupSim (Figures 3.2 and 3.3) for all methods

except SDPpred. The range of SDPpred scores for an alignment is often quite large and variable as

a result of a few outlier column scores. This requires setting the window λ parameter specially for

each alignment.

GroupSim+ConsWin was shown to outperform all current methods tested on the EC-Pfam data

set. When ConsWin is added to other current methods, SDPpred+ConsWin, MI+ConsWin and

RE+ConsWin become competitive with, but not better than, GroupSim+ConsWin.
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Figure 3.4: Box plots comparing Xdet, SH, and RE with and without the ConsWin heuristic on the
set of putative SDPs, SDPO. Each box shows the average over all alignments of the five-number
summary (the minimum, lower quartile, median, upper quartile, and maximum) for a method. Lower
averages indicate better performance. The ConsWin heuristic improves all methods.

ConsWin works well on our enzyme data set, because residues in enzyme active sites are signifi-

cantly more conserved than the background. Thus, the assumption that SDPs are near ligands may

boost the performance of ConsWin on our enzyme data set; however, this assumption is supported

in the literature, and is commonly made in small-scale SDP studies. Overall, we believe that the

heuristic will be useful in a variety of contexts, but that the conservation signal may not be as strong

for all types of interaction. We find that ConsWin improves predictions of GroupSim on five out of

eight non-enzyme families in the experimentally-determined data set of Chakrabarti et al. [64], and

10 out of 13 families overall (Table 3.6). See the next section for these results and more discussion.

Results on an experimentally-derived data set are similar to those on the EC-Pfam

data set.

An experimentally-derived data set of 13 alignments was recently described in Chakrabarti et al.

[64]. While we believe that the small size of their data set limits its utility in method evaluation, we

find that our overall conclusions are similar when this data set is used. Figures 3.6 and 3.7 provide

box plots and PR curves for the representative SDP prediction methods on the experimentally-
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Figure 3.5: Precision-Recall curves comparing Xdet, SH, and RE with and without the ConsWin
heuristic on the set of putative SDPs, SDPO. The ConsWin heuristic improves the performance of
all methods tested.

dervided SDP data set. Table 3.6 provides more detail on the composition of this data set and the

performance of the ConsWin heuristic.

In general, the difference between methods is less pronounced than in our results, but the main

trends are similar. GroupSim provides competitive performance with all methods tested, and Group-

Sim+ConsWin provides improvement over GroupSim in 10 of the 13 alignments (Table 1). However,

it is difficult to say that one method is superior to the others on this data set.

As noted earlier, our analysis of SDP amino acid column patterns is in agreement with the

column pattern distribution of the experimentally-determined SDPs.

The protein composition of the experimental data set (Table 3.6) is somewhat different from our

large data set of enzymes. The experimental data set contains only five enzymes, and four of the

alignments contain more than two specificity groups. These differences in composition explain some

of the variance in method performance relative to the EC-Pfam data set.

For example, the most notable contrast is the poor performance of MI relative to RE and SDP-

pred. MI’s change in performance is entirely the result of very poor performance on alignments

with more than two specificity groups. However, we find that MI plus the shuffling normalization is
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Figure 3.6: Box plots for representative SDP prediction methods and two versions of GroupSim
on the experimentally-derived data set of [64]. Each box shows the average over all alignments of
the five-number summary (the minimum, lower quartile, median, upper quartile, and maximum)
for a method. Lower averages indicate better performance. The simple GroupSim outperforms the
previous methods, and GroupSim+ConsWin slightly improves on it.

competitive with SDPpred, further suggesting the importance of shuffling to the SDPpred method.

We were unable to evaluate Sequence Harmony on this data set because it cannot handle align-

ments with more than two groups.

Our data set provides a platform for better understanding prediction methods.

We now give three examples of how our data set can be used to analyze performance tradeoffs

between aspects of SDP prediction methods. First, our evaluation reveals that SDPpred performs

better than MI in the PR evaluation. This is interesting, because the only difference between the two

is the column shuffling significance procedure applied by SDPpred to adjust the MI score. We find

that shuffling provides similar PR-AUC improvement for RE and GroupSim, but does not improve

the average ranks (see Supplementary Analysis for data supporting this result and others discussed

in this paragraph). Second, it is surprising how sensitive MI and RE are to the magnitude of the

pseudocount used; for example, a pseudocount of 1e-6 results in a PR-AUC of .259 for MI compared

to .377 obtained using 1. Third, we observe that GroupSim’s performance is stable with respect
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Figure 3.7: Precision-Recall curves for representative SDP prediction methods and two versions of
GroupSim on the experimentally-derived data set of [64]. The simple GroupSim is competitive with
the existing method. GroupSim+ConsWin provides improvement for 10 of the 13 alignments.

to subgroup sequence diversity; it performs slightly better than SDPpred on alignments with very

diverse subgroups (data not shown). These observations illustrate the utility of our data set in

evaluating design decisions made in SDP prediction methods.

3.4 Discussion and Conclusion

The lack of experimentally identified SDPs with supporting MSAs has impaired the development and

evaluation of computational methods for predicting SDPs. We address this problem by automating

an approach that researchers often carry out by hand to identify putative SDPs in the absence of

mutation studies. The generated data set contains several hundred alignments of enzymes with

putative SDPs identified, and has enabled us to characterize properties of SDPs and evaluate the

performance of MSA-based SDP prediction methods. Our main findings on this data set hold as

well on the diverse set of 13 families with experimentally-determined SDPs of Chakrabarti et al.

[64]. Our large data set allows us to better compare methods, and the consistency of our results on

the smaller data set lends support to our methodology.
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Family Enzyme # Specificity Groups GroupSim+ConsWin GroupSim Difference

Gprotein 11 0.737 0.698 0.038
cd00333 2 0.533 0.517 0.016

cbm9 Y 2 0.175 0.163 0.012
cd00365 Y 2 0.143 0.132 0.011

GST Y 11 0.737 0.727 0.010
ricin 3 0.219 0.211 0.008

cd00423 Y 2 0.475 0.470 0.005
cd00985 2 0.724 0.720 0.004
cd00363 Y 2 0.020 0.019 0.001
cd00264 2 0.107 0.106 0.001
cd00120 2 0.192 0.197 -0.005
CNmyc 2 0.060 0.066 -0.006

LacI 15 0.625 0.654 -0.029

Table 3.6: Summary of GroupSim’s performance on an experimentally-derived data set
of Chakrabarti et al. [64]. The last three columns compare the PR-AUC performance of Group-
Sim and GroupSim+ConsWin. ConsWin provides improvement for 10 out of 13 families overall and
5 out of 8 non-enzyme families.

In our analysis, we find that putative SDPs are quite different from average protein residues in

terms of amino acid distribution, secondary structure, and solvent accessibility. Our data suggest

that SDPs are often found in environments similar to catalytic sites, but that SDPs’ amino acid dis-

tributions contain many fewer charged residues and more non-charged polar residues. This suggests

that, in enzymes, SDPs are more likely to be involved in the recognition and binding of the substrate

than in the catalytic mechanism. We also find evidence that amino acid polarity, hydrophobicity,

size, and charge are used to distinguish between similar ligands.

Analysis of our data set suggests that columns in which at least one specificity group is conserved

and different from the others are significantly over-represented in regions likely to contain SDPs.

This does not imply that columns with other amino acid patterns are never important for specificity,

but merely that such patterns more often occur in regions that are unlikely to directly influence

interactions with the ligand.

The comprehensive data set and evaluation presented here provide a foundation upon which

further progress in predicting SDPs can be built. Improved identification of SDPs will aid protein

engineering, pathway analysis, and function prediction. The recent work of George et al. [79] using

known catalytic sites to transfer annotations could likely be extended to include SDPs to attain

even more specific function predictions. However, the observation that most current SDP prediction

methods perform similarly to a simple method, GroupSim, suggests that there is much room for

improvement. This improvement may come from integrating knowledge about properties of SDPs
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into the development of sequence-based methods; for example, here we show that by exploiting

the conservation signal from neighboring amino acids, GroupSim+ConsWin outperforms all earlier

methods tested on our data set of enzyme SDPs. The new SPEER method [64] provides another

step in this direction, and the recent work by Fischer et al. [80] on predicting functional residues

may provide a framework for integration. Ultimately, improved understanding of the properties and

mechanisms of SDPs, via experimental work as well as large-scale analysis and evaluation like we

present here, should lead to improved SDP prediction.

3.5 Supplementary Analysis

Results on SDPL and SDPA are similar to those on SDPO.

Section 3.1.1 of the main text provides significant evidence that the definition of putative SDPs

as the set SDPO is reasonable. This set includes all columns within 5Å of ligands relevant to the

enzyme’s catalytic reaction that contain at least one specificity group with a conserved amino acid

distribution that is significantly different from that of the other specificity groups in the column. In

the main text, all methods are evaluated on this set of positives.

However, it is possible to perform evaluations of the SDP prediction methods using different sets

of columns as the positives. Our other column filters (see Table 1 in the main text) provide several

alternatives. The SDPL set provides a less strict definition of positive that includes any columns

near ligands in which the specificity group amino acid distributions do not have significant overlap.

Figures 3.8 and 3.9 show the box plots and PR-curves for this positive set.

Similarly, we can evaluate on the stricter set of positions provided by the SDPA set. All these

columns are within 5Å of a relevant ligand and each specificity group’s amino acid distribution is

conserved and different from the others. Figures 3.10 and 3.11 show the box plots and PR-curves

for this positive set.

Our general conclusions from the main text—that GroupSim is competitive with current meth-

ods and that GroupSim+ConsWin is the best performing method—hold on both these alternative

positive sets. Comparing the results across sets demonstrates that in general method performance

improves as the positive set becomes stricter; they do best on SDPA and worst on SDPL.

One exception to this is the Sequence Harmony (SH) method. Its performance relative to other

methods on SDPA and itself on other positive sets is far worse on this strict set. This is in part

because SH does not explicitly reward conservation within specificity groups and all columns in this
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Figure 3.8: Box plots for the SDP prediction methods on SDPL ordered by average minimum. Each
box shows the average over all alignments of the five-number summary (the minimum, lower quartile,
median, upper quartile, and maximum) for a method. Lower averages indicate better performance.
The simple GroupSim performs similarly to previous methods, and GroupSim+ConsWin improves
on it.

positive set are required to have this property. However, SH’s handling of gaps, overlap between

columns, and tie scores also harm its performance (data not shown).
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Figure 3.9: Precision-Recall curves for representative SDP prediction methods and two versions of
GroupSim on SDPL. The simple GroupSim is competitive with the other methods; SDPpred is the
only method that significantly outperforms it. GroupSim+ConsWin outperforms all methods.
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Figure 3.10: Box plots for the SDP prediction methods on SDPA. Each box shows the average over
all alignments of the five-number summary (the minimum, lower quartile, median, upper quartile,
and maximum) for a method. Lower averages indicate better performance. The simple GroupSim
performs similarly to previous methods, and GroupSim+ConsWin provides the best results.
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Figure 3.11: Precision-Recall curves for representative SDP prediction methods and two versions
of GroupSim on SDPA. The simple GroupSim is competitive with the other methods; SDPpred is
the only method that significantly outperforms it. GroupSim+ConsWin significantly outperforms
all methods.
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MI and RE are sensitive to pseudocount used.

Mutual information (MI) and relative entropy (RE) both require the estimation of an amino acid

probability distribution from a multiple sequence alignment column. A small, uniform pseudocount

is commonly added to the observed counts in this distribution estimation step. We have found that

the choice of pseudocount is important to the performance of MI and RE. Figures 3.12 and 3.13

show box plots for MI and RE across a range of pseudocount values.
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Figure 3.12: Mutual information’s performance on the set of putative SDPs (SDPO) is sensitive to
the pseudocount used. The number following “MI” gives the magnitude of the uniform pseudocount.
A pseudocount of one gives the best performance.

There is a clear trend that favors larger pseudocounts all the way up to a pseudocount of one for

this application. We also implemented more complex schemes for computing non-uniform pseu-

docounts [32], but found that the magnitude dominated the effect on performance. We use a

pseudocount of one for both methods in all other analysis presented here and in the main text.

This dependence on pseudocount magnitude is likely due to the sparsity of the distributions being

compared in this context.
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Figure 3.13: Relative entropy’s performance on the set of putative SDPs (SDPO) is sensitive to the
pseudocount used. The number following “RE” gives the magnitude of the uniform pseudocount. A
pseudocount of one gives the best performance.
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Use of Similarity Matrices with Xdet and GroupSim hurts performance.

Several methods for predicting SDPs from multiple sequence alignments (MSAs), allow the incor-

poration of the relationships between amino acids through the use of a similarity matrix. In our

evaluation, we considered two such methods, Xdet [62] and our own GroupSim. Figures 3.14, 3.15,

3.16, and 3.17 provide box plots and PR-curves for Xdet and GroupSim with a range of similarity

matrices.
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Figure 3.14: Box plots for Xdet using the default McLachlan matrix [81] and using the identity
matrix on the putative SDPs (SDPO). Each box shows the average over all alignments of the
five-number summary (the minimum, lower quartile, median, upper quartile, and maximum) for a
method. Lower averages indicate better performance. Surprisingly Xdet with the identity matrix
outperforms the use of a similarity matrix.

Both methods obtain the best performance when the identity matrix is used. The identity matrix

is used with both methods in all other results presented here and in the main text. This surprising

result is similar to an observation we made previously when evaluating methods for estimating amino

acid conservation [5].

It seems that the matrix weights dominate the more relevant conservation and difference signals.

We are currently investigating techniques for directly incorporating notions of amino acid similarity

into SDP prediction methods.
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Figure 3.15: Precision-Recall curves for Xdet [62] using the default matrix, McLachlan, and using
the identity matrix on the putative SDPs (SDPO). Xdet with the identity matrix is superior in PR
analysis as well.
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Figure 3.16: Box plots for GroupSim using a range of BLOSUM [41] matrices and the identity matrix
on the putative SDPs (SDPO). Each box shows the average over all alignments of the five-number
summary (the minimum, lower quartile, median, upper quartile, and maximum) for a method. Lower
averages indicate better performance. Surprisingly GroupSim with the identity matrix outperforms
the direct use of a similarity matrices.
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Figure 3.17: Precision-Recall curves for GroupSim using a range of BLOSUM [41] matrices and the
identity matrix on the putative SDPs (SDPO). GroupSim with the identity matrix is superior in
this PR analysis as well.
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Column Shuffling provides some improvement to methods.

SDPpred [17] incorporates a shuffling procedure into its mutual information (MI) based score. As

we noted in the main text, this shuffling appears to provide a performance boost over MI in the

Precision-Recall evaluation, but not in the box plot evaluation. Figures 3.18 and 3.19 give box

plots and PR-curves for several methods with and without a column shuffling normalization. The

results are similar for RE and GroupSim. The PR curves show consistent improvement, but the box

plots show that the improvement is not consistent across the range of rank statistics. This provides

evidence that shuffling may improve some predictions, but overall all predictions do not become

more accurate. These results are based on 1000 iterations of the shuffling procedure of Kalinina

et al. [17] without their linear transformation.
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Figure 3.18: Box plots comparing GroupSim, RE, and MI with and without a column shuffling
normalization on the set of putative SDPs, SDPO. Each box shows the average over all alignments
of the five-number summary (the minimum, lower quartile, median, upper quartile, and maximum)
for a method. Lower averages indicate better performance. Shuffling provides some improvement,
but it is not consistent across statistics.
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Chapter 4

Predicting Protein Ligand Binding

Sites by Combining Evolutionary

Sequence Conservation and 3D

Structure

4.1 Introduction

Proteins’ functions are determined to a large degree by their interactions with other molecules.

Identifying which residues participate in these interactions is an important component of functionally

characterizing a protein. Current experimental efforts to identify functional sites and determine

protein function cannot keep pace with the rapid rate at which known sequences and structures

are being deduced. To date, there are nearly 1000 sequenced genomes with several thousand more

in progress [1, 2], and over 50,000 3D structures in the Protein Data Bank [3, 4]. As a result,

computational methods play an increasingly important role in characterizing protein function. Many

approaches, based on analysis of protein sequences or structures, have been developed to predict a

variety of protein functional sites, including ligand binding sites [5, 82, 83], DNA-binding sites [84],

catalytic sites [5, 85], protein-protein interaction interfaces (PPIs) [86, 87] and specificity determining

positions [6, 17, 88].

In this chapter, we focus on the task of predicting small molecule binding sites from protein

64



sequences and structures. In addition to aiding in the functional characterization of proteins, knowl-

edge of these binding sites can guide the design of inhibitors and antagonists and provide a scaffold

for targeted mutations. Over the past 15 years, a large number of methods for predicting ligand

binding sites have been developed. Structural approaches have used geometric and energetic criteria

to find concave regions on the protein surface that likely bind ligands [82, 89–97]. Sequence-based

approaches, on the other hand, have largely exploited sequence conservation, or the tendency of

functionally or structurally important sites to accept fewer mutations relative to the rest of the

protein [30].

Here, we introduce ConCavity, a new approach for predicting 3D ligand binding pockets and

individual ligand binding residues. The ConCavity algorithm directly integrates evolutionary se-

quence conservation estimates with structure-based surface pocket prediction in a modular three

step pipeline. In the first step, values are assigned to a regular grid of points surrounding the pro-

tein surface. These grid scores are a combination of the output of a structure-based pocket finding

algorithm and the sequence conservation of nearby residues in a multiple sequence alignment of ho-

mologs. We perform this integration for three different pocket identification algorithms: Ligsite [92],

Surfnet [90], and PocketFinder [98]. Next, we extract coherent pockets from the grid using 3D shape

analysis algorithms to ensure that the predicted pockets have biologically reasonable shapes and

volumes. In the final step, we map from the predicted pockets to nearby residues by assigning high

scores to residues near high scoring pocket grid points. The ConCavity algorithm yields predictions

of regions in space that are likely to contain ligand atoms and of protein residues likely to contact

bound ligands.

We evaluate ConCavity and a representative set of methods that consider evolutionary conserva-

tion [5] or structural attributes [82, 90, 95, 98, 99] on the diverse, non-redundant LigASite database

of biologically relevant binding sites [100]. As in previous evaluations, we test the ability of methods

to predict pockets, as represented by regions in space or protein surface residues, that contact bound

ligands. However, we designed our methods to make more specific predictions, e.g., which residues

in a pocket bind the ligand and which spatial regions of a pocket are most likely to contain ligand

atoms. We also evaluate the methods’ performance on these more difficult tasks.

Though previous methods have used sequence or structural data in predicting ligand binding

sites, the two approaches have rarely been directly compared and evaluated, and even the basic

question of whether sequence or structure is more informative for a given prediction task has not

been adequately considered. We find that the structural approaches outperform conservation, and

ConCavity, which combines conservation and structure, provides significant improvement over both
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types of existing algorithms in ligand binding pocket and residue predictions. ConCavity achieves

maximum precision of greater than 76% when predicting ligand binding residues, while previous

methods never obtain precision greater than 67%. These results suggest that there is significant

added benefit to considering structural information when it is available. We also show that several

methodological improvements in pocket extraction and residue mapping give our implementations

of existing methods a significant gain in performance over the previous versions.

Finally, we perform a detailed analysis of our predictions that reveals much about the relationship

between sequence conservation, structure, and function. Consistent with earlier findings, there is a

drop in the performance of all methods that consider structure when predicting on apo (unbound)

structures as compared to holo (bound) structures. Nevertheless, ConCavity still performs very

well, and the ranking of methods does not change. ConCavity is also found to provide significant

improvement over previous methods in the context of predicting drug binding sites. Since ligand

binding sites are not the only type of functional site of interest, we also evaluate the methods on the

prediction of catalytic sites. As with ligand binding site prediction, ConCavity performs the best of

all methods. However, sequence conservation outperforms the tested structure-based methods in this

context, and overall the methods have much more difficulty identifying catalytic sites than ligand

binding sites. The contrasting performance of structure and sequence methods in these scenarios

emphasizes the need to consider the context as well as the type of functional site sought when

developing and applying these approaches.

Overall, sequence conservation and structure-based attributes provide complementary informa-

tion about functional importance. For example, ligand binding site prediction methods based on

structural information alone are often unable to distinguish binding pockets from non-binding inter-

chain cavities. However, the residues in ligand binding sites usually exhibit greater evolutionary

conservation than those comprising the non-binding cavities. ConCavity takes advantage of such

complementarity to improve on previous approaches.

Related Work

Sequence-based functional site prediction has been dominated by the search for residue positions

that show evidence of evolutionary constraint. Amino acid conservation in the columns of a multiple

sequence alignment of homologs is the most common source of such estimates (see [30] for a review).

Recent approaches that compare alignment column amino acid distributions to a background amino

acid distribution outperform many existing conservation measures [5, 31]. However, the success

of conservation-based prediction varies based on the type of functional residue sought; sequence
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conservation has been shown to be strongly correlated with ligand binding and catalytic sites, but

less so with residues in protein-protein interfaces (PPIs) [5]. A variety of techniques have been used to

incorporate phylogenetic information into sequence-based functional site prediction, e.g., traversing

phylogenetic trees [60, 101], statistical rate inference [36], analysis of functional subfamilies [6, 88],

and phylogenetic motifs [102]. Recently, evolutionary conservation has been combined with other

properties predicted from sequence, e.g. secondary structure and relative solvent accessibility, to

identify functional sites [80].

Structure-based methods for functional site prediction seek to identify protein surface regions fa-

vorable for interactions. Ligand binding pockets and residues have been a major focus of these

methods [82, 89–97]. Ligsite [92] and Surfnet [90] identify pockets by seeking points near the

protein surface that are surrounded in most directions by the protein. CASTp [93, 95] applies

alpha shape theory from computational geometry to detect and measure cavities. In contrast to

these geometric approaches, other methods use models of energetics to identify potential binding

sites [25, 98, 99, 103]. Recent algorithms have focused on van der Waals energetics to create grid

potential maps around the surface of the protein. PocketFinder [98] uses an aliphatic carbon as the

probe, and Q-SiteFinder [99] uses a methyl group. Our work builds upon geometry and energetics

based approaches to ligand binding pocket prediction, but it should be noted that there are other

structure-based approaches that do no fit in these categories (e.g., Theoretical Microscopic Titration

Curves (THEMATICS) [104], binding site similarity [105], phage display libraries [106], and residue

interaction graphs [107]). In contrast to sequence-based predictions, some structure-based methods

are able to make predictions both at the level of residues and regions in space that are likely to

contain ligands.

Several previous binding site prediction algorithms have considered both sequence and structure.

ConSurf [19] provides a visualization of sequence conservation values on the surface of a protein

structure, but it does not make explicit binding site predictions. Spatially clustered residues with

high Evolutionary Trace values were found to overlap with functional sites [108], and Panchenko

et al. [18] found that averaging sequence conservation across spatially clustered positions provides

improvement in functional site identification in certain settings. Several groups have attempted to

identify and separate structural and functional constraints on residues [109, 110]. Wang et al. [111]

perform logistic regression on three sequence-based properties and an estimate of the effect on struc-

tural stability of mutations at each position to find functional sites. Though these approaches make

use of protein structures, they do not explicitly consider the surface geometry of the protein in pre-

diction. Geometric, chemical, and evolutionary criteria have been used together to define motifs that
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represent known binding sites for use in protein function prediction [112]. Machine learning algo-

rithms have been applied to features based on sequence and structure [113, 114] to predict catalytic

sites [26, 29, 85, 115] and recently to predict drug targets [116] and a limited set of ligand and ion

binding sites [117–119]. Sequence conservation has been found to be a dominant predictor in these

contexts. Two recent approaches to ligand binding site identification have used evolutionary con-

servation in a post-processing step to rerank [82] or refine [120] geometry based pocket predictions.

In contrast, ConCavity integrates conservation directly into the search for pockets. This allows it

to identify pockets that are not found when considering structure alone, and enables straightfor-

ward analysis of the relationship between sequence conservation, structural patterns, and functional

importance.

4.2 Results

In this section, we compare the ability of ConCavity, which combines evolutionary sequence con-

servation with structure-based pocket prediction, and a representative set of previous methods to

identify ligand binding sites.

For simplicity, we use Ligsite+, our implementation (as indicated by superscript “+”) of a pop-

ular geometry based surface pocket identification algorithm, as representative of the performance

of structure-based methods, and refer to it as “Structure”. (We demonstrate in the Methods sec-

tion that Ligsite+ provides a fair representation of these methods.) The Jensen-Shannon divergence

(JSD) has recently been shown to provide state-of-the-art functional site identification performance

among sequence conservation estimation algorithms [5]. We use JSD to represent these approaches

and refer to it as “Conservation”. We have developed three versions of ConCavity that integrate evo-

lutionary conservation into different surface pocket prediction algorithms (Ligsite [92], Surfnet [90],

or PocketFinder [98]). When the underlying algorithm is relevant, we refer to these versions as

ConCavityL, ConCavityS , and ConCavityP . However, for simplicity, we will use ConCavityL as

representative of these approaches and call it “ConCavity”.

ConCavity and Struture produce predictions of ligand binding pockets and residues. The pocket

predictions are given as non-zero values on a regular 3D grid that surrounds the protein; the score

associated with each grid point represents an estimated likelihood that it overlaps a bound ligand

atom. Similarly, each residue in the protein sequence is assigned a score that represents its likelihood

of contacting a bound ligand. Conservation only makes residue-level predictions, because it does

not consider protein structure. All methods are evaluated on the 331 proteins of the non-redundant

68



LigASite 4.0 dataset. When evaluating pocket predictions, the ligands found in the holo version of

the dataset are considered positives; when evaluating residue predictions, the residues annotated as

ligand binding in the apo version of the dataset are used.

We now present our main findings.

Integrating evolutionary sequence conservation and structure-based pocket finding in

ligand-binding site prediction improves on either approach alone.

We quantify the overall performance of each method’s predictions in two ways. For both pocket

and residue prediction, we generate Precision-Recall (PR) curves that reflect the ability of each

method’s grid and residue scores to identify ligand atoms and ligand binding residues, respectively.

(Just as residues are assigned a range of ligand binding scores, grid points in predicted pockets get a

range scores, since there may be more evidence that a ligand is bound in one part of a pocket than

another.) These curves are given in Figure 4.1. In addition, for predicted pockets (non-zero values

in the 3D grid), it is natural to consider how well they overlap known ligands. However, we also

must consider the size of the predicted pockets, because it is easy to cover more of the ligand by

predicting larger pockets. The Jaccard coefficient captures this tradeoff between precision and recall

by taking the ratio of the intersection of the predicted pocket and ligand volumes over their union.

It ranges between zero and one, and high values imply that the predictions cover the ligands well

and have volumes similar to the ligand volumes. Pocket and ligand volumes, Jaccard coefficients,

and related statistics are presented in Table 4.1.

Fraction with Prediction Ligand Prediction ∩ Prediction ∪ Jaccard
Method Ligand Overlap Vol. (Å3) Vol. (Å3) Ligand (Å3) Ligand (Å3) coefficient

Structure 0.92 1167.3 1164.5 333.6 2080.5 0.179
Concavity 0.95 1185.8 1164.5 425.3 1993.8 0.255

Table 4.1: Comparison of the overlap between pockets predicted by each method and bound ligands
in holo protein structures from the LigASite database. The first column gives the fraction of proteins
for which a method’s predictions overlap a ligand. The second column (Prediction Vol.) lists the
median volume of the predicted pockets for each protein, while the third column (Ligand Vol.) lists
the median volume of ligands observed in the PQS file. The next columns give the median volumes
of the Intersection and Union of the predictions and ligands and the Jaccard coefficient (Intersection
/ Union). ConCavity and Structure predict pockets of similar sizes—both use a similar pocket
threshold—but ConCavity’s predictions overlap more of the bound ligands. The higher Jaccard
coefficient for ConCavity implies that it better manages the tradeoff between precision and recall.

The PR curves presented in Figure 4.1 provide support for our ConCavity approach of predicting

binding sites by considering structural attributes weighted by sequence conservation. The curves in
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Figure 4.1: Ligand Binding Site Prediction Performance. (a) PR curves for prediction of the spatial
location of biologically relevant bound ligands. (b) PR curves for ligand binding residue prediction.
Our ConCavity algorithm, which combines sequence conservation with structure-based predictors,
significantly outperforms other methods at both tasks. The approach based on structural information
alone outperforms considering sequence conservation alone. Comparing the two panes, we see that
accurately predicting the location of all ligand atoms is harder for the methods than finding all the
contacting residues. Conservation does not make predictions of this type, so could not be included
in (a). The curves are based on binding sites in the 331 proteins of the non-redundant LigASite 4.0
dataset.

Figure 4.1a show that, within predicted pockets, grid points with higher scores are more likely to

overlap the ligand, and that the improvement of ConCavity over Structure exists across the range

of score thresholds. Figure 4.1b demonstrates that the superior performance of ConCavity holds

when predicting ligand binding residues as well as ligand binding pockets. ConCavity’s ability to

identify ligand binding residues is striking; across this diverse dataset, the first residue prediction

of ConCavity will be in contact with a ligand in nearly 80% of proteins. ConCavity also maintains

high precision across the full recall range: precision of 65% at 50% recall and better than 30% when

all ligand-binding residues have been identified. As mentioned above, this large improvement exists

when predicting ligand locations as well; however, the PR curves illustrate that fully identifying a

ligand’s position is more difficult for each of the methods than finding contacting residues.

The ligand overlap statistics presented in Table 4.1 also demonstrate the superior performance

of ConCavity. In nearly 95% of structures, ConCavity’s predictions overlap with a bound ligand.

Structure’s predictions overlap ligands in nearly 92% of the proteins considered. The differences

between the methods become even more stark when we examine the magnitude of these overlaps.

Both ConCavity and Structure predict pockets with total volume (Prediction Vol.) similar to that
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of all relevant ligands (Ligand Vol.), but ConCavity’s pockets overlap a significantly larger fraction

of the ligand volume. Thus ConCavity has a higher Jaccard coefficient. This suggests that the

integration of sequence conservation with structural pocket identification results in more accurate

pockets than when using structural features alone.

Figure 4.1b also provides one of the first direct comparisons of ligand binding site prediction meth-

ods based on sequence conservation with those based on structural features. Structure outperforms

Conservation, a state-of-the-art method for estimating sequence conservation. Protein residues can

be evolutionarily conserved for a number of reasons, so it is not surprising that Conservation identi-

fies many non-ligand-binding residues, and thus, does not perform as well as Structure. Considering

the conservation of sequentially adjacent residues provides some improvement to Conservation, but

beyond the very low recall region, it is not competitive with Structure (data not shown).

ConCavity’s improvement comes from integrating complementary information from

evolutionary sequence conservation and structure-based pocket identification.

Figure 4.2 presents pocket and residue predictions of Conservation, Structure, and ConCavity

on three example proteins. In general, different types of positions are predicted by Conservation

and Structure—only about 25% of their top predicted residues overlap (e.g. Figure 4.2b), where the

number of residues considered for each structure is the number of known ligand binding residues.

The residues predicted by sequence conservation are spread throughout the protein; ligand-binding

residues are often very conserved, but many other positions are highly conserved as well due to

other functional constraints. In contrast, the structure-based predictions are strongly clustered

around surface pockets, and many of these residues near pockets are not evolutionarily conserved.

However, these features provide largely complementary information about importance for ligand

binding. Nearly 70% of residues predicted by both Conservation and Structure are in contact with

ligands, while only 16% and 43% of those predicted using only conservation or structure respectively

are ligand binding. ConCavity takes advantage of this complementarity to achieve its dramatic

improvement; it gives high scores to positions that show evidence of both being in a well-formed

pocket and being evolutionarily conserved.

The examples of Figure 4.2 illustrate this and highlight several common patterns in ConCavity’s

improved predictions. For 1FK4, a small lipid transfer protein (Figure 4.2a), Structure’s residue

predictions center on the main ligand binding pocket, while Conservation gives high scores to some

positions in the binding site, but also some unrelated residues. Looking at the ligand location pre-

dictions, Structure and ConCavity both find the pocket, but the signal from conservation enables
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1G6C
   Homo-tetramer

   Thiamin Phosphate 
   Synthase

1FK4
   Momomer

   Lipid Transfer Protein

2CWH
   Homo-dimer

   Delta-1-piperideine-
   2-carboxylate reductase

(a)

(b)

(c)

Conservation Structure ConCavity

Figure 4.2: Example binding pocket and residue predictions of Conservation, Structure, and their
combination in ConCavity. The top row in each pane gives isosurfaces that represent the pocket
predictions of each algorithm. Ligand atoms are shown as green balls. Sequence conservation-based
methods make only residue-level predictions and thus are not included in the pocket illustration.
The bottom row of structures in each pane shows the residue predictions of each method; the highest
scoring residues are colored dark red, and the lowest scoring are colored dark blue. ConCavity only
gives high scores to regions containing ligands and accurately traces their shape.
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ConCavity to more accurately trace the ligand’s location. This illustrates how the pattern of func-

tional conservation observed at the protein surface influences the shape of the predicted pocket.

Ligands often do not completely fill surface pockets; if the contacting residues are conserved, our

approach can suggest a more accurate shape.

The results for 2CWH (Figure 4.2b) and 1G6C (Figure 4.2c) demonstrate that ConCavity can

predict dramatically different sets of pockets than are obtained when considering structure alone.

In 2CWH, both methods identify the ligands, but Structure predicts an additional pocket that

does not have a ligand bound. ConCavity does not predict this other pocket. Structure performs

quite poorly on the tetramer 1G6C: it predicts several pockets that do not bind ligands; it fails to

completely identify several ligands; and it misses one ligand entirely. In stark contrast, ConCavity’s

four predicted pockets each accurately trace a ligand. The incorporation of conservation resulted in

the accurate prediction of a pocket in a region where no pocket was predicted using structure alone.

ConCavity significantly outperforms available prediction servers.

We now compare the performance of ConCavity to several existing ligand binding site identifica-

tion methods with publicly available web servers: LigsiteCS [82]1, LigsiteCSC+ [82], QSiteFinder [99]2,

and CASTp3 [95]. LigsiteCS and LigsiteCSC are updated versions of geometry-based Ligsite;

LigsiteCSC+ is our implementation of LigsiteCSC using JSD as its conservation scoring method.

Q-SiteFinder estimates van der Waals interactions between the protein and a probe in a fashion

similar to PocketFinder. CASTp is a geometry-based algorithm for finding pockets based on analy-

sis of the protein’s alpha shape. Each of these servers produces a list of predicted pockets represented

by sets of residues; however, none of them provide a full representation of a predicted pocket. As

a result, we compare their ability to predict ligand binding residues. See the Methods section for

more information on the generation and processing of the servers’ predictions.

Figure 4.3 presents the ligand binding residue PR-curves for each of these methods. ConCavity

significantly outperforms LigsiteCS, LigsiteCSC+, Q-SiteFinder, and CASTp. Several of the servers

did not produce predictions for a small subset of the proteins in the database, e.g., the Q-SiteFinder

server does not accept proteins with more than 10,000 atoms. Figure 4.3 is based on the 293 proteins

for which all methods produced predictions. Thus the curve for ConCavity is slightly different than

those found in the other figures, but its performance does not change significantly. LigsiteCSC+

is the previous method most similar to ConCavity; it uses sequence conservation to rerank the

pockets predicted by LigsiteCS. LigsiteCSC+ provides slight improvement over LigsiteCS, but the
1http://gopubmed2.biotec.tu-dresden.de/pocket/
2http://www.modelling.leeds.ac.uk/qsitefinder/
3http://sts-fw.bioengr.uic.edu/castp/
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improvement is dwarfed by that of ConCavity over Structure (Figure 4.1). This illustrates the

benefit of incorporating conservation information directly into the search for pockets in contrast to

using conservation information to post-process predicted pockets.
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Figure 4.3: Comparison of ConCavity with publicly available ligand binding site prediction servers.
ConCavity significantly outperforms each previous method at the prediction of ligand binding
residues. In contrast to these methods, ConCavity assigns residues in the same pocket different
likelihoods of binding ligands. This ability and the direct integration of sequence conservation are
the major sources of ConCavity’s improvement. This figure is based on the 293 proteins in the
LigASite apo dataset for which all methods were able to produce predictions.

The poor performance of these previous methods at identifying ligand binding residues is due in

part to the fact that each of them gives all residues near a predicted binding pocket the same score.

The entire pocket is a useful starting place for analysis, but knowledge of the specific ligand binding

residues is of most interest to researchers. Many residues in a binding pocket will not actually contact

the ligand. The predictions of our methods reflect this—residues within the same pocket can receive

different ligand binding scores. The inability of previous methods to distinguish residues in a pocket

is one reason why we elect to use our implementation of Ligsite (aka Structure) as representative of

the performance of structure-based methods; see the methods section for more details.

ConCavity performs similarly for geometry and energetics based grid creation methods.

In the previous sections, we used ConCavityL, which integrates evolutionary sequence conserva-
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tion and Ligsite+, to represent the performance of the ConCavity approach. However, our strategy

for combining sequence conservation with structural predictions is very general; it can be used with

a variety of grid-based surface pocket identification algorithms.

Figure 4.4 gives PR-curves that demonstrate that ConCavity provides excellent performance

whether the structural approaches are based on geometric properties (Ligiste+, Surfnet+) or en-

ergetics (PocketFinder+). This holds for predicting both ligand locations in space (Figure 4.4a)

and ligand binding residues (Figure 4.4b). The three ConCavity versions each outperform all struc-

ture only methods, and all perform similarly despite the variation in performance between Ligiste+,

Surfnet+, and Pocketfinder+. In the following sections we will include results for all three methods

when space and clarity allow.
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Figure 4.4: Ligand binding pocket (a) and residue (b) prediction performance of different versions
of ConCavity on the LigASite database. The three versions of ConCavity (solid lines)—each based
on integrating sequence conservation with a different grid creation strategy (Ligsite+, Surfnet+, and
PocketFinder+)—perform similarly. All significantly outperform the methods based on structure
analysis alone (dashed lines). These conclusions hold for both ligand binding pocket (a) and ligand
binding residue (b) prediction.

Structure-based methods have difficulty with multi-chain proteins.

Proteins consisting of multiple subunits generally have more pockets than single-chain proteins

due to the gaps that often form between chains. To investigate the effect of structural complexity

on performance, we partitioned the dataset according to the number of chains present in the PQS

quaternary structure and performed our previous evaluations on the partitioned sets. Figure 4.5 gives

these statistics for ConCavity, Structure, and Conservation; to enable side-by-side comparison, we
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report the area under the PR curves (PR-AUC) rather than giving the full curves.
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Figure 4.5: Ligand-binding site identification performance by number of chains in structure. (a) gives
the average area under the precision-recall curve (PR-AUC) for predicting ligand binding residues
on each set of structures; (b) gives the average PR-AUC for ligand binding pocket identification;
and (c) gives the average Jaccard coefficient of the overlap of the predicted pockets with bound
ligands. (See Table 4.1 and Figure 4.1 for more details on these statistics.) Methods based on
structure alone have an increasingly difficult time distinguishing among ligand-binding pockets and
non-ligand-binding gaps between chains as the number of chains in the protein increases. This trend
is clear at each type of evaluation. Looking at (a), Conservation’s performance does not exhibit
this effect. In fact, Conservation outperforms Structure on proteins with five or more chains. The
integration of sequence conservation and pocket prediction in ConCavity improves performance in
each chain based partition in each evaluation. ConCavity sees only a modest decrease in performance
on proteins with multiple chains. Conservation could not be included in (b) and (c), because it does
not make pocket predictions. Number of structures per chain group: 1 chain: 132, 2 chains: 112, 3
chains: 22, 4 chains: 36, 5+ chains: 29.

As the number of chains in the structure increases, there is a substantial decrease in the per-

formance of the methods based on structural pocket prediction alone. The pattern is seen both

when predicting ligand binding residues (Figure 4.5a) and pockets (Figure 4.5b and c). This effect

is so strong that, for proteins with five or more chains, Conservation outperforms Structure. The

number of chains in the protein has little effect on Conservation’s performance. These observations

emphasize the importance of including multi-chain proteins in the evaluation.

The homo-tetramer 1G6C in Figure 4.2c provides an illustrative example of the failure of Struc-

ture on multi-chain proteins. There is a large gap between the chains in the center of the structure,

and several additional pockets are formed at the interface of pairs of contacting chains. As seen in

the figure, the large central cavity does not bind a ligand, however it is the largest pocket predicted

by Structure. This is frequently observed among Structure’s predictions. While some pockets be-

tween protein chains are involved in ligand binding, many of them are not. As the number of chains

increases, so does the number of such potentially misleading pockets.

By incorporating sequence conservation information, ConCavity accurately identifies ligand bind-

ing pockets in multi-chain proteins. The conservation profile on the surface of 1G6C provides a clear
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example of this; the pockets that exhibit sequence conservation are those that bind ligands. 1G6C

is not an exception. ConCavity provides significant performance improvement for each partition of

the dataset in all three evaluations, and greatly reduces the effect of the large number of non-ligand-

binding pockets in multi-chain proteins on performance. ConCavity also provides improvement

over Structure on the set of one chain proteins. This is notable because these proteins do not have

between-chain gaps, so the improvement comes from tracing ligands and selecting among intra-chain

pockets more accurately than using structure alone (as in Figure 4.2a).

ConCavity performs well on both apo and holo structures.

The binding of a ligand induces conformational changes to a protein [121]. As a result, the 3D

structure of the binding site can differ between structures of the same protein with a ligand bound

(holo) and not bound (apo). In the holo structures, the relevant side-chains are in conformations

that contact the ligand, and this often defines the binding pocket more clearly than in apo structures.

To investigate the effect of the additional information provided in holo structures on performance,

we evaluated the methods’ on both sets (Table 4.2).

PR-AUC
Method apo holo

ConCavityL 0.606 0.649
ConCavityP 0.598 0.629
ConCavityS 0.587 0.634

Ligsite+ 0.525 0.550
PocketFinder+ 0.472 0.497
Surfnet+ 0.426 0.472

Table 4.2: Comparison of area under the Precision-Recall curve (PR-AUC) for ligand-binding residue
prediction methods on apo (unbound) and holo (bound) versions of LigASite. All methods perform
nearly as well on the apo structures as on the holo structures, and the relative ranking of the methods
is the same across datasets.

As expected, all methods performed better on the holo (bound) structures than the apo (un-

bound) structures; however, our methods only experience a modest drop in performance. All pre-

vious conclusions hold whether considering apo structures or holo structures; the ranking of the

methods is consistent, and the improvement provided by considering conservation is similarly large.

We will continue to report residue prediction results on the apo structures in order to accurately

assess the performance of the algorithms in common, real-world situations faced by ligand binding

site prediction methods.
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The methods better identify ligand binding sites in enzymes than non-enzymes.

The LigASite apo dataset contains protein molecules that carry out a range of different functions.

Enzymes are by far the most common; they make up 245 of the 331 proteins in the dataset. The

remaining 86 non-enzyme ligand binding proteins are involved in a wide variety of functions, e.g.,

transport, signaling, nucleic acid binding, and immune system response.

Table 4.3 compares the performance of the ligand binding site prediction methods on enzymes and

non-enzymes. All methods perform significantly better on the enzymes. Active sites in enzymes are

usually found in large clefts on the protein surface and consistently exhibit evolutionary sequence

conservation [44, 122], so even though enzymes bind a wide array of substrates, these common

features simplify prediction when compared to the variety of binding mechanisms found in other

proteins.

PR-AUC
Method Enzymes Non-enzymes

ConCavityL 0.663 0.441
ConCavityP 0.654 0.436
ConCavityS 0.647 0.419

Ligsite+ 0.555 0.439
PocketFinder+ 0.506 0.376
Surfnet+ 0.452 0.354

Conservation 0.320 0.202

Table 4.3: Ligand binding residue identification in enzymes and non-enzymes (LigASite apo). All
methods are better at identifying binding residues in enzymes than in non-enzymes. The ConCavity
methods achieve the best performance on both datasets, but considering conservation information
provides less improvement in non-enzymes.

Despite the drop in performance on non-enzyme proteins, the main conclusions from the earlier

sections still hold. However, the improvement provided by ConCavity is not as great on the non-

enzymes—Ligsite+ performs nearly as well as ConCavityL. This could be the result of the more

complex patterns of conservation found in non-enzyme proteins, and the poor performance of Con-

servation in this setting. It is also possible that Ligsite+’s approach is particularly well suited to

identifying binding sites in non-enzymes. Overall, these results highlight the importance of using a

diverse dataset to evaluate functional site predictions.

ConCavity improves identification of drug binding sites.

Knowledge of small molecule binding sites is of considerable use in drug discovery and design.
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Many of the techniques used to screen potential targets, e.g., docking and virtual screening, are

computationally intensive and feasible only when focused on a specific region of the protein surface.

Structure based surface cavity identification algorithms are commonly used to guide analysis in such

situations [116].

The superior performance provided by ConCavity over Structure on the diverse set of proteins

considered above suggests that ConCavity would likely be useful in the drug screening pipeline.

To test ConCavity’s ability to identify drug binding sites, we evaluated it on a set of 99 protein-

drug complexes [123]. Table 4.4 compares the ligand overlap PR-AUC and Jaccard coefficient for the

three versions of ConCavity and their structure-based analogs. Each ConCavity method significantly

improves on the methods that only consider structural features. While significant, the improvement

is not quite as large on this dataset as that seen on the more diverse LigASite dataset (Table 4.1).

It is possible that this is due to the fact that drug compounds are not the proteins’ natural ligands;

the evolutionary conservation of the residues in binding pockets may reflect the pressures related to

binding the actual ligands rather than the drugs.

Grid Value Jaccard
Method PR-AUC coefficient

ConCavityL 0.249 0.231
ConCavityP 0.238 0.223
ConCavityS 0.256 0.232

Ligsite+ 0.202 0.193
PocketFinder+ 0.180 0.164
Surfnet+ 0.157 0.164

Table 4.4: Drug binding site identification performance. This table compares the median Jaccard
coefficient of prediction-ligand overlap and the average grid value precision-recall AUC for ConCavity
and methods based on structural analysis alone on a set of 99 protein-drug complexes. (See Table 4.1
and Figure 4.1 for more details on these statistics.) Integrating sequence conservation and structure-
based pocket finding improves the identification of drug binding sites. Conservation is not included
in this evaluation, because it does not make pocket-level predictions.

Sequence alignment quality affects the improvement provided by ConCavity.

Estimates of evolutionary conservation, such as the Jensen-Shannon divergence, rely on multiple

sequence alignments (MSAs) of homologous proteins. Alignment quality varies from protein to

protein. For some proteins in the dataset, there are a large number of diverse homologous sequences,

while others have only a few related sequences available.

To explore the effect of MSA quality on the performance of ConCavity, we partitioned the
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dataset based on the fraction of gaps in the associated alignments. We consider the fraction of gaps

because many of the lower quality alignments contain a large number of sequence fragments that

only partially cover the structure’s sequence, e.g., a single domain.

For the 245 structures in the LigASite apo dataset with alignments containing fewer than 40%

gaps, the average PR-AUC improvement provided by the three ConCavity methods over their Struc-

ture counterparts is 0.132. For the 86 alignments with more than 40% gaps, the average improvement

is 0.093. The 40% threshold was selected because there was a clear drop in average performance at

this level, and performance is quite similar within finer partitions of these two groups.

This demonstrates that though alignment quality is important, considering evolutionary conser-

vation can provide improvement over structure-alone, even when a high quality alignment is lacking.

Fragmentary sequences provide useful information, but are not as reliable as fully aligned complete

homologous proteins. There are cases where poor conservation estimates result in worse predictions

than when considering structure alone. Since better estimates of the evolutionary constraints on

residue positions lead to better ligand binding site predictions, ConCavity will likely become even

more accurate as conservation estimation methods improve and more protein sequences become

available.

Integrating conservation and structure improves prediction of catalytic sites, but the

performance is worse than for ligand binding site prediction.

Ligand-binding sites are not the only type of functional site of interest to biologists. A large

amount of attention has been given to the problem of identifying catalytic sites. As noted above,

the majority of enzyme active sites are found in large clefts on the protein surface, so even though

the structural methods considered in this chapter were not intended to identify catalytic sites, they

could perform well at this task.

Table 4.5 gives the results of an evaluation of the methods’ ability to predict catalytic sites

(defined by the Catalytic Site Atlas [45]) in the LigASite apo dataset. Compared to ligand binding

site prediction, the relative performance of the methods is different in this context. The ConCavity

approach still performs the best, but sequence conservation alone performs nearly as well. Most

surprisingly, Conservation significantly outperforms those based on structure alone. All the methods

perform much worse when predicting catalytic sites than predicting ligand-binding residues, e.g.,

ConCavityL has PR-AUC of 0.273 versus 0.606.

These results imply that being very evolutionarily conserved is more indicative of a role in

catalysis than being found in a surface pocket. Though catalytic sites are usually found in pockets

80



Method PR-AUC

ConCavityL 0.273
ConCavityP 0.262
ConCavityS 0.254

Conservation 0.233

Ligsite+ 0.168
PocketFinder+ 0.139
Surfnet+ 0.133

Table 4.5: Identifying catalytic residues in LigASite apo structures. ConCavity gives the best
performance on this task as well, but in contrast to ligand binding residue prediction, Conservation
outperforms the structure-based approaches. Overall, the methods perform worse at predicting
catalytic sites than ligand binding sites.

near bound ligands, there are many fewer catalytic sites per protein than ligand-binding residues.

As a result simply searching for residues in pockets identifies many non-catalytic residues. This

is consistent with earlier machine learning studies that found conservation to be the dominant

predictive feature, and it suggests that new structural patterns must be sought to improve the

identification of catalytic sites.

Several previous methods have combined sequence conservation and structural properties in

machine learning frameworks to predict catalytic sites [29, 85, 115]. Direct comparison with these

methods is quite difficult because of unavailable datasets and algorithms. Tong et al. [115] compared

the precision and recall of several machine learning methods on different datasets in an attempt to

develop a qualitative understanding of their relative performance. While it is not prudent to draw

conclusions based on cross-dataset comparisons, we note for completeness that ConCavity’s catalytic

site predictions on a diverse dataset achieve higher precision (21%) at full recall than any of the

methods reported in their comparisons at much lower recall.

4.3 Discussion

Evolutionary sequence conservation and protein 3D structures have commonly been used to identify

functionally important sites; here, we integrate these two approaches in ConCavity, a new algo-

rithm for ligand binding site prediction. By evaluating a range of conservation and structure-based

prediction strategies on a large, diverse dataset of ligand binding sites, we establish that structural

approaches generally outperform sequence conservation, and that by combining the two, ConCavity
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outperforms conservation-alone and structure-alone on about 95% and 70% of structures respec-

tively. Overall, ConCavity’s first predicted residue contacts a ligand in nearly 80% of the apo

structures examined, and it maintains high precision across all recall levels. These results hold for

the three variants of ConCavity we considered, each of which uses a different underlying structure-

based component. In addition, ConCavity’s integrated approach provides significant improvement

over conservation and structure-based approaches on the common task of identifying drug binding

sites.

Combining sequence conservation-based methods with structure information is especially pow-

erful in the case of multimeric proteins. Our analysis has shown that the performance of structural

approaches for identifying ligand binding sites dramatically decreases as the number of chains in

the structure increases; conservation alone outperforms structure-based approaches on proteins with

five or more chains. It is difficult to determine from structural attributes alone if a pocket formed

at a chain interface binds a ligand or not. However, ligand binding pockets usually exhibit high

evolutionary sequence conservation. ConCavity, which takes advantage of this complementary in-

formation, performs very well on multi-chain proteins; the presence of many non-ligand binding

pockets between chains has little effect on its performance.

While ConCavity outperforms previous approaches, we have found two main causes of inaccurate

predictions: low-quality estimates of evolutionary conservation and ligand binding sites with limited

conservation. Some proteins lack a large number of known complete homologous sequences; conser-

vation estimates for these proteins may not be as reliable as those based on better alignments. We

have shown that though estimates based on low quality sequence alignments may harm performance

for some structures, they provide a net performance gain over all such structures. This issue will

become less relevant as sequence data coverage and conservation estimation methods improve, but

users should take note of the quality of the alignment used. The second problematic situation occurs

when a ligand binding site lacks strong conservation. ConCavity is less likely to predict such a pocket

due to its low conservation. It is possible that some of these sites are hypervariable [7] for functional

reasons. Missing or incomplete ligands can also affect the apparent performance of the methods,

but such issues are unavoidable due to the nature of the data. A small number of proteins bind

biologically relevant ligands outside of protein surface pockets. These situations pose difficulties for

our method, but are not common in the dataset. Additional predictors could be incorporated into

our model to address these cases; alternatively, a wide range of predictors could be used within a

machine learning framework to obtain further performance improvements.

In implementing and evaluating previous 3D grid-based ligand binding site prediction approaches,
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we have found that the methods used both to aggregate grid values into coherent pockets as well

as to map these pockets onto surface residues can have a large effect on performance. We describe

the details of these new algorithms in the Methods section. On a high level, the new methodolo-

gies we propose for these tasks provide significant improvement by predicting a flexible number of

well-formed pockets for each structure and by assigning each residue a likelihood of binding a ligand

based on its local environment rather than on the rank of the entire pocket. We have used morpho-

logical properties of ligands to guide pocket creation, but the most appropriate algorithms for these

steps depend strongly on the nature of the prediction task. These steps have received considerably

less attention than computing grid values; our results suggest that they should be given careful

consideration in the future.

We have focused on the prediction of ligand binding sites, but the direct synthesis of conser-

vation and structure information is likely to be beneficial for predicting other types of functionally

important sites. Our application of ConCavity to catalytic site prediction illustrates the promise and

challenges of such an approach. Catalytic sites are usually found in surface pockets, but consider-

ing structural evidence alone performs quite poorly—worse than sequence conservation. Combining

structure with evolutionary conservation provides only a very modest gain in performance over con-

servation alone. Protein-protein interface residues are another appealing target for prediction; much

can be learned about a protein by characterizing its interactions with other proteins. However,

protein-protein interaction sites provide additional challenges; they are usually large, flat, and often

poorly conserved [9]. ConCavity is not appropriate for this task. Other types of functional sites

also lack simple attributes that correlate strongly with functional importance. Analysis of these

sites’ geometries, physical properties, and functional roles might, in addition to producing accurate

predictors, lead to new insights about the general mechanisms by which proteins accomplish their

molecular functions.

In summary, this work significantly advances the state of the art in ligand binding site identi-

fication by improving the philosophy, methodology, and evaluation of prediction methods. It also

increases our understanding of the relationship between evolutionary sequence conservation, struc-

tural attributes of proteins, and functional importance. By making our source code and predictions

available online, we hope to establish a platform from which the prediction of functional sites and

the integration of sequence and structure data can be investigated further.

83



4.4 Methods and Algorithms

4.4.1 ConCavity

This section describes the components of the ConCavity algorithm for predicting ligand binding

residues from protein 3D structures and evolutionary sequence conservation.

ConCavity proceeds in three conceptual steps: grid creation, pocket extraction, and residue

mapping (Figure 4.6). First, the structural and evolutionary properties of a given protein are used

to create a regular 3D grid surrounding the protein in which the score associated with each grid

point represents an estimated likelihood that it overlaps a bound ligand atom (Figure 4.6a). Second,

groups of contiguous, high-scoring grid points are clustered to extract pockets that adhere to given

shape and size constraints (Figure 4.6b). Finally, every protein residue is scored with an estimate

of how likely it is to bind to a ligand based on its proximity to extracted pockets (Figure 4.6c).

On a high-level, this grid-based strategy has been employed by several previous systems for ligand

binding site prediction. However, our adaptations to the three steps significantly affect the quality

of predictions. First, we demonstrate how to integrate evolutionary information directly into the

grid creation step for three different grid-based pocket prediction algorithms. Second, we introduce

a method that employs mathematical morphology operators to extract well-shaped pockets from

a grid. Third, we provide a robust method for mapping grid-based ligand binding predictions to

protein residues based on Gaussian blurring. The details of these three methods and an evaluation

of their impacts on ligand-binding predictions are described in the following subsections.

Grid Creation

The first step of our process is to construct a 3D regular grid covering the free-space surrounding

a protein. The goal is to produce grid values that correlate with the likelihoods of finding a bound

ligand at every grid point.

Several methods have been previously been proposed to produce grids of this type. For example,

Ligsite [92] produces a grid with values between 0 and 7 by scanning for the protein surface along

the three axes and the four cubic diagonals. For each grid point outside of the protein, the number

of scans that hit the protein surface in both directions—so-called protein-solvent-protein (PSP)

events—is the value given to that point. A large number of PSP events indicate that the grid point

is surrounded by protein in many directions and thus likely to be in a pocket.

Surfnet [90] assigns values to the grid by constructing spheres that fill the space between pairs

of protein atoms without overlapping any other atoms. These sets of spheres are constructed for all
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(b) Pocket Extraction

Threshold grid values such that pockets 
have reasonable volume and shape.

Morphology
(a) Grid Creation

Ligsite + Conservation

Integrate conservation of surface 
residues with structural attributes.

(c) Residue Mapping
Blur

Blur pocket grid values and assign max 
overlapping value to each residue.

ConCavity Pipeline

Figure 4.6: ConCavity prediction pipeline. The blob represents a protein 3D structure; the triangles
represent surface residues; and the gray gradient symbolizes the varying sequence conservation values
in the protein. Darker shades of each color indicate higher values. (a) The initial grid values
come from the combination of sequence conservation information and a structural predictor, in this
example Ligsite. The algorithm proceeds similarly for PocketFinder and Surfnet. (b) The grid
generated in (a) is thresholded based on morphological criteria so that only well-formed pockets
have non-zero values. For simplicity, only grid values near the pockets are shown. (c) Finally, the
grid representing the pocket predictions is mapped to the surface of the protein. We perform a 3D
Gaussian blur (σ = 4Å) of the pockets, and assign each residue the highest overlapping grid value.
Residues near regions of space with very high grid values receive the highest scores.

pairs of protein surface atoms within 10Å of each other. Spheres with a radius smaller than 1.5Å are

ignored, and spheres are allowed to have a maximum radius of 4Å. This procedure results in a set

of overlapping spheres that fill cavities and clefts in the protein. Extending the original algorithm

slightly, we assign the value for each grid point to be the number of spheres that overlap it (rather

than simply 1 for overlap and 0 for no overlap as in the original algorithm). Thus, higher values are

generally associated with the positions in the “center” of a pocket.

PocketFinder [98] assigns values to grid points by calculating the van der Waals interaction

potential of an atomic probe with the protein. The Lennard-Jones function is used to estimate

the interaction potential between the protein and a carbon atom placed at each grid point. The

potential at a grid point p is:

V (p) =
∑

α∈protein

(
Cα12

r12
− Cα6

r6
) (4.1)

where Cα12 and Cα6 are constants (taken from AutoDock [124]) that shape the Lennard-Jones function

according to the interaction energy between the carbon probe atom and protein atom α, and r is the

distance between the grid point p and α (interactions over distances greater than 10Å are ignored).

Other grid creation methods have been proposed as well, but these three (Ligsite, Surfnet, and
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PocketFinder) provide a representative set for our study.

We augment these algorithms by integrating evolutionary information into the grid creation

process. Our methodology is based on the observation that these (and other) grid creation algorithms

operate by accumulating evidence (“votes”) for ligand binding at grid points according to spatial

relationships to nearby protein atoms. For PocketFinder, each protein atom casts a “vote” for nearby

grid points with magnitude equal to the (opposite of the) van der Waals potential. In Ligsite, every

pair of protein atoms “votes” for solvent-accessible grid points on line segments between them. In

our implementation of Surfnet, pairs of atoms “vote” for all the grid points overlapping a sphere

covering the solvent accessible region between them.

Based on this observation, we weight the “votes” as the grid is created by an estimate of sequence

conservation of the residue(s) associated with the atom(s) that generate the votes. We tested several

schemes for scaling votes. If c1 and c2 are estimated conservation scores associated with the relevant

atoms (e.g., derived from their residues’ conservation in multiple sequence alignments), we scaled

the structure-based component by the product (c1c2), the arithmetic mean ( c1+c2
2 ), the geometric

mean (
√
c1c2), the product of exponentials (2c12c2), and the product of exponentials of transformed

conservation values (22c1−122c2−1). Each of these schemes provides improvement for all methods, but

due to method specific differences, no single weighting scheme is best for all methods. Specifically,

for PocketFinder, which has only one atom associated with each vote, we scale the vote (van der

Waal’s potential) of each atom linearly by c1. For Ligsite we scale the votes by arithmetic mean

of the conservation values and for Surfnet by the product of the exponentials of the transformed

conservation values.

In our study, conservation scores are calculated by the Jensen-Shannon divergence (JSD) with

sequence weighting and a gap penalty [5]; however, any sequence conservation measure that produces

residue scores (which are then mapped to atoms within the residues) could be incorporated.

Performance

The superior performance of our ConCavity grid creation method at predicting ligand binding

pockets and residues is demonstrated in Figure 4.4 of the Results section. The only difference

between the ConCavity methods (ConCavityL, ConCavityS , ConCavityP ) and their counterparts

based on structure alone (Ligsite+, Surfnet+, PocketFinder+) is the use of sequence conservation in

the grid creation step. For each grid creation strategy considering evolutionary conservation yields

significant improvement.
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Pocket Extraction

The second step of our process is to cluster groups of contiguous, high-scoring grid points into pockets

that most likely contain bound ligands.

Several methods have been previously proposed to address this problem. The simplest is to

apply a fixed threshold to the grid, i.e., eliminate all grid points below some given value. Then, the

remaining grid points can be clustered into pockets (e.g., connected components), and small pockets

can be discarded. This method, which we call “Threshold”, is used in Ligsite, for example, where

only grid values greater than or equal to two are included in [92] and greater than or equal to six

in [82]. A problem with this approach is that the threshold is set to the same value for all proteins,

which provides no control over the total number and size of pockets predicted by the algorithm.

In the worst case, when every grid value is below the threshold, then the algorithm will predict

no pockets. On the other hand, if the threshold is too low, then there will be many large pockets.

Different proteins have different types of pockets, so no one threshold can extract appropriately sized

and shaped pockets for all of them.

A slightly more adaptive method is used in PocketFinder [98]. In “StdDev” the mean and

standard deviation of values in the grid are used to determine a different threshold for every protein.

Specifically, the grid is blurred with σ = 2.6Å, and then the threshold is set to be 4.6 standard

deviations above the mean of the grid values. This approach is problematic because the threshold

depends on the parameters of the grid; any change to how the protein is embedded in the grid (e.g.,

orienting the protein differently, changing the distance between the protein and the grid boundary,

etc.) will affect the mean and standard deviation of the grid values, which in turn will affect the

threshold chosen to extract pockets. For example, simply making the extent of the grid 10% greater

will include a large number of near-zero values in the grid, which will bring the threshold down and

make the extracted pockets larger. Also, no control is provided over the number and size of pockets;

it is possible that for some proteins no grid values are 4.6 standard deviations above the mean, in

which case no pockets will be predicted.

It is difficult to control the number, sizes, and shapes of extracted pockets with Threshold and

StdDev. In both methods a threshold is applied to every grid point independently and clusters are

formed only on the basis of geometric proximity between grid points, so it is possible to extract a set

of pockets that have biologically implausible shapes. For example, there is no way to guarantee that

the algorithm won’t extract one very large pocket that covers a significant fraction of the protein

surface, or many small pockets distributed across the protein surface, and/or pockets that contain
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long, thin regions where the cross-sectional diameter is too small to fit a bound ligand. Of course,

it is possible to trim/discard such pockets after they have been extracted according to geometric

criteria using post-processing algorithms [82, 98, 120]. However, unless there is feedback between

the method used to select a grid threshold and the method used to cull pockets, then there is no

way to guarantee that a biologicaly plausible set of pockets is output, i.e., it is possible that none of

the pockets extracted with the chosen grid threshold meet the culling criteria.

In ConCavity, we integrate extraction and culling of pockets into a single framework. We perform

a binary search for the grid threshold that produces a culled set of pockets that have specified

properties (maximum number of pockets, total volume of all pockets, minimum volume for any

pocket, minimum cross-sectional radius for any pocket, and maximum distance from protein surface).

Specifically, for each step of the binary search, we select a grid threshold, extract a set of pockets

(connected components of grid points having values above the threshold), and then apply a sequence

of culling algorithms to trim/discard pockets based their sizes and shapes. The algorithm iterates,

adjusting the threshold up or down, if the set of pockets resulting from the culling operations does

not meet the specified global properties. The binary search terminates when it has found a set of

pockets meeting all of the specified properties or determines that none is possible. We call this

method “Search”.

Specifically, the culling steps are implemented with a series of grid-based filters, each of which

runs in compute time that grows linearly with the size of the grid. Given a current guess for the

grid threshold, the first filter simply zeroes all grid points whose value is below the threshold value.

The second filter zeroes grid points whose distance from the van der Waal’s surface of the protein

exceeds a given threshold, max protein offset. This filter is computed by first rasterizing a sphere

for all atoms of the protein into a grid, setting every grid point within the van der Waal’s radius of

any protein atom to one and the others to zero. Then, the square of the distance from each grid

point to the closest point on the van der Waal’s surface is computed with three linear-time sweeps,

and the resulting squared distances are used to zero grid points of the original grid if the squared

distance is greater than max protein offset2.

The third filter ensures that no part of a pocket has cross-sectional radius less than a given thresh-

old, min pocket radius. This filter is implemented with an “opening” operator from mathematical

morphology . Intuitively, the boundary of every pocket (non-zero values of the grid) is “eroded”

by min pocket radius and then “dilated” by the same amount, causing regions with cross-sectional

radius less than the threshold to be removed, while the others are unchanged. This operator is

implemented with two computations of the squared distances from pocket boundaries, each of which
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takes linear time in the size of the grid.

The fourth filter constructs connected components of the grid and then zeros out grid points

within components whose volume is less than a given threshold, min pocket volume. Connected

components are computed with a series of depth-first traversals of neighboring non-zero grid points,

which take linear time all together, and pockets are sorted by volume using quicksort, which takes

O(plogp) time for p pockets.

After these filters are executed for each iteration, the total volume of all remaining pockets is

computed and compared to a given target volume, total pocket volume. If the total volume is greater

(less) than the target, the grid threshold is increased (decreased) to a value half-way between the

current threshold and the maximum (minimum) possible threshold—initially the largest (smallest)

value in the grid—and the minimum (maximum) is set to the current threshold. The process is

repeated with the new threshold until the total volume of all pockets is within epsilon of the given

total pocket volume. Note that we perform a 1Å Gaussian blur on the Ligsite grid before beginning

this search to provide finer control over the predicted pockets than is provided by the Ligsite integer

grid values.

We set the parameters for these filters empirically. In previous studies, it has been observed that

the vast majority of bound ligand atoms reside within 5Å of the protein’s van der Waal’s surface,

thus we set max protein offset to 5Å. In order to target binding sites for biologically relevant ligands,

we set min pocket radius to 1Å and min pocket volume to 100Å3. Based on the observation that the

total volume of all bound ligands is roughly proportional to the total volume of the protein [93], we

set total pocket volume to a given fraction of the total protein volume—2% in our studies. Finally,

we set the grid resolution to 1Å and epsilon to 1Å3.

Performance

To assess the impact of different pocket extraction strategies on the precison and accuracy of

binding site detection, we implemented several alternative methods and compared how well the

pockets they predict overlap with ligands in holo structures from the LigASite dataset. Table 4.6

shows the results for three different types of grids (left column). The second column lists the pocket

extraction algorithm. In addition to Thresh and StdDev, Largest(N) refers to zeroing all grid entries

not in the largest N pockets (connected components). The third column third column (“Prediction

Vol.”) lists the median volume of all predicted pockets over each protein. For reference, the median

volume of all ligands observed in the PQS files (“Ligand”) is 1164.5Å3. The next two columns list

the median volumes of the Intersection (Ligand ∩ Prediction) and Union (Ligand ∪ Prediction) of
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the Prediction and Ligand grids. Finally, the rightmost three columns list the median, precision

(Intersection / Prediction), recall (Intersection / Ligand), and Jaccard coefficient (Intersection /

Union). For the last three columns, higher values (between 0 and 1) represent better results.

Grid Pocket Prediction ∩ w/ ∪ w/ ∩ / ∩ / Jaccard
Generation Extraction Vol. (Å3) Lig. (Å3) Lig. (Å3) Prediction Ligand coeff.

Ligsite+ Thresh(6) 1828.1 331.5 2669.1 1.657 0.331 0.111

Ligsite+ Thresh(6), Largest(3) 1545.1 313.2 2491.4 1.373 0.296 0.108

Ligsite+ Search 1167.3 333.6 2080.5 0.286 0.332 0.179

Surfnet+ - 27770.3 1023.1 27809.2 0.037 0.951 0.036

Surfnet+ Search 1153.3 300.1 2099.2 0.251 0.286 0.153

Pocketfinder+ Thresh(mean+1σ) 49624.7 1065.7 49649.3 0.022 0.927 0.022

Pocketfinder+ Thresh(mean+2σ) 9874.2 704.8 10581.6 0.072 0.670 0.069

Pocketfinder+ Thresh(mean+2.5σ) 3663.9 494.1 4247.4 0.139 0.485 0.119

Pocketfinder+ Thresh(mean+3σ) 1312.6 313.1 2328.7 0.217 0.321 0.138

Pocketfinder+ Search 1182.4 306.2 2138.5 0.246 0.291 0.155

Table 4.6: Comparison of pocket extraction methods. For three types of grids (left column), we ran
different pocket extraction algorithms (second column) and compared how well the pockets overlap
bound ligands in holo PQS structures. Each value presented is the median over all structures
in the dataset; see the text for a description of each statistic. The median volume of all ligands
observed over the structures (“Ligand”) is 1164.5Å3. Comparing to the median volume of the pockets
predicted by each method, we see that Search’s pockets are closest to the actual ligand volumes.
Moreover, Search’s high Jaccard coefficient for each grid type indicates that it provides the best
tradeoff between recall and precision among the methods tested.

The statistics presented in Table 4.6 reflect various attributes of the pockets predicted by each

extraction technique. The Jaccard coefficient (Intersection / Union) takes into account the natural

tradeoff between recall and precision by rewarding predictions that overlap the known ligands (large

Intersection) and penalizing methods that predict very large pockets (large Union). Thus, it is

a suitable measure for comparing the overall performance of the pocket extraction methods. For

example, though the pockets of PocketFinder+ with the Threshold(mean+1σ) extraction method

have very high recall (0.927), its Jaccard coefficient is very low, because the predicted pockets have

a very large average volume (42.6x more than the ligands). For each grid type, our Search pocket

extraction method predicts pockets with volumes close to the actual ligand volume and obtains

the best Jaccard coefficient. As a result, we use Search in ConCavity and our implementations of

previous grid based methods.

Residue Mapping

The third step of our process uses the extracted set of pockets to generate ligand-binding predictions

for residues. Our goal is to score every residue based on its relationship to the extracted pockets
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such that residues with higher scores are more likely to bind ligands. This goal is more ambitious

than that of previous residue mapping approaches which have sought only to identify the residues

associated with predicted pockets.

Perhaps the simplest and most common previous method is to mark all residues within some

distance threshold, d, of any pocket as binding (e.g., score = 1) and the rest as not binding (e.g.,

score = 0) [99]. We call this method “Dist-01.” Both the pocket surface and geometric center have

been taken as the reference point previously; we use the pocket surface in Dist-01. This approach

ignores all local information about the predicted pockets. Two related methods have incorporated

attributes of predicted pockets into Dist-01. The first assigns near-pocket residues scores that reflect

the size of the closest pocket (“Dist-Size”) [82]; residues near the largest pocket receive the highest

score and so on. A similar approach uses the average conservation of all residues near the pocket

(“Dist-Cons”) [82] to rank the pockets and assign rank-based scores to residues.

In ConCavity, our goal is to assign scores to residues based on their likelihood of binding a ligand.

We use the original grid values (which reflect the predicted likelihood of a ligand at every point in

space) to weight the scores assigned to nearby residues. Starting with the grid values within the set

of extracted pockets, we blur that grid with a Gaussian filter (σ = 4Å), and then assign to every

residue the maximum grid value evaluated at the location of any of its atoms. This method, which

we call “Blur,” assigns residues in the same pocket different scores, since some residues are in the

middle of a binding site, next to the part of a pocket with highest grid values, while others are at

the fringe of a site, near marginal grid values. The score assigned by Blur reflects these differences

in the likelihood that an individual residue is ligand binding.

In contrast to Blur, none of the previous residue extraction methods give different scores to

residues in the same pocket. For comparison, we developed a version of the Dist strategy that (like

Blur) considers the original grid values. Dist-Raw simply assigns to each residue within d of a pocket,

the value of the nearest pocket grid point.

Performance

We analyze the performance of these residue mapping approaches by comparing their PR-AUC on

the task of predicting ligand binding residues as defined in the LigASite apo dataset. In each case we

start with the same grid of extracted pockets and apply a different residue mapping algorithm. We

consider all residue mapping strategies on three different pocket grids: ConCavityL, ConCavityS ,

and ConCavityP . For all Dist approaches, we set d to 5Å, and for Dist-Cons we consider the

conservation of all residues within 8Å of the pocket (as in [82]).
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Pocket Grid Source
Mapping Method ConCavityL ConCavityP ConCavityS

Blur 0.606 0.598 0.587
Dist-Raw 0.453 0.547 0.468
Dist-Size 0.434 0.483 0.461
Dist-Cons 0.411 0.465 0.423
Dist-01 0.392 0.452 0.393

Table 4.7: Comparison of residue mapping strategies. For three grids of predicted pockets, we
applied each residue mapping algorithm and report here the PR-AUC for identifying ligand binding
residues in the LigASite apo dataset. Blur achieves the best performance for each grid.

The results presented in Table 4.7 demonstrate that Blur provides better performance for each

grid type than all versions of previous residue mapping approaches. Thus, we use Blur in ConCavity

and our implementation of previous ligand binding site prediction algorithms. The two methods that

assign residues scores based on the values of nearby grid points (Blur and Dist-Raw) provide better

performance in each case than those that assign all residues in a pocket the same score based on a

global property of the pocket (Dist-Size and Dist-Cons). This suggests that the local environment

around residues should be considered when predicting binding sites.

4.4.2 Previous Methods

We have compared ConCavity to several methods for ligand binding site prediction. Many of these

methods lack publicly accessible implementations, and those that are available output different

representations of predicted pockets and residues. In this section, we describe of how we generate

predictions for all previous methods considered in our evaluations. In some cases we have completely

reimplemented strategies and in others we have post-processed the output of existing implementa-

tions. As mentioned earlier, a “+” appended to the method name indicates that it is (at least in

part) our implementation, e.g., Ligsite+.

Ligsite+, Surfnet+, and Pocketfinder+

We developed new implementations of the Ligsite, Surfnet, and Pocketfinder methods for grid gen-

eration. This was necessary to allow us to fully integrate sequence conservation with these methods.

However, it also enabled us to investigate the the effect of different pocket extraction and residue

mapping algorithms on overall performance.

By default, we use Search to extract pockets and Blur to map to residues for Ligsite+, Surfnet+,
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Prediction Algorithm Steps Post-processing
Name Grid Creation Pocket Ext. Res. Mapping

ConCavityL Ligsite+Cons Search Blur -
ConCavityP PocketFinder+Cons Search Blur -
ConCavityS Surfnet+Cons Search Blur -

Ligsite+ Ligsite Search Blur -
PocketFinder+ PocketFinder Search Blur -
Surfnet+ Surfnet Search Blur -

LigsiteCS http://gopubmed2.biotec.tu-dresden.de/pocket/ Residues Ranked
Q-SiteFinder http://www.modelling.leeds.ac.uk/qsitefinder/ by Pocket Rank
CASTp http://sts-fw.bioengr.uic.edu/castp/

LigsiteCSC+ http://gopubmed2.biotec.tu-dresden.de/pocket/ Residues Ranked
by Pocket Conservation

Table 4.8: Implementation Details for Evaluated Methods. This table summarizes the details of each
step of the ligand binding site prediction process for the methods we evaluate. The new ConCavity
methods are based entirely on our code. We also developed new implementations of three previous
methods (Ligsite+, PocketFinder+, and Surfnet+). Predictions for the other previous methods
were obtained from the listed publicly accessible web servers. These servers output sets of residues
associated with predicted binding pockets. For inclusion in the residue prediction evaluation, the
output of these servers was post-processed as specified. This step is not necessary for our methods,
because Blur outputs ranked residue predictions. A “+” appended to the method name indicates
that it is based (at least in part) on our code. Implementation details of each algorithm are given
in the text.
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and Pocketfinder+, because as was shown above, these approaches yield the best performance. Our

implementations output representations of the predicted ligand binding pockets and ranked lists of

contacting residues, so they can be included in both pocket and residue-based evaluations.

LigsiteCS, Q-SiteFinder, and CASTp

For our experiments, we generate binding site predictions using three publicly available web servers:

LigsiteCS [82], QSiteFinder [99], and CASTp [95]. Each of these servers produces a list of predicted

pockets represented by sets of residues. In each case, the residues do not have scores associated with

them. Thus to include these methods in the ligand binding residue prediction evaluation, we must

assign scores to the residues. We tried two approaches. The first assigns all predicted residues a

score of one and all others a score of zero. The second ranks the residues by the highest ranking

pocket to which they are assigned, i.e., all residues from the first predicted pocket are given a higher

score than those from the second and so on. These approaches are similar to the residue mapping

algorithms discussed in the ConCavity section above; however, those exact algorithms could not be

applied here because the web servers do not provide representations of the full extent of predicted

pockets. We found that residue ranking produces better results (data not shown), so we use this

approach. We consider the default number of pockets predicted by each method: LigsiteCS returns

three pockets; Q-SiteFinder returns ten pockets; and CASTp returns a variable number. The Q-

SiteFinder web server would not accept proteins with more than 10,000 atoms, so 36 proteins from

our dataset lack Q-SiteFinder scores.

LigsiteCS, Q-SiteFinder, and CASTp do not provide a representation of each predicted pocket’s

full extent, so they could not be included in the ligand location prediction evaluation.

LigsiteCSC+

The LigsiteCSC method is an extension of LigsiteCS that uses the evolutionary sequence conservation

of residues surrounding predicted pockets to reorder the pocket predictions. This feature on the

LigsiteCS prediction server did not work for many proteins in our dataset, so we implemented our

own version on top of the LigsiteCS results. For each pocket, we calculate the average conservation

of all residues within 8Å of the pocket center. The JSD method on the HSSP alignments is used to

produce the conservation scores. The top three pockets in terms of size are then ranked in terms of

average conservation. This implementation follows the published description of LigsiteCSC, except

for the use of JSD for conservation instead of ConSurf.
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Jensen-Shannon Divergence

The Jensen-Shannon divergence (JSD) is used to represent the performance of evolutionary sequence

conservation; it was recently shown to provide state-of-the-art performance on a range of functional

site prediction tasks [5]. It compares the amino acid distribution observed in columns of a multiple

sequence alignment of homologs to a background distribution. JSD scores range between zero and

one. The code provided in Capra and Singh [5] with the default sequence weighting and gap penalty

was used to score all alignments.

4.4.3 Data

The prediction methods described in this chapter take 3D structures and/or multiple sequence

alignments as input. Protein structures were downloaded from the Protein Quaternary Structure

(PQS) server [125]. Predicted quaternary structures were used (rather than the tertiary structures

provided in PDB files) so as to consider pockets and protein-ligand contacts for proteins in their

biologically active states. All alignments come from HSSP [46].

Ligand binding sites as defined by the non-redundant version of the LigASite dataset (v4.0) [100]

were used to evaluate method predictions. Ligasite consists of 331 proteins with apo (unbound)

structures, each having less than 25% sequence identity with any other protein in the set. Each apo

structure has at least one associated holo (bound) structure in which biologically relevant ligands are

identified in order to define ligand binding residues and map them to the apo structure. If multiple

holo structures are available for the protein, the sets of contacting residues are combined. The

average number of holo structures for each apo structure is 2.665, and the maximum for any single

structure is 30. The average chain length is 274 residues with a minimum of 59 and a maximum of

1023. The average number of positives—sites contacting a biologically relevant ligand—per chain is

25 residues (about 11% of the chain). The apo dataset includes many proteins with multiple chains;

the average number of chains per protein is 2.49. The chain distribution is: 1 chain: 132 proteins,

2 chains: 112 proteins, 3 chains: 22 proteins, 4 chains: 36 proteins, 5+ chains: 29 proteins.

The drug dataset comes from a set of 100 non-redundant 3D structures selected by [123]. This set

contains a diverse set of high-quality structures (resolution < 3Å) with drug or drug-like molecules

(molecular weight between 200 and 600, and 1-12 rotatable bonds) bound. Structure 1LY7 has been

removed from the PDB, so we consider the 99 remaining structures.

The catalytic site annotations were taken from version 2.2.9 of the Catalytic Site Atlas [45].

There are 130 proteins in the LigASite apo dataset with entries in the Catalytic Site Atlas. These
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proteins have an average of 2.9 catalytic sites per chain (just over 1% of all residues in the chain).

4.4.4 Evaluation

Ligand binding pocket predictions are represented by non-zero values in a regular 3D grid around the

protein. These predictions are evaluated on the pocket level by computing their volume and overlap

with known ligands, and on the grid level by analyzing how well the grid scores rank grid points

that overlap ligand atoms. We use a grid with the rasterized ligand atoms from the PQS structure

to find the intersection and union of the ligands and predictions. From these, we compute the over-

prediction factor (Prediction Volume / Ligand Volume), precision (Intersection Volume / Prediction

Volume), recall (Intersection Volume / Ligand Volume), and Jaccard coefficient (Intersection Volume

/ Union Volume). We use precision-recall (PR) curves, which compare precision (TP / TP + FP)

on the y-axis with recall (TP / TP + FN) on the x-axis, to evaluate the ability of each method to

predict whether a ligand atom is present at a grid point. We consider grid points that overlap a

ligand atom as positives. To construct the PR curve, we calculate the precision and recall at each

cutoff of the grid values in the pocket prediction grid.

For the residue-based evaluation, we consider how well each method’s residue scores identify

ligand binding residues. Positives are those residues in contact with a ligand as defined by LigASite

database. PR curves were made by calculating, for each chain, the precision and recall at each

position on the ranked list of residue scores. The PR curves were constructed similarly for the

catalytic site analysis, but positives were defined as those residues listed in the Catalytic Site Atlas.

To construct the summary PR curves for each prediction method, curves were created for each

chain in each structure, and all the PR curves for a method were averaged first within the structure

and then across all structures. We used the method and code of Davis and Goadrich [78] for

calculating the area under the PR curve (PR-AUC).
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Chapter 5

Conclusion

Analyzing protein sequence and structure data holds considerable promise for increasing our un-

derstanding of how proteins use simple amino acid building blocks to accomplish their vast array

of functions. In this dissertation, we have described three projects (including prediction tools and

datasets) that greatly improve our ability to identify and characterize the residues involved in a

range of functional processes.

In the first, we developed a new, fast approach to the estimation of evolutionary sequence con-

servation and evaluated it against a representative set of existing methods on three large datasets

of functional sites. Our simple information theoretic approach, based on the insight that sites un-

der pressure will have amino acid distributions further from an estimated background distribution,

outperforms many more sophisticated methods in each of three real-world prediction tasks. We also

found considerable differences in the ability of all conservation methods to predict different types of

functional sites. Catalytic and ligand binding sites are usually highly conserved, while identifying

protein-protein interfaces causes considerable problems for all methods.

In the second project, we considered a type of functional site that evolutionary sequence con-

servation provides little help in identifying: residues that determine molecular substrate specificity

(SDPs). Prediction of these residues has been crippled by a lack of reliable data. We combined

several bioinformatics resources, including protein sequence, structure, and experimental data, to

construct a large database of likely SDPs in enzymes. This database enabled us to characterize

SDPs in terms of their physicochemical and evolutionary properties with respect to those of other

sets of functional sites. It also equipped us to evaluate the performance of existing sequence-based

SDP prediction methods and to demonstrate the superior results of our GroupSim method. The
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techniques used to create the dataset can themselves be seen as an SDP prediction algorithm that

combine several lines of evidence.

Finally, we directly integrated sequence-level information about evolutionary conservation with

structure-based predictions of protein surface cavities to accurately identify ligand binding pockets

and residues. Prior to our work, sequence and structure based methods for this problem had been

largely separate. In contrast to previous efforts to combine them, our method, ConCavity, considers

both levels of information simultaneously rather than combining the results of conservation analysis

with structure analysis after performing each step in isolation. Not only does our method yield

significantly better predictions than either approach alone, it also provides insights into the relation-

ship of sequence conservation and structural features. It is difficult to distinguish surface pockets

in which ligands bind from those that do not based on structural criteria alone, and it is similarly

difficult to determine whether or not an amino acid residue is conserved because it is involved in

ligand binding or some other important aspect of the protein’s function. However, we find that

residues that are in pockets with a high degree of sequence conservation are likely involved in ligand

binding.

In addition to producing useful prediction tools and datasets, the work presented in this thesis

highlights the importance and power of comprehensive, large-scale evaluation frameworks that are

grounded in the real-world settings in which prediction methods are applied. Our evaluation of

algorithms for predicting evolutionary conservation provide a dramatic example of this. Over the

past 20 years, at least 20 different methods for estimating evolutionary conservation or rate of

evolution have been developed [30]. Previous evaluation of these methods was usually small scale,

ad hoc, and often tied to the developers’ intuitions about what the results of a conservation measure

“should” look like on the data of interest. By grounding our evaluation in the prediction of three

types of functionally important residues for which we could build large datasets, we were able to

make sound statements about what methods worked and in what settings. Surprisingly, a number

of sophisticated methods intended to improve on the simple Shannon Entropy approach failed to

perform at its level. Similar patterns were observed in our evaluation of SDP prediction methods.

Simple, fast methods often did as well as those based on more complex models. This suggests

that more sophisticated methods often fail to capture much about the complexities of the biological

systems under study beyond relatively basic intuitive relationships, e.g., conservation within groups

that bind the same ligand and difference between them indicates a role in specificity. We believe

that this is largely the result of the lack of reliable, quantitative specifications of the objects being

predicted. Complex methods and models have often been based on assumptions and intuitions of
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domain experts. These experience-based hypothesis are useful, but they must be rigorously evaluated

before being incorporated into published prediction methods. Our datasets provide an important

step towards this goal. In contrast to many previous approaches, the algorithms introduced in this

dissertation were found to perform well in realistic settings.

As suggested by our results using evolutionary sequence conservation, we suspect that identifying

some types of functional sites will prove to be more difficult than others. Different data sources may

be better suited to certain contexts. Our work has demonstrated the power of directly combining

protein sequence and structure data in a variety of prediction tasks. It enabled us to build a large

dataset of positions likely involved in determining substrate specificity and resulted in significant

improvement in the prediction of ligand binding pockets and residues.

Future advances in the prediction of protein functional sites will likely be driven by the integra-

tion of additional types of data about protein sequence, structure, evolution, and cellular context.

Several recent approaches have combined a large number of sequence, structure, and evolutionary

features to predict catalytic sites using machine learning algorithms [26, 29, 85, 115]. Similar at-

tempts have been made recently for PPI sites [126] and predicting residues that bind particular

ligands [117–119]. These studies have all found that, out of the hundreds considered, a very small

number of features provide the vast majority of the predictive power. Evolutionary sequence con-

servation and a few structural attributes like pocket membership are usually the most informative

predictors. The improvement provided by these machine learning approaches over direct approaches

is modest at best. We find the principled prediction of functional sites based on direct biologically

observed relationships between features, e.g., the observation that ligands are much more likely to

bind in evolutionarily conserved pockets than non-conserved pockets, to be both more satisfying

and useful in practice. Going forward, integrating the assignment of functions to protein residues

into a comprehensive probabilistic framework is an appealing goal, but we believe insights based on

biological relationships should provide the foundation rather than current “kitchen sink” machine

learning approaches.

Probabilistic approaches to integrating heterogeneous data to predict protein function and inter-

actions [127–130] could provide a model for incorporating the many disparate evidence types and

functional roles a residue can have into a coherent predictive system. However, there are several

challenges to achieving this goal. We lack a consistent language or ontology (like the Gene Ontol-

ogy [131] for protein function) with which to describe the functional roles of specific protein residues.

Attempts to characterize and classify catalytic sites [44, 45] provide a step in this direction. The

new Sequence Ontology of the Protein Feature Ontology project [132] may ultimately provide the
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necessary framework, but there is still significant work to be done to define the scope and boundaries

of possible residue functions. In addition, even with a coherent framework in which to discuss residue

function, many functional roles would lack a large number of experimentally determined positive

examples, thus making reliable training and inference difficult.

In conclusion, this dissertation describes three projects that improve our ability to identify func-

tional sites in proteins from sequence and structural data. They are steps toward the ultimate goal

of completely characterizing a protein’s molecular functions and the residues involved in carrying

them out. Because of both the rapid pace at which the amount of informative sequence and structure

data are being produced and the ingenuity of the computational biologists who store and process

this information, we are optimistic about continued progress towards this goal.
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