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Abstract

High-throughput experimental and computational approaches are facilitating the col-

lection of large-scale biological networks, consisting of proteins and the interactions

among them, for a growing number of species. With appropriate computational anal-

ysis and experimental work the potential exists for uncovering the organizational

principles of the cell and, consequently, protein functions and pathways, which are

still largely unidentified. In this work, we introduce a novel framework for analyzing

protein interaction networks in order to uncover organizational units corresponding to

recurring means with which diverse biological processes are carried out. We formalize

recurring patterns of interaction among different types of proteins using “network

schemas”; network schemas specify descriptions of proteins and the topology of in-

teractions among them.

In the first part of this thesis, we develop algorithms for systematically uncovering

recurring, over-represented schemas in physical interaction networks and apply these

methods to the S. cerevisiae interactome, identifying hundreds of such organizational

units of varying complexity. We establish the functional importance of these schemas

by showing that they correspond to functionally cohesive sets of proteins, are en-

riched in the frequency with which they have instances in the H. sapiens interactome,

and are useful for predicting protein function. In the second part of this thesis, we

introduce NetGrep, a system for searching protein interaction networks for matches

to more general network schemas. NetGrep provides an advanced graphical interface

for specifying schemas and fast algorithms for extracting their matches.
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Chapter 1

Introduction

High-throughput experimental and computational approaches to characterize pro-

teins and their interactions have resulted in large-scale biological networks for many

organisms. Although biologists are accumulating vast amounts of data about proteins

and are determining specific interactions among them, considerable further research

is required to determine what each of these proteins does and how they all work to-

gether to form different living organisms. While the data collection itself is important

as the networks (despite being incomplete and noisy) provide a holistic view of the

functioning of the cell, it is clear that scientists need additional computational and

experimental tools to analyze these biological networks in order to uncover cellular

principles as well as protein functions and pathways. In this thesis, we introduce

a new computational framework for analyzing biological networks in order to reveal

and systematize cellular organization and functioning.

1.1 Biological networks

Proteins and their associated interaction networks are generally represented in a sim-

ple graph structure, with vertices representing proteins and edges representing the

interactions among them. Each edge can be undirected or directed, depending on the
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type of protein interaction it represents. Undirected edges are used to represent inter-

actions between two proteins that interact physically; that participate in a synthetic

lethal or epistatic relationship (i.e., in which mutations to the individual proteins do

not cause loss of growth or fitness to the organism but do so in combination); or that

are coexpressed (i.e., their transcripts are coregulated). Directed edges represent reg-

ulatory mechanisms and include transcription factor binding relationships (also called

protein-DNA interactions) or where one protein phosphorylates or regulates another

(review, [94]). Protein interactions can also represent functional associations, where

two proteins are connected by an edge if they take part in the same biological process.

Note that weights can be assigned to edges to represent the strength or confidence of

an interaction.

1.2 Network analysis

Much work has been done to analyze biological networks computationally, providing

us with hints of the inner workings of the cell. We describe those network analyses

that are most closely related to our work; see [70,94] for excellent recent reviews with

a broader scope. Initial topological analysis has suggested that biological networks

are scale-free, that is they adhere to a power law distribution in which most proteins

have only a few interactions but a few “hubs” have many interactions, which lends a

robustness to the system and indicates that these networks have a structure different

from that implied from an Erdos-Renyi random network model (which assumes that

edges are independent and that each edge is equally likely) [3]. Densely connected

subgraphs within interaction networks have been identified, and it has been shown

that these “modules” [27] correspond to proteins taking part in the same physical

complexes or the same biological processes [64, 77]. An examination of various inter-

action networks, including those with a mixture of interaction types, has shown that
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certain combinations or patterns of interactions occur more frequently than expected

by chance [46,50,62,73,92,93]. These oft-occurring topologies, called network motifs,

are shown to be related to particular circuits in engineering, such as feed-forward

loops [73].

Most interaction networks are imperfect, not only because they are incomplete,

but because they provide only a static view of the interactome: they describe which

proteins can interact, but most commonly fail to say anything about when the in-

teraction occurs. Interactions may be determined in vitro, or via artificial constructs

such as the two-hybrid system, or from cells exposed to a single condition or at a sin-

gle time point. Network analysis most commonly groups these interactions together,

while not considering spatial and temporal information. By incorporating gene ex-

pression data with the physical interaction network, dynamic properties of cellular

networks may be uncovered. For example, an analysis of the hubs in the network

has grouped them into two types: those that interact with all their partners in the

same context (so that they function within a single cellular process) and those that

interact with their neighbors at different times or in different locations (so that they

link disparate biological processes) [24]. Furthermore, by integrating gene expression

data with regulatory networks, it has been discovered that certain network motifs are

more prevalent in specific cellular conditions [48].

The analyses presented so far have thoroughly ignored any features of the individ-

ual proteins in the network, and their focus has rested only on interactions. A recent

line of work has attempted to incorporate the most basic of protein features, a pro-

tein’s underlying amino acid sequence, in an attempt to identify conserved pathways

within and between various organisms. These so-called network alignments involve

comparing networks against each other by identifying homologs in the networks and

then determining whether groups of these homologs interact in similar fashion in both

networks [15,36,38,42]. Physical interaction networks have also been analyzed to re-
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veal correlated sequence-signatures, or sequence motifs, in interacting pairs of proteins

[78]; because the focus in this area [11,20,23,63,88] is on finding domain-domain in-

teractions for the purpose of explaining interactions, only individual interactions in

the network are considered.

1.3 Our contributions

Our work begins with the observation that while most existing network analysis has

tended to focus solely on the topological features of interaction networks, there is

much more information available to us about the proteins themselves, and this in-

formation can and should be used in the computational analysis. By incorporating

protein features, such as the biological process in which a protein takes part or the

domains it is predicted to contain, we expand the scope of the analysis. Patterns in

the interaction network which are both feature and topology based more accurately

describe the actual mechanisms by which processes in the cell work. Utilizing more

abstract protein features than basic homology enables us to find a hierarchy of more

abstract, recurring organizational units of increasing complexity in the interactome.

In this thesis, we first introduce the concept of network schemas to describe feature

and topology based patterns in interation networks. In the remainder of Chapter 2,

we develop algorithms for uncovering recurring, over-represented network schemas in

physical interaction networks, and present a detailed analysis of schemas uncovered

in the S. cerevisiae interactome. We demonstrate the functional importance of these

schemas by showing that they correspond to functionally cohesive sets of proteins,

are enriched in the frequency with which they have instances in the H. sapiens in-

teractome, and are useful for predicting protein function. Next, in Chapter 3, we

introduce fast algorithms and a powerful system for searching for all occurrences of

a user-provided network schema in complex interaction networks. Our system gener-
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alizes many previously studied types of interaction patterns, such as network motifs

and domain-domain interactions, and allows a rich set of user queries. Finally, in

Chapter 4, we consider future directions for research.

5



Chapter 2

Organization of Physical

Interactomes as Uncovered by

Network Schemas

2.1 Introduction

In this chapter, we introduce a framework for viewing networks in terms of orga-

nizational units consisting of specific, and potentially different, types of proteins

that preferentially work together in various network topologies. Much previous work

has focused on the topological properties of networks, identifying global topological

and dynamic features [3, 24] and revealing a modular organization [27] with highly

connected groups of proteins taking part in the same biological process or protein

complex [64, 77]. Further analysis has shown that the wiring diagrams of biological

networks are comprised of network motifs, or particular circuits, that occur more

frequently than expected by chance [46, 48, 50, 62, 73, 92, 93].

Our goal is to explicitly incorporate known attributes of individual proteins into

the analysis of biological networks. We conceptualize this with network schemas,
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which are a general means for representing organizational patterns within inter-

actomes where groups of proteins are described by arbitrary known characteristics

along with the desired network topology of interactions among them (Figure 2.1A).

A schema’s matches, or instances, in an interactome are subgraphs of the interaction

network that are made up of proteins having the specified characteristics which inter-

act with one another as dictated by the schema’s topology (Figure 2.1B). For example,

a schema associated with signaling might be a linear path of kinases interacting in

succession; its instances in S. cerevisiae include portions of the pheromone response

and filamentous growth pathways. In graph-theoretic terms, a schema corresponds

to a graph with labeled nodes and edges, and finding instances of a schema within an

interactome corresponds to solving a subgraph isomorphism problem, which is known

to be NP-complete.
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Figure 2.1: A sample schema and its instances in yeast. (A) An example of a schema.
Each protein in the schema has a specific feature description and each edge has a type.
In this case, the schema describes Ras GTPase signaling, where small G proteins from the
Ras family are regulated by GTPase activating proteins (GAPs) and Guanine nucleotide
exchange factors (GEFs), and in turn regulate effector kinases which may phosphorylate
other proteins. (B) Instances of the schema in S. cerevisiae.
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Figure 2.2: The network schema topologies that are considered in this study.

In this chapter, we present a system for analyzing physical protein-protein in-

teraction networks and determining automatically which schemas are frequent and

over-represented, and thus interesting enough to merit further analysis. Although any

property can be used to annotate proteins in schemas, and different types of interac-

tions may be specified, we focus on direct physical protein-protein interactions with

proteins described via Pfam sequence motifs [4] and a set of GO molecular function

terms [2]; such schemas with multiple instances in an interactome are likely to cor-

respond to shared mechanisms that underlie a range of biological activities. Because

we expect the largest number of schemas with multiple instances to be associated

with small topologies, we begin to address these questions by considering four basic

network topologies (Figure 2.2) varying from two interacting proteins (pair schemas)

to higher-order schemas containing up to three interactions (triplet, triangle, and

Y-star schemas); we choose these particular linear, cyclical, and branched topologies

because they are the simplest patterns in physical interactomes that may intuitively

be associated with signaling pathways, complexes, and switch-like patterns, respec-

tively.

This work has three major contributions. First, we develop a computational pro-

cedure for automatically identifying emergent network schemas, or schemas that are

both recurrent and over-represented in the interactome even when the frequencies

of their lower-order subschemas are considered. Conditioning over-representation on
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the distribution of a schema’s lower-order constituents ensures that every emergent

schema conveys novel information about interactome organization. We score a schema

based upon its frequency in the interaction network and its expected frequency given

the distribution of its constituent subschemas. The expected frequency is computed

using a carefully designed graph randomization algorithm that preserves the distri-

butions of the specific labeled subschemas. The false discovery rate (FDR) of the

resulting scores is then evaluated using a variant of the permutation test. We note

that in order to uncover emergent schemas, existing approaches for related problems

could not be directly utilized; the specifics and scale of this problem required the

development of novel computational techniques (see Methods for more details).

Second, in the first large-scale analysis of this type, we apply our procedure to the

S. cerevisiae protein-protein interactome. In total, more than 140,000 Pfam network

schemas that occur at least once in the S. cerevisiae interactome are considered. Of

these, we identify 264 emergent Pfam network schemas with various annotations and

topologies. We also uncover 138 emergent GO molecular function pair schemas. Anal-

ysis of emergent network schemas reveals a network organization where pair schemas

are most diverse and where higher-order schemas reveal complex networks of primar-

ily signaling and transport related activities. This suggests that the recurring units

within interactomes are mostly pairwise, but that for some functions, higher-order

recurring units are still prevalent. The hierarchical nature of emergent schemas can

be visualized in a graph-theoretic manner which highlights that certain lower-order

schemas occur frequently in higher-order emergent schemas (i.e., they are “hubs” in

these networks), even though the frequencies of the lower-order schemas are controlled

for in the computational procedure.

Third, we demonstrate that emergent network schemas correspond to biologi-

cally meaningful units. In particular, in a systematic analysis, we show that schema

instances lead to protein subnetworks that share more specific biological process an-
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notations than subnetworks having identical topologies but no constraints on the

proteins making them up; this illustrates the additional benefit of incorporating pro-

tein annotations into traditional topology-based network analysis. Moreover, at the

other extreme of the eukaryotic spectrum, we find that if we interrogate the H. sapi-

ens interactome using the emergent schemas uncovered in S. cerevisiae, more than

one-half of the schemas of each topology have instances there as well; this fraction

is considerably lower when considering non-emergent S. cerevisiae schemas. Finally,

we give a proof of concept through two uncharacterized protein families that net-

work schemas can be used to functionally characterize protein families and individual

proteins.

2.1.1 Relationship to previous work

Network schemas build upon earlier pioneering work in network analysis by enabling

new types of analyses that were not possible with previous methods for identifying re-

current patterns in biological networks. By considering the specific roles of individual

proteins, network schemas look beyond the purely topological features that are de-

scribed by network motifs [46,48,50,62,73,90,92,93] to the tendency of certain types

of proteins to work together, thereby shifting focus from the “syntax” of biological

networks to their “semantics.” While from a graph-theoretic point of view one may

think of network schemas as a generalization of network motifs, considering protein

attributes fundamentally changes what types of biological questions can (or cannot)

be answered, and the much larger number of schemas changes the underlying compu-

tational issues as well. As compared to network alignments that uncover conserved

interactions among homologous proteins in interactomes (e.g., [15,37,71,75]), network

schemas utilize more abstract descriptions of proteins and are identified via a statisti-

cal model designed to find a hierarchy of interactome organizational units of increasing

complexity. In contrast to approaches to uncover correlated sequence-signatures or
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putative domain-domain or domain-peptide interactions via analysis of interactomes

(e.g., [11, 18, 20, 23, 35, 53–55, 63, 78, 88]), network schemas incorporate higher-order

topologies. Moreover, unlike the approaches that particularly focus on identifying

domain-domain or domain-peptide interactions, schemas do not focus on the physical

bases for protein interactions. Therefore, they represent more abstract organizational

units, indicating what types of proteins work together and not which portions of the

protein are responsible for the observed interactions. Further, it is important to note

that combinations of pair schemas present in the interactome result in higher-order

schemas that do not necessarily occur, and thus it is necessary to explicitly enumer-

ate over these in order to uncover which exist in the interactome. Compared to a

very recent approach for uncovering over-represented functional attributes in linear

paths in regulatory networks [56], network schemas additionally consider cyclical and

branched schema topologies, and their relationships to lower-order schemas.

2.2 Methods

2.2.1 Preliminaries

Protein annotations. We use Pfam [4] version 18.0 for motif annotations for all

proteins. For S. cerevisiae proteins, we additionally consider a set of 134 general

molecular function annotations from the Gene Ontology [2]. GO annotations for

S. cerevisiae proteins are obtained for each sequence from SGD version 1.01 [29]

utilizing all evidence codes. These GO terms have been selected by hand to maximize

annotation coverage and minimize overlap with respect to GO.

Physical interaction network. We use S. cerevisiae and H. sapiens protein inter-

action data from BioGRID [80], release 2.0.20. Since we are interested in uncovering

functional units consisting of proteins that work together in specific network topolo-

gies, we focus on direct physical interactions by utilizing interactions determined from
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one of the following experimental systems: Biochemical activity, Co-crystal structure,

Far western, FRET, Protein-peptide, Reconstituted complex, and Two-hybrid [29],

excluding the IST 1 set of [34]. Additionally, interactions determined via Affinity

capture-Western and Affinity capture-MS are used in the case where a bait protein

identifies at most one prey. Proteins with ambiguous common names are not used.

The physical interaction network is further filtered to remove: (1) interactions from a

single experimental source for a protein if that source found over thirty interactions

for this protein (2) any proteins with either less than one or more than fifty remain-

ing interactions and (3) any proteins that do not have an annotation that appears at

least twice in the remaining interaction network. After all filtering steps, the result-

ing Pfam-annotated S. cerevisiae network has 3,871 interactions among 2,073 proteins

described by 472 Pfam terms, and the resulting H. sapiens network has 7,284 interac-

tions among 4,062 proteins described by 669 Pfam terms. The same filtering process

used with our set of GO molecular function terms on the S. cerevisiae interactome

leaves 1,834 proteins with 3,542 interactions.

Terminology. A protein interaction network is represented as a labeled graph G =

(VN , EN), with a vertex v ∈ VN for each protein and an edge (u, v) ∈ EN between

vertices whose corresponding proteins interact. Let L be the set of possible protein

annotations (e.g., Pfam motifs). Each protein v ∈ VN is associated with a set of

annotations l(v), where l(v) ⊂ L. A network schema is a graph H = (VS, ES) where

each vertex v ∈ VS is specified by a description dv ∈ L. An instance of a network

schema H in an interaction network G is a subgraph (VI , EI) where VI ⊂ VN and

EI ⊂ EN such that there is a one-to-one mapping f : VS → VI where for each v ∈ VS,

dv ∈ l(f(v)) and there is an edge (f(u), f(v)) ∈ EI for each (u, v) ∈ ES (i.e., it is the

match in the network for the schema). Note that two distinct instances of a schema

may share proteins and/or interactions; however, any two instances must differ in at

least one protein. Two instances of the same network schema are independent if they
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are made up of non-overlapping proteins (i.e., the intersection of their vertex sets

is empty). In the case of triplet and Y-star schemas, we allow instances that have

additional interactions among the nodes in the interactome (i.e., the endpoints of the

triplet or any pair of endpoints of the “spokes” of the Y-star may be connected with

an edge). Note that network schemas can be naturally generalized to include other

types of interactions and protein annotations (see Chapter 3).

2.2.2 Uncovering network schemas

The overall procedure for uncovering emergent network schemas of a given topology

is as follows; the steps are described in more detail below. First, we count the number

of instances of every schema that occurs in the interactome; though this corresponds

to the NP-hard subgraph isomorphism problem, we find that in practice we are able

to solve it readily (see Chapter 3). Second, for each schema that has at least two

non-overlapping instances, we compute its average number of instances in randomized

networks. Third, the schema is scored to favor schemas that both occur frequently

and are over-represented compared to their average count in the randomized networks.

Fourth, the significance of scores is determined using a false discovery rate that is

calculated by repeating the first three steps of the process on randomized networks.

Finally, the results are filtered in order to remove redundant schemas.

We developed an extensive algorithmic infrastructure as related techniques are

not directly applicable. While there is substantial previous work in the data mining

community for frequent (labeled or unlabeled) subgraph mining (e.g., see [10,17,30,

31,33,43,44]), these approaches are focused on the algorithmic issues of enumerating

(or eliminating) subgraphs in single or multiple networks, and not on assessing signif-

icance or relevance. Here, we are able to take a brute-force approach in enumerating

subgraphs, and our methodology development instead is focused on identifying fre-

quent and over-represented subgraphs. We further note that it is not possible simply
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to apply the approach used for network motif finding [50] to uncover emergent net-

work schemas as well. Specifically, in that approach the count of each network schema

in the actual network would be compared to the count in randomized networks, and a

p-value would be computed by considering what fraction of the randomized networks

have a larger number of that network schema; however, this will identify as emergent

schemas that occur rarely and are likely to be spurious but are made up of annota-

tions that themselves occur rarely in the network, as these schemas are unlikely to be

found in the randomized networks. A similar problem arises with using Z-scores, also

reported in [50]. Our scoring and FDR procedure (described below) are designed to

better handle the variation in annotation frequency and the large number of schemas

of each topology that are considered. Finally, the task of building an ensemble of

randomized networks that are constrained to have specified counts of certain labeled

subgraphs has not, to the best of our knowledge, been addressed in the past.

Randomized networks for computing scores. For each schema s that recurs

in an interactome (i.e., has at least two instances), we compute how often it occurs

in randomized networks, which tells us whether the schema occurs more often than

expected by chance. For each pair schema, we count how often it occurs in randomized

networks that have been generated using the stub-rewiring approach of [50], which

randomizes edges while maintaining the degree and labels of each node in the graph.

Note that there is no known efficient method that generates graphs uniformly at

random with specified degree and label distribution, so an approximation such as this

is used. It is well known that the stub-rewiring procedure may result in networks

where some nodes cannot achieve their desired degrees; however, we have found this

to be rare in the networks studied here. For example, randomizing the S. cerevisiae

network 100 times using stub-rewiring, we found that 98 of the random networks

had all nodes reaching their original degrees, and 2 of the random networks had two

nodes that are below their desired degree by 1. We note that while it is possible
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to randomize the networks by shuffling annotations while keeping the topology fixed

(e.g., as in [54]), annotations have different tendencies to be found in proteins of

varying number of interactions, and we wish to maintain this relationship.

For each triplet and triangle schema, we count how often the schema occurs in net-

works randomized so as to preserve the distributions of the pairs making them up, and

for each Y-star schema, we use the same approach, but consider randomized networks

that preserve the distribution of triplets making up the Y-star schema (see below).

In this manner, we are able to eliminate schemas that are over-represented only be-

cause they are comprised of lower-order schemas that are themselves over-represented;

instead, we identify schemas that are over-represented even when considering the dis-

tribution of the lower-order schemas making them up. As with the stub-rewiring

approach, the randomization methods for preserving pair and triplet distributions

are approximate, as no efficient algorithms are known for these problems; however,

as we show, they work well in practice.

We now describe the subgraph-preserving randomization methods in more detail.

For each triplet schema where nodes labeled a and c interact with a central node

labeled b, we generate randomized graphs that maintain the original number of in-

teractions between proteins labeled a and proteins labeled b, and between proteins

labeled b and proteins labeled c. Let these target interaction counts be denoted by

tab and tbc, and let sab and sbc be the current count in the network we are generating.

The counts of all other pairs of labelings are ignored. To generate the randomized

graphs we repeatedly add edges between unconnected proteins, where the probability

of adding a particular edge is proportional to how much closer it gets to the desired

count of labelings, as measured by the squared L2 distance. That is, if node u is

labeled with a and node v is labeled with b, an edge between them is added to the

graph with probability proportional to max{0, (tab −sab)
2 −(tab −sab −euvab)

2}, where

euvab is the number of a-b labelings that are introduced by adding an edge between
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u and v (in this case euvab = 1). Due to the fact that proteins often have multiple

annotations, adding an edge may increase the count of more than one of the desired

labeling pairs. In this case, the edge is added with probability proportional to the

geometric mean of the individual pair labeling scores. We continue adding edges un-

til the pairwise distributions are satisfied or no further edges can be added that can

change the number of a-b or b-c labellings. As with the stub-rewiring approach, the

degree of each protein is maintained, so that an edge is added only if the original

degrees of both proteins have not yet been reached. Note that randomized networks

are generated separately for each schema, and only edges changing the counts of con-

stituent pair schemas are considered for addition into the network; that is, we only

generate a small number of the edges (i.e., those that play a role in the correspond-

ing lower-order schemas). This same process is used to generate randomized graphs

for triangle schemas, except that a third pairwise count is also maintained (i.e., the

a − c count). The randomized graphs generated in this manner do an excellent job

in achieving the desired distributions. For over 98% of all Pfam triplet schemas that

have at least two independent occurrences in the original network (and 96% of tri-

angles), the counts of all their constituent pairs are within one of their counts in the

original graph for at least 90% of the randomized graphs.

The same overall scheme is adapted for randomizing networks in order to maintain

triplet distributions. In particular, for each Y-star schema where a central node

labeled with a interacts with nodes labeled with b, c, and d, randomized graphs are

generated so as to maintain the number of paths where a protein annotated with

b interacts with a protein annotated with a which in turn interacts with a protein

annotated with c, the number of paths where a protein annotated with b interacts

with a protein annotated with a which in turn interacts with a protein annotated

with d, and the number of paths where a protein annotated with c interacts with

a protein annotated with a which in turn interacts with a protein annotated with
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d. We also consider the pairwise interactions in the Y-star; that is, the number of

interactions between a protein labeled with a with a protein labeled with b, as well as

the number of interactions with proteins labeled with c or d. An edge is added with

probability proportional to the product of a pair term and a triplet term. As above,

degree distributions are maintained and the pairwise (respectively triplet) term for

each edge is the geometric mean over each pairwise (respectively triplet) labeling

added depending on how much closer that edge gets one to the target count for that

labeling. For each possible edge, the triplet term is initialized to be 1 until that edge

can contribute to a triplet labeling. Once the pairwise term is 0 for all edges, only the

triplet term is considered. This process is continued until the relevant triplet counts

for the Y-star are satisfied or until no further edges can be added that can change these

counts. At this point, if the randomized network has a triplet that has not reached

its target count, we choose a protein that is annotated with the central label with

probability proportional to its degree, and choose two proteins with the peripheral

labels uniformly at random. New edges are added from the central protein to the two

others, removing existing edges if necessary to satisfy the degree distributions. This

process is repeated until all triplet target counts are met or exceeded. We find that

for over 95% of Pfam Y-star schemas evaluated, the counts of all their constituent

triplets are not less than one away from their counts in the original graph for at least

90% of the randomized graphs.

As mentioned, the randomization methods for preserving degree distribution, and

pair and/or triplet subschema distributions are approximate and do not come with

theoretical guarantees. In order to show that the described randomization procedure

produces networks that are sufficiently different from one another (i.e., sample a wide

range of possible networks), we take the five top-scoring schemas of triplet, triangle

and Y-star topologies and generate 1000 subschema preserving randomized networks

for each of them. We then calculate the overlap between each pair of randomized net-
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Figure 2.3: Variation in 1000 subschema preserving randomized networks for each of the
five top-scoring triplet, triangle, and Y-star schemas. Each point in the graph plots the
average Jacquard coefficient between pairs of networks randomized for the same schema,
with error bars showing plus and minus one standard deviation, as a function of the total
target number of edges desired between proteins of particular annotations divided by the
total number of possible edges having those annotations. The overlap between randomized
networks also appears to depend on the degree distribution of the proteins with the relevant
labels (not depicted here).

works for each schema as the Jacquard coefficient over the edges present in each of the

networks. The low average pairwise overlaps (Figure 2.3) indicate that the random-

ization procedure is sampling broadly from the set of possible networks. Moreover,

we observe that for a given schema the average overlap between subschema preserving

networks seems to depend on the number of the target edges desired, the total num-

ber of possible edges of the appropriate labels possible, and the degree distribution

of the nodes annotated with the labels of interest.
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Scoring schemas. For each schema s, let counts be the number of times it occurs

and avgs be the average number of times it occurs in randomized networks. The score

for schema s is given by

(counts + 1) log

(

counts + 1

avgs + 1

)

.

The addition of the pseudocount of 1 downweighs the contribution of very rare

schemas that could otherwise obtain high scores simply due to very small (or zero)

average counts in the randomized graphs. The scoring function takes into account

both a schema’s frequency and its over-representation in the real graph compared to

the randomized one. While other scoring functions may be utilized, we note that due

to the variation in how frequent various annotations are, counts by itself is not an

ideal choice as it favors schemas comprised of frequent annotations.

For each schema, 100 randomized networks are generated, and the average number

of times that each schema occurs in these networks is computed. Overall results

did not change appreciably when considering more randomizations in this step and

keeping the rest of the framework the same (data not shown), suggesting that 100

randomizations are adequate for our purposes. Due to computational concerns, and

since we are only interested in independent recurring schemas, scores are computed

only for the 419 pair, 842 triplet, 31 triangle, and 999 Y-star schemas that occur

independently at least twice in the interactome.

Significance model. For each putative recurring schema found in the real network,

we obtain a score reflecting its frequency and over-representation compared to the

randomized graphs. In order to evaluate the significance of these scores, for each

schema topology, we repeat this procedure with multiple iteration graphs created

by the stub-rewiring algorithm of [50]. Since all associations in these randomized

networks occur by chance, we can use them to calculate the FDR for each score, or
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the fraction of schemas with score ≥ s that arise from chance alone. For n iteration

graphs, it can be computed as

1
n

∑

iteration graph i # putative schemas in graph i with score ≥ s

#putative schemas in the real graph with score ≥ s
.

Here, n = 50 iteration graphs are used. In order to correct for differences in the clus-

tering coefficient between real and randomized graphs, the FDR of triangle schemas

is further corrected by multiplying by the ratio of the number of triangles in the ac-

tual network to the average number found in randomized graphs. Note that the false

discovery rate corrects for multiple hypothesis testing. We use an FDR of ≤ 0.05 as

the significance cutoff to identify emergent schemas. Note that other FDR values can

be used as a cutoff to identify emergent schemas; we choose the 0.05 level as it is a

commonly-used one that appears reasonable in this application.

Filtering schemas. Once schemas over-represented at FDR ≤ 0.05 are identified,

we eliminate any schema for which at least 15% of the randomizations have a labeled

subgraph whose count is more than one below its count in the original network.

Additionally, the instances for these schemas are obtained and we eliminate those

schemas whose instances are a subset of the instances of another schema from the

same topology. The remaining schemas are our uncovered emergent schemas.

Network alterations. In order to check whether the schemas identified as emer-

gent are robust to changes in the network, we recompute FDRs on the yeast network

altered in the following way. First, we remove a percent x of the interactions, where

each such interaction is chosen uniformly at random. We then add an equal number

of interactions, where the two proteins to be connected are again chosen uniformly

at random. We consider altered networks with x = 2.5%, 5.0%, 7.5% (i.e., resulting

in networks differing from the original network by up to 5%, 10%, and 15% respec-

tively), and generate five altered networks for each of these values. For each perturbed
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Figure 2.4: A histogram of the absolute differences between the FDRs of emergent schemas
in the original network and a network altered by removing and then adding 5.0% of the
edges. Results in each histogram are aggregated over five altered networks, and the heights
of the bars give the number of schemas falling into the five bins corresponding to changes
in FDR < 0.1, 0.03, 0.05, 0.1 and 1.0.

network, the absolute value of the difference in FDRs over all schemas identified as

emergent in the original network is computed. Figure 2.4 gives a histogram of these

values over the 5.0% perturbed networks and shows that the FDRs for most emergent

schemas vary very little, with a few outliers. For the networks altered by removing

2.5% and adding 2.5% of the interactions, the median absolute change in FDR over

emergent schemas varies from 0.0017 to 0.0036 in the five perturbed networks; these

numbers are 0.0018 to 0.0033 when adding and removing 5%, and 0.0019 to 0.0043

when adding and removing 7.5%.
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Computing requirements. The described schema discovery process is run on a

Dell Linux Cluster with 3.2 GHz Xeon and 3.0 GHz Woodcrest processors; 51 total

nodes are used (one for the FDR computation of the original network and one for

each of the iteration graphs). The entire process for uncovering schemas of the four

topologies considered typically takes 12 total hours in a shared user environment.

2.2.3 Evaluating functional coherence

For each topology, we compile the set of instances of all Pfam emergent schemas.

Duplicate instances are removed; for the “background” set, we enumerate all sub-

graphs of that topology in the same filtered interaction network that is used to search

for the Pfam schemas. To avoid any bias that might arise from Pfam annotations,

only proteins having at least one Pfam annotation are considered when building the

background sets of subgraphs. Furthermore, we require all proteins in each schema

instance and each background subgraph to have non-trivial GO biological process

annotations; in the case of the Y-star topology, this requirement is relaxed to permit

the central node to be unannotated. For each such subgraph, we determine the least

common ancestor (LCA) of the annotations of the proteins in the GO biological pro-

cess graph; if there are multiple LCAs, we select the one that annotates the smallest

number of proteins in S. cerevisiae. Note that if the proteins are not known to be

functionally related, the LCA of their annotations would be the trivial annotation

of biological process. The “specificity” of this LCA is calculated as the probability p

of a schema-sized set of proteins having that annotation, using the hypergeometric

distribution. Finally, for a given value of p, for both the emergent schema instances

and the background set of subgraphs, we can measure the functional coherence of

each as the fraction of subgraphs whose constituent proteins have annotations whose

LCA specificity is at most p.
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2.3 Results

2.3.1 Emergent network schemas in the S. cerevisiae inter-

actome

Each pair schema is scored by considering its number of occurrences in the S. cere-

visiae interactome against its average number of occurrences in degree-preserving

random networks [49, 50, 73]. Each triplet, triangle, and Y-star schema is scored

similarly, except that its average number of occurrences is computed in networks ran-

domized so as to maintain the distribution of its constituent pairs (for triplet and

triangle schemas) or its constituent triplets (for Y-star schemas). Using a false dis-

covery rate (FDR) of ≤ 0.05, we identify 151 pair, 55 triplet, 26 triangle, and 32

Y-star Pfam emergent schemas in the S. cerevisiae network comprised of direct phys-

ical interactions. The emergent schemas are a small fraction of the total number of

schemas occuring in the interactome. In total, 2838 pair, 24662 triplet, 999 triangle

and 114650 Y-star Pfam schemas occur at least once in the S. cerevisiae interactome.

Of these, 419 pair, 842 triplet, 31 triangle, and 999 Y-star schemas are recurring in

that they have at least two non-overlapping instances (i.e., that do not contain a

protein in common).

The emergent pair schemas are depicted in a network in Figure 2.5A. Pair schemas

represent two proteins working together (as a dimer or as part of a complex), or one

protein (de)activating another. The uncovered emergent schemas represent a wide

variety of functions including signaling (e.g., schemas involving Pkinase or Ras mo-

tifs), transport (e.g., schemas involving the amino acid permease motif AA permease),

intracellular trafficking (e.g., synaptobrevin schemas), RNA processes (e.g., RRM 1

schemas) and ubiquitination (e.g., ubiquitin-conjugating enzyme motif UQ con schemas).

While some of the pair schemas may correspond to actual domain-domain interac-

tions, the schema formulation by itself does not make any claims about the interaction
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Figure 2.5: Emergent pair schemas uncovered in the S. cerevisiae interactome. A pair
of vertices connected by an edge corresponds to a pair schema. (A) Pfam emergent pair
schemas, where each vertex is labeled with a Pfam motif. (B) Gene Ontology molecular
function emergent pair schemas, where each vertex is labeled with a GO molecular function
term, with the word “activity” dropped from term names.

interface. In particular, some of the underlying physical interactions may instead con-

sist of domains interacting with peptides or disordered regions [41]. This is clear, for

example, when looking at the diverse set of pair schemas involving the SH3 domain

which is known to typically bind proline-rich peptides [84]. Nevertheless, similar to

earlier findings for domain-domain interactions [35], we find that emergent Pfam pair

schemas are enriched in homotypic annotations as compared to all Pfam pair schemas

in the interactome (18.5% vs. 5.8%).

We also uncover S. cerevisiae emergent pair schemas using a hand-chosen set of

GO molecular function annotations (Figure 2.5B). As with the Pfam schemas, the GO
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pair schemas represent many types of functions including transport, signaling, DNA

and RNA processing, ubiquitination, protein folding, and cytoskeleton organization.

The GO molecular function schemas can sometimes allow generalizations of the Pfam

schemas that move beyond sequence similarity, as proteins annotated with the same

GO molecular function term need not be homologous to each other. For example,

the Pfam pair schema consisting of a protein with the Pkinase motif interacting with

a protein with the cyclin N-terminal motif Cyclin N is subsumed by the GO schema

consisting of a protein with kinase activity interacting with a protein with kinase reg-

ulator activity. Instances of this GO schema in the S. cerevisiae interactome include

cyclins which lack the Cyclin N Pfam motif, other cyclin-like proteins, and different

kinase regulators altogether, such as activating subunits of kinase complexes, adap-

tors, and scaffold proteins. As another example, the Pfam pair schema consisting

of the Pkinase motif interacting with the zinc finger motif zf-C2H2 has a correspon-

dence in a GO schema consisting of a protein with kinase activity interacting with

a protein with transcription factor activity; instances of the latter schema in the S.

cerevisiae interactome include transcription factors of the zinc finger, MADS, and

basic helix-loop-helix families.

Higher-order emergent S. cerevisiae network schemas are given in Figures 2.6

and 2.7. For the purpose of visualization, they are represented as networks where

vertices correspond to lower-order schemas. That is, for each higher-order schema,

there is a vertex for each of its corresponding lower-order schemas, along with edges

between these vertices; triplets and triangles are depicted with respect to lower-order

pair schemas whereas Y-stars are depicted with respect to lower-order triplet schemas

(see Figures 2.6A, 2.6C, and 2.7A for explanation). Edges in these networks thereby

indicate that the two corresponding lower-order schemas are found together as parts

of a emergent higher-order schema.
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Figure 2.6: Emergent triplet and triangle schemas uncovered in the S. cerevisiae interac-
tome, represented in a graph where vertices correspond to pair schemas. Pair schemas that
are themselves emergent (Figure 2.5) are displayed as darker vertices. (A) An illustration
of the subgraph representation for triplet schemas. The triplet MFS 1-DUP-AA permease

(on the left) is mapped to two pair vertices, corresponding to the lower-order pair schemas
making it up, connected by an edge. The edge is labeled in pink with the central motif of
the triplet (DUP). (B) Pfam emergent triplet schemas. (C) An illustration of the triangle
schema DUP-AA permease-Pfam-B 521. The triangle DUP-AA permease-Pfam-B 521 is
mapped to three pair vertices, corresponding to the lower-order pair schemas making it
up, connected by edges; that is, it is represented as a triangle in the graph whose vertices
represent pair schemas. The DUP-Pfam-B 521 pair, colored pale in the pair-vertex graph,
is not an emergent pair schema, whereas the other two pairs in the triangle, colored dark
in the pair-vertex graph, are. (D) Pfam emergent triangle schemas.

The uncovered emergent triplet schemas (Figure 2.6B) include several relating

to signaling (e.g., Pkinase and Ras schemas) and transport (the connected compo-

nents with the MFS 1 motif). The signaling schemas include kinase cascades (e.g.,

Pkinase-Pkinase-Pkinase), regulation of Ras signaling (e.g., RhoGAP-Ras-RhoGEF),

those connecting Ras and kinase signaling (e.g., RhoGAP-Ras-Pkinase), and those

relating to specific structural domains involved in signaling [59] (e.g., SH3-Pkinase-
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WD40 and SH3-Pkinase-PH). Note that there are many possible schemas associated

with signaling (e.g., consider the set of schemas annotated with all domains known to

be associated with signaling [59]), and our schema analysis identifies only a small sub-

set of these as emergent. There are numerous emergent triplet schemas involving the

major facilitator superfamily (MFS 1), one of the two largest families of membrane

transporters [57]. Triplet MFS 1 schemas include those involving other transport pro-

teins, such as membrane proteins involved in transport of amino acids (i.e., containing

the AA permease motif) and proteins involved in ER to Golgi transport (e.g., con-

taining the EMP24 motif). Whereas the pervasiveness of kinases within conserved

portions of the interactome has been observed earlier [37], the prevalence of such

transport related subnetworks has been previously underappreciated.

Many of the triangle schemas (Figure 2.6D) correspond to known complexes.

There are several triangle schemas, making up a connected component, corresponding

to the SNARE vesicle-fusion machinery. The triangle schema made up of LSM motifs

corresponds to Sm and LSM complexes, and is associated with the spliceosome as

well as other RNA processing [28]. The triangle schema made up of AAA motifs cor-

responds to replication factor C complex and the 19S particle of the 26S proteosome.

There are numerous triangle schemas associated with signaling as well; these may

correspond, for example, to complexes or phosphorylation by kinase complexes. For

example, the Cyclin N-Pkinase-Pkinase triangle schema contains instances where a

cyclin associates with a cyclin-dependent kinase, and this complex either phosphory-

lates or is phosphorylated by another kinase.

The emergent Y-star schemas (Figure 2.7B) refine the functional landscape of the

triplet schemas, with one relating to transport and several relating to Ras and kinase

signaling pathways. The Y-star schemas showcase the complex, nonlinear regulatory

patterns evident in biological pathways. For example, some of the Y-star Pkinase

schemas relate to the role of phosphorylation in combinatorial regulation of tran-
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scription factors (e.g., those including multiple transcription factor motifs, such as

zf-C2H2 and GATA interacting with the same kinase), whereas others correspond to

kinase cascades that additionally incorporate regulation via cyclins (e.g., schemas in-

cluding Cyclin N). Additionally, several Y-star schemas represent a dynamic “switch-

like” pattern in which the peripheral proteins are active in different contexts. This is

evident in some schemas where the peripheral proteins belong to the same family, and

utilize the same structural interface on the central protein. For example, several of

the Y-star Ras schemas consist of a central Ras protein interacting with several reg-

ulatory GTPase activating proteins (corresponding to RhoGAP, TBC or some LIM

containing proteins). Such schemas show that certain types of “mutually exclusive”

interactions [40] recur together in the interactome.
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Figure 2.7: Emergent Y-star schemas uncovered in the S. cerevisiae interactome, repre-
sented as triangles in a graph where each vertex corresponds to a triplet schema. Triplet
schemas that are themselves emergent (Figure 2.6) are displayed as darker vertices. (A) An
illustration of the triplet subgraph representation of a Y-star schema. The Y-star (on the
left) is mapped to three vertices corresponding to its lower-order triplet schemas, along with
edges among them; that is, it is represented as a triangle in the graph whose vertices repre-
sent triplet schemas. The triplet subschemas of the Y-star are highlighted. The subschemas
that are emergent triplets are highlighted in purple and represented as darker vertices. For
ease of visualization, the central node of the Y-star is labeled in pink inside the triangle
and connected to the vertices by dashed lines. (B) Pfam emergent Y-star schemas.
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2.3.2 Schemas give insight into organizational principles of

interactomes

While each emergent network schema represents a specific way in which proteins

can work together, their relationships to one another, and in particular of higher-

order schemas to lower-order ones, lead to some general observations about network

organization.

The first observation is the striking drop in the number and diversity of emergent

schemas with increased complexity, especially between pair and higher-order schemas

(there are 139, 39, 29 and 30 distinct Pfam motifs involved in pair, triplet, triangle and

Y-star emergent schemas respectively). Whereas 36% of the recurring pair schemas

in S. cerevisiae are found to be emergent, only 6% of recurring triplet and 3% of

recurring Y-star schemas are. (Note that triangle schemas are something of a special

case because the cyclical structure is very constrained and recurring units are unlikely

to be found at random.) This suggests that the semantic units within interactomes

are primarily at the pair level, and that most repeated patterns of higher order can be

viewed as rearrangements of the pairs that can be explained simply by randomness.

At the same time, there are a considerable number of higher-order schemas (i.e., those

identified as emergent) that cannot be explained by lower-order ones.

These higher-order emergent schemas are not just combinations of the lower-order

emergent pair schemas. For example, the emergent pair schema network (Figure 2.5)

contains 712 triplets, of which 571 occur even once in the S. cerevisiae interactome.

Of these, only 37 are emergent. Thus, the majority of possible triplets resulting from

emergent pair schemas are not emergent, and triplet schemas thereby allow us to

uncover which sets of proteins comprising pair schemas work together in the network.

On the other hand, 18 emergent triplet schemas are not present in the emergent pair

schema network. For example, the RhoGAP-Ras-Pkinase emergent triplet schema

consists of the Ras-Pkinase pair which is not found to be emergent. Though this

31



pair occurs numerous times in the network, given the frequency of Ras and Pkinase

Pfam motifs, it does not appear at the FDR ≤ 0.05 level; this also demonstates that,

as intended, our procedure for uncovering schemas corrects for the frequency of the

motifs.

Large fractions of the distinct lower-order schemas making up the higher-order

emergent schemas are themselves emergent (73% and 80% of the pair schemas com-

prising triplet and triangle schemas, respectively, and 51% of the triplet schemas

making up Y-star schemas). The use of subgraph-preserving randomizations in our

procedure confirms that this observation is not due solely to the abundance of the

lower-order structures, but is a more general feature of schema organization. This

result has a topological counterpart, as it has been found that four-protein network

motifs tend to be combinations of three-protein ones [92].

Several emergent schemas from each topology share particular lower-order schemas.

These lower-order schemas that are found in numerous higher-order schemas corre-

spond to hubs in Figures 2.5, 2.6, and 2.7. We observe that the nodes with largest

degree in the S. cerevisiae Pfam pair graph (Figure 2.5A) are Pkinase, SH3 1, and

Ras. These domains comprise hubs at different levels of schema complexity. For ex-

ample, the pairs that are hubs in the triplet graph (Figure 2.6B) are Pkinase-SH3 1,

Ras-RhoGAP, and Pkinase-Pkinase. It is instructive to compare these families to the

list of the 10 most frequent Pfam motifs and the 10 Pfam motifs involved in the high-

est number of interactions in the studied network. As expected, because of our scoring

procedure which considers the frequency of annotations in the network, while some

of the “hub” motifs are frequent in the interactome or common in interactions (e.g.,

Pkinase and SH3), many are not (e.g., RhoGAP); additionally, there are many Pfam

motifs that occur frequently in the network but are not prevalent in these schemas

(e.g., Helicase C).
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2.3.3 Schemas recapitulate known biology: the Ras super-

family

As an illustrative example showing that automatically uncovered emergent schemas

can show excellent correspondence to well-understood organizational and functional

units, we detail our findings on S. cerevisiae emergent Pfam schemas involving the

Ras superfamily. There are ten Ras pair schemas (Figure 2.5A). The Ras-RhoGAP,

Ras-RasGEF, and Ras-TBC schemas correspond to the basic regulatory interactions

of Ras proteins. The Ras-GDI pair reflects the additional regulatory mechanism of

the Rab subfamiliy of Ras proteins by the guanyl dissociation inhibitors (GDIs).

The Yip1 family of proteins in turn may act as GDI displacement factors [76] for a

group of Ras-like proteins associated with Golgi membranes and/or act as membrane

recruiters of these proteins [91]. Two Ras pair schemas involve Ras-binding motifs—

the diaphanous GTPase-binding motif DRF GBD found in Rho effectors and the

P21-Rho-binding motif (PBD). Other Ras pair schemas contain motifs that reflect the

biological role of Ras families, such as the IQ calmodulin-binding motif and the PB1

domain associated with signaling. Finally, LIM is a general structural domain, but

is found in several GAP proteins. The higher-order Ras emergent schemas (Figures

2.6 and 2.7) include several that reflect their diverse regulatory mechanisms. For

example, there is a Pkinase-Ras-RhoGAP triplet, where the RhoGAP regulates the

Ras which in turn regulates the kinase, and a RhoGEF-Ras-RhoGAP triplet, where

both the RhoGEF and RhoGAP regulate Ras.

2.3.4 Schemas uncover functionally coherent portions of the

interactome

To validate in a systematic manner that emergent schemas correspond to functional

units and may be helpful towards uncovering network modularity, we determine
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whether individual instances of emergent schemas have enriched functional coher-

ence beyond that suggested by guilt-by-association and subgraph topology. As de-

scribed in Methods, for each topology we determine the specificity, estimated using

the hypergeometric distribution, of the most descriptive biological process annotation

shared by the proteins in an instance of an emergent schema. For the background set,

we enumerate all subgraphs of a given topology in the interaction network, with the

restriction that only proteins having at least one Pfam annotation are considered (to

avoid bias arising from Pfam annotated proteins). We find that 77% of the instances of

the emergent pair schemas share a biological process at the p ≤ 0.01 level, as opposed

to 53% for the background set. These numbers are 60% vs. 35% for triplet schemas,

87% vs. 69% for triangle schemas, and 58% vs. 21% for Y-star schemas. This en-

richment is observed over the entire range of p-values (see Figure 2.8). Functional

enrichment is likely due in part to the enrichment of true interactions in emergent

schema instances; indeed, interactions from small-scale experiments (< 50 interac-

tions uncovered total) are enriched in the emergent pair Pfam schemas instances as

compared to the entire interactome.

2.3.5 Enriched number of S. cerevisiae emergent network

schemas with instances in H. sapiens

In order to determine whether emergent S. cerevisiae schemas tend to be found in

other organisms, we have used each schema to interrogate the full (i.e., unfiltered)

H. sapiens physical interaction network in BioGRID [7] and obtain its instances. We

limit this analysis to schemas comprised of Pfam annotations that occur in both S.

cerevisiae and H. sapiens. We find that 76% of these S. cerevisiae Pfam emergent

pair schemas have at least one instance in the H. sapiens network. For comparison, if

we consider pair schemas with instances in S. cerevisiae with FDR > 0.05, only 38%

have instances in H. sapiens. The fraction with instances in H. sapiens is 75% for
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Figure 2.8: Functional coherence of emergent schema instances compared with arbitrary
subgraphs of the same topology. Each panel compares emergent schemas (shown in blue)
with a background set of schemas (shown in red) with respect to biological process coherence.
As a function of a particular p-value p, we plot the fraction of schema instances that
share a biological process term that has p-value less than or equal to p, as judged by the
hypergeometric (see text). For all topologies (pairs, first panel; triplets and triangles, second
panel; Y-stars, third panel) and over the entire range of p-values, the emergent schemas
have a higher fraction of instances with shared biological process than background schemas
of the same topology.

emergent triplet schemas, 61% for emergent triangle schemas, and 55% for emergent

Y-star schemas; the instance percentages for schemas not found to be over-represented

are 17%, 15%, and 8% respectively. Thus, emergent schemas have instances in H.

sapiens two to seven times more frequently than schemas of the same topology that

are not found to be over-represented, giving further evidence that these schemas

correspond to recurring units within interactomes.

35



2.3.6 Network schemas in the H. sapiens interactome

To compare the types of schemas that are emergent across distant genomes, we un-

cover pair schemas in the H. sapiens interactome (Figures 2.9 and 2.10). We identify

29 pair schemas that are emergent schemas in both the S. cerevisiae and H. sapiens

networks, as well as several that are emergent schemas only in H. sapiens but have

instances in S. cerevisiae (Figure 2.9). As expected, these schemas represent some

of the most basic processes that occur within the cell: DNA packaging, cytoskeleton

organization, signaling, vesicle fusion, and so on.

The H. sapiens emergent pair schemas that are not found in S. cerevisiae (Fig-

ure 2.10) contain many schemas related to processes specific to higher organisms.

These include, for example, schemas involving the extracellular matrix (e.g., Collagen

and Fibrinogen C schemas) and intercellular signaling (e.g., Hormone recep schemas),

among others. Many of these types of schemas consist of Pfam motifs that are not

found in S. cerevisiae (e.g., the Death domain, found in proteins associated with apop-

tosis). The H. sapiens-specific emergent pair schemas also include some where both

motifs are also found in S. cerevisiae; some of these schemas correspond to expansions

of protein families and their interactions in H. sapiens. These include, for example,

several emergent schemas involving motifs that are associated with phosphotyrosine

signaling (e.g. SH 2 and Y phosphatase schemas); though these motifs are found in S.

cerevisiae, they are rare. Additionally, the H. sapiens emergent pair schemas reveal

how newer motifs, found only in H. sapiens, are integrated into networks containing

older motifs, found in both organisms. For example, the tyrosine kinase Pkinase tyr

motif, found in H. sapiens but not S. cerevisiae, is involved in emergent pair schemas

with signaling domains such as SH3 1 and PH that are found in both organisms.

The H. sapiens and S. cerevisiae schemas taken together help fill in some of

the data missing from the current state of interactomes, as combining the emergent

schemas from the two interactomes gives a more complete view for some processes.
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Figure 2.9: Pfam pair schemas that are found in both H. sapiens and S. cerevisiae. Schemas
that are emergent in both organisms are displayed with red edges. Schemas that are emer-
gent only in H. sapiens but that have instances in S. cerevisiae are shown with light blue
edges. Schemas that are emergent only in S. cerevisiae but that have instances in H. sapiens

are indicated with grey edges.

For example, several schemas relating to ubiquitination consist of pairs that are found

to be emergent in only one organism but which have instances in the other; this is

most likely due to missing interactions in one of the interactomes. The S. cerevisiae

emergent schemas cover two parts of the ubiquitination pathway: they include an

interaction between the ubiquitin family and the ThiF family of ubiquitin-activating

enzymes, which catalyze the first step of the pathway, and an interaction between the

UQ con family of ubiquitin-conjugating enzymes and the zf-C3HC4 (RING finger)

family of ubiquitin ligases, which catalyze the second and third steps of the pathway,

37



Figure 2.10: Pfam pair schemas that are emergent in H. sapiens and do not have instances
in the S. cerevisiae interactome. Red vertices indicate Pfam motifs that are found in both
organisms, and brown vertices indicate Pfam motifs found in H. sapiens but not S. cere-

visiae.

respectively. H. sapiens emergent schemas that have instances in S. cerevisiae com-

plete this portion of the pathway by connecting the ubiquitin family with the UQ con

family of ubiquitin-conjugating proteins. Additionally, H. sapiens schemas connect

ubiquitin to the HSP70 family of chaperones, reflecting the role of ubiquitination in

targeting misfolded proteins for degradation.
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2.3.7 Schemas enable functional predictions

There are several motifs of unknown function implicated in schemas (e.g., Pfam-B

motifs in Figures 2.5-7 and Figure 2.9). As proof of concept, we focus on two examples,

DUP and MAGE, and show that schemas can help characterize motifs and proteins

whose functions have not yet been experimentally determined.

“One of the most curious gene families in yeast” [65], the DUP family consists of

twenty-three yeast proteins [12], most of which are not yet functionally annotated.

Based on schema analysis, we predict that the DUP family consists of proteins that

are associated with membrane transporters. The DUP proteins are found in multiple

schemas of various topologies (Figures 2.5, 2.6, and 2.7), and these schemas are dom-

inated by interactions with members of transporter families such as MFS 1, Sugar tr,

and AA permease. The finding that one member of the family, Cos3, is an enhancer

of the antiporter Nha1p [51] supports this prediction. Additionally, a previous pre-

diction connects DUP proteins with membrane trafficking [12]; given our analysis,

they might be involved in trafficking of transporters.

There are fifty-five MAGE sequences in H. sapiens [9], thirty-two of which are

listed as such in Pfam and nine of which have physical interactions listed in Bi-

oGRID [7]. MAGE proteins, which are mostly uncharacterized, were initially found

to be expressed in tumors, although some are now known to be expressed in nor-

mal tissues. We found the MAGE family to participate in pair schemas with two

protein families: the Death domain and the zf-C3HC4 RING motif (see Figures 2.10

and 2.11). The Death domain is associated with apoptosis, and the RING motif is

associated with E3 ubiquitin ligases, which perform the final step in protein ubiquiti-

nation. These schemas suggest a connection between MAGE proteins and apoptosis,

which, if correct, could shed light on the association between some of the original

members of the MAGE family and cancer. It is possible that ubiquitination plays a

role in this connection, although the link between ubiquitination and apoptosis is still
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Figure 2.11: Emergent H. sapiens pairs involving the MAGE family (A), and their instances
(B).

a subject of investigation; MAGE proteins may provide a connection between these

two processes. We further note that the zf-C3HC4 RING domain forms a schema

with the Death domain as well (Figure 2.10).

2.4 Discussion

We have introduced network schemas as a general means to describe organizational

units consisting of particular types of proteins that work together in biological net-

works and have developed a fully-automated procedure for discovering them. In the

first analysis of this type, we have uncovered hundreds of emergent network schemas

and have demonstrated that they recapitulate known biology, suggest new organiza-

tional units, have enriched biological process coherence, and have instances in organ-

isms across large evolutionary distances.

Using two poorly understood gene families, one from human and one from yeast,

we have shown how schema analysis can be used to annotate protein families and

their individual members. Guilt-by-association and other network-based functional

annotation methods (review, [72]) are, by intent and design, better suited for the

general function prediction problem. However, schema analysis provides a new way

to amplify a weak signal, and can suggest mechanistic details in some cases. For

example, if we consider proteins that interact physically with a given protein, and
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then take the most over-represented biological process annotation among them using

the GO Generic Term Finder [6], we find “apoptosis” as a prediction for only two of

the MAGE proteins having physical interactions (at corrected p-value ≤ 0.05 level)

and no ubiquitination related predictions. On the other hand, schema analysis of the

MAGE proteins acts as a lens that focuses the investigator’s attention on patterns of

interaction that together are statistically significant.

The prominence of emergent schemas related to signaling suggests that we may

be able to utilize them to uncover pathways. Previous approaches to predicting

signaling pathways from protein physical interaction networks have attempted to find

paths from receptors to transcription factors [68,81], and then evaluating them (e.g.,

based on gene expression coherence [74,81]). Alternate approaches have attempted to

query interactomes in order to find pathways homologous with known pathways [37].

Schemas may instead be used in pathway discovery by restricting or favoring paths

in a network based on schema annotations, or using schemas to evaluate or score the

enumerated paths. Indeed, simply by taking overlapping emergent network schemas

and obtaining their instances in the full unfiltered S. cerevisiae interactome, we can

recover portions of known pathways. For example, by considering just the triplet

schemas RhoGAP-Ras-RhoGEF, RhoGAP-Pkinase-Ras, and Ras-Pkinase-SH3 1, we

obtain significant portions of the cell wall organization and biogenesis and cell polarity

pathways, and the related pathways of filamentous growth and pheromone response,

as well as the cell cycle and vesicle transport pathways.

Our results can be considered in terms of several alternate hypotheses concerning

the evolutionary processes by which schemas arise. Did the different instances of

a schema arise from a common ancestral group of interacting proteins which then

proliferated, or did convergence play a role? It is likely that both processes took

place, with one or the other being more important in different schemas. In the case of

Pfam schemas, this question is on the one hand analogous to, and on the other hand
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intimately related to, the question of how intra-protein domain architectures arose

(e.g., see [5,16]). As a result, the possible role of domain duplications, insertions and

shuffling is an important consideration in understanding the evolutionary histories

of individual Pfam schemas. For example, in the case of intra-protein domain archi-

tectures, graph-theoretic analysis has suggested that combinations involving certain

promiscuous domains (SH3 and C2, among others) may have arisen more than once,

though other combinations may be the result of the formation of a single ancestral

sequence that proliferated through duplication [61]. For schemas that are based on

protein annotations that do not necessarily arise from sequence similarity (e.g., GO

molecular function schemas), convergence is likely to play a larger role, as the proteins

comprising distinct instances may not share any discernable sequence similarity.

Another question that arises is how novel schemas are incorporated over the course

of evolution. A comparison of emergent pair schemas in S. cerevisiae and H. sapiens

provides some hints, but further analyses of the interactomes of many organisms

is necessary to obtain a better understanding. Similarly, what is the relationship

between emergent and non-emergent lower-order schemas that together make up a

higher-order emergent schema? Was the non-emergent component added to the earlier

emergent one? The techniques introduced in this paper provide a computational

foundation for the extensive cross-genomic studies that are necessary to attempt to

address these and related questions.

Depending on the intended application it may be desirable to modify the com-

putational procedure for uncovering emergent schemas. The described approach is

designed to be conservative in several respects. First, since we search for proteins

that work together in a specific topological pattern, we use only networks comprised

of direct physical interactions, erring on the side of caution in the case of pull-down

data. Alternate approaches may instead be taken to enrich the number of direct

interactions but not exclude other types of interactions [39]. Second, we require each
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emergent schema to have at least two independent instances. Interesting schemas

certainly get excluded as a result (e.g., several SCF ubiquitin-ligases in S. cerevisiae

that differ only in their F-box protein component [58]). Nevertheless, independence

helps ensure that an emergent schema is truly recurring and that it does not depend

on the occurence of any single interaction; this is an important consideration due to

the underlying noise in the network [79]. Finally, we search for emergent schemas

bottom-up, eliminating schemas that may owe their significance solely to the sig-

nificance of their lower-order constituents; this favors including lower-order schemas

over higher-order ones. It is possible, however, that in some cases, the higher-order

schema is the recurring working unit that makes its lower-order components look

significant. Our schema-finding procedure can be modified to relax any of these re-

quirements, and indeed we believe that there are many more functionally important

and recurring schemas than we have identified here.

In this work we have examined four of the most basic topologies for schemas.

However, additional or flexible topologies (e.g., allowing optional proteins) may also

be considered. The primary challenges in extending our current approach lie in com-

putationally enumerating all possible schemas and in developing effective algorithms

for maintaining the distribution of the appropriate lower-order constituents. Addi-

tionally, whereas here we have considered annotations consisting of Pfam motifs and

a subset of GO molecular function terms (each separately), schemas based on several

complementary systems of protein labels that annotate at differing levels of resolu-

tion may provide a more multidimensional view of protein function; in this case, the

hierarchical relationships between annotations would need to be better handled.

A noticeable feature of our analysis is that the underlying data treats all interac-

tions as being the same. In reality, the interactions have both meaning and contex-

tual information. For example, some schemas consist of interactions representing the

(de)activation of one of the interactors by the other, with corresponding temporal in-
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formation. A triplet schema, for example, may correspond to a central protein acting

upon its two spoke proteins, or two spoke proteins acting upon the central protein,

or one spoke protein acting on the central protein which then acts on the other spoke

protein. Schemas may also include a combination of multiple subschemas that are

active at different times or in different cellular contexts. Such information is not

explicitly present in the schemas we have uncovered and is an especially important

consideration when studying multicellular organisms, in which different interactions

may take place in different cell types altogether. If contextual information for a large

number of interactions becomes known and systematized, it is possible to look for

schemas either within each context separately, or include contextual information as

part of the schema definition. Alternatively, one could attempt to extract contextual

information from the current schemas, focusing on the individual undirected schemas

that our approach presently finds, and devising computational means for predicting

such information based, for example, on expression information or literature search.

Such inclusion of information about the biological context of when interactions occur

should refine the network schemas observed. Moving beyond physical interactions,

an interesting avenue for future work would be to extend network schemas to specify

other types of interaction as well, as has been done for network motifs [62, 93]; the

“meaning” or semantics of these types of network schemas would be very different

from the type considered here. Schemas uncovered in one type of network can also be

used to interrogate other networks. For example, schemas from a physical interaction

network may help identify direct interactions in functional networks for organisms for

which no large-scale physical interactomes have been determined.

Finally, while here we have searched for emergent schemas in just two sample

organisms, our techniques can be applied to a greater number of interactomes across

the evolutionary spectrum. This would enable us to uncover what types of schemas
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are found in different organisms, and to better address how networks expand or change

to incorporate new motifs or protein functions.
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Chapter 3

NetGrep: fast network schema

searches in interactomes

3.1 Introduction

In the previous chapter, we formalized network schemas as a means for representing

organizational patterns within interactomes, developed a fully automated system for

uncovering over-represented schemas in physical interactomes, and applied it on the

S. cerevisiae interactome. A key component of that computational pipeline, given

a particular network schema, is to extract its matches from an interactome. In

this chapter, we describe the fast network schema search algorithms that enabled

the analysis previously presented. In particular, we present a general system, Net-

Grep, that integrates the wealth of prior information about individual proteins—e.g.,

their functional annotations, sequence motifs, predicted domain structures, or other

attributes—within the context of fast, user-directed network schema searches within

biological networks consisting of heterogeneous interaction types.

The NetGrep system allows querying with schemas described via a diverse set of

protein features, including Prosite family [32], Pfam motif [4], SMART domain [47,67],
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Supfam superfamily [21], and Gene Ontology (GO) [2] annotations. Proteins may also

be specified via particular protein IDs, homology to other proteins, regular expressions

over amino acids, or with unions or intersections over any of the previously described

features. By utilizing these protein attributes in combination with physical, genetic,

phosphorylation, regulatory, and/or coexpression interactions (as available for the

organism of interest via high-throughput experiments), the network schema queries

allowed in NetGrep generalize many previously studied interaction patterns, including

domain-domain interactions, signaling and regulatory pathways, and more complex

network patterns. For example, a general network schema relating to signaling is a

path of physically interacting proteins, where the first protein is a receptor, and the

last protein is a transcription factor (Figure 3.1A); such queries have been used in con-

junction with gene expression data to infer signaling pathways in S. cerevisiae [81]. A

more specific network schema relating to signaling consists of particular proteins mak-

ing up a pathway which can be used to search for paralogous pathways (Figure 3.1B),

as has been suggested in network alignment approaches [38]. Network motifs have

been widely studied [50, 73], and can be described by schemas without constraints

on protein types but with particular interaction types specified (Figures 3.1C and

3.1D). Domain-domain or domain-peptide interactions, such as those important for

cell signaling and regulatory systems [59], can be represented by two-protein schemas

with the proteins appropriately constrained (Figure 3.1E). Schemas relating to spe-

cific proteins of interest are also easily incorporated (Figure 3.1F). Finally, network

schemas can be naturally extended to handle approximate matches by specifying op-

tional nodes (Figure 3.1A). While these types of network interaction patterns have

been studied in a wide-range of contexts, it has not even been possible to use many of

them as queries in existing systems. Thus, we have introduced NetGrep to provide a

flexible, unified system for interrogating an interactome using a diverse set of queries.
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Figure 3.1: Examples of network schemas. Unlabeled schema proteins are considered to
be ’wildcards’ and can match any protein in the interaction network. (A) A signaling
pathway schema. This schema matches all sets of proteins such that a protein in the cell
membrane physically interacts with a succession of anywhere between one and three kinases,
the last of which physically interacts with a protein that is a transcription factor. (B) A
MAP kinase schema, specified by particular yeast proteins making up a canonical MAPK
signaling pathway. (C) A feed-forward loop network motif [50] schema. The unlabeled
nodes can match any protein in the network. (D) A ’kinate’ feedback loop network motif
schema [62] (E) An SH3 domain interaction schema. This schema matches all interacting
pairs of proteins such that one contains a Pfam SH3 domain and the other has one of
the specified patterns, corresponding to SH3 binding sites, in its underlying amino acid
sequence. Amino acids in the pattern are specified by their one letter code, and ’x’ denotes
a match to any amino acid. (F) A specific protein schema. This schema matches all proteins
with a synthetic lethal relationship to yeast protein ACT1.
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In addition to allowing a broad range of network schema queries, NetGrep has an

easy-to-use graphical interface for inputting schemas. For each user-input schema,

NetGrep finds all of its matches in the chosen interactome. Although the search

problem is a case of the computationally difficult subgraph isomorphism problem, we

have been able to develop algorithms that take advantage of schema characteristics

for biological networks. As a result, NetGrep’s core algorithms are extremely fast in

practice for queries with up to several thousand matches in the interactomes studied.

Though speed is useful for individual user queries, it also makes it possible to sys-

tematically enumerate and query many network interaction patterns. For example,

here we have systematically tested NetGrep’s underlying algorithms by enumerating

> 100, 000 schema queries with proteins described via GO molecular function terms

and have found that for schemas with up to tens of thousands of matches, NetGrep

can rapidly uncover all instances. Our algorithms can thus enable new analysis that

characterizes networks with respect to the types and numbers of interaction patterns

found (e.g., see Chapter 2).

3.1.1 Relationship to previous work

There are several previously developed tools for querying biological networks, al-

though none of them have the full functionality of NetGrep. Previous approaches fall

broadly into the categories of network alignment, network motif finding, and specific

subgraph queries, although these categories overlap.

Network alignment tools [15, 36, 38, 42] align protein-protein interaction networks

by combining interaction topology and protein sequence similarity to identify con-

served pathways. These tools can be used to identify schemas for which the criterion

for matching a query protein to a target protein is sequence similarity. Network align-

ment has also been applied to metabolic networks [60], with proteins chacterized by

their enzyme classification. Algorithmically, these approaches are designed for align-
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ing entire interactomes, and several of them are based on local alignments based on

simpler linear or tree topologies. NetGrep in contrast is developed and optimized for

general network schema queries, and has faster algorithms for the task at hand.

Several tools exist for uncovering network motifs or over-represented topological

patterns in graphs [66, 87], and these could be used to find schemas consisting solely

of unannotated proteins. These approaches do not, however, provide a mechanism for

utilizing specific protein annotations, nor do they allow user defined queries. We note

that while NetGrep can obtain instances to network motif queries, our algorithms are

optimized for schemas utilizing protein descriptions and with up to tens of thousands

of instances. Alternate algorithms, specifically developed for counting or approximat-

ing the total number of instances of network motifs [1, 22], may be more suitable if

network motif queries are desired.

Other more closely related tools have been implemented to query biological net-

works using subgraphs. Given a linear sequence of GO functional attributes, Narada [56]

finds all occurrences of the corresponding linear paths in a network. MOTUS [45]

is designed for non-topology constrained subgraph searches in metabolic networks.

Qnet [13] is restricted to tree queries and utilizes only sequence similarity. Net-

Match [14], extending ideas of GraphGrep [19], allows users to search for subgraphs

within the Cytoscape [69] environment and can be used for simple schema queries.

SAGA [83] is a subgraph matching tool for Linux platforms that allows inexact

matches to a query in multiple networks, and has built-in support for biological

networks where proteins are described via orthologous groups. In contrast to these

approaches, NetGrep is a standalone, multi-platform system where schemas may have

arbitrary topologies as well as a large set of built-in protein and interaction types.

NetGrep schemas allow flexibility via optional nodes (thereby permitting inexact

matches) and protein and interaction descriptions that may consist of boolean con-

junctions or disjunctions of features. While NetGrep comes with built-in protein
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PathBlast Fanmod Narada Saga NetMatch Net
Feature [38] [87] [56] [83] [14] Grep

Non-linear queries X X X X X
Allows arbitrary protein annotations 1/node X X
Boolean combination of annotations X X

Inexact matches X X X
Multiple edge types in a network X X X

Boolean combination of edge types X
UI to search/choose annotations X X

Can be used with Cytoscape X X
Can be used as a standalone X X X X X
Custom data sets provided X X X

Table 3.1: A comparison of built-in features available in systems that can in principle be used
for querying interactomes using network schemas. A network alignment tool, PathBLAST,
and a network motif finder, Fanmod, are shown for comparison. All other systems are
explicitly designed for querying interactomes utilizing labeled subgraphs.

feature and interaction data sets for several model organisms, it also has the ability

to incorporate new custom networks and associated feature sets. Furthermore, Net-

Grep can optionally be used within the Cytoscape environment to visualize schema

matches. See Table 3.1 for a comparison of features available in NetGrep and previous

approaches.

3.2 Implementation

We have implemented NetGrep in Java so that it is easily portable among different

operating systems. Users have the option of running a feature-limited version of the

software on our server (located at http://genomics.princeton.edu/singhlab/netgrep/)

or of downloading the fully featured program and running it locally. NetGrep can be

used both as a standalone application or in conjunction with Cytoscape as a plugin if

visualization of the results in network form is desired. A detailed description of how
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to use NetGrep is provided online. More formal descriptions of schemas, their in-

stances in the interactome, and the algorithms used to uncover the instances are

given in Model and Algorithm below.

3.2.1 Packaged data files

Data files are provided for the following model organisms to be used with NetGrep:

S. cerevisiae, C. elegans, D. melanogaster and H. sapiens. These files contain all

the information necessary to run NetGrep, including protein information (names and

aliases), interaction maps, and protein features.

Physical and genetic interactions for all organisms are obtained from BioGrid [7]

(version 2.0.34), and phosphorylation interactions for yeast are obtained from [62].

Regulatory relationships in yeast are obtained from the binding data of [25] using

a p-value/cutoff of 1e-5. Gene expression interactions between pairs of proteins are

taken as those that have linear correlation coefficient > 0.8 on the concatenation of

all experiments in the gene coexpression data compiled by [82]; we note that this

high cutoff and required correlation in all conditions favors expression interactions

between housekeeping proteins.

One important feature of NetGrep is that none of the data is hard-coded into

the program. Users can therefore use any node features or edge types desired when

constructing networks; for example, custom or newly defined interaction types can

be added. Additionally, creating data files for other, non-supported organisms is a

straightforward process.

3.2.2 Describing proteins and interactions

Nodes, describing proteins, are added to a schema via a visual canvas, and then

individual features of the proteins can be selected (Figure 3.2A). The interactome to

be queried is specified via a pull-down menu (Figure 3.2B). Each of the nodes in a
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schema can be annotated with any combination of protein features; multiple features

are related by boolean combinations via ANDs or ORs. A node in a schema can

be connected to any other, corresponding to a desired interaction, also by specifying

this in the visual canvas. These edges between nodes can be described as having one

or more types (Figure 3.2C). As with protein features, edge types may be combined

with logical ANDs or ORs. For example, one might require that two given proteins

physically interact AND that the first is a transcription factor regulating the second.

Note that a schema must be a connected graph.

3.2.3 Specifying inexact matches

The schemas described thus far are rigid in their structure. Occasionally, a user

might prefer to specify that any number of proteins with a particular feature set

interact in a cascade or that a given node in the schema not be absolutely required.

NetGrep achieves this flexibility by allowing nodes in the schema to be designated as

optional. When a schema contains an optional node, NetGrep will find matches both

with and without the given protein. For example, to represent a signaling pathway

as “a protein in the membrane, which interacts with a succession of between one

and three kinases, the last of which interacts with a transcription factor,” one would

build the given linear five-node pathway and designate two of the kinases as optional

(Figure 3.1A). NetGrep would then find all three, four, and five-node matches within

the network. Note that single nodes with more than two interactions cannot be

designated as optional. When an optional node has two interactions, the interaction

types are logically ORed for instances of the schema that have the optional node

excluded.

Similarly, a significant problem with current interaction datasets is that they are

incomplete. NetGrep provides a solution to this difficulty by also allowing interactions

in a schema to be designated as optional. When a schema contains an optional
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Figure 3.2: A detailed screenshot of the NetGrep display showing a sample query schema.
(A) The graph panel area used to describe schemas. The Ras GTPase signaling schema
from Figure 2.1 is shown in the panel with the Ras GTPase node highlighted. (B) The
panel used to designate which interaction network to use, to choose the maximum number
of matches desired, and to initiate a search. (C) The panel used to annotate nodes in the
schema and to create or modify edges. The information for the highlighted node (node
#3) is currently displayed in the panel; the edge between the first and third nodes is being
modified. (D) The results panel in which the matches found from the search are displayed.
Each row lists the proteins which make up a particular match along with its reliability score.

interaction, NetGrep will allow matches even if the given interaction is not found in

the network.
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3.2.4 Matches and reliabilities

NetGrep has a user-set threshold that limits the number of matches reported for an

input schema (Figure 3.2B). As a typical user is not expected to look through tens

of thousands of matches, this threshold can be as low as 100 and as high as 50,000.

For faster run times, a lower threshold is recommended; additionally, the threshold

limits memory usage. Alternatively, if the total number of instances is greater than

the highest allowed threshold, there is an advanced (somewhat slower) option that

computes the total number of instances but does not explicitly enumerate them.

The instances of a query schema are returned by NetGrep, up to the user-defined

threshold, and are sorted according to how confident we are of the underlying interac-

tions. In particular, for each pair of proteins, we have a single precomputed reliability

value between 0 and 1 that assesses how likely these two proteins are to interact (see

Interaction Reliabilities below). For each of the matches found by NetGrep, its

overall reliability is computed by multiplying together the reliabilities corresponding

to protein pairs that have interactions in the matches. The matches are sorted based

on the negative log of this value, beginning with the most reliable (Figure 3.2D).

3.3 Model and Algorithm

3.3.1 Graph Model

We give a formal specification of the problem. Let L be the set of possible protein

labels (e.g., Pfam motifs, protein IDs, etc.) and let T be the set of possible edge

types (e.g., physical, regulatory, etc). An interaction network is represented as a

mixed graph G = (VN , EN , AN). VN is the set of vertices, with a vertex v ∈ VN for

each protein. EN ⊆ VN × VN is the set of undirected edges, and AN ⊆ VN × VN is

the set of arcs or directed edges. Vertices correspond to proteins and edges and arcs
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correspond to interactions. Each vertex v in the interaction network is associated with

a set of features l(v) ⊂ L (specifying protein features), each edge (u, v) is associated

with a set of types te(u, v) ∈ T (specifying the undirected interactions between the

proteins), and each arc (u, v) is associated with a set of types ta(u, v) ∈ T (specifying

the directed interactions between the proteins). If there is no edge between u and v,

te(u, v) = ∅, and if there is no arc between u and v, ta(u, v) = ∅.

A network schema is a mixed graph H = (VS, ES, AS) such that: (1) each vertex

v ∈ VS is associated with description set Dv such that each d ∈ Dv is a subset of L. In

NetGrep, the set Dv is constructed via individual protein features in L and utilizing

either intersections or unions over these features. For example, for a particular vertex

v ∈ VS, if a union is taken over individual feature types, Dv consists of singleton

sets consisting of each of these features. Note that Dv can consist of one set, the

emptyset, in the case of a wildcard vertex. (2) for every pair of vertices u and v such

that (u, v) ∈ ES ∪ AS, there is an associated description set D′

u,v ⊂ T . In NetGrep,

the set D′

u,v is constructed via individual interaction types, and requiring either all

of them, or just one of them. For example, for a particular pair of vertices u and v

with desired edges or arcs between them, if all interactions are required, then D′

u,v

consists of a single set consisting of all desired interaction types.

An instance of a network schema H in an interaction network G (i.e., a match

in the network for the schema) is a subgraph (VI , EI , AI) where VI ⊂ VN , EI ⊂ EN ,

and AI ⊂ AN such that there is a one-to-one mapping f : VS → VI where (1)

for each v ∈ VS, there exists a d ∈ Dv such that d ⊂ l(f(v)) (2) for each pair

of vertices u, v ∈ VS with (u, v) ∈ ES ∪ AS, there exists a d′ ∈ D′

u,v such that

d′ ⊂ (te(f(u), f(v)) ∪ ta(f(u), f(v))). Note that two distinct instances of a schema

may share proteins and/or interactions; however, any two instances must differ in at

least one protein. Network schemas are used to interrogate the interaction network

for sets of proteins which match this description.
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3.3.2 Interaction Reliability

For each pair of proteins, we estimate the reliability of their having any interaction

between them. In particular, we first partition all the observed underlying interac-

tions in the interactome into several experimental groups. The reliability of each

experimental group i is then evaluated as follows. For experiments determining non-

genetic interactions, the reliability is estimated based on “functional coherence” by

computing si as the fraction of interactions in that group that are between proteins

sharing a high-level GO biological process slim term [26] (only pairs of interacting

proteins that both have GO slim annotations are considered). We note that we do

not use the functional coherence measure to assess genetic interaction experiments,

as these types of interactions can bridge between pathways [85]. Instead, for these

experiments, the reliability is estimated based on a “2-hop” topological measure that

has been shown to be highly predictive of genetic interactions [89]. In particular, the

reliability si for an experimental group determining genetic interactions is estimated

by computing the fraction of interactions in that group that additionally have paths

of length two between them in the full interactome where either both interactions are

genetic interactions or where one is a genetic interaction and the other is a physical

interaction. Then, for a pair of proteins u and v, we consider all interactions j found

between them, and treat them as independent events. The reliability r(u, v) between

u and v is then computed as

r(u, v) = 1 − Πj(1 − sg(j)),

where j ranges over all interactions linking proteins u and v, and g(j) gives the

experimental group of interaction j. If no interactions exist between the two proteins,

r(u, v) = 0. This noisy-or scheme is similar to the one used for reliability estimation

in [52, 86].

57



We partition our interactions into the following experimental groups. For physi-

cal and genetic interactions, there is one group for each individual high-throughput

physical and genetic interaction experiment (defined as those that discover at least

50 interactions). All small-scale physical interaction experiments (defined as those

that discover fewer than 50 interactions) are considered as belonging to a single

group. Similarly, small-scale genetic interaction experiments are considered a sin-

gle group. Experiments are identified by the combination of “Experimental System”

and “Pubmed ID” as reported by the BioGRID [7]. All phosphorylation interactions

in [62] are considered in one group. In the case of interactions that are associated

with continuous numerical data, such as coexpression interactions (associated with

the correlation coefficient) and regulatory interactions [25] (associated with the p-

value for the binding), we assign each interaction to one of 20 uniform bins associated

with the numerical data, and consider each bin as a separate group.

3.3.3 Searching for schemas

Overview

Finding the matches for a particular schema in a network corresponds to the com-

putationally difficult subgraph isomorphism problem. A number of sophisticated

algorithmic approaches for closely related problems on biological networks have been

introduced earlier (e.g., utilizing color coding [13]). Here, we obtain fast matches

in practice utilizing a few key ideas. First, we pre-process the interactome to build

fast look up tables mapping protein and interaction type labels to proteins associated

with the labels. For each node in a schema, this allows us to quickly enumerate the

set of all proteins which match the nodes’s feature set. Second, we utilize the labeled

schema nodes and schema edges to prune the search space. In particular, we constrain

the proteins in each node match set by determining interaction matches along each

edge in the schema. Finally, these interactions are cached for fast lookup in the last
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step, in which we enumerate the considerably smaller search space, and construct the

full list of matches. We describe these steps in more detail below.

Algorithm

We first pre-process the interactome to maintain two hashes which map labels to

proteins associated with those labels. HASHF maps protein features to sets of ver-

tices described by those features (e.g., all kinases), and HASHT maps edge types to

pairs of proteins connected by an edge annotated with the types (e.g., all proteins

with physical interactions). For directed edge types, there are two separate entries

in HASHT , one for each direction of the edge (e.g., one for all kinases and one for

all substrates). These hashes are used to quickly build, for any schema, its matches

edge by edge.

When searching for instances of a particular schema, we associate with each node v

in the schema a set of node matches NMATCHv, which contains all of the proteins in

the interaction network which are described by that particular schema node (i.e., the

proteins that could be a match to that schema node). Specifically, we use HASHF to

initialize NMATCHv with all the proteins that match v’s feature set. When features

are combined with a boolean AND, we take the intersection of the protein sets from

HASHF , and when they are combined with a boolean OR, we take the union of the

protein sets. For each edge e = (u, v) in the schema that has a single type (i.e., is not

comprised of a boolean combination of types) or for which all edge types are required

(i.e., types are combined by a logical AND), we use HASHT to trim the proteins in

each node match set. For example, if schema node v is connected by a physical edge,

then we can remove all proteins from NMATCHv which are not found in the set

from HASHT corresponding to all proteins in the network connected by a physical

edge.
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We next prune the sets of node matches as follows, or until any of them becomes

empty (at which point we know that there are no matches to the query in the network).

For each edge e = (u, v) in the schema, we use the network interaction map to

remove all proteins from NMATCHu which do not interact with any of the proteins

in NMATCHv given e’s specified type. Although we could repeat this pruning step

after each edge is processed, we have found it to be unnecessary because of two

additional optimizations that we introduce. First, as we iterate through the edges

in this step, we start with those edges whose endpoints contain the smallest sets of

node matches and we progress in order; this optimization helps to reduce the size of

the larger node match sets early on in the process. That is, we rank schema nodes

based on the size of their node match sets, start with the node with the smallest node

match set, and consider its edges first, starting with the neighbor with the smallest

node match set. We then consider the node with the next smallest node match set,

and so on. Second, as we iterate through the schema edges, we cache the matches for

each edge, so that they can be quickly accessed in the next step where we find the

actual matches. Note that this pruning step is skipped with optional nodes because

edges connected to those nodes are not required. This pruning step is also skipped

for edges if their match bins are too large (> 1000).

To find the sets of proteins that match the given schema, we iterate through each

of the node match sets from smallest to largest, constructing matches as we go along.

We note that this search order over the nodes provides a significant speed-up over a

simpler approach that performs depth-first search from an arbitrary starting node in

the schema. As we iterate through the nodes, for each protein p in a given match set

representing node v in the schema, we constrain each larger match set representing

node u in the schema as follows: if u and v are connected by an edge in the schema,

we eliminate all proteins in u’s match set that do not interact with p (using the cached

matches from the pruning step above). Furthermore, we remove p from u’s set if it
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is there (i.e., we do not allow the same protein to occur in multiple positions of a

match). We then set p as the matching protein at schema node v for this particular

set of matches and traverse to the next largest node match set. Once a complete

match to a schema is found, we backtrack and continue the search process.

If at any point the number of matches to a schema exceeds the user-defined thresh-

old (Figure 3.2B), the search is terminated and NetGrep returns just those matches

found up to that point. Once all matches to a schema are found, they are sorted by

their interaction reliability, as described above.

Symmetric schemas

When a schema displays an inherent symmetry, it is often the case that the same

set of proteins redundantly occurs in multiple instances. Consider, for example, the

symmetric linear three-node schema A-B-A, where the edges are undirected, and

the first and last nodes have identical feature sets and are symmetric around the

middle node. One might find among the matches of this schema the proteins p1-p2-p3

and p3-p2-p1. NetGrep is able to determine that a given schema is symmetric and

excludes these superfluous matches from the results returned by the search. The

test for symmetry exploits the fact that for any two given nodes in a schema to be

symmetric they need to have the exact same feature set and degree; for all pairs of

nodes u and v in the schema for which this is true, the algorithm recursively checks

all pairs of nodes connected to these two target nodes (i.e., one connected to u and

one connected to v) for symmetry, following any given edge just one time. This is

equivalent to a depth first search over the schema. The base case in the recursive

algorithm occurs when two target nodes are connected to each other or when they

are connected to the same node.

If a query is determined to be symmetric, redundant matches are ignored during

the search. To accomplish this task, each protein in the interaction network is first
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assigned an arbitrary unique ID number, as are each of the nodes in the query schema.

Then, for any two symmetric nodes A and B in a query schema where the ID of A is

smaller than the ID of B, we require that the ID of any protein matching node A be

smaller than the ID of a protein matching node B in any given instance. All instances

for which this requirement is not met for each of the symmetric nodes are ignored.

3.3.4 System Requirements

The NetGrep system is implemented in Java and has been tested on Windows, Ma-

cOS, and Linux. It requires Java 1.5 or higher to run, and the source code is available

open source with a GNU public license.

3.4 Performance

We have found NetGrep to run extremely fast in practice. We illustrate the perfor-

mance of NetGrep in two ways. First, we report how long NetGrep takes for each

of the schemas shown in Figure 3.1. As a comparison, whenever possible, we have

also run these schemas on the same network using other tools. For each system, the

software is downloaded and run on a laptop running Windows XP with 1GB RAM

and a 1.66GHz Intel processor. All queries are run on our S. cerevisiae network data,

described above. All timings include the times for both the search and output of the

results. Default settings for all programs are used. While we have NetGrep print

out its wall clock time to standard output, the timings for the other systems are

estimated via a handheld timer and rounded down to the nearest second. We have

chosen this process as some of the systems must be run within a graphical interface

and strict system timing calls are not possible. Each query is repeated ten times and

the reported running times are the averages over these runs. Table 3.2 shows the

performances for each sample query. Note that table entries are left blank for
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Sample Query PathBLAST Fanmod Narada NetMatch NetGrep
Signaling pathway #1 28 4.2
Signaling pathway #2 26.9

MAPK pathway 90 0.02
Feed-forward motif 32 5.2 1.4

Kinate motif 32 5 0.5
SH3 domain interaction 0.5

ACT1 genetic interaction 15 0.1

Table 3.2: Running times (in seconds) for several sample queries on the S. cerevisiae inter-
action network, using PathBLAST, Fanmod, Narada, NetMatch and NetGrep. All reported
running times are for search and output only. As in Table 3.1, PathBLAST is used as a
prototypical example of a network alignment tool and Fanmod represents network motif
finders. Note that SAGA is excluded here because it cannot be run on Windows. The sam-
ple schemas correspond to those provided in Figure 3.1, except that two distinct queries
are used for Figure 3.1A. In the first, all three kinases in the pathway are required. In the
second, two of the kinases are designated as optional (as in Figure 3.1A). Each query is run
ten times and the average computation time is provided. Row entries are left blank for any
tool which is unable to find instances of a particular schema because of feature limitations.

schemas which cannot be run on a given system, and two of these queries can currently

be run only on NetGrep. NetGrep has considerably faster query times for all sample

queries, and is often more than an order of magnitude faster than previous approaches.

Second, we have run NetGrep in a systematic fashion on schemas consisting of

physical interactions in triangular, 4-node linear “quad,” and 4-node branched (i.e.,

a central node interacting with three others) “Y-star” topologies. We consider all

possible ways to annotate the proteins in these topologies using GO molecular func-

tion slim [26] terms. We have chosen these types of schemas because of their linear,

branched, and cyclical topologies, and because we are easily able to exhaustively enu-

merate over all possible schemas of this type on a standard laptop. Additionally,

GO annotations can be utilized with queries in two previous systems, NetMatch and

Narada (though Narada is limited to the linear schemas). There are 1,771 triangu-

lar schemas, 101,871 quad schemas, and 37,191 Y-star GO molecular function slim

schemas. Since each GO slim term is general and can annotate many proteins, we

set the threshold for the maximum number of matches allowed to 80,000. Of the
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Figure 3.3: All possible triangular, 4-node linear, and 4-node branched schemas (’Y-star’)
with nodes described via GO molecular function slim terms have been run systematically
on NetGrep. Results are reported for those schemas with at least 5 but no more than
80,000 instances in S. cerevisiae: 780 triangular schemas; 80,719 4-node linear schemas;
and 30,642 4-node branched schemas. Boxplots of the running times for each topology are
given; boxplots are a convenient way of depicting the smallest observation, second quartile,
median, third quartile, and largest observation in the data.

schemas, almost all have fewer than 80,000 instances in S. cerevisiae (all triangular

schemas, 97,170 quad schemas and 37,129 Y-star schemas). Statistics about how long

NetGrep takes to retrieve all instances for each query that has between 5 and 80,000

instances in yeast are given in Figure 3.3; we exclude schemas with fewer than 5

matches as they typically take less time. As can be seen, matches for each of these

queries are found within 100 seconds, but the vast majority in fact take less than even

10 seconds. We are not able to time NetMatch and Narada in a systematic manner;

thus, we have arbitrarily chosen three triangle, five quad, and five Y-star molecular

function queries, to give a sampling of run times for these previous approaches on

these types of schemas. The schemas and their timings are shown in Table 3.3.
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Net Net
Topology Query Narada Match Grep

Triangle GO:0003677, GO:0004386, GO:0004672 15 0.1
Triangle GO:0004386, GO:0004672, GO:0030528 16 0.2
Triangle GO:0003723, GO:0003723, GO:0003723 15 1.9
Quad GO:0004386, GO:0003677, GO:0016874, GO:0016829 1 14 0.2
Quad GO:0016787, GO:0030234, GO:0005515, GO:0008233 2.3 17 1.2
Quad GO:0003677, GO:0003723, GO:0005515, GO:0005198 4 16 1.9
Quad GO:0016787, GO:0005198, GO:0003677, GO:0016779 2.2 17 1.7
Quad GO:0016787, GO:0016740, GO:0016779, GO:0030528 4.8 16 2.9
Y-star GO:0008233, GO:0016874, GO:0030234, GO:0005215 15 0.2
Y-star GO:0005515, GO:0004721, GO:0008233, GO:0016740 17 0.8
Y-star GO:0005515, GO:0008233, GO:0005198, GO:0005215 17 3.9
Y-star GO:0030528, GO:0005515, GO:0016740, GO:0005215 14 1.5
Y-star GO:0016740, GO:0005515, GO:0030528, GO:0005215 14 5.2

Table 3.3: A comparison of running times (in seconds) for several sample schemas anno-
tated with GO molecular function slim terms on the S. cerevisiae interaction network using
Narada, NetMatch and NetGrep. Of the previous methods, Narada and NetMatch are
chosen as they can be run off-the-shelf for these schemas; note, however, that Narada only
handles linear topology queries. All reported running times are for search and output only.
In the case of the Y-stars, the first term shown annotates the central node. The schemas
shown have between 10 and 11,000 instances in S. cerevisiae.

3.5 Conclusions

In this chapter, we have described fast algorithms for performing general network

schema searches within biological networks. These algorithms are the heart of our

system, NetGrep, which allows a wider range of network queries than possible with

related approaches. In the cases where direct comparisons with other tools can be

made, NetGrep consistently finds matches much more quickly.

Users are not restricted to the node features or edge types in the data files provided

with NetGrep. All features are easily expandable to include virtually any descrip-

tion or type. In fact, users are not confined to biological networks at all: NetGrep

can incorporate any data which can be represented in network format, which allows

network schema analysis to be extended to many other areas of research. Using Net-
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Grep to analyze network schemas in social networks is just one of many avenues for

interesting future work.

Most interaction networks provide only a static view of the interactome; that

is, they describe which proteins interact with one another but do not tell anything

about when the interactions occur. Therefore, the network schemas found in such

an interaction network will also by definition be static. By incorporating appropriate

gene expression data into the interaction networks and then ensuring that all edges

in a query schema have the coexpression type (ANDed with any other desired edge

type), the results returned by NetGrep will be dynamic and more accurately reflect the

true organizational patterns of the cell. A recent paper found that cells use different

timing activity motifs, which capture patterns in the dynamic use of a network [8];

perhaps NetGrep could be used to help find such motifs in interactomes.
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Chapter 4

Conclusion

In this thesis, we have introduced the powerful concept of network schemas, labeled

subgraphs that incorporate both the attributes of proteins and the topology in which

they interact with one another. In a large-scale analysis, we have shown that network

schemas describe organizational units within interactomes. In chapter 2, we presented

a fully-automated procedure for discovering network schemas along with an analysis of

schemas which we found in S. cerevisiae and H. sapiens. In chapter 3, we introduced

NetGrep, a powerful system for searching protein interactomes for instances of a

diverse set of user-supplied network schemas.

There are many avenues for extending our current work on network schemas. For

our framework for automatically inferring emergent network schemas, we have ex-

amined four of the most basic topologies for schemas; however, additional topologies

may also be considered. Also, by allowing certain proteins in a schema to be op-

tional, we may find that the added flexibility enables us to find yet more emergent

schemas. When possible, taking the contextual information about interactions into

consideration would make our procedure for determining emergent schemas more ac-

curate. Extending our work to networks with more than just physical-physical protein

interactions should provide interesting results. A comparison and analysis of emer-
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gent schemas occurring in interactomes across the evolutionary spectrum could shed

much light on how networks expand or change to incorporate new motifs or protein

functions.

Our network schema search system, NetGrep, allows a wide-range of possible

queries that supercede many previously studied interaction patterns. However, we

predict that as the tool becomes more widely used, additional features will be re-

quested and required by users. Furthermore, while the algorithm we described for

solving the labeled subgraph isomorphism problem is fast and effective in practice

for biological networks, as we scale up and allow the user more flexibility— for ex-

ample, by permitting schemas with more matches or by enabling the user to batch

searches—more sophisticated algorithms may be necessary. In some cases, an approx-

imate approach may be necessary.

This thesis has taken an important first step towards defining a computational

methodology for analyzing biological networks. Since large-scale protein interaction

networks are being determined at an increasing pace, we anticipate that network

schema analysis, as introduced here, will become an increasingly important means

for determining how proteins work together in the cell.
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