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1 Introduction

The Domain Name System (DNS) is what translates domain names, like www.cs.princeton.

edu, to IP addresses, like 128.112.136.35, on the Internet (see section 2.1). If you are run-

ning a service on the Internet, DNS is critical: even if your service is working properly, without

functioning DNS nobody will be able to access it, since they will not be able to find it.

DNS hosting services (see section 2.2) allow you to offload the responsbility for storing and

serving DNS records to a third party. This similar to how, for example, third party web hosting

allows you to have a web site without having to run your own server1. Such systems can provide

improved reliability and cost savings over hosting your own DNS records due to economies of

scale. Existing DNS hosting systems are typically limited in the features they support, or they

are huge, expensive, closed services provided mainly to enormous corporate clients the likes of

Google or Microsoft. Namecast is an open-source DNS hosting system with a number of unique

advantages over many other such systems (see section 3).

Namecast is especially reliable because is designed to run in multiple locations over IP anycast

(see section 2.3), so it can easily withstand the failure of one or several individual nodes without

service interruption. IP anycast automatically routes packets to the closest working Namecast node

and redirects them if it fails, all transparently to the user. Namecast is especially flexible because it

supports authoritative DNS hosting of many kinds of records for any domain you own, and allows

updates to be done in software instead of only by hand over a web-based interface. Namecast is

especially scalable because it uses distributed storage systems like CRAQ (see section 2.4) that are

specifically designed to store more data and serve more requests with the addition of new nodes.

As a result of these features, Namecast has low administrative overhead. The automatic failover

and recovery mechanisms employed by the watchdog process running on each node (see sec-

tion 4.2.4) enable Namecast to automatically fix problems in many cases. Namecast’s scalability

also allows administrators to add additional capacity to the system with minimal effort. Low ad-

ministrative overhead is crucial, because Namecast is designed to be run as a free service; such a

1Indeed, most web hosting services will also handle DNS hosting for your domain if you so desire.
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service will not have many people on hand to manually fix any problems that crop up.

Namecast is designed with a number of separate components that together make up one node

(see section 4.2). Depending on performance requirements, these components can run on one or

more separate physical machines. Each Namecast node communicates with all the others over

the Internet in order to coordinate the system as a whole (see section 4.3). General Internet users

querying for DNS records hosted by Namecast simply interact with the system as they would any

DNS server.

Users of Namecast for DNS hosting interact with the system through an update server (see sec-

tion 4.1) that speaks a UDP-based protocol called the Namecast Update Protocol (see section 4.4).

Security is maintained through the use of Digital Signature Algorithm (DSA) with key-based ac-

counts. Each Namecast DNS hosting account has a DSA public key associated with it, and every

update request must be signed with the corresponding private key. This ensures that the request

came from the account’s owner. (In other words, a DSA public key acts as the “username” for an

account, and the signature as the “password.”) With key-based accounts, no registration is nec-

essary for anyone to start using Namecast for DNS hosting: as soon as the first update request is

received for a particular DSA key, an account for that key is automatically established.

In order to evaluate and optimize the performance of the Namecast system, we performed

microbenchmarks on some of its components (see section 5.1) and experimental simulations to

test the failover behavior of IP anycast and BGP (see section 5.2). Namecast is a fully functioning

system, but there is nonetheless much room for future improvements, some possibilities for which

are discussed at the end of this report (see section 6).

2 Background

As an understanding of how the Namecast system works is dependent on knowledge of some

underlying technologies, in the following sections we will describe in general terms how these

technologies work and their relevance to Namecast.
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2.1 DNS

The domain name system (DNS) acts essentially as the phone book of the Internet, converting tex-

tual domain names–for example, www.cs.princeton.edu–into IP (Internet protocol) addresses–

for example, 128.112.136.35–that can be used to send messages from one host on the Internet to

another [7]. This is useful for a number of reasons:

� First, it is much easier to remember words than (seemingly random) sequences of numbers.

With the help of DNS, you can access a remote system on the Internet by name rather than

by address.

� Second, DNS makes changing your IP address much easier. If you need to change the IP

address of your service, it can be accomplished simply by updating a few DNS entries; users

of your service would not need to change their behavior in any way. You may need to move

to a new IP address if, for example, you change your web host or ISP.

� Third, you can use DNS to map one name to multiple IP addresses. This is useful for load

balancing purposes. For example, when a DNS query comes in for myservice.com, you

might configure your DNS server to respond with the IP address of the least busy server at

that moment. Or, you could respond with the IP address of the server geographically closest

to the querier. (There are any number of metrics you might use to have DNS direct traffic

optimally for your service.)

Reliable DNS service is critical because DNS usually acts as a gateway to all other services offered

on the Internet. Even if our web server at 128.112.136.35 is working properly, for example, if

you are unable to learn that www.cs.princeton.edu can be found at 128.112.136.35, then you

will not be able to access our web site.

The specific details of how DNS works are given in RFC 1035 [13]. In DNS, each domain

name has a set of resource records (abbreviated RR) that contain information about that domain.

The resource records can have one of several types, and each holds data specific to its type. For

example, an A (address) record contains an IP address for the domain, MX (mail exchange) records
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contain the list of mail servers for the domain, and so on. Each resource record also has a TTL (time

to live), which indicates how long that record should be cached by the systems that request it. One

DNS server (or set of servers) is responsible for being the authoritative server for a domain. This

means that it knows about every resource record which pertains to that domain. The authoritative

server for a domain identifies itself by serving an SOA (start of authority) record that contains

some general information about the domain, such as a default TTL for its records and an email

address that can be used as a technical contact for the domain.

In most cases, a DNS query consists of a single UDP packet, and a single UDP packet is

sent in response containing all records pertaining to the query. The query contains, among other

things, the domain name and record type for which information is sought.2 For example, if you

were trying to access the web site hosted at www.example.com, you might execute a DNS query

requesting the A records for www.example.com in order to learn to which IP address you should

send your HTTP request. You may not always get back exactly the record types you request.

For example, if www.example.com were actually an alias for webserver.example.com, then

instead of receiving an A record for www.example.com (since such a record does not exist) you

would get a CNAME record indicating you should restate your query for webserver.example.com.

If the DNS server wanted to be especially helpful, it would also include all the A records for

webserver.example.com in its reply without requiring you to ask again.

2.2 DNS hosting

Using a DNS hosting service simply means outsourcing the responsibility of answering DNS

queries for your domain names to a third party. The benefits of outsourcing DNS are similar

to those of outsourcing other IT-type services, such as email or web hosting. It allows you to avoid

dealing with the minutiae of setting up and running DNS software and the physical servers and

equipment. Further, a cost savings (similar to that of shared web hosting) can be realized by pool-

2It is possible to request all of the DNS records for the given domain by setting the query record type to ANY. This
is not always honored by the remote DNS server, however.

5



ing the DNS hosting needs of several small-scale users on one server, since none of them alone

may require its full capacity. Finally, the larger scale of a DNS hosting service could make setting

up a more reliable, redundant system across different locations viable, when it may not be cost

effective for a single user to do this.

A number of DNS hosting services, both consumer-grade and “business”-grade, already exist.

A primary use of the consumer-grade DNS hosting services is to permit easy access to computers

on residential Internet connections, most of which provide dynamic (changing) rather than static

IP addresses. Hosting a web server on your home computer, for example, becomes difficult when

its IP address changes frequently. However, by installing software on the computer to update your

DNS host with your new IP address every time it changes, you only need to remember the domain

name they gave you to access your web server. No-IP [1] and DynDNS [2] are two examples of

such services.

Namecast is designed to provide largely the same kind of service as business-grade DNS host-

ing services, such as Dynect and Akamai. These services can serve many types of DNS records

(in addition to the basic A records supported by simpler services) and provide APIs to allow users

direct access to their records [3]. They provide automatic load distribution and failover through

the use of IP anycast, placing DNS servers in multiple geographic locations (more on IP anycast in

section 2.3). Akamai in particular hosts DNS for tremendously large clients, such as Google and

Microsoft [4].

2.3 IP anycast

While there is always exactly one sender for an IP packet (or, to be more precise, a single source

IP address), its destination can take one of three forms: unicast, multicast, or anycast. A unicast

packet is sent to a single recipient with a unique IP address3. A response to an incoming ping, for

example, would take the form of a unicast packet. Unicast traffic is, therefore, one-to-one: sent

3Except where NAT is in use, in which case the packet is sent to the IP address of the NAT device rather than the
true destination’s unique IP address.
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(a) IP unicast (one-to-one). Packet
goes to one recipient.

(b) IP multicast (one-to-many).
Packet goes to many recipients.

(c) IP anycast (one-to-any). Packet
goes to just one of several possible
recipients.

Figure 1: Three types of IP packet destinations

from one source to one destination (see Figure 1a).

A multicast packet is sent to multiple recipients. The original packet from the sender is du-

plicated as necessary by intermediary IP routers, so that the packet arrives at all of its destina-

tions. Multicast traffic is, therefore, one-to-many: sent from one source to many destinations (see

Figure 1b). A broadcast packet is a special case of multicast packets, intended for any and all

recipients. (That is to say, the the destination of a broadcast packet is “everyone.”) Multicast

and broadcast packets are sent to special IP addresses dedicated for this purpose, since there is no

provision in IPv4 for having a list of multiple unique destination addresses for one packet [6].

IP anycast packets are, as the name suggests, one-to-any: sent to any (and only) one of mul-

tiple possible recipients (see Figure 1c). Again due to the fact that an IPv4 packet can have only

one destination address, each of these recipients shares the same IP address, called the “anycast

address.” When a packet is sent to the address, the location where the packet actually ends up is

determined by the routing decisions made by the IP routers between the packet’s source and its

destination. These routing decisions are governed by whatever routing protocol is in use (for the

public Internet, this means BGP–the Border Gateway Protocol).

IP anycast is a useful trick because for services that use it, it makes scalability and failover au-

tomatic. It is very easy to scale a system that operates over IP anycast by simply adding additional
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nodes that announce the same IP address, as long as the backend components of the system (for

example, storage) can operate in a distributed manner. If one of the nodes fails for some reason,

it can be just as easily removed by withdrawing itself from the list of possible destinations for

its anycast address, and the routing protocol in place will automatically figure out where packets

should be sent instead. When the new routes are in place after a node is withdrawn, packets sent

from a user of the system will find their way to the next nearest node.

IP anycast cannot be used to provide these benefits to just any system, however, due to some

limitations of this addressing format. There is no way for the sender or recipient of an anycast

packet to know in advance at which receiving location it will arrive, nor can they ensure that

different packets from the same source sent to the same anycast address will always end up in

the same place. Packets may switch destinations at any time, even in the middle of a stream.

This means that to take advantage of the automatic scalability and failover that IP anycast enables,

systems running over IP anycast must meet one of two conditions. Either:

� Protocols have to be designed such that all atomic communications can be contained in a

single packet (that is, if a command or request cannot arrive in two pieces at two different

spots, then it must fit in one packet); or

� There must be some kind of backend communication between different nodes of the system

so that incoming streams of packets split between two or more locations can be pieced back

together.

These requirements mean that TCP and most protocols based on it will not work reliably over IP

anycast. DNS is an ideal application for IP anycast since it works over UDP with single-packet

queries, and in fact many of the root name servers on the public Internet are replicated through the

use of IP anycast [5]. Even though it is sometimes said that there are “thirteen root servers” for

DNS because there are thirteen IP addresses at which DNS root servers can be accessed [8], there

are in fact many more physical servers than this.
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2.4 CRAQ

CRAQ (Chain Replication with Apportioned Queries) is a “distributed object-storage system” de-

veloped by Jeff Terrace and Michael Freedman at Princeton University [16]. The Namecast system

provides support for the use of CRAQ as its storage layer, where all information about accounts

and hosted DNS records is kept. CRAQ is uniquely suited for use in the Namecast system for a

number of reasons, discussed in detail in section 3. In short, CRAQ provides a distributed storage

model that is resilient and consistent despite a frequently-changing set of available nodes on which

to store data. CRAQ’s performance also scales well with the addition of more nodes. Details about

how CRAQ works are available in Terrace and Freedman’s paper, “Object Storage on CRAQ” [16].

3 The Namecast service & system

Namecast was conceived as a project with a dual nature: both a running service which one could

use to provide DNS hosting for his or her domains, and an open software system which anyone

could use to set up his or her own DNS hosting service. This is analogous to the Emulab network

test bed, which is both a service run by the University of Utah which is used by researchers to run

experiments on virtual network topologies, and a software system which anyone can download to

set up a new Emulab installation of his or her own. Similarly, anyone with the necessary resources

(hardware, IP addresses, etc.) could set up a Namecast-compatible DNS hosting service of his or

her own.

To set up Namecast as a running service on the public Internet, however, requires the coopera-

tion of upstream ISPs due to its use of IP anycast. In order for Namecast to be accessed at anycast

addresses and for a node to be able to withdraw the route to itself when something goes awry,

the ISP’s router must be willing to speak BGP to the Namecast node. Setting up Namecast as a

service is therefore a logistical challenge which we have unfortunately been unable to overcome

so far, since doing so requires finding an ISP willing to put in the extra effort of dealing with its
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unusual BGP requirements4. Things are progressing on this front, however. Our colleague Nick

Feamster at Georgia Tech is working with some commercial operators on setting up BGP sessions

for use with academic projects like this one; sites are now set up in Seattle, WA; Ashburn, VA; and

Atlanta, GA. We expect to be ready to deploy Namecast on the public Internet this summer.

3.1 Why a new DNS hosting service?

Despite the wide availability of DNS hosting for users of all kinds, there are a number of draw-

backs to these existing services that we hoped to address in creating Namecast. Free DNS hosting

services like DynDNS and No-IP are alright for limited uses, such as to provide a domain name

for a web server on your home computer, but they lack flexibility. Usually only a small number of

DNS record types are supported, there are limits on the number of records that can be hosted, and

most problematically, DNS records must be updated by hand over a web interface. This means that

these DNS hosting services often cannot be used for load balancing, hosting DNS for custom do-

main names, and other more advanced uses. Namecast, however, does provide authoritative DNS

hosting for custom domains and provides a command line update utility so that changes to hosted

DNS records can be done programmatically rather than by hand.

Commercial DNS hosting services like Dynect and Akamai do provide all these features and

probably many more, but they are extremely expensive. The properties of these commercial sys-

tems and the way they are set up is also secret; in creating Namecast we hoped to learn in the pro-

cess more about what the challenges are of setting up a large-scale DNS hosting system. Thinking

about how to build an anycast DNS hosting system, for example, uncovered the problem of how

to best configure multiple IP anycast addresses for the lowest failover delay, on which our exper-

iments are discussed in section 5.2. It is our hope that other researchers can also find uses for an

open source DNS hosting system in their own work, which until now has not existed.

4In an attempt to alleviate the difficulty of deploying services that use IP anycast, Hitesh Ballani and Paul Francis
at Cornell University proposed a system called the Proxy IP Anycast Service (PIAS) [25, 26] that makes it possible
for end-users to set up anycast-based services without requiring each one to get cooperation from ISPs. This system is
not yet available for general use at the time of this writing, however.
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3.2 Design goals & strategies

The three primary design goals for the Namecast system are reliability, flexibility, and scalability.

The first two of these relate two how users interact with the DNS hosting system, while the last

mostly relates to how the administrator(s) interact with the system. In the following sections we

will discuss the reasons for these goals as well as some of the strategies employed to achieve them.

3.2.1 Reliability

Reliability is the most important property for Namecast to have, since (simply put) if Namecast

were not reliable then nobody would use it. The design goal of reliability encompasses two differ-

ent characteristics of the Namecast system.

� First, it should be very unlikely that Namecast will lose any DNS records that are hosted

with it.

Namecast makes use of replicated data storage to achieve this. For both the MySQL and CRAQ

storage layers, every stored DNS record is located on more than one Namecast node. This means

that even if some of the nodes were to be wiped completely, no data would be lost. For the MySQL

storage layer, every node holds a complete copy of all DNS records hosted by Namecast, so literally

every node would have to be lost in order for any hosted record to be lost. For the CRAQ storage

layer, the replication factor (chain length) is configurable, and is by default three. This means that

all three of the specific nodes holding a DNS record would have to be lost in order for that record

to be lost.

� Second, Namecast should have very high availability; even if some Namecast nodes are down

the system overall should still be accessible and respond to record updates and queries.

Namecast achieves this through the use of anycast IP addresses for end users to access the system

and again through the use of replicated data storage, both of which are necessary for Namecast to

work with downed nodes. Anycast IP addresses ensure that users can always find a working Name-

cast node at the same address, since if a node goes down then the route to it will be withdrawn.
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After BGP stabilizes, then, packets originally routed to the failed node are sent to a different, work-

ing node (assuming one still exists with that anycast address). Namecast node integration through

IP anycast is described in section 4.3.

Replicated storage permits each node to have access to all hosted data, even if some nodes have

gone down. For the CRAQ storage layer, data hosted by one machine is automatically replicated

on another if the first goes down in order to maintain a constant level of replication. As long as all

of the nodes hosting a particular datum do not fail before another can be “recruited,” the system

as a whole will never lose access to anything. For the MySQL storage layer, each node retains a

complete copy of all hosted data, so DNS queries can be answered no matter what happens to the

other nodes. However, MySQL uses a master-slave replication setup, where all write requests must

be sent to the MySQL master. This means that the master is a single point of failure: if it were to

fail, then no DNS record update requests could be handled until it was fixed. For the purposes of

reliability, then, CRAQ is a better choice of storage layer in that it has no single point of failure for

reads or writes.

3.2.2 Flexibility

A flexible DNS hosting system is one that can do anything a user could do if she set up her own

DNS server. A number of aspects of the Namecast system help to make it almost as flexible as a

self-run DNS server.

� Namecast allows the use of a simple command line utility for updating hosted DNS records.

Free DNS hosting services commonly use a web interface to which users must log in in order to

update DNS records. Typically this means that all DNS records hosted with these services must

be updated by hand (unless the user were to write a complicated script in order to interact with the

web interface, which would need to be updated every time the site was changed). On the other

hand, Namecast’s simple command line client for DNS record updates enables users to manually

or automatically update their records, since calls to this client can easily be added to custom scripts.
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An argument for web-based interfaces could be made on the basis of usability: users uncom-

fortable with using command line utilities may have an easier time of updating their hosted DNS

records with a graphical interface. However, a command line interface seemed more important to

write first, since one can do things with it (scripting, for example) that could not be done easily

with a web-based interface. A web-based interface or graphical client layered on top of the exist-

ing command line update utility, nonetheless, would not be an unwelcome future addition to the

Namecast client toolset.

Some free DNS hosting services do provide software utilities to update hosted records in ad-

dition to web-based interfaces. However, most of these utilities perform only specific kinds of

updates. Some of these utilities will, for example, monitor the external IP address of the machine

on which they are running and update the A record for the user’s domain name in case the IP ad-

dress changes. Most cannot be used for arbitrary updates, however. Namecast’s update client, on

the other hand, can be used to make any change at all to hosted DNS records.

� Namecast supports most of the commonly used DNS resource record types.

Namecast can presently be used to host A, AAAA, CNAME, MX, NS, and TXT records. It also automati-

cally generates SOA records as necessary. For most purposes, these are all the record types that are

needed. A DNS query for all records for princeton.edu, for example, returns no other record

types except for those listed above.

While Namecast supports the most commonly used DNS record types, future support for more

kinds of records would increase the flexibility of the service. In particular, with increasing concerns

over the security of DNS, support for storing and serving DNSSEC-related records would be a good

start.

3.2.3 Scalability

Scalability makes the Namecast system easy to administer for large deployments, since as the

need for capacity increases a scalable system can easily grow to meet that demand. Namecast is

designed to be easily scalable in three different areas:
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� Query capacity: the rate at which Namecast can handle DNS queries

� Update capacity: the rate at which Namecast can handle updates to hosted DNS records

� Storage capacity: the number of total records that can be hosted on Namecast (in terms of

space).

It is easy to scale Namecast in all of these dimensions due to the system’s use of a distributed

storage layer and IP anycast. That these design features also contribute to Namecast’s reliability

is no coincidence: reliability and scalability both stem from the capability of the Namecast system

to withstand nodes’ coming in and out at random. IP anycast and distributed storage are chiefly

responsible for this capability.

The use of IP anycast makes Namecast scalable because even with nodes appearing and disap-

pearing, users–both users of Namecast DNS hosting and the ones that are sending DNS queries for

hosted domains–do not have to keep track of an ever-changing set of unicast IP addresses. With

an unchanging anycast IP address, there is only ever one destination to which Namecast queries

must be sent, even if the actual node to which these queries are routed can change at any time.

The Namecast system itself handles any problems that may arise from these changes in destination

nodes, so that the actual node used is transparent to the user. (This is possible largely because all

communications with the Namecast system can be conducted solely over UDP.) Further, the num-

ber of requests directed to any particular node decreases as more nodes are added to one anycast

group, since packets sent to an IP anycast address are routed to only one destination. This helps

make query and update capacity scalable, since if each node can only handle requests at a fixed

rate, then IP anycast can be counted on to distribute these requests across the available nodes as

more are added.

Scaling the Namecast system by adding new nodes works with varying effectiveness depending

on the choice of storage layer, MySQL or CRAQ. Because each node for the MySQL storage layer

carries a complete copy of all hosted DNS records, the query capacity of a MySQL Namecast

service increases linearly with the number of nodes; database reads do not require any interaction
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with other nodes. However, for the same reason, the storage capacity does not scale at all with the

addition of new nodes: each node must carry every hosted record, so adding a new one does not

in any way increase the maximum number of hosted records for the entire system. (To increase

storage capacity, you would need to add additional storage to every single node.) Because MySQL

uses a master-slave setup for database replication, update capacity also does not scale with the

addition of new MySQL nodes: no matter how many nodes there are, all updates (which require

writing to the database) must be directed to the single MySQL master.

When using the CRAQ storage layer, on the other hand, all three of these capacities scale up

with the addition of new nodes to the system. Data stored with CRAQ have a constant replication

factor no matter how many nodes there are, unlike MySQL, where the replication factor is equal

to the number of nodes. This means that as more CRAQ nodes are added, each individual node is

required to keep track of fewer records than before–CRAQ automatically offloads some existing

records to a new node when one comes online. For this reason, query and update capacities scale

up with the addition of new CRAQ nodes because with fewer records per node there will be fewer

queries or updates directed at any one of them. Storage capacity also scales up with the addition

of new CRAQ nodes as long as the replication factor is kept constant, since the more CRAQ nodes

there are, the smaller the set of keys each is responsible for.

4 Architecture of Namecast

The Namecast system provides two user-facing services. The first is an update service, which is

used to manage DNS records hosted by Namecast. How to establish and maintain DNS hosting

with this service is described in section 4.1. The second is DNS service, by which general Internet

users obtain the DNS records hosted by Namecast. The use of this service is completely transparent

to end users: once the owner of a domain sets up Namecast DNS hosting, DNS will automatically

direct them to a Namecast DNS server to get these records. The way the Namecast system is

designed on the backend to ensure reliable delivery of these services is described in sections 4.2,
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4.3, and 4.4.

4.1 Using Namecast for DNS hosting

Every user of Namecast is identified not by a username and password, but by a DSA public/private

key pair he or she holds. This means that no registration is necessary for anyone to start using

Namecast. Each user controls all of the domain names under a suffix he or she owns, which by

default is [keyhash].namecast.org (keyhash is the SHA-1 hash of the user’s public DSA key)

Any time the user adds a record, it will be for a subdomain of this suffix. For example, you could

add records for www.[keyhash].namecast.org or mail.[keyhash].namecast.org. If you

have only a small number of subdomains and they will remain relatively fixed, this is very simple

to set up as follows. If you own example.com, you could add a CNAME record on your registrar’s

web site to point www.example.com to www.[keyhash].namecast.org, ftp.example.com to

ftp.[keyhash].namecast.org, and so on, and all DNS hosting from then on will be handled by

Namecast.

Namecast can also provide authoritative hosting for any domain you own. With authoritative

hosting you can easily add and remove subdomains without having to go through your registrar’s

web site to mess with the CNAME records, since DNS queries for an authoritatively hosted domain

are sent directly to the Namecast DNS servers rather than redirected to Namecast from the regis-

trar’s DNS servers. This also has reliability benefits, since with authoritative hosting you do not

need to depend on your registrar’s DNS servers to be running in addition to the Namecast DNS

servers; the extra layer of indirection is removed.

To prevent just anyone from coming along and seizing control of authoritative Namecast host-

ing for a domain they do not own, however, first your domain ownership must be validated. Say

you own example.com and control key k. To validate you would add a CNAME record from

validate-[hash of k].example.com to namecast.org on your registrar’s web site, or wher-

ever else your DNS records are currently being hosted. After this is done, you must send a val-

idation request to Namecast. All of your DNS records hosted with Namecast would then be for
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the suffix example.com instead of [hash of k].namecast.org. So, for example, if you al-

ready had DNS records at Namecast pointing www.[hash of k].namecast.org and ftp.[hash

of k].namecast.org to 10.0.0.1, these records would be changed after validation to point

www.example.com and ftp.example.com to the same IP address.

To manage DSA keys (which are synonymous with user accounts in Namecast) and the cor-

responding DNS records hosted for each key, a Java client for the Namecast Update Protocol is

provided. This client is the main conduit for users of Namecast DNS hosting to interact with the

service, and will:

� Generate new DSA keys for new users of Namecast or those with multiple accounts.

� Provide the SHA-1 hash of a given DSA key. This is useful for those who are not using

Namecast to authoritatively host their own domain name and therefore whose key hash is

part of their absolute domain name.

� Update DNS records hosted by Namecast as specified in command line arguments, querying

the update server as necessary for information (e.g. sequence numbers) required to perform

the given updates.

� Update multiple DNS records atomically (either all of the requested changes are made at

once, or none are made) through the use of a specially formatted update file.

DNS records hosted by Namecast can therefore be updated automatically according to any criteria

the user requires, by incorporating calls to this Java client in other scripts or programs.

4.2 Components of one Namecast node

There are five main components of a single Namecast node. Some of these components are “off-

the-shelf,” open-source software while others we wrote ourselves. The five components are are

the storage layer (MySQL or CRAQ), the DNS server (PowerDNS), the Namecast update server

(written by me), the watchdog software (also written by me), and the BGP software (Quagga).

Each of these components integrates with one or more of the others as shown in Figure 2.
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Figure 2: Architecture of one Namecast node

4.2.1 Storage layer

The initial implementation of the storage layer for Namecast used the MySQL database server.

The advantage of this choice was MySQL’s ubiquity: PowerDNS and Java (in which we wrote the

update server code) both have great support for MySQL since so many people use it. However,

the way MySQL handles replication is not ideal for the purposes of this system. MySQL requires

either a master-slave configuration or a circular multi-master configuration. In the former case,

all update requests would have to be sent to the one master location rather than to any Namecast

location, negating the benefits of IP anycast for update requests. Further, the master MySQL server

would be a single point of failure: if it failed, no more updates could take place across the entire

system. In the latter case, if one server in the replication circle were to fail, then the chain of

replication would be broken and consistency would be lost. (DNS queries could still be handled

by other Namecast nodes even if the master MySQL node failed, however.)
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Later on, we also added support to Namecast for a CRAQ storage layer. While the CRAQ

code is still experimental, there are a number of significant advantages to the use of CRAQ over

MySQL for Namecast. First of all, CRAQ does not use a master-slave configuration to achieve

data replication. This means that the single point of failure for writes that exists when using the

MySQL storage layer is eliminated for CRAQ: any one CRAQ node can go down and the rest of

the system will continue to function for both reads and writes. Second, CRAQ has a configurable

replication factor; every Namecast node does not need to have a copy of every single hosted DNS

record as it would with MySQL replication5. This means that total storage space scales in addition

to DNS query and update capacity with the addition of new nodes.

CRAQ is nonetheless less efficient than MySQL in some ways. First, all communication with

the CRAQ storage layer has to be done over TCP through a client that speaks an ASCII-based

protocol. This incurs some overhead for both update server writes and DNS server reads that

the MySQL storage layer does not, since it has native drivers for Java and PowerDNS. Second,

CRAQ is only a simple key-value store and not a relational database. This means that (at least

for our present, naive implementation of the CRAQ-based storage layer) when queries come in for

specific DNS record types, the Namecast node has to search linearly through all of the records for

the given domain name to find the requested ones rather than executing one simple SQL query.

Due to the tradeoffs inherent in either choice of storage layer, we left in support for both. For

future development of Namecast, however, we believe the CRAQ storage layer is more promising.

The lack of a native CRAQ driver for PowerDNS and Java can be corrected with some additional

work, but the deficiencies with MySQL replication cannot. Further, CRAQ is already faster than

MySQL for handling DNS queries (see section 5.1.1).

4.2.2 DNS server

The DNS server for Namecast is the open-source PowerDNS [9]. PowerDNS has proven to be a

good choice for this purpose for a number of reasons. First, PowerDNS totally separates the front-

5If a DNS query arrives at a Namecast node that does not have the necessary records stored locally, then that node
will retrieve these records from another one that does have them in order to answer the query.
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facing components of the DNS server responsible for processing and responding to DNS queries

from the backend storage layer. Unlike the bind DNS server, which requires the use of a specially-

formatted “zone file” to specify DNS records to be served, PowerDNS can use any number of data

sources: MySQL and other databases, bind-style zone files, and even arbitrary data stores through

the use of a special query protocol over a Unix pipe. This flexibility made it possible to update

records on the fly without having to constantly generate new zone files, which would have been

prohibitively computationally expensive. It also made it possible to easily integrate CRAQ in

addition to MySQL as a supported storage layer for Namecast.

Second, PowerDNS has excellent performance, including built-in caching that works with any

storage layer–even arbitrary ones running over the pipe backend. This made it suitable for use in

Namecast, which is designed to scale to handle large amounts of traffic. The fact that caching works

on arbitrary backends is especially useful for improving performance with the CRAQ storage layer,

since it does not have a native PowerDNS backend. (More on PowerDNS performance and caching

in section 5.1.1.)

4.2.3 Update server

The update server is responsible for all changes to DNS records for users of the Namecast service.

It uses a custom UDP-based protocol called, simply enough, the Namecast Update Protocol (NUP).

This server listens at the same anycast IP addresses as the DNS server for update requests from the

Namecast update client (or any other client conforming to the protocol specification in section 4.4).

This means that updates can be sent to any Namecast node, and can therefore continue even if some

of the nodes were to fail as long as the storage layer supports this.

There are two versions of the update server: one for the MySQL storage layer and one for

the CRAQ storage layer. The MySQL update server uses the MySQL Connector/J JDBC driver

[10] to connect to a local MySQL database server. For valid, authenticated update requests, it

adds or changes rows in the records table in the database according to the schema required by

PowerDNS’s MySQL backend (called gmysql) [11] by executing the appropriate SQL queries.
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The CRAQ update server speaks to a CRAQ client over a TCP socket using an ASCII client

protocol, documented on the CRAQ Wiki page [12]. Instead of searching for and updating records

using SQL, since CRAQ is a simple key/value storage system and not a relational database, the

CRAQ update server stores data in the form of large serialized Java objects each containing all the

information for one Namecast account.

The update server uses two security mechanisms to ensure that update requests are only exe-

cuted if they come from the actual owner of the hosted DNS records in question6. First, all update

requests must contain a DSA signature that can only be generated by the holder of the private

key matching the public key associated with the account. This means that an adversary could not

arbitrarily generate a valid update request. Second, all update requests must contain a sequence

number that is included in this signature and greater than any sequence number seen before. This

means that an adversary could not record update requests as they are transmitted and then later

replay them to cause the update server to execute the same request again.

The update server is multithreaded: each incoming update request is immediately passed off to

a new handler thread. This means that requests can be processed in parallel, which is especially

useful when running the server on a multicore machine. The performance characteristics of the

update server are discussed in more detail in section 5.1.2 about the microbenchmarks performed

on the server.

4.2.4 Watchdog

The watchdog process is used to monitor all of the other components on its local node–DNS server,

update server, and MySQL server. It periodically checks to make sure all of the processes for these

components are running. It also sends frequent test queries to the DNS and MySQL servers, and

test updates to the update server, to make sure that they are responsive. (Even if the process for a

6To be more precise, updates are only executed if the source of the request can prove that it holds the DSA key pair
associated with the records to be updated by generating a valid DSA signature for its request. This means that updates
will be accepted from anyone who can generate this signature, which may not always be the “owner.” It could also
be, for example, an authorized agent of the owner, a thief who has stolen his DSA key pair, or someone with a large
supercomputer or clever algorithm who has managed to crack the DSA key or algorithm (perhaps the NSA?).

21



component is running, the test queries are necessary to make sure that it works properly, since not

all error conditions will necessarily result in process termination.)

If any of the components terminates or stops responding, the watchdog immediately instructs

the BGP software to withdraw the anycast route to its node. (Ideally if the BGP software itself

fails, the router on the other end of the BGP session will notice and withdraw the route itself.)

It then attempts to restart the component to bring it back and tests again to ensure everything

else is still working. To prevent route flapping, wherein the route to a node is rapidly toggled if

more than one of its components fails7, the watchdog reannounces the anycast route only when all

components have been verified again as working. If automatic recovery fails, the node stays offline

until someone can come around to fix it.

The watchdog itself is simple enough (about a page of Python code) that it is unlikely the

watchdog will fail but BGP will continue to work. If the BGP software itself fails, then eventually

the router on the other end of the BGP session will notice this when its keepalive message is

not returned and will withdraw the anycast route on our node’s behalf. However, one still could

conceive of a situation in which the watchdog may crash without the anycast route to the node

being withdrawn. Reliability could be improved further, then, through the addition of cross-node

monitoring, wherein each Namecast node keeps watch over some set of the other nodes and can

withdraw the anycast route to a failed node remotely if a problem is found8.

4.2.5 BGP software

The Quagga open source router [17] is used in Namecast for its implementation of the BGP pro-

tocol. This software is responsible for announcing the anycast route(s) for the node on which it is

running to the upstream ISP and the Internet at large. As long as Quagga is running, the anycast

route to its Namecast node is maintained. If the watchdog process detects any problems with the

7More than one component can fail due to dependencies. For example, if the storage layer goes down then the
update and DNS servers (which depend on it) may also need to be restarted after the storage layer is repaired in order
to get things running again.

8Google’s senior VP of operations Urs Hölzle notes that Google uses a similar technique to detect outages at their
datacenters [23].
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node, it terminates Quagga. This results in the removal of the anycast route to the node; as the

resulting BGP update propagates through the Internet, routes originally pointing toward this node

will be changed to send packets to a working Namecast node (assuming one still exists).

There are certain error conditions (maybe an unexpected link failure, for example) that could

potentially cause a Namecast node to fail without an automatic route withdrawal by Quagga. For

these cases, BGP has a built-in keepalive timer; the upstream router with which Quagga has a

connection periodically pings it, and if no response is received then all routes it has announced are

withdrawn. To achieve the lowest possible failover time in this (hopefully) rare circumstance, the

lower the keepalive timer can be made the better. This requires the upstream ISP’s cooperation

in setting the timer to a low value. The watchdog process attempts to have Quagga explicitly

withdraw anycast routes to the node in case of trouble to avoid relying on the keepalive timer,

which in most cases can be expected to act relatively slowly.

4.3 Node integration with IP anycast

The integration over the Internet of multiple Namecast nodes installed in different geographic

locations is illustrated in figure 3. Users–meaning both users of Namecast DNS hosting and gen-

eral Internet users querying Namecast for DNS records–access Namecast over the Internet solely

through its public anycast IP address(es), which do not change with the addition or removal of

individual nodes. When a user sends a packet to Namecast (indicated by the solid red arrow in the

figure), it will end up at any one of the Namecast nodes with that destination address (indicated by

the dotted red arrows).

Namecast nodes coordinate backend components through unique unicast IP addresses of which

each node has its own. This way, nodes can keep track of which one is responsible for which

stored record (with the CRAQ storage layer) or retrieve database updates from the master node

(with the MySQL storage layer). The unique unicast address possesed by each node makes it

possible for backend coordination to continue even if, for example, the DNS server on one node

fails, which would necessitate withdrawing this node from anycast service to users. It also allows
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Figure 3: Integration of geographically disparate Namecast nodes over the Internet. Users access
the nodes by sending anycast packets which can arrive at any one of the available nodes (red
arrows). Nodes communicate between themselves through a set of static unicast addresses (green
arrows).

administrators to remotely access and (attempt to) fix a damaged node, even when it is no longer

accessible through the public anycast address.

It is worth noting that a Namecast node does not need to consist of only one computer, though

this is how they are depicted in figure 3; a node could also consist a group of servers, each running

some (or one) of the components of a Namecast node (enumerated in section 4.2). A node could

even be an entire datacenter. Because access to the entire group of machines is severed whenever

the watchdog detects a problem, it may not be a good idea to set up a datacenter for each node,

since every problem would place a lot of otherwise-functioning machines out of service. However,

running a small group of machines at each node to increase capacity is certainly a feasible strategy.

For example, the DNS server could run on one machine, the update server on a second, the storage

layer on a third, and so on.
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4.4 Namecast Update Protocol

The Namecast Update Protocol (NUP) is the protocol spoken by the update server in order to

make changes to DNS records hosted with Namecast. The protocol is binary-based rather than

text-based (as HTTP is, for example), since it is not intended to be human readable. The Java

reference implementation of the protocol for both client and server is given in the UpdateClient

and UpdateServer classes written for this project. Two versions of the UpdateServer exist, for

compatibility with both MySQL and CRAQ storage layers, but the protocol details are unchanged

between the two.

4.4.1 Why a custom protocol?

A custom protocol for updating DNS records hosted by Namecast is needed because updates are

sent to an anycast IP address, and as such, no existing protocol based on TCP (such as HTTP or

SOAP) could be used. Just as anycast allows us to provide geographically distributed DNS service

by using route withdrawals to provide failover, it can similarly eliminate the need for a single point

of failure with update requests. However, since multiple packets sent to an IP anycast address

could be delivered to different servers, connection-oriented protocols could not be expected to

work reliably. The Namecast Update Protocol avoids this problem by keeping everything in a

single packet. NUP was therefore designed from scratch with a few key goals in mind:

� Integrity. The Namecast update server lives at the same anycast address as the DNS server.

This means that to maintain integrity when the destination of an update request may change

at any time, all update requests must fit inside a single packet. To achieve this: (a) authen-

tication must be stateless–that is, all information needed to authenticate an update request

must be contained in a single packet, and (b) all the changes that a user might wish to per-

form atomically (either complete the entire request or none of it) must reasonably fit in a

single packet.

� Extensibility. It should be possible to change the protocol without breaking existing scripts
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and client versions. This is accomplished through the use of a protocol version number that is

incremented in case of any changes. (Older clients can request a fallback to previous protocol

versions by replying to a request with the appropriate “protocol version unsupported” error

message.)

� Security. The security goals of the Namecast Update Protocol are twofold. First, no one

should be able to make arbitrary changes to the Namecast-hosted DNS records for a domain

name suffix that he does not own. This is achieved by the use of the Digital Signature

Algorithm (DSA). Second, no one should be able to commit a replay attack in which he

can resubmit a previously-seen DNS record update. This is achieved by the use of update

sequence numbers.

4.4.2 Protocol overview

A Namecast update request works like this: each packet sent by the user, called an “update packet”

contains a list of desired changes to her hosted DNS records, called “request elements,” as well as

some authentication information. The Namecast Update Server that receives the update packet at-

tempts to execute all of the request elements atomically–if all of them cannot be executed (perhaps

due to a syntax error or authentication problem) then none of the requested changes are made. In

either case, the server sends back a “reply packet” to either confirm the successful completion of

the update or explain why it could not be executed.

The user authenticates update requests by including a public DSA (digital signature algorithm)

key at the top of each request and a DSA signature at the bottom that matches the given key.

The public DSA key is effectively the “username” for the account; after a specific public key is

seen for the first time, no other public key can be used to change or delete records created with

it. The effectiveness of this authentication mechanism relies on two properties of DSA: first, that

it is practically impossible to generate a signature matching a given DSA public key without the

associated private key but easy to verify it; and second, that it is practically impossible to figure out

the private key for a given public key. Short of somehow acquiring the original keypair associated
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with a set of hosted DNS records (collectively called an “account” on Namecast), no adversary

could generate new update requests that would be accepted by the update server.

The technical details of the Namecast Update Protocol, including the packet fields and formats

for update requests and replies, are listed in appendix A.

5 Evaluation

In addition to setting up a small-scale installation of the Namecast system on Emulab [14] in order

to make sure all of the components work properly together, we performed two experiments to

evaluate and optimize the Namecast system. The first was a set of microbenchmarks to determine

the rate at which the various components of Namecast can handle users’ requests, and the second

was a set of tests performed on a simulated network topology to determine how to best allocate

Namecast nodes to a set of anycast addresses for the lowest failover time.

5.1 Namecast component microbenchmarks

In order to get a sense of the kind of load a single Namecast node can handle, we ran two mi-

crobenchmarks on the Emulab network testbed [14]: one measuring the maximum number of DNS

queries per second, and one measuring the maximum number of DNS record updates per second.

These benchmarks will also prove useful for future work as a performance baseline against which

to measure new optimizations. The benchmarks were performed on the center machine (n1) in the

network topology illustrated in figure 4. The four querying machines (u1 through u4) simultane-

ously sent requests to the benchmark machine as fast as possible, maxing out its CPU. (We verified

this manually by logging into n1 and checking CPU usage with the top utility.) Four querying

machines were necessary to max out the CPU of the benchmark machine due to the asymmetric

nature of NUP requests: it is more computationally difficult to generate these requests than it is

to process them. The benchmark result was computed as average number of queries answered per

second across all of the senders.
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Figure 4: Emulab network topology for Namecast component microbenchmarks

To ensure consistent results across tests, a pc850 on Emulab [21] was always used as the

benchmark machine. The Emulab pc850 has an 850 MHz Pentium III Coppermine CPU and 512

MB of RAM, so it is significantly underpowered compared to the kind of machine you might

expect to actually host Namecast on. This resulted in benchmark numbers that are lower than

one might otherwise expect. However, the pc850’s low speed made it easier to get consistent

benchmark results, since by benchmarking on a slow machine we could ensure that the service

was CPU-limited rather than bandwidth-limited.

5.1.1 DNS server

DNS server benchmarks were performed both with caching turned off and with caching turned

on at default timeouts. PowerDNS caching works on a number of different levels [19]. First,

it caches entire DNS packets that are generated to respond to incoming requests. If an identical
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(a) Results with PowerDNS caching disabled (b) Results with PowerDNS caching enabled with de-
fault timeout values

Figure 5: Namecast DNS server microbenchmark results

request is received while the cached packet is still available, it is simply resent without any further

processing or the need to query the storage layer. Second, it caches responses from the storage

layer for specific domain/type queries. Third, it caches negative responses from the storage layer:

if the storage layer informs PowerDNS that a certain domain has no records of a certain type,

PowerDNS will not query it again for records of that type for that domain until the cached negative

response expires.

To run the benchmark, we used an open-source DNS benchmarking utility called querysim,

made by the National Institute of Standards and Technology [18]. We configured the benchmark

utility to send a rapid stream of DNS queries for a given record to the target DNS server, mea-

suring the average queries per second over a ten minute period. querysim used a pool of twenty

threads to send requests, waiting for a reply from one request to its corresponding thread before

sending another so as to avoid a livelock on the benchmark machine. Nonetheless, the rate at which

querysim sent DNS queries to the benchmark machine was sufficient to max out its CPU.

With the caching off (figure 5a), every single DNS query received caused a second query to the

storage layer for PowerDNS to retrieve any relevant DNS records. PowerDNS then synthesized

and sent and appropriate reply packet based on the answers it received from the storage layer.

Despite CRAQ’s experimental nature, it outperformed MySQL by a fair margin in this benchmark.

Interestingly, with PowerDNS caching turned on (figure 5b), MySQL performed better than
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Figure 6: Namecast update server microbenchmark results

CRAQ. While this may seem counterintuitive at first, the result can be explained by the greater

latency of CRAQ. While the CRAQ storage layer has higher throughput than the MySQL storage

layer (as demonstrated by the non-caching benchmark), it takes CRAQ longer to respond to any

one particular request. Since this benchmark tested only how fast PowerDNS could serve the same

DNS record repeatedly, every time the cache expires PowerDNS stops responding to requests until

the storage layer responds to a query for that record. Since all threads must wait at this point for

the response for this particular record, it does not matter that CRAQ can handle more queries per

second overall; the waiting time is equal to the response latency for one query and not to the CPU

time CRAQ actually uses in serving that request. Although CRAQ was slower than MySQL with

caching on, its higher throughput still makes it the better choice for DNS server speed with the

varied set of queries you might expect in a regular Namecast installation.

5.1.2 NUP server

To benchmark the update server, we wrote a short program that works similarly to the utility used

for DNS benchmarks. Each machine connected to the benchmark machine sent repeated, simulta-

neous requests to the update server to add records for eight different accounts. (The update server

was thus handling requests for thirty-two different accounts across all the machines.) Requests for

each account were sent serially, waiting for a reply to one request before sending another in order
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to avoid a livelock during the benchmark.

The performance of the CRAQ storage layer for this benchmark was significantly worse than

that of the MySQL storage layer (see figure 6)–CRAQ was about half as fast. This is largely due

to the way the CRAQ storage layer is integrated with the update server rather and not indicative of

performance issues with CRAQ itself. The low update server performance with the CRAQ storage

layer is also not a drastic problem, since one would expect DNS queries to make up a much larger

portion of the load on a Namecast node than update requests (DNS records are typically read

far more often than they are changed). However, there is nonetheless a great deal of room for

improvement here. There are a number of explanations for the low performance of the CRAQ

storage layer, and these point to ways in which performance here could be increased:

1. CRAQ requires every query to be performed over a TCP socket with an ASCII-based proto-

col, and the objects stored in the CRAQ storage layer are serialized Java objects. This means

that each time a read or write is performed, the update server must serialize or deserialize

a Java object, which takes a significant amount of CPU time. Finding ways to organize the

stored data without using serialized Java objects may speed things up.

2. The update server currently must read and write some of these Java objects more than once

to process an update request; caching these reads and writes would also probably help per-

formance.

3. The version of CRAQ used for these benchmarks requires three chain nodes to be running

(the chain length is fixed at three). For the purposes of the benchmark, we ran all three

of the nodes on the benchmark machine, which means that for every write performed the

data needed to be sent to all three separate CRAQ processes. Running the benchmark with

a version of CRAQ supporting a chain length of one or moving the other chain nodes to

separate machines (which would be more realistic but harder to measure) could also improve

the results here.
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5.2 IP anycast failover experiments

Namecast relies on BGP to automatically route around nodes in case they should fail, redirecting

packets to those that are still functioning. However, it is not immediately obvious how to best set

up these nodes in order to achieve the fastest possible failover. Indeed, in a paper on measurement-

based IP anycast deployment, Ballani, Francis, and Ratnasamy note that “IP [a]nycast, if deployed

in an ad-hoc manner, does not provide fast failover to clients” [24].

It is possible to have any number of anycast IP addresses, each advertised by a different subset

of the total set of Namecast nodes. If there were only one anycast address for every node, then

users would be completely reliant on BGP in order to redirect their requests to a working node if

one should fail, as they would only have the option to send requests to one destination. Having

more than one anycast address could fix this problem: if BGP were slow to route around a failed

node at one anycast address, the user (or his or her local DNS server) could force the use of a

different, hopefully-functioning node by sending her request to a different address.

However, having too many anycast addresses could also impede failover performance by slow-

ing BGP convergence. With lots of anycast addresses (assuming disjoint sets of nodes for each

address), there will only be a few distant nodes to which packets for some address can be routed.

The greater distance between these nodes could increase the time BGP would require to reconverge

after a node failure.

5.2.1 Experiment design

To determine the best number of anycast addresses in which to group available Namecast nodes,

we ran experiments using virtual nodes connected by a virtual network topology (for an example,

see figure 7). The “best” number of anycast addresses is here defined to mean that which results in

the lowest failover delay9. These topologies were automatically and randomly generated, all taking

the form of an incomplete binary tree. The nodes running Namecast make up the leaves of the tree,

9A paper by Avramopoulos and Suchara [28] also examines the effects of varied anycast group sizes on the security
of anycast; the effectiveness of prefix hijacking attacks, where an adversary attempts to steal traffic originally destined
for your servers, also varies with anycast group size.

32



Figure 7: Visualization of a randomly-generated incomplete binary tree test topology. Namecast
nodes are at the leaves of the tree. The root node from which requests originate is outlined in red.

and its head is the point of origin from which the failover speed was measured. This topology was

chosen because it roughly corresponds to a picture of the Internet from a user’s perspective; the

possible paths taken by one user’s packets (coming from the head of the tree) expand exponentially

as the number of hops increases and the path terminates wherever the packet’s destination lies (at

the leaves of the tree, where the Namecast nodes live). A 50ms delay was added on each virtual

link to better imitate latencies seen on the Internet and to lessen the effect of random variations in

the results.

For each experimental topology, the number of servers n was kept at a constant value of 32
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while the number of anycast groups k among which the servers were distributed was varied from

1 to 32. For each value of k, the Namecast node to which queries from the head of the tree were

delivered for the first anycast group was failed and a DNS query was sent from the head of the

tree to this anycast address. (The order in which these two events occurred was varied by ±1

second in order to ensure that results were not affected by any time-dependent behavior in the

BGP convergence process.) If no response to the query was received after five seconds, the next

anycast group (or the same anycast group a second time for k = 1) was queried instead. The five

second failover time was chosen because this matches the behavior of BIND, the most popular

DNS server software [20]. The total time it took to receive a response to the DNS query after the

first one was sent was measured sixteen times for each value of k on each test topology.

5.2.2 Results

For the collected experimental data we have plotted the average time it takes to receive a response

from the time of the initial DNS query (including any time waiting for the retry timer to expire) in

figure 8a. The results clearly show that response time trends upward, for two reasons: first, with

more anycast groups, there are fewer nodes in any one group. This means that it is more likely

that the chosen node for any one anycast address will be farther away from the root of the tree

than if there were more nodes to choose from. The drastic jump in average response time around

k = 16 can be explained by the fact that for values of k > 16, the anycast group size drops to one

(effectively becoming a unicast address). When there is only one possible destination for a given

IP address and that node fails, there is no way for BGP to route around the failed node and so the

querier must always wait for the retry timer to expire.

Second, the rate at which BGP failover works fast enough to obviate the need for a retrans-

mission of the initial DNS query decreases as the number of anycast groups increases (as shown

in figure 8b). This itself can be explained by the increased distance between nodes for smaller

anycast groups; as the distance between nodes drops, BGP messages must travel farther in order

for reconvergence to finish and it therefore can take too long to be of any help in avoiding the need
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(a) Average time to receive a response for DNS query based on the number of anycast groups among which the available
Namecast nodes are divided

(b) Proportion of test runs in which BGP successfully routed around the failed node before the initial request timed out

Figure 8: IP anycast experiment results
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for retransmission.

The results of individual tests used to produce figure 8a clustered mostly around two values:

one group around 500 ms, and another group around 5,500 ms. This can be explained by the design

of the experiment. Either BGP failover works, in which case the failed node’s replacement receives

and responds to the query in a short time; or it does not, in which case DNS failover triggers after

5 seconds to retransmit the request to a different group. Retransmission to a different group will

always work (except where k = 1), since our groups are disjoint and we only fail a node in the first

group. This wide interval between the two possible values for any one run explains the large error

bars in this figure. It is interesting to note that where BGP failover worked, it worked quickly:

there was no case in which, for example, BGP eventually routed the first request to a working node

but it took more than a second to do so.

The results show that setting k = 1 (a single anycast group for all nodes) offers the best per-

formance in the average case because BGP can route around failures faster when there are more

nodes in a group. As the number of nodes in one anycast group increases, the average distance

between them decreases; therefore, so does the number of routing changes BGP must make to

redirect traffic to the nearest working node. When k = 1, BGP will be most likely to reconverge in

time for the original request to be directed to a functioning node.

Despite the better average case performance where k = 1, the use of a single anycast group

makes users completely reliant on BGP to handle failed nodes. This means that in the worst case,

where BGP may for whatever reason take an unusually long time to route around a failed node

or fail to do so entirely, users could potentially experience minutes or even hours of downtime.

For this reason, k = 2 would be a better choice for the number of anycast groups in the Namecast

system. Adding a second, disjoint anycast group to which queries can be sent would seem to

provide the best balance between rapid BGP failover in the common case and giving the user an

option to failover manually in case something goes wrong with BGP10.

10Bill Woodcock of the Packet Clearing House also suggested k = 2 as the optimal number of anycast groups in a
talk given August 2002, though Woodcock’s suggestion was for two overlapping rather than disjoint groups [27].
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6 Future work

While the Namecast system in its present state is fully functional, there are nonetheless plenty of

areas in which there exists room for future improvement.

� The most important uncompleted piece of Namecast is making it publicly available. This

has not yet been done because for Namecast’s failover mechanisms to work requires the

cooperation of upstream ISPs where the nodes are set up. The difficulties of acquiring this

cooperation are discussed in more detail in section 3.

� Even if a full-scale publicly available Namecast service cannot be set up in the short term,

testing the system with a few “real users” (as opposed to the solely experimental tests run so

far) would help to determine which areas of the system are most in need of improvement in

addition to uncovering any lingering bugs. This could be considered a precursor to a fully

public Namecast service.

� The design features of the CRAQ storage layer make it a superior choice to MySQL for

use in the Namecast system. However, both due to the experimental nature of the current

CRAQ implementation and moreso due to the inefficient implementation of the CRAQ-based

update server, performance with the CRAQ storage layer is lacking. This is especially true

for handling update requests. A number of modifications to the integration of CRAQ with

Namecast could be made in order to increase this performance, such as those discussed in

section 5.1.2 on the microbenchmarks for the update server.

� A number of improvements to increase the flexibility (see section 3.2.2) of the Namecast

system:

• Namecast already supports the most commonly-used types of DNS records. However,

there are many more types of DNS records supported by PowerDNS for which there is

not yet support in the update server (of which a complete list is available online [22]).
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With recently growing concerns over the security of DNS, support for DNSSEC-related

records would be especially welcome.11

• Namecast supports domain names containing numbers, hyphens, and letters from the

standard ASCII character set. Some international users may find support for non-

English characters in domain names useful. This should be a relatively simple addition

given Java’s native support for unicode characters.

• While Namecast can store and serve a static set of DNS records, it cannot do some of

the fancier DNS tricks. It would be useful if users of Namecast could, for example,

have it direct users to different IP addresses for the same domain name based on where

the querier is geographically or which of the web servers for that domain is least busy

at the moment. This would be probably be a significant undertaking, though, as it

would require a new version of the Namecast Update Protocol as well as changes to the

storage layer schema.

� Adding support to the Namecast Update Protocol for users to change the public key associ-

ated with their account would help improve security, as it would make it possible for users

to switch to a new DSA keypair for authentication in case the original is compromised or

suspected to be compromised.

� Adding cross-node monitoring to withdraw anycast routes to remote nodes in case the watch-

dog itself fails would improve reliability by lowering failover delay in this extreme case.

� The anycast experiments were performed solely for disjoint anycast groups (mathematically,

where group size s = k/n). It would be worth exploring whether overlapping anycast groups

could provide superior failover performance to disjoint groups.

11As of this writing, PowerDNS cannot perform DNSSEC processing but can store and serve DNSSEC-related
records.
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Appendix

A Namecast Update Protocol specification

Update packet format

Bytes Contents

8 “Namecast” (ASCII string)

2 Version number (16-bit integer)

2 Public key length in bytes (16-bit integer)

Variable (about 450) X.509-encoded DSA public key

8 Sequence number (64-bit integer)

2 Number of request elements (16-bit integer)

Variable Request elements

2 DSA signature length in bytes (16-bit integer)

Variable (about 46) DSA signature (with SHA-1) of all the above

“Namecast” string is used to identify this packet as conforming to some version of the Namecast

Update Protocol. Every packet must start with this ASCII string verbatim.

Version number is a signed 16-bit integer indicating which version of the Namecast Update Pro-

tocol this packet conforms to. As of this writing, this field should only ever be set to zero.

For future updates to the Namecast Update Protocol, this version number will change.

Public key length is a signed 16-bit integer indicating the length of the following DSA public

key.

DSA public key is an X.509-encoded Digital Signature Algorithm (DSA) public key that iden-

tifies the account for which this update should be made. If this public key has never been

encountered before, a new account will be made automatically. This key will be used to
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verify the DSA signature for the update packet it arrives in. The SHA-1 hash of the key is

also the user’s account name–all domain names given in request elements for this packet will

by default be subdomains of <DSA public key hash>.namecast.org.

Sequence number is a signed 64-bit integer containing the global sequence number for this up-

date packet, incremented by one for each update performed for the given public key. The

sequence number is only incremented in the case of a successful or partially-successful up-

date (reply packet status codes 0 and 101). If a public key has never been used before, this

number starts at zero. In the event of an overflow, the sequence number rolls back to zero.

However, there really should never be an overflow. The Namecast update server can be

queried for the next expected sequence number by sending an update packet with a sequence

number and request element count of zero. The next expected sequence number is also sent

with every reply packet. Update packets contain sequence numbers in order to prevent replay

attacks in which someone attempts to re-send intercepted, old packets.

Request element count is a 16-bit signed integer that indicates the number of RR (resource record)

change requests contained in this packet.

Request elements are contained in sequential order in the packet, formatted as specified below.

Signature length is a 16-bit signed integer that indicates the length of the following DSA signa-

ture.

DSA signature is used to authenticate the packet’s sender. To generate this value, the entire con-

tents of the packet up to this point should be hashed with the SHA-1 algorithm and the

result signed using the private key corresponding to the DSA public key given above. (This

corresponds to the “SHA1withDSA” algorithm in Java.)

Request element format

44



Bytes Contents

2 Opcode (0 for add; 1 for delete; 2 for validate)

2 Domain name size in bytes (16-bit integer)

Variable Domain name (subdomain for RR, or the domain name to be validated)

2 RR type size in bytes (16-bit integer)

Variable RR type

4 RRDATA size in bytes (32-bit integer)

Variable RRDATA

4 TTL (32-bit integer)

Opcode specifies in 8-bit binary format what operation should be performed.

� An opcode of 0 (add) indicates that the specified RR should be added with the new RRDATA

given. This will create a duplicate record if one already exists.

� An opcode of 1 (delete) indicates that:

• If only a subdomain name is given, all RRs for that subdomain should be deleted. In

this case, the RR type field will be a single null byte and the RRDATA size field will

be zero.

• If a subdomain name and RR type are given, all RRs of that type for that subdomain

should be deleted. In this case, the RRDATA size field will be zero.

• If a subdomain name, RR type, and RRDATA are given, then the RR containing that

specific RRDATA should be deleted.

� An opcode of 2 (validate) indicates that Namecast should become an authoritative DNS

server for the all RRs hosted under this key. If validation succeeds, the DNS suffix for all

records for this key will be changed to the given one.
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• In order to validate a domain you own, you must add a CNAME record pointing from

validate-<key hash>.your.domain. to namecast.org. For example, if your key

hashes to xyz and you want Namecast to host DNS for example.com, you would

add a CNAME record from validate-xyz.example.com to namecast.org on your

registrar’s web site and then send a validation request for example.com.

• The RRTYPE field should be zero length.

• The RRDATA field should contain the technical contact email address for the domain

(e.g. hostmaster@example.com).

• The TTL field should be set to the desired TTL of the SOA record for your domain.

Domain name size is a 16-bit signed integer indicating the size of the following subdomain name.

Domain name is an ASCII string containing the name of the subdomain for which this RR change

should be performed, or the full domain name to be validated. In the former case, it should

omit the implied portion of the domain name (that is, the “.<public key hash>.namecast.org.”

or other validated name).

RR type size is a 16-bit signed integer indicating the size of the following RR type.

RR type is a null-terminated ASCII string containing the type of RR for which this change should

be performed. Supported record types and the required data formats are:

� A – formatted in dotted decimal notation (for example, 10.1.2.3)

� AAAA – formatted as an IPv6 address (for example, 2001:db8:85a3::8a2e:370:7334 [15])

� CNAME – formatted as a standard domain name, with no terminating dot (for example, www.example.com)

� MX – integer indicating priority for the mail server, one space, then a standard domain name

with no terminating dot (for example, 10 mail.example.com).

� NS – formatted as a standard domain name, with no terminating dot (for example, ns1.example.com)
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� TXT – text records are stored as given, and can contain supplemental information about the

domain (e.g. contact information) or data of other kinds

� SOA – generated automatically on domain ownership validation

RRDATA size is a 32-bit signed integer indicating the size of the RRDATA section for this request

element.

RRDATA contains the data to be used for this RR change, formatted as indicated by the RR type.

TTL is a 32-bit signed integer indicating the TTL to be used for this RR.

Reply packet format

Bytes Contents

8 “Namecast” (ASCII string)

2 Version number (16-bit integer)

2 DSA public key length in bytes (16-bit integer)

About 450 X.509-encoded DSA public key of the update packet

8 Sequence number of the update packet

8 Next expected sequence number

2 Number of request element codes (16-bit integer)

2 Status code for update packet

Variable Two-byte status code for each request element

“Namecast” string is used to identify this packet as conforming to some version of the Namecast

Update Protocol. Every packet must start with this ASCII string verbatim.

Version number is a 16-bit signed integer indicating which version of the Namecast protocol this

packet conforms to. As of this writing, these bytes should only ever be set to zero.
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DSA key length is a 16-bit signed integer indicating the length of the following DSA public key.

DSA public key copies the public key sent with the corresponding update packet.

Sequence number contains the sequence number of the update packet to which this reply corre-

sponds. Together, the DSA public key and sequence number of the original update packet

can be used to match any reply to its corresponding request.

Next sequence number contains the sequence number that should be used in the next update

packet received for this public key.

Number of request elements indicates how many request elements were present in the update

packet to which this reply corresponds.

Packet status byte can contain one of the following values. All other values are reserved.

Value Meaning

0 Success

100 Failure

102 Total failure due to invalid RE

103 Failed because request contained no REs

200 Invalid DSA signature

300 Wrong sequence number

400 Unsupported protocol version

401 Protocol version obsolete

500 Malformed update packet

501 Update packet too short

502 Did not find expected number of REs

Element status byte can contain one of the following values. All other values are reserved. There
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is one element status byte for each request element in the update packet to which this reply

corresponds.

Value Meaning

0 Success

100 Invalid opcode

200 Invalid subdomain name

201 Subdomain name too long

202 Subdomain name contains invalid characters

300 Invalid RR type

301 RR type unsupported

400 Invalid RRDATA

401 Expected RRDATA, but there was none

500 Invalid TTL

600 Could not process due to other errors

601 Could not process due to previous errors in request packet

602 Could not process due to previous errors in previous request elements
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