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We consider the problem of MaxMin allocation of indivisible goods. There are m items to be
distributed among n players. Each player i has a nonnegative valuation pij for an item j, and the

goal is to allocate items to players so as to maximize the minimum total valuation received by

each player. There is a large gap in our understanding of this problem. The best known positive
result is an Õ(

√
n)-approximation algorithm, while there is only a factor 2 hardness known. Better

algorithms are known for the restricted assignment case where each item has exactly one nonzero

value for the players. We study the effect of bounded degree for items: each item has a nonzero
value for at most D players. We show that essentially the case D = 3 is equivalent to the general

case, and give a 4-approximation algorithm for D = 2.
The current algorithmic results for MaxMin Allocation are based on a complicated LP relaxation

called the configuration LP. We present a much simpler LP which is equivalent in power to the

configuration LP. We focus on a special case of MaxMin Allocation—a family of instances on which
this LP has a polynomially large gap. The technical core of our result for this case comes from

an algorithm for an interesting new optimization problem on directed graphs, MaxMinDegree

Arborescence, where the goal is to produce an arborescence of large outdegree. We develop
an nε-approximation for this problem that runs in nO(1/ε) time and obtain a polylogarithmic

approximation that runs in quasipolynomial time, using a lift-and-project inspired LP formulation.

In fact, we show that our results imply a rounding algorithm for the relaxations obtained by t
rounds of the Sherali-Adams hierarchy applied to a natural LP relaxation of the problem. Roughly

speaking, the integrality gap of the relaxation obtained from t rounds of Sherali-Adams is at most

n1/t.
We are able to extend the latter result to a more general class of instances called InfDegreeTwo:

each item has infinite utility for at most two players. Along the way, we prove a result about the

existence of a perfect matching in a probabilistically pruned graph which may be of independent
interest.
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1. INTRODUCTION

We study the MaxMin allocation problem of indivisible goods. An instance of
MaxMin Allocation consists of a set A of n players and a set B of m items, with a
non-negative utility value pij for each player i ∈ A and item j ∈ B. The utility of
a player is an additive function, i.e., if player i is given a subset Bi ⊆ B of items,
she gets a utility

∑
j∈Bi pij . The goal is to find an allocation of items to players—

Bi ⊆ B for each player i, where Bi ∩ Bi′ = ∅ for players i 6= i′—such that the
minimum of the utilities of the players, i.e., mini∈A

∑
j∈Bi pij , is maximized. The

problem corresponding to the dual objective, i.e., minimizing maxi∈A
∑
j∈Bi pij ,

is the classic Makespan minimization problem for unrelated parallel machines (with
items corresponding to jobs and players corresponding to machines). In this work,
we consider the MaxMin objective which is natural if we think of items as rewards
and look for an equitable, fair allocation of them so that every player surpasses a
certain “happiness” threshold. Accordingly, this problem has also been called the
“Santa Claus” problem [Bansal and Sviridenko 2006; Asadpour et al. 2008]. The
MaxMin Allocation problem has received a fair bit of attention lately [Bansal and
Sviridenko 2006; Asadpour et al. 2008; Asadpour and Saberi 2007; Bezáková and
Dani 2005; Woeginger 1997; Golovin 2005; Feige 2008; Khot and Ponnuswami 2007].
We discuss some of the previous work next before mentioning the contributions of
this paper.

1.1 Previous work

Lenstra et al. [1990] give a factor 2 approximation algorithm for the MinMax ver-
sion, and also show a factor 3

2 inapproximability result. Closing this gap has been
a longstanding open problem. Despite much attention recently, there is a large gap
in our understanding of the approximability of the dual objective, MaxMin. The
best known algorithm achieves an Õ(

√
n) approximation ratio in the general case,

but only a factor 2 hardness result is known. The objective function for MaxMin
is rather fragile, since a small mistake in the allocation might starve a player com-
pletely, and leading to a very poor approximation ratio. This in some sense captures
the high level difficulty faced by algorithms for the MaxMin objective.

Bezáková and Dani [2005] achieve an additive approximation for the MaxMin
Allocation using the natural LP formulation, guaranteeing a value of at least OPT−
maxij pij . If the maximum value of some items are close to the optimum, then this
could be a poor guarantee. Besides, they modify the hardness proof of [Lenstra
et al. 1990] to obtain a factor 2 inapproximability result for MaxMin Allocation.

Various special cases of the problem have also been studied. The uniform case,
when each item has the same value for every player, i.e., pij = pj for all i, admits
a PTAS [Woeginger 1997]. Subsequent works, ending in [Alon et al. 1998], achieve
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PTAS for the same setting while considering more general objective functions.

Another important special case has been the restricted assignment case consid-
ered in [Bansal and Sviridenko 2006; Feige 2008; Asadpour et al. 2008], where
each item j has some intrinsic value pj and a player is interested in a subset
of items; more formally, pij ∈ {pj , 0} for all i, j. Bansal and Sviridenko [2006]
introduce a new linear programming relaxation called the Configuration LP to
study the MaxMin Allocation problem, and by rounding this LP are they able to
achieve an O(log log n/ log log log n)-approximation for the restricted assignment
case. Feige [2008] gave a non-constructive proof that the configuration LP has
O(1) integrality gap for this special case. Subsequently, Asadpour, et al. [2008]
gave a simpler exponential time 5-approximation algorithm, proving the integrality
gap is no more than 5.

Golovin [2005] presents anO(
√
m)-approximation for the so-called big goods/small

goods case, which is a further special case of the restricted assignment case where
item values need to be either 1 or ∞. For the general problem, Bansal and Sviri-
denko [2006] exhibit an example with integrality gap Ω(

√
n) for the configuration

LP. Asadpour and Saberi [2007] show that this is essentially tight, by giving an algo-
rithm to round it with an O(

√
n log3 n) guarantee. This is the best currently known

guarantee for the general MaxMin Allocation problem. The best known hardness
result remains a factor of 2, which holds even for the restricted assignment case.

Khot and Ponnuswami [2007] also consider a special case where pij ∈ {0, 1,∞}
for all i, j—this is believed to be as hard as the general case. They establish a
tradeoff between runtime and approximation ratio. Specifically, they give an n

α -
approximation algorithm which runs in time mO(1)nO(α), for any given α ≤ n/2.
They also give a (2n− 1)-approximation algorithm for a generalization of MaxMin
Allocation where utility functions are subadditive.

Ebenlendr et al. [2008] recently revisited the MinMax objective function in the
case when each item has nonzero value for (at most) two players, and further these
values are the same for the two players (called the “symmetric” version). This
problem can be equivalently viewed as a Graph Balancing problem, where one has
to orient edges of a weighted undirected graph so that the maximum weighted in-
degree is minimized. They are able to improve the approximation factor from 2
down to 1.75, while proving the same 1.5 hardness. In light of this, it is natural to
study the effect of bounded degree items in the MaxMin setting.

Very recently, it was brought to our attention that Chakrabarty et al. [2009]
study the MaxMin Allocation problem and give an O(mε)-approximation algorithm
that runs in time O(m

1
ε ) for the general case. As a result they can achieve a

polylogarithmic approximation in quasipolynomial time. As explained below, we
are able to obtain the same guarantee for an interesting special case which is a
natural intermediate point towards solving the general case. Though our works
were independent, there are some parallels between our approaches. They also give
a (2+ε)-approximation algorithm for an instance of MaxMin Allocation that we will
call DegreeTwo. In such instances, each item has nonzero utility for at most two
players.
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1.2 Contributions

We consider the instances in which the degrees of items are limited. Degree of
an item j is defined as the number of players competing for it, i.e., |{i ∈ A :
pij > 0}|. In Sections 4 and 5 for the ease of demonstration, we focus on instances
where ∀i, j : pij ∈ {0, 1,∞}. The infinity degree of an item j is the number of
players drawing infinite utility from the item, i.e., |{i ∈ A : pij = ∞}|. We then
define instance classes DegreeTwo, DegreeThree, InfDegreeOne and InfDegreeTwo as
follows. DegreeTwo and DegreeThree denote the classes of instances in which the
degree of an item is at most two and three, respectively. Similarly, InfDegreeOne
and InfDegreeTwo denote the classes of instances in which the infinity degree of an
item is at most one and two, respectively.

An instance of MaxMin Allocation can be conveniently represented using a weighted
(bipartite) graph G(V,E). The set V of vertices consists of players and items. There
is an edge of value pij between player i and item j. An edge of value infinity is
called an infinity edge. Any connected component of the subgraph induced by the
infinity edges is called an infinity component. We do not consider the trivial com-
ponents having no edges. Infinity components have two categories: simple infinity
components have exactly one edge, and complex infinity components which have
more than one edge. InfDegreeOne consists only of simple infinity components.

We show that any instance of MaxMin Allocation can be transformed into one of
DegreeThree with only a polynomial size growth. This also holds for the MinMax
objective. Next, we give a 4-approximation algorithm for DegreeTwo. We stress
that our algorithm works in the asymmetric case when the item can have distinct
nonzero utility values for the two players interested in it. This is the only positive
result for the asymmetric case besides the Õ(

√
n)-approximation [Asadpour and

Saberi 2007] for the general MaxMin Allocation. We also show a modification of the
hardness result in [Bezáková and Dani 2005] gives a factor 2 inapproximability of
DegreeTwo, even for the symmetric case. We show the same construction essentially
gives a similar hardness for InfDegreeOne. We should note that, prior to our work,
the best approximation factor for the symmetric DegreeTwo case prior to our work
is also only 4. This follows from our result, but can also be obtained by customizing
the algorithm in [Bansal and Sviridenko 2006].

We also present a new LP relaxation for the MaxMin Allocation problem. We
show that this is equivalent in power to the configuration LP, while being simpler
and having a compact formulation. (Thus it can be solved directly, unlike the
complicated dual Knapsack methods required to solve the configuration LP.)

We focus on an interesting special case of the MaxMin Allocation problem, i.e.,
InfDegreeOne, for which the LP formulations, prior to our work, have polynomial
integrality gaps. For these instances, we devise a polylogarithmic approximation
that runs in quasipolynomial time (and an O(mε)-approximation in time mO(1/ε)).
The technical core of this result is the development of an algorithm for an interest-
ing new optimization problem on digraphs: MaxMinDegree Arborescence. Given a
directed graph with designated sources and sinks, the problem asks us to produce
a collection of disjoint arborescences Ti, one rooted at each source such that every
non-sink vertex in Ti has out-degree M ; the goal is to maximize M . While the
problem formulation seems similar to degree bounded Steiner tree problems that
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have received much attention recently (see, for instance, [Chan et al. 2008] and
the references therein), the nature of the problem is quite different and requires
the development of new techniques. Our algorithm uses a lift-and-project inspired
LP relaxation with a dependent rounding procedure that exploits the additional
variables and constraints. In fact, we show that the LP we use can be obtained
by t rounds of the Sherali-Adams hierarchy applied to a basic LP relaxation for
the problem. Our techniques can be interpreted as a rounding algorithm for the
relaxation obtained after t rounds of Sherali-Adams. They imply an interesting
approximation-rounds tradeoff: the relaxation after t rounds has integrality gap at
most max{poly log(m),mO(1/t)}. This is especially interesting as there has been
a lot of recent interest in understanding lift-and-project procedures and very few
positive results using lift-and-project are known. The rounding algorithm itself is
similar to a rounding algorithm used for the group Steiner tree problem. How-
ever, our analysis is quite different and requires bounding higher moments for a
dependent random process on a tree.

Next, in an attempt to pull through the result for the general case, we extend
our results to more general instances, i.e., NoInfCycle and InfDegreeTwo. The class
of instances NoInfCycle are those whose graphic representation does not contain a
cycle consisting merely of infinity edges. Here, we have to cope with the subtleties
corresponding to the handling of the infinity components. Along the way, we prove
a result about existence of a perfect matching in a probabilistically pruned graph.
We show that given a fractional matching LP solution for a bipartite graph in
which vertices of the first partition can have positive deficiency, throwing away
vertices with probabilities proportional to their deficiencies leaves us with a graph
admitting a perfect matching. Another nuance is dealing with the event of assigning
items in an infinity component to players outside the component. Players in the
infinity component may no longer be satisfiable with the remaining items from the
component and this may trigger some of them to seek small items from outside. This
is the main point of departure from our InfDegreeOne algorithm, since these effects
may need to propagate along long chains. The bounded length of reaction chains is
crucial in our InfDegreeOne algorithm. Thus to extend the results to InfDegreeTwo,
we need to deal with this very issue. We finally show that InfDegreeTwo instances
are similar to NoInfCycle. Were we able to eliminate the infinity cycles in some way,
we could derive the same result for the general case of MaxMin Allocation, matching
the results of [Chakrabarty et al. 2009].

1.3 Organization

The new LP relaxation as well as the universality of degree three instances is ex-
plained in Section 2. In addition, we show our simpler LP formulation is essentially
as powerful as the current champion, i.e., the Configuration LP. In Section 3, we
give a 4-approximation algorithm for DegreeTwo. Then in Section 4, the machinery
for solving InfDegreeOne is introduced. We next solve NoInfCycle in Section 5 and
show how this implies a similar result for InfDegreeTwo. After that, we illustrate in
Section 6 the connection between our linear program of Section 4 and the Sherali-
Adams hierarchy. Before concluding the paper, we discuss a barrier for showing
better hardness results in Section 7.
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2. PRELIMINARIES

Recall that we are given a set A of players and a set B items and pij represents the
utility of item j for player i. Such an instance is usually considered as a weighted
bipartite graph that has players on one side and items on the other. In figures, we
will use squares to represent players and circles to depict items.

The natural LP for the problem has an unbounded integrality gap. A more
powerful LP, called the Configuration LP, was introduced in [Bansal and Sviridenko
2006], and has been crucially used in [Bansal and Sviridenko 2006; Asadpour and
Saberi 2007; Feige 2008; Asadpour et al. 2008].

Definition 2.1 Config-LP. There is a variable xiC for each player i and each valid
configuration (aka bundle) C of items. A bundle C ⊆ B is called valid for i if and
only if

∑
j∈C pij ≥ M . Let Ci denote the set of valid bundles for player i. Then,

the C-LP relaxation is as follows.

(C-LP)∑
i∈A

∑
C∈Ci
C3j

xiC ≤ 1 ∀j ∈ B (1)

∑
C∈Ci

xiC = 1 ∀i ∈ A (2)

xiC ≥ 0 ∀i ∈ A,C ∈ Ci. (3)

This LP has exponential size, but as noted in [Bansal and Sviridenko 2006], the
separation oracle needed for the dual is the knapsack problem. So, we can find
an approximate value (with arbitrary fixed precision) for this LP in polynomial
time. Although the enhancements of C-LP eliminates certain bad examples for
the natural LP, the integrality gap still remains as large as Θ(

√
n) [Bansal and

Sviridenko 2006].
Note that the LPs studied for this problem are used for feasibility of a guessed

value M . When dealing with Config-LP, we usually have a threshold τ = M/λ and
we revalue any item of value no less than τ to M . This way, we might increase
the value of the solution by a factor of λ, but we create a gap between “small”
and “big” items. One big item is sufficient to satisfy a player and thus we assume
a configuration is either “big” (i.e., it has only one big item) or is “small” which
means the configuration is comprised of multiple (at least λ) small items in it. Not
present in Config-LP but implied are the natural variables xij =

∑
C3j xiC , which

show to what extent an item j is assigned to a player i.

2.1 A simpler LP

Here, we introduce a simplified linear program with which we work. In sharp con-
trast to Config-LP, it has only polynomially many variables and constraints. Be-
sides making arguments simpler, this gives room to enhance the LP with additional
constraints as we do in Sections 4 and 5.

Definition 2.2 M-LP. There is a variable xij for each player i and each item j.
Items are denoted small or big depending on how their value compares to M/λ.
Furthermore, zi, called the small usage of player i, indicates how much small items
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contribute to the utility of this player. Note that the notion of small/big is with
respect to a specific player. Here is the relaxation M-LP:

(M-LP)∑
i∈A

xij ≤ 1 ∀j ∈ B, (4)∑
j∈B
pij=M

xij + zi ≥ 1 ∀i ∈ A, (5)

∑
j∈B
pij<M

pijxij ≥ ziM ∀i ∈ A, (6)

xij ≤ zi ∀i ∈ A, j ∈ B : pij < M (7)
xij , zi ≥ 0 ∀i ∈ A, j ∈ B. (8)

Removing constraints (7) gives the natural LP to which we refer by S-LP. Clearly,
any Config-LP solution can be specified as a solution to M-LP; one just needs to
use the implied xij values and appropriate values for zi := 1

M

∑
j∈B:pij<M

pijxij .
We claim that the algorithms and analyses of previous works using C-LP can be
tailored to use M-LP values instead. Moreover, any solution to M-LP can be turned
into a solution of C-LP of roughly the same value; see Theorem 2.3. We do not
know how to use M-LP (without losing the extra factor two) to get the recent tight
result of [Chakrabarty et al. 2009] for DegreeTwo.

Theorem 2.3. An M-LP solution of value M can be translated in polynomial
time to a Config-LP solution of value M/2.

Proof. The proof is constructive. First revalue any item of value ≥M/2 to M .
Consequently, decrease the value of zi by

∑
j:pij≥M/2 xij , and then decrease the xij

to min(zi, xij) if pij < M/2. It can be easily verified that the new values show a
valid M-LP solution and each small item has value at most pmax ≤M/2.

We leave the assignment of big items unaffected. Take any player i and its
corresponding small items. Ideally, they should build zi units of small configurations
of value M . We show that, compromising on the value of configurations to be
M − pmax, we can achieve this task. We restate the set of constraints we need to
work on, and remove unnecessary indices.∑

j

pjxj ≥ z M (9)

xj ≤ z ∀j (10)
xj ≥ 0 ∀j. (11)

The algorithm proceeds by creating bundles and reducing xj ’s and z accordingly.
At any step, it maintains that the current values of xj and z are feasible in the
above set of equations 9-11; if z∗ and x∗j are the initial values, we have made at
least z∗ − z units of bundles where each item j has been used for at most x∗j − xj
units. At each step, we rename items so that xj ’s are nonincreasing. We know from
(9) and (10) that the sum of the values of the remaining items is at least M ; since,
otherwise,

∑
j pjxj ≤

∑
j pj

∑
j′ xj′ < zM leading to a contradiction. Let q be the
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smallest index such that
∑
j≤q pj ≥M . We will do one of the following until z = 0,

in which case we are done.

• If xq 6= x1, make a bundle out of the first q − 1 items. Use this bundle for
δ = min{xq−1, x1 − xq} units. Decrease concerning z and the involved xj
variables by δ. Notice that δ > 0, since xq−1 ≥ xq > 0 and x1 6= xq. The
value of this bundle is at least M − pmax and at most M . So the left-hand
side of Inequality (9) is reduced by at most δM which is the decrease in the
right-hand side. By the choice of δ, the maximum xj after this operation is at
most x1 − δ ≤ z − δ. Hence, Inequality (10) is still valid after this operation.
• If xq = x1, we say we have a plateau. Let q′ be the largest index where x1 = xq′ .

In this case, q′ ≥ q and we cannot simply make a bundle out of the first q − 1
items, because then the maximum xj would not change, whereas this change
may be necessary to keep (10) satisfied. The trick is to decrease xj for all
variables equal to x1 simultaneously.
To this end, we build a balanced collection of bundles which in total contains
each item of our concern (i.e., all items j such that xj = x1) exactly r times.
The size of each bundle is at most M . We then decrease the corresponding
xj ’s by δ = x1 − xq′+1; i.e., we use each configuration for δ/r units. We let
z = 1

M

∑
j pjxj after this operation. It is easy to see that we make at least

1
M

∑
j≤q′ pjδ ≥ zold − znew units of configuration in this step. The solution is

thus feasible since z ≥ 1
M

∑
j≤q′ pjx1 ≥ x1 and x1 is the maximum xj value.

Building the balanced collection of bundles is done as follows. Take the group of
items attaining the same maximum value. We know that their sum of values is
at least M (by the choice of q). Start from the first one and include items until
we make a bundle of value at least M−pmax. Then, start from the next element
and do the same thing (possibly wrapping around), and so on. We repeat this
bundle-making process until a bundle is repeated. This has to happen because
there would be at most m different bundles formed in such a process. Then,
we can take the collection of bundles from the first occurrence of this bundle
up until (but not including) its second occurrence. Clearly, each item appears
the same number of times in these bundles. An example is shown in Figure 1.

Performing this two-stage procedure, we can form a Config-LP solution from any M-
LP solution, provided that we allow configuration values to be as low as M − pmax.
Finiteness follows from the fact that at each step, either some variables go zero, or
the number of variables attaining the maximum goes up.

So, there will be at most O(m) steps and each step adds at most m bundles. Thus,
the total number of bundles produced for each player is bounded by O(m2) which
is a polynomial.

2.2 Degree reduction

We show that any instance of the problem with n players and m items can be
converted into an instance of DegreeThree.

Theorem 2.4 Degree Reduction. Any instance of MaxMin1 with n players

1A similar reduction can be done for the MinMax objective, by replacing ∞ with M (our guess)
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Fig. 1. Making bundles in case of a plateau: items are put in a line, and we start from the left
and find maximal bundles of value at most M . Each row in the picture shows one bundle. Note

how each bundle starts after the previous one, and how we wrap around at the end. Plain (green)

bundles (first and last ones) are discarded. In this example, we end up with 5 bundles and each
item is covered exactly twice.

. . .

w1 w2 wd−1 wd

∞ ∞ ∞ ∞ ∞ ∞

Fig. 2. Degree reduction for an item. An item which has degree d > 3, can be
replaced by a gadget as shown here. The upper row players are the ones which are
interested in this item, possibly with different valuations w1, w2, . . . , wd−1, wd. The
bottom-row players and items are virtual ones. One can observe that at most one
of the original links can be used.

and m items can be changed into an equivalent DegreeThree instance with mn play-
ers and mn items.

Proof. Take any item of degree d, and replace it by a gadget similar to Figure 2;
i.e., make d copies of the item, one for each of its takers (with the associated value),
and also add d − 1 dummy players, one between any two consecutive copies (with
value ∞). Each of the dummy players needs to get hold of one of the item copies
to satisfy its demand. Exactly one copy will be free to serve its real player.

There is a caveat here. The number of players in the DegreeThree instance may be
significantly larger than the original instance, and this can affect the approximation
guarantee. Especially, this may be more evident for instances where the number
of items and players substantially differs. However, as long as polylogarithmic
approximation ratios are sought, the degree three instance is equivalent to the
original.

and noting that we want approximation guarantees better than two.
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3. DEGREETWO INSTANCES

Knowing that DegreeThree can model the general case of the problem motivates
the study of the DegreeTwo special case. Customizing the algorithm of [Bansal
and Sviridenko 2006], one can obtain a 4-approximation for the symmetric degree
two case. Also, implicit in [Feige 2008; Bansal and Sviridenko 2006] is that the
constant degree symmetric case has a constant factor approximation algorithm.
More specifically, a restricted assignment instance with items having degree at most
d > 2, admits a 4d-approximation algorithm. Yet, in the presence of asymmetry,
nothing better than the general Õ(

√
n)-approximation algorithm of [Asadpour and

Saberi 2007] was known prior to this work.
We present a factor 2 hardness result for this special case. This is the same as

the best-known hardness for the general case.

Theorem 3.1 DegreeTwo Hardness. DegreeTwo cannot be approximated to
within a factor better than 2 unless P = NP. This also holds if we restrict our
instances to be symmetric.

Proof. The reduction is from a special 3SAT where each literal appears at most
twice. Let the 3SAT instance have variables v1, . . . , vn and clauses φ1, . . . , φm. In
our MaxMin Allocation instance, we have two players for each variable, one corre-
sponding to vt and one for vt. There is an item of value two shared between them.
Each clause has an exclusive item of value 1 and one item shared with any of its
literals, with value 1. If some literal occurs l times in our formula, we add 2 − l
exclusive items of value 1 for it. We claim that the value of the instance is two if
and only if the given 3SAT instance is satisfiable.

If it is satisfiable, let the value 2 items be given to the true literals. Each false
literal takes its other items to have utility two. Any clause has an exclusive item
and at least one shared item, which give it a utility of at least two.

Now, if we have a solution of value at least two, we let the literals which receive
big items to be true. False literals take in all their small items. Each clause receives
some shared item other besides its exclusive item. So, that should correspond to a
true literal.

If the value of the instance is not two, it is at most one, and hence comes the gap
of two.

In Section 7, we discuss a common element in all current hardness reductions of
the problem; this is a barrier for proving hardness beyond factor 2.

To solve an instance of DegreeTwo, we first solve the corresponding M-LP (with
big items rounded with λ = 4). Then, we massage the fractional solution to simplify
its structure. Finally, we do the rounding. In what follows, we describe in more
details the steps of our algorithm which is presented in Figure 3.

3.1 Restructuring the LP solution

Assume we are given a solution {x∗ij , z∗i } to the M-LP, where all constraints (6)
are tight. Otherwise, we first decrease x∗ij values for small items appropriately to
obtain this property. We build the new solution xij as follows. We change all the
nonintegral values to 1/2. Next if any small variable has a value larger than 1/2,
we decrease it to 1/2. Then, a player receiving any small item forgoes all its big
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items. Finally, set zi = 2
M

∑
j∈B:pij<M

pijxij for any player i. The restructured
solution has the following properties.

(SP1) Value of a small variable xij is either zero or 1/2;
(SP2) Each player uses either big items or small ones; and
(SP3) The restructured solution, xij , is a valid M-LP solution of value M/2.

The truth of (SP1) and (SP2) is immediate. For the last property, note that we
have a half-integral solution. There are at most two nonzero variables for each item.
If a constraint (4) is violated, then at least one of them has to be one. However,
this means that the other one is zero, since it was so in the previous solution. The
constraints (6) hold by definition. For the constraints (7), observe that xij ≤ 1/2
for small items. If any such constraint is violated, it should be a zi < 1/2 and
some xij = 1/2. So in the original solution, x∗ij and thus z∗i are both positive.
Constraints (7) and (6) imply that there are at least M different positive x∗ij for
this player i. All these variables have a value 1/2 in our new solution. Hence zi = 1.
This also shows that for a nonzero z∗i , we have zi = 1 in the new solution, which
ensures constraint (5). Now consider constraint (5) for a player with z∗i = 0. Either
the player got only one big item or more. In the former case, we do not change the
variable value. In the latter, there are at least two nonzero values, each 1/2, which
yield the constraint.

3.2 Rounding the fractional solution

Having the above properties in our fractional solution, we are ready to produce an
integer assignment. We are going to use the following result of [Bezáková and Dani
2005] which is very similar in nature to the main result in [Lenstra et al. 1990].

Theorem 3.2 Algorithm LP-Round [Bezáková and Dani 2005]. Given a
solution to S-LP of value M where the maximum size of an item used is pmax, we
can round the LP using the algorithm LP-Round to get a solution of value at least
M − pmax.

Although the algorithm cannot give any guarantee when items are large compared
to the solution value, it will prove useful in our algorithm.

We build a graph on players and items, where an edge connecting player i and
items j has weight xij . Such an edge is called big if item j is big for player i;
otherwise, we call it small. For now, we ignore the small edges and any player who
uses them. Remember that by (SP1)-(SP3), any such player derives enough profit
from small items so as not to need any big items. We can perform rotations as in
[Asadpour and Saberi 2007] to eliminate cycles in the graph of big edges. Roughly
speaking, we pick a small ε and increase the weights of even-indexed edges in the
cycle by ε and decrease those of the odd-indexed edges by the same amount. We
do this for an appropriate ε such that the weight of at least one edge drops to zero,
when we can remove it. Notice that if an edge gets weight one, in which case,
we should also stop, the adjacent edge will have weight zero. Each component of
the remaining graph will be a tree Tt. No leaf of a tree Tt can be a player, since
otherwise, that would be a player with no small items utility and with only one big
item.
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Algorithm DegreeTwo Solver

Input: An instance of DegreeTwo.
Output: An assignment of value at least OPT/4.

(1) Solve M-LP by repeated guessing to get {x∗ij , z∗i }. When the guess value is M , revalue

any item bigger than M/4 to M .

(2) Build xij as follows:
(a) decrease x∗ij variables as much as possible without violating the constraints;

(b) let xij = x∗ij ;
(c) change all the nonintegral xij to 1/2;
(d) make sure no xij > 1/2 for small item j; and

(e) make xij = 0 if item j is big for player i but player i has a nonzero xi,j′ for a

small item j′.

(3) Do rotations on big edges to eliminate cycles, and identify trees Tt to construct the
modified instance.

(4) Round the fractional solution using LP-Round.

(5) Deal with the assignment of big items in each tree Tt.

Fig. 3. The algorithm for DegreeTwo.

We assume, without loss of generality, that any non-leaf item in Tt contributes
one unit to the players in the tree. Note that because we have a DegreeTwo instance,
no other player can be interested in any such item. If we pick an arbitrary leaf j of
Tt and root the tree from it, we can give any item to its child in the tree (because
they have degree two unless they are leaves) to satisfy all the players in Tt. All the
other leaves will be free. Any solution needs to use exactly one out of the kt leaf
items of each Tt. The usage of small items is at most 1/2. So, the LP usage of
small items in Tt from the outside is at most kt/2.

Now, replace each tree having kt ≥ 2 leaves with dkt/2e ≤ kt − 1 items jtl for
l = 1, . . . , dkt/2e. These are meant to play the role of the original kt − 1 remaining
items. Name the original leaf items in Tt, by j′t,1, . . . , j

′
t,kt

. Each of them, say j′tl,
has exactly one taker outside, say itl; we know that the usage is exactly 1/2. The
case there is no such player is trivial. Now, we connect jtl to it,2l−1 and it,2l with
the corresponding values they had for j′t,2l−1 and j′t,2l. The last item jt,dkt/2e might
get only one player. We let the weights of all these edges be 1/2. There is a minor
technicality here if two players requesting some jtl are the same. Then, there should
be a single edge of weight one whose value is the larger of the two values the player
has for the two items.

Now, ignoring the big players altogether, we have a feasible S-LP solution of
value M/2, and we can round it to M/2−M/λ using Theorem 3.2. After rounding,
we know that at most dkt/2e ≤ kt − 1 items from Tt have been used and so the
remaining one can help satisfy the players in Tt with value at least τ = M/λ.
Choice of λ = 4 leads to a 4-approximation algorithm for the problem.

4. INFDEGREEONE INSTANCES

From here onwards, we will be focusing on instances in which utilities come from
{0, 1,∞}. This is assumed mostly for simplicity of presentation, however, once we
guess the value of the solution, say M , we revalue any item larger than τ = M/λ
to ∞ creating a multiplicative gap of λ between small utilities and M . Then, the
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algorithms and analysis can be modified for the argument to go through provided
that the resulting instance conforms with the requirements of the algorithm (i.e.,
it is InfDegreeOne or InfDegreeTwo).

If a player i has utility 1 for item j, we say that j is a small item for i. If a
player i has utility ∞ for item j, we say that j is a large item for i. In this section,
we study InfDegreeOne instances. As we will show, the LP formulation used in the
currently best known results for MaxMin Allocation has integrality gap of Ω(n1/6)
for such instances.2 We design an algorithm that achieves an approximation ratio
of mε in time mO(1/ε) and a polylogarithmic approximation in mO(logm) time.

In order to do this, we strengthen the LP formulation for MaxMin Allocation; here
our simplified M-LP formulation lends itself to incorporating additional constraints.
We begin with pointing out the limitations of current LP formulations for these
restricted instances.

Lemma 4.1. M-LP (and similarly Config-LP) has a gap of Ω(n1/6) for InfDe-
greeOne.

Proof. Consider the gadget H consisting of T + 1 players and 2T items. Player
M0 is connected to item J1, . . . , JT and has value 1 for each of them. For 1 ≤ t ≤ T ,
item Jt is big (value infinity) for Mt. For each 1 ≤ t ≤ T , player Mt has value 1
for JT+1, . . . , J2T . It is easy to note that there’s a fractional solution having value
1 (1/T units of small usage) for M0 and value T for everybody else. In an integral
solution, however, if M0 claims any αT items of his, the corresponding αT players
will have only T small items available for them in total. So, the integral solution
of the gadget would be at most

√
T .

Let’s call the player M0 of H its distinguished player. Have T 2 copies of H. Call
their distinguished players A1, . . . , AT 2 . Attach an item Bt to any of them with
value infinity. There is also one player C which has value one for any of these new
items Bt. This player can fractionally use 1/T from any of these items and so,
each At needs only 1/T from inside its gadget. So, there is a fractional solution of
value T . In an integral solution, C needs several of his items. Suppose he claims
B1 along with several others. Then, A1 needs to be satisfied internally, which gives
a solution of value at most

√
T . The size of the instance is O(T 3). The gap is thus

Ω(n1/6).

We further show a hardness result for these instances similar to the previous ones. In
fact, we prove this for instances in the intersection of InfDegreeOne and DegreeTwo.

Theorem 4.2. InfDegreeOne cannot be approximated to within better than a fac-
tor two unless P = NP.

Proof. The proof is similar to that of Theorem 3.1. The reduction is from a
special 3SAT where each literal appears at most twice. Let the 3SAT instance have
variables v1, . . . , vn and clauses φ1, . . . , φm. In our MaxMin Allocation instance, we
have three players for each variable, one corresponding to vt and one for vt; the
third one is a dummy. There are two items of value infinity, each shared between
the dummy and one of the literals. These items have value one for the dummy,

2A similar argument gives a gap of Ω(n1/4) for InfDegreeTwo.
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which has another exclusive item of value one. Each clause has an exclusive item
of value 1 and one item shared with any of its literals, with value 1 on both sides.
If some literal occurs l times in our formula, we add 2− l exclusive items of value 1
for it. We claim that the value of the instance is two if and only if the given 3SAT
instance is satisfiable.

If it is satisfiable, let the true literals receive their infinity edges. The dummy
player of each variable takes its exclusive item and the infinity item of the false
literal. Each false literal takes its noninfinity items to have utility two. Any clause
has an exclusive item and at least one item shared with a true literal, which give it
a utility of at least two.

Now, suppose we have a solution of value at least two. Notice that the two
literals corresponding to a variable cannot both claim their infinity item. Thus, we
let the literals which receive infinity items to be true. False literals take in all their
noninfinity items. Each clause is given some item other than its exclusive item. So,
that should correspond to a true literal.

If the value of the instance is not two, it is at most one, and hence comes the gap
of two.

4.1 The MaxMinDegree Arborescence problem

Our main technical contribution in this section is a solution to a natural new opti-
mization problem on directed graphs which we introduce in this section and relate
to the InfDegreeOne problem. In a digraph, any vertex with no incoming edges is
called a source. Similarly, a vertex with no outgoing edges is called a sink.

Definition 4.3. An M -pyramid3 of a digraph G is a subgraph of G with the
following properties:
(1) it is an arborescence, i.e., the in-degree of every vertex is at most 1;
(2) it contains all the sources in G;
(3) any sink of the arborescence is also a sink in G; and
(4) the out-degree of any non-sink vertex is at least M .

Note that an M -pyramid of G need not contain all the vertices of G. Technically,
an M -pyramid is a forest of arborescences, but for convenience, we simply say
arborescence.

Definition 4.4. In an instance of MaxMinDegree Arborescence problem, we are
given a digraph G, and the goal is to find an M -pyramid of G that maximizes M .

We now show how to reduce MaxMin Allocation on instances in InfDegreeOne to
MaxMinDegree Arborescence. Consider an instance in InfDegreeOne. We first remove
from the instance, all players that have at least two big items. We will assign items
to these players later. For the remaining instance, we build a dependency graph as
follows.

Definition 4.5. The dependency graph is a directed graph G. G has a vertex
corresponding to every player in the instance, and a vertex corresponding to every
item whose utility is only 0 or 1 (i.e., an item whose infinity-degree is zero). If v is
a vertex corresponding to a player iv, we also associate v with the unique big item

3So named because of pyramid schemes. See http://en.wikipedia.org/wiki/Pyramid scheme.
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of iv (if it exists). Thus, each vertex in G corresponds to exactly one item. The
edges in G are defined as follows: there is an edge from vertex u to v if and only if
the player corresponding to u has value 1 for the item corresponding to v.

If there is an edge between u and v and both vertices correspond to players (iu
and iv respectively), the player iu may be assigned the unique big item of iv, and
iv must then be assigned many small items to compensate. Note that sinks in the
dependency graph are exactly the items whose infinity-degree is zero.

Lemma 4.6. Let G be the dependency graph of an InfDegreeOne instance I.
Then, the existence of an M -pyramid in G is equivalent to the existence of an
assignment of value M for I. In addition, we can do the mapping in polynomial
time.

Proof. For a player i, let vi denote the vertex in the dependency graph corre-
sponding to player i. Also, for an item j with infinity-degree zero, let vj denote the
vertex corresponding to item j.

First, assume that we have an M -pyramid in G. We build the assignment for
MaxMin Allocation as follows. For a player i, if vi is present in the M -pyramid, we
assign i the items corresponding to the children of vi in the M -pyramid. If vi is
not present in the M -pyramid, we assign i her big item. Observe that each player
gets items worth a value of M , since a player either gets his big item or he receives
M items (his children in the graph) each having a value one. We claim that no
item is picked by more than one player. It is clear that no two players can claim
an item, if both players value it at one. Neither can an item be infinity for both
players. Thus if a collision is going to happen, that is between a small item of one
player and the big item of another. In this case, by definition of the dependency
graph, the latter player should also be present in the arborescence and thus cannot
get any big items at the end.

Next, suppose we have a valid assignment of value M . At first, we make sure
a player picks his big item if it is available. As long as there is a set of players
P1, P2, . . . , Pk such that each Pt gets the big item of Pt+1 (Pk+1 = P1, of course),
change the assignment such that each Pt gets his big item. Besides, we remove the
assignment of a small item to a player, if the player is also assigned a big item. The
M -pyramid is built from the assignment of small items. More precisely, the vertices
of the M -pyramid consist of vertices vi for players i who are assigned small items, as
well as vertices vj corresponding to small items j (with infinity-degree zero) that are
assigned to players. The sources have to be present in the arborescence, since the
corresponding players do not have any big items. Each non-sink vertex clearly has
out-degree M . We claim that there are no cycles in the produced subgraph, which
means it is a valid M -pyramid, as desired. For the sake of contradiction, assume
there is a cycle P1, P2, . . . , Pk. Note that all the vertices of the cycle represent
players, since item vertices are sinks. By construction of the dependency graph, in
the original solution, these players should form a cyclic dependence; i.e., each gets
the big item of the next one. However, we removed such chains.

Finally we show how to handle the players who have more than one big item;
these were removed from the instance initially.



16 · Bateni et al.

Lemma 4.7. Given an instance I of InfDegreeOne, let I ′ be the instance obtained
by removing any player with more than one big item. Given a solution of value M
to I ′, we can obtain a solution of value bM/2c for I in polynomial time.

Proof. Let I be the set of all players of infinity degree larger than one that
we ignored initially. For all players with infinity degree more than 2, reduce it to
exactly 2 by ignoring some items that they value at infinity.

Now consider the existing assignment of small items to players. Let S be the
set of players who have been assigned small items. We need to assign infinity
items to players in I by taking away some small items from players in S. Build
an auxiliary graph GA with vertices corresponding to players in S. Edges in this
graph correspond to players in I. Suppose a player i in I has two items j1 and
j2 that have value infinity for i. Further suppose that j1 is currently assigned to
player i1 ∈ S (as a small item) and j2 is assigned to player i2 ∈ S (as a small item).
Then we have an edge (i1, i2) in GA between the vertices corresponding to players
i1 and i2. This edge is labeled with player i. Notice that i1 and i2 may be the same
player.

In order to assign items to players in I, we will orient the edges of graph GA.
The orientation corresponds to a reassignment of items as follows: consider an edge
(i1, i2) corresponding to player i ∈ I. If this edge is oriented from i1 to i2, then i
is assigned its infinity item that is currently assigned to i1 and i2 keeps the other
infinity item for i that i2 is currently assigned. In case i1 = i2, either orientation
implies that player i grabs either of the items and i1 = i2 loses that item yet keeps
the other one. This ensures that every player in I receives an infinity item. In
order to ensure that players in S still have a large number of small items assigned
to them, we need to ensure that that the out-degree of v is small compared to M
for every vertex v in GA.

Let dv be the degree of vertex v in GA. The claim is that there is a way to orient
the edges of GA such that every vertex v has out-degree at most ddv/2e. Notice if
the player v received Mv items in the assignment of I ′, then her remaining items
are at least Mv−ddv/2e ≥ bMv/2c, since dv ≤Mv. In order to prove this claim, we
add a matching of dummy edges between the vertices of odd degree find an Eulerian
tour of GA (with the dummy edges) and orient the edges accordingly. Then the
out-degree of a vertex v is at most ddv/2e.

4.2 The algorithm for MaxMinDegree Arborescence

Consider a graph G as an instance of MaxMinDegree Arborescence problem. Let T
be the optimal M -pyramid for the instance. We show that there is a nearly optimal
solution T ∗ to this instance with small depth; the depth of an acyclic directed graph
is defined as the number of edges on its longest path. Throughout this section, we
use N to denote the number of vertices in G.

Lemma 4.8. If there is an M -pyramid in the instance, then there also exists an
bM/2c-pyramid of depth no more than logN

logdM2 e
.

Proof. The proof is constructive. The vertices of T can be partitioned into
levels. Level zero includes all the sources of G. For i > 0, level i is the set of
vertices in T that have an edge from level i−1. For a vertex v in T , let z(v) denote
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the size of a subtree rooted at v (including v itself).
We build T ∗ as a union of disjoint trees, one rooted at each source. Consider the

component of T rooted at r. Remove the dM/2e children of r having the largest
subgraph sizes. For any remaining child v of r, we have z(v) ≤ z(r)/dM/2e; other-
wise, since each vertex appears at most once in the tree, the number of descendants
of r in the largest dM/2e subtrees is at least 1 + dM/2ez(v) > z(r) giving a contra-
diction. Now we recurse for every remaining child of r. For a vertex v of level l that
is not pruned during this process, we have z(v) ≤ z(r)/dM/2el. Since z(r) ≤ N
and z(v) ≥ 1, we get l ≤ logdM/2eN = logN

logdM/2e .

Corollary 4.9. If M ≥ 3 then there is a degree M/2 solution of depth O(logN).

Corollary 4.10. If M = Ω(N ε) then there is a degree M/2 solution of depth
O(1/ε).

Definition 4.11 Unfolded tree. There is a vertex vπ in the unfolded tree of depth
h for any simple path π of length at most h starting from a source. These will
include all the paths of length zero, which correspond to the set of sources in G.
There is an edge from vπ to vπ′ if and only if π′ = 〈π, e〉 is the concatenation of π
and some edge e. We say a vertex vπ in G′ is a copy of vertex u in G if π ends at
u.

If T ∗ has depth h, then it can be mapped to a solution on the unfolded tree
of depth h such that for every vertex v, at most one copy of v is included in
this solution. In the reverse direction, consider any solution on the unfolded tree of
depth h such that for every vertex v, at most one copy of v is picked in the solution.
Then this solution can be mapped to a solution for the original instance. Hence,
we focus on solving the instance corresponding to this unfolded tree, say G′. Note
that the number of nodes in G′, denoted by N ′, is O(Nh+1).

Now we are looking for a solution of minimum out-degree M ′ = bM/2c in G′.
We write the LP as follows. Add a virtual node r′ that has edges to all the sources
in G′. There is a nonnegative variable xe for each edge e. We stipulate that for any
edge from r′ to a source, xe = 1. We denote by R the set of sources in G′. Define
p(v) to be the parent edge of v, for any vertex v of G′. For any vertex v in G′ and
a vertex v′ of G, let Nv(v′) denote the copies of v′ that are descendants of v in G′.

The complete linear program, AR-LP, is shown below. Let v ∈ V (G′) correspond
to a path π in G. Then, xp(v) denotes the extent to which the path π appears in
the solution.

(AR-LP)∑
e∈δ+(v)

xe ≥M · xp(v) ∀v ∈ V (G′), v 6= r′ (12)

∑
u∈Nv(v′)

xp(u) ≤ xp(v) ∀v ∈ V (G′), v′ ∈ V (G) (13)

x(r′,v) = 1 ∀v ∈ R (14)
xe ≥ 0 ∀e ∈ E(G). (15)

We first show that this is a valid relaxation for the problem. Consider an M -
pyramid of depth h in the original graph. For any vertex v included in the pyramid,
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the path from source to v can be mapped to a path in the unfolded tree. Take the
union of all such paths in the unfolded tree and set xe = 1 for all edges in this
union of paths. For all remaining edges e, xe = 0. Note that for any original vertex
v′, at most one copy of v′ is included in this solution. It is easy to verify that this
solution satisfies all the constraints of AR-LP. Constraint (12) corresponds to the
fact that every non-terminal v in the solution, the out-degree of v is at least M .
Constraint 13 follows from the fact that at most one copy of a vertex v is included
in the solution, and xe = 1 for all edges e along some path from a source to v.

TreeRound. The rounding algorithm, TreeRound, is as follows. We maintain
a queue of vertices; these are vertices included in the solution produced so far. Ini-
tially, the queue consists of all sources in the graph. Draw vertices from this queue
until the queue is empty, and perform the following steps for each vertex drawn.
Suppose v is the vertex drawn from the queue. Recall that p(v) denotes the parent
edge of v. Pick a random subset of the outgoing edges from v as follows: pick out-
going edge e with probability xe/xp(v) (where the choices are made independently
for each edge). Notice that because of (13) and (15) these are valid probability
values. We say that the current vertex claims every outgoing edge that is picked.
(Note that this vertex will eventually receive a subset of the edges it claims.) Now
the endpoints of the picked edges are placed on the queue if they are not sinks of
G′. Roughly speaking, the rounding algorithm follows a chain reaction: when a
node is activated, it can trigger its children. The LP variables model these reaction
chains.

By (12) each vertex picked claims a subset of vertices of expected size at least M .
By Chernoff bounds, with high probability, for every such vertex, the actual number
of claimed neighbors is Ω(M) (assuming M = Ω(logN ′), where N ′ is the number
of vertices in G′). However, several copies of a vertex could be included in the
solution. Using union bound and Lemma 4.12 we prove that with high probability,
i.e., 1−1/ poly(N), no more than O(logN logN ′) copies of any vertex are included
in the solution produced. We first establish this fact and then show how to produce
a feasible solution by eliminating multiple copies of the same vertex.

Lemma 4.12. For any original vertex j of G, with probability 1 − 1
poly(N) , the

number of copies of j included in the solution produced is O(logN ′ logN).

Proof. In this discussion, c is an appropriate constant parameter. First, we
make a transformation to eliminate small xe values. For any xe < 1/N ′c+1, we set
its value to 0. Note that the probability that vertex i claims vertex j is exactly
xe if e = (i, j). Consider the rounding procedure applied to the old xe values
versus the rounding procedure applied to the new xe values. The total variational
distance between the distribution of outcomes of the rounding procedure on the two
different sets of xe values is at most 2/N ′c. Henceforth, we analyze the rounding
procedure applied to the transformed xe values; here any non-zero xe has value at
least 1/N ′c+1.

For a subtree T rooted at v, let X(T ) be the random variable denoting the
number of realized edges in T to copies of j given that the parent edge of T is
chosen in the rounding process, i.e., X(T ) is the number of times that copies of
j are included in the solution produced within T . Let S(T ) = E[eαX(T )]. Let
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p(T ) = xp(v); note that p(v) is the parent edge of tree T . Let f(T ) denote the
total usage of copies of a vertex j in T , i.e., f(T ) =

∑
u∈Nv(j) xp(u). Note that

the LP enforces the constraint (13) that f(T ) ≤ p(T ). We choose α such that
eα = 1 + 1/(4(c+ 1) logN ′). The following claim is proved below.

Claim 4.13. For any subtree T such that f(T ) > 0,

S(T ) ≤ 1 +
1

4(c+ 1) logN ′
f(T )
p(T )

(
1 +

log
(
N ′c+1f(T )

)
(c+ 1) logN ′

)
.

Let X be the total number of copies of j included in the solution produced. We
have proved that E[eαX ] ≤ 2, for α = Θ(1/((c + 1) logN ′)), which implies that
Pr[X > c(c+ 1) logN ′ logN ] ≤ 2/N c.

Now, we give the proof of the claim we used above to finish this part of the proof.

Proof of Claim 4.13. The proof goes by induction on the height of the subtree
T . For convenience, we define the base case to be a tree of height 0, where the parent
edge of the tree is an edge e such that xe > 0. For this tree f(T ) = p(T ) = xe,
X(T ) is always 1 and

E
[
eαX(T )

]
= eα = 1 +

1
4(c+ 1) logN ′

.

The base case thus follows from f(T ) ≥ 1/N ′c+1.
Consider a subtree T consisting of a root connected to subtrees T1, . . . , Tk, via

edges e1, . . . , ek respectively. Let e be the parent edge of T . Suppose the inductive
hypothesis holds for each subtree Ti, i.e.,

S(Ti) ≤ 1 +
1

4(c+ 1) logN ′
f(Ti)
p(Ti)

(
1 +

log
(
N ′c+1f(Ti)

)
(c+ 1) logN ′

)
.

Then, as the X(Ti)’s and the selections of ei’s conditioned on e being selected are
independent, we get

S(T ) =
∏
i

[(
1− p(Ti)

p(T )

)
· 1 +

p(Ti)
p(T )

S(Ti)
]

=
∏
i

[
1 +

p(Ti)
p(T )

(S(Ti)− 1)
]

≤
∏
i

(1 + δi), (16)

with δi defined as

δi =
1

4(c+ 1) logN ′
f(Ti)
p(T )

(
1 +

log
(
N ′c+1f(Ti)

)
(c+ 1) logN ′

)
(17)

≤ 1
2(c+ 1) logN ′

f(Ti)
p(T )

, (18)
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where the last inequality is due to f(Ti) ≤ 1. Thus,

∑
i

δi ≤
1

2(c+ 1) logN ′
f(T )
p(T )

≤ 1
2(c+ 1) logN ′

≤ 1
2
.

Hence, ∏
i

(1 + δi) ≤
∏
i

eδi = e
P
i δi ≤ 2.

Now, by Inequality (16),

S(T ) ≤ 1 +
∑
i

δi +
1
2

∑
i1 6=i2

δi1δi2

∏
i

(1 + δi)

≤ 1 +
∑
i

δi +
∑
i

δi
∑
i′ 6=i

δi′ .

Note that, by Equation (17),

1 +
∑
i

δi = 1 +
1

4(c+ 1) logN ′
f(T )
p(T )

+
1

4(c+ 1)2 log2(N ′)p(T )

∑
i

f(Ti) log(N ′c+1f(Ti)),

and, by Inequality (18),

∑
i′ 6=i

δi′ ≤
1

2(c+ 1) logN ′
∑
i′ 6=i

f(Ti′)
p(T )

=
1

2(c+ 1) logN ′
f(T )− f(Ti)

p(T )

≤ 1
2(c+ 1) logN ′

∫ f(T )

f(Ti)

1
x
dx

=
1

2(c+ 1) logN ′
log

f(T )
f(Ti)

.

Hence, by Inequality 18,

δi
∑
i′ 6=i

δi′ ≤
1

4(c+ 1)2 log2(N ′)p(T )
f(Ti) log

f(T )
f(Ti)

,
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Algorithm MaxMinDegree Arborescence Solver

Input: The digraph G

Output: The pyramid T

(1) If M ≤ M∗, produce a solution with out-degree one. This can be simply done using

a matching algorithm.

(2) Otherwise, build the unfolded tree G′ of depth H = logN/ log(M∗/2).

(3) Solve AR-LP for G′.

(4) Round it using TreeAlg: select the sources; while there is a non-sink node v selected
but not yet handled, pick each edge e of v independently at random with probability

xe/xp(v).

(5) By having an assignment of 1/γ = 1/O(logN logN ′) for each edge of the solution of
the previous step, build a fractional solution to an LP for M

γ
-matching, and obtain

an integral solution thereafter. Take the union of all edges of the integral solution

that are reachable from sources.

Fig. 4. The algorithm for MaxMinDegree Arborescence problem.

and we get

S(T ) ≤ 1 +
∑
i

δi +
∑
i

δi
∑
i′ 6=i

δi′

≤ 1 +
1

4(c+ 1) logN ′
f(T )
p(T )

+
1

4(c+ 1)2 log2(N ′)p(T )

∑
i

f(Ti)

·
(

log(N ′c+1f(Ti)) + log
f(T )
f(Ti)

)
= 1 +

1
4(c+ 1) logN ′

f(T )
p(T )

+
1

4(c+ 1)2 log2(N ′)p(T )

∑
i

f(Ti) log(N ′c+1f(T ))

≤ 1 +
1

4(c+ 1) logN ′
f(T )
p(T )

(
1 +

log(N ′c+1f(T ))
(c+ 1) logN ′

)
.

At the end, there might be vertices v of G more than one copies of which are used.
We remedy this issue by building a fractional solution to a natural linear program of
k-matching and finding an integral solution.4 The entire algorithm is summarized
in Figure 4. We pick the parameter M∗ = Ω(log3N/ log logN) according to the
desired approximation ratio. If M < M∗, we can find a solution of value one which
is an M∗-approximation. Otherwise, we show that the solution produced via the
algorithm is good.

4In the k-matching problem, we are given a bipartite graph and each vertex in the first partition

is to receive k exclusive vertices from the second partition. To see that the polytope is indeed
integral, note that one can build a maximum flow instance out of it by adding a source vertex

which is connected to all vertices of the first partition, and a sink which has edges from all the

second partition vertices. Then, we can put capacity k on the edges going out of the source
and capacity one on all the other edges. Feasibility of the original k-matching instances leads to

existence of a flow that saturates all the edges out of source.
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Lemma 4.14. If M ≥ M∗ then the above algorithm runs in time O(NH) and
with high probability produces an M ′′-pyramid with M ′′ = Ω(M log logN/ log3N)
for G.

Proof. We set H = logN/ log(M∗/2) as the depth of the unfolded tree. Since
M ≥ M∗, Lemma 4.8 guarantees that there exists an M ′-pyramid in the unfolded
tree of depth H for M ′ = M/2. The algorithm clearly runs in time polynomial in
N ′ = NO(H). We also know that H = O(logN/ log logN) from the choice of M∗.

We next show each vertex is good: if selected in the process, it has enough
outgoing edges. By the first set of constraints (12), the expectation of the number
of outgoing edges of such a vertex is at least M ′. A simple application of Chernoff
bounds and union bound shows that since M = Ω(logN ′), with high probability,
say 1− 1/ poly(N ′), all nontrivial out-degrees are Ω(M).

There are N vertices in G whose in-degree we want to bound. From union bound
and Lemma (4.12), we get that with probability 1− 1/ poly(N), no vertex of G has
in-degree more than γ = O(logN logN ′) = O(H log2N) = O(log3N/ log logN).

Having shown that all in-degrees are small, we build a fractional solution to an
instance of MaxMin Allocation where all the item values are 0 and 1; it is indeed
a bipartite M ′′-matching LP, for M ′′ = Ω(M/γ). We just need to divide all the
variables by a factor no more than the in-degree upper bound, γ. We have a
fractional solution of value M ′′, and the polytope is integral. Thus we can find
an integral solution of the same value, which implies an M/O(log3N/ log log n)-
pyramid for G.

The following is an immediate corollary. We set M∗ = Θ(N ε) to get the poly-
nomial running time or pick M∗ = Θ(log3N/ log logN) for the polylogarithmic
approximation ratio.

Theorem 4.15. For any integer t > 1, we can get a max{Ω(log3N/ log logN), 2N1/t}-
approximation in NO(t) time. In particular, we get an Ω(log3N/ log logN)-approximation
in NO(logn) time where N = O(n+m).

5. NOINFCYCLE INSTANCES

New complications arise in treating instances with infinity degree larger than one.
A major issue is the presence of complex infinity components, i.e., a connected
component containing at least two infinity edges. The assignment among the players
and items in such a component is fragile unlike the assignments in the previous
section.

Roughly speaking, we contract these infinity components into super-nodes, and
carry out a rounding procedure similar to that of InfDegreeOne. Before putting
things together, we are going to treat two types of super-nodes: those at the start
of reaction chains, and the ones in the middle. The super-nodes take some feedback
from their inputs—some of their items may be taken away—and they respond by
outsourcing certain players of the component—i.e., these players do not get any
items from inside the component—in such a way that the rest of the players can
be matched to the available items of the component.

Firstly, in Section 5.1, we analyze a probabilistic procedure which serves as our
treatment of the first type of super-nodes. We define a generalized fractional match-
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ing linear program for bipartite graphs: vertices of one side may have positive defi-
ciencies, say, in case there is no perfect matching. We then randomly throw away
some of these vertices, with probability proportional to their deficiencies. Theo-
rem 5.1 states that the resulting graph has a perfect matching.

The subsequent subsection provides the tools that allow the infinity components
to act as a middle super-node of a reaction chain. There, we introduce a mech-
anism that captures the effect of a trigger—i.e., an item grabbed away from the
component—on the rest of graph.

In the interest of simplicity, we do not make any effort to optimize the parameters.

5.1 Infinity components

The deficiency matching linear program is defined as follows. We have a bipartite
graph G(A,B,E), players on one side, say A, and items on the other, say B. There
are fractional values xe ∈ [0, 1] on each edge e, such that the sum of the values of the
edges incident on an item is at most one, i.e., ∀j ∈ B :

∑
e∈δ(j) xe ≤ 1. Furthermore,

each player i ∈ A may have some deficiency, defined as ∆i = max{0, 1−
∑
e∈δ(i) xe}.

Were all deficiencies zero, we would have a feasible solution to the natural linear
program for bipartite matching on this graph. Here, we prove that if we throw
out players independently with a probability proportional to their deficiencies, we
will end up with a graph having a perfect matching for the remaining players. The
deficiency matching linear program (DM-LP) is given below.

(DM-LP)∑
e∈δ(j)

xe ≤ 1 ∀j ∈ B (19)

∑
e∈δ(i)

xe + ∆i ≥ 1 ∀i ∈ A (20)

xe,∆i ≥ 0 ∀i ∈ A, e ∈ E. (21)

We say we outsource a player if we choose to throw it out. Each outsourcing
experiment is repeated ρ = Θ(log3 n) times to boost the probability of outsourcing
a player.

Theorem 5.1. Suppose we have a solution 〈xe,∆i〉 to the deficiency matching
LP (DM-LP). If we indepedently at random throw away each player i ∈ A with
probability 1−(1−∆i)ρ, for a suitable ρ = Θ(log3 n), there will be a perfect matching
saturating the set of remaining players.

Let G′(A′, B,E′) be the induced subgraph of G after probabilistically removing
some of the player vertices. The general approach is to show that the Hall’s condi-
tion is valid for G′. In particular, for a subset S ⊆ A, let Γ(S) ⊆ B denote the set
of neighbors of S in G′. We show that for any subset S ⊆ A′, the Hall’s condition
|Γ(S)| ≥ |S| holds. This, in turn, implies the desired perfect matching exists by a
classic graph theory result; see for instance [West 2000].

Removing cycles. For the sake of analysis, we will assume that the bipartite graph
G is a forest. To show this is without loss of generality, we iteratively remove cycles
as follows to get a graph G∗. Take any cycle all whose edges have positive values,
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and for a suitable ε > 0, increase the values of odd-numbered edges and decrease
those of even-numbered edges by ε, till one edge of the cycle becomes zero. It is
easy to see there is always a suitable ε > 0, such that (1) at least one edge in
the cycle becomes zero; and (2) all the values on edges remain in the range [0, 1].
Next, we remove edges of value zero. Doing this we remove all the cycles, yet leave
unchanged the deficiency probabilities and item usage constraints above. Hence,
the resulting graph G∗ exhibits the same behavior in the probablistic procedure as
that of G. Since G∗ includes only a subset of edges of G, the existence of a perfect
matching in G∗′ implies the same for G′. Therefore, we assume for the sake of the
analysis in this subsection that the input graph G is a forest.

Suppose for the sake of reaching a contradiction, that there is no perfect matching
in the resulting graph. Thus, there should be a witness.

Definition 5.2 Witness. A set S ⊆ A′ is a violated Hall’s condition set if and
only if |Γ(S)| < |S|. A witness is a minimal violated Hall’s condition set S, i.e.,
there is no violated set S′ which is properly included in S.

Next, we characterize such minimal violated sets. A minimal violated set, simply
called a witness henceforth, has the following structure.

(W1) The subgraph induced by S ∪ Γ(S) is connected;
(W2) Degree of items in this subgraph (i.e., the subgraph induced by S ∪ Γ(S)) is

exactly two; and
(W3) The deficit in the witness is exactly one, i.e., |Γ(S)| = |S| − 1.

We use the term witness to refer to either the set S of its players, or the set S∪Γ(S)
of both players and items. If S∪Γ(S) is not connected for a violated set S, one of its
connected components is also a violated set which contradicts minimality of witness
S. If degree of an item is one in a witness, then removing it and its sole taker gives a
smaller violated set. For the sake of reaching a contradiction with (W2), assume an
item j has a set Λ of k ≥ 3 neighbors in the witness S. Noting that the witness is a
tree, let Si denote the set of players in the subtree of i ∈ Λ including i itself. Thus,
S =

⋃
i∈Λ Si. Minimality of S implies that ∀i ∈ Λ, |Γ(Si)| ≥ |Si|. Furthermore,

if there are two players i, i′ ∈ Λ such that |Γ(Si)| = |Si| and |Γ(Si′)| = |Si′ |, then
Si ∪ Si′ will be a smaller violated set. Thus, all but possibly one of these subtrees
have at least one excess item. Hence,

|Γ(S)| =
∑
i

|Γ(Si)| − k + 1

≥
∑
i

|Si|+ k − 1− k + 1

=
∑
i

|Si|.

We get to a contradiction which proves the original assumption was false, hence
establishing (W2). It is easy to verify (W3), because if the deficit is larger than
one, one can arbitrarily remove a player and get a smaller violated set.

The scheme. Take any particular witness S. Since |Γ(S)| = |S| − 1, the total
deficiency of the player S is at least one, i.e.,

∑
i∈S ∆i ≥ 1. If ρ = Ω(log n),
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and we sample each player i, ρ times with probability ∆i, with high probability
1− 1/ poly(n), the witness is nullified. In other words, at least one player from the
witness is outsourced and thus, the witness is void. One may be tempted to make
this argument for all the possible witnesses to pull through Theorem 5.1. However,
this is not possible, because the number of witnesses need not be polynomially
bounded. Roughly speaking, in what follows, we show how to carefully pick a small
number of witnesses such that (1) they nullify all the witnesses, and (2) their small
number allows us to use union bound.

We compile a list of witnesses adaptively. For each witness, we run the exper-
iments corresponding to each player in it (each repeated O(log n) times). The
subsequent witnesses are chosen based on the result of these experiments. The
witnesses are chosen in such a way that no player appears in more than O(log2 n)
witnesses. We continue adding witnesses until the currently outsourced players
suffice to refute any conceivable witness.

For this purpose, we maintain a graph G called the working forest—initially
the graph G—and let the size of the graph be the number of players in it. The
working graph is affected by the results of the experiments so far (corresponding
to witnesses already picked). We make sure that throughout the process any still-
possible witness be (or more precisely, correspond to) a subgraph of G. To keep
the structure of G as simple as possible, we apply the following transformations
whenever possible.

(R1) Remove an item of degree one along with its only taker.
(R2) If we have a player i of degree two connected to items j1 and j2, remove i

and merge j1 and j2 into a single new item j.
(R3) In a component with more than two players, if a player i1 has a branch that

leads to only one leaf player i2, then contract the entire branch (including i2)
into i1.

The reason for (R1) is clear: minimality of the witness disallows an item j of degree
one; thus, the player i asking for j cannot appear in any witness either. A witness
not including player i will not be affected by (R2). To include i, both its edges
should be picked too. This means that one other edge of j1 and one of j2 should
be included as well. On the other hand, including any two edges of j in the new
instance can be transformed to a witness of the original graph: this is trivial if
both edges correspond to either of j1 and j2, and otherwise, the original player i
along with its two edges should be included in the witness. As for (R3), note that
anytime i1 is selected in a witness, so should be i2. Recall that leaves of a witness
have to be player nodes. If i1 is included, all its edges are also included, which
implies presence of some nodes from the particular branch under consideration. As
i2 is the only leaf player in this branch, it has to be present along with its path to
i1. Hence in (R3), the whole branch is removed while the path connecting i1 to i2
is contracted into i1.

The above transformations guarantee that we do not have any player of degree
two and all the leaves are players. A player of degree one is called a leaf and those
of degree at least three are called joints. The witnesses are built in stages. In each
stage, the size of the graph goes down by a factor of at least 2/3; see Lemma 5.3.
This ensures there are O(log n) stages in total.
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Note that the graph is partitioned into several pieces by the joints. The leaves
in each piece have joint-less paths to each other. Take notice that any such path
is a valid witness. We do not include all of them in the list though. A simple
observation is this: if a tree has 2k leaves, one can find k disjoint paths connecting
pairs of leaves in the tree; see [Wu and Manber 1992] for instane. If it has 2k + 1
leaves, we ignore one leaf and do the same to the rest. Let’s call this a path matching.
Now consider the forest, say F , induced from G after removing all the joints, say
J ; each piece C ∈ C is a tree component of F . We repeatedly find a path matching
(disjoint sets of paths connecting pairs of leaves) of leaves in each component C ∈ C
and add these witnesses to our list. Thus we do the experiments for the players
included therein. We get a list of players which are outsourced. This may increase
the number of components in the working graph G. We continue doing this until
no tree component has more than one leaf—a tree with one leaf is a trivial graph
with one vertex and no edge. As proved later, there cannot be too many steps in
each stage.

We will shortly prove Theorem 5.1. For this purpose, we need to establish the
following lemma.

Lemma 5.3. The size of the working graph goes down by a constant factor in
each stage.

Proof. If a piece C ∈ C is only connected to one joint i ∈ J , then C is called
a leaf piece; i is then called the parent joint of C. We let L ⊆ C denote the set
of leaf pieces. Each of them obviously has at least one leaf. In addition, we let
L ⊆ A be the set of leaves of G. We use J , C,L and L to denote their respective
values prior to the particular stage of our concern, and further use their primed
version—J ′, C′,L′ and L′—to represent such definitions after the stage. If we do
not end in a component with only two leaves (which is too easy to handle), all the
leaf pieces are absorbed into their parent joints. Let us, in addition, use Cs ⊆ C−L
to denote the set of non-leaf pieces that survive this stage. As nothing remains of
leaf pieces, |J ′|+ |L′| ≤ |J |+ |Cs|. It is also clear that |J |+ |L| ≥ |J |+ |Cs|+ |L|.

Think of a (bipartite) forest in which nodes are the joints and pieces. There is
an edge between between a piece and a joint if they are adjacent in G. Noting that
degree of non-leaf pieces is at least two, we get, by a degree argument,

2(|L|+ |C − L|+ |J |)− 2 ≥ total degree ≥ |L|+ 3|J |+ 2|C − L|,

which implies |L| ≥ |J |+ 2.
We further claim that |Cs| ≤ |J |. Root each component C ∈ C of the forest F

prior to the stage from an arbitrary leaf player of a leaf piece, and assign any player
to its parent joint. No two surviving players of non-leaf pieces can be mapped to
one joint, since this would imply there is a joint-less path between them which is a
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contradiction. The ratio of size after and before the stage is thus

|J ′|+ |L′|
|J |+ |L|

≤ |J |+ |Cs|
|J |+ |Cs|+ L|

≤ |J |+ |Cs|
|J |+ |Cs|+ J |+ 2

≤ 2|J |
3|J |+ 2

<
2
3
.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. We assume without loss of generality that G is a
forest. Then, produce the witnesses as described. The number of witnesses will be
polynomially bounded. Thus, we can assume the experiments corresponding to all
of them are successful by union bound.

Lemma 5.3 ensures an O(log n) bound on the number of stages. We claim each
stage has at most O(log n) steps. To prove the claim, note that the size of each
piece is at most n. At each step, the size of any piece C (with more than one leaf)
goes down by roughly a factor two. Suppose LC and L′C denote the set of leaves
in C before and after a round, respectively. Clearly, |LC | ≥ 2|L′C − 1, since each
(except for possibly one) of the surviving leaves has had a pair which is now not in
C. This proves the O(log n) upper bound on the number of steps in each stage.

In each step, any player appears in at most one witness. Thus, each player repeats
its outsource experiment O(log3 n) times.

Combining Theorem 5.1 with the algorithm of InfDegreeOne, we would be done
if no item in an infinity component had any small edges. The following discussion
addresses this very issue.

5.2 Floods

An item j in a complex infinity component C that has at least one small edge, is
called a trigger. We say that trigger j is realized or activated if this item is claimed
by a player outside C. In this case, we might need to change the assignment inside
C, or even be forced to outsource some of the players in C. We say a player i in C
is outsourced if we decide it is going to use its small items only.

In this subsection and the next, we mostly make the assumption that there is no
cycle in the input graph that merely consists of infinity edges. In other words, all
infinity components are acyclic. Later, we will make an effort to deal with the issue
of cycles. Let us focus our attention on a particular complex infinity component C.
To simplify the treatment, we assume that

(S1) any trigger is a leaf;
(S2) only leaf players can be outsourced; and
(S3) the degree of each item is at most three.

These can be obtained using elementary transformations. In particular, (S1) can be
achieved for a trigger item j by introducing a new item j′ and a new player i. The
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(a) Example of a (canonical) flood. (b) Floods need to overlap.

Fig. 5. Demonstration of floods.

small edges of j are now connected to j′ whereas its infinity edges remain incident on
j. The player i has infinite utility for both j and j′. Hence, j is no longer a trigger
and j′ is a leaf. To achieve (S2) for a player i, we make a similar transformation; a
new item j and a new player j′ are added. The small edges of i become connected
to i′ while the infinity edges stay incident on i. Both i and i′ have infinite utility
for the new item j. One can readily verify these two transformations (1) give new
equivalent instances, (2) achieve (S1) and (S2), and (3) only polynomially increase
the size of the instance. Next, we can use the transformation of Theorem 2.4 to
obtain (S3).

We introduce the notion of a flood, an object that captures the effect of taking
a particular trigger away from the infinity component. It determines which players
should be outsourced so as to make up for the loss of the trigger. The definition is
in some sense tailored for the worst case, as in whatever the assignment inside the
infinity component is, the outsourcing of these players will be sufficient to handle
the effect of the item’s being claimed by players outside the component.

Definition 5.4. A flood F corresponding to a trigger j is a directed subgraph of
the infinity component with the following properties:

• F includes j;
• if an item node j′ is in F , so should be all the edges incident on j′;
• the in-degree of each item in F is one, except for the source trigger whose

in-degree is zero; and
• each player in F is either outsourced, or has one outgoing edge.

In the case of acyclic infinity components—what we are mostly dealing with here—a
flood is an arborescence rooted at the trigger. We let Fj denote the set of possible
floods rooted at a trigger j. Figure 5(a) illustrates a flood. By definition, the flood
starts at the trigger and reaches several other vertices. Whenever it reaches a player
i, it either continues on an outgoing edge of i or outsources the player i (in which
case, it should be a leaf by (S3)). When a flood enters an item j, it should go out
through all the other edges of j. The interpretation is that if the item j is taken
away, then all the corresponding players are affected, whereas when a player loses
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any (or many) items, she only needs to secure one other item. A flood is called
canonical with respect to an assignment of items to players, if at each non-leaf
player, the outgoing edge is that of the assignment. The (red) thick edges in the
figures show the assignment, and thus the depicted floods are canonical.

The linear program, Eqs. (22)–(33), cannot enforce the last condition of floods.
We are only able to make sure the fractional solution has a relaxed structure. The
LP gives us a linear combination of pseudo-floods. A pseudo-flood is a flood except
that the last condition is modified to “each player in F is either outsourced, or has
at least one outgoing edge.” To change a pseudo-flood into a flood, we simply prune
the extra outgoing edges of such players, and remove portions of the pseudo-flood
that are unreachable from the source trigger.

Suppose we are looking at a component C consisting of players A and items B
with edges E connecting them. Further, let E′ ⊆ E be a matching saturating a
subset A−Ao of players; if we outsource the subset Ao ⊆ A of players, the remaining
players have a perfect matching. Let F ∈ Fj be a flood associated with a trigger
j ∈ B. Then outsourcing the leaf players of F , denoted by LA(F ), can compensate
for the absence of the item j in the matching.

Lemma 5.5. There is a matching saturating A−Ao − LA(F ) that does not use
the item j if F ∈ Fj is a flood corresponding to the item j.

Proof. Build the path p = (v0, v1, . . . , vk) as follows. The first vertex is v0 = j.
The vertices are items and players alternately. For each even index t < k, choose
vt+1 such that (vt, vt+1) is an edge of the matching E′. At an odd-indexed vertex
vt for t < k, take the outgoing edge of F towards another vertex vt+1. We stop
when vk is either an item not saturated in E′ or an outsourceable player.

Now we show the construction is sane. We claim vt is in F for all t ≤ k. For
an odd index t, the vertex vt is a player. According to the claim, if vt is not
outsourceable, it should have an outgoing edge e. The proof of the claim is by
induction on the index. Clearly v0 is part of F . For an even t′ < k, if item vt′ is
reachable, so is vt′+1, since floods include all the neighbors of the reachable items.
On the other hand, if vt is reachable for an odd t < k, then vt+1 is the other
endpoint of its only outgoing edge in F . It remains to argue the above process
stops. If it does not, we should get stuck in a cycle. Let vt be the first repeated
vertex of such a cycle. It cannot be a player, as then the incoming edge should be
an edge of E′ which is unique; the previous vertex is repeated too. By the same
token, neither can vt be an item, since there is only one edge going into an item in
F .

Notice that if vk is an item, it is not used in E′ and if it is a player, it can be
outsourced and is part of LA(F ). The edges of p are alternately in and outside E′.
We claim that by flipping the status of these edges, we get a matching E′′ satisfying
the condition of the lemma. The only vertices affected are those on p. Clearly j
is not used in E′′, and the only player that may be outsourced is in LA(F ). All
the other players in A − Ao are still saturated. It remains to show E′′ is indeed a
matching. If there is a vertex v with more than one edge in E′′, it should be on the
path p. Except possibly for vk, any vertex of p already had an edge in E′ and now
has at most one. As for vk, if it is saturated in E′′, it implies it is a leaf item of C.
Thus it cannot have more than one edge.
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The lemma shows that given a matching in the component, a flood reduces to
a path whose flipping gives us a new matching. This is part of our algorithm.
A major problem may arise if two triggers of a component are claimed and their
respective floods have common portions showing up in their pathified version.

Overlaps. Ideally we want these floods to be disjoint. However, this is not always
possible. Consider the example given in Figure 5(b). This component has three
items and two players. Two of the items are triggers, and one of the players may be
outsourced. Suppose in the integral solution, the player is outsourced and the two
triggers are claimed from outside. A possible flood correponding to either trigger
is a path starting at the trigger and ending at the outsourceable player; these are
the canonical floods. Other possible non-canonical floods are those that start at
one trigger and end at the other. It is easy to observe one cannot assign a flood to
each realized trigger such that the floods are disjoint. The trick is to allow a small
congestion on the edges. The following lemma ensures this is possible. This will
be useful, because the triggers realized in the rounding correspond to small items
for their takers. So, it is sufficient to keep only a good fraction thereof. In the
next subsection, we describe how the conflict resolution for the realized intersecting
floods is done.

Lemma 5.6. We can assign floods to all the realized triggers of an integral so-
lution of NoInfCycle such that the congestion on each edge or item is at most two
while only outsourcing players that are outsourced in the integral solution.

It is worth noting that the congestion cannot be bounded if we insist on canonical
floods. Canonical floods have a nice interpretation, but we need to resort to other
floods to prove this lemma.

Proof of Lemma 5.6. Without loss of generality, for the ease of demonstra-
tion, we assume the degree of players in the infinity component cannot be more
than three. This can be achieved using a transformation similar to that of Theo-
rem 2.4.

We start with the induced graph H of the union of all the canonical floods. Then
we prove by inducton on the size of this graph that we can find good alternate floods.
During the rerouting process, we will only use the edges in H, but possibly in the
opposite direction. Hence, we can consider each connected component separately,
and without loss of generality, we assume H and H ′ are trees in the following
discussion. In fact, we prove the following two stronger claims simultaneously.
Before stating the claims, let us define a player in a subtree including it as accepting
if it is an outsourceable leaf or has its assignment edge inside the subtree. In
a similar fashion, we call an item accepting with respect to a subtree if it is an
unsaturated leaf or has its assignment edge inside the subtree.

(C1) A subgraph H ′ of H can be fixed so that the congestion on all its edges and
items is at most two even if we have two extra units of flood generated at a
particular accepting player of H ′.

(C2) A subgraph H ′ of H can be fixed so that the congestion on all its edges
and items is at most two even if we impose one additional flood unit into an
accepting item of H ′.
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Fig. 6. Demonstration of the proof of Lemma 5.6.

First of all, let’s see why these two are sufficient to finish the proof. Take a trigger
j in H. It is a leaf. Let i be its only neighbor. The edge (i, j) is clearly not in the
integral solution. A trivial case is when i is an outsourceable player. Otherwise, i
has its assignment edge in H. Then, H − {j} can be fixed via (C1), while i can
accept two additional flood units. Finally, j will use one unit from this capacity.
Notice that here and further in the following proof, we make critical use of the fact
that H is the union of canonical floods of realized triggers of an integral solution.
This will impose a nice structure on H.

Proof of (C1). Let i be the special accepting player node of H ′. If i is an out-
sourceable leaf, we are done. Otherwise, it has its assignment edge included. Say,
it receives an item j; refer to Figure 6(a). If j is the only child of i, we can use
induction to get the claim as follows. The item j has zero, one or two children.
With no child, we can just stop the two additional flood units (the only flood in this
component) at j. Otherwise, all the children have to be accepting. Thus, we use
(C1) on each of the subtrees to say we can sort out those subtrees and also route
the two additional flood units. Now consider the case when i has another child in
H ′, say j′. We can apply (C2) on j′ and its subtree. By (C2) there is at most one
flood unit coming out of j′, and one more can go in. We do the following: the two
additional flood units coming into i are divided between j and j′; j′ can take it by
(C2). The possible flood coming out of j′ is directed through i to j. We know that
j can accept these two flood units.

Proof of (C2). Suppose the special accepting item of H ′ is j. The case of j being
a leaf is trivial. Otherwise H ′ includes its assignment edge, say, to a player i; refer
to Figure 6(b). The fact that j is at all present in H indicates that all its children
are accepting. Assume for now i is the only child of j. Player i has one or more
subtrees, say, through j1 and j2. We can apply (C2) on j1 and j2 themselves. If
j1 is the only child, it sends its only one flood unit up through i to j, and j sends
its additional unit of flood down through i to j1. If j2 is also present, j1 sends its
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outgoing flood through i to j2, and j2 sends its outgoing flood through i to j while
j sends its additional flood unit through i to j1. If a subtree i′ is also present in
H ′, we observe that we can apply (C1) to it. What happens inside the subgraph
corresponding to i does not change, but two additional floods are fed to i′; one
coming from outside to j and one coming out of i through j towards i′.

5.3 The algorithm

The characteristic graph. The characteristic graph is different from the depen-
dency graph of Section 4, yet has the same overall spirit. We give an informal
description of the graph here which is followed by a more detailed precise defini-
tion. The characteristic graph has a vertex for any item or player. The connections
outside complex infinity components are similar to those of dependency graph ex-
cept that in the construction of dependency graph, we collapsed the two edges
connected to an intermediary item node into one. In the new construction, though,
we include both edges: if a player i asks for an item j with small utility and the item
j is big for another player i′, we then have an edge from i to j and one from j to i′.
The complex infinity components are handled differently. Each such component is
present in the construction and we stipulate a trigger thereof may only be used as a
small item by outside players if provisions for a flood rooted at the said trigger exist
in the complex infinity component. In addition, we have an extra copy of complex
infinity components that serve as the super-sources of the solution/rounding: each
such component provides a matching for a subset of its players and outsources the
rest. An outsourced player acts as a source of the dependency graph.

Let G(A,B,E) be the original instance. The characteristic graph D(VD, ED)
is defined as follows. Let A∞ ⊆ A be the subset of players in complex infinity
components. Similarly, define B∞ ⊆ B as the subset of items in complex infinity
components. Then, D has a vertex for any item or player and an extra copy for
any item in B∞ or player in A∞. For an object with two copies, the first is the
normal copy while the second one is called the matching copy. In other words, each
complex infinity component appears twice in the characteristic graph; once as a
source super-node (the matching copy which can initiate some chain reactions by
outsourcing several players) and another time (the normal copy) as a middle super-
node. We have four types of edges, defined as follows; ED = E1 ∪ E2 ∪ E3 ∪ E4.

E1 For any small edge e = (i, j) ∈ E between player i and item j, there is one (or
two) corresponding directed edges in ED. Let i and j denote the normal copies
of the corresponding vertices in D, and let i∗ denote the matching copy of i if
present. Then, there is a directed edge from i to j and possibly one from i∗ to
j in D.

E2 For an infinity edge e = (i, j) ∈ E between player i and item j where j 6∈ B∞,
we add to ED a directed edge going from j to i. This corresponds to a simple
infinity component.

E3 Any infinity edge e ∈ E which is inside a complex infinity component, appears
in D as an undirected edge between the normal copies of its endpoints.

E4 Any infinity edge e ∈ E which is inside a complex infinity component, also ap-
pears in D as an undirected edge between the matching copies of its endpoints.
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Roughly speaking, the matching copies of complex infinity components host a
matching between items and players. Any player in the characteristic graph out-
side the normal copies of infinity components that does not receive an infinity item,
should receive about M small items. Each trigger item which is actually claimed
from outside its infinity component has a corresponding flood in that component.
The leaf players of the respective floods are also activated as a player that does not
receive an infinity item.

The intended solution. Suppose we have a solution f : A 7→ 2B of value M to the
original instance G(A,B,E). We show how we interpret the characteristic graph
by turning that solution to a solution of D. Look at a complex infinity component
C(AC , BC). Let Ao ⊆ AC be the set of players in C that do not receive infinity
items from BC , and let Bt ⊆ BC be the set of trigger items taken by players not
in AC . We use the matching M on A−Ao saturating items BM ⊆ B −Bt in the
matching copy of component C. Let Fj ∈ Fj be the canonical flood originating at
j ∈ Bt with respect to the matchingM. By definition of floods, the set of leaves of
Fj is a subset of Ao ∪B−BM. We reroute these floods to get a collection of floods
F ′j with small overlap, say µ. These are the floods we use in the normal copies of
the components. The small assignment of the players is trivial from f . Notice that
each player is outsourced for at most µ+ 1 times; once for the matching copy and
at most µ times for the floods. Thus, for any such player i, we can divide the set
of items f(i) into µ+ 1 disjoint pieces while each has at least a fraction 1/(µ+ 1)
of the value. Doing this, any player in a matching copy either receives an infinity
item or is outsourced. Any player in a simple infinity component takes hold of her
infinity item unless she is activated. Small items are only used once due to the µ+1
partitioning.

Bounded depth solution. Now, equipped with the tools for the probabilistic exis-
tence of perfect matchings and the flood discussion, we are almost ready to describe
the algorithm. To this end, we first prove a generalized version of Lemma 4.8 to
bound the depth of our characteristic graph. Roughly speaking, we want to take a
solution to the characteristic graph, say as described above, and contract the infin-
ity components. Then, the claim is that this graph can be trimmed to a small depth
without substantially affecting the solution value. A directed path in the character-
istic graph is called a flow path if it follows the corresponding floods inside complex
infinity components.

Lemma 5.7. If there is a solution of value M where overlap of floods is at most
µ, then there is also a solution of value bM/2(µ + 1)c for which the depth of the
characteristic graph is logm

logbM/2(µ+1)c , where the depth is defined as the maximum
number of type one edges in any flow path.

Proof. The argument is similar to that of Lemma 4.8. However, we first need
to change the graph slightly for the argument to go through. During this pro-
cess, what remains of an infinity component is basically its triggers and copies of
its outsourceable players. Remove all the items and the saturated players in the
matching copies of infinity components. For a trigger item j in a component C
that is claimed from outside C, there should be a realized flood F ∈ Fj in the
solution. Using an edge of the second type, connect j to a fresh copy of any player
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in LA(F ). Notice that there are at most µ + 1 occurences of any outsourceable
player, µ from the normal copy and one from the matching copy of the component.
Each of them receives at least M items in the solution. We partition the set of such
items into groups of size at least bM/(µ+ 1)c and each copy of the player receives
an exclusive partition. It is easily observed that (1) the new solution has value at
least bM/(µ+ 1)c, (2) each player appears at most (µ+ 1) times, (3) there are no
edges of type three or four, and (4) the solution forms a tree which means each
item is used by at most one player. Now we can carry out the same argument as
in proof of of Lemma 4.8 to establish the lemma.

The reaction graph. We also add nodes for the edges and items in the complex
infinity components. A trigger is connected to all the elements (edges and items)
in its flood by an edge of the second type. Let us for future reference name this
transformed graph as the reaction graph. By the above lemma, we know that the
reaction graph can be trimmed to a small depth. We will later use this graph in
the congestion bound argument.

Corollary 5.8. If there is a solution of value M for an instance of NoInfcycle,
then there is a solution of value M/6 to the characteristic graph for which the depth
of the characteristic graph is logm

logbM/6c after contracting the infinity components.

The linear program. We let SA denote the set of player nodes in the characteris-
tic graph that have any small items. Further, denote by NB the set of items inside
normal copies of infinity components. That is, NB consists of the items in complex
infinity components that have no small edges. We use δ(v), δ−(v) and δ+(v) to
denote the set of all, incoming and outgoing incident edges of v, respectively. Simi-
larly Γ(v), Γ−(v) and Γ+(v) are used to denote the set of all, incoming and outgoing
neighbors of v, respectively. Let h be the depth of the characteristic graph, and
Mh the value of the trimmed solution (see Lemma 5.7). Define M∗h = Mh/µ as the
value of the linear program. With slight misuse of notation, we let A∞ and B∞

denote matching copies of vertices and A and B refer to the normal copies. We
add dummy nodes s and s′ to VD; these nodes serve as the starting point of all the
chain reactions. In addtion to xe and ∆i∗ variables corresponding to the deficiency
matching subproblem, there is a variable fπe for any directed edge e and any ordered
list π ∈ Π of vertices V π whose size is bounded by 2h. The set V π of recordable
vertices consists of s, s′, B − NB and SA. The list π serves as a selected subset
of nodes on the particular chain reaction leading to this edge. Roughly speaking,
it remembers all the nodes except for those inside complex infinity components,
which is in fact the set of all the nodes on the corresponding path in the reaction
graph. The LP is given in (22)–(33), and description of each set of constraints is
included inline. ∑

e∈δ(j∗)

xe ≤ 1 ∀j∗ ∈ B∞ (22)

∆i∗ +
∑

e∈δ(i∗)∩E1

xe = 1 ∀i∗ ∈ A∞ (23)

∆i∗ = 0 ∀i∗ ∈ A∞ − SA (24)
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These three constraints enforce the deficiency matching in matching copies of com-
plex infinity components of D, allowing nonnegative deficiencies for outsourceable
players.

f
(s,s′)
(s,s′) = 1 (25)

f
(s,s′,i∗)
(s′,i∗) = ∆i∗ ∀i∗ ∈ A∞ (26)

Dummy source node s will be the starting point of all reaction chains. It is con-
nected to s′ which is, in turn, connected to all the outsourceable players in matching
copies, i.e., A∞ ∩ SA. We assume all the edges incident on s′ have utility infinity
except for the one coming from s whose utility is one.

1
M∗h

∑
j′∈Γ(i)
j′ 6=j

fπ◦j
′

(i,j′) ≥ f
π
(j,i) ∀i ∈ SA, j ∈ Γ∞(i)−B∞ (27)

∑
j′∈Γ(i)
j′ 6=j

fπ(i,j′) ≥ f
π
(j,i) ∀i ∈ A− SA, j ∈ Γ(i) (28)

Here π ◦ π′ denotes the concatenation of the two lists π and π′ and Γ∞(v) denotes
the set of neighbors of v having infinity edges to v. Depending on whether a player
is in SA or A − SA, the flood/flow pseudo-conservation is written as above. The
former is for small edges and ensures if a player is outsourced (or activated) it
should receive M∗h small items. In this case, there is a unique j ∈ Γ∞(i) − B∞
because of our transformations. The latter constraints make sure if there is any
flood of a particular kind entering a player node i, at least as much should exit
from i. This concerns the inside of normal copies of infinity components.∑

i′∈Γ(j)
i′ 6=i

fπ(i′,j) ≤ f
π
(j,i) ∀j ∈ NB , i ∈ Γ∞(j) (29)

∑
i′∈Γ(j)
i′ 6=i

fπ◦j(i′,j) ≤ f
π
(j,i) ∀j ∈ B −NB , i ∈ Γ∞(j) (30)

When a flood enters an item node, it has to exit through all the other possible
edges. Similarly, if an item j is taken away by a player, the infinity takers of j are
affected. There is only a slight difference between the two sets of constraints: we
only store j in π if j is not inside a complex infinity component.∑

π′

π◦v◦π′∈Π

fπ◦v◦π
′

e ≤ fπ◦vσ(π,v) ∀π ∈ Π, v ∈ V π − {s} (31)

∑
π′

π◦v◦π′∈Π

∑
e∈δ(j)

fπ◦v◦π
′

e ≤ fπ◦vσ(π,v) ∀π ∈ Π, v ∈ V π − {s}, j ∈ B (32)
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Here σ(π, v) represents the edge leading to v on the list π. Notice that the other
endpoint of the edge may not be in π as not all vertices are recorded. In particular,
σ(π, v) is defined as

σ(π′ ◦ u ◦ v ◦ π′′, v) =


(s, s′) if v = s′,

(u, v) if v is an item,
(u′, v) if v is a player and pv,u′ =∞.

Notice that σ(π, v) is well-defined for any v ∈ V π − {s} that appears on π: if v is
a player, it has exactly one infinity item. The constraints (31)–(32) stipulate the
conditional variables should be consistent. In particular, the total flood passing
through an edge e conditioned on another flood has to be at most one. Combined
with the dummy edge (s, s′), this gives an unconditional bound of one on such
variables as well.

∆i∗ , xe ≥ 0 ∀i∗ ∈ A∞, e ∈ ED. (33)

Note that we do not have conservation for the flows inside infinity components.
At item nodes, the flows may double. To turn the solution described above to a
solution for the LP, we divide all the small edge values as well as the floods by µ.
This decreases the value of the LP by a factor of µ.

The definition given above for the LP for inside of normal copies of infinity
components, ensures a linear combination of pseudo-floods of value (at least) f
originating at a trigger whose incoming flow is f .

Now we show the LP described above is a valid relaxation of the problem.

Claim 5.9. If the MaxMin Allocation instance has a solution of value M with
flood packing upper bound of µ, the above LP has a feasible fractional solution of
value M∗h .

Proof. Take the reaction graph corresponding to the integral solution on the
bounded depth solution. The assignment of values for ∆i∗ and xe are straight-
forward. Let the integral assignment inside complex infinity components dictate
the values for xe variables for any edge e ∈ E1. A player i∗ ∈ A∞ saturated in
the matching gets ∆i∗ = 0, whereas a player i∗ ∈ A∞ using its small edges in the
integral solution gets ∆i∗ = 1.

Notice the reaction graph is a forest. For any edge e = (u, v) appearing in
the solution, let πe be the path from s to v in the reaction graph. Define π′e as a
restricted version of πe that only includes vertices from V π. If e is a real edge of the
reaction graph, define ν(e) = e. Otherwise, v is an added element to the reaction
graph. If v corresponds to an edge e′ of the original graph (inside a complex infinity
component), define ν(e) = e′. We do not define ν(e) if v is an element corresponding
to an item. Finally, we let fπ

′
e

ν(e) = 1/µ if ν(e) is defined.
All the other variables are set to zero except those dictated by (25) and (26). We

now show that all the constraints in the LP are satisfied by the above assignment.
Clearly all the variables are nonnegative in accordance with (33). The matching
constraints (22)-(24) hold by definition noting we have a matching for such nodes
in the integral solution. Constraints (25) and (26) are valid by construction.

In the reaction graph, each player using small edges has Mh outgoing edges. By
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Algorithm MaxMin Solver

Input: The special MaxMin Allocation instance (NoInfCycle or InfDegreeTwo)
Output: The assignment of items to players

(1) If M ≤M∗, produce a solution with out-degree one (using a matching algorithm).

(2) Build characteristic graph after reducing degrees, etc.

(3) Solve the LP given in (22)-(33).

(4) Do independent randomized outsourcing with ρ = Θ(log3m) in the matching copies

of the complex infinity components.

(5) Find a perfect matching M on the remaining players of such components.

(6) Simplify the fractional floods in the normal copies into flows using M.

(7) Peform TreeRoundPlus which is similar to TreeRound

• Start from initial set of activated nodes (outsourced players of the above steps

and the sources) and continues according to TreeRound except for the following
points.

• Apply a dampening factor of Θ(log3m) to sampling of small items for an acti-

vated player
• Whenever a trigger item is activated, randomly pick one of the paths in its sim-

plified flood using the associated conditional probabilities (boosted by a factor
Θ(logm)) and activate (i.e., outsource) the endpoint of the path if it is a player.

(8) Take away some of the triggers from their current players using the Flow Integral-

ization.

(9) For each surviving trigger path, flip all the assignments along the path.

(10) Do a conflict resolution on the items similar to the previous algorithm.

Fig. 7. The algorithm for NoInfCyle and InfDegreeTwo problems.

our construction, definition of M∗h = Mh/µ leads to constraint (27). Constraint (28)
is inferred from the definition of floods in the reaction graph. Definition of floods in
the reaction graph gives constraints (29) and(30) for items inside complex infinity
components and the definition of the reaction graph for items in simple infinity
components gives it for others.

Constraint (31) is true since the reaction graph is a forest and the assignment of
fπe is derived from a flow-like structure. For (32), notice that an item either has
one incoming edge or it is in a complex infinity component. In the latter case, we
assume without loss of generality that each item appears at most once in the flood
associated with any single trigger.

The algorithm. The algorithm, summarized in Figure 7 is a generalization of
the one described in Section 4. We first carry out the necessary transformations
and then build the characteristic graph, trim it and solve the LP. The rounding is
then done in stages. Some players in the matching copies of complex components
are outsourced using using the procedure described in Subsection 5.1 with ρ =
Θ(log3m). The discussion therein guarantees the existence of a perfect matching
saturating the nonoutsourced players. We then find such a perfect matching M
using conventional matching algorithms. Afterwards M is used to simplify the
fractional floods in the normal copies into flows; see Claim 5.10 below. The next
step is TreeRoundPlus which is a generalization of TreeRound of Section 4.
More specifically, place all the source nodes as well as the outsourced players of the
complex infinity components into a queue. Next, draw nodes one by one from this
queue and process them.
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• When a player is drawn, we sample an expected M∗h/Θ(log3m) number of her
items according to the dampened conditional probabilities dictated by the LP.
• Upon drawing a nontrigger item, its (sole) infinity taker is placed in the queue.
• Suppose a trigger item j is drawn. Notice that the flow out of j in the cor-

responding infinity component can be decomposed into paths reaching leaves
(either outsourceable players or unused items). Randomly pick one of them
and outsource the endpoint if it is an outsourceable player, by putting it in
the queue. More precisely, form the conditional probabilities for these paths,
and sample them independently with probability boosted by a factor Θ(logm).
This guarantees at least one of them is selected during the sampling.

Next, we take away some of the triggers from their current players using the flow
integralization described below. This serves as part of the conflict resolution
for multiply-assigned items, and in addition, makes it possible to handle the play-
ers inside complex infinity components. Flip all the assignments along the paths
corresponding to surviving triggers. Finally, we perform a conflict resolution on
the items similar to the previous algorithm, MaxMinDegree Arborescence
Solver.

Flood to flow simplification. Floods are worst-case guaranteed structures, as pre-
viously noted. When a matching M is provided, we can focus on paths. In the
worst case, when we reach an item node j, we have to go out through all the edges.
Whereas if we know which player i currently claims j, we can wisely decide which
outgoing edge to pick. If no player uses j in the matching, the path can stop at j.
Otherwise, the path continues along the current matching edge towards i.

In the above LP, roughly speaking, we have a linear combination of floods. Given
a matching M, this fractional solution turns into a flow (a linear combination of
paths). To this end, we cross out any edge e 6∈ M going out of an item and any
item or node not reachable from the trigger afterwards. We say a set of edge values
is a pseudoflow if we have a relaxed conservation property: in particular, for any
vertex v, we have

∑
e∈δ−(v) xe ≤

∑
e∈δ+(v) xe. The value of a pseudoflow is the sum

of values of edges going out of the source vertex.

Claim 5.10. The result of the above trimming is a pseudoflow of the same value
as the original flood.

Proof. The above process produces a graph GF . Clearly, there is at most one
edge entering any item and at most one edge going out of a player. In addition, if an
item j except source is reachable from the source vertex js, then j has exactly one
incoming edge. Then, writing (29) and (30) for j implies pseudo-conservation at j.
On the other hand, if a player i is reachable in GF but is not outsourceable, then
i has exactly one outgoing edge. Hence, using (28) for i gives pseudo-conservation
at i. Therefore, we have pseudo-conservation at all nodes except the source and
sinks.

It is straightforward to reduce the values of a pseudo-flow into those of a flow.
Using the pseudo-flow edge values as capacities, we can find a maximum flow and
that is the desired flow. One can observe that the minimum cut of the pseudo-flow
is at least as large as the value of the pseudo-flow.
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Lemma 5.11. In the above random process, with high probability, no element
(edge or item) is sampled more than O(poly logm) times.

Proof. The reaction graph is very similar to the dependency graph except that
each intermediate edge is doubled and the flood out of a node need not be M
times its inflood. Claim 5.10 says the trimming performed in the third step after
getting the matching reduces the flood sections of the LP into flows. By the LP
constraints (31) and (32), we know that the total flow into any item or edge is at
most one, even if conditioned on any relevant event. Hence, we can focus on any
item or any edge and carry on the same argument as Lemma 4.12 to finish the
proof. In fact, we can obtain a feasible solution to (AR-LP) on the reaction graph
via the solution of the above LP. The bound will be O(logN ′ logN) = O(h log2N)
for one single element, i.e., item or edge. We assume h = O(logm) without loss
of generality. Knowing N = O(m), we can then apply union bound to get the
guarantee for all the elements.

Flow integralization. Another complication in the algorithm is flipping of paths
that are not disjoint. The constraints we put in the LP prevent this in an integral
solution. However, we might have different fractional paths that share segments,
and many such paths might have been realized in the rounding. The good point is
that not many paths will share a single edge. This is an extension of the congestion
bound we proved in Section 4. Let λ be this bound. The idea is to take away some
trigger from their current takers, without reducing the solution value significantly,
while on the other hand, the paths corresponding to the yet-present triggers become
disjoint. During this, some paths might be rerouted to different players, but the
target players have already been outsourced.

Roughly speaking, we build a graph of all these paths. Then we put capacities of
one on the edges (and item nodes) and add edges from a new source vertex to the
triggers and from outsourced players to a new sink vertex. The capacities on the
edges out of source are picked such that all capacities are integral and further, the
maximum flow saturates all such edges. Then, we can find an integral maximum
flow which is exactly what we want; i.e., paths are edge-disjoint.

Now we give a precise explanation of how this process is carried on. This is
integrated with the final conflict resolution for InfDegreeOne. Build a graph GF
as follows. All the items and players are vertices of GF . There is a source node s
connected to all the players that use their small items as a result of rounding. The
capacity of the edge from s to player i is bM∗h/λc. There is a sink node t that has
edges from all the leaves of the flood paths as well as from non-trigger items used
as small items in the rounding. The capacity of any such edge is one. The rest of
the edges are the union of the flood paths, and the capacities of these edges are also
one. To enforce capacity one on the item nodes, we apply the following well-known
trick. We break each item j inside complex infinity components into two nodes j1
and j2. There is an edge of capacity one from j1 to j2. All incoming edges of j
are now connected to j1 and all outgoing edges head out of j2. We put a value 1/λ
on the edge between player i and item j if the LP rounding decides i should use j.
Then, by reducing the value of (flood) paths to 1/λ and removing the extra paths
of each player, we can get a fractional feasible flow from s to t that saturates all the
edges out of s. Since all capacities are integral, there is an integral solution of the
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i i′

j2

(a) (b)

Fig. 8. Floods with cycles.

same value. Thus each player i keeps a total of bM∗h/λc trigger paths non-trigger
items of hers. These paths are edge-disjoint and item-disjoint, but may intersect at
player nodes. Hence, we can perform the flipping procedure to modify the complex
infinity components in effect releasing the realized triggers.

Theorem 5.12. The algorithm above can be used to give an Õ(nε)-approximation
that runs in time O(n1/ε).

Proof sketch. We guess the value of the solution, say M . If M is smaller than
O(nε) we can get an O(nε)-approximation by a matching algorithm. Otherwise,
by Claim 5.9, the LP has an integral solution of value M ′ = Ω(M/µ2nε) of depth
h = O(1/ε).

The LP value inside the matching copies of complex infinity components is a
deficiency matching. Hence by Theorem 5.1, we can find a perfect matching in
Step 2 that saturates all the remaining players, i.e., those not outsourced. Each
player receives M ′/O(log3m) items.

The congestion analysis works out as before with minor changes to show that (1)
each item is used by at most λ = O(log3m) players, and (2) each infinity edge (or
item) is used by at most λ realized flood paths; see Lemma 5.11.

Then using the flow integralization and previous conflict resolution, we lose a
factor O(λ) to resolve all conflicts. Finally, we flip the edges along all the now-
disjoint remaining trigger paths. The running time comes from the size of the LP
which is poly(nh).

5.4 InfDegreeTwo instances

If there are infinity cycles in the instance, the floods can be quite complicated.
Floods need not be arborescences anymore. Definition 5.4 is suitable for such cases
as well. Figure 8(a) shows a flood with a cycle. The item j is a trigger and the only
leaf player of its flood is i′. Notice that although two items, namely j1 and j2, of the
player i are taken, one outgoing edge is sufficient for i. Recall the interpretation is
that a flood shows which players are affected by a trigger’s being taken away. The
presence of such subtle structures makes is more challenging to reroute the floods
that have cycles. In fact, there are examples that show we cannot get a properly
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bounded congestion via rerouting the floods; see, for instance, Example 5.13 below.
In this section, we show that congestion 8 is achievable in case of InfDegreeTwo.

Example 5.13. Consider a component C consisting of an outsourceable player
i0 connected to an item j0. There are k other players i1, . . . , ik in C connected to
j0. Each it for 1 ≤ t ≤ k has an exclusive trigger jt. In an integral solution, it is
possible that all these triggers are realized when outsourcing i0 is sufficient to sort
things out in C. However, the flood corresponding to any trigger it has to include
the edge from j0 to i0, leading to congestion k. Here, the degree of the item j0 is
not bounded by three. Yet, we can use the gadget in proof of Theorem 2.4 to get
away with this issue.

Lemma 5.14. We can assign floods to all the realized triggers in an integral
solution of InfDegreeTwo such that the congestion on each edge is at most 8 while
the new leaves of the floods are either previously outsourced players or unused items.

We can perform the transformations to make outsourceable players leaves of the
infinity components; however, we cannot ensure that triggers are leaves as well. The
previous transformation would need items of infinity degree three which we disallow
here. The flood associated with a trigger j may have two branches, as the degree of
the item can be two. Each branch will be a (not necessarily simple) path, because
(1) upon entering a player node, we only follow one edge out, and (2) whenever
we enter an item node, we have already used one edge and there is at most one
more edge remaining. The two branches may later merge at a player node. They
cannot cross at that point, since we are considering canonical floods at present.
Furthermore, notice that in a feasible solution, the canonical flood corresponding
to activated trigger j cannot pass through another activated trigger j′. Since, the
implication would be that triggering of j makes j′ unavailable to the outside.

Now let us consider the two branches separately. Consider two instances. In the
first instance, take the first branch of each flood, and in the second, look at the
respective second branches. We prove that each of these instances can be rerouted
to give a good congestion. Then, we use the following claim to finish the proof.

Claim 5.15. If the two instances corresponding to first and second branches of
the floods can be rerouted to give congestion λ each, then the floods in the original
instance can be rerouted to give congestion 2λ.

Proof. Superimpose the two rerouted solutions. Clearly, the congestion is at
most 2λ. Slight change is needed to make the floods valid. Let p1 and p2 be the
rerouted paths for different branches of a single trigger. Nothing is to be done if
they do not intersect. If they do, however, let i be the first player on p1 that is also
in p2. Suppose p1 = p1

1p
2
1 where p1

1 ends at i. The new flood for the corresponding
trigger consists of p1

1 and p2. It is easy to verify that this forms a valid flood and
its only intersection point is i.

As noted earlier, these paths need not be simple; see Figure 8(b) for instance.
Now, we characterize the cycles in the union of single branches from the canonical
floods.

(Q1) There is no trigger in a cycle;
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(Q2) Edges come into cycles only through player nodes; and
(Q3) The cycles are edge-disjoint.

If a trigger j falls in a cycle, it means it has an incoming edge. This means that
realization of some trigger inhibits triggering of j, proving (Q1) by contradiction.
The degree bound on items implies (Q2). To prove (Q3), note that each player
has exactly one outgoing edge and each item (that is not a trigger) has exactly one
incoming edge, since we have a union of canonical floods. We claim each cycle is
directed, that is, all the edges of the cycles have the same orientation. Take a player
node i on a cycle C. At least one of the two edges of the player on the cycle is
incoming. Go back through that edge to j. The item j has exactly one incoming
edge, and it has to be part of C. Go back through that edge and continue until we
reach i. We will stop since we only walk on the cycle C. This proves the claim.
Now take two distinct intersecting cycles C1 and C2. Since cycles are directed,
there has to be a common point at which C1 and C2 have different outgoing edges.
Such a node can neither be an item nor a player which proves (Q3).

Now, we are ready to prove the congestion lemma for InfDegreeTwo which in turn
gives our final result.

Proof of Lemma 5.14. Using Claim 5.15, we just need to consider one branch
from each trigger and pack them with low congestion. Take either of the two
instances. The above discussion shows that the cycles in such an instance are
disjoint, which means there are no nested cycles. We make a small transformation
to remove cycles, and then solve the problem using Lemma 5.6 Finally, we show
putting cycles back in, the increase in the congestion is small.

Let a cycle C have players i1, i2, . . . , ik, in order, which have incoming edges from
outside C. Further, let j be the item in the cycle with an edge to i1. Remove this
edge. This may render some portions of the corresponding flood unreachable from
the source triggers. Remove any such portions. Doing this iteratively for all the
cycles, we end up with an instance without any cycle, and thus by Lemma 5.6,
floods can be rerouted to give congestion at most two. There are at most two flood
units reaching j. Suppose j1 and j2 are the respective origins of these floods, say
F1 and F2. These two are clearly outside C. Let i′1 and i′2 be the (not necessarily
distinct) players through which F1 and F2 enter C, respectively. Now, restore the
edge between j and i1. Add the path around C from j to i′1 to F1, and similarly
add the path from j to i′2 to F2. These are valid floods for the original instance
and congestion on any edge is now at most four. By combining the two branches,
we get the lemma.

The congestion lemma shows that our approach can be generalized to InfDe-
greeTwo.

6. CONNECTION TO SHERALI-ADAMS LIFT-AND-PROJECT METHOD

We show that there is a close connection between MaxMinDegree Arbores-
cence Solver (see Section 4) and the rounding of a natural lift-and-project LP.
Let G be the given directed graph, and G′ the unfolded tree of depth t for G. For
simplicity, assume that G already includes the additional dummy root r′. However,
in the following LP formulations, we do not include the constraints that stipulate
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the variables corresponding to the dummy edges should be set to one. Those are
always implicit. We start with a natural LP for the MaxMin Degree Arborescence
problem on G.

(LP0)∑
e∈δ+(v)

xe = M ·
∑

e∈δ−(v)

xe ∀ vertex v 6= r′ (34)

∑
e∈δ−(v)

xe ≤ 1 ∀ vertex v of G (35)

xe ≥ 0 ∀ edge e of G (36)

This is the very S-LP for the corresponding InfDegreeOne instance. Next we obtain
a lift-and-project LP, called SA(t), which is the linear program resulting from
performing t rounds of Sherali-Adams lift-and-project on LP0. There is a variable
xS in SA(t) for any set S of edges in G if |S| ≤ t. In particular, there are variables
xp for any path p of length at most t in G. (Unless specified otherwise, paths are
simple.) We claim that these variables specify a solution to AR-LP corresponding
to G′. Let us rewrite AR-LP in a different way to make this connection more
conspicuous. We have a variable xp in GR-LP corresponding to any variable xv for
v ∈ G′, where p is the path from r′ to v ∈ G′. Let P be the set of paths starting at
r′ in G.

(GR-LP)∑
p′=〈p,e〉

xp′ ≥M · xp ∀ path p ∈ P of 1 ≤ length < t
not ending at a sink (37)

∑
|p=〈p′,p′′〉|≤t
p ends at v

xp ≤ xp′ ∀ vertex v ∈ G, path p′ ∈ P (38)

xp ≥ 0 ∀ path p ∈ P of length ≤ t (39)

We should also have some constraints of the form xp = 0 if |p| = t and p does
not end at a sink. Before worrying about these constraints, let us show that the
constraints in GR-LP are in fact present in SA(t).

We present a handier version of the Sherali-Adams derivation of constraints that
is more convenient for our purposes; its proof comes later on. Roughly speaking,
we can SA-multiply one constraint of SA(t − 1) by one of the base LP to get a
new constraint.

Lemma 6.1. If there is a constraint

k∑
i=1

αixSi ≤
k′∑
i=1

α′ixS′i (40)

in SA(t− 1) and a constraint

m∑
i=1

βixei ≤
m′∑
i=1

β′ixe′i (41)
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in the base LP, there will be a constraint(
k∑
i=1

αixSi

)
∗

(
m∑
i=1

βixei

)
≤

 k′∑
i=1

α′ixS′i

 ∗
 m′∑
i=1

β′ixe′i

 (42)

in SA(t), where ∗ denotes the Sherali-Adams product operator.

Now we use induction on t to prove the constraints (38) are present in SA(t). It
is trivial for t = 0. Suppose t > 0: if v is the endpoint of p′, then the constraint
is simply xp ≤ xp. Otherwise, let u1, . . . , uk be the parents of v. Let e1, . . . , ek be
the respective edges that connect each ui to v. By (35), we know that

k∑
i=1

xei ≤ 1. (43)

By the inductive hypothesis, we have∑
|p=〈p′,p′′〉|≤t−1
p ends at ui

xp ≤ xp′ .

SA-Multiplying by (43) (i.e., we multiply the left-hand side (LHS) by LHS and the
right-hand side (RHS) by RHS; see Lemma 6.1), and noting that xS ≥ 0 for any
set S of edges, we get ∑

|p=〈p′,p′′〉|≤t
p ends at v

xp ≤ xp′ ,

where we have removed the resulting variables on the LHS which do not correspond
to valid paths.

Now we show how the constraints (37) are derived. Let e′ = (u, v) be the last
edge of the path p. Let e′1, . . . , e

′
k be the parent edges of v corresponding to parents

u1, . . . , uk. Similarly, let e1, . . . , em be the outgoing edges of v. We first note that
the variable x{e′i,e′j} = 0 for i 6= j, since

∑k
i=1 xei ≤ 1 and nonnegativity of the

variables give

k∑
i=1

xei ≤
k∑
i=1

xei +
∑
i6=j

x{ei,ej} =

(
k∑
i=1

xei

)
∗

(
k∑
i=1

xei

)

≤

(
k∑
i=1

xei

)
∗ 1 =

k∑
i=1

xei .

By (34)
m∑
i=1

xei = M ·
k∑
i=1

xe′i .

SA-multiplying by xe′ we get
m∑
i=1

x{e′,ei} = M ·
k∑
i=1

x{e′,e′i} = M · xe′ .
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Now, SA-multiplying by the rest of the path p (edges other than e′), we get the
constraints (37).

Now we give the proof of Lemma 6.1.

Proof of Lemma 6.1. Writing the Equation (40) in standard Sherali-Adams
form and SA-multiplying by βjxej , we get

k′∑
i=1

α′iβjxS′i∪ej −
k∑
i=1

αiβjxSi∪ej ≥ 0. (44)

By SA-multiplying Equation (41) by variables corresponding to the elements in S′j
one at a time, we get

m′∑
i=1

α′jβ
′
ixS′j∪e′i −

m∑
i=1

α′jβixS′j∪ei ≥ 0. (45)

Summing Equation (44) and Equation (45) over all respective values for j, and
adding up,

k′∑
j=1

m′∑
i=1

α′jβ
′
ixS′j∪e′i −

m∑
j=1

k∑
i=1

αiβjxSi∪ej ≥ 0,

which is equivalent to Equation (42).

There is still a caveat in interpreting our rounding algorithm of the unfolded
tree as rounding SA(t): we do not have any variable in GR-LP corresponding to
paths of length more than t. However, we only showed that if all the long paths are
available, the constraints (37) are satisfied. Now we show that if M > 2n1/t, we can
prune some of the paths such that no long path remains, yet the solution is valid
for SA(t) of value M ′ = M/2. The following lemma is an analog of Lemma 4.8 for
the fractional solution of the lift-and-project LP.

Lemma 6.2. If M > 2N1/t, we can prune the solution of SA(t) such that no
path longer than t has a nonzero variable, while the value of the LP does not go
below M/2.

Proof. To simplify the demonstration, we work with the unfolded tree (without
the depth restriction) and all references to subtrees are subtrees of this unfolded
tree. We define a measure of size of a subtree in terms of the LP variables as follows:
For a subtree T (of the unfolded graph), let flow(T ) denote the sum of flows into
all nodes in T (this includes flow into root of T as well). Let in(T ) denote the flow
into the root of T . Then we define size(T ) := flow(T )/in(T ).

Suppose a subtree T has subtrees Ti. Then, note that

flow(T ) = in(T ) +
∑
i

flow(Ti)

= in(T ) +
∑
i

in(Ti) · size(Ti).

Thus,

size(T ) = 1 +
∑
i in(Ti) · size(Ti)

in(T )
.
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Also note that
∑
i in(Ti) ≥M · in(T ).

Here is how the pruning works. Proceed in a top-down fashion starting with all
the sources. Suppose we are currently processing node v. Let T be the subtree
rooted at v. For convenience, assume the subtrees Ti of T are in decreasing order
of size(Ti). Let j be the smallest index such that

∑j
i=1 in(Ti) ≥ M

2 in(T ). Recall
that

∑
i in(Ti) ≥M · in(T ); so such a j exists.

We claim that

size(Tj) <
size(T )
M/2

.

Since for i ≤ j, size(Ti) ≥ size(Tj), we have

flow(T ) >

j∑
i=1

in(Ti) · size(Ti)

≥ size(Tj)
j∑
i=1

in(Ti)

≥ size(Tj) ·
M

2
· in(T ).

Hence, size(Tj) < (flow(T )/in(T ))/(M/2) = size(T )/(M/2), as claimed.
We delete all subtrees T1, . . . , Tj−1. This ensures that all remaining subtrees

have size less than size(T )/(M/2), and the total flow out of the root of T is at least
(M/2) · in(T ). Repeat this process in a top-down fashion. When you get to a tree
T such that size(T ) < M , the root of T must be a sink. This proves that the depth
is at most logN/ log(M/2) and this is a feasible LP solution for M ′ = M/2.

To summarize, this is the interpretation of our algorithm as rounding the lift-
and-project LP: write and solve SA(t); prune the solution; and round it. In the
rounding step, a path p = 〈p′, e〉 is selected with probability xp/xp′ if and only if
p′ is already selected.

7. HARDNESS BARRIER

Theorem 2.4 is a motivation to study DegreeTwo, as instances which are in a sense
one notch easier than the general problem. Here, we show another motivation. We
first give an approach to generalize Theorem 3.1, to possibly get better hardness
results. Our approach uses a gadget for which we do not know any construction with
guarantee better than 2. So, we fail to establish any hardness better Theorem 3.1.
But, one might still hope to build better gadgets and use them to get better bounds.
We show no such gadgets exist to give a hardness better than a factor 4.5 And
then, observe that all the previous hardness results for the problem (all achieving
a factor 2) are somewhat using this gadget, explicitly or implicitly. This signifies
we need something else if we are after better hardness results.

The gadget that we will need is the following.

5Considering a recent (2 + ε)-approximation algorithm due to [Chakrabarty et al. 2009] actually

ensures no hardness result better than what is currently known can be obtained in this way.



MaxMin allocation via MaxMinDegree Arborescences · 47
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Fig. 9. Parts of our generalized hardness approach: (a) for each variable, the item
corresponding to one literal can be used outside the gadget; (b) for each clause,
the item corresponding to one of its literals has to be used; (c) a simple (2− ε, T )-
duplication gadget.

Definition 7.1 Duplication Gadget. An (α, T )-duplication gadget is an instance
of MaxMin Allocation with three distinguished items a, b and c, satisfying the fol-
lowing properties.
(1) Having a, all the players can get a load of T ;
(2) Having b and c, all the players can get a load of T ; and
(3) Without a and either of b or c, we cannot obtain a solution of value T/α or

better.

The gadget can be used to copy the status (being available or not) of a to both b
and c. We use such a gadget to get a hardness of factor α for the problem. We build
a 3SAT instance as in proof of Lemma 3.1. There are two items and one player for
each variable xi; one item for each literal and a dummy player. The player values
each item at T . Thus, in any nonzero solution, one of those items would be taken.
Each literal is duplicated via the above gadget as necessary and the new copies can
form clauses. We know that for each variable, the copies for exactly one choice
(positive or negative) are available outside duplication gadgets. Such literals can
help satisfy the clauses, i.e., provide them with load T . Figure 9 depicts different
parts of our construction.

Details of the construction are omitted, but this gives a hardness of factor α for
MaxMin Allocation. It is not immediately obvious that this gives an instance of
DegreeTwo. The following lemma helps establish this.

Lemma 7.2. Any (α, T )-duplication gadget can be changed to have degree at most
two for items, and furthermore in such a way, that the distinguished items have
degree one.

Proof. By Definition 7.1, there is a solution in case we only have a. Let E1 be
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all the edges (assignment of items to players) in this case. Let E2 similarly be the
assignment in the case when we have b and c, but not a. Taking E1∪E2 gives what
we seek. The degree of a, b and c is at most one, and no other item has degree
more than two. As we only have a subset of the original edges, it is obvious that
the third condition of the definition also holds.

Coupling this lemma with our construction, we get an instance of DegreeTwo. We
do not know any way to get an (α, T )-duplication gadget for α ≥ 2. For α = 2− ε,
this is obvious; see Figure 9(c). The algorithm in Section 3 refutes existence of such
gadgets for α ≥ 4. The better algorithm given in [Chakrabarty et al. 2009] shows
there is no such gadget with guarantee better than 2 + ε. Hence, insisting to use
such a method cannot yield results better than what we currently have.

8. CONCLUDING REMARKS

In this work, we give quasipolynomial time polylogarithmic approximation algo-
rithms for the bounded degree case of MaxMin allocation of indivisible goods. In
particular, we show that solving DegreeThree is equivalent to solving MaxMin Allo-
cation, and on the other hand, we study InfDegreeTwo.

Although the recent results of [Chakrabarty et al. 2009] essentially settles this
question using a different approach, it is still interesting to see if our approach can
be extended to solve DegreeThree. In particular, were we able to eliminate infinity
cycles in some way, we could derive the same result of [Chakrabarty et al. 2009].
Otherwise, we might be able to change the definition of floods to make this possible.

Getting better approximation ratios and/or running times is definitely another
next step. As the MaxMinDegree Arborescence problem seems to capture the essence
of the problem, it might be a reasonable choice for getting better hardness results
or approximation ratios. Coupled with a recent result of [Chakrabarty et al. 2009],
the discussion of Section 7 shows what we cannot do in order to get any hardness
results better than a factor 2.

It will also be interesting to gain a better understanding of the Sherali-Adams
lift-and-project LP for this problem. In particular, finding a tight integrality gap
is a nice direction to pursue.
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