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ABSTRACT

Traditionally, Internet Service Providers (ISPs) makefiptry pro-
viding Internet connectivity, while content providers & PBlay the
more lucrative role of delivering content to users. As nekaaon-
nectivity is increasingly a commodity, ISPs have a stromgittive

to offer content to their subscribers by deploying their @entent
distribution infrastructure. Providing content serviges. provider
network presents new opportunities for coordination betvigaf-

fic engineeringto select efficient routes for the traffic) andrver
selection(to match servers with subscribers). In this work, we de-
velop a mathematical framework that considers three maositts

an increasing amount of cooperation between the ISP andRhe C
We both analytically and numerically study the stabilitydaopti-
mality conditions for these models. We show that separasimger
selection and traffic engineering leads to sub-optimal lduia,
even when the CP is given accurate and timely informatiorubo
the ISP’s network in a partial cooperation. More surprisingxtra
visibility results in alessefficient outcome and such performance
degradation can be unbounded. Leveraging ideas from catdgeer
game theory, we propose an architecture based on the coofcept
Nash bargaining solutiorthat significantly improves the fairness
and efficiency of the joint system. Simulations on realistck-
bone topologies are performed to quantify the performarifferd
ences between our models. We show that the joint designfsigni
icantly improves the performance metrics of both the ISP thaed
CP, under a wide range of traffic conditions. This study i®p $b-
ward a systematic understanding of the interactions betiresse
who provide and operate networks and those who generatdsnd d
tribute content.

1. INTRODUCTION

Internet Service Providers (ISPs) and content providesjC
are traditionally independent entities. ISPs only prowidanec-
tivity, or the bandwidth “pipes” to transport content. Asrmst
transportation businesses, connectivity and bandwiditbacom-
ing commodities and ISPs find their profit margin shrinkinp At
the same time, content providers generate revenue byimndgjilex-
isting connectivity to deliver content to ISPs’ customérkis moti-
vates ISPs to host and distribute content to their custo@engent
can be enterprise-oriented like web-based services alenetsal-
based like triple play as in AT&T's U-Verse [2] and Verizond%
[3] deployments. When ISPs and CPs operate independdmely, t
optimize their performance without much cooperation, éhengh
they influence each other indirectly. ISPs deploying cansen-
vices makes the cooperation between ISP and CP possibleh whi
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Figure 1: The interaction between traffic engineering (TE) and
server selection (SS).

ploy infrastructure, manage connectivity, and balanc#i¢rbad
inside its network. In particular, an ISP solves ttadfic engineer-
ing (TE) problem, i.e., adjusting the routing configuration he t
prevailing traffic. The goal of TE is to ensure efficient rogtito
minimize congestion, so that users experience low packst logh
throughput, and low latency, and that the network can gréigef
absorb flash crowds.

To offer its own content service, an ISP must deploy a content
distribution infrastructure. In practice, as many conteraviders
do, the state-of-the-art approach is to replicate contegt @ num-
ber of strategically-placed servers, and direct requesifter-
ent servers in the hope of balancing load and decreasingnssp
time. Typical examples in the wide-area setting include e,
and content distribution networks (CDNSs) like Akamai. The C
solves aserver selection(SS) problem, i.e., determining which
servers should deliver content to each end user. The goaBof S
is to meet user demand, minimize network latency to reduee us
waiting time, and balance server load to increase throughpu

To offer both network connectivity and content delivery,|SR
is faced with coupled TE and SS problems, as shown in Figure 1.
TE and SS interact because TE affects the routes that carGRis
traffic, and SS affects the offered load seen by the netwodtu-A
ally, the degrees of freedom are also the “mirror-image” adhe
other: the ISP controls route selection, which is the cangpa-
rameter in the SS problem, while the CP controls server sefec
which is the constant parameter in the TE problem.

In this paper, we study several approaches an ISP couldiake i
managing traffic engineering and server selection, rangiog
running the two systems independently to designing a joist s
tem. We refer to CP as the part of the system that managegs serve
selection, whether it is performed directly by the ISP or sepa-
rate company that cooperates with the ISP. This study alieie

begs the question of how much can be gained from such coopera-explore a migration path from the status-quo to a synecgjsint

tion and what kind of cooperation is the most beneficial.
As a traditional service provider, an ISP’s primary roleagie-

design that benefits both parties. We consider three sosnaiih
increasing amount of cooperation between traffic engingeaind



Optimality Info. Exchange Fairness | Architectural Change
Model | Not Pareto-optimal Measurement only No Current practice
Model lI Not Pareto-optimal in general Topology and Routing No Minor CP changes
Social-optimal in special case | Background traffic
More info. may hurt the CP
Model lll | Pareto-optimal Topology and Routing  Yes Clean-slate design
5-30% performance improvementLink prices CP given more control
Incrementally deployable

Table 1: Summary of results and engineering implications.

server selection, as summarized here:

e Model I: no cooperation (current practice).
e Model II: improved visibility (sharing information).

e Model lll: ajoint design (sharing control).

Model I. Content services could be provided by a CDN that runs
independently on the ISP network. However, the CP has limite
visibility into the underlying network topology and rougnand
therefore has limited ability to predict the effect of itsroactions.
We model a scenario where the CP measures the end-to-endylate
of the network and greedily assign each user to the servénsha
lowest latency to the user, a strategy some CPs employ tefjay [
We call thisgreedy server selectiorin addition, TE assumes the
offered traffic is unaffected by its routing decisions, desphat
routing changes can affect path latencies and therefor€Rig
traffic. When the TE problem and the SS problem are solved sepa
rately, their interaction can be modeled as a game wheresttty
in a Nash equilibrium, which may not BRareto optimal

Not surprisingly, performing TE and SS independently is of-
ten sub-optimal because (i) server selection is based omiplete
(and perhaps inaccurate) information about network canditand
(i) the two systems, acting alone, may miss opportuniti@saf
good joint selection of servers and routes. Models Il anddjp-
ture these two issues, allowing us to understand which fasto
more important in practice.

Model Il. Greater visibility into network conditions should enable
the CP to make better decisions. There are, in general, ypest
of information that could be shared: (i) physical topologforma-
tion, e.g., PAPWG [5], (ii) connectivity information, e.gouting
in the ISP network, (iii) dynamic properties of links, e.@QSPF
link weights, background traffic, and congestion level, mpdy-
namic properties of nodes, e.g., bandwidth and processmgip
that can be shared by the node. Our work focuses on a continati
of these types of information, i.e., (i)-(iii), so that thé®@s able
to solve the SS problem more efficiently, i.e., to find tpimal
server selection

Sharing information requires minimal extensions to eRgs0-
lutions for TE and SS, making it amenable to incremental @epl
ment. In addition, we prove that, when the two systems hase th
same performance objective, TE and SS separately optignizeir
own objectives converges to a global optimal solution. Hmwe
when the two systems have different performance objec{wes,
SS minimizes end-to-end latency and TE minimizes conggstio
the equilibrium isnot optimal in general. In addition, we find
that model 1l sometimes performsorse than model |—that is,
extra visibility into network conditions sometimes leadsatless

efficient outcome—and the performance degradation can be un-

bounded. The facts that both Model | and Model Il in general do

not achieve optimality, and that extra information (Modgkbme-
times hurts the performance, motivate us to consider a «kda
joint design for selecting servers and routes.

Model llI. A joint design should achievéareto optimalityfor TE
and SS. In particular, our design is based on Nash Bargain-
ing Solution[6] that arises from bargaining interactions between
players. Thus the solution not only guaranteéfiency but also
fairnessbetween synergistic or even conflicting objectives of two
players, i.e., itis a point on the Pareto optimal curve wieth TE
and SS have better performance compared to the Nash emuniibr
We also propose a decomposed solution so that the jointrdeary
be implemented in a distributed fashion with a limited antonin
information exchange.

The analytical and numerical evaluation of these three sode
allows us to gain insights for designing a cooperative TE &6d
system, summarized in Table 1. The conventional approach of
Model | requires minimum information passing, but suffeiaf
sub-optimality and unfairness. Model Il requires only nriobanges
to the CP’s server selection algorithm, but the result ik stit
Pareto optimal and the performance improvement is not gteed
(in some cases the performance edegrades Model Ill ensures
optimality and fairness through a distributed protocajuiees only
moderate increase in information exchange, and is increathgn
deployable. Our results show that letting CP have some alontr
over network routing is the key to TE and SS cooperation.

We perform numerical simulations on realistic ISP topodsgi
which allow us to observe the efficiency loss and paradoxes @v
wide range of traffic conditions. The joint design shows Higant
improvement for both the ISP and the CP. The simulation tesul
further reveal the impact of topologies on the efficiencied fair-
ness of the three system models.

The rest of the paper is organized as follows. Section 2 ptese
a standard model for traffic engineering. Section 3 presents
two models for server selection, when given minimal infotiora
(i.e., Model I) and perfect information (i.e., Model Il) altdhe un-
derlying network. We also describe the algorithms that enpnt
greedy server selection and optimal server selection. idedt
studies the interaction between TE and SS as a game and shows
that they reach a Nash equilibrium. We also find a case where a
social optimality is possible. Section 5 analyzes the efficy loss
of Model | and Model Il in general. We show that the Nash equi-
libria achieved in both models are not Pareto optimal. Itipalar,
we illustrate the counterintuitive observation that mafeimation
is not always helpful. Section 6 discusses how to jointhirofte
TE and SS by implementing a Nash bargaining solution. We pro-
pose a distributed algorithm that allows practical andenwental
implementation. We perform large-scale numerical sinioret on
realistic ISP topologies in Section 7. Finally, Section &gants
related work, and Section 9 concludes the paper and dissosse
future work.



G Network graphG = (V,E)

V: Set of nodes

S: ScV, the set of CP servers
T: T cV, the set of users

E

: Setoflinks
G : Capacity of linkl
rl” . Proportion of flowf :i — j traversing linkl, also noted aqf

R:  The routing matrixR: {r,’ }

Xst . Traffic rate from servesto usert
Xep: CP’s decision variabl®cp = {Xst}scsteT
M; : Usert's demand rate for content

fi: Total traffic on linkl

fP: CP's traffic on linkl
f,bg . Background traffic on link
Dp: Delay of pathp

D,: Delay of linkl
. Cost function used in ISP traffic engineering
-): Cost function used in CP server selection

Table 2: Summary of notations.

2. TRAFFIC ENGINEERING BACKGROUND

In this section, we describe the network model and formulae
optimization problem that TE solves. (Note that our TE mddel
lows a well-established formulation, and hence is not npwale
also start introducing the notation used in this paper, Whisum-
marized in Table 2.

Consider a network represented by grapk= (V,E), whereV
denotes the set of nodes aRddenotes the set of directed phys-
ical links. A node can be a router, a host, or a server. Xjet
denote the rate of floi, j), from nodei to nodej, wherei, j € V.
Flows are carried on end-to-end paths consisting of sorke. licet
W = {wp } be the routing matrix, i.ew, = 1if link I is on pathp.
We do not limit the number of paths ¥ can includeall possible
paths. Alternatively, one can find out which paths actuadiyrye
traffic, and mak&V smaller by pruning the unused paths. The ca-
pacity of alinkl e EisC; > 0.

Given the traffic demand, traffic engineering changes rgttin
minimize network congestion. In practice, network operstmn-
trol routing either by changing OSPF link weights [7] or byads
lishing MPLS label-switched paths [8]. In this paper we use t
multi-commodity flow solution to route traffic, because aibp-
timal, i.e., it gives the routing with minimum congestiomdab)
it can be realized by routing protocols that use MPLS tumggli
or as recently shown, in a distributed fashion by a new litakes

routing protocol [9]. Formally, Ietl” € [0,1] denote the proportion
of traffic of flow (i, j) that traverses link. To realize the multi-
commodity flow solution, the network splits each flow over anu
ber of paths. LeR= {r } be the routing matrix.

Let f; denote the total traffic traversing linkand we have; =
> (i.j) % ~r|”. Now traffic engineering can be formulated as the fol-
lowing optimization problem:

TE(R|X):

minimize TE= Zg|(f|) 1

subject to f| = z Xij ~r|ij <qg, v
(L3)

r - =l V(i §), We V\{i}
I:Ie%l(v) I:Iegut(v)

variables 0<r/! <1, v(i, ),V

whereg; (-) represents a link’s congestion cost as a function of the
load, I\—j is an indicator function which equals 1vf= j and 0
otherwise, Irfv) denotes the set of incoming links to nodeand
Out(v) denotes the set of outgoing links from node

In this model, TE does not differentiate between the CPfidcra
and background traffic. In fact, TE assumes a constant traffic
trix X, i.e., the offered load between each pair of nodes, which can
either be a point-to-point background traffic flow, or a flowrfra
CP’s server to a user. As we will see later, this common assamp
is undermined when the CP performs dynamic server selection

We only consider the case where cost functipfi) is aconvex
continuous andnon-decreasindunction of f;. By using such an
objective, TE penalizes high link utilization and balantmesd in-
side the network. We will discuss later the analytical forfgd-)
which the ISP may use in practice. Singég-) is convex and the
constraint set is affine and compact, the TE problem (1) iswepo
optimization problem. This implies that a local optimum iscaa
global optimum, and can be computed efficiently throughdsiesh
algorithms such as the primal-dual interior point algarith

3. SERVER SELECTION MODELS

While traffic engineering usually assumes that demand istpoi
to-point and constant, both assumptions are untrue whee som
all of the traffic is generated by the CP. A CP usually has many
servers to serve the same content, and which server servels wh
user depends on the network conditions (e.g., congestlarthis
section, we present two novel CP models which correspondtieM
I and Il introduced in Section 1. The first one models the curre
CP operation, where the CP relies on end-to-gr@hsurementf
the network condition in order to make server selectionsiens;
the second one models the situation when the CP obtains lkenoug
information from the ISP so that it caralculatethe effect of its
server selection actions.

3.1 Server Selection Problem

The CP solves the server selection problem to optimize the pe
ceived performance of all its users. We first introduce thtimn
used in modeling server selection. In the ISP’s networkSletV
denote the set of CP’s servers, which are strategicallyeplact dif-
ferent locations in the network. For simplicity we assumet gl
content is duplicated at all servers, and our results calydmsex-
tended to the general case. Jetc V denote the set of users who
request content from the servers. A user T has a demand for
content at ratd/l;, which we assume to be constant during the time
a CP optimizes its server section. We allow a user to simetitan
ously download content from multiple servers, because had@
be viewed as an edge router in the ISP’s network that aggretfae
traffic of many endhosts, which may be served by differentegasr
We further assume that the demand of a user node can be akpitra
divided among the servers. Thus our analysis should giveoparu
bound on the CP’s performance.

To differentiate the CP’s traffic from background traffic, de-
note xst as the traffic rate from servexto usert. To satisfy the
traffic demand, we need

ZSXSt - Mt .
se

We denoteXep = {Xst}sesteT as the CP’s decision variable. We
assume that server capacity is not a bottleneck, so the feaher



S, I.e. ST Xst, IS UNconstrained.

One of the major goals in server selection is to optimize trez-0
all performance of all CP’s customers. We use an additivie lin
cost for the CP that is inspired by modeling network lateney,
each link has a cost, and the end-to-end path cost is the sthme of

This is sometimes called thWardrop equilibriun{10]. The greedy
server selection problem is very similar to selfish routibdy, [12],
where each flow tries to minimize its average latency ovettimul
ple paths without coordinating with other flows. It is knowrat
the equilibrium point in selfish routing can be viewed as thiei-s

link costs along the way. As an example, suppose the corgent i tion to a global convex optimization problem [11], so gresdwer

delay-sensitive (e.g., IPTV), and the CP would like to miiziethe

averageend-to-end delay of all its users, which is the same as min-

imizing thetotal end-to-end delay. LdDp denote the end-to-end
latency of a pattp, andD, (f|) denote the latency of link, mod-
eled as a convex, non-decreasing, and continuous functitmeo
amount of flowf; on the link. By definition,Dp = ¥, Di ().
Then the overall latency experienced by all CP’s users is

ss=y z xp-Dp
(st) peP(st)

=3 2 %y
(st) peP(st) lep

:ZDM)'(Z > %

st) peP(st):lep

:fop'Dl(fl)

Di(fi)
(2

whereP(s;t) is the set of paths serving flogs,t) and xf} is the
amount of flow(s,t) traversing patlp € P(s;t).

Leth(-) represent the cost of lirlk which we assume is convex,
non-decreasing, and continuous. In this exantple,"?, f;) = P
D|,gf| ). Thus, the link coslty (+) is a function of the CP’s total traffic
f,c on the link, as well as the link’s total traffif, which also
includes background traffic.

Expression (2) provides a simple way to calculate the tatat u
experienced end-to-end delay—simply sum over allitiles, but it
requires the knowledge of the load on each link, which is ibtess
only in Model Il. Without such knowledge (Model 1), the CP has
rely on the end-to-end delay measurements.

We will use the overall user latency as the cost function fBr C
throughout this paper, and assume that the link delay fomEj(-)

is convex and increasing. Our model can be readily extended t

other additive costs by using a different convex, incregdink

cost function. We can also use other cost functions suches th

maximum user latency, and most of our results would hold.

3.2 Greedy Server Selection: Model |

In today’s Internet architecture, a CP does not have acoess t
ISP’s network information, such as routing, topology, liskday,
and background traffic. Therefore a CP relies on measureator i
ferred information to optimize its performance. To minimiits
users’ latency, for instance, a CP can assign each userverser
with the lowest (measured) end-to-end latency to the useprdc-
tice, content distribution networks like Akamai’s DNS-bdserver
selection algorithm use this approach [4]. We cafjritedy server
selectionand use it as our first model.

To be precise, we assume that the CP monitors the latency from

all servers to all users, and makes server selection dasigiamin-
imize all users’ total delay. Since the demand of a user caarbe
bitrarily divided, we can think of the CP as greedily assignéach
infinitesimal demand to the best server. The placement sttaf-

fic may change the path latency, which the CP monitors. THus, a

the equilibrium, the servers which send (nonzero) traffia teser
should have the same end-to-end latency to the user, becthise
erwise the server with low latency will be assigned more daina
causing its latency to increase, and the servers not semdifig
to a user should have higher latency than those that seruesére

selection has a unique equilibrium point.

Although the equilibrium point is well-defined and is the so-
lution to a convex optimization problem, in general it is dao
compute the solution analytically. Thus we leverage tha idk
Q-learning [13] to implement a distributed iterative aigfom to
find the equilibrium of greedy server selection. The aldwnitis
guaranteed to converge even under dynamic network envantsm
with cross traffic and link failures, and hence can be usedao-p
tice by the CPs. The detailed description and implementatie
in Appendix A.

As we will show, the greedy server selection is not optimagé W
use it as a baseline for how well a CP can do with only the end-to
end latency measurements.

3.3 Optimal Server Selection: Model Il

In this section, we describe how a CP can optimize servecsele
tion givencompletevisibility into the underlying network. That is,
this is the best the CP can do withatitangingor directly influ-
encing the routing of the network. We also present an optéitiun
formulation that allows us to analytically study its perfance.

Suppose that content providers are able to either obtadnrirs-
tion on network conditions directly from the ISP, or infebiy its
measurement infrastructure and technology. In the best, ths
CP is able to obtain the complete information about the netwo
i.e., routing decision and link latency. This situation Faracter-
ized by problem (3), which is the best performance the CP can
achieve without directly influencing the ISP. To optimize thver-
all user experience, the CP solves the following cost mirétidn
problem:

S Xcpl|R):
minimize ~ SS= Zh' (P ) )
subjectto P = > Xst- i, vl
(st)
fi=fP+f9<q, v
Xst = M, Wt

X

variables X5t >0, V(s;t)

where we denoteilbg = Y(ij)4(sn % T as the non-CP traffic on
link I, which is a parameter to the optimization problem. If thetcos
functionh; (-) is increasing and convex on the variaqué’, one can
verify that (3) is a convex optimization problem, and henas h
unique global optimal value.

In practice, the optimal server selection (3) is amenabémntef-
ficient implementation. The problem can either be solvedraéy,
e.g., at the CP’s central coordinator, or via a distributgdrithm
similar to that used for Model |. We solve (3) centrally in @im-
ulations, since it is easy to solve analytically, and thaanemore
interested in the performance improvement brought by cetapl
information than the algorithm that implements it.

4. ANALYZING TE-SS INTERACTION

In this section, we explore the interaction between the ISP a
the CP when they operate independently without coordinatidnich



applies to our Model | and Model 1l. We study their “interplay a
game-theoretic framework. The game formulation allowsouet
alyze the stability condition, i.e., we show that alternBifEeand SS
optimizations will reach an equilibrium point. In additione find
that when the ISP and the CP optimize the same system olgectiv
their interaction achievglobal optimalityunder Model 1.

4.1 TE-SS Game and Nash Equilibrium

We start with the formulation of a two-player non-coopesati
Nash game that characterizes the TE-SS interaction.

Definition 1. TheTE-SS gamesonsists of a tupl¢N,A/U]. The
player set N= {isp,cp}. The action set &, = {R} and Ap =
{Xcp}, where the feasible set of R angdpre defined by the con-
straints in (1) and (3) respectively. The utility functicare Usp =
—TE and Yp=—SS.

Figure 1 shows the interaction between SS and TE. In both Mode

I and Model Il, the ISP plays the best response strategytlielSP
always optimizes (3) given the CP’s strategy. Similarly, the CP
plays the best response strategy in Model Il when given full i
formation. However, the CP’s strategy in Model | is not thetbe
response, since it does not optimize (3) due to the lack oforét
visibility. Indeed, the utility the CP implicitly optimizewhen do-

ing greedy server selection is [11]

Uep = —lgE/(:' Dy (U)du

This later helps us understand the stability conditionfefgame.

Consider a particular game procedure in which the ISP and the

CP take turns to optimize their own objectives by varyingoiis
decision variable, treating the that of the other playerasstant.
Specifically, in thek-th iteration, we have

Rk+1) — arnginTE(XC('f)))
4
X = argmin S§RKD)) @
Xep

Note that two optimization problems may be solved on différe
timescales. The ISP runs traffic engineering at the timescél
hours. Depending on the CP’s design choices, server smieisti
optimized a few times a day, or at a smaller timescale likesés
or minutes of a typical content transfer duration. We asstimae
each player has fully solved its optimization problem beftre
other one starts.

Next we prove the existence of Nash equilibrium of the TE-SS
game. We establish the stability condition when two players
general cost functiong; (-) andh;(-) that are continuous and con-
vex. While TE’s formulation is the same in Model | and Model Il
we consider the two SS models, i.e., greedy server seleatidn
optimal server selection, respectively.

Theorem 1. The strategic game TE-SS has a Nash equilibrium for
both Model | and Model Il.

Proof Sketchit suffices to show that (i) each player’s strategy space
is a nonempty compact convex subset, and (ii) each playgFs u
ity function is continuous and guasi-concave on its strasgIace,
which follows the standard proof in [14]. The ISP’s stratsgace

is defined by the constraint set of (1), which are affine etjeali
and inequalities, hence a convex compact set. Sipceis con-
tinuous and convex, we can easily verify that the objectivd pis
quasi-convex omR = {rl” }. CP’s strategy space is defined by the
constraint set of (3), which is also convex and compact. |&ifgj

if hy(f°P) is continuous and convex, the objective of (3) is quasi-
convex onXcp. In particular, consider the special case in which CP
minimizes latency (2). When CP is doing greedy server select
h(f)= fof' D (u)du. When CP is doing optimal server selection,
h (f°P) = £°PDy(fi). In both cases, iD)(-) is continuous, non-
decreasing, and convek(-) is also continuous and convex. One
can again verify the quasi-convexity of the objective in B¢tails
of the proof are omitted here due to the space limit. [ |
The existence of a Nash equilibrium does not guaranteehbat t
trajectory path (4) leads to one. In Section 7 we demonsthate
convergence of iterative player optimization in simulation gen-
eral, the Nash equilibrium may not be unique, in terms of both
decision variables and objective values. Next, we show aiape
case where the Nash equilibrium is unique and can be attdined
alternate player moves (4).

4.2 Global Optimality under Same Objective

In the following, we study a special case of the TE-SS game, in
which the ISP and the CP optimize the same objective function
i.e.,g(-) =h(-)=®(-), and there is no background traffic. One
example is when the network carries only the CP traffic ant bot
the ISP and the CP aim to minimize the average traffic latérey,
®,(f;) = f; -Dy(f}). An interesting question that naturally arises is
whether the two players’ alternate optimization on eaclheirtde-
cision variables leads to a global optimum, i.e., when tbenfmon)
objective is optimized over all decision variables.

Consider a special case of the TE-SS game, where two players’
objectives coincide:

TE:SS:ZGJ.(ﬁ) (5)
Namely, both the ISP and the CP want to minimize the average
latency of the traffic carried on the network. The CP is gives t
visibility from the ISP, so it can fully solve the SS probleMddel
).

Then we define the notion global optimality which is the op-
timal point to the following optimization problem.

TE-SS-specialk):

minimize Zdw(ﬁ) (6)
subjectto fi = 5 $t<qp, vl
<Sﬁt)

ot — ) =M lvet, WS VeT
525 (I:Ie%l(v) I:Iegut(v) t t

variables x> 0, V(st),VI

wherex®t denotes the traffic rate of flogg,t) on link|. The variable

x,St allows a global coordinator to route a user’s demand from any
server in any way it wants, thus problem (6) establishes adbon
how well one can do to minimize the CP traffic’s average latenc
A detailed discussion of such choice is left to the generakda
Section 5.2.

We compare the Nash equilibrium of the TE-SS game with ob-
jective functions (5) to the optimal solution of (6). In pattiar, we
study whether alternate player optimizations as in (4) teathis
optimal point. As good news, we show that the Nash equilibriu
of TE-SS game is an optimal point, so the TE-SS interactia@sdo
not result in any efficiency loss when their objectives aentd
cal. Actually, the equilibrium point can be achieved by aitge
optimization steps of (4).



Lemma 1. A special case TE-SS game in which two players’ ob-
jectives are in the form of (5) has a Nash equilibrium, whendbst
function®, (f|) is continuous, non-decreasing, and convex.

The proof is similar to that of Theorem 1 and is omitted herell
Consider the following optimization problem:

minimize Z¢|(f|) (7)
subjectto fi =} Xst- It <Gy, vl
<S,t)

Z rISt — g r|5t = |v:t: V(S-t) Ve V\{S}
I1eln(v) 1:1eOutv)

ZSXst =M, Wt
se

variables 0<rf' <1, x5t >0

The alternate player moves in the special case TE-SS gante is a
tually solving (7) by applying the non-linear Gauss-Seidigjo-
rithm [15], which consists of iterative optimization in aurad robin
order with respect to each variable while keeping the restlfix

Note that (7) is a non-convex problem, since it involves thoalp
uct of two variablesrlSt andXxst. However, it is equivalent to the
convex problem (6).

Lemma 2. The non-convex problem (7) that TE-SS game solves is

equivalent to (6).

Proof: We show that there is a one-to-one mapping between the

feasible solutions of (6) and (7). Consider a feasible smufx'}

in (6). Letxst = 3y cini X" = Zi1e0uty X 1 =X/ Xt If st #

0. To avoid the case ot = 0, suppose there is an infinitesimally

small background traffic for everg, t) pair, so the one-to-one map-

ping still holds. It is easy to show that this is a feasiblei§oh of

(7). On the other hand, for each feasible solut{eg, i} of (7),

let xf‘ = Xst - r|5t, which is also a feasible solution of (6). Since two

problems share the same objective, they are equivalent. W
After proving the equivalence, it remains to show that ttieral

nate player moves (4) actually converges to the optimaltpaih

two equivalent problems.

Lemma 3. The iterative TE and SS optimizations (4) converge to
the Nash equilibrium of TE-SS game, which is also the optimal
point of (6).

Proof: The proof proceeds in two steps. We first show that the
Nash equilibrium in the TE-SS game is also an optimal sahutiio
(6), though not specifying how it is achieved. The basic ide@
check the KKT [16] conditions of TE and SS at Nash equilibrium
and then compare to the KKT condition of (6). Then we show
that an algorithm like (4) converges to the Nash equilibriurhe
complete proof is presented in Appendix B. [ |

Theorem 2. The Nash equilibrium of the special case TE-SS game
(5) is also global optimal, which can be achieved by two pigye
alternate best response play.

The proof follows Lemmas 1, 2, and 3. [ |

The study of this special case allows us to estimate the lower
bound on efficiency loss due to TE-SS interaction, which can b
zero. Though such a special case is rare in general, it effesome
insights into when such efficiency loss may be low: (i) the 5
the CP should have synergistic objectives, (ii) the CPHitres at
high percentage, i.e., there is no background traffic. As Wiesae
later, the lack of any one of the two conditions is possiblsttifer
great efficiency loss.

Figure 2: An Example of the Paradox of Extra Information

[ link J1,:BD[ I,:BE [ I3:CD | I4:CE |
G 1+¢ 1+¢ 1+¢ 1+¢
D) | T | ot | oor | T
91 (X) 91() =92() =3(-) = 9a()

Table 3: Link capacities, ISP’s and CP’s link cost functionsin
the example of Paradox of Extra Information.

5. EFFICIENCY LOSS

Though in the last section we show the stability of general TE
SS interaction, and global optimality in a special casehsnter-
action may result in serious efficiency loss in the generaécdn
this section, we conduct two case studies to show the optimal
gap. We first present a toy network and show that under certain
conditions the CP performs even worse in Model Il than Model |
despite having more information about underlying netwarkdi-
tions. We next propose the notion of Pareto-optimality asptér-
formance benchmark, and quantitatively demonstrate tffiersng
of efficiency loss in both Model | and Model 1.

5.1 The Paradox of Extra Information

In the previous section, we present a special case when khe IS
and the CP’s interaction leads to a social optimal point. e,
when their objectives are not aligned, the interaction neach a
sub-optimal point. To improve its performance, the CP can ga
more knowledge about the underlying network by introducing
curate network measurement and inference. As proposed deMo
Il, ISPs and CPs can collaborate by passing informationu- Int
itively, the CP is able to achieve better performance, givare
information from the network provider. However, as we wiibsy
in the following example, the argument is not always true.

Consider an ISP network illustrated in Figure 2. We designat
an end user nodd, = {F}, and two CP server§= {B,C}. The
end user has a content demandMyf = 2. We also allow two
background traffic flowsA — D and A — E, each of which has
one unit of traffic demand. Edge directions are noted on the fig
ure, so the ISP’s routing decision space is self-evideet, there
are two possible paths for each traffic flow (clockwise anchter
clockwise). To simplify the analysis and deliver the mostessial
message from this example, suppose that both TE and SS ¢osts o
four thin links are negligible so the four bold links consté the
bottleneckof the network. In Table 3, we list the link capacities,
ISP’s cost functiorg, (), and link latency functio, (-). Suppose
the CP aims to minimize the average latency of its traffic. \dfac
pare the Nash equilibrium of two situations when the CP ogés
its network by greedy server selection and optimal senlecten.

The stability condition for the ISP at Nash equilibriunfg f1) =
o,(f2) = d5(f3) = g (fa). Since ISP’s link cost functions are iden-



tical, this implies the total traffic on each link must be iteal.
This can be viewed as one special case of ISP’s optimization o
minimizing the maximum link utilization, since links havetsame
capacities. On the other hand, the stability condition fier €P at
Nash equilibrium is tha{B,F) and (C,F) have the same latency,
or marginal latency. Based on the observation, we can déesige
Nash equilibrium points.

When the CP is using greedy server selection strategy, let

Xcp Z{XBF =1 XcF= 1}

Model I: R:{ =1-a, 15 =a,1§F=qa,r§F=1-a,

MP=a, MP=1-a,r}8=1-q,r} _a}
One can check that this is indeed a Nash equilibrium solution
wherefy = fo = f3=f4 =1, andDge =Dcp=1—a +a/e.

The CP’s objectives§ =2(1—a +a/e).
When the CP is using optimal server selection strategy, let

Xcp 1{XBF =1 XF= 1}

Model II: R{rlBF a,rSF=1-a,1§F=1-qa,1§F =aqa,
M—1-a,P=a,E=a,rE=1- a}

This is a Nash equilibrium point, whefflg = f, = f3 = f, =1, and
der = decr = a(1+a)+(1—a)(l/e +(1—a)/e?). The CP’s
objectiveS$ = 2(a + (1—a)/e).

It is interesting to see that when0e < 1,0< a < 1/2,S$ <
SS, which means that more information may hurt CP’s perfor-
mance! In the worst case,

S

lim ——=
a—0,e—0 SS

i.e., the efficiency loss can be unbounded.

This is not surprising since the Nash equilibrium is gengrabt
unique, both in terms of equilibrium solutions and equilibn ob-
jectives. When ISP and CP’s objectives are mis-alignedsi&i-
sion may route CP’s traffic on bad paths from the CP’s persmect
though the ISP’s objective is optimized given CP’s traffit ptrac-
tice, such scenario is likely to happen, since the ISP cdresta
link congestion (link utilization), while the CP cares abtatency,
which not only correlates to link congestion, but also pgaieon
delay. Thus ISP and CP’s partial collaboration by only pasan-
formation is not sufficient for achieving global optimality

5.2 Pareto Optimality and lllustration of Sub-
Optimality

As we observe in the example in Figure 2, one of the major
causes of sub-optimality is that TE and SS’s objectives ar@ec-
essarily aligned. To measure efficiency in a system with ipialt
objectives, a common approach is to explore the operatigigme
of the system and find tHeareto curve Points on the Pareto curve
are those of which we cannot improve one objective furtheh-wi
out hurting the other. In particular, the Pareto curve otterizes
the tradeoffs of conflicting (or at least not aligning) goafsdif-
ferent parties. One way to trace the tradeoff curve is tonoigt a
weighted sum of the objectives:

minimize TE+y-SS (8)

Measure of efficiency loss

——Pareto Curve
Model |
@ Model Il

5.5

operating region

SS cost

4.5

9 9.2 9.4

TE cost

9.6 9.8

Figure 3: lllustration of sub-optimality.

variablesRe Z, Xcp € Zep

wherey > 0 is a scalar representing the relative weight of the two
objectives.Z and Z¢,, are the feasible regions defined by the con-
straints in (1) and (3):

g?xe%rcp:{r:j?)(sﬂoﬁr:j <1, %t >0,

I’;] |'| ==, WeV\{i},
I:Ie%l() I:Iegut(v
fi=3 xj- <o, Y X = Mt}

(1.1) ZS

The formulation of problem (8) is not easy to solve. In fabg t
objective of (8) is no longer convex on the master varidh?é Xst}y
and the feasible region defined by constraints of (8) is novex.
One way to overcome this problem is to consider a relaxed deci
sion space. Instead of restricting each player to its owmating
domain, i.e., ISP controls routing and CP controls serviecsien,
we introduce a joint routing and content delivery problenet )kf‘
denote theate of traffic carried on linK that belongs to flows;t),
and denote the CP’s decision variableXag = {)ﬁSt}SGSteT- Sim-
ilar to the argument we made earlier, this can be viewed asa ge
eralization of explicit multipath routing. Consider thdlfwing
optimization problem:

TE-SS-weighted¥cp, Rog)

minimize TE+y-SS 9)

subject to P = Z XtV
fi=" p+ Y xin <a, v
(i,])¢SxT

g =l V(i,]) ¢ Sx T, e V\{i}
11eOuty

IJ
|
I:Ie%l( V)

z - g U =M lyet, WS VEET
seS \l:le 1:1eOut(v

variables x> 0,0 < r|' <1

Denote the feasible space of the joint variable &is= {Xcp, Rog}-
If we vary y and plot the achieved TE objectives versus SS objec-
tives, we obtain the Pareto curve.

To illustrate the Pareto curve and efficiency loss in Modeid a
Model II, we plot in Figure 3 the Pareto curve and the Nashldxui



ria in the two-dimensional space (TE,SS) for an example oetw
similar to Figure 2. The simulation shows that when the Cerlev
ages the complete information to optimize (3), it is abledbieve
lower delay, but the TE cost suffers. Though it is not cleaicivh
operating point is better, both equilibria are away from Baeeto
curve, which shows that there is room for performance imgrov
ment in both dimensions.

6. AJOINT DESIGN

Motivated by the need for a joint TE and SS design, we propose
the Nash bargaining solution to reduce the efficiency loseied
above. We also present an algorithm based on optimizaticonae
position theory to implement the solution distributively.

6.1 Motivation

An ISP providing content distribution service in its ownwetk
has control over both routing and server selection. So tReckt
take into consideration the characteristics of both tyfesadfic
(background and CP) and jointly optimize a carefully chosbn
jective. The jointly optimized system should meet at leagi t
goals: (i) optimality, i.e., it should achieve Pareto omlity so
the network resources are efficiently utilized, and (iiyrass, i.e.,
the tradeoff between two non-synergistic objectives sthbel bal-
anced so both parties benefit from the cooperation.

One natural design is to optimize the weighted sum of thédraf
engineering goal and server selection goal as shown in (8yv-H
ever, solving (9) for eacly and adaptively tuning in atrial-and-
error fashion is impractical and inefficient. First, itis hard teigh
the tradeoff between the two objectives, especially whey tre
measured in different units. Second, one needs to preparyfo
ery set of background and CP traffic demand an appropriaghtvei
parametery, which is not efficient. In addition, the offline com-
putation does not adapt to dynamic changes of network dondit
such as cross traffic or link failures. Last, from a mathecadti
viewpoint, tuningy to explore a broad region of system operating
points is computationally expensive. Usually, exploringrge set
of y only produces a small operating region.

Apart from the system perspective, the economic considerat
requires that the solution should f@r. Namely, such a joint de-
sign paradigm should benefit both TE and SS. In addition, such

6.2 Nash Bargaining Solution

Consider a Nash bargaining solution which solves the fatigw
optimization problem:

maximize (TEp—TE)(S$—S9
variables {%*',r'} € #

where(T Ey, S9) is a constant called thdisagreement pointvhich
represents the baseline to cooperate. Nam@l,S9) is the
status-quo we observe before any cooperation. For instamee
can view the Nash equilibrium in Model | as a disagreementtpoi
since it is the operating point the system would reach witlaoy
further optimization. By optimizing the product of perfoance
improvements of TE and SS, the Nash bargaining solutionaguar
tees the joint system is optimal and fair, due to the propeif a
Nash bargaining solution. A Nash bargaining solution isjualy
defined by the following four axioms:

(10

e Pareto optimality A Pareto optimal solution ensures effi-
ciency.

e Symmetry The two players should get equal share of the
gains through cooperation, if the two players’ problems are
symmetric, i.e., they have the same cost functions, and have
the same objective value at the disagreement point. This is
not true for the TE-SS game though.

Expected utility axiomThe Nash bargaining solution is in-
variant under affine transformations. Intuitively, thisar
suggests that the Nash bargaining solution is insensibive t
different units used in the objective and can be efficiently
computed by affine projection.

Independence of irrelevant alternativé&his means that adding
in extra constraints in the feasible operating region dags n
change the solution, as long as the solution itself is féasib

Note that Nash bargaining solution is the only solution Hadisfies
the above four axioms [6, 17].
The seminal idea of Nash bargaining solution comes from the
modeling of bargaining arbitration between two playersarnwhich
the solution is derived. The analysis is omitted here duack bf

model also applies to a more general case when the ISP and thespace and we demonstrate the benefits through numerical- eval

CP are different entities. They cooperate only when the exop
tion leads to a win-win situation, and the “division” of theri®fits
should be fair, i.e., one who makes greater contributiomeocol-
laboration should be able to receive more reward, even whn t
goals are conflicting.

For the concern of a practical deployment, the new systemgdho
not require a significant change to the existing infrastmect Though
the joint system is designed from a clean state, it shoutivadin
incremental deployment. In particular, we prefer that thect
tionalities of routing and server selection be separatath mi-
nor changes to each component. The modularized designsallow
us to manage each optimization independently, with onlyda ju
cious amount of information exchange. Designing for sdbfgb
and evolvability is beneficial to both the ISP and the CP, diogva
their cooperation either as a single entity or as differemso

Based on all the above considerations, we borrow the concept
of Nash bargaining solutiof6, 17] from cooperative game theory.
As we show next, it ensures that the joint system achievesffan
cientandfair operating point. The solution structure also allows a
distributed implementation that is amenable to buildingacpcal
system.

ation. In practice, one can choose the disagreement poititeas
baseline performance requirement. In this work, we use tEhN
equilibrium of Model | as the disagreement point, since iteiad-

ily accessible by both the ISP and the CP based on the enlpirica
observation in current practice.

6.3 Distributed Algorithm

A good solution concept not only ensures efficiency and ésisn
but should also have a distributed implementation. Thisnigar-
tant because separate functionalities allows for a moideldde-
sign, in which legacy systems like CDNs can be leveraged with
minor changes. Even if the ISP and the CP are two independent
economic entities, the distributed structure offers aroojymity to
cooperate with judicious information exchange.

In the following, we utilize the theory of optimization denpo-
sition [18] to decompose problem (10) into two subprobleiftse
ISP solves a routing subproblem and the CP solves a senesr sel
tion subproblem, with minimal information exchange on $ink

The objective of (10) can be converted to

maximize lodTEy—TE)+log(S$—S9



since the log) function is monotonic and the feasible solution

space is unchanged. We introduce two auxiliary variaf?féand

f,bg. The above problem can be rewritten as

max. logTEp— Zg| (P94 1)) +log(S$ — Z hy (1P + £°9))

1y

xi,--rl”,VI

st 1P =3 5 9=
&) (1.3)75<T

P = 1P, ﬁ = P9 1P+ <G, v
Z fil g ! =luj, V(i,]) ¢ Sx T, e V\{i}
L1eIn(v) 1:1eOut(v)

- KU =Mlvot, WES VT
sgs (I:Ie n(v) I:Iegut(v)

var. x>0, 0<r) <1, V(i,j) ¢ SxT, fP, £
The partial Lagrangian of (11) is

L(Xft,fijyﬁ, 9N, 1, v)
=log(TEy— Zg| (ﬁbﬂﬁ)) + Z M(ﬁbg—ﬁ)
+|09(35a—Zhl(fprr@))JrZVl(ﬁcp_W)
XCh P9—1°P)

where) is thelink price, andy, v; are theconsistency price<Ob-

serve thatf"” and f,bg can be separated in the Lagrangian function.
We take a dual decomposition approach, and (11) is decomdpose

into two subproblems:
SS-NBS, £29):
max. logS$ -y h (fEP+ £09)) + U FEP— 1y P9 — A £CP)

(12)
st 7P = > NS
<S,t)

- KU =M lvot, WES VT
sgs (I:Ie n(v) I:Iegut(v)

var. x>0, ﬁ
and
TE-NBS(r,), {P):
max. logTE -3 g (£P9+£57)) + 3 (u £29— vy £EP — A £°9)
(13)
s.t. flbg: g Xij ~r|ij7 vl
(i,))FBxT

rl — = lj, V(i,]) ¢ Sx T, e V\{i}
I:Ie%(v) I:Iegut(v)

var. 0<r] <1¥(i,j) ¢ SxT, P

The optimal solutions of (12) and (13) for a given set of mice
Ui, vy, and A, define the dual function Dugl,vi,A). The dual
problem is given as:

minimize Dual, v, A) (14)
variable A} >0, , v

We can solve the dual problem with the following price update
+
At+D) = [NO-BG 9P v (15

mt+1) = -4 (ﬁbg—ﬁ)v vl (16)
Vit+1) = v — B (fP—1P), vl ()

wheref’s are diminishing step sizes or small constant step sizes

often used in practice [19].
In this new architecture, the ISP solves the modified versfon

TE, i.e., TE-NBS, and the CP solves the modified version of SS,

i.e., SS-NBS. On information sharing, the CP learns the ostw
topology from the ISP. They do not directly exchange infatiora

with each other. Instead, they repdft” and f,bg variables to each
link, which passes the computed price information back &nth
This way, only one new component is required, e.g., the pree
dating function on each link, which can be potentially impénted

in each router. Table 4 presents the algorithm that implesnte

Nash bargaining solution distributively.

Distributed Algorithm for NBS

(1) Linkinitialization: SetA| to be some nonnegative value,
and sety; andy, to arbitrary real value. -

(2) The ISP solves (13) and makes routing decis|bior
background traffic.
The ISP passeﬁbg, P to each linki.

(3) The CP solves (12) and makes decis'(ffrfor CP traffic.

The CP passef”, f,bg to each linkl.
(4) Price update:
Each link updates the link prick according to (15),
and passe3 to the ISP and the CP.
Each link updates the consistency priggsv, according to
(16) and (17), and passegs, v, to the ISP and the CP.
(5) Goto step (2) until the solution converges.

Table 4: Distributed algorithm for solving the Nash bargaining
solution

We decouple the functionalities of a joint system, so theylua
operated and deployed independently. Note that in our sitioul,
we actually solve the Nash bargaining solution centrallgheaut
using the distributed solution, since we are primarily iegted to
see the performance of the solution. A practical protocgilén
mentation and evaluation will be left as our future work.

7. PERFORMANCE EVALUATION

In this section, we use simulation to demonstrate severa-pa
doxical examples that may occur for real network topologieg
traffic models. We also compare the performance of the thiake m
els we proposed. Complementary to the theoretical analrsés
simulation results presented here allow us to gain a bettdemn
standing of the efficiency loss under realistic network emvinents.
These simulation results also provide guides to networkaipes
who need to decide which approach to take, sharing infoonati
sharing control.



7.1 Simulation Setup

We evaluate our models under real ISP topologies obtaimea fr
Rocketfuel [20]. We use the backbone topology of the re$earc
network Abilene [21] and several major tier-1 ISPs in nortiek-
ica. The choice of these topologies also reflects differentgetric
properties of the graph. For instance, Abilene is the sistgeaph
with two bottleneck paths horizontally. The backbones oRAT
and Exodus are a hub-and-spoke structure with some st®olieut
tween nodes pairs. The topology of Level 3 is almost a coraplet
mesh, while Sprint is in between these two kinds.

Obtaining an accurate traffic matrix is also essential toewat-
uation. Unfortunately, we have no means to access reaktpfi
terns on these networks. So we simulate the traffic demand asi
gravity model [22], which reflects the pairwise communigcatpat-

tern on the Internet. The content demand of a CP user is agsume

to be proportional to the node population.

The TE cost functiory(-) and the SS cost functidn(-) are also
carefully chosen. In particular, ISPs usually model cotigasost
with a convex increasing function of the link load. The exsttape
of the functiong (f|) is not important, and we use the same piece-
wise linear cost function as in [7], given below:

fi 0<f/CG <1/3
3fi —2/3G 1/3<1/C <2/3
10f, — 16/3C 2/3< /G <9/10
9 (M) =19 701, —178/3, 9/10< f,/C <1
500f; — 1468/3C 1<1/C <11/10

5000f] —1631§3C; 11/10< f|/C < o

The CP’s cost function can be the performance cost like ¢gten
financial cost charged by ISPs, or something else. We caniside
case where latency is the primary performance metricthe ¢on-
tent traffic is delay sensitive like video conferencing gelstream-
ing. So we let the CP’s cost functidn(-) be of the form given
by Equation 2, i.e.h(fi) = fP-Dy(fi). A link's latency D;(-)
consists of queuing delay and propagation delay. The peijmay
delay is translated from geographical distances betwegesad he
queuing delay is approximated by the M/M/1 model, i.e.,

1
Dqueue= c—f fi<G

fi’
with a linear approximation when the link utilization is 0\@9%.

We relax the link capacity constraints in both TE and SS and pe
nalize traffic overshooting the link capacity with high csfThe
shapes of the TE link cost function and queuing delay funcéie
illustrated in Figure 4.

TE link cost function, C‘:lD Queuing delay function, C‘:lD
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Figure 4: ISP and CP cost functions.
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Figure 5: The TE-SS tussle v.s. CP’s traffic intensity (Abilee
topology)

Note that we intensionally choose the cost functions of T& an
SS to be similar. This allows us to demonstrate the efficiéosy
of Model I and Model Il even when their objectives are not ton-c
flicting, as well as the significant improvement brought byddb
Il

7.2 Evaluation Results

7.2.1 Tussle between background and CP’s traffic

We first demonstrate how CP’s traffic intensity affects theralt
network performance. We fix the total amount of traffic andetun
the ratio between background traffic and CP’s traffic. Weiatal
the performance of different models when CP traffic growsnfro
1% to 100% of the total traffic. Figure 5 illustrates the résoin
Abilene topology.

The general trend of both TE and SS objectives for all threg-mo
els is that the cost first decreases as CP traffic percentagesgr
and later increases as CP’s traffic dominates the networ&.d€h
creasing trend is due to the fact that CP’s traffic is selfrojzed
by selecting servers close to a user, offloading the netwdte
increasing trend is more interesting, suggesting that vehieigher
percentage of total traffic is CP-generated, the negatifextedf
TE-SS interaction is amplified, even when the ISP and the @rResh
similar cost functions. Low link congestion usually means &nd-
to-end latency, and vice versa. However, their differ inftilow-
ing: (i) TE might penalize high utilization before queueidglay
becomes significant in order to leave as much room as pogsible
accommodate changes in traffic, and (ii) CP considers bath-pr
agation delay and queueing delay so it may choose a moderatel
congested short path over a lightly-loaded long path. Tkjéaéns
why the optimization efforts of two players are at odds. Aswilé
show in the following, such delicate differences also resusce-
narios similar to what we found in the paradox of extra infation.

7.2.2 Network congestion v.s. performance improve-
ment

We now study the network conditions under which more perfor-
mance improvement is possible. We evaluate three modelseon t
Abilene topology. Again, we fix the total amount of traffic and
vary the CP’s traffic percentage. But we change link capecaind
evaluate two scenarios: when the network is moderatelyesing
and when the network is highly congested. We show the perfor-
mance improvement of Model Il and Model 11l over Model 1 (in
percentages) and plot the results in Figure 6. Figure 6&ho)v
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Figure 6: TE and SS performance improvement of Model Il and Il over Model I. (a-b) Abilene network under low traffic load:
moderate improvement; (c-d) Abilene network under high traffic load: more significant improvement, but more information (in
Model 1) does not necessarily benefit the CP and the ISP (thegradox of extra information).
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Figure 7: Performance evaluation over different ISP topolgies. Abilene: small cut graph; AT&T, Exodus: hub-and-spole with
shortcuts; Level 3: complete mesh; Sprint: in between.

the improvement of the ISP and the CP when the network is un- paradox is more likely to occur. Besides the TE and SS objeti
der low load. Generally, Model Il and Model IIl improve botlET we also plot the maximum link utilization, which is anotheor-
and SS, though Model Il outperforms Model Il in almost aléea. tant metric that measures a network’s congestion. Obshatdtie
However, except the case when the CP’s traffic is little (14, direction of change of the max link utilization metric doest al-
CP’s improvement is not significant. The ISP’s improvemenmtat ways coincide with that of the TE metric. This suggests that
significant for any amount of CP traffic (note the differenalss I and Model Il are also sensitive to a careful choice of theotiye
of y-axes). This is because when the network is under low load, functions, while Model Il is more robust under differentjettive
the slopes of TE and SS cost functions are “flat,” thus lealithg models.
tle space for improvement. Figure 6(c-d) show the resultsrwh

8. RELATED WORK

the network is under high load. Improvement becomes more sig
In[12], the authors show that selfish routing is close toroptiin

nificant, especially at the two extremes: when CP’s traffilittie
and is prevalent. However, we also observe that sometime®eMo e net_jike environments, while our work explores théimlity
Il performs worse than Model I: both the ISP and the CP do not ot gyrategic content distribution under the interactionhwtraffic
benefit with more information. engineering. [23] studies the problem of load balancing \r-o
lay routing, and how to alleviate race conditions among iplelt

co-existing overlays. [24] studies the resource allocatimblem
at inter-AS level where ISPs compete to maximize their reeen
[25] leverages Nash bargaining solution to solve an intenain
ISP peering problem. These pieces of work studied the ictera
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between network providers and content providers.

The need for cooperation between content providers ancbnletw
providers is raising much discussion in both the researcinue-

7.2.3 Impact of ISP topologies

We evaluate the three models on different ISP topologieg Th
topological properties of different graphs are discussatiez in
the simulation setup. The CP’s traffic is 80% of the totalficand
link capacities are set such that networks are under hifffcti@ad.
Our findings are depicted in Figure 7. Note that performante i
provement is relatively more significant in more complexpips
Simple topologies with small min-cut sizes are networksngliee
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CP no change
current practice
partial collaboration

CP change
partial collaboration
joint system design

ISP no change
ISP change

Table 5: To cooperate or not: possible strategies for conten
provider (CP) and network provider (ISP)

nity and the industry. [26] leverages price theory to rederthe
tussle between peer-assisted content distribution ard t&urce
management. [5] proposes a communication portal betwelea 1S
and P2P applications so that both parties gain from codparat
These pieces of work represent the approach of sharingirafibon

on one of the four dimensions as shown in Table 5. The pot#sgibil
of sharing control has been unfortunately neglected.

Recent work [27] studied a similar problem on the interacthe-
tween content distribution and traffic engineering. Simiksults
on the possibility of the global optimality are reporteddéheir
models are extended to multiple-ISP cases. This paper ig@ ma
extension of an earlier workshop paper [28], because wedath
itatively and quantitatively analyze conditions for opaility and
efficiency loss. For example, the paradoxical example aniirit
plication, the solution with distributed implementatiand large
scale simulations were absent in the earlier version.

9. CONCLUSION AND FUTURE WORK

In this work, we examine the interplay between traffic engine
ing and content distribution. Though the problem has lorigted,
the dramatically increasing amount of content-centriffitrae.g.,
CDN and P2P traffic, makes it more significant than ever. With
the strong motivation for ISPs to provide content servitesy are
faced with the question of whether to stay with the currestgteor
to adopt a joint system design. This work sheds light ontibtes
cooperations between CPs and ISPs.

This paper serves as a starting point of our future work itebet
understanding the interaction between ISPs and CPs. itnaality,
ISPs provide and operate the pipes, while content providists
tribute contents over the pipes. In terms of what infornratian
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APPENDIX

A. DISTRIBUTED ALGORITHM FOR
GREEDY SERVER SELECTION

In this section, we leverage Q-learning [29] in reinforcete
learning to simulate the CP’s server selection in model i&aly,
it is a distributed solution that drives the decision to thartivop
equilibrium, as we will define later. Though it is not dirgctpti-
mizing the objective function of (3), itis a distributed atghm that
is easily implementable and resembles the solution of manteat
providers today [4]. In fact, [12] points out that selfishitiog is
close to optimal in Internet-like environments [12].

The application of Q-learning in network routing has beem st
ied in some literatures [13] [30]. [30] applied Q-learningdapro-
posed a probabilistic multi-path routing scheme that leayood
routes adaptively. We model the CP’s server selection ama si
lar Q-learning scheme that learns good servers adaptwiigh
we call Q-SS. Due to limited space, we only sketch the bagia.id
Readers can refer to our technical report for more details.

We next define the algorithm more rigorously. Every ussras-
sociated with a vecta®;, where thes-th component)(s) € [0,1]
is the proportion ot’s traffic demand that is served by sensr
Hence,y sc51) Qi(s) = 1. The basic idea of Q-SS works as fol-
lows. Initially, Q; is set arbitrarily. Then it is updated according
to the perceived end to end delay. Namely, if the delay feoim
t is larger than the average perceived delay over all ser@(s)
is decreased so better servers will serve more demand. vdsieer

Qi (s) is increased. We show that server selection based on mea-

sured delay as above will reactWardrop equilibrium{10].
Let Dst denote the end-to-end delay frosrto t. The average
perceived delay by useiis
Dt =

XSQt (s)-Dst (18)

se

We have that

Definition 2. Q,Vt € T, is a Wardrop equilibrium, if's,s,s" € S,
Qi(s) > 0, (s) >0, and Q(s”) = 0 imply that Dyt = Dy <
DSNJ.

Intuitively, at the equilibrium point, any server shouldvhahe
same delay to a user, if the service rate is non-zero. Anddteyd
is smaller than those with zero server rate. It turns out thet
equilibrium point can be viewed as the solution to the folluyv
optimization problem, as studied in [11]:

fi
minimize z Dy (u)du (19)
I1ce”/0
subject to szt: M, WVt
S
variable Xst > 0

whereDj (+) is the link delay function, which consists of queueing
delay and propagation delay. D (-) is a strictly convex function,
(19) has a unigue optimal solution and hence, a unique Wardro
equilibrium. One can directly solve (19) to obtain the eidpuilim
point of greedy server selection.

The Q-SS algorithm proceeds in the following steps. ﬁl@t be
the measured end-to-end delay freto t at some time, which can
be obtained from active or passive probes. Whenever rexceai
new measuremerﬁ)s_yt, SS estimates new end-to-end delay in the
future would be:

Dst = (1—a)-Dst 4 a - Dst (20)
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Q-SS algorithm: Initialize Q(s) = 1/|S(t)|, Dst = Dst.
Repeat:
Measure the end-to-end delay from sers&r usert asf)s_t.
Update the estimate @fs; according to (20).
Compute the average delay for us@rccording to (21).
UpdateQ; according to (22).
ProjectQ; to [0, 1]/ probability space.
Until Q; converges.

Table 6: SS Q-learning protocol with incomplete information.

whereina is the delay learning factor. The average perceived delay
by usert over all servers is

Dt = z Qt(S) . Ds,t (21)
seS(t)
Then we updat€); as follows:
Qi(s) = Q(s) +B[(Dt — Dst) /D] (22)

wheref is called the SS learning factor.

After the update, some entries may become negative or greate
than one. Hence); is projected ontd0, 1]'SV to ensure that it is
a valid probability vector.

Finally, we can use the normalized internal routing veQpto
compute the real routing vect8y. Namely,

R(s) = (1—£)Q(s) +¢/[S(t)] (23)

wheree is a small positive constant numbé®. is perturbed from
Q: by adding uniform routing probabilities to it. This is to neak
sure that all possible servers are probed, in case somezaffd;

is zero.

Table 6 summarizes the Q-SS algorithm in model I. With ap-
propriate choices of the learning factarsp, i.e., diminishing step
sizes Q; will converge to a stable point. Sothere is no self-osédlat
and SS eventually converges to Wardrop equilibrium.

B. PROOF OF LEMMA 3

Proof: The proof proceeds in two steps. We first show that the
Nash equilibrium in the TESS game is also an optimal solutiion
(6), though not specifying how it is achieved. The basic ide@
check the KKT [16] conditions of TE and SS at Nash equilibrium
and then compare to the KKT condition of (6). Then we show that
an algorithm like (4) converges to the Nash equilibrium.

Step I: Consider a feasible solutiofxs, '} at Nash equilibrium,
i.e., each one is the best response of the other. To assipt@afi
we defineq (f|) = ®'(f;) as the marginal cost of link

We first show the optimality condition of SS. L@k =5, @ (fi)-
r,S‘, which denotes the marginal cost(sft) pair. By the definition
of Nash equilibrium, for ang such thakst > 0, we havegs: < @y
for any s’ € S, by inspecting the KKT condition of the SS opti-
mization. This implies that servers with positive rate hénesame
marginal latency, which is less than those of servers with rate.
Let @ = @ for all xst > O.

We next check the optimality condition of TE. Consider(at)
server-user pair. Ledsy denote the average marginal cost from
nodesto v, which can be recursively defined as

53\,:{ ZI:(u,v)eIn(v)(63U+§Q)'rft/ZIeIn(v) |'|$t ifv?és
0

ifv=s



The KKT condition of the TE optimization is fovv e V, VI =
(u,v),I" = (U,v) € In(v), ri* > 0 impliesSsu+ @ < dsy + @ In
other words, for any node, the marginal cost accumulated from
any incoming link with positive flow is equal, and less thaosé
of incoming links with zero flow. So we can defidg, = dsu+ @,

vl = (u,v) € In(v) with rft > 0.

In fact, &t = S (ug) (Gsut @) -17' = 31 @ -1} = @, by inspect-
ing flow conservation at each node and the fact that(arty path
has the same marginal latency as observed above. Combiréng t
two KKT conditions together gives us the necessary and serific
condition for Nash equilibrium:

{ Sut@ <Oyt ifrit>0 VseS eV, vl elin(v)
Ost < Ogt, if Xst >0 Vs, s €S
(24)

An intuitive explanation is to consider the marginal latend
any pathp that is realized by the routing decision. LR{t) be the
set of paths that connect all possible servers and the usetg, =
Yiiep@- A pathpis activeif rlSt > 0 for all | € p, which means
there is a positive flow betwegg,t). Then the above condition can
be translated into the following argument: for any pptp’ € P(t),
@ < @y if pis active. In other words, any active path has the same
marginal latency, which is less than those of non-activegat

On the other hand, we show the KKT condition for (6). Suppose
{x*!} is an optimal solution to (6). Similarly, we can define the
marginal latency from nodgto v as

Aey— 21:(uv)ein(v) (Bsut+@)- X|St/ Ylein(v) X|St ifv#£s
*T10 ifv=s

The KKT condition of (6) is the following:

Dsu+ @ <Dsy+@ if >0 VseS weV, VI €lin(v)

Ast < Agy, if > 0forsomd Vs s €S

(25)

One can readily check the equivalence of conditions (24) and
(25). To be more specific, suppo$&st,rft} is a Nash equilib-
rium that satisfies (24), we can constrof'} as discussed the
proof of Lemma 2, which one can easily verify that satisfies).(2
Vice versa, given an optimal solutidnxft} to (6), one can construct
{xst,r'} as advised Lemma 2, which satisfies (24).

Step II: In the final step, we prove alternate game moves, i.e., ISP
and CP iteratively optimize their own objectives, will letaithe
optimal point. To see this, the objective in (7) is a Lyapufiave-
tion. Since two players share the same objective, and eaglempl
move is the best response to the other, the resulting obgectiue
in the game is a decreasing sequence. In addition, the olgect
of (7) is lower-bounded by the optimal value of (6). So the gam
sequence will eventually reach the optimal point, whichlsoa
Nash equilibrium.
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