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ABSTRACT
Traditionally, Internet Service Providers (ISPs) make profit by pro-
viding Internet connectivity, while content providers (CPs) play the
more lucrative role of delivering content to users. As network con-
nectivity is increasingly a commodity, ISPs have a strong incentive
to offer content to their subscribers by deploying their owncontent
distribution infrastructure. Providing content servicesin a provider
network presents new opportunities for coordination between traf-
fic engineering(to select efficient routes for the traffic) andserver
selection(to match servers with subscribers). In this work, we de-
velop a mathematical framework that considers three modelswith
an increasing amount of cooperation between the ISP and the CP.
We both analytically and numerically study the stability and opti-
mality conditions for these models. We show that separatingserver
selection and traffic engineering leads to sub-optimal equilibria,
even when the CP is given accurate and timely information about
the ISP’s network in a partial cooperation. More surprisingly, extra
visibility results in alessefficient outcome and such performance
degradation can be unbounded. Leveraging ideas from cooperative
game theory, we propose an architecture based on the conceptof
Nash bargaining solutionthat significantly improves the fairness
and efficiency of the joint system. Simulations on realisticback-
bone topologies are performed to quantify the performance differ-
ences between our models. We show that the joint design signif-
icantly improves the performance metrics of both the ISP andthe
CP, under a wide range of traffic conditions. This study is a step to-
ward a systematic understanding of the interactions between those
who provide and operate networks and those who generate and dis-
tribute content.

1. INTRODUCTION
Internet Service Providers (ISPs) and content providers (CPs)

are traditionally independent entities. ISPs only provideconnec-
tivity, or the bandwidth “pipes” to transport content. As inmost
transportation businesses, connectivity and bandwidth are becom-
ing commodities and ISPs find their profit margin shrinking [1]. At
the same time, content providers generate revenue by utilizing ex-
isting connectivity to deliver content to ISPs’ customers.This moti-
vates ISPs to host and distribute content to their customers.Content
can be enterprise-oriented like web-based services or residential-
based like triple play as in AT&T’s U-Verse [2] and Verizon FiOS
[3] deployments. When ISPs and CPs operate independently, they
optimize their performance without much cooperation, eventhough
they influence each other indirectly. ISPs deploying content ser-
vices makes the cooperation between ISP and CP possible, which
begs the question of how much can be gained from such coopera-
tion and what kind of cooperation is the most beneficial.

As a traditional service provider, an ISP’s primary role is to de-
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Figure 1: The interaction between traffic engineering (TE) and
server selection (SS).

ploy infrastructure, manage connectivity, and balance traffic load
inside its network. In particular, an ISP solves thetraffic engineer-
ing (TE) problem, i.e., adjusting the routing configuration to the
prevailing traffic. The goal of TE is to ensure efficient routing to
minimize congestion, so that users experience low packet loss, high
throughput, and low latency, and that the network can gracefully
absorb flash crowds.

To offer its own content service, an ISP must deploy a content
distribution infrastructure. In practice, as many contentproviders
do, the state-of-the-art approach is to replicate content over a num-
ber of strategically-placed servers, and direct requests to differ-
ent servers in the hope of balancing load and decreasing response
time. Typical examples in the wide-area setting include YouTube,
and content distribution networks (CDNs) like Akamai. The CP
solves aserver selection(SS) problem, i.e., determining which
servers should deliver content to each end user. The goal of SS
is to meet user demand, minimize network latency to reduce user
waiting time, and balance server load to increase throughput.

To offer both network connectivity and content delivery, anISP
is faced with coupled TE and SS problems, as shown in Figure 1.
TE and SS interact because TE affects the routes that carry the CP’s
traffic, and SS affects the offered load seen by the network. Actu-
ally, the degrees of freedom are also the “mirror-image” of each
other: the ISP controls route selection, which is the constant pa-
rameter in the SS problem, while the CP controls server selection,
which is the constant parameter in the TE problem.

In this paper, we study several approaches an ISP could take in
managing traffic engineering and server selection, rangingfrom
running the two systems independently to designing a joint sys-
tem. We refer to CP as the part of the system that manages server
selection, whether it is performed directly by the ISP or by asepa-
rate company that cooperates with the ISP. This study allowsus to
explore a migration path from the status-quo to a synergistic joint
design that benefits both parties. We consider three scenarios with
increasing amount of cooperation between traffic engineering and
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Optimality Info. Exchange Fairness Architectural Change
Model I Not Pareto-optimal Measurement only No Current practice
Model II Not Pareto-optimal in general Topology and Routing No Minor CP changes

Social-optimal in special case Background traffic
More info. may hurt the CP

Model III Pareto-optimal Topology and Routing Yes Clean-slate design
5-30% performance improvementLink prices CP given more control

Incrementally deployable

Table 1: Summary of results and engineering implications.

server selection, as summarized here:

• Model I: no cooperation (current practice).

• Model II: improved visibility (sharing information).

• Model III: a joint design (sharing control).

Model I. Content services could be provided by a CDN that runs
independently on the ISP network. However, the CP has limited
visibility into the underlying network topology and routing, and
therefore has limited ability to predict the effect of its own actions.
We model a scenario where the CP measures the end-to-end latency
of the network and greedily assign each user to the servers with the
lowest latency to the user, a strategy some CPs employ today [4].
We call thisgreedy server selection. In addition, TE assumes the
offered traffic is unaffected by its routing decisions, despite that
routing changes can affect path latencies and therefore theCP’s
traffic. When the TE problem and the SS problem are solved sepa-
rately, their interaction can be modeled as a game where theysettle
in a Nash equilibrium, which may not bePareto optimal.

Not surprisingly, performing TE and SS independently is of-
ten sub-optimal because (i) server selection is based on incomplete
(and perhaps inaccurate) information about network conditions and
(ii) the two systems, acting alone, may miss opportunities for a
good joint selection of servers and routes. Models II and IIIcap-
ture these two issues, allowing us to understand which factor is
more important in practice.

Model II. Greater visibility into network conditions should enable
the CP to make better decisions. There are, in general, four types
of information that could be shared: (i) physical topology informa-
tion, e.g., P4PWG [5], (ii) connectivity information, e.g., routing
in the ISP network, (iii) dynamic properties of links, e.g.,OSPF
link weights, background traffic, and congestion level, and(iv) dy-
namic properties of nodes, e.g., bandwidth and processing power
that can be shared by the node. Our work focuses on a combination
of these types of information, i.e., (i)-(iii), so that the CP is able
to solve the SS problem more efficiently, i.e., to find theoptimal
server selection.

Sharing information requires minimal extensions to existing so-
lutions for TE and SS, making it amenable to incremental deploy-
ment. In addition, we prove that, when the two systems have the
same performance objective, TE and SS separately optimizing their
own objectives converges to a global optimal solution. However,
when the two systems have different performance objectives(e.g.,
SS minimizes end-to-end latency and TE minimizes congestion),
the equilibrium isnot optimal in general. In addition, we find
that model II sometimes performsworse than model I—that is,
extra visibility into network conditions sometimes leads to a less
efficient outcome—and the performance degradation can be un-
bounded. The facts that both Model I and Model II in general do

not achieve optimality, and that extra information (Model II) some-
times hurts the performance, motivate us to consider a clean-slate
joint design for selecting servers and routes.

Model III. A joint design should achievePareto optimalityfor TE
and SS. In particular, our design is based on theNash Bargain-
ing Solution[6] that arises from bargaining interactions between
players. Thus the solution not only guaranteesefficiency, but also
fairnessbetween synergistic or even conflicting objectives of two
players, i.e., it is a point on the Pareto optimal curve whereboth TE
and SS have better performance compared to the Nash equilibrium.
We also propose a decomposed solution so that the joint design can
be implemented in a distributed fashion with a limited amount of
information exchange.

The analytical and numerical evaluation of these three models
allows us to gain insights for designing a cooperative TE andSS
system, summarized in Table 1. The conventional approach of
Model I requires minimum information passing, but suffers from
sub-optimality and unfairness. Model II requires only minor changes
to the CP’s server selection algorithm, but the result is still not
Pareto optimal and the performance improvement is not guaranteed
(in some cases the performance evendegrades). Model III ensures
optimality and fairness through a distributed protocol, requires only
moderate increase in information exchange, and is incrementally
deployable. Our results show that letting CP have some control
over network routing is the key to TE and SS cooperation.

We perform numerical simulations on realistic ISP topologies,
which allow us to observe the efficiency loss and paradoxes over a
wide range of traffic conditions. The joint design shows significant
improvement for both the ISP and the CP. The simulation results
further reveal the impact of topologies on the efficiencies and fair-
ness of the three system models.

The rest of the paper is organized as follows. Section 2 presents
a standard model for traffic engineering. Section 3 presentsour
two models for server selection, when given minimal information
(i.e., Model I) and perfect information (i.e., Model II) about the un-
derlying network. We also describe the algorithms that implement
greedy server selection and optimal server selection. Section 4
studies the interaction between TE and SS as a game and shows
that they reach a Nash equilibrium. We also find a case where a
social optimality is possible. Section 5 analyzes the efficiency loss
of Model I and Model II in general. We show that the Nash equi-
libria achieved in both models are not Pareto optimal. In particular,
we illustrate the counterintuitive observation that more information
is not always helpful. Section 6 discusses how to jointly optimize
TE and SS by implementing a Nash bargaining solution. We pro-
pose a distributed algorithm that allows practical and incremental
implementation. We perform large-scale numerical simulations on
realistic ISP topologies in Section 7. Finally, Section 8 presents
related work, and Section 9 concludes the paper and discusses our
future work.
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G : Network graphG = (V,E)
V : Set of nodes
S: S⊂V, the set of CP servers
T : T ⊂V, the set of users
E : Set of links
Cl : Capacity of linkl

r i j
l : Proportion of flowf : i → j traversing linkl , also noted asr f

l
R : The routing matrixR : {r i j

l }
xst : Traffic rate from servers to usert
Xcp : CP’s decision variableXcp = {xst}s∈S,t∈T
Mt : Usert ’s demand rate for content
fl : Total traffic on linkl
f cp
l : CP’s traffic on linkl

f bg
l : Background traffic on linkl

Dp : Delay of pathp
Dl : Delay of link l
g(·) : Cost function used in ISP traffic engineering
h(·) : Cost function used in CP server selection

Table 2: Summary of notations.

2. TRAFFIC ENGINEERING BACKGROUND
In this section, we describe the network model and formulatethe

optimization problem that TE solves. (Note that our TE modelfol-
lows a well-established formulation, and hence is not novel.) We
also start introducing the notation used in this paper, which is sum-
marized in Table 2.

Consider a network represented by graphG = (V,E), whereV
denotes the set of nodes andE denotes the set of directed phys-
ical links. A node can be a router, a host, or a server. Letxi j
denote the rate of flow(i, j), from nodei to node j , wherei, j ∈V.
Flows are carried on end-to-end paths consisting of some links. Let
W = {wpl} be the routing matrix, i.e.,wpl = 1 if link l is on pathp.
We do not limit the number of paths soW can includeall possible
paths. Alternatively, one can find out which paths actually carry
traffic, and makeW smaller by pruning the unused paths. The ca-
pacity of a linkl ∈ E isCl > 0.

Given the traffic demand, traffic engineering changes routing to
minimize network congestion. In practice, network operators con-
trol routing either by changing OSPF link weights [7] or by estab-
lishing MPLS label-switched paths [8]. In this paper we use the
multi-commodity flow solution to route traffic, because a) itis op-
timal, i.e., it gives the routing with minimum congestion, and b)
it can be realized by routing protocols that use MPLS tunneling,
or as recently shown, in a distributed fashion by a new link-state
routing protocol [9]. Formally, letr i j

l ∈ [0,1] denote the proportion
of traffic of flow (i, j) that traverses linkl . To realize the multi-
commodity flow solution, the network splits each flow over a num-
ber of paths. LetR= {r i j

l } be the routing matrix.
Let fl denote the total traffic traversing linkl , and we havefl =

∑(i, j) xi j · r
i j
l . Now traffic engineering can be formulated as the fol-

lowing optimization problem:

TE(R|X):

minimize T E = ∑
l

gl ( fl ) (1)

subject to fl = ∑
(i, j)

xi j · r
i j
l ≤Cl , ∀l

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j , ∀(i, j), ∀v∈V\{i}

variables 0≤ r i j
l ≤ 1, ∀(i, j), ∀l

wheregl (·) represents a link’s congestion cost as a function of the
load, Iv= j is an indicator function which equals 1 ifv = j and 0
otherwise, In(v) denotes the set of incoming links to nodev, and
Out(v) denotes the set of outgoing links from nodev.

In this model, TE does not differentiate between the CP’s traffic
and background traffic. In fact, TE assumes a constant trafficma-
trix X, i.e., the offered load between each pair of nodes, which can
either be a point-to-point background traffic flow, or a flow from a
CP’s server to a user. As we will see later, this common assumption
is undermined when the CP performs dynamic server selection.

We only consider the case where cost functiongl (·) is aconvex,
continuous, andnon-decreasingfunction of fl . By using such an
objective, TE penalizes high link utilization and balancesload in-
side the network. We will discuss later the analytical form of gl (·)
which the ISP may use in practice. Sincegl (·) is convex and the
constraint set is affine and compact, the TE problem (1) is a convex
optimization problem. This implies that a local optimum is also a
global optimum, and can be computed efficiently through standard
algorithms such as the primal-dual interior point algorithm.

3. SERVER SELECTION MODELS
While traffic engineering usually assumes that demand is point-

to-point and constant, both assumptions are untrue when some or
all of the traffic is generated by the CP. A CP usually has many
servers to serve the same content, and which server serves which
user depends on the network conditions (e.g., congestion).In this
section, we present two novel CP models which correspond to Model
I and II introduced in Section 1. The first one models the current
CP operation, where the CP relies on end-to-endmeasurementof
the network condition in order to make server selection decisions;
the second one models the situation when the CP obtains enough
information from the ISP so that it cancalculatethe effect of its
server selection actions.

3.1 Server Selection Problem
The CP solves the server selection problem to optimize the per-

ceived performance of all its users. We first introduce the notation
used in modeling server selection. In the ISP’s network, letS⊂V
denote the set of CP’s servers, which are strategically placed at dif-
ferent locations in the network. For simplicity we assume that all
content is duplicated at all servers, and our results can easily be ex-
tended to the general case. LetT ⊂V denote the set of users who
request content from the servers. A usert ∈ T has a demand for
content at rateMt , which we assume to be constant during the time
a CP optimizes its server section. We allow a user to simultane-
ously download content from multiple servers, because nodet can
be viewed as an edge router in the ISP’s network that aggregates the
traffic of many endhosts, which may be served by different servers.
We further assume that the demand of a user node can be arbitrarily
divided among the servers. Thus our analysis should give an upper
bound on the CP’s performance.

To differentiate the CP’s traffic from background traffic, wede-
note xst as the traffic rate from servers to usert. To satisfy the
traffic demand, we need

∑
s∈S

xst = Mt .

We denoteXcp = {xst}s∈S,t∈T as the CP’s decision variable. We
assume that server capacity is not a bottleneck, so the load of server
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s, i.e.∑t∈T xst, is unconstrained.
One of the major goals in server selection is to optimize the over-

all performance of all CP’s customers. We use an additive link
cost for the CP that is inspired by modeling network latency,i.e.,
each link has a cost, and the end-to-end path cost is the sum ofthe
link costs along the way. As an example, suppose the content is
delay-sensitive (e.g., IPTV), and the CP would like to minimize the
averageend-to-end delay of all its users, which is the same as min-
imizing the total end-to-end delay. LetDp denote the end-to-end
latency of a pathp, andDl ( fl ) denote the latency of linkl , mod-
eled as a convex, non-decreasing, and continuous function of the
amount of flow fl on the link. By definition,Dp = ∑l∈p Dl ( fl ).
Then the overall latency experienced by all CP’s users is

SS= ∑
(s,t)

∑
p∈P(s,t)

xst
p ·Dp

= ∑
(s,t)

∑
p∈P(s,t)

xst
p · ∑

l∈p

Dl ( fl )

= ∑
l

Dl ( fl ) · ∑
(s,t)

∑
p∈P(s,t):l∈p

xst
p

= ∑
l

f cp
l ·Dl ( fl )

(2)

whereP(s,t) is the set of paths serving flow(s,t) and xst
p is the

amount of flow(s,t) traversing pathp∈ P(s,t).
Let hl (·) represent the cost of linkl , which we assume is convex,

non-decreasing, and continuous. In this example,hl ( f cp
l , fl )= f cp

l ·
Dl ( fl ). Thus, the link costhl (·) is a function of the CP’s total traffic
f cp
l on the link, as well as the link’s total trafficfl , which also

includes background traffic.
Expression (2) provides a simple way to calculate the total user

experienced end-to-end delay—simply sum over all thelinks, but it
requires the knowledge of the load on each link, which is possible
only in Model II. Without such knowledge (Model I), the CP hasto
rely on the end-to-end delay measurements.

We will use the overall user latency as the cost function for CP
throughout this paper, and assume that the link delay functionDl (·)
is convex and increasing. Our model can be readily extended to
other additive costs by using a different convex, increasing link
cost function. We can also use other cost functions such as the
maximum user latency, and most of our results would hold.

3.2 Greedy Server Selection: Model I
In today’s Internet architecture, a CP does not have access to an

ISP’s network information, such as routing, topology, linkdelay,
and background traffic. Therefore a CP relies on measured or in-
ferred information to optimize its performance. To minimize its
users’ latency, for instance, a CP can assign each user to servers
with the lowest (measured) end-to-end latency to the user. In prac-
tice, content distribution networks like Akamai’s DNS-based server
selection algorithm use this approach [4]. We call itgreedy server
selectionand use it as our first model.

To be precise, we assume that the CP monitors the latency from
all servers to all users, and makes server selection decisions to min-
imize all users’ total delay. Since the demand of a user can bear-
bitrarily divided, we can think of the CP as greedily assigning each
infinitesimal demand to the best server. The placement of this traf-
fic may change the path latency, which the CP monitors. Thus, at
the equilibrium, the servers which send (nonzero) traffic toa user
should have the same end-to-end latency to the user, becauseoth-
erwise the server with low latency will be assigned more demand,
causing its latency to increase, and the servers not sendingtraffic
to a user should have higher latency than those that serve theuser.

This is sometimes called theWardrop equilibrium[10]. The greedy
server selection problem is very similar to selfish routing [11, 12],
where each flow tries to minimize its average latency over multi-
ple paths without coordinating with other flows. It is known that
the equilibrium point in selfish routing can be viewed as the solu-
tion to a global convex optimization problem [11], so greedyserver
selection has a unique equilibrium point.

Although the equilibrium point is well-defined and is the so-
lution to a convex optimization problem, in general it is hard to
compute the solution analytically. Thus we leverage the idea of
Q-learning [13] to implement a distributed iterative algorithm to
find the equilibrium of greedy server selection. The algorithm is
guaranteed to converge even under dynamic network environments
with cross traffic and link failures, and hence can be used in prac-
tice by the CPs. The detailed description and implementation are
in Appendix A.

As we will show, the greedy server selection is not optimal. We
use it as a baseline for how well a CP can do with only the end-to-
end latency measurements.

3.3 Optimal Server Selection: Model II
In this section, we describe how a CP can optimize server selec-

tion givencompletevisibility into the underlying network. That is,
this is the best the CP can do withoutchangingor directly influ-
encing the routing of the network. We also present an optimization
formulation that allows us to analytically study its performance.

Suppose that content providers are able to either obtain informa-
tion on network conditions directly from the ISP, or infer itby its
measurement infrastructure and technology. In the best case, the
CP is able to obtain the complete information about the network,
i.e., routing decision and link latency. This situation is character-
ized by problem (3), which is the best performance the CP can
achieve without directly influencing the ISP. To optimize the over-
all user experience, the CP solves the following cost minimization
problem:

SS(Xcp|R):

minimize SS= ∑
l

hl ( f cp
l , fl ) (3)

subject to f cp
l = ∑

(s,t)

xst · r
st
l , ∀l

fl = f cp
l + f bg

l ≤Cl , ∀l

∑
s∈S

xst = Mt , ∀t

variables xst ≥ 0, ∀(s,t)

where we denotef bg
l = ∑(i, j) 6=(s,t) xi j · r

i j
l as the non-CP traffic on

link l , which is a parameter to the optimization problem. If the cost
functionhl (·) is increasing and convex on the variablef cp

l , one can
verify that (3) is a convex optimization problem, and hence has a
unique global optimal value.

In practice, the optimal server selection (3) is amenable toan ef-
ficient implementation. The problem can either be solved centrally,
e.g., at the CP’s central coordinator, or via a distributed algorithm
similar to that used for Model I. We solve (3) centrally in oursim-
ulations, since it is easy to solve analytically, and that weare more
interested in the performance improvement brought by complete
information than the algorithm that implements it.

4. ANALYZING TE-SS INTERACTION
In this section, we explore the interaction between the ISP and

the CP when they operate independently without coordination, which
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applies to our Model I and Model II. We study their “interplay” in a
game-theoretic framework. The game formulation allows us to an-
alyze the stability condition, i.e., we show that alternateTE and SS
optimizations will reach an equilibrium point. In addition, we find
that when the ISP and the CP optimize the same system objective,
their interaction achieveglobal optimalityunder Model II.

4.1 TE-SS Game and Nash Equilibrium
We start with the formulation of a two-player non-cooperative

Nash game that characterizes the TE-SS interaction.

Definition 1. TheTE-SS gameconsists of a tuple[N,A,U ]. The
player set N= {isp,cp}. The action set Aisp = {R} and Acp =
{Xcp}, where the feasible set of R and Xcp are defined by the con-
straints in (1) and (3) respectively. The utility functionsare Uisp =
−TE and Ucp = −SS.

Figure 1 shows the interaction between SS and TE. In both Model
I and Model II, the ISP plays the best response strategy, i.e., the ISP
always optimizes (3) given the CP’s strategyXcp. Similarly, the CP
plays the best response strategy in Model II when given full in-
formation. However, the CP’s strategy in Model I is not the best
response, since it does not optimize (3) due to the lack of network
visibility. Indeed, the utility the CP implicitly optimizes when do-
ing greedy server selection is [11]

Ucp = − ∑
l∈E

∫ fl

0
Dl (u)du

This later helps us understand the stability conditions of the game.
Consider a particular game procedure in which the ISP and the

CP take turns to optimize their own objectives by varying itsown
decision variable, treating the that of the other player as constant.
Specifically, in thek-th iteration, we have

R(k+1) = argmin
R

TE(X(k)
cp )

X(k+1)
cp = argmin

Xcp

SS(R(k+1))
(4)

Note that two optimization problems may be solved on different
timescales. The ISP runs traffic engineering at the timescale of
hours. Depending on the CP’s design choices, server selection is
optimized a few times a day, or at a smaller timescale like seconds
or minutes of a typical content transfer duration. We assumethat
each player has fully solved its optimization problem before the
other one starts.

Next we prove the existence of Nash equilibrium of the TE-SS
game. We establish the stability condition when two playersuse
general cost functionsgl (·) andhl (·) that are continuous and con-
vex. While TE’s formulation is the same in Model I and Model II,
we consider the two SS models, i.e., greedy server selectionand
optimal server selection, respectively.

Theorem 1. The strategic game TE-SS has a Nash equilibrium for
both Model I and Model II.

Proof Sketch:It suffices to show that (i) each player’s strategy space
is a nonempty compact convex subset, and (ii) each player’s util-
ity function is continuous and quasi-concave on its strategy space,
which follows the standard proof in [14]. The ISP’s strategyspace
is defined by the constraint set of (1), which are affine equalities
and inequalities, hence a convex compact set. Sincegl (·) is con-
tinuous and convex, we can easily verify that the objective of (1) is
quasi-convex onR = {r i j

l }. CP’s strategy space is defined by the
constraint set of (3), which is also convex and compact. Similarly,

if hl ( f cp
l ) is continuous and convex, the objective of (3) is quasi-

convex onXcp. In particular, consider the special case in which CP
minimizes latency (2). When CP is doing greedy server selection,
hl ( fl ) =

∫ fl
0 Dl (u)du. When CP is doing optimal server selection,

hl ( f cp
l ) = f cp

l Dl ( fl ). In both cases, ifDl (·) is continuous, non-
decreasing, and convex,hl (·) is also continuous and convex. One
can again verify the quasi-convexity of the objective in (3). Details
of the proof are omitted here due to the space limit.

The existence of a Nash equilibrium does not guarantee that the
trajectory path (4) leads to one. In Section 7 we demonstratethe
convergence of iterative player optimization in simulation. In gen-
eral, the Nash equilibrium may not be unique, in terms of both
decision variables and objective values. Next, we show a special
case where the Nash equilibrium is unique and can be attainedby
alternate player moves (4).

4.2 Global Optimality under Same Objective
In the following, we study a special case of the TE-SS game, in

which the ISP and the CP optimize the same objective function,
i.e., gl (·) = hl (·) = Φl (·), and there is no background traffic. One
example is when the network carries only the CP traffic and both
the ISP and the CP aim to minimize the average traffic latency,i.e.,
Φl ( fl ) = fl ·Dl ( fl ). An interesting question that naturally arises is
whether the two players’ alternate optimization on each of their de-
cision variables leads to a global optimum, i.e., when the (common)
objective is optimized over all decision variables.

Consider a special case of the TE-SS game, where two players’
objectives coincide:

TE = SS= ∑
l

Φl ( fl ) (5)

Namely, both the ISP and the CP want to minimize the average
latency of the traffic carried on the network. The CP is given the
visibility from the ISP, so it can fully solve the SS problem (Model
II).

Then we define the notion ofglobal optimality, which is the op-
timal point to the following optimization problem.

TE-SS-special(X):

minimize ∑
l

Φl ( fl ) (6)

subject to fl = ∑
(s,t)

xst
l ≤Cl , ∀l

∑
s∈S



 ∑
l :l∈In(v)

xst
l − ∑

l :l∈Out(v)
xst

l



 = Mt · Iv=t , ∀v /∈ S, ∀t ∈ T

variables xst
l ≥ 0, ∀(s,t),∀l

wherexst
l denotes the traffic rate of flow(s,t) on link l . The variable

xst
l allows a global coordinator to route a user’s demand from any

server in any way it wants, thus problem (6) establishes a bound on
how well one can do to minimize the CP traffic’s average latency.
A detailed discussion of such choice is left to the general case in
Section 5.2.

We compare the Nash equilibrium of the TE-SS game with ob-
jective functions (5) to the optimal solution of (6). In particular, we
study whether alternate player optimizations as in (4) leadto this
optimal point. As good news, we show that the Nash equilibrium
of TE-SS game is an optimal point, so the TE-SS interaction does
not result in any efficiency loss when their objectives are identi-
cal. Actually, the equilibrium point can be achieved by alternate
optimization steps of (4).
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Lemma 1. A special case TE-SS game in which two players’ ob-
jectives are in the form of (5) has a Nash equilibrium, when the cost
functionΦl ( fl ) is continuous, non-decreasing, and convex.

The proof is similar to that of Theorem 1 and is omitted here.
Consider the following optimization problem:

minimize ∑
l

Φl ( fl ) (7)

subject to fl = ∑
(s,t)

xst · r
st
l ≤Cl , ∀l

∑
l :l∈In(v)

rst
l − ∑

l :l∈Out(v)
rst
l = Iv=t , ∀(s,t), ∀v∈V\{s}

∑
s∈S

xst = Mt , ∀t

variables 0≤ rst
l ≤ 1, xst ≥ 0

The alternate player moves in the special case TE-SS game is ac-
tually solving (7) by applying the non-linear Gauss-Seidelalgo-
rithm [15], which consists of iterative optimization in a round robin
order with respect to each variable while keeping the rest fixed.

Note that (7) is a non-convex problem, since it involves the prod-
uct of two variablesrst

l andxst. However, it is equivalent to the
convex problem (6).

Lemma 2. The non-convex problem (7) that TE-SS game solves is
equivalent to (6).

Proof: We show that there is a one-to-one mapping between the
feasible solutions of (6) and (7). Consider a feasible solution {xst

l }
in (6). Letxst = ∑l :l∈In(t) xst

l −∑l :l∈Out(t) xst
l , rst

l = xst
l /xst if xst 6=

0. To avoid the case ofxst = 0, suppose there is an infinitesimally
small background traffic for every(s,t) pair, so the one-to-one map-
ping still holds. It is easy to show that this is a feasible solution of
(7). On the other hand, for each feasible solution{xst, rst

l } of (7),
let xst

l = xst · rst
l , which is also a feasible solution of (6). Since two

problems share the same objective, they are equivalent.
After proving the equivalence, it remains to show that the alter-

nate player moves (4) actually converges to the optimal points of
two equivalent problems.

Lemma 3. The iterative TE and SS optimizations (4) converge to
the Nash equilibrium of TE-SS game, which is also the optimal
point of (6).

Proof: The proof proceeds in two steps. We first show that the
Nash equilibrium in the TE-SS game is also an optimal solution to
(6), though not specifying how it is achieved. The basic ideais to
check the KKT [16] conditions of TE and SS at Nash equilibrium,
and then compare to the KKT condition of (6). Then we show
that an algorithm like (4) converges to the Nash equilibrium. The
complete proof is presented in Appendix B.

Theorem 2. The Nash equilibrium of the special case TE-SS game
(5) is also global optimal, which can be achieved by two players’
alternate best response play.

The proof follows Lemmas 1, 2, and 3.
The study of this special case allows us to estimate the lower

bound on efficiency loss due to TE-SS interaction, which can be
zero. Though such a special case is rare in general, it offersus some
insights into when such efficiency loss may be low: (i) the ISPand
the CP should have synergistic objectives, (ii) the CP’s traffic is at
high percentage, i.e., there is no background traffic. As we will see
later, the lack of any one of the two conditions is possible tosuffer
great efficiency loss.

F

E

B

A

D

C

Figure 2: An Example of the Paradox of Extra Information

link l1 : BD l2 : BE l3 : CD l4 : CE

Cl 1+ ε 1+ ε 1+ ε 1+ ε
Dl ( fl ) f1

1
1+ε− f2

1
1+ε− f3

f4
gl (x) g1(·) = g2(·) = g3(·) = g4(·)

Table 3: Link capacities, ISP’s and CP’s link cost functionsin
the example of Paradox of Extra Information.

5. EFFICIENCY LOSS
Though in the last section we show the stability of general TE-

SS interaction, and global optimality in a special case, such inter-
action may result in serious efficiency loss in the general case. In
this section, we conduct two case studies to show the optimality
gap. We first present a toy network and show that under certain
conditions the CP performs even worse in Model II than Model I,
despite having more information about underlying network condi-
tions. We next propose the notion of Pareto-optimality as the per-
formance benchmark, and quantitatively demonstrate the suffering
of efficiency loss in both Model I and Model II.

5.1 The Paradox of Extra Information
In the previous section, we present a special case when the ISP

and the CP’s interaction leads to a social optimal point. However,
when their objectives are not aligned, the interaction may reach a
sub-optimal point. To improve its performance, the CP can gain
more knowledge about the underlying network by introducingac-
curate network measurement and inference. As proposed in Model
II, ISPs and CPs can collaborate by passing information. Intu-
itively, the CP is able to achieve better performance, givenmore
information from the network provider. However, as we will show
in the following example, the argument is not always true.

Consider an ISP network illustrated in Figure 2. We designate
an end user node,T = {F}, and two CP servers,S= {B,C}. The
end user has a content demand ofMF = 2. We also allow two
background traffic flows,A → D and A → E, each of which has
one unit of traffic demand. Edge directions are noted on the fig-
ure, so the ISP’s routing decision space is self-evident, i.e., there
are two possible paths for each traffic flow (clockwise and counter-
clockwise). To simplify the analysis and deliver the most essential
message from this example, suppose that both TE and SS costs on
four thin links are negligible so the four bold links constitute the
bottleneckof the network. In Table 3, we list the link capacities,
ISP’s cost functiongl (·), and link latency functionDl (·). Suppose
the CP aims to minimize the average latency of its traffic. We com-
pare the Nash equilibrium of two situations when the CP optimizes
its network by greedy server selection and optimal server selection.

The stability condition for the ISP at Nash equilibrium isg′1( f1) =
g′2( f2) = g′3( f3) = g′4( f4). Since ISP’s link cost functions are iden-
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tical, this implies the total traffic on each link must be identical.
This can be viewed as one special case of ISP’s optimization of
minimizing the maximum link utilization, since links have the same
capacities. On the other hand, the stability condition for the CP at
Nash equilibrium is that(B,F) and(C,F) have the same latency,
or marginal latency. Based on the observation, we can derivetwo
Nash equilibrium points.

When the CP is using greedy server selection strategy, let

Model I:



































XCP :

{

xBF = 1, xCF = 1

}

R :

{

rBF
1 = 1−α, rBF

2 = α, rCF
3 = α, rCF

4 = 1−α,

rAD
1 = α, rAD

3 = 1−α, rAE
2 = 1−α, rAE

4 = α
}

One can check that this is indeed a Nash equilibrium solution,
where f1 = f2 = f3 = f4 = 1, andDBF = DCF = 1−α + α/ε.
The CP’s objectiveSSI = 2(1−α +α/ε).

When the CP is using optimal server selection strategy, let

Model II:



































XCP :

{

xBF = 1, xCF = 1

}

R :

{

rBF
1 = α, rBF

2 = 1−α, rCF
3 = 1−α, rCF

4 = α,

rAD
1 = 1−α, rAD

3 = α, rAE
2 = α, rAE

4 = 1−α
}

This is a Nash equilibrium point, wheref1 = f2 = f3 = f4 = 1, and
dBF = dCF = α(1+ α) + (1−α)(1/ε + (1−α)/ε2). The CP’s
objectiveSSII = 2(α +(1−α)/ε).

It is interesting to see that when 0< ε < 1,0≤ α < 1/2, SSI <
SSII , which means that more information may hurt CP’s perfor-
mance! In the worst case,

lim
α→0,ε→0

SSII
SSI

= ∞

i.e., the efficiency loss can be unbounded.
This is not surprising since the Nash equilibrium is generally not

unique, both in terms of equilibrium solutions and equilibrium ob-
jectives. When ISP and CP’s objectives are mis-aligned, ISP’s deci-
sion may route CP’s traffic on bad paths from the CP’s perspective,
though the ISP’s objective is optimized given CP’s traffic. In prac-
tice, such scenario is likely to happen, since the ISP cares about
link congestion (link utilization), while the CP cares about latency,
which not only correlates to link congestion, but also propagation
delay. Thus ISP and CP’s partial collaboration by only passing in-
formation is not sufficient for achieving global optimality.

5.2 Pareto Optimality and Illustration of Sub-
Optimality

As we observe in the example in Figure 2, one of the major
causes of sub-optimality is that TE and SS’s objectives are not nec-
essarily aligned. To measure efficiency in a system with multiple
objectives, a common approach is to explore the operating region
of the system and find thePareto curve. Points on the Pareto curve
are those of which we cannot improve one objective further with-
out hurting the other. In particular, the Pareto curve characterizes
the tradeoffs of conflicting (or at least not aligning) goalsof dif-
ferent parties. One way to trace the tradeoff curve is to optimize a
weighted sum of the objectives:

minimize TE+ γ ·SS (8)

9 9.2 9.4 9.6 9.8
4.5

5

5.5

6

TE cost

S
S

 c
os

t

Measure of efficiency loss

 

 

Pareto Curve
Model I
Model II

operating region

Figure 3: Illustration of sub-optimality.

variablesR∈ R, Xcp ∈ Xcp

whereγ ≥ 0 is a scalar representing the relative weight of the two
objectives.R andXcp are the feasible regions defined by the con-
straints in (1) and (3):

R×Xcp =

{

r i j
l , xst | 0≤ r i j

l ≤ 1, xst ≥ 0,

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j ,∀v∈V\{i},

fl = ∑
(i, j)

xi j · r
i j
l ≤Cl , ∑

s∈S
xst = Mt

}

The formulation of problem (8) is not easy to solve. In fact, the
objective of (8) is no longer convex on the master variable{rst

l ,xst},
and the feasible region defined by constraints of (8) is not convex.
One way to overcome this problem is to consider a relaxed deci-
sion space. Instead of restricting each player to its own operating
domain, i.e., ISP controls routing and CP controls server selection,
we introduce a joint routing and content delivery problem. Let xst

l
denote therateof traffic carried on linkl that belongs to flow(s,t),
and denote the CP’s decision variable asXcp = {xst

l }s∈S,t∈T . Sim-
ilar to the argument we made earlier, this can be viewed as a gen-
eralization of explicit multipath routing. Consider the following
optimization problem:

TE-SS-weighted(Xcp,Rbg)

minimize TE+ γ ·SS (9)

subject to f cp
l = ∑

(s,t)

xst
l , ∀l

fl = f cp
l + ∑

(i, j)/∈S×T

xi j · r
i j
l ≤Cl , ∀l

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j , ∀(i, j) /∈ S×T,∀v∈V\{i}

∑
s∈S



 ∑
l :l∈In(v)

xst
l − ∑

l :l∈Out(v)
xst

l



 = Mt · Iv=t , ∀v /∈ S, ∀t ∈ T

variables xst
l ≥ 0, 0≤ r i j

l ≤ 1

Denote the feasible space of the joint variable asJ = {Xcp,Rbg}.
If we vary γ and plot the achieved TE objectives versus SS objec-
tives, we obtain the Pareto curve.

To illustrate the Pareto curve and efficiency loss in Model I and
Model II, we plot in Figure 3 the Pareto curve and the Nash equilib-
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ria in the two-dimensional space (TE,SS) for an example network
similar to Figure 2. The simulation shows that when the CP lever-
ages the complete information to optimize (3), it is able to achieve
lower delay, but the TE cost suffers. Though it is not clear which
operating point is better, both equilibria are away from thePareto
curve, which shows that there is room for performance improve-
ment in both dimensions.

6. A JOINT DESIGN
Motivated by the need for a joint TE and SS design, we propose

the Nash bargaining solution to reduce the efficiency loss observed
above. We also present an algorithm based on optimization decom-
position theory to implement the solution distributively.

6.1 Motivation
An ISP providing content distribution service in its own network

has control over both routing and server selection. So the ISP can
take into consideration the characteristics of both types of traffic
(background and CP) and jointly optimize a carefully chosenob-
jective. The jointly optimized system should meet at least two
goals: (i) optimality, i.e., it should achieve Pareto optimality so
the network resources are efficiently utilized, and (ii) fairness, i.e.,
the tradeoff between two non-synergistic objectives should be bal-
anced so both parties benefit from the cooperation.

One natural design is to optimize the weighted sum of the traffic
engineering goal and server selection goal as shown in (9). How-
ever, solving (9) for eachγ and adaptively tuningγ in a trial-and-
error fashion is impractical and inefficient. First, it is hard to weigh
the tradeoff between the two objectives, especially when they are
measured in different units. Second, one needs to prepare for ev-
ery set of background and CP traffic demand an appropriate weight
parameterγ , which is not efficient. In addition, the offline com-
putation does not adapt to dynamic changes of network conditions,
such as cross traffic or link failures. Last, from a mathematical
viewpoint, tuningγ to explore a broad region of system operating
points is computationally expensive. Usually, exploring alarge set
of γ only produces a small operating region.

Apart from the system perspective, the economic consideration
requires that the solution should befair. Namely, such a joint de-
sign paradigm should benefit both TE and SS. In addition, sucha
model also applies to a more general case when the ISP and the
CP are different entities. They cooperate only when the coopera-
tion leads to a win-win situation, and the “division” of the benefits
should be fair, i.e., one who makes greater contribution to the col-
laboration should be able to receive more reward, even when their
goals are conflicting.

For the concern of a practical deployment, the new system should
not require a significant change to the existing infrastructure. Though
the joint system is designed from a clean state, it should allow an
incremental deployment. In particular, we prefer that the func-
tionalities of routing and server selection be separated, with mi-
nor changes to each component. The modularized design allows
us to manage each optimization independently, with only a judi-
cious amount of information exchange. Designing for scalability
and evolvability is beneficial to both the ISP and the CP, and allows
their cooperation either as a single entity or as different ones.

Based on all the above considerations, we borrow the concept
of Nash bargaining solution[6, 17] from cooperative game theory.
As we show next, it ensures that the joint system achieves aneffi-
cientandfair operating point. The solution structure also allows a
distributed implementation that is amenable to building a practical
system.

6.2 Nash Bargaining Solution
Consider a Nash bargaining solution which solves the following

optimization problem:

maximize (TE0−TE)(SS0−SS) (10)

variables {xst
l , r i j

l } ∈ J

where(TE0,SS0) is a constant called thedisagreement point, which
represents the baseline to cooperate. Namely,(TE0,SS0) is the
status-quo we observe before any cooperation. For instance, one
can view the Nash equilibrium in Model I as a disagreement point,
since it is the operating point the system would reach without any
further optimization. By optimizing the product of performance
improvements of TE and SS, the Nash bargaining solution guaran-
tees the joint system is optimal and fair, due to the properties of a
Nash bargaining solution. A Nash bargaining solution is uniquely
defined by the following four axioms:

• Pareto optimality. A Pareto optimal solution ensures effi-
ciency.

• Symmetry. The two players should get equal share of the
gains through cooperation, if the two players’ problems are
symmetric, i.e., they have the same cost functions, and have
the same objective value at the disagreement point. This is
not true for the TE-SS game though.

• Expected utility axiom. The Nash bargaining solution is in-
variant under affine transformations. Intuitively, this axiom
suggests that the Nash bargaining solution is insensitive to
different units used in the objective and can be efficiently
computed by affine projection.

• Independence of irrelevant alternatives. This means that adding
in extra constraints in the feasible operating region does not
change the solution, as long as the solution itself is feasible.

Note that Nash bargaining solution is the only solution thatsatisfies
the above four axioms [6, 17].

The seminal idea of Nash bargaining solution comes from the
modeling of bargaining arbitration between two players under which
the solution is derived. The analysis is omitted here due to lack of
space and we demonstrate the benefits through numerical evalu-
ation. In practice, one can choose the disagreement point asthe
baseline performance requirement. In this work, we use the Nash
equilibrium of Model I as the disagreement point, since it isread-
ily accessible by both the ISP and the CP based on the empirical
observation in current practice.

6.3 Distributed Algorithm
A good solution concept not only ensures efficiency and fairness,

but should also have a distributed implementation. This is impor-
tant because separate functionalities allows for a modularized de-
sign, in which legacy systems like CDNs can be leveraged with
minor changes. Even if the ISP and the CP are two independent
economic entities, the distributed structure offers an opportunity to
cooperate with judicious information exchange.

In the following, we utilize the theory of optimization decompo-
sition [18] to decompose problem (10) into two subproblems.The
ISP solves a routing subproblem and the CP solves a server selec-
tion subproblem, with minimal information exchange on links.

The objective of (10) can be converted to

maximize log(TE0−TE)+ log(SS0−SS)
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since the log(·) function is monotonic and the feasible solution

space is unchanged. We introduce two auxiliary variablef cp
l and

f bg
l . The above problem can be rewritten as

max. log(T E0−∑
l

gl ( f bg
l + f cp

l ))+ log(SS0−∑
l

hl ( f cp
l + f bg

l ))

(11)

s.t. f cp
l = ∑

(s,t)

xst
l , f bg

l = ∑
(i, j)/∈S×T

xi j · r
i j
l , ∀l

f cp
l = f cp

l , f bg
l = f bg

l , f cp
l + f bg

l ≤Cl , ∀l

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j , ∀(i, j) /∈ S×T,∀v∈V\{i}

∑
s∈S



 ∑
l :l∈In(v)

xst
l − ∑

l :l∈Out(v)
xst

l



 = Mt · Iv=t , ∀v /∈ S, ∀t ∈ T

var. xst
l ≥ 0, 0≤ r i j

l ≤ 1, ∀(i, j) /∈ S×T, f cp
l , f bg

l

The partial Lagrangian of (11) is

L(xst
l , r i j

l , f cp
l , f bg

l ,λl ,µl ,νl )

= log(TE0−∑
l

gl ( f bg
l + f cp

l ))+∑
l

µl ( f bg
l − f bg

l )

+ log(SS0−∑
l

hl ( f cp
l + f bg

l ))+∑
l

νl ( f cp
l − f cp

l )

+∑
l

λl (Cl − f bg
l − f cp

l )

whereλl is thelink price, andµl ,νl are theconsistency prices. Ob-
serve thatf cp

l and f bg
l can be separated in the Lagrangian function.

We take a dual decomposition approach, and (11) is decomposed
into two subproblems:

SS-NBS(xst
l , f bg

l ):

max. log(SS0−∑
l

hl ( f cp
l + f bg

l ))+∑
l

(νl f cp
l −µl f bg

l −λl f cp
l )

(12)

s.t. f cp
l = ∑

(s,t)

xst
l , ∀l

∑
s∈S



 ∑
l :l∈In(v)

xst
l − ∑

l :l∈Out(v)
xst

l



 = Mt · Iv=t , ∀v /∈ S, ∀t ∈ T

var. xst
l ≥ 0, f bg

l

and

TE-NBS(r i j
l , f cp

l ):

max. log(T E0−∑
l

gl ( f bg
l + f cp

l ))+∑
l

(µl f bg
l −νl f cp

l −λl f bg
l )

(13)

s.t. f bg
l = ∑

(i, j)/∈S×T

xi j · r
i j
l , ∀l

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j , ∀(i, j) /∈ S×T,∀v∈V\{i}

var. 0≤ r i j
l ≤ 1,∀(i, j) /∈ S×T, f cp

l

The optimal solutions of (12) and (13) for a given set of prices
µl ,νl , andλl define the dual function Dual(µl ,νl ,λl ). The dual
problem is given as:

minimize Dual(µl ,νl ,λl ) (14)

variable λl ≥ 0,µl ,νl

We can solve the dual problem with the following price updates:

λl (t +1) =

[

λl (t)−βl
(

Cl − f bg
l − f cp

l

)

]+

, ∀l (15)

µl (t +1) = µl −βl ( f bg
l − f bg

l ), ∀l (16)

νl (t +1) = νl −βl ( f cp
l − f cp

l ), ∀l (17)

whereβ ’s are diminishing step sizes or small constant step sizes
often used in practice [19].

In this new architecture, the ISP solves the modified versionof
TE, i.e., TE-NBS, and the CP solves the modified version of SS,
i.e., SS-NBS. On information sharing, the CP learns the network
topology from the ISP. They do not directly exchange information

with each other. Instead, they reportf cp
l and f bg

l variables to each
link, which passes the computed price information back to them.
This way, only one new component is required, e.g., the priceup-
dating function on each link, which can be potentially implemented
in each router. Table 4 presents the algorithm that implements the
Nash bargaining solution distributively.

Distributed Algorithm for NBS
(1) Link initialization: Setλl to be some nonnegative value,

and setµl andνl to arbitrary real value.
(2) The ISP solves (13) and makes routing decisionr i j

l for
background traffic.
The ISP passesf bg

l , f cp
l to each linkl .

(3) The CP solves (12) and makes decisionxst
l for CP traffic.

The CP passesf cp
l , f bg

l to each linkl .
(4) Price update:

Each link updates the link priceλl according to (15),
and passesλl to the ISP and the CP.
Each link updates the consistency pricesµl ,νl according to
(16) and (17), and passesµl ,νl to the ISP and the CP.

(5) Go to step (2) until the solution converges.

Table 4: Distributed algorithm for solving the Nash bargaining
solution

We decouple the functionalities of a joint system, so they can be
operated and deployed independently. Note that in our simulation,
we actually solve the Nash bargaining solution centrally, without
using the distributed solution, since we are primarily interested to
see the performance of the solution. A practical protocol imple-
mentation and evaluation will be left as our future work.

7. PERFORMANCE EVALUATION
In this section, we use simulation to demonstrate several para-

doxical examples that may occur for real network topologiesand
traffic models. We also compare the performance of the three mod-
els we proposed. Complementary to the theoretical analysis, the
simulation results presented here allow us to gain a better under-
standing of the efficiency loss under realistic network environments.
These simulation results also provide guides to network operators
who need to decide which approach to take, sharing information or
sharing control.
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7.1 Simulation Setup
We evaluate our models under real ISP topologies obtained from

Rocketfuel [20]. We use the backbone topology of the research
network Abilene [21] and several major tier-1 ISPs in north Amer-
ica. The choice of these topologies also reflects different geometric
properties of the graph. For instance, Abilene is the simplest graph
with two bottleneck paths horizontally. The backbones of AT&T
and Exodus are a hub-and-spoke structure with some shortcuts be-
tween nodes pairs. The topology of Level 3 is almost a complete
mesh, while Sprint is in between these two kinds.

Obtaining an accurate traffic matrix is also essential to oureval-
uation. Unfortunately, we have no means to access real traffic pat-
terns on these networks. So we simulate the traffic demand using a
gravity model [22], which reflects the pairwise communication pat-
tern on the Internet. The content demand of a CP user is assumed
to be proportional to the node population.

The TE cost functiong(·) and the SS cost functionh(·) are also
carefully chosen. In particular, ISPs usually model congestion cost
with a convex increasing function of the link load. The exactshape
of the functiongl ( fl ) is not important, and we use the same piece-
wise linear cost function as in [7], given below:

gl ( fl ,Cl ) =







































fl 0≤ fl/Cl < 1/3

3 fl −2/3Cl 1/3≤ fl/Cl < 2/3

10fl −16/3Cl 2/3≤ fl/Cl < 9/10

70fl −178/3Cl 9/10≤ fl/Cl < 1

500fl −1468/3Cl 1≤ fl/Cl < 11/10

5000fl −16318/3Cl 11/10≤ fl/Cl < ∞

The CP’s cost function can be the performance cost like latency,
financial cost charged by ISPs, or something else. We consider the
case where latency is the primary performance metric, i.e.,the con-
tent traffic is delay sensitive like video conferencing or live stream-
ing. So we let the CP’s cost functionhl (·) be of the form given
by Equation 2, i.e.,hl ( fl ) = f cp

l ·Dl ( fl ). A link’s latency Dl (·)
consists of queuing delay and propagation delay. The propagation
delay is translated from geographical distances between nodes. The
queuing delay is approximated by the M/M/1 model, i.e.,

Dqueue=
1

Cl − fl
, fl < Cl

with a linear approximation when the link utilization is over 99%.
We relax the link capacity constraints in both TE and SS and pe-
nalize traffic overshooting the link capacity with high costs. The
shapes of the TE link cost function and queuing delay function are
illustrated in Figure 4.
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Figure 4: ISP and CP cost functions.
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Figure 5: The TE-SS tussle v.s. CP’s traffic intensity (Abilene
topology)

Note that we intensionally choose the cost functions of TE and
SS to be similar. This allows us to demonstrate the efficiencyloss
of Model I and Model II even when their objectives are not too con-
flicting, as well as the significant improvement brought by Model
III.

7.2 Evaluation Results

7.2.1 Tussle between background and CP’s traffic
We first demonstrate how CP’s traffic intensity affects the overall

network performance. We fix the total amount of traffic and tune
the ratio between background traffic and CP’s traffic. We evaluate
the performance of different models when CP traffic grows from
1% to 100% of the total traffic. Figure 5 illustrates the results on
Abilene topology.

The general trend of both TE and SS objectives for all three mod-
els is that the cost first decreases as CP traffic percentage grows,
and later increases as CP’s traffic dominates the network. The de-
creasing trend is due to the fact that CP’s traffic is self-optimized
by selecting servers close to a user, offloading the network.The
increasing trend is more interesting, suggesting that whena higher
percentage of total traffic is CP-generated, the negative effect of
TE-SS interaction is amplified, even when the ISP and the CP share
similar cost functions. Low link congestion usually means low end-
to-end latency, and vice versa. However, their differ in thefollow-
ing: (i) TE might penalize high utilization before queueingdelay
becomes significant in order to leave as much room as possibleto
accommodate changes in traffic, and (ii) CP considers both prop-
agation delay and queueing delay so it may choose a moderately-
congested short path over a lightly-loaded long path. This explains
why the optimization efforts of two players are at odds. As wewill
show in the following, such delicate differences also result in sce-
narios similar to what we found in the paradox of extra information.

7.2.2 Network congestion v.s. performance improve-
ment

We now study the network conditions under which more perfor-
mance improvement is possible. We evaluate three models on the
Abilene topology. Again, we fix the total amount of traffic and
vary the CP’s traffic percentage. But we change link capacities and
evaluate two scenarios: when the network is moderately congested
and when the network is highly congested. We show the perfor-
mance improvement of Model II and Model III over Model I (in
percentages) and plot the results in Figure 6. Figure 6(a-b)show
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Figure 6: TE and SS performance improvement of Model II and III over Model I. (a-b) Abilene network under low traffic load:
moderate improvement; (c-d) Abilene network under high traffic load: more significant improvement, but more information (in
Model II) does not necessarily benefit the CP and the ISP (the paradox of extra information).

Abilene AT&T Exodus Level3 Sprint
−5

0

5

10
ISP improvement on different networks

pe
rc

en
ta

ge
 o

f T
E

 c
os

t s
av

in
g

 

 

Model II (Sharing Info)
Model III (Sharing Control)

Abilene AT&T Exodus Level3 Sprint
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Maximum link utilization on different networks

m
ax

 li
nk

 u
til

iz
at

io
n

 

 

Model I (No Cooperation)
Model II (Sharing Info)
Model III (Sharing Control)

Abilene AT&T Exodus Level3 Sprint
−6

−4

−2

0

2

4

6

8

10

12

14
CP improvement on different networks

pe
rc

en
ta

ge
 o

f S
S

 c
os

t s
av

in
g

 

 

Model II (Sharing Info)
Model III (Sharing Control)

(a) (b) (c)

Figure 7: Performance evaluation over different ISP topologies. Abilene: small cut graph; AT&T, Exodus: hub-and-spoke with
shortcuts; Level 3: complete mesh; Sprint: in between.

the improvement of the ISP and the CP when the network is un-
der low load. Generally, Model II and Model III improve both TE
and SS, though Model III outperforms Model II in almost all cases.
However, except the case when the CP’s traffic is little (1%),the
CP’s improvement is not significant. The ISP’s improvement is not
significant for any amount of CP traffic (note the different scales
of y-axes). This is because when the network is under low load,
the slopes of TE and SS cost functions are “flat,” thus leavinglit-
tle space for improvement. Figure 6(c-d) show the results when
the network is under high load. Improvement becomes more sig-
nificant, especially at the two extremes: when CP’s traffic islittle
and is prevalent. However, we also observe that sometimes Model
II performs worse than Model I: both the ISP and the CP do not
benefit with more information.

7.2.3 Impact of ISP topologies
We evaluate the three models on different ISP topologies. The

topological properties of different graphs are discussed earlier in
the simulation setup. The CP’s traffic is 80% of the total traffic and
link capacities are set such that networks are under high traffic load.
Our findings are depicted in Figure 7. Note that performance im-
provement is relatively more significant in more complex graphs.
Simple topologies with small min-cut sizes are networks where the

paradox is more likely to occur. Besides the TE and SS objectives,
we also plot the maximum link utilization, which is another impor-
tant metric that measures a network’s congestion. Observe that the
direction of change of the max link utilization metric does not al-
ways coincide with that of the TE metric. This suggests that Model
I and Model II are also sensitive to a careful choice of the objective
functions, while Model III is more robust under different objective
models.

8. RELATED WORK
In [12], the authors show that selfish routing is close to optimal in

Internet-like environments, while our work explores the optimality
of strategic content distribution under the interaction with traffic
engineering. [23] studies the problem of load balancing by over-
lay routing, and how to alleviate race conditions among multiple
co-existing overlays. [24] studies the resource allocation problem
at inter-AS level where ISPs compete to maximize their revenues.
[25] leverages Nash bargaining solution to solve an inter-domain
ISP peering problem. These pieces of work studied the interac-
tion within ISPs or CPs themselves, but do not consider the tussle
between network providers and content providers.

The need for cooperation between content providers and network
providers is raising much discussion in both the research commu-
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CP no change CP change
ISP no change current practice partial collaboration

ISP change partial collaboration joint system design

Table 5: To cooperate or not: possible strategies for content
provider (CP) and network provider (ISP)

nity and the industry. [26] leverages price theory to reconcile the
tussle between peer-assisted content distribution and ISP’s resource
management. [5] proposes a communication portal between ISPs
and P2P applications so that both parties gain from cooperation.
These pieces of work represent the approach of sharing information
on one of the four dimensions as shown in Table 5. The possibility
of sharing control has been unfortunately neglected.

Recent work [27] studied a similar problem on the interaction be-
tween content distribution and traffic engineering. Similar results
on the possibility of the global optimality are reported, and their
models are extended to multiple-ISP cases. This paper is a major
extension of an earlier workshop paper [28], because we bothqual-
itatively and quantitatively analyze conditions for optimality and
efficiency loss. For example, the paradoxical example and its im-
plication, the solution with distributed implementation,and large
scale simulations were absent in the earlier version.

9. CONCLUSION AND FUTURE WORK
In this work, we examine the interplay between traffic engineer-

ing and content distribution. Though the problem has long existed,
the dramatically increasing amount of content-centric traffic, e.g.,
CDN and P2P traffic, makes it more significant than ever. With
the strong motivation for ISPs to provide content services,they are
faced with the question of whether to stay with the current design or
to adopt a joint system design. This work sheds light onto possible
cooperations between CPs and ISPs.

This paper serves as a starting point of our future work in better
understanding the interaction between ISPs and CPs. Traditionally,
ISPs provide and operate the pipes, while content providersdis-
tribute contents over the pipes. In terms of what information can
be shared between ISPs and CPs and what control can be jointly
designed, there are four general categories as summarized in Ta-
ble 5. The top left corner is the current practice, which may give
an undesirable Nash equilibrium. The bottom right corner isthe
joint design, which achieves optimal operation points. Thetop
right corner is the case where the CP receives extra information
and adapts control accordingly, and the bottom left corner is the
case of content-aware networking. This paper studies all four cases
except content-aware networking. Starting from the current prac-
tice, to move along either direction of Table 5 when the two par-
ties remain separate business entities would require unilaterally-
actionable, backward-compatible, and incrementally-deployable mi-
gration paths yet to be discovered.
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APPENDIX

A. DISTRIBUTED ALGORITHM FOR
GREEDY SERVER SELECTION

In this section, we leverage Q-learning [29] in reinforcement
learning to simulate the CP’s server selection in model I. Basically,
it is a distributed solution that drives the decision to the Wardrop
equilibrium, as we will define later. Though it is not directly opti-
mizing the objective function of (3), it is a distributed algorithm that
is easily implementable and resembles the solution of many content
providers today [4]. In fact, [12] points out that selfish-routing is
close to optimal in Internet-like environments [12].

The application of Q-learning in network routing has been stud-
ied in some literatures [13] [30]. [30] applied Q-learning and pro-
posed a probabilistic multi-path routing scheme that learns good
routes adaptively. We model the CP’s server selection as a simi-
lar Q-learning scheme that learns good servers adaptively,which
we call Q-SS. Due to limited space, we only sketch the basic idea.
Readers can refer to our technical report for more details.

We next define the algorithm more rigorously. Every usert is as-
sociated with a vectorQt , where thes-th componentQt(s) ∈ [0,1]
is the proportion oft ’s traffic demand that is served by servers.
Hence,∑s∈S(t) Qt(s) = 1. The basic idea of Q-SS works as fol-
lows. Initially, Qt is set arbitrarily. Then it is updated according
to the perceived end to end delay. Namely, if the delay froms to
t is larger than the average perceived delay over all servers,Qt(s)
is decreased so better servers will serve more demand. Otherwise,
Qt(s) is increased. We show that server selection based on mea-
sured delay as above will reach aWardrop equilibrium[10].

Let Ds,t denote the end-to-end delay froms to t. The average
perceived delay by usert is

Dt = ∑
s∈S

Qt(s) ·Ds,t (18)

We have that

Definition 2. Qt ,∀t ∈ T, is a Wardrop equilibrium, if∀s,s′,s′′ ∈ S,
Qt(s) > 0, Qt(s′) > 0, and Qt(s′′) = 0 imply that Ds,t = Ds′,t ≤
Ds′′,t .

Intuitively, at the equilibrium point, any server should have the
same delay to a user, if the service rate is non-zero. And the delay
is smaller than those with zero server rate. It turns out thatthe
equilibrium point can be viewed as the solution to the following
optimization problem, as studied in [11]:

minimize ∑
l∈E

∫ fl

0
Dl (u)du (19)

subject to ∑
s

xst = Mt , ∀t

variable xst ≥ 0

whereDl (·) is the link delay function, which consists of queueing
delay and propagation delay. IfDl (·) is a strictly convex function,
(19) has a unique optimal solution and hence, a unique Wardrop
equilibrium. One can directly solve (19) to obtain the equilibrium
point of greedy server selection.

The Q-SS algorithm proceeds in the following steps. LetD̃s,t be
the measured end-to-end delay froms to t at some time, which can
be obtained from active or passive probes. Whenever receiving a
new measurement̃Ds,t , SS estimates new end-to-end delay in the
future would be:

Ds,t = (1−α) ·Ds,t +α · D̃s,t (20)

Q-SS algorithm: Initialize Qt(s) = 1/|S(t)|, Ds,t = D̃s,t .
Repeat:

Measure the end-to-end delay from servers to usert asD̃s,t .
Update the estimate ofDs,t according to (20).
Compute the average delay for usert according to (21).
UpdateQt according to (22).
ProjectQt to [0,1]|S(t)| probability space.

Until Qt converges.

Table 6: SS Q-learning protocol with incomplete information.

whereinα is the delay learning factor. The average perceived delay
by usert over all servers is

Dt = ∑
s∈S(t)

Qt(s) ·Ds,t (21)

Then we updateQt as follows:

Qt(s) = Qt(s)+β [(Dt −Ds,t)/Dt ] (22)

whereβ is called the SS learning factor.
After the update, some entries may become negative or greater

than one. Hence,Qt is projected onto[0,1]|S(t)| to ensure that it is
a valid probability vector.

Finally, we can use the normalized internal routing vectorQt to
compute the real routing vectorPt . Namely,

Pt(s) = (1− ε)Qt (s)+ ε/|S(t)| (23)

whereε is a small positive constant number.Pt is perturbed from
Qt by adding uniform routing probabilities to it. This is to make
sure that all possible servers are probed, in case some entries ofQt
is zero.

Table 6 summarizes the Q-SS algorithm in model I. With ap-
propriate choices of the learning factorsα,β , i.e., diminishing step
sizes,Qt will converge to a stable point. So there is no self-oscillation,
and SS eventually converges to Wardrop equilibrium.

B. PROOF OF LEMMA 3
Proof: The proof proceeds in two steps. We first show that the
Nash equilibrium in the TESS game is also an optimal solutionto
(6), though not specifying how it is achieved. The basic ideais to
check the KKT [16] conditions of TE and SS at Nash equilibrium,
and then compare to the KKT condition of (6). Then we show that
an algorithm like (4) converges to the Nash equilibrium.

Step I: Consider a feasible solution{xst, rst
l } at Nash equilibrium,

i.e., each one is the best response of the other. To assist ourproof,
we defineφl ( fl ) = Φ′( fl ) as the marginal cost of linkl .

We first show the optimality condition of SS. Letφst = ∑l φl ( fl ) ·
rst
l , which denotes the marginal cost of(s,t) pair. By the definition

of Nash equilibrium, for anys such thatxst > 0, we haveφst ≤ φs′t
for any s′ ∈ S, by inspecting the KKT condition of the SS opti-
mization. This implies that servers with positive rate havethe same
marginal latency, which is less than those of servers with zero rate.
Let φt = φst for all xst > 0.

We next check the optimality condition of TE. Consider an(s,t)
server-user pair. Letδsv denote the average marginal cost from
nodes to v, which can be recursively defined as

δsv =

{

∑l :(u,v)∈In(v)(δsu+φl ) · rst
l /∑l∈In(v) rst

l if v 6= s
0 if v = s

13



The KKT condition of the TE optimization is for∀v ∈ V, ∀l =
(u,v), l ′ = (u′,v) ∈ In(v), rst

l > 0 impliesδsu+ φl ≤ δsu′ + φl ′ . In
other words, for any nodev, the marginal cost accumulated from
any incoming link with positive flow is equal, and less than those
of incoming links with zero flow. So we can defineδsv = δsu+φl ,
∀l = (u,v) ∈ In(v) with rst

l ≥ 0.
In fact,δst = ∑l :(u,t)(δsu+φl ) · rst

l = ∑l φl · rst
l = φst, by inspect-

ing flow conservation at each node and the fact that any(s,t) path
has the same marginal latency as observed above. Combining the
two KKT conditions together gives us the necessary and sufficient
condition for Nash equilibrium:
{

δsu+φl ≤ δsu′ +φl ′ if rst
l > 0 ∀s∈ S, ∀v∈V, ∀l , l ′ ∈ In(v)

δst ≤ δs′t , if xst > 0 ∀s,s′ ∈ S
(24)

An intuitive explanation is to consider the marginal latency of
any pathp that is realized by the routing decision. LetP(t) be the
set of paths that connect all possible servers and the usert. Letφp =
∑l :l∈p φl . A path p is active if rst

l > 0 for all l ∈ p, which means
there is a positive flow between(s,t). Then the above condition can
be translated into the following argument: for any pathp, p′ ∈P(t),
φp ≤ φp′ if p is active. In other words, any active path has the same
marginal latency, which is less than those of non-active paths.

On the other hand, we show the KKT condition for (6). Suppose
{xst

l } is an optimal solution to (6). Similarly, we can define the
marginal latency from nodes to v as

∆sv =

{

∑l :(u,v)∈In(v)(∆su+φl ) ·xst
l /∑l∈In(v) xst

l if v 6= s
0 if v = s

The KKT condition of (6) is the following:

{

∆su+φl ≤ ∆su′ +φl ′ if xst
l > 0 ∀s∈ S, ∀v∈V, ∀l , l ′ ∈ In(v)

∆st ≤ ∆s′t , if xst
l > 0 for somel ∀s,s′ ∈ S

(25)
One can readily check the equivalence of conditions (24) and

(25). To be more specific, suppose{xst, rst
l } is a Nash equilib-

rium that satisfies (24), we can construct{xst
l } as discussed the

proof of Lemma 2, which one can easily verify that satisfies (25).
Vice versa, given an optimal solution{xst

l } to (6), one can construct
{xst, rst

l } as advised Lemma 2, which satisfies (24).

Step II: In the final step, we prove alternate game moves, i.e., ISP
and CP iteratively optimize their own objectives, will leadto the
optimal point. To see this, the objective in (7) is a Lyapunovfunc-
tion. Since two players share the same objective, and each player
move is the best response to the other, the resulting objective value
in the game is a decreasing sequence. In addition, the objective
of (7) is lower-bounded by the optimal value of (6). So the game
sequence will eventually reach the optimal point, which is also a
Nash equilibrium.
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