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Abstract

Current cryptographic constructions typically involve a large multiplicative computational
overhead that grows with the desired level of security. Recently, at STOC 2008, Ishai, Kushile-
vitz, Ostrovsky, and Sahai (IKOS) suggested the possibility of implementing cryptographic
primitives, while incurring only a constant computational overhead compared to insecure im-
plementations of the same tasks. Surprisingly, Ishai et al showed that such highly efficient
cryptographic constructions can be realized, under plausible, yet nonstandard, intractability
assumptions.

In this paper, we show that if one is willing to accept polylogarithmic computational over-
head, many constructions can be achieved under standard assumptions. Specifically, assuming
the hardness of decoding random linear code (or equivalently, hardness of learning parity with
noise), we get the following results.

1. A pseudorandom generator G : {0, 1}n → {0, 1}2n which doubles its input length and
can be computed in quasilinear time Õ(n) = n · polylog(n).

2. A construction of weak randomized pseudorandom function – a relaxation of standard
PRF – which can be obliviously computed in quasilinear time. This is far more effi-
cient than previously known constructions, such as the oblivious evaluation of the Naor-
Reingold PRF (FOCS 1997).

3. A symmetric encryption scheme whose encryption and decryption algorithms are com-
putable by circuits of quasilinear size (in the message length). Our scheme provides
security against key-dependent messages and achieves circular security. This provides
a highly efficient alternative in the private-key setting to the circular-secure public-key
encryption scheme of Boneh, Halevi, Hamburg, and Ostrovsky (CRYPTO 2008).

By combining our results with previous ones, we get fast implementations of various other
primitives and protocols.
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1 Introduction
Improving the efficiency of cryptographic construction is an important goal motivated by both
practical and theoretical interests. Typical cryptographic functions introduce a multiplicative com-
putational overhead that grows with the desired level of security. Recently, Ishai et. al. [IKOS08]
showed that many cryptographic tasks can be implemented while incurring only a constant com-
putational overhead compared to insecure implementations of the same tasks. These results were
based on plausible, yet nonstandard, intractability assumptions. The purpose of this paper is to
derive similar results under a standard assumption. We show that this is possible at the expense
of slightly relaxing the efficiency requirement. Namely, we show that if one strives for polylog-
arithmic computational overhead, it is possible to derive some of the results of [IKOS08] as well
as other new results, under the well-known assumption that random binary linear codes cannot be
decoded in polynomial-time.

1.1 Our Assumption: Hardness of Decoding Random Linear Code
Our results are based on the intractability of decoding a random linear code. In the following we
introduce and formalize this assumption.

For code length parameter m = m(n), and noise parameter 0 < µ < 1
2
, we will consider the

following “decoding game” DECODE(m,µ). Pick a random binary matrix C ∈ Fm×n2 representing
a linear code, and a random information word x ∈ Fn2 . Encode x with C and transmit the resulting
codeword y = Cx over a binary symmetric channel in which every bit is flipped with probability
µ. Output the noisy codeword ŷ along with the code’s description C. The adversary’s task is to
find the information word x. We say that DECODE(m,µ) is intractable if every polynomial-time
adversary wins in the above game with no more than negligible probability in n.

Assumption 1.1 (Hardness of Decoding Random Linear Code (DRLC)). For every constant 0 <
µ < 1

2
and polynomial m(·), the DECODE(m,µ) game is intractable.

The hardness of DECODE(m,µ) is well studied [BFKL94, Kea98, HB01, BKW03, Lyu05,
JW05, FGKP06]. It can be also formulated as the problem of learning parity with noise, and it
is known to be NP-complete in the worst-case [BMvT78]. Assumptions similar to the DRLC as-
sumption were put forward in [GKL93, BFKL94, Gol01, HB01, JW05, KS06, AIK07]. The plau-
sibility of such an assumption is supported by the fact that a successful attack would imply a major
breakthrough in coding theory. We mention that the best known algorithm for DECODE(m,µ),
due to Blum et al. [BKW03], runs in time 2O(n/ logn) and requires m to be 2O(n/ logn). Lyuba-
shevsky [Lyu05] showed how to reduce m to be only super-linear, i.e., n1+α, at the cost of increas-
ing the running time to 2O(n/ log logn).

All the results of this paper follow from the DRLC assumption. In fact, we can rely on a relaxed
version of DRLC in which the noise rate is set to some universal constant (e.g. , 1/8). Moreover,
for some of our applications it suffices to assume DRLC with respect to some fixed polynomial
code length (e.g. , m(n) = n6). Finally, we emphasize that DRLC does not assume exponential
hardness.
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1.2 Our Results
Assuming the DRLC assumption, we get the following results.

1.2.1 Quasilinear-time pseudorandom generator

We construct a pseudorandom generator (PRG) which doubles its input length and can be com-
puted by a Boolean circuit of size Õ(n). This is considerably faster than previous constructions of
linear-stretch PRGs (e.g. ,[FS96, DRV02, DN02, Gen05]) which suffer from a polynomial over-
head. To the best of our knowledge, the only exception is the construction of [AIK06] which
is computable by linear-size (NC0) circuit. This construction is based on a plausible, yet non
standard, assumption of Alekhnovich [Ale03]. Roughly speaking, this assumption suggests that a
noisy random codeword of a code with sparse generating matrix is pseudorandom. This assump-
tion is relatively new and, while seems reasonable, it has not been widely studied yet. Moreover,
unlike our DRLC assumption, Alekhnovich’s assumption assumes pseudorandomness rather than
one-wayness – which seems to be less appealing.

In [IKOS08] it is shown how to construct several fast cryptographic primitives based on a
linear-stretch PRG with low overhead. (These reductions are originally instantiated with the PRG
construction of [AIK06].) By plugging our PRG to these reductions we get implementations with
polylogarithmic overhead for several primitives such as commitment schemes, symmetric encryp-
tion schemes, and public-key encryption schemes (under the assumption that the latter exists).1

1.2.2 Randomized weak pseudorandom function

An efficiently computable function collection {fk} is a pseudorandom function family [GGM86]
if a random member fk of the family cannot be distinguished from a truly random function even
when the distinguisher gets an evaluation oracle. Randomized weak pseudorandom functions (RW-
PRFs) relax this notion in two ways: It provides security only when the function is evaluated on
randomly chosen points and it uses secret internal randomness. To make this notion nontrivial we
require an efficient “equality-tester” that verifies whether different invocations of the PRF (with
independent internal randomness) correspond to the same preimage. While this primitive is con-
siderably weaker than PRFs, we argue that in some scenarios RWPRFs can be used instead of
standard PRFs.

We construct an RWPRF which can be computed by a circuit of size quasilinear in the input
length. Moreover, we describe a secure protocol that allows to obliviously evaluate the function
in quasilinear time in the semi-honest model.2 This is considerably more efficient than previous
protocols for oblivious evaluation of PRFs (e.g. , the protocol of [FIPR05] for the Naor-Reingold
PRF [NR04]). In some settings, our construction can be used to obtain a fast protocol for secure
set intersection via the protocol of [HL08].

1We make the usual security requirement that the advantage of any polynomial-time attacker must be negligible in
the input length.

2Such a protocol allows two parties, one holding a point x and another holding a key k, to evaluate the function fk

on x without learning each other’s inputs.
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It should be mentioned that [IKOS08] constructs linear-time computable PRF under the min-
imal assumption that one-way functions exists. Moreover, they give a general linear-time com-
putable protocol for securely evaluating every two-party functionality. However, their protocol
relies on the existence of a polynomial stretch PRG which can be computed in NC0. This is a
relatively strong assumption whose validity still deserves more study.3

1.2.3 Circular-secure symmetric encryption

We construct symmetric encryption scheme whose encryption and decryption algorithms are com-
putable by circuits of quasilinear size (in the message length). Our scheme provides security
against key-dependent messages attacks (KDM) [BRS02]; that is, it remains secure even when the
adversary is allowed to see messages that depend on the secret keys in use via any fixed linear func-
tion. Moreover, our scheme is “circular secure” [CL01]: it remains secure under a “key cycle” (or
even a “key clique”) usage, where we have n users with n different keys and each key is encrypted
under all the other ones. Such usage scenarios arise in key-management systems, in the context of
anonymous credential systems, and in the context of “axiomatic security” (See [BHHO08]).

The notions of KDM and circular security were extensively studied for both symmetric and
public-key encryption schemes [CL01, BRS02, HK07, BPS07, BHHO08, CCS08, BDU08, HU08,
HH08]. Without resorting to the use of random oracles, constructing an encryption scheme (either
in the private-key or public-key setting) that is circular secure was a long-standing open problem.
This question was recently solved by Boneh et al. [BHHO08] who constructed such a public-
key encryption scheme. Our scheme is much faster than the scheme of [BHHO08] and hence it
provides a highly efficient alternative in the private-key setting.

We also note that our scheme (as well as the scheme of [BHHO08]) resists a restricted family
of key-related attacks, where the adversary is allowed to ask for encryptions under several different
unknown keys whose pairwise sums are fixed by the adversary. Such an encryption scheme was
needed by Ishai et al. [IKNP03] in order to obtain a protocol for reducing the amortized complexity
of oblivious transfer (OT). The original protocol used a random oracle to construct such a scheme.
Our new scheme can be used to remove the random oracle and obtain an efficient amortization of
OTs in the standard model. Finally, we mention that our scheme was used in [AIK08] to obtain
encryption scheme with constant latency.

A related scheme. We recently learned that a scheme similar to ours was independently discov-
ered by Dodis et al. [DKL]. Their variant is shown to be secure when the adversary is allowed to
see arbitrary function f(k) of the secret key k as long as the function is exponentially hard to in-
vert. We stress that this notion of security is incomparable to the notions studied here (i.e., circular
security, security under key-dependent messages, and security under key related attacks). More-
over, the results of [DKL] rely ona non-standard assumption which seems stronger than the DLRC
assumption. Finally, their scheme inherently adds a polynomial overhead in both computation and
communication.

3Some recent evident which weakly support this assumption can be found in [ABW08].
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2 Linear-Stretch PRG in Quasi-Linear Time

2.1 Overview
Our starting point is a simple pseudorandom generator which was originally suggested in [BFKL94].
Let G(C, x, r) = (C,Cx + e(r)), where C ∈ Fm×n2 , x ∈ Fn2 and e(·) is a noise sampling proce-
dure that uses a random input r to sample an m-length vector of noise rate µ. It was shown
in [BFKL94] that, under the DRLC assumption, the output distribution of G is pseudorandom.
(See also [BFKL94, FS96, Reg05, KS06, AIK07]). In order to get expansion the noise-sampling
algorithm should use a seed r of length shorter than m. Indeed, the noise vector can be sampled by
using a seed r whose length is roughly H2(µ) ·m; this gives an expansion of m(1 −H2(µ)) − n
which is positive when the rate n/m is smaller than 1−H2(µ).

The resulting PRG is quite efficient as it mainly uses bit-operations rather than costly arithmetic
operations over large fields. However, it still does not bring us to our goal (quasilinear time PRG).
The main problem is that the matrix-vector product requires Ω(mn) operations, and so the time
complexity of the generator is (at least) proportional to the product of the output length m and the
security parameter n.

To solve this problem, we exploit the fact that the matrix C is public and hence can be reused
with many different information words x1, . . . , x`. Hence, the modified generator will compute
the product of an m × n matrix C with an n × ` matrix X , and will add a noisy bit to each of
the entries of the matrix CX . By choosing ` carefully, we can use algorithms for fast rectangular
matrix multiplication to speed up the computation.

We should also show how to sample the noise vector in quasilinear time (without using too
many random bits). At first glance, this seems to be hard.4 However, we can bypass this problem
by using a fast sampling procedure suggested in [AIK06]. This procedure S samples an m-length
noise vector e by using more than m random bits. To compensate this loss S also outputs a
“change”– a vector v which is almost-random even when e is given. This allows us to concatenate
v to the output of the PRG.

2.2 The Construction
The following lemma shows that for a random code C, the mapping (x, e) 7→ Cx + e is pseudo-
random even when it is applied to polynomially-many random information words x1, . . . , x`.

Lemma 2.1. Let m(n) be a code length parameter, 0 < µ < 1
2

be a noise parameter and let `(n)

be arbitrary polynomial. If Assumption DRLC holds then the distributionDm,µ,`
def
= (C,C ·X+E)

is pseudorandom, where C R← Um(n)×n, X R← Un×`(n), and E ∈ {0, 1}m(n)×`(n) is a random error
matrix of noise rate µ.

Proof. Assume, towards a contradiction, that there exists an efficient distinguisher {An} which
distinguishes (C,CX + E) from (C,Um(n)×`(n)) with advantage ε(n). We use {An} to break the

4For example, the time complexity of the noise-sampling procedure of [FS96] is Θ(m2 log m), where m is the
length of the error vector and the error rate is constant.
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pseudorandomness of Dm,µ,1 and this way, by [BFKL94], derive a contradiction. Fix n and let
m = m(n), ` = `(n) and µ = µ(n). For a matrix C ∈ {0, 1}m×n let Dm,µ,`(C) denote the
distribution C ·X + E where X,E are distributed as in the statement of the lemma.

Given a pair C ∈ {0, 1}m×n and y ∈ {0, 1}n, our algorithm Bn samples an m × ` matrix T ,
invokes An on the pair (C, T ) and outputs the result. The matrix T = (TL, y, TR) is constructed as
follows: Bn chooses a random index i R← [`], and samples a matrix TL

R← Dm,µ,i(C), and a matrix
TR

R← Um×(`−i−1).
By a standard hybrid argument, Bn distinguishes Dm,µ,1 from the uniform distribution with

advantage ε/`. Specifically, define ` + 1 hybrids H0, . . . ,H` where Hi consists of a pair C R←
Um(n)×n and an m × ` matrix M = (ML,MR)

R← (Dm,µ,i(C), Um×(`−i)). Clearly, H0 ≡ Umn+m`

andH` ≡ Dm,µ,`. Hence, for i R← [`], the adversary A distinguishesHi−1 fromHi with (expected)
advantage ε/`. The proof follows by noting that the mapping (C, y) 7→ (C, T ) computed by B
takes the uniform distribution Unm+m toHi and the pseudorandom distributionDm,µ,1 toHi+1, for
randomly chosen i.

The following fact is based on [Cop82].

Fact 2.2. For every r ≤ 0.172 the product of a matrix in Fm×mr

2 and a matrix in Fmr×m
2 can be

computed by a circuit of size Õ(m2).

We will use a sampling procedure due to [AIK06].

Lemma 2.3 (implicit in [AIK06]). There exist positive integers k and c > 2k, and a sampling
algorithm S that uses (k+k/c)N random bits and outputs a pair of strings (e, v) where e is an N -
bit error-vector of noise rate 2−k, the vector v is of length kN , and the statistical distance between
(e, v) and (e, Ukn) is at most 2−Ω(N). Moreover, S can be implemented in NC0 and therefore by a
circuit family of size O(N).

We can now present our construction.

Construction 2.4. Let N = n12. Let k, c and S : {0, 1}(k+k/c)N → {0, 1}N × {0, 1}kN be the
constants and sampling algorithm promised by Lemma 2.3. Let e(r) and v(r) denote the first and
second entries of S(r). Define the function

G(C,X, r)
def
= (C,C ·X + e(r), v(r))

where, C ∈ Fn6×n
2 , X ∈ Fn×n6

2 , r ∈ {0, 1}(k+k/c)N , e(r) is parsed as a matrix in Fn6×n6

2 , and
matrix addition is computed entry-wise.

Theorem 2.5. Let G be the function defined in Construction 2.4. Then, assuming the DRLC
assumption, G is a PRG with linear-stretch. Furthermore, the generator G can be computed by a
circuit family of size quasilinear in the output length.
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Proof. We begin by verifying that G has linear stretch. Indeed, G takes 2n4.5 + (k + k/c)n7 <
(k+0.6)N input bits and outputs more than (k+1)N bits. Hence, the stretch is linear (in the input
length). Pseudorandomness follows by Lemmas 2.3 and 2.1 as

(C,C ·X + e(r), v(r))
s≡ (C,C ·X + e(r), Ukn7)

c≡ Un4.5+n7+kn7 .

Finally, by Fact 2.2, Lemma 2.3, and since entry-wise addition of two matrices is computable by
linear-size circuits, the generator G can be computed by a circuit-family of size Õ(N).

3 Weak Randomized PRF and Oblivious Evaluation Protocol
The PRG construction suggests a simple implementation of a weak form of pseudorandom function
family [GGM86] (PRF). We let X ∈ Fn×`(n)

2 be the secret key of the function family, and let
C ∈ Fm(n)×n

2 be the argument on which the function is being evaluated. The randomized function
is defined as fX(C) = CX + E where E ∈ Fm(n)×`(n)

2 is a secret error vector of rate µ which
is randomly chosen in each invocation. The resulting function family is pseudorandom when it is
evaluated on randomly chosen inputs C1, . . . , Cq. Although the function is randomized one can
easily verify whether y and y′ are images of the same input C under the same (possibly unknown)
key X . This can be done by checking that the two strings y and y′ are close in Hamming distance.
We formalize the above properties by defining the notion of weak randomized PRFs.

Definition 3.1. Let F : {0, 1}n×{0, 1}m(n) → {0, 1}s(n) be an efficiently computable randomized
function family. We say that F is a randomized weak pseudorandom function (RWPRF) if

• (weak pseudorandomness) For every polynomial p(·) the sequence(
C1, FX(C1), . . . , Cp(n), F (Cp(n))

)
is pseudorandom,

where X R← Un and (C1, . . . , Cp(n))
R← (Um)p(n) and fresh internal randomness is used in

each evaluation of FX .

• (verifiability) There exists an efficient algorithm V such that

Pr[V (Y1, Y2) = equal] > 1− neg(n) (1)
Pr[V (Y1, Y

′
2) = not-equal] > 1− neg(n), (2)

where X R← Un, C
R← Um, C

′ R← Um, Y1
R← FX(C), Y2

R← FX(C), and Y ′2
R← FX(C ′).

The following lemma easily follows from Lemma 2.1.

Lemma 3.2. Suppose that the DRLC assumption holds. Then, for every polynomials m(·), `(·)
and constant µ < 1

2
the function family fX(C) = C ·X + E defined above is a RWPRF.

By choosing `(n) = m(n) = n3.5 one can obtain quasilinear efficient evaluation of f . More-
over, in this case the function is symmetric, that is, one can replace the role of the argument and
the key without violating the pseudorandomness property.
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Oblivious evaluation protocol. In an oblivious evaluation protocol for a collection of functions
fx, one party (Alice) holds a key x and another party (Bob) holds a point C. At the end of the
protocol, Bob learns the value fx(C), while Alice learns nothing. One can also consider the
symmetric variant of the problem in which Alice learns fx(A) and Bob learns nothing. In our
setting, we also assume that the party who does not get the output selects the internal randomness
of the function. That is, we consider the task of securely computing the following functionalities
g((X,E), C)) = (λ,XC+E) and h(X, (C,E)) = (XC+E, λ) where λ denotes the empty string.
We give an efficient and secure protocol for evaluating both g and h in the semi-honest model.5 Our
protocol employs one-out-of-two oblivious transfer (OT) [EGL85] for strings of length m. Such
a protocol allows a receiver to receive one of two m-bit strings held by the sender in an oblivious
way, that is, without revealing which string is selected.

Lemma 3.3. There exists a protocol for securely evaluating f which uses circuits of size O(m`n)
with `n oracle gates to oblivious transfer which supports strings of length m.

Proof. The protocol is similar to the protocol suggested in [FIPR05] for obliviously evaluating the
Naor-Reingold PRF [NR04].

We begin with the version in which Alice receives the value of fX(C). Let X be Alice’s input
and C,E be Bob’s input. For each i ∈ [`] invoke in-parallel the following sub-protocol where x
(resp. e) is the i-th column of X (resp. E):

• Bob chooses a random matrix R R← Fm(n)×n
2 .

• For each j ∈ [n] Alice and Bob run string-OT protocol in which Alice is the receiver with
input xj and Bob’s input is the pair (Rj, Rj + Cj) where xj is the j-th bit of x and Rj is the
j-th column of R. In addition, Bob sends the sum t = e+

∑
j Rj .

• Alice sums up (over Fm(n)
2 ) the n + 1 vectors she received and outputs the result which is

equal to
∑

xj=1Cj + e.

It is not hard to see that the protocol securely evaluates the functionality h. Indeed, if the
OT is fully simulatable then one can easily sample the view of Alice given fX(C;E). To derive
a protocol in which Bob receives the output we slightly change the previous protocol. In each
iteration Bob selects an additional one time pad s R← Fm(n)

2 and instead of sending e +
∑

j Rj it
sends s +

∑
j Rj . Then, we add a final round in which Alice sums up all the vectors she received

together with e (the i-th column of the noise matrix which is now held by Alice) and sends the
result w back to Bob. The output of Bob is computed by adding the pad s to the received vector w.
Assuming the security of the OT, Alice’s view consists of randomly chosen vectors, while Bob’s
view can be easily generated from its input and fX(C;E).

5In fact, the protocol is also secure in the malicious setting (assuming that the OT provides such security). However,
this setting does not make sense for weak PRFs as even in the ideal world an active adversary (either Alice or Bob)
can learn the other player’s secret input by carefully selecting its own (non-random) inputs. (E.g., by letting X or C
be the identity matrix.)
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By using the ideas of [IKOS08] we can use our quasilinear PRG and any standard OT to obtain
a string OT that supports strings of length m with time complexity Õ(m) for sufficiently large m.
(Alternatively, one can use the reduction described in Section 4.3 to implement t calls to m-bit OT
in time Õ(mt).) Hence, if we set ` = 1 (which does not affect the security of the construction) we
get the following corollary:

Corollary 3.4. Assuming the DRLC assumption and the existence of an Oblivious Transfer pro-
tocol, there exists a weak randomized pseudorandom function fx(C; e) = Cx + e which can be
obliviously evaluated by constant-round protocol computed by circuits of size Õ(|C|) (i.e., quasi-
linear in the input length).

Application. Oblivious evaluation of pseudorandom function was recently used by Hazay and
Lindell [HL08] to obtain an efficient two-party protocol for secure set-intersection. Our construc-
tion can be used in their protocol whenever the inputs of the parties are randomly distributed. This
restriction is natural in some scenarios (e.g., when the inputs are names of entities or keys that
were randomly selected by some authority) and can be always obtained at the expense of using
a random oracle. The use of our weak PRF achieves significant speed up in comparison to the
existing instantiation which is based on the Naor-Reingold PRF [NR04].

We also note that RWPRF can be used to derive an identification scheme: we let parties share
a key for the RWPRF and verify the identity of a party by querying the value of the function on
a random point. When this protocol is instantiated with our function we get the well known HB
protocol [HB01]. (This view is implicit in [KS06].)

4 Fast Circular-Secure Encryption

4.1 The Construction
Syntactic definition of symmetric encryption. Symmetric encryption scheme consists of three
probabilistic-polynomial time algorithms (G,E,D), where G is a key generation algorithm which
given a security parameter 1n outputs a secret-key k (without loss of generality, the secret-key is a
randomly-chosen string k of length poly(n)); E is a randomized encryption algorithm that takes
a message m and a secret key k and outputs a ciphertext c; and D is a randomized decryption
algorithm that takes a ciphertext c and a secret key k and outputs a plaintext m′. Correctness
requires that decryption succeeds except with negligible probability in n.

Let ` = `(n) be a message-length parameter which is set to be an arbitrary polynomial in the
security parameter n. (Shorter messages are padded with zeroes.) Let µ = 2−k and 0 < δ < 1
be constants. We will use a family of good binary linear codes with information words of length
`(n) and block length m = m(n), that has an efficient decoding algorithm D that can correct up
to (µ + δ) ·m errors. We let G = G` be the m × ` binary generator matrix of this family and we
assume that it can be efficiently constructed (given 1n).
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Construction 4.1. LetN = N(n) be an arbitrary polynomial (which controls the tradeoff between
the key-length and the time complexity of the scheme). The private key of the scheme is a matrix X
which is chosen uniformly at random from Fn×N2 .

• Encryption: To encrypt a message M ∈ F`×N2 , choose a random C
R← Fm×n2 and k

random matrices R(1), . . . , R(k) R← Fm×N2 . Let E ∈ Fm×N2 be the entry-wise product of
R(1), . . . , R(k), i.e., , Ei,j =

∏
tR

(t)
i,j . Output the ciphertext

(C,C ·X + E +G ·M).

• Decryption: Given a ciphertext (C,Z) apply the decoding algorithm D to each of the
columns of the matrix Z − CX and output the result.

Observe that the decryption algorithm errs only when there exists a column in E whose Ham-
ming weight is larger than (µ + δ)m, which, by Chernoff Bound, happens with negligible proba-
bility.

Quasilinear-Time implementation. To get a quasilinear time implementation (for sufficiently-
long messages), we instantiate the above scheme with the error-correcting codes of Spielman [Spi95,
Thm. 19] which maps ` bits to m = Θ(`) bits with constant relative-distance and with the property
that the encoding can be computed via a circuit of size O(`) and the decoding can be decoded by
a circuit of size O(` log `). Hence, the complexity of encryption (and decryption) is dominated by
the complexity of the product C ·X . To compute this product in quasilinear time we set N = n6

and assume that m = Ω(n6), i.e., assume that the message length N · ` is at least Ω(n12). In this
case, by Fact 2.2, the encryption and decryption can be computed by a circuit of size Õ(N`).

Useful properties. The scheme enjoys several useful “homomorphic properties” which follows
from its linear structure. In particular, given an encryption (C, Y ) of an unknown message M
under an unknown key X , one can transform it to an encryption (C ′, Y ′) of M + M ′ under the
key X + X ′, for any given M ′, X ′. This is done by letting C ′ = C and Y ′ = Y + CX ′ + GM ′.
Furthermore, if the message M is the all zeroes string, then it is possible to convert the ciphertext
(C, Y ) to be an encryption (C ′, Y ′) of the key X itself or, more generally, to be an encryption
of T · X for an arbitrary linear transformation T ∈ F`×n2 . This is done by letting Y ′ = Y and
C ′ = C + G · T . Indeed, in this case Y ′ = C ′X + E + G(TX). By choosing T to be the( In

0`−n×n

)
, we can get an encryption of the key itself (padded with zeroes). Note that by using the

first transformation we can apply the second transformation even if M is an arbitrary message as
long as it is known. We summarize these properties in the following lemma.

Lemma 4.2. There exist efficiently computable transformations f, g, h such that for every unknown
X ∈ Fn×N2 and M ∈ F`×N2 and known X ′ ∈ Fn×N2 ,M ′ ∈ F`×N2 and T ∈ F`×n2 :

1. f(M ′, EX(M)) ≡ EX(M +M ′),

2. g(X ′, EX(M)) ≡ EX+X′(M),
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3. h(T,EX(0`×N)) ≡ EX(TX),

where EK(A) denotes a random encryption of the message A under the key K (i.e., EK(A) is a
random variable induced by the internal randomness of the encryption).

4.2 KDM-Security
The standard definition of CPA-security asserts that no efficient adversary can distinguish between
the real encryption function E(k, ·) and a fake encryption function which always returns an en-
cryption of some fixed dummy message, e.g. E(k, 0`). The standard definition of CCA-security
is similar except that the adversary has also an oracle access to the decryption algorithm (but is
not allowed to query it on an output of the encryption oracle). KDM security extends these def-
initions by allowing the adversary to ask for encryptions of key-dependent messages m = f(k).
Following [HK07, BHHO08], we define key-dependence relative to a fixed set of functions C. The
following definition is taken from [BHHO08], and is based on the definitions of [BRS02, HK07].

Let t > 0 be an integer and let C be a set of functions C = {f : Kt →M}, where K is the
key-space and M is the message space. (Formally, the sets C, K,M are all indexed by the security
parameter.) We assume that K ⊂M and that for every f ∈ C the output length of f is independent
of its input. KDM security is defined with respect to C via the following game that takes place
between a challenger and an adversary A. For an integer t > 0 and a security parameter n the
game proceeds as follows:

• Initialization. The challenger randomly chooses a bit b R← {0, 1} and t secret keys k1, . . . , kt
by invoking G(1n) for t times.

• Queries. The adversary asks for polynomially-many queries where each query is of the form
(i, f) where i ∈ [t] and f ∈ C. The challenger computes y = f(k1, . . . , kt) and outputs

c
R←

{
E(ki, y) if b = 0,

E(ki, 0
|y|) if b = 1.

• Final phase. The adversary attempt to guess b and outputs a bit b′ ∈ {0, 1}.

Definition 4.3. (KDM-secure encryption) Let C be a class of functions and t be an integer. A sym-
metric encryption scheme (G,E,D) is t-way CPA-KDM-secure with respect to C if no polynomial-
time attacker A has non-negligible advantage in guessing the value of the bit b in the above game
(where the running time and the advantage are measured as functions of the security parameter n).
The definition of t-way CCA-KDM-secure with respect to C is similar except that the adversary
has also an oracle access to the decryption function D(k, ·) (but cannot query this oracle on any
output given to him by the encryption oracle).

We say that a function class C = {f : Kt →M} is non-trivial, if is contains: (1) all |M |
constant functions fm(k) = m for all m ∈ M ; and (2) all t selector functions fi(k1, . . . , kn) = ki

11



for i ∈ [t]. It was observed in [BHHO08] that CPA-KDM-security (respectively, CCA-KDM-
security) with respect to such non-trivial function class implies standard CPA-security (respectively
CCA-security), since the constant functions let the adversary obtain the encryption of any message
of its choice. The selector functions imply circular security (or even “clique”-security) since they
let the adversary obtain E(ki, kj) for all i, j ∈ [t].

From now on, we fix the parameters of our scheme, that is we let N(·), `(·) and m(·) be some
(arbitrary) polynomials, let µ be a constant noise rate and assume that we use some appropriate
family of error correcting code.

Affine-transformation. We consider the class of affine transformations that map the i-th column
of the key X to the i-th column of the message M . Let t = t(n) be some arbitrary polynomial and
let N = N(n) and ` = `(n). For a matrix T ∈ F`×n2 , a matrix B ∈ F`×N2 and an integer i ∈ [t]
we define the function fT,B,i which maps a tuple of t keys (X1, . . . , Xt) ∈ (Fn×N2 )t to a message
M ∈ F`×N2 by letting M = T ·Xi +B. We let C`,N,t =

{
fT,B,i|T ∈ F`×n2 , B ∈ F`×N2 , i ∈ [t]

}
.

We will prove KDM-CPA-security with respect to the class C`,N,t. Formally,

Theorem 4.4. Suppose that the DRLC assumption holds. Then Construction 4.1 is t(n)-way CPA-
KDM-secure with respect to C`,N,t for every polynomial t(·).

The proof uses the properties described in Lemma 4.2 in a straightforward way. A similar (yet
more complicated) proof is used in [BHHO08].

Proof. Let t = t(n) be some arbitrary polynomial. Consider a t-way CPA-KDM attack in which
an attacker A makes q(n) queries and breaks the scheme with probability 1/2 + δ(n). We use A to
break the pseudorandomness of the distribution Dqm,µ,N (defined in Lemma 2.1) as follows:

• Input: a challenge (C, Y ) ∈ Fqm×n2 × Fqm×N2 supposedly chosen from Dqm,µ,N or from the
uniform distribution.

• Preprocessing: Parse the challenge to q pairs (C1, Y1), . . . , (Cq, Yq) where (Ci, Yi) ∈ Fm×n2 ×
Fm×N2 . Toss a coin b R← {0, 1} and randomly chooseX ′1, . . . , X

′
t
R← Fn×N2 . (In our emulation

we think of the i-th key as Xi = X + X ′i where X is the random seed used to produce the
challenge.)

• Invoke the adversary A: Let the e-th query of A be (j, fT,B,i). To answer the query we
think of (Ce, Ye) as an encryption of the all-zero matrix under X . If b = 1 use the trans-
formation g of Lemma 4.2 together with X ′j to convert (Ce, Ye) into an encryption of the
all-zeroes matrix under the key Xj = X ′j + X , and output the result. Otherwise, if b = 0
compute h(T, (Ce, Ye)) and get (C ′e, Y

′
e ) which, in our mental experiment, is an encryption

of EX(TX). Then, use the transformations f and g together to add X ′j to the key and
TX ′i + B to the message and output the result. (In our mental experiment the result should
be EX+X′j

(TX + TX ′i +B) = EXj
(TXi +B)).
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• Termination: Let b′ be the output of A. Check if it is equal to b and if so announce “pseu-
dorandom”; otherwise announce “random”.

It is not hard to verify the following claims.

Claim 4.5. Suppose that (C, Y )
R← Dqm,µ,N . Then, the joint distribution of the bit b together with

the view of the adversary in the above experiment is identical to the joint distribution of the bit b
together with the view of the adversary in a real attack on the scheme.

Proof. If (C, Y )
R← Dqm,µ,N then (Ce, Ye) is indeed an encryption of the all-zeroes string under

a single random key X . Hence, by Lemma 4.2, we answer all the adversary’s queries properly
(exactly as we do in the real attack).

Claim 4.6. Suppose that (C, Y )
R← Fqm×n2 × Fqm×N2 . Then the view of the adversary in the above

experiment conditioned on b = 0 is distributed identically to the view of the adversary conditioned
on b = 1.

Proof. In this case, each (Ce, Ye) is randomly and independently chosen. Fix the queries of the
adversary. The claim follows from two observations: (1) we answer the e-th query by (Ce +
C ′b, Ye + Y ′b ) where C ′b and Y ′b depend on b; and (2) (Ce, Ye) is used only in the e-th query. Hence,
the adversary sees uniformly chosen answers regardless of its queries or the choice of b.

It follows that we distinguishDqm,µ,N from the uniform distribution with advantage δ. This, by
Lemma 2.1, implies that δ should be negligible.

We can now prove the following corollary:

Corollary 4.7. Suppose that the DRLC assumption holds. Then, there exists polynomials `,N
and a symmetric-key encryption scheme in which encryption and decryption are performed in
quasilinear time (in the message length), and the length of the ciphertext is linear in the message
length. Furthermore, for every polynomial t(·) the scheme is t(n)-way CCA-KDM-secure with
respect to C`,N,t.

Proof. By Theorem 4.4 we have a scheme which satisfies the above efficiency conditions and
supplies t(n)-way CPA-KDM-security for every polynomial t(·). As shown in [BPS07], we can
use the standard encrypt-then-MAC transformation to upgrade the security to be t(n)-way CCA-
KDM-security. By [IKOS08], the DRLC assumption (or more generally, the existence of any
one-way function) implies the existence of a linear-time computable MAC scheme. Hence, this
transformation adds a constant computational overhead.
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4.3 Security against Key-Related Attacks and Applications
Construction 4.1 is also secure against some key-related attacks. In such attack, the adversary is
allowed to ask for encryptions under several different keys whose values are initially unknown, but
where some mathematical relationship connecting the keys is known to the attacker.

Formally, we define such an attack with respect to a t-ary relationR ⊆ Kt where K is the key-
space. (Again, R and K are both indexed by the security parameter.) Related-Key (RK) security
is defined with respect to R via the following game that takes place between a challenger and an
adversary A. For an integer t > 0 and a security parameter n the game proceeds as follows:

• Initialization. The challenger randomly chooses a bit b R← {0, 1} and t random secret keys
secret keys (k1, . . . , kt) which satisfies R. (I.e., the keys are sampled from the conditional
distribution [(G(1n))t|(G(1n))t ∈ R].)

• Queries. The adversary asks for polynomially-many queries where each query is of the form
(i,m) where i ∈ [t] and m is in the message space. The challenger outputs

c
R←

{
E(ki,m) if b = 0,

E(ki, 0
|m|) if b = 1.

• Final phase. The adversary attempt to guess b and outputs a bit b′ ∈ {0, 1}.

Definition 4.8. (RK-secure encryption) LetR be a t-ary relation. A symmetric encryption scheme
(G,E,D) is RK-secure with respect to R if no polynomial-time attacker A has non-negligible
advantage in guessing the value of the bit b in the above game (where the running time and the
advantage are measured as functions of the security parameter n).

For a sequence of t matrices Y = (Y1, . . . , Yt) ∈ (Fn×N2 )t we letRY denote the linear relation{
(X + Y1, . . . , X + Yt)|X ∈ Fn×N2

}
. By using the second property of Lemma 4.2 we can prove

that our construction is RK-secure with respect to the classRt of all linear relations.

Theorem 4.9. Suppose that the DRLC assumption holds. Then, Construction 4.1 (instantiated
with any arbitrary parameters m(·), N(·), `(·), µ) is RK-secure with respect to the relationRY for
every polynomial t = t(n) and Y = (Y1, . . . , Yt) ∈ (Fn×N2 )t.

sketch. Lemma 4.2 allows us to reduce an RK attack with a linear relation to a standard chosen-
plaintext attack. By Theorem 4.4 our scheme is secure against such an attack.

Application. Oblivious-Transfer (OT) is a cryptographic primitive which typically requires com-
putationally expensive public-key operations. In [IKNP03] it was shown how to efficiently extend
a small number of OTs to many OTs. The construction uses a random oracle which can be instan-
tiated by any encryption scheme that provides RK-security with respect to linear functions.6 Since
our construction is highly efficient this instantiation does not add much overhead to the reduction.

6The authors of [IKNP03] originally refer to correlation robust function which seems stronger than encryption
scheme with RK-security for linear functions. However, it is not hard to see that the latter primitive suffice for their
application.
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