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Abstract

In this work, we study approximation algorithms based on semidefinite program-

ming (SDP) for which the performance guarantee involves a non-local analysis, and

in some instances a non-local SDP relaxation.

We examine two such approaches. The first of these is inspired by recent work

of Arora, Rao and Vazirani on Sparsest Cut. Using a geometric intuition similar to

theirs, we give an algorithm for coloring 3-colorable graphs which is nearly identical

to that of Blum and Karger, and finds a legal coloring which uses roughly O(n0.2130)

as opposed to the original O(n0.2143) guarantee in that paper.

The second approach makes use of SDP hierarchies, on which prior work has

yielded mostly negative results. Using this method, we give an algorithm for coloring

3-colorable graphs which finds a legal O(n0.2072)-coloring.

As an additional application of this approach, in 3-uniform hypergraphs contain-

ing an independent set of size γn (for any constant γ > 0), we describe an algorithm

which finds an independent set of size nΩ(γ2) using the Θ(1/γ2)-level of an SDP hi-

erarchy. We also present integrality gaps for this hierarchy which imply improved

performance guarantees as one uses progressively higher-level SDP relaxations.
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Chapter 1

Introduction

1.1 Preface

In this work, we study approximation algorithms based on semidefinite program-

ming (SDP). Semidefinite programming has been one of the central tools in approxi-

mation algorithm design since the seminal work of Goemans and Williamson [19] on

MAXCUT. In all instances, the SDP-based approach to approximation algorithms

follows the same general lines: as in the linear programming (LP) approach, one

takes a combinatorial (discrete) optimization problem which is NP-hard, relaxes it

to a convex optimization problem (in this case, a vector problem) which is tractable,

and then “rounds” the relaxed solution to a discrete one.

The core of the analysis of the performance guarantee of such algorithms lies

in examining the rounding algorithm. Traditionally, the analysis of the rounding

algorithm involves examining the behavior of the algorithm on local configurations

of vectors (often, only pairs of vectors) related to local constraints in the combinato-

rial optimization problem. While for a large number of problems (e.g. [19, 41, 10]),

this method yields approximation guarantees which are optimal under certain com-
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plexity theoretic assumptions, for several other problems the gap between known

hardness of approximation and approximation algorithmic guarantee remains quite

large. Thus there is a need to expand the SDP-based algorithmic toolkit, both

in terms of algorithm design and in terms of proof techniques for the performance

guarantee.

We examine two avenues for improvement involving non-local analysis of SDP

rounding algorithms. The first of these is based on a geometric intuition pioneered in

recent work of Arora, Rao and Vazirani [5]. Using this approach, we are able to show

that an algorithm for coloring 3-colorable graphs which is nearly identical to that

of Blum and Karger [7] finds a legal coloring which uses roughly O(n0.2130) colors as

opposed to the original O(n0.2143) guarantee in that paper. While the improvement

may not seem quantitatively substantial, the techniques introduced have paved the

way to further improvements and set this problem apart from others for which

a simple SDP-based approximation algorithm and analysis give the best-possible

result (up to certain complexity-theoretic assumptions).

The second approach involves the use of SDP hierarchies. These give a se-

quence of nested (increasingly tight) relaxations for any integer (0 − 1) program

on n variables, where the nth level of the hierarchy is equivalent to the original

integer program, and the kth level produces an SDP the optimum of which can be

found in time nO(k). Both LP and SDP hierarchies lend themselves quite naturally

to non-local analysis, since each level introduces constraints involving progressively

larger sets of variables.

While most previous work on LP and SDP hierarchies has focused on negative

results [2, 1, 34, 38, 18, 9, 36], we will investigate two positive applications. Starting

with the aforementioned coloring problem, we show that, using the third level of

a certain SDP hierarchy, we can find a legal O(n0.2072)-coloring in any 3-colorable
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graph. Moreover, in 3-uniform hypergraphs containing an independent set of size

γn (for any constant γ > 0), we describe an algorithm which finds an independent

set of size nΩ(γ2) using the Θ(1/γ2)-level of another SDP hierarchy. On the other

hand, using a simpler SDP, no non-trivial guarantee is possible for γ ≤ 1
2

(in fact,

in the SDP hierarchy we consider, no such guarantee can be obtained at any level

up to 1
γ

+ 1).

1.2 Previous Publications

The results covered in this thesis, or preliminary versions thereof, have appeared

previously in the following publications (listed in chronological order):

• S. Arora, M. Charikar and E. Chlamtac. New Approximation Guarantee for

Chromatic Number. In Proceedings of the 38th ACM Symposium on Theory

of Computing (STOC), pp. 215–224, 2006.

• E. Chlamtac. Approximation Algorithms Using Hierarchies of Semidefinite

Programming Relaxations. In Proceedings of the 48th IEEE Symposium on

Foundations of Computer Science (FOCS), pp. 691–701, 2007.

• E. Chlamtac and G. Singh. Improved Approximation Guarantees Through

Higher Levels of SDP Hierarchies. In Proceedings of the 11th International

Workshop on Approximation Algorithms for Combinatorial Optimization Prob-

lems (APPROX), pp. 49–62, 2008.
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1.3 Graph Coloring

In the graph k-coloring problem we wish to assign each vertex one of k colors such

that every pair of vertices connected with an edge are assigned different colors.

Finding the minimum k for which a k-coloring exists (the chromatic number of the

graph) is a classical NP-complete problem.

In general, it is NP-hard to approximate the chromatic number to within n1−ε

for any constant ε > 0 [15, 40], though the problem becomes much easier if we

are guaranteed that the chromatic number of the graph is small. Specifically, we

concentrate on approximation algorithms of the following form: Given a 3-colorable

graph (the coloring is not known), find a legal coloring using as few colors as possible.

Dinur, Mossel and Regev [14] have shown that, assuming some variant of the Unique

Games Conjecture [25], this cannot be done using any constant number of colors,

though this does not rule out the possibility of finding, say, an O(log log n) coloring.

In terms of positive results, there has been the focus of a long line of work.

Prior to the results described here, the best known algorithm was due to Blum and

Karger [7], who gave a Õ
(
n3/14

)
coloring (we use Õ (f(n)) to mean O(f(n) logC n)

for some constant C). Their work combined the SDP-based approach of Karger,

Motwani and Sudan [23] (which gives a Õ
(
∆1/3

)
coloring in graphs with maximum

degree ∆) with an earlier combinatorial approach of Blum [6]. While the results

presented here rely on improving the performance of SDP-based algorithms, we also

formalize the method of Blum and Karger [7] in Section 3.7, giving a general method

to combine the combinatorial tools of Blum [6] with an SDP-based algorithm.

In Chapter 3, we first review the algorithm of Karger, Motwani and Sudan [23],

and then give an improved analysis for an algorithm which uses the same SDP

relaxation proposed in [23], and a nearly identical rounding algorithm. This im-
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proves the Õ
(
∆1/3

)
guarantee in [23], and when combined with the combinatorial

approach in [6] gives a O(n0.2130) coloring. The analysis is inspired by a geometric

approach used in the Sparsest Cut algorithm of Arora, Rao and Vazirani [5].

In Chapter 4, we present an algorithm which makes use of a tighter SDP re-

laxation arising from the Lasserre hierarchy [30]. While the running time for this

algorithm is higher (due to the higher cost of finding an SDP optimum for this re-

laxation), the algorithm presented gives the current best guarantee, namely a legal

coloring using O (n0.2072) colors.

1.4 Hypergraphs and Hypergraph Independent

Sets

k-uniform hypergraphs are collections of sets of size k (“hyperedges”) over a vertex

set. An independent set is a subset of the vertices which does not fully contain

any hyperedge. Finding a maximum size independent set in a hypergraph is a

natural generalization of the Maximum Independent Set problem in graphs, where

hyperedges have size 2. Moreover, a wide range of 0−1 optimization problems with

local constraints, for instance all binary Constraint Satisfaction Problems (CSPs),

can be naturally expressed as Hypergraph Independent Set problems.

We focus on the case of 3-uniform hypergraphs. The first SDP-based approx-

imation algorithm for this problem was given by Krivelevich, Nathaniel and Su-

dakov [28], who showed that for any 3-uniform hypergraph on n vertices con-

taining an independent set of size γn, one can find an independent set of size

Ω̃(min{n, n6γ−3}). This yielded no nontrivial guarantee for γ ≤ 1
2
. On the hardness

side, Khot and Regev [27] have shown that for any constant ε > 0, it is hard to find
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an independent set of size ≥ εn in a 3-uniform hypergraph containing an indepen-

dent set of size 2
3
− ε assuming the Unique Games Conjecture [25]. However, this

still leaves much room for improvement.

In Chapter 5, we present two algorithms which, for every γ > 0, in any n-vertex

3-uniform hypergraph containing an independent set of size γn, find an indepen-

dent set of size nΩ(γ2). Each of these algorithms relies on an SDP relaxation arising

from the Θ(1/γ2)-level of some SDP hierarchy. For the hierarchy used in the first

algorithm, we also present an integrality gap which implies that this performance

guarantee cannot be achieved at any level up to 1
γ

+ 1. This implies a sequence

of improving approximation guarantees as one uses progressively higher-level relax-

ations.

The various hierarchies used are detailed in Section 2.1, where we also present

some useful properties of the corresponding relaxations, and provide some intuition

for analyzing the structure of SDP hierarchies which will motivate the later analysis

in Chapters 4 and 5.
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Chapter 2

SDP and SDP Rounding

To illustrate the use of Semidefinite Programming (SDP) in approximation algo-

rithms, let us consider the Maximum Independent Set problem in graphs. This is

a special case of the Hypergraph Maximum Independent Set problem, which will

be discussed in Chapter 5. The most common approach is to first formulate the

problem as a Quadratic Program, and then find a corresponding SDP relaxation.

The following is a natural Quadratic Programming formulation for Maximum Inde-

pendent Set in a graph G = (V, E):

max
{xi|i∈V ∪{0}}

∑
i∈V

x2
i s.t.

x2
0 = 1 (2.1)

∀i ∈ V x2
i = xix0 (2.2)

∀(i, j) ∈ E xixj = 0 (2.3)

We now arrive at an SDP relaxation by replacing the linear variables {xi} above

with vectors {vi}, and replacing all products with dot products of vectors. This

gives the following relaxation:
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max
{vi|i∈V ∪{0}}

∑
i∈V

‖vi‖2 s.t.

‖v0‖2 = 1 (2.4)

∀i ∈ V ‖vi‖2 = vi · v0 (2.5)

∀(i, j) ∈ E vi · vj = 0 (2.6)

The benefit of working with an SDP relaxation as above is that the optimum,

along with the corresponding vector solution {vi}, can be found in polynomial time

to within arbitrary precision (as was first shown by Grötschel, Lovász, and Schri-

jver [20]). The final step involves finding an independent set by using the graph

structure and the vector solution {vi}. This is known as the rounding algorithm.

The design of rounding algorithms and especially the analysis of their performance

guarantee (in this case, the size of the independent set found, as a function of the

SDP optimum) is the most challenging and most interesting part, and will be the

main focus of later chapters. We first examine a number of the relaxations which will

be used later, as well as some important components of SDP rounding algorithms.

2.1 Hierarchies of LP and SDP Relaxations

LP and SDP hierarchies give a sequence of relaxations for an integer program on

n variables, where the nth level of the hierarchy is equivalent to the original inte-

ger program. These include LS and LS+ (LP and SDP hierarchies, respectively),

proposed by Lovász and Schrijver [31], a stronger LP hierarchy proposed by Sherali

and Adams [35], and the Lasserre [30] SDP hierarchy (see [29] for a comparison).

SDP hierarchies have been studied more generally in the context of optimization
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of polynomials over semi-algebraic sets [13, 32]. In the combinatorial optimization

setting, there has been quite a large number of negative results [2, 1, 34, 38, 18, 9,

36]. This body of work focuses on combinatorial problems for which the quality of

approximation (integrality gap) of the hierarchies of relaxations (mostly LS, LS+,

and more recently Sherali-Adams) is poor (often showing no improvement over the

simplest LP relaxation) even at very high levels.

On the other hand, there have been few positive results. For random graphs,

Feige and Krauthgamer [15] have shown that Θ(log n) rounds of LS+ give a tight

relaxation (almost surely) for Maximum Independent Set (a quasi-polynomial time

improvement). De la Vega and Kenyon-Mathieu [38] showed that one obtains a

polynomial time approximation scheme (PTAS) for MAXCUT in dense graphs using

Sherali-Adams.

We will consider various LP and SDP hierarchies in this section through the

lens of relaxations for Hypergraph Maximum Independent Set. This problem is

sufficiently general to capture all 0−1 optimization problems with local constraints,

yet it will allow us to present these hierarchies in a clear and intuitive manner.

2.1.1 The Sherali-Adams Hierarchy

The Sherali-Adams hierarchy [35] is a sequence of nested linear programming relax-

ations for 0− 1 polynomial programs. These LPs may be expressed as a system of

linear constraints on the variables {yI | I ⊆ [n]}. To obtain a relaxed (non-integral)

solution to the original problem, one takes (y{1}, y{2}, . . . , y{n}).

As a gedankenexperiment, suppose {x∗i } is a sequence of n random variables

over {0, 1}, and for all I ⊆ [n] we have yI = E[
∏

i∈I x∗i ] = Pr[∀i ∈ I : x∗i = 1]. Then

9



by the inclusion-exclusion principle, for any disjoint sets I, J ⊆ [n] we have

yI,−J
def
=

∑

J ′⊆J

(−1)|J
′|yI∪J ′ = Pr[(∀i ∈ I : x∗i = 1) ∧ (∀j ∈ J : x∗j = 0)] ≥ 0.

In fact, it is not hard to see that the constraints yI,−J ≥ 0 are a necessary and

sufficient condition for the existence of a corresponding distribution on {0, 1} vari-

ables {x∗i }. Thinking of the intended solution {x∗i } as a set of indicator variables

for a random independent set in a hypergraph H = (V, E) motivates the following

hierarchy of LP relaxations (assume k ≥ max{|e| | e ∈ E}):
ISSA

k (H)

y∅ = 1 (2.7)

∀I, J ⊆ V s.t. I ∩ J = ∅ and |I ∪ J | ≤ k
∑

J ′⊆J

(−1)|J
′|yI∪J ′ ≥ 0 (2.8)

∀e ∈ E ye = 0 (2.9)

As noted above, if {yI | I ⊆ V } satisfy ISSA
n (H) (where n = |V |), there is a

distribution over independent sets in H for which Pr[∀i ∈ I : i ∈ ind. set] = yI

for all subsets I ⊆ V (that is, the nth level of the hierarchy, ISSA
n (H), corresponds

to the integer polytope). In particular, for any integer 1 ≤ k ≤ n, this implies

that if {yI | |I| ≤ k} satisfy ISSA
k (H), then for any set S ⊆ V of size k, there is a

distribution over independent sets in H for which Pr[∀i ∈ I : i ∈ ind. set] = yI for

all subsets I ⊆ S.

2.1.2 The Lasserre Hierarchy

The relaxations for maximum hypergraph independent set arising from the Lasserre

hierarchy [30] are equivalent to those arising from the Sherali-Adams with one ad-
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ditional semidefiniteness constraint: (yI∪J)I,J º 0.

We will express these constraints in terms of the vectors {vI |I ⊆ V } arising

from the Cholesky decomposition of the positive semidefinite matrix. In fact, we

can express the constraints on {vI} in a more succinct form which implies the

inclusion-exclusion constraints in Sherali-Adams but does not state them explicitly:

ISLas
k (H)

v2
∅ = 1 (2.10)

|I| , |J | , |I ′| , |J ′| ≤ k and I ∪ J = I ′ ∪ J ′ ⇒ vI · vJ = vI′ · vJ ′ (2.11)

∀e ∈ E v2
e = 0 (2.12)

For convenience, whenever possible, we will henceforth write vi1...is instead of

v{i1,...,is}. We will denote by MAX-ISLas
k (H) the SDP

Maximize
∑

i ‖vi‖2 s.t. {vI | I ⊆ V ∧ |I| ≤ k} satisfy ISLas
k (H).

As in the Sherali-Adams hierarchy, for any set S ⊆ V of size k, we may think of

the vectors {vI | I ⊆ S} as representing a distribution on random 0 − 1 variables

{x∗i | i ∈ S}, which can be combined to represent arbitrary events. Formally, the

vector corresponding to the event EI,−J = “∀i ∈ I, j ∈ J : (x∗i = 1) ∧ (x∗j = 0)” is

vEI,−J

def
=

∑
J ′⊆J(−1)|J

′|vI∪J ′ .

The picture is then completed by defining v⋃
l El

=
∑

l vEl
for disjoint events El (for

example, we can write v(x∗i =0)∨(x∗j =0) = v∅,−{i,j} + v{i},−{j} + v{j},−{i} = v∅− vij). The

corresponding local distribution is made explicit by the inner-products: for any two

events E1, E2 over the values of {x∗i | i ∈ S}, we have vE1 · vE2 = Pr[E1 ∧ E2].

11



Moreover, as in the Lovász-Schrijver hierarchy, lower-level relaxations may be

derived by “conditioning on x∗i = σi” (for σi ∈ {0, 1}). In fact, we can condition

on more complex events. Formally, for any event E0 involving k0 < k variables for

which ‖vE0‖ > 0, we can define

vE |E0
def
= vE∧E0/‖vE0‖,

and the vectors {vI |E0 | |I| ≤ k − k0} satisfy ISk−k0(H).

2.1.3 An Intermediate Hierarchy

We will also use a hierarchy which combines the power of SDPs and Sherali-Adams

local-integrality constraints in the simplest possible way: by imposing the constraint

that the variables from the first two levels of a Sherali-Adams relaxation form a

positive-semidefinite matrix. Formally, for a k0-uniform hypergraph H = (V, E),

for k ≥ k0 and vectors {v∅}∪{vi | i ∈ V } we have the following system of constraints:

ISmix
k (H)

∃{yI | |I| ≤ k} s.t.

∀I, J ⊆ V, |I|, |J | ≤ 1 : vI · vJ = yI∪J (2.13)

{yI} satisfy ISSA
k (H) (2.14)

As above, we will denote by MAX-ISmix
k (H) the SDP

Maximize
∑

i ‖vi‖2 s.t. {v∅} ∪ {vi | i ∈ V } satisfy ISmix
k (H).
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2.1.4 Relating the Lasserre Hierarchy to Distributions on

0− 1 Solutions

Recall the probabilistic interpretation of vector solutions {vI | |I| ≤ k} satisfy-

ing ISLas
k (H). This intuition will allow us to deduce additional geometric proper-

ties of the SDP solution, which can then be proven rigorously using the Lasserre

constraints (2.11). Let us consider the following crucial example (which will also

motivate the following lemma). Consider some event A relating to partial as-

signments of {x∗i | i ∈ V } (e.g. “∀i ∈ I : x∗i = 1”). Suppose that Pr[A] = p

and that we have many events Bl, sub-events of A, such that Pr[Bj | A] = q.

Then for most pairs Bl, Bl′ we have Pr[Bl ∧ Bl′ | A] ≥ q2 − o(1) since, in prin-

ciple, most pairs of events cannot be too anti-correlated. (Indeed, consider a set

of indicator variables Xl. The inequality E[(
∑

l Xl)
2] ≥ E[

∑
l Xl]

2 implies that
∑

l 6=l′ E[XlXl′ ] ≥
∑

l 6=l′ E[Xl]E[Xl′ ]−
∑

l E[Xl](1− E[Xl]).)

If we think of the vectors representing these events, we have vBl
·vBl′ ≥ pq2−o(1).

This would also hold true for most pairs Bl, Bl′ if the vectors {vBl
} all shared a

common component of length
√

pq2. That is, if there were some unit vector v′A

such that vBl
· v′A ≥

√
pq2. Now, suppose that for some A′, a super-event of A,

we were guaranteed that the vectors vBl
had the form vBl

=
√

p′ · vA′
‖vA′‖ + wBl

for

some wBl
⊥vA′ . By a similar argument, we would expect that the vectors wBl

have

a common component of length ≥
√

pq2 − p′ (that is, they have a projection of at

least this magnitude on the same unit vector). Using the Lasserre hierarchy, we can

guarantee the existence of such a vector, as demonstrated by the following lemma (in

this case think of A as a union of the mutually exclusive events “∀h ∈ Ii : xh = 1”

and of a single event Bl as a union of the respective sub-events “(∀h ∈ Ii : xh =

1) ∧ (∀j ∈ J : xj = 1)”).
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Lemma 2.1.1. Let {vI} be a set of vectors satisfying (2.11), let subsets Ii ⊂ [n]

and J ⊆ [n] of size at most k be such that ∀i, Ii ∩ J = ∅ and ∀i 6= i′, vIi
· vIi′ = 0

and let pi = ‖vIi
‖2, and qi = ‖vIi∪J‖2 / ‖vIi

‖2. Then

1. There exists a unit vector x0 ∈ Span({vI | I ⊆ ⋃
i Ii}) such that x0 · vJ =

√∑
i piq2

i .

2. If, moreover, for every i there are subsets Iij satisfying Ii ⊆ Iij ⊆ [n] \ IJ

such that the vectors vIij
are mutually orthogonal, and vIi

=
∑

j vIij
, then if

v′J is the component of vJ orthogonal to x0 (i.e. vJ =
√∑

i piq2
i x0 + v′J), then

there exists a unit vector x′0 ∈ Span({vI | I ⊆ ⋃
i,j Iij}) such that x′0 · v′J =

√∑
i,j pijq2

ij −
∑

i piq2
i (where pij =

∥∥vIij

∥∥2
and pijqij =

∥∥vIij∪J

∥∥2
).

3. The vectors x0 and x′0 are uniquely determined by the vectors {vI | I ⊆
⋃

i,j Iij}
and values {pi}, {qi}, {pij} and {qij}. They do not depend on the choice of

vector vJ .

Proof. For part 1, it suffices to check, by computing inner products, and using

constraint (2.11), that vJ =
∑

i qivIi
+ v′J (where v′J · vIi

= 0).

For part 2, first observe that by orthogonality of the various vIij
, and since

vIi
=

∑
j vIij

, we have

pi = ‖vIi
‖2 =

∑
j

∥∥vIij

∥∥2
=

∑
j

pij (2.15)

and

piqi = vJ · vIi
=

∑
j

vJ · vIij
=

∑
j

pijqij. (2.16)

Now, by constraint (2.11), and orthogonality of the various vIij
, for any i0, j0 we
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have

v′J ·vIi0j0
= (vJ −

∑
i

qivIi
) ·vIi0j0

= pi0j0qi0j0−
∑

i

qi

∑
j

vIij
·vIi0j0

= pi0j0(qi0j0− qi0).

Thus, we can represent v′J as v′J =
∑

i,j(qij − qi)vIij
+ v′′J , where v′′J is orthogonal to

all vIij
. Finally, note that

∥∥∥
∑
i,j

(qij − qi)vIij

∥∥∥
2

=
∑
i,j

(qij − qi)
2pij

=
∑
i,j

qij(qij − qi)pij −
∑

i

qi

∑
j

(qij − qi)pij

=
∑
i,j

qij(qij − qi)pij −
∑

i

qi

(( ∑
j

pijqij

)
− piqi

)
by (2.15)

=
∑
i,j

qij(qij − qi)pij by (2.16)

=
∑
i,j

pijq
2
ij −

∑
i

qi

∑
j

pijqij

=
∑
i,j

pijq
2
ij −

∑
i

piq
2
i by (2.16).

2.2 Gaussian Vectors and SDP Rounding

Recall that the standard normal distribution has density function 1√
2π

e−t2/2. A

random vector ζ = (ζ1, . . . , ζn) is said to have the n-dimensional standard normal

distribution if the components ζi are independent and each have the standard nor-

mal distribution. Note that this distribution is invariant under rotation, and its

projections onto orthogonal subspaces are independent. In particular, for any unit
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vector v ∈ Rn, the projection ζ · v has the standard normal distribution.

We use the following notation for the corresponding tail bound:

N(s)
def
=

∫ ∞

s

1√
2π

e−
t2

2 dt.

The following property of the normal distribution ([17], Chapter VII) will be crucial.

Lemma 2.2.1. For s > 0, we have 1√
2π

(
1
s
− 1

s3

)
e−s2/2 ≤ N(s) ≤ 1√

2πs
e−s2/2.

We introduce the following definition:

Definition 2.2.2. We will call a set of unit vectors X a ρ-cluster if there exists a

unit vector x0 such that x0 · x ≥ √
ρ for all x ∈ X.

The analysis of SDP rounding algorithms frequently involves expressions of the

form Prζ [∃x ∈ X : ζ · x ≥ s], for ζ as above, and set of unit vectors X. It is easy to

see that |X|N(s) is an upper-bound on this probability. However, when the set X

is a ρ-cluster, we can give a much better bound, as the following lemma shows.

Lemma 2.2.3. Let X be a ρ-cluster for some fixed constant ρ ∈ (0, 1). Then for

all s ≥ 0 and 0 ≤ r ≤ √
ρ, we have

Prζ [∃x ∈ X : ζ · x ≥ s] ≤ |X| · r

π
√

1− ρ
e−(1+(

√
ρ−r)2/(1−ρ))s2/2 + 2N(rs).

Proof. Since X is a ρ-cluster, each x ∈ X is of the form x =
√

ρxx0 +
√

1− ρxx
′ for

some ρx ≥ ρ. Note that since x′ ·x0 = 0, the random projection ζ ·x0 is independent

of all projections ζ ·x′. Thus, we can bound Prζ [∃x ∈ K : ζ ·x ≥ s] from above using

a convolution on the random variables ζ · x0 and maxx∈K ζ · x′. In the following
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estimate the variable ξ represents ζ · x0.

Prζ [∃x ∈ X : ζ · x ≥ s] =

∫ ∞

−∞

1√
2π

e−ξ2/2Pr[∃x ∈ X : ζ ·
√

1− ρxx
′ ≥ s−√ρxξ]dξ

≤ 2

∫ ∞

0

1√
2π

e−ξ2/2Pr[∃x ∈ X : ζ ·
√

1− ρxx
′ ≥ s−√ρxξ]dξ

≤ 2

(∫ rs

0

e−ξ2/2

√
2π

∑
x∈X

N

(
s−√ρxξ√

1− ρx

)
dξ +

∫ ∞

rs

1√
2π

e−ξ2/2dξ

)

(2.17)

≤ 2

(∫ rs

0

e−ξ2/2

√
2π

|X|N
(

s−√ρξ√
1− ρ

)
dξ +

∫ ∞

rs

1√
2π

e−ξ2/2dξ

)

(2.18)

Inequality (2.17) is a union bound and inequality (2.18) can be verified by noting

that the function fξ,s(ρ) =
s−√ρxξ√

1−ρx
is monotone increasing for ρ ≥ ξ2/s2 (note that

we are only concerned with ξ ≤ rs), and that ρx ≥ ρ ≥ r2 for all x ∈ X.

Hence, substituting a = ξ/s and applying Lemma 2.2.1, we have:

Prζ [∃x ∈ X : ζ · x ≥ s]

≤ 2rs

(
max
0≤a≤r

e−a2s2/2

√
2π

|X|N
((

1−√ρa
)
s√

1− ρ

))
+ 2N(rs)

≤ rs

(
max
0≤a≤r

|X|
√

1− ρ

πs(1−√ρa)
e−(a2+(1−√ρa)2/(1−ρ))s2/2

)
+ 2N(rs)

≤ r

π
√

1− ρ

(
max
0≤a≤r

|X| e−(a2+(1−√ρa)2/(1−ρ))s2/2

)
+ 2N(rs)

=
r

π
√

1− ρ

(
max
0≤a≤r

|X| e−(1+(
√

ρ−a)2/(1−ρ))s2/2

)
+ 2N(rs)

= |X| · r

π
√

1− ρ
e−(1+(

√
ρ−r)2/(1−ρ))s2/2 + 2N(rs)
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In many cases, a simpler bound (following immediately from Lemma 2.2.1) will

suffice:

Corollary 2.2.4. Let X be a ρ-cluster for some fixed constant ρ ∈ (0, 1). Then for

sufficiently large s, and all 0 ≤ r ≤ √
ρ, we have

Prζ [∃x ∈ X : ζ · x ≥ s] ≤ |X| · poly(s)N(s)1+(
√

ρ−r)2/(1−ρ) + 2N(rs).
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Chapter 3

Improved Analysis of Graph

Coloring

In this chapter we will review the SDP relaxations and rounding algorithm of Karger,

Motwani and Sudan [23], and give an improved analysis for a slight variant of their

algorithm. When combined with the Blum coloring tools (discussed in Section 3.7)

this gives an O(n0.2130) coloring.

3.1 The Karger-Motwani-Sudan Algorithm

We begin by describing the algorithm described in [23] for coloring 3-colorable

graphs and its analysis. We will also present some notation and terminology which

will be need later for a more sophisticated analysis of this and other algorithms.

The KMS algorithm uses the standard approach of finding large independent sets in

order to achieve a coloring with few colors. As is well-known (see, for example, [6]),

to find a legal coloring using Õ(f(n)) colors, it suffices to have an algorithm which

can find an independent set of size n/f(n)). (Indeed, this follows from the follow-
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ing simple algorithm: apply the independent set algorithm, assign all vertices in

the independent set the same color, remove these vertices from the graph, update

the color counter, and repeat.) Furthermore, it suffices to concentrate on the case

where there is a bound ∆ on the maximum degree; see Section 3.7 for how to turn

such a guarantee into an algorithm whose performance is stated in terms of n (this

generalizes the approach in [6, 7]).

Consider the following relaxation for k-coloring.

Definition 3.1.1. For a graph G = (V, E) with vertex set V = {1, 2, . . . , n}, a

vector k-coloring is an assignment of unit vectors u1, . . . , un ∈ Rn to the vertices,

such that:

∀(i, j) ∈ E : ui · uj ≤ − 1

k − 1
. (3.1)

The vector k-coloring is said to be strict when equality holds in condition (3.1).

As is shown in [23], for any k ≥ 2, every k-colorable graph is also vector k-

colorable. While these SDP relaxations may seem inherently different from the

0 − 1 relaxations discussed earlier, we shall see in Section 4.1 that strict vector

k-coloring has an equivalent 0− 1 formulation.

The KMS rounding algorithm takes a graph G, vector coloring {ui}, and a

threshold parameter t > 0, and outputs an independent set in G:

KMS(G, {ui}, t)
• Choose ζ ∈ Rn from the n-dimensional standard normal distribu-

tion.

• Vζ(t)
def
= {i ∈ V | ζ · ui ≥ t}. Return all i ∈ Vζ(t) with no neighbors

in Vζ(t).

Figure 3.1: Algorithm KMS
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The performance guarantee for the KMS rounding algorithm, as shown in [23],

is as follows:

Theorem 3.1.2 (KMS). There exists some t = t(n, ∆) > 0 such that the expected

size of the independent set returned by algorithm KMS (G, {ui}, t) is Ω̃(∆−1/3n).

In particular, this implies an Õ(∆1/3)-coloring. To precisely quantify the various

improvements discussed later, we need the following definition.

Definition 3.1.3. Given a graph G with vector 3-coloring {ui} and maximum

degree ∆, the threshold parameter t > 0 is c-inefficient for (G, {ui}) if

∆ ≤ N(
√

3t)−(1+c).

Note that by Lemma 2.2.1, if t > 0 is exactly c-inefficient, then N(t) = Θ̃(∆− 1
3+3c ).

Thus, our objective will be to find a threshold t > 0 with the largest possible ineffi-

ciency c for which our algorithm is guaranteed to return an independent set of size

Ω(N(t)n).

Now we recall the proof of Theorem 3.1.2 from [23] – but rephrased in our

terminology. To simplify the presentation, we will only consider strict vector 3-

colorings {ui} for now.

Note that, for any choice of threshold t, for any vertex i ∈ V , Pr[i ∈ Vζ(t)] =

N(t). Say a vertex is good for a certain value of t if in the KMS algorithm,

Pr[i is eliminated | i ∈ Vζ(t)] ≤ 1/2, (3.2)

and otherwise call the vertex bad. If i is good, then the probability it ends up in

the final independent set is at least 1
2
Pr[i ∈ Vζ(t)] = N(t)/2.
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Now we analyze what makes a vertex good. For any i ∈ V , let Γ(i) be its

neighborhood in G. Then

Pr[i is eliminated | i ∈ Vζ(t)] = Pr[∃j ∈ Γ(i) : ζ · uj ≥ t | ζ · ui ≥ t]. (3.3)

Since {ui} is a strict vector 3-coloring, we can introduce the following notation:

for every edge (i, j) ∈ E, we will write

uj = −1
2
ui +

√
3

2
u′ij (3.4)

where u′ij is a unit vector orthogonal to ui. Writing u′ij = 2√
3
(uj + 1

2
ui), we see that

for any vector ζ:

ζ · ui ≥ t and ζ · uj ≥ t =⇒ ζ · u′ij ≥
√

3t.

Hence the right hand side of (3.3) is bounded from above by

Pr[∃j : ζ · uj ≥ t | ζ · ui ≥ t]

≤ Pr[∃j : ζ · u′ij ≥
√

3t | ζ · ui ≥ t)]

= Pr[∃j : ζ · u′ij ≥
√

3t] (independence of orthogonal

projections of Gaussian)

≤
∑

j∈Γ(i)

Pr[ζ · u′ij ≥
√

3t] (union bound)

≤ ∆N(
√

3t)

= Õ(∆N(t)3). (by Lemma 2.2.1)
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Choose the threshold t so that N(
√

3t) = Θ̃(N(t)3) is less than 1/(2∆), in

which case every vertex is good. Therefore, by linearity of expectation, the output

independent set has expected size at least N(t)n/2 = Ω̃(∆−1/3n).

Let us state one corollary of the above proof that will be useful later:

Lemma 3.1.4. Let {ui} be a strict vector 3-coloring. Then for all i ∈ V we have

Pr[∃j ∈ Γ(i) : ζ · uj ≥ t | ζ · ui ≥ t] ≤ Pr[∃j ∈ Γ(i) : ζ · u′ij ≥
√

3t].

We adapt the following definition from [5], to use normal distributions rather

than random unit vectors.

Definition 3.1.5. A set of unit vectors X is an (s, δ)-cover, if for ζ ∈ Rn chosen

from the standard normal distribution,

Pr[∃x ∈ X : ζ · x ≥ s] ≥ δ.

The cover is said to be (at most) c-inefficient, if |X| ≤ N(s)−(1+c).

Note that for any set of unit vectors X we have, by union bound

Pr[∃x ∈ X : ζ · x ≥ s] ≤
∑
x∈X

Pr[ζ · x ≥ s] = |X| ·N(s).

So any uniform (s, 1
2
)-cover must contain at least 1

2
·N(s)−1 vectors, by union bound.

Hence, a cover is efficient when the number of vectors is only slightly larger than the

minimum required. To motivate the above definition, we note that, by lemma 3.1.4,

for any vertex i for which Prζ [(i ∈ Vζ(t)) ∧ (i is not eliminated)] ≤ 1
2
N(t), the

vectors {u′ij | j ∈ Γ(i)} form a (at most) c-inefficient (1
2
,
√

3t)-cover. In general, we

have the following corollary of Lemma 3.1.4:
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Corollary 3.1.6. If t > 0 is at most c-inefficient for (G, V ), then for every vertex

i ∈ V which is eliminated with probability ≥ δ (conditioned on i ∈ Vζ(t)), the

vectors {u′ij | j ∈ Γ(i)} corresponding to the neighbors of i form a c-inefficient

(
√

3t, δ)-cover.

3.2 A Variation on the KMS Algorithm

We consider the following slight variation of the KMS rounding algorithm:

KMS′(G, {ui})
• For “all” t > 0,

– Choose ζ ∈ Rn from the n-dimensional standard normal dis-
tribution.

– Pick any edge (i, j) ∈ E with both endpoints in Vζ(t), and
eliminate both i and j. Repeat until no such edges are left.

– Let V ′
ζ (t) be the set of remaining vertices in Vζ(t).

• For t which maximizes
∣∣V ′

ζ (t)
∣∣, return the independent set V ′

ζ (t).

Figure 3.2: Algorithm KMS′

Remark 3.2.1. Equivalently, we can first choose ζ, and then enumerate over all

relevant values of t (that is, over ti = ζ · ui). However, for the purposes of the

analysis, we will consider the first formulation.

Note that the set returned by KMS′ contains the set returned by KMS (for

the corresponding value of t), so Theorem 3.1.2 holds also for KMS′. The crucial

difference is that in KMS′, the vertices removed from Vζ(t) form a matching, and

this will be used in the simple “pruning” argument of Lemma 3.6.10.

Recall that our goal is to find the largest possible c > 0 for which the threshold
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parameter t is c-inefficient while still guaranteeing that the algorithm find an inde-

pendent set of size Ω(N(t)n). With this in mind, we now give the following explicit

guarantee for the performance of KMS′.

Theorem 3.2.2. For every τ > 5
9

there exists c1(τ) > 0 such that for 0 < c < c1(τ),

and any n vertex graph G with maximum degree ≤ nτ , if the parameter t is (at most)

c-inefficient for (G, {ui}), then KMS ′(G, {ui}) returns an independent set of size

Ω(N(t)n).

Furthermore, c1(τ) satisfies

c1(τ)
def
= sup

{
c

∣∣∣∣∣ min
0≤α≤ c

1+c

λc(α) >

√
1 + c

τ

}

,

(3.5)

where

λc(α)
def
=

(
3− α− 2

√
1− α2

√
c
)

/
√

5− 2α− 3α2. (3.6)

Corollary 3.2.3. For any n-vertex graph G with maximum degree ≤ ∆ = n0.6451,

and vector 3-coloring {ui}, KMS ′(G, {ui}) returns an ind. set of size Ω(∆−0.3301n).

Combining this result with the Blum coloring tools (see Theorem 3.7.2), imme-

diately yields the following result:

Theorem 3.2.4. Given an n-vertex 3-colorable graph, one can find an O(n0.2130)

coloring in polynomial time.

3.3 High-Level Description of KMS′ Analysis

The analysis of when a vertex is good is locally tight, even though it uses the union

bound. Nevertheless, we will present a nonlocal argument that shows that the local

analysis cannot be simultaneously tight for all vertices for this value of t. Thus the
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KMS′ algorithm can use a less efficient (smaller) threshold t than the KMS [23] paper

did, which increases Ω(N(t)n), the size of the final independent set. If fewer than

n/2 vertices are bad, the expected size of the independent set is at least N(t)n/4.

We show below that there is such a threshold t satisfying ∆ > N(
√

3t)−(1+c) for

some c > 0. Thus we can find an independent set of size N(t)n/4 = Ω̃(∆−1/(3+3c)n),

an improvement over KMS.

Our nonlocal argument is directly inspired by the “walk” argument of Arora,

Rao, and Vazirani [5]. However, our walks are only of length O(1) whereas theirs

were longer. To illustrate our idea, let us first assume that the vectors in the SDP

solution are “nondegenerate,” by which we mean that their pairwise inner products

do not exhibit any statistically significant patterns apart from those implied by the

SDP constraints. To give an example, for any vertex i ∈ V , the constraints of strict

vector coloring require the vectors u′ij defined above to be orthogonal to ui. In a

nondegenerate solution, we also expect that for any arbitrary unit vector u0, most

of the vectors u′ij should only have negligible projection on u0 (Lemma 3.6.3 gives

a sufficient condition for this phenomenon). As we shall see, the nondegeneracy

property corresponds to a vector coloring for which the KMS [23] analysis is tight,

and so we are interested in ruling out the existence of such a solution.

We give a heuristic argument why the KMS′ algorithm should return an indepen-

dent set of size Ω̃(n8/9) in a nondegenerate solution. This implies that whenever the

original analysis of [23] gives an independent set of size less than Õ(n8/9) (i.e., when

∆ > n1/3), the vector coloring cannot be nondegenerate, and thus some improve-

ment is possible. We note that the integrality gaps of [16] rule out the existence of

independent sets of size Ω(n0.843) in certain vector 3-colorable graphs. Thus, this

heuristic argument cannot guarantee an independent set of size Ω̃(n8/9) in general.
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Let t be the smallest value s.t. at least half the vertices i are bad, that is:

Prζ [i gets eliminated | i ∈ Vζ(t)] ≥ 1/2. (3.7)

We will show that N(t) ≥ Ω̃
(
n−1/9

)
, and thus (since for a slightly smaller t half

the vertices must also be good) KMS′ returns an independent set of expected size

≥ 1
2
N(t)n = Ω̃

(
n8/9

)
.

First, a simple pruning argument (see Lemma 3.6.10, the only place where we

use the difference between KMS and KMS′) allows us to assume that condition (3.7)

holds for all vertices in the graph rather than just half the vertices (with the prob-

ability 1/2 replaced by a smaller constant). Hence Corollary 3.1.4 implies that for

every vertex i ∈ V , the set {u′ij | j ∈ Γ(i)} is a {√3t, Ω(1)}-cover. By symmetry,

the vectors {−u′ij | j ∈ Γ(i)} also form a {√3t, Ω(1)}-cover. The random projection

ζ · ui is negligible compared to t (i.e. o(t)) for all but an o(1) fraction of Gaussian

vectors ζ (since ui is a fixed vector) so, since ζ ·uj = −1
2
ζ ·ui +

√
3

2
ζ ·u′ij, we conclude

that the vectors {−uj | j ∈ Γ(i)} form a
((

3
2
− o(1)

)
t, Ω(1)

)
-cover. That is, with

probability Ω(1) some j ∈ Γ(i) satisfies ζ · uj ≤ − (
3
2
− o(1)

)
t.

Now consider all the neighbors k ∈ Γ(j) of such a vertex j. By our assumption,

the vectors {u′jk | k ∈ Γ(j)} are also a {√3t, Ω(1)}-cover. Thus for most Gaussians

ζ, there is some k ∈ Γ(j) such that ζ · u′jk ≥
√

3t. Such a vertex k satisfies:

ζ · uk = −1

2
ζ · uj +

√
3

2
ζ · u′jk

≥ 3(1− o(1))t

4
+

3t

2
=

9

4
t(1− o(1)).

Note that here we are using nondegeneracy strongly, since we are assuming that

the union of the events “[ζ · u′ij ≤ −√3t] ∧ [∃k ∈ Γ(j) : ζ · u′jk ≥
√

3t]” (for all
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various j ∈ Γ(i)) happens with good probability when the individual events have

large probability. This would be true if the events “ζ · u′ij ≤ −√3t” were disjoint.

It turns out (see Theorem 3.4.4) that the nondegeneracy assumption is enough to

make a slightly weaker claim of the same form.

One can continue this argument with neighbors of k and so on, ultimately de-

ducing that for a constant fraction of Gaussian vectors ζ, there is some vertex l such

that ζ · ul ≥ 3t(1− o(1)). (In general, given that some vector in the vector coloring

has a projection s on ζ, this argument shows the existence of a vector corresponding

to some neighbor whose projection is ≥ (s/2 + 3t/2)(1− o(1)), which is larger than

s so long as s < 3t.)

Since the number of vertices in the graph is n, the union bound implies that for

Gaussian vector ζ the expected number of l such that ζ · ul ≥ 3t is at most N(3t)n.

We conclude that N(3t)n = Ω(1), and hence (by Lemma 2.2.1) N(t)9n = Ω̃(1).

Of course, the above analysis ignores all conditioning between the probability

calculations in successive steps of the argument, which is justifiable only when

the vectors are nondegenerate. In the correct argument such conditioning cannot

be ignored, and so we must exploit the connection between nondegeneracy and

tightness of the KMS analysis. Namely, we must show that when ∆ > n1/3, we

can introduce a small degree of inefficiency (thus increasing N(t)), and still use

the above argument to show that most vertices are “good” (otherwise obtaining a

contradiction). The extent to which one can make the threshold t inefficient without

weakening the above argument too much requires a careful quantification (and a

formalization of the above argument which allows for nearly-nondenerate solutions).
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3.4 Details of KMS′ Analysis

In this section we prove Theorem 3.2.2 using a two-step walk analysis of KMS′. For

simplicity, we will assume that the vectors comprise a strict vector 3-coloring. We

will relax the strictness condition in Section 3.5. The proof is by contradiction: if

∆ < N(
√

3t)1/(1+c) then, as in Section 3.3, we use a chaining argument to exhibit a

high-probability event that is actually very unlikely.

We adapt the definition of (s, δ)-covers from Section 3.1 to include sets of vectors

which are not necessarily unit vectors.

Definition 3.4.1. A set of vectors X is a non-uniform (s, δ)-cover, if for ζ ∈ Rn

chosen from the standard normal distribution,

Pr[∃x ∈ X : ζ · x ≥ s] ≥ δ.

To make the distinction explicit, we will call regular (s, δ)-covers uniform.

In Section 3.6 we will show that if at least half the vertices i ∈ V are bad, then we

can identify a subgraph where every vertex is almost-bad (see Lemma 3.6.10), and

thus has a (
√

3t, Ω(1))-cover associated with its neighbors. In this graph, fix a vertex

i ∈ V . Note that the set {u′ij | j ∈ Γ(i) and the sets {u′jk | k ∈ Γ(j)} for all j ∈ Γ(i)

are (uniform) (
√

3t, Ω(1))-covers. We want to compose the cover {−u′ij | j ∈ Γ(i)}
with the various covers {u′jk | k ∈ Γ(j)} to attain a lower bound on the probability

of the event “∃j ∈ Γ(i), k ∈ Γ(j) : [ζ · (−u′ij) ≥
√

3t] ∧ [ζ · u′jk ≥
√

3t]”.

As pointed out earlier, if such a composition were always possible, the argument

in Section 3.3 would contradict known integrality gaps. Hence there must be some

loss (specifically, we will only attain a lower bound on the probability of the above

event by considering smaller projection for the u′jk). This loss will be a monotoni-
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cally increasing function of c, the inefficiency of the covers. Thus, our aim is to find

the largest c for which a contradiction can still be obtained. First we need the fol-

lowing lemma, which shows that in any uniform (s, δ) cover {yk}, the components of

vectors yk orthogonal to a fixed vector form a non-uniform (s−o(s), δ−o(1))-cover.

Lemma 3.4.2. Let v′ be a unit vector and {yk} be a uniform (s, δ)-cover. Rewrite

each yk as yk = αkv
′ +

√
1− α2

ky
′
k for αk = v′ · yk ∈ [−1, 1] and unit vector y′k ⊥ v′.

Then for all ρ ≥ 0, we have

Pr

[
∃k : ζ · y′k ≥

s− ρ√
1− α2

k

]
≥ δ − 2N(ρ).

Proof.

δ ≤ Pr[∃k : ζ · yk ≥ s] ≤ Pr[|ζ · v′| ≥ ρ] + Pr[|ζ · v′| ≤ ρ ∧ ∃k : ζ · yk ≥ s]

≤ 2N(ρ) + Pr [∃k : ζ · (yk − αkv
′) ≥ s− |αk| ρ]

= 2N(ρ) + Pr

[
∃k : ζ · y′k ≥

s− |αk| ρ√
1− α2

k

]

≤ 2N(ρ) + Pr

[
∃k : ζ · y′k ≥

s− ρ√
1− α2

k

]

The following lemma shows how one “boosts” covers via measure concentration.

Lemma 3.4.3 (measure concentration). Let {yj} be a non-uniform (s,N(θ))-

cover. Then for any ζ ∈ Rn having standard normal distribution, and a ≥ 0,

Pr[∃j : ζ · yj ≥ s− ‖yj‖ a] ≥ N(θ − a).

Proof. Let γn(·) denote the normalized Gaussian measure on Rn. The theorem of
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measure concentration for Gauss space ([8], [37]) states that for any measurable set

A ⊆ Rn, if γn(A) = N(θ) for θ ∈ R, then for any a ≥ 0 the set Aa = {ζ | ∃z ∈ Rn :

(‖z‖ ≤ a) ∧ (ζ + z ∈ A)} has measure at least N(θ − a).

Let A = {ζ | ∃j : ζ · yj/ ‖yj‖ ≥ s/ ‖yj‖}. By our assumption, this set has

measure at least N(θ). Since {yj/ ‖yj‖} are unit vectors, we have in this case

Aa = {ζ | ∃j, z : (‖z‖ ≤ a) ∧ ((ζ + z) · yj/ ‖yj‖ ≥ s/ ‖yj‖)}

= {ζ | ∃j, z : (‖z‖ ≤ a) ∧ (ζ · yj/ ‖yj‖ ≥ s/ ‖yj‖ − z · yj/ ‖yj‖)}

=

{
ζ

∣∣∣∣ ∃j : ζ · yj/ ‖yj‖ ≥ s/ ‖yj‖ −
(

max
z:‖z‖≤a

z · yj/ ‖yj‖
)}

= {ζ | ∃j : ζ · yj/ ‖yj‖ ≥ s/ ‖yj‖ − a}

Applying measure concentration, the claim follows immediately.

We now use this lemma to prove a cover composition theorem.

Theorem 3.4.4 (Cover composition). Let {xj | j ∈ J} be a uniform c-inefficient

(s1, δ)-cover, and for each j ∈ J , let Yj be a non-uniform (s2, N(θ))-cover such that

y ⊥ xj. Then we have

Pr
[
∃j ∈ J, y ∈ Yj : (ζ · xj ≥ s1) ∧

(
ζ · y ≥ s2 − ‖y‖ ·

(
θ +

√
c(1 + ε) · s1

))]

≥ δ −O

(
1

s1

)

for some ε = O
(

log s1

s2
1

)
.

Proof. If we associate with every j ∈ J the halfspace {ζ | ζ · xj ≥ s1}, then the

(s1, δ)-cover property implies that the union of these halfspaces has Gaussian mea-

sure ≥ δ. The idea is to obtain an upper-bound on the measure of points in each

halfspace not participating in the relevant set (i.e. the points ζ not satisfying the
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event in the theorem statement). Formally, for every j we define

Zj =
{

z ∈ Rn | z · xj ≥ s1 ∧ ∀y ∈ Yj : z · y ≤ s2 − ‖y‖ ·
(
θ +

√
c(1 + ε) · s1

)}

Symmetry of the standard normal distribution implies that N(ρ) + N(−ρ) = 1 for

all ρ ∈ R. Hence, by the independence of orthogonal components of a Gaussian

vector, and by Lemma 3.4.3 we have

Pr[ζ ∈ Zj] = Pr[ζ · xj ≥ s1] · Pr
[
∀y ∈ Yj : ζ · y ≤ s2 − ‖y‖ ·

(
θ +

√
c(1 + ε) · s1

)]

= N(s1) · Pr
[
∀y ∈ Yj : ζ · y ≤ s2 − ‖y‖ ·

(
θ +

√
c(1 + ε) · s1

)]

≤ N(s1) · (1−N(−
√

c(1 + ε) · s1))

= N(s1) ·N(
√

c(1 + ε) · s1).

(3.8)

Letting ε = 2 ln s1

s2
1

, this gives

Pr
[
∃j ∈ J, y ∈ Yj : ζ · xj ≥ s1

∧ ζ · y ≥ s2 − ‖y‖ ·
(
θ +

√
c(1 + ε) · s1

)]

≥ Pr[∃j : ζ · xj ≥ s1]− Pr[∃j : ζ ∈ Zj]

≥ δ −
∑

j

Pr[ζ ∈ Zj]

≥ δ − |J | ·N(s1) ·N(
√

c(1 + ε) · s1) by (3.8)

≥ δ −N(s1)
−c ·N(

√
c(1 + ε) · s1) by efficiency of {xj}

≥ δ − 1√
c(1 + ε) · s1 .

by Lemma 2.2.1
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We can use the composition theorem to obtain a result reminiscent of the chain-

ing argument in [5]: it shows that whenever KMS′ fails (in expectation), for some

large s we can find an (s, Ω(1))-cover containing few vectors.

Theorem 3.4.5. Let c > 0 be any fixed constant. Then for any graph G = (V,E),

strict vector 3-coloring {ui}, and threshold t > 0 which is at most c-inefficient

for (G, {ui}), the following holds: If at least half the vertices in V are bad for

KMS ′(G, {ui}) and threshold t, then identifying the vertices V with the vector col-

oring {ui}, there is some i ∈ V and some subset of its 2-neighborhood W ⊆ Γ(Γ(i))

such that

1. For all k ∈ W we have uk = (1
4

+ 3
4
αk)ui + wk for some vector wk ⊥ ui, and

−C
t2
≤ αk ≤ c

1+c
+ C

log t
(for some universal constant C > 0).

2. With probability at least 1
8
−O

(
1

log t

)
, there is some k ∈ W for which

ζ · wk ≥
(

9

4
− 3

4
αk − 3

2

√
1− α2

k

√
c

)
t−O(

√
log t)

Proof. Prune as in Lemma 3.6.11, and for simplicity, assume G = (V, E) is the

remaining graph. Now, fixing some i ∈ V , we have that {u′ij | j ∈ Γ(i)} and the

sets {u′jk | k ∈ Γ(j)} for every j ∈ Γ(i) are all uniform
(√

3t, 1
8
−O

(
1

log t

))
-covers

which are at most c-inefficient. Moreover, there exists some constant C > 0 such

that letting Wj =
{

k ∈ Γ(j)
∣∣∣−C

t2
≤ u′ji · u′jk ≤ c

1+c
+ C

log t

}
for every j ∈ Γ(i), the

sets
{
u′jk | k ∈ Wj

}
are

(√
3t, Ω( 1

t3
)
)
-covers.

Note that for all k ∈ Wj, ui · uk = (−1
2
uj +

√
3

2
u′ji) · (−1

2
uj +

√
3

2
u′jk) = 1

4
+

3
4
u′ji · u′jk. Hence the value αk

def
= u′ji · u′jk depends only on k (and i) and not on the
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choice of intermediate vertex j. For all j ∈ Γ(i), k ∈ Γ(j) let us write

u′jk = αku
′
ji +

√
1− α2

kw
′
jk

for unit vector w′
jk ⊥ u′ji. We can now define wk as follows:

wk = −
√

3

4
(1− αk)u

′
ij +

√
3

2

√
1− α2

kw
′
jk. (3.9)

This definition is consistent with the decomposition of ui in part 1, as we see here:

uk = −1

2
uj +

√
3

2
u′jk =

1

4
ui −

√
3

4
u′ij +

√
3

2
u′jk

=
1

4
ui −

√
3

4
u′ij +

√
3

2

(
αku

′
ji +

√
1− α2

kw
′
jk

)

=
1

4
ui −

√
3

4
u′ij +

√
3

2

(
αk

(√
3

2
ui +

1

2
u′ij

)
+

√
1− α2

kw
′
jk

)

=

(
1

4
+

3

4
αk

)
ui −

√
3

4
(1− αk)u

′
ij +

√
3

2

√
1− α2

kw
′
jk.

(3.10)

For each j ∈ Γ(i), we now apply Lemma 3.4.2 for the cover
{
u′jk | k ∈ Wj

}
,

v′ = u′ji and ρ = N−1( 1
t4

) = O(
√

log t). The lemma implies that the vectors

Yj =
{√

1− α2
kw

′
jk

∣∣∣ k ∈ Wj

}
form a non-uniform

(√
3t− ρ, C′

t3

)
-cover for some

constant C ′ > 0.
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By definition of w′
jk, we see that w′

jk ⊥ u′ij. Indeed, we have:

u′ij · w′
jk =

(√
3

2
uj +

1

2
u′ji

)
· w′

jk

=

√
3

2
uj · w′

jk

=

√
3

2
uj · 1√

1− α2
k

(
u′jk − αku

′
ji

)
= 0.

Hence, applying Theorem 3.4.4 for xj = −u′ij, Yj as above, and θ = N−1
(

C′
t3

)
=

O
(√

log t
)
, we get, for some ε = O

(
log t
t2

)
,

Pr



∃j ∈ Γ(i), k ∈ Wj :

ζ · u′ij ≤ −√3t ∧ ζ · w′
jk ≥

(
1√

1−α2
k

−
√

c(1 + ε)

)√
3t− ρ√

1−α2
k

− θ




≥ 1

8
−O

(
1

log t

)
.

By (3.9), this immediately implies part 2 of the theorem statement for W =
⋃

j∈Γ(i) Wj.

Now we prove Theorem 3.2.2 for the case of strict vector 3-coloring.

Proof of Theorem 3.2.2 (for strict vector coloring). Let c be the degree of ineffi-

ciency of the input, and suppose, for the sake of contradiction, that at least half

the vertices i are bad. Applying Theorem 3.4.5, we obtain a set of at most n

vectors {wk} so that with constant probability, some wk has projection at least
√

3
4

(3− αk − 2
√

1− α2
k

√
c− o(1))

√
3t for some −o(1) ≤ αk ≤ c

1+c
+ o(1).

Let ŵk = wk/ ‖wk‖. Noting that ‖wk‖ =
√

3
4

√
5− 2αk − 3α2

k, by (3.6) we have
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Ω(1) ≤ Pr[∃k : ζ · ŵk ≥ (λc(αk)− o(1))
√

3t]

≤
∑

k

N((λc(αk)− o(1))
√

3t)

≤ n ·max
k

N((λc(αk)− o(1))
√

3t)

≤ n ·N
(

min
0≤α≤ c

1+c

(λc(α)− o(1)) ·
√

3t

)
.

Let f(c) = min
0≤α≤ c

1+c

λc(α), and note that lim
c→0

f(c) = 3√
5
. Therefore, for τ > 5

9
,

c1(τ) in equation (3.5) is well-defined. Moreover, if c ≤ c1(τ) − Ω(1), we have

f(c)2 ≥ (1 + c) · ( 1
τ

+ a), for some constant a > 0. Thus, using the efficiency of t

and Lemma 2.2.1, the above inequality gives

Ω(1) ≤ n ·N
(√

3t
)f(c)2−o(1)

≤ n ·N
(√

3t
)(1+c)·( 1

τ
+a−o(1))

≤ n ·∆− 1
τ
−(a−o(1))

= ∆−(a−o(1))

which is a contradiction.

3.5 Extending the Analysis of KMS′ to Non-Strict

Vector Coloring

We sketch a generalization of the analysis in Section 3.4 which applies to KMS′

when the vector 3-coloring in the input is not necessarily strict. Specifically, we
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prove Theorem 3.2.2 where the set {ui} is a non-strict vector 3-coloring.

Let us first generalize the notation from Section 3.4. For any neighboring vertices

i, j ∈ V , we write

uj = (ui · uj)ui +
√

1− (ui · uj)2u′ij.

For a “one-step analysis” (e.g. the original KMS result), it is clear that if the

inner product between neighbors is < −1
2

then the analysis only improves. Specifi-

cally, we have the following easy generalization of Lemma 3.1.4.

Lemma 3.5.1. Let {ui} be a non-strict vector 3-coloring, let i ∈ V be any vertex,

and for all neighbors j ∈ Γ(i), let aj = −ui · uj (note that aj ≥ 1
2
). Then we have

Pr[∃i : ζ · uj ≥ t | ζ · ui ≥ t] ≤ Pr[∃i : ζ · u′ij ≥
√

(1 + aj)/(1− aj)t]

≤ Pr[∃i : ζ · u′ij ≥
√

3t].

The difficulty in verifying that the “two-step walk analysis” extends to non-strict

vector coloring seems to arise when we walk from i to j to k, where ui · uj < uj · uk.

This case can be avoided using a simple binning argument.

Proof of Theorem 3.2.2 for non-strict vector coloring. As before, we assume, for the

sake of contradiction, that at least half the vertices are bad, and prune as in

Lemma 3.6.11 (this lemma is valid for non-strict vector coloring by Lemma 3.5.1

above). For simplicity, assume G = (V,E) is the remaining graph. For any neigh-

boring vertices i, j ∈ V , define

Vi,j =

{
k ∈ Γ(j)

∣∣∣∣−
C

t2
≤ u′ji · u′jk ≤

c

1 + c
+

C

log t

}
,

where C > 0 is the constant in Lemma 3.6.11. Then, by Lemma 3.6.11, the sets

{u′jk | k ∈ Vi,j} are
(√

3t, Ω( 1
t3

)
)
-covers (that is,

(√
3t, Ω

(
log−

3
2 n

))
-covers).
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Now, consider a partition of the edges into log n bins {El} by inner product of

endpoints, i.e.

El =

{
(i, j) ∈ E : −ui · uj ∈

[
1

2
+

l

log n
,
1

2
+

l + 1

log n

)}
.

For any edge (i′, i) there is some l = l(i′, i) such that the set
{
u′ij | j ∈ ΓEl

(i) ∩ Vi′,i
}

is a
(√

3t, Ω
(
log−

5
2 n

))
-cover. We will denote this value simply as l(i′, i). Let i′, i

be two vertices that minimize l(i′, i). We concentrate now only on the subgraph of

G induced on the following vertices: the vertex i, neighbors j ∈ ΓEl(i′,i)(i) ∩ Vi′,i,

and for all such vertices j, neighbors k ∈ ΓEl(i,j)
(j) ∩ Vi,j. Finally, let a = 1

2
+ l(i′,i)

log n
,

let bj = 1
2

+ l(i,j)
log n

and bjk = −uj · uk. This choice of vertices ensures the following

important facts:

• For all j, |ui · uj + a| ≤ 1
log n

and for all k ∈ ΓEl(i,j)
(j), |bjk − bj| ≤ 1

log n
.

• For all j, k, uk = −bjkuj +
√

1− b2
jku

′
jk and bjk ≥ a ≥ 1

2
.

• For all j, k, −C
t2
≤ u′ji · u′jk ≤ c

1+c
+ C

log t

• The sets
{

u′ij | j ∈ ΓEl(i′,i)(i) ∩ Vi′,i

}
and

{
u′jk | k ∈ ΓEl(i,j)

(j) ∩ Vi,j

}
for all j

are all (
√

3t, Ω̃(1))-covers.

To simplify the argument, assume ui · uj = −a for all j, and assume uj · uk =

−bj for all j, k. We can do this because the resulting error terms (projections

along vectors of norm O( 1
log n

)) are negligible. Arguing as before, one can show the

following generalization of equation (3.10)

uk =
(
abj + αjk

√
(1− a2)(1− b2

j)
)

ui −
(
bj

√
1− a2 − αjka

√
1− b2

j

)
u′ij

+
√

(1− α2
jk)(1− b2

j)w
′
jk
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where −C
t2
≤ αjk ≤ c

1+c
+ C

log t
and w′

jk is a unit vector orthogonal to u′ij and ui.

Moreover, as in Theorem 3.4.5, we can show

Pr
[
∃i, j :

(
ζ · u′ij ≤ −

√
3 t

)
∧

(
ζ · w′

jk ≥ ρjk

√
3 t

)]
= Ω̃(1) (3.11)

for some

ρjk = 1/
√

1− α2
jk −

√
c− o(1).

Let wk be the component of uk orthogonal to ui. Namely,

wk = −
(
bj

√
1− a2 − αjka

√
1− b2

j

)
u′ij +

√
(1− α2

jk)(1− b2
j)w

′
jk. (3.12)

Our goal is to show that (3.11) implies a projection of at least (minj,k λc(αjk) −
o(1))

√
3t (the corresponding projection when a = bj = 1

2
) for ŵk = wk/ ‖wk‖.

The rest of the proof then follows as before. For brevity, write ŵk = −θjku
′
ij +√

1− θ2
jkw

′
jk. We will denote by κjk the corresponding value of θjk when a = bj = 1

2
.

Thus, it suffices to show that

θjk +
√

1− θ2
jkρjk ≥ κjk +

√
1− κ2

jkρjk.

The comparison is facilitated by the following simple observation: For any non-

negative constant 0 ≤ ρ ≤ 1, the function f(θ) = θ +
√

1− θ2ρ is monotonically

increasing in the range θ ∈ [−1, 1√
2
]. Thus, it suffices to show the following:

1. ρjk < 1.

2.
θjk√
1−θ2

jk

≥ κjk√
1−κ2

jk

= 1
2
· 1−αjk√

1−α2
jk

(equivalent to showing θjk ≥ κjk).

3.
θjk√
1−θ2

jk

< 1 (and thus θjk < 1√
2
).
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To show property 1, first note that we always have c < 1/9, since λ1/9(0) <
√

(1 + 1/9)/τ for all τ ≤ 1, thus violating the condition in (3.5). Now, for such

values of c we have

|αjk| ≤ c

1 + c
+ o(1) <

√
c

1 +
√

c
<

√
2
√

c + c

1 +
√

c .

Equivalently, this gives 1/
√

1− α2
jk −

√
c < 1, and thus property 1 follows.

Property 2 can be derived as follows:

θjk√
1− θ2

jk

=
bj

√
1− a2 − αjka

√
1− b2

j√
(1− α2

jk)(1− b2
j)

by (3.12)

≥ bj − αjka√
1− α2

jk

since bj ≥ a

≥ a− αjka√
1− α2

jk

≥ 1− αjk

2
√

1− α2
jk

since bj ≥ a ≥ 1

2

Finally, let us show property 3. First note that for every vertex j the set{
u′jk | k ∈ ΓEl(i,j)

(j) ∩ Vi,j

}
is a

(√
3t, Ω

(
log−

5
2 n

))
-cover. Hence by Lemma 3.5.1

and the efficiency of t, we have

N(
√

3t)−(1+c)N

(√
1 + bj

1− bj

)
≥ ∆N

(√
1 + bj

1− bj

)
= Ω

(
log−

5
2 n

)
,

which by Lemma 2.2.1 implies 3 + 3c ≥ (1 + bj)/(1− bj)− o(1), or

bj ≤ 2 + 3c

4 + 3c
+ o(1). (3.13)
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Moreover, recall that

−o(1) ≤ αjk ≤ c

1 + c
+ o(1) <

√
c

1 + c
. (3.14)

Hence we have

θjk√
1− θ2

jk

=
bj

√
1− a2 − αjka

√
1− b2

j√
(1− α2

jk)(1− b2
j)

by (3.12)

≤ 1√
1− α2

jk

(
(2 + 3c)

√
1− a2

2
√

3 + 3c
+ o(1)− αjka

)
by (3.13)

≤ 1√
1− α2

jk

(
2 + 3c

4
√

1 + c
+ o(1)− αjk

2

)
since a ≥ 1

2

≤ 1√
1− α2

jk

(
2 + 3c

4
√

1 + c
+ o(1)

)
by (3.14)

<
2 + 3c

4
by (3.14)

<
7

12
< 1. since c <

1

9

3.6 Pruning Efficient Covers

The purpose of this section is to prove Lemma 3.6.11, a structural lemma concerning

the behavior of algorithm KMS′ which is used in the current chapter as well as

Chapter 4.

41



3.6.1 De-Clustering Efficient Covers

We begin by showing that efficient covers cannot contain large clusters (see Defini-

tion 2.2.2). It is instructive to consider the following example: Let x0, x1, . . . , xk be

mutually orthogonal unit vectors, and yi = ax0 +
√

1− a2xi for all i = 1, . . . , k. A

simple calculation shows that for a =
√

c
1+c

− o(1) and k = N(s)−(1+c), the vectors

{yi} form a c-inefficient (s, Ω(1))-cover. Note the following properties of this cover:

1. The vectors {yi} are a (c/(1 + c)− o(1))-cluster.

2. For any i 6= j we have yi · yj ≈ c
1+c

.

Essentially, we will show that in terms of these properties, this is the most

clustered configuration of vectors that can form a c-inefficient cover. Specifically,

only small subsets of a c-inefficient cover can form a λ-cluster for λ significantly

greater than c
1+c

. Moreover, we show that for most vectors yi in a c-inefficient

cover, at most a small fraction of other cover vectors yj satisfy yi · yj ≥ c
1+c

+ o(1).

To make the quantification more precise, and to facilitate the pruning arguments

later, we need the following definition, which extends the notion of (s, δ)-covers

defined in Section 3.1.

Definition 3.6.1. Given a set of unit vectors X together with some measure µ on

this set, we call (X, µ) a (s, δ)-packing, if

1. for ζ ∈ Rn chosen from the standard normal distribution, and any X ′ ⊆ X,

µ(X ′) ≤ Pr[∃x ∈ X ′ : ζ · x ≥ s],

and

2. the measure of all vectors µ(X) ≥ δ.
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Note that if (X, µ) is an (s, δ)-packing then X is an (s, δ)-cover, and con-

versely, every cover has a corresponding packing for an appropriate choice of µ.

Namely, if X is an (s, δ)-cover, then taking Z(x) to be the Voronoi regions Z(x) =

{ζ | (ζ · x ≥ s) ∧ (ζ · x = maxx′∈X ζ · x′)}, we can take µ(x) = Pr[ζ ∈ Z(x)]. We’ll

say a packing (X, µ) is c-inefficient if the cover X is c-inefficient.

The next definition formalizes the “well-spread” property:

Definition 3.6.2. An (s, δ)-packing (X, µ) is said to be (λ, p)-spread, if for all

x ∈ X we have,

µ({x′ ∈ X | x · x′ ≥ λ}) ≤ p.

The following lemma shows that in an efficient cover, vectors which form a

(c/(1 + c) + o(1))-cluster have a negligible contribution.

Lemma 3.6.3. Let ε > 0, let X be an (s, δ)-cover which is at most c-inefficient,

and let v0 be any unit vector. Then letting X ′ =
{

x ∈ X | x0 · x ≥
√

c
1+c

(1 + ε)
}
,

we have

Prζ [∃x ∈ X ′ : ζ · x ≥ s] ≤ O(N(c′εs))

for c′ = min{4
√

c/(1 + c),
√

c(1 + c)/4}.

(The value of c′ above is unimportant. It is some constant which depends only

on c.)

Corollary 3.6.4. Let (X,µ) be an (s, δ)-packing which is at most c-inefficient.

Then for any ε > 0 this packing is
(√

c
1+c

(1 + ε), O(N(c′εs))
)
-spread.

Proof of Lemma 3.6.3. The set X ′ is a ρ = c
1+c

(1+ε)-cluster. Thus, for any constant

θ > 0, from Corollary 2.2.4 and the efficiency of X ′, we know that

Prζ [∃x ∈ X ′ : ζ · x ≥ s] ≤ poly(s)N(s)−(1+c)N(s)1+(
√

ρ−θ
√

cε)2/(1−ρ) + 2N(θ
√

cεs).
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Hence, by Lemma 2.2.1, it suffices to find some θ ≥ min
{

4√
1+c

,
√

1+c
4

}
for which

(
√

ρ− θ
√

cε)2/(1− ρ)− c > min

{
16

1 + c
,
1 + c

16

}
cε2.

Indeed, we have

1

c

(
(
√

ρ− θ
√

cε)2

1− ρ
− c

)
=

1

1− cε

(
(1 + c)ε− 2θ

√
(1 + c)(1 + ε)ε + θ2(1 + c)ε2

)

≥ (1 + c)ε− 2θ
√

1 + cε− θ
√

1 + cε2 + θ2(1 + c)ε2

=
√

1 + c
(√

1 + c− 2θ − (θ − θ2
√

1 + c)ε
)

ε.

Now, if ε ≤ 1, we set θ =
√

1+c
4

, which gives

1

c

((√
ρ− θ

√
cε

)2

1− ρ
− c

)
≥ √

1 + c

(
1

2

√
1 + c−

√
1 + c

4

(
1− 1 + c

4

)
ε

)
ε

≥ 5(1 + c)

16
ε ≥ 5(1 + c)

16
ε2

>
1 + c

16
ε2.

Otherwise, if ε > 1, we set θ = 4√
1+c

, which gives

1

c

(
(
√

ρ− θ
√

cε)2

1− ρ
− c

)
≥ √

1 + c

(√
1 + c− 8√

1 + c
+

12√
1 + c

ε

)
ε

≥ (12ε− 7)ε ≥ 5ε2

> ε2 ≥ min

{
16

1 + c
,
1 + c

16

}
ε2.

We need the following combinatorial lemma:
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Lemma 3.6.5. Let µ be a measure on some set X satisfying µ(X) ≤ 1, and let

X1, . . . , Xk be any k subsets of X satisfying
∑k

j=1 µ(Xj) ≥ 2αk where αk ∈ N.

Then if S ⊆ {1, . . . , k} is a random subset sampled uniformly over all subsets of

cardinality αk, we have E
[
µ

(⋂
j∈S Xj

)]
≥ (

2αk
αk

)
/
(

k
αk

)
. In particular, there exists

a set S0 ⊆ {1, . . . , k} of cardinality αk such that µ
(⋂

j∈S0
Xj

)
≥ (

2αk
αk

)
/
(

k
αk

)
.

Proof. First note that the set Y = {x ∈ X | |{j | Xj 3 x}| ≥ αk} has measure

µ(Y ) > α. Indeed,

2αk ≤
k∑

j=1

µ(Xj) =
∑
x∈X

µ(x) |{j | Xj 3 x}|

=
∑
x∈Y

µ(x) |{j | Xj 3 x}|+
∑

x∈X\Y
µ(x) |{j | Xj 3 x}| (3.15)

≤ µ(Y )k + αk − 1.

Now, let � = 1
µ(Y )

∑
x∈Y µ(x) |{j | Xj 3 x}| (note that, by definition of Y , � ≥ αk).

By (3.15), we have

µ(Y )� + (1− µ(Y ))(αk − 1) ≥ 2αk,

and so

µ(Y ) ≥ αk + 1

�− αk + 1
. (3.16)

Since µ(Y ) ≤ 1, this also implies � ≥ 2αk.

We show the required lower bound by summing over all subsets of {X1, . . . , Xk}
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of cardinality αk. Scaling by 1/µ(Y ), we have

1

µ(Y )

∑

S⊆{1,...,k}
|S|=αk

µ

(⋂
j∈S

Xj

)
=

1

µ(Y )

∑
x∈Y

µ(x)

(|{j | Xj 3 x}|
αk

)

≥
( 1

µ(Y )

∑
x∈Y µ(x) |{j | Xj 3 x}|

αk

)
=

(
�
αk

)
,

where the inequality follows from the convexity of the function f(x) =
(

x
αk

)
=

1
k!

∏αk−1
i=0 (x− i) for x ≥ αk. Hence, we have

∑

S⊆{1,...,k}
|S|=αk

µ

(⋂
j∈S

Xj

)
≥ µ(Y )

(
�
αk

)

≥ αk + 1

�− αk + 1

(
�
αk

)
by (3.16)

=
αk + 1

αk

(
�

αk − 1

)

≥ αk + 1

αk

(
2αk

αk − 1

)

=

(
2αk

αk

)

.

Remark 3.6.6. This lemma is tight. Consider the uniform distribution over subsets

T ⊆ {1, . . . , k} of cardinality 2αk. For all i ∈ {1, . . . , k} let Xi be the event i ∈ T .

Clearly, Pr[Xi] = 2α. On the other hand, for any set S ⊆ {1, . . . , k} of cardinality

αk, we have

Pr

[⋂
i∈S

Xi

]
= Pr[S ⊆ T ] =

(
(1− α)k

αk

)
/

(
k

2αk

)
=

(
2αk

αk

)
/

(
k

αk

)
.
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We will use a slightly weaker bound which gives a simpler expression:

Corollary 3.6.7. Let µ be a measure on some set X satisfying µ(X) ≤ 1, and let

X1, . . . , Xk be any k subsets of X satisfying
∑k

j=1 µ(Xj) ≥ 2αk where αk ∈ N. Then

there exists a set S ⊆ {1, . . . , k} of cardinality αk such that µ
(⋂

j∈S Xj

)
≥ (

4α
e

)αk
.

Proof. By Lemma 3.6.5, there exists such a set S with

µ

(⋂
j∈S

Xj

)
≥

(
2αk

αk

)
/

(
k

αk

)

=
αk−1∏
i=0

2αk − i

k − i
.

We bound this expression from below by taking the natural logarithm:

ln

(
αk−1∏
i=0

2αk − i

k − i

)
=

αk−1∑
i=0

(ln(2αk − i)− ln(k − i))

≥
∫ αk

0

(ln(2αk − x)− ln(k − x))dx

= αk ln
(
4α(1− α)

1
α
−1

)

≥ αk ln

(
4α

e

)
.

The following boosting lemma is the main tool in this pruning argument. It

shows that efficient (λ, o(1))-spread packings contain large subpackings which are

roughly
(√

λ · c
1+c

, o(1)
)
-spread. Applying this lemma repeatedly will yield the

desired result (a large subpacking which is
(

c
1+c

+ o(1), o(1)
)
-spread).
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Lemma 3.6.8. Let (X,µ) be an (s, δ)-packing which is at most c-inefficient and

(λ, p)-spread. Then for any σ ≥ 1, ε > 0 and α > e
4
(C · N(c′εs))1/σ (for some

universal constant C) there is a subset X ′ ⊆ X such that (X ′, µ) is an (s, δ− σ
α
· p)-

packing, and furthermore this packing is
(√

λ · c
1+c

(1 + ε)
(
1 + 1

λσ

)
, 2α

)
-spread.

Proof. For every x ∈ X, define

Xx =

{
x′ ∈ X

∣∣∣∣∣x · x
′ ≥

√
λ · c

1 + c
(1 + ε)

(
1 +

1

λσ

)}
.

Now, while there are any vectors x ∈ X such that µ(Xx} ≥ 2α, choose such an x

and remove all x′ ∈ X such that x · x′ ≥ λ from the cover X (but not from the

various sets Xx). Add the vector x to some (initially empty) set T . Since X is

(λ, p)-spread, if we repeat the above procedure k times, the removed vectors can

have measure (µ) at most kp. If the above procedure terminates after at most σ
α

steps, the claim follows (where X ′ is the set of vectors remaining in X). Suppose

by contradiction, that the procedure does not terminate after the first σ
α

steps, and

consider the set T of the various vectors chosen at different steps (|T | = σ
α
). By

Corollary 3.6.7 (for k = σ
α
), there is some set S ⊆ T of cardinality σ such that the

set X ′′ =
⋂

x∈S Xx has measure

µ(X ′′) ≥
(

4α

e

)σ

. (3.17)

Now let v =
∑

x∈S x. The pruning ensures that for every two vectors x1, x2 ∈ T ,

we have x1 · x2 ≤ λ. Hence ‖v‖2 ≤ σ + σ(σ − 1)λ. Letting v̂ = v/ ‖v‖, this implies
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that for all x′ ∈ X ′′,

v̂ · x′ ≥
σ
√

λ · c
1+c

(1 + ε)(1 + 1
λσ

)
√

σ + σ(σ − 1)λ

>

√
c

1 + c
(1 + ε).

By Lemma 3.6.3, this is a contradiction if µ(X ′′) ≥ Ω(N(c′εs)), which by (3.17)

holds for α > e
4
Ω (C ·N(c′εs))1/σ.

Now, by choosing appropriate parameters and boosting repeatedly, we can ob-

tain the desired result.

Theorem 3.6.9. Let (X, µ) be an (s, δ)-packing which is at most c-inefficient. Then

there is a subset X ′ ⊆ X such that (X ′, µ) is an (s, δ − 1
log s

)-packing which is(
c

1+c
· (1 + O( 1

log s
)), e−Ω(log2 s)

)
-spread.

Proof. For all k = 1, . . . , log s, define

λk =

(
c

1 + c

)1−2−k (
1 +

log s

s

)2−k
[(

1 +
log3/2 s

s

)(
1 +

1 + c

c log s

)]1−21−k

.

In particular λ1 =
√

c
1+c

(
1 + log s

s

)
. By Corollary 3.6.4, we know that (X,µ) is

(λ1, p1)-spread, where p1 = C · N(c′ log s) (for some constant C > 0). We extend

this to the sequence pk = (2 log3 s)k−1 · p1 for all k = 1, . . . , log s. Note that, by

Lemma 2.2.1, for all k ≥ 2 we have

pk ≥ p2 = 2C log3 s ·N(c′ log s) = ω(N(c′ log3/2 s)1/ log s).
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Moreover, λk ≥ c
1+c

for every k ≥ 1, and hence,

λk+1 ≥
√√√√λk · c

1 + c

(
1 +

log3/2 s

s

)(
1 +

1

λk log s

)
.

Thus we can apply Lemma 3.6.8 inductively for log s steps with (at step k) λ = λk,

p = pk, σ = log s, ε = log3/2 s/s, and α = pk+1/2. At each step, we may lose at

most measure log s · pk

pk+1/2
= 1

log2 s
. Hence, after log s steps, we only lose measure

1
log s

, giving a (s, δ − 1
log s

)-packing, where X ′ is the set of vectors remaining. The

spread property follows by noting that (using Lemma 2.2.1)

plog s+1 = C(2 log3 s)log s ·N(c′ log s) = e−Ω(log2 s).

3.6.2 Pruning

Returning to the analysis of KMS′, we first argue that if at least half the vertices

i ∈ V are bad (i.e., their probability of being eliminated from Vζ(t) is more than

1/2), then we can focus on a subgraph in which all vertices are almost-bad.

Lemma 3.6.10. For any t, δ > 0, if in KMS′(G, {ui}) we have

Pr[i is eliminated | i ∈ Vζ(t)] ≥ δ

for at least n/2 vertices i ∈ V , then there is a non-empty subgraph G′ = (V ′, E ′) of

G such that for all i ∈ V ′ we have

Pr[i is eliminated with a neighbor in G′ | i ∈ Vζ(t)] ≥ δ/4.
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Proof. The proof uses a pruning argument from [5]. Consider the graph of all

matching edges (for all choices of ζ), with edges weighted by probability of elim-

ination. Denote by γ(i) the total weight of edges incident to i. Remove, one

after the other, vertices with γ(i) < N(t)δ/4 (while updating γ(·) values for ver-

tices with removed neighbors). Since the initial total edge weight in the graph is

1
2

∑
i∈V γ(i) ≥ 1

2
· n

2
· N(t)δ = n · N(t)δ/4, and the total edge weight eliminated

is < n · N(t)δ/4, there must be positive edge weight left. The remaining graph is

therefore non-empty and has the desired property.

In the analysis of KMS′(G, {ui}), we need a pruning argument as above, but

we also need the spread property of Theorem 3.6.9 to hold for all covers. This is

guaranteed by the following lemma.

Lemma 3.6.11. For any t, δ > 0, if in KMS′(G, {ui}) we have

Pr[i is eliminated | i ∈ Vζ(t)] ≥ δ

for at least n/2 vertices i ∈ V , and t is at most c-inefficient for G, then there is a

non-empty subgraph G′ = (V ′, E ′) of G such that for all j ∈ V ′ we have (for some

universal constant C):

1. Pr[j is eliminated with a neighbor in G′ | j ∈ Vζ(t)] ≥ δ
4
−O

(
1

log t

)
.

2. For every i ∈ ΓG′(j) the set

W ′
ji

def
=

{
u′jk

∣∣∣∣u′ji · u′jk ≤
c

1 + c
·
(

1 +
C

log t

)}

is a
(√

3t, δ
4
−O

(
1

log t

))
-cover.
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3. For every i ∈ ΓG′(j) the set

W ′′
ji

def
=

{
u′jk

∣∣∣∣−
C

t2
≤ u′ji · u′jk ≤

c

1 + c
·
(

1 +
C

log t

)}

is a
(√

3t, Ω( 1
t3

)
)
-cover.

Proof. Fix any vertex j ∈ V , and let pj = Pr[j is eliminated | j ∈ Vζ(t)]. Define

measure µj on the set Γ(j) as follows: For all K ⊆ Γ(j), let

µj(K) = Pr[∃k ∈ K : j is eliminated along with k | j ∈ Vζ(t)].

By Lemma 3.1.4 (and since KMS′ eliminates a matching), it follows that ({u′jk | k ∈
Γ(j)}, µj) is a (

√
3t, pj)-packing. By choice of t, this packing is c-inefficient. Now

apply Theorem 3.6.9 to obtain a subset K ′
j ⊆ Γ(j) s.t.

({
u′jk | k ∈ K ′

j

}
, µj

)
is a(

c
1+c

(
1 + C

log t

)
, e−C1 log2 t

)
-spread

(√
3t, pj − 1

log(
√

3t)

)
-packing (for some constants

C, C1 > 0). Remove all edges (j, k) for k 6∈ K ′
j from G (removing additional

edges does not change the spread property of any packings). Note that for some

C ′ > 0 and all t > 0 we have e−C1 log2 t ≤ C′
t3

, so the packing
({u′jk | k ∈ K ′

j}, µj

)
is(

c
1+c

(
1 + C

log t

)
, C′

t3

)
-spread.

Again, consider the graph of matching edges, and extend the measures µj to

edge weights as follows: for edge (j, k), let µ(j, k) = µj(k) . Denote by µ(j) the

total weight of edges incident to j (thus the probability of j being eliminated is

exactly µ(j)N(t) and an edge (j, k) is eliminated with probability µ(j, k) · N(t)).

To obtain the subgraph G′ = (V ′, E ′) repeatedly perform the following pruning

operation (while possible):

1. If any vertex j has (weighted) degree µ(j) < δ
4
− 1

4 log(
√

3t)
− 2C′

t
− 2C′

t3
, eliminate

j.
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2. Otherwise, if for some vertex j and neighbor i ∈ ΓG′(j) the edge set

Ei(j) =

{
(j, k)

∣∣∣∣u′ji · u′jk ≥ − 1

t2

}

satisfies µ(Ei(j)) < 2C′
t3

, remove all edges in Ei(j).

To see that the remaining graph is non-empty, consider a vertex j for which we

prune some edges � times in step 2 for some � ≥ 1. Denote by i1, . . . , i� ∈ ΓG(j)

the neighbors for which edge sets Eis(j) were pruned. By definition of the sets

Ei(j), we have

0 ≤
∥∥∥∥∥

�∑
s=1

u′jis

∥∥∥∥∥

2

= � +
�∑

s=1

�∑

l=1
l 6=s

u′jis · u′jil < �− �(�− 1) · 1

t2
,

and so � < t2 + 1. The total weight eliminated is therefore strictly less than

n

(
δ

4
− 1

4 log(
√

3t)
− 2C ′

t
− 2C ′

t3

)
+ n(t2 + 1)

2C ′

t3
= n

(
δ

4
− 1

4 log(
√

3t)

)
,

whereas the total edge weight in the original graph is

1

2

∑
x∈V

µ(x) ≥ 1

2
· n

2

(
δ − 1

log(
√

3t)

)
.

Thus, the remaining graph is non-empty.

Define

K ′
ji

def
=

{
k ∈ ΓG′(j)

∣∣∣∣ u′ji · u′jk ≤
c

1 + c
·
(

1 +
C

log t

)}

and

K ′′
ji

def
=

{
k ∈ ΓG′(j)

∣∣∣∣−
C

t2
≤ u′ji · u′jk ≤

c

1 + c
·
(

1 +
C

log t

)}

.
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Then we have the following:

• By pruning step (1):

µ(j) ≥ δ

4
− 1

4 log(
√

3t)
− 2C ′

t
− 2C ′

t3
.

• By the spread property of
({u′jk | k ∈ K ′

j}, µj

)
:

µj(K
′
ji) ≥ µ(j)− C ′

t3
.

• By pruning step (2) and the spread property of
({u′jk | k ∈ K ′

j}, µj

)
:

µj(K
′′
ji) ≥ µj(Ei(j))− µj(K

′
j \K ′

ji)) ≥
2C ′

t3
− C ′

t3
=

C ′

t3
.

This completes the proof.

3.7 A Modified Blum Karger Algorithm

In this section we give a summary of the technique of Blum and Karger [7], which

relies on the coloring tools of Blum [6]. This allows us to present the results in

Chapters 3 and 4 in the same framework as those of [6, 7]. In order to explain the

approach, we use the notion of progress towards a coloring, as defined in [6].

Definition 3.7.1. For an n-vertex 3-colorable graph G, and monotonically increas-

ing function f : N → N, we define progress towards a f(n)-coloring as finding any

one of the following objects:
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Progress Type 1 An independent set of size Ω(n/f(n)).

Progress Type 2 An independent set S which has a neighborhood of size

∣∣∣∣∣
⋃
v∈S

Γ(v)

∣∣∣∣∣ = O(|S| f(n)).

Progress Type 3 Two vertices that must have the same color in any legal 3-

coloring of G.

The main result of this section (which we prove in Section 3.7.2) is the following.

Theorem 3.7.2. Let A be a polynomial time algorithm that takes an n-vertex 3-

colorable graph with maximum degree at most ∆ as input, and makes progress to-

wards an f(n, ∆)-coloring. Then there is a polynomial time algorithm which, for any

n-vertex 3-colorable graph, finds an Õ(min1≤∆≤n(f(n/4, 2∆) + (n/∆)3/5))-coloring.

This immediately implies the results of Blum [6] and Blum and Karger [7]:

Corollary 3.7.3. For 3-colorable graphs, using the greedy ∆+1-coloring approach,

one can find an Õ(n3/8) coloring in polynomial time.

Corollary 3.7.4. For 3-colorable graphs, using the KMS guarantee of progress to-

wards an Õ(∆1/3)-coloring in Theorem 3.1.2, one can find an Õ(n3/14) coloring in

polynomial time.

3.7.1 Making Progress in Dense Graphs

We will need the following (slightly simplified) lemma from [6].

Lemma 3.7.5. Let f(n) be any monotonically increasing function, then in order to

find an Õ(f(n))-coloring in any n-vertex 3-colorable graph G, it suffices to have an

algorithm which makes progress towards a f(n)-coloring in such a graph.
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We follow Blum and Karger [7] to guarantee progress towards an Õ

((
n

dmin

)3/5
)

-

coloring (where dmin is the average degree). As in [6], for any vertex v ∈ V and any

two sets S, T ⊆ V , we define

• dT (v)
def
= |Γ(v) ∩ T |

• D(S)
def
=

∑
v∈S d(v)

• DT (S)
def
=

∑
v∈S dT (v)

• davg(S)
def
= 1

|S|D(S)

Assuming G is 3-colorable, let (R, Y, B) be some partition of V into independent

sets (a legal 3-coloring), where R is the color set with the most incident edges, i.e.

we assume D(R) ≥ 1
3
D(V ). Finally, we use the following partitions of V : for any

set S ⊆ V , δ > 0, and i, j = 0, 1, 2, . . . , log1+δ n, we define

• Iδ
i

def
= {v ∈ V | (1 + δ)i ≤ d(v) < (1 + δ)i+1}

• Jδ
j (S)

def
= {v ∈ V | (1 + δ)j ≤ dS(v) < (1 + δ)j+1}

As in [7], we use the following three theorems of [6] (in slightly simplified form):

Theorem 3.7.6 ([6], Theorem 7). Given a 3-colorable n-vertex graph G = (V,E),

there is some v ∈ R and some i ∈ {0, 1, . . . , log1+δ n} s.t.

1. |S| ≥ δ2

log1+δ n
davg(R)

2. DR(S) ≥ 1
2
(1− 3δ)D(S)

Theorem 3.7.7 ([6], Theorem 8). Given a 3-colorable n-vertex graph G = (V,E),

and λ ∈ [0, 1]: For any set S ⊆ V such that DR(S) ≥ λD(S), there is some

j < log1+δ n such that the set T = Jδ
j (S) satisfies the following:
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1. DT (S) ≥ δDR(S)/ log1+δ n

2. |T ∩R| / |T | ≥ (1− 2δ)λ

Theorem 3.7.8 ([6], Theorem 13). Given sets of vertices S and T in an n-vertex

3-colorable graph G, and k > 0, in order to make progress towards an O(k)-coloring

of G, it suffices to have the following conditions hold:

1. S is 2-colored under some legal 3-coloring of G,

2. DT (S) = Ω(|S| (n log2 n)/k2), and

3. the following bound holds:

[DT (S)]3 = Ω

([
|S|+ max

v∈S
dT (v)

]
· [|S| |T |2 (n log n)/k2 + |S|2 |T |n2/k4

])
.

We now combine these theorems to prove a generalization of Theorem 6 in [7].

The proof follows essentially the same lines as in [7].

Theorem 3.7.9. For any 3-colorable graph G = (V,E) with minimum degree dmin,

there is a poly-time algorithm to make progress towards an Õ
(
(n/dmin)

3/5
)
-coloring.

Proof. First, note that we can assume

(
n

dmin

)3/5

<
dmin

log6 n
(3.18)

Otherwise, we can make progress of type 2 towards an Õ(dmin)-coloring (i.e. a

Õ((n/dmin)
3/5)-coloring) just by taking any vertex of degree dmin (by itself an inde-

pendent set), and its neighborhood.
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Let δ = 1
5 log n

. Theorems 3.7.6 and 3.7.7 imply that for some vertex v ∈ V and

some indices i, j ∈ {0, . . . , log1+δ n}, the sets S = Γ(v) ∩ Iδ
i and T = Jδ

j (S) satisfy

|S| = Ω

(
dmin

log4 n

)

,
(3.19)

|T ∩R| / |T | ≥ 1

2
(1− 2δ)(1− 3δ) ≥ 1

2

(
1− 1

log n

)
(3.20)

and

DT (S) ≥ δ

log1+δ n
DR(S) ≥ (1− 3δ)δ

2 log1+δ n
D(S) = Ω

(
dmin |S|
log3 n

)

.
(3.21)

(We make progress by trying all choices of v, i and j.)

Since by (3.20), |T | has an independent set of size 1
2
(1− 1

log n
) |T |, we can use the

vertex-cover approximation algorithm of Karakostas [22] to find an independent set

of size Ω(|T | /
√

log |T |). Hence, we have made progress if T = Ω̃(n2/5d
3/5
min). Now,

suppose this is not the case, that is,

|T | ≤ n2/5d
3/5
min

log5 n .
(3.22)

We want to show that progress towards an O(k) coloring can be made using The-

orem 3.7.8 with k = log3 n(n/dmin)
3/5. Condition 1 of the theorem holds since

S ⊆ Γ(v). Substituting for k, we rewrite condition 2 as

DT (S) = Ω

(
|S| · dmin

log4 n

(
dmin

n

)1/5
)

.

Since dmin < n, it suffices to check that DT (S) = Ω
(|S| · dmin/ log4 n

)
, which follows

from (3.21).
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To verify condition 3, let us first note that, for the value of k specified above,

|T | log n ≤ n2/5d
3/5
min

log4 n
by (3.22)

= O

(
|S|n

(
n

dmin

)2/5
)

by (3.19)

= O

(
|S| · log6 n

k2

(
n

dmin

)8/5
)

= O(|S|n/k2). by (3.18)

Hence, to verify condition (3) it suffices to check that

[DT (S)]3 = Ω

([
|S|+ max

v∈S
dT (v)

]
|S|2 |T |n2/k4

)
.

Now, by our choice of S, all vertices in S have nearly the same degree, thus

[
|S|+ max

v∈S
dT (v)

]
|S|2 |T |n2/k4

=

[
|S|2 + max

v∈S
dT (v) |S|

]
|S| |T |n2/k4

≤
[
|S|2 + max

v∈S
d(v) |S|

]
|S| |T |n2/k4

≤ [|S|2 + D(S)(1 + δ)
] |S| |T |n2/k4

≤ [|S|2 + O(DT (S) log3 n)
] |S| |T |n2/k4 by (3.21)

=
[|S|2 + O(DT (S) log3 n)

] |S| |T | · d
12/5
min

n2/5 log12 n

≤ [|S|2 + O(DT (S) log3 n)
] |S| d3

min

log17 n
by (3.22)

= O

(
DT (S)

[|S|2 + DT (S) log3 n
] d2

min

log14 n

)
. by (3.21)
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If DT (S) log3 n ≤ |S|2, then from the above calculation, we get

[
|S|+ max

v∈S
dT (v)

]
|S|2 |T |n2/k4 = O

(
DT (S) |S|2 d2

min

log14 n

)

= O
(
[DT (S)]3/ log8 n

)
. by (3.21)

Otherwise, we have

DT (S) log3 n ≥ |S|2 , (3.23)

which gives

[
|S|+ max

v∈S
dT (v)

]
|S|2 |T |n2/k4 = O

(
[DT (S)]2

d2
min

log11 n

)

= O

(
[DT (S)]2

|S|2
log3 n

)
by (3.19)

= O
(
[DT (S)]3

)
. by (3.23)

3.7.2 Combining Combinatorial Coloring Tools and SDP

Rounding

We use the following graph partitioning lemma:

Lemma 3.7.10. Given an undirected n-vertex graph G = (V, E) and a parameter

∆ ≥ 0, one can find, in polynomial time, a vertex-induced subgraph G′ of size ≥ n
4
,

such that either

• the maximum degree in G′ is at most 2∆, or

• the minimum degree in G′ is at least ∆
2
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Proof. Let V1 = V , and V2 = ∅. If there is any vertex with degree ≤ ∆/2 in the

subgraph of G induced on V1, move this vertex from V1 to V2. Repeat this operation

until no such vertices are left. If |V1| ≥ n/2, let G′ be the subgraph of G induced

on V1. This graph has minimum degree ≥ ∆/2. Otherwise, we have |V2| ≥ n/2. By

construction of V2, there are at most |V2|∆/2 edges (of the original graph) incident

to vertices in V2. Therefore, the vertices in V2 have total degree

∑
v∈V2

d(v) ≤ |V2|∆.

Of these, at most |V2| /2 vertices can have degree ≥ 2∆. Hence there are at least

|V2| /2 ≥ n/4 vertices in V2 with maximum degree≤ 2∆. Letting G′ be the subgraph

of G induced on these vertices, we are done.

We can now give a generalization of [6] and [7]:

Proof of Theorem 3.7.2. By Lemma 3.7.5, it suffices to show that we can make

progress towards the desired coloring. Let ∆0 be the value of ∆ which minimizes

f(n/4, 2∆) + (n/∆)3/5 (if it is not computable, we can try all values of ∆). Apply

the algorithm in Lemma 3.7.10 with ∆ = ∆0, to find the corresponding subgraph G′.

If the maximum degree in G′ is at most 2∆0, apply algorithm A to make progress

towards an O(f(n/4, 2∆0))-coloring. Otherwise, the minimum degree in G′ must

be at least ∆0/2, in which case, by Theorem 3.7.9, we can make progress towards

an Õ((n/∆0)
3/5)-coloring.
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Chapter 4

Coloring 3-Colorable Graphs

Using the Lasserre Hierarchy

In this chapter we present a further improvement for coloring 3-colorable graphs

which involves tighter SDP relaxations and a new rounding algorithm. This al-

gorithm gives an O (n0.2072) coloring. While it is not necessary to understand the

algorithm and analysis in the previous chapter in order to understand the present

chapter, we will rely heavily on notation and terminology defined in Section 3.1.

Moreover, algorithm KMS′, which is used as part of the rounding algorithm pre-

sented in this chapter, appears in Section 3.2, and the analysis of the algorithm

described here will make crucial use of lemmas proved in Sections 3.6 and 3.7.

4.1 Hierarchical SDP Relaxations for 3-Coloring

We first give an SDP relaxation for 3-coloring based on the Lasserre hierarchy de-

scribed in Section 2.1.2. Since the relaxations discussed earlier were for Independent

Set, we first reduce the 3-coloring problem to an Independent Set problem. This is
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done as follows. Given a graph G = (V,E), construct graph G′ = (V ′, E ′) where

V ′ = V × {R, B, Y } and

E ′ = {((i, C), (j, C)) | (i, j) ∈ E and C ∈ {R, B, Y }}

∪ {((i, C1), (i, C2)) | i ∈ V and C1 6= C2} .

Note that G′ has an independent set of size |V | in G′ if and only if G is 3-colorable

of G (since in an independent set in G′, every vertex i ∈ V can appear in at most

one of the three copies of V in G′). It is not hard to see that if MAX-ISk(G
′) = n,

then in an optimal solution we have v∅ = v(i,R) + v(i,B) + v(i,Y ) for any i ∈ V .

Moreover, the constraints of ISk(G
′) are symmetric w.r.t. {R, B, Y }. Thus, defining

π(I) = {(i, π(C)) | (i, C) ∈ I} for every permutation π ∈ Sym ({R,B, Y }) and I ⊆
V ′ (Sym(X) is the group of permutations on X), for any matrix M ∈ ISk(G

′), the

matrix 1
6

∑

π∈Sym({R,B,Y })
π(M) also satisfies ISk(G

′), where matrix π(M) has entries

π(M)I,J = Mπ(I),π(J) for all subsets I, J ⊆ V of cardinality at most k. This suggests

the following SDP relaxation for 3-coloring:

3COLk(G)

{vI | I ⊆ V ′} satisfy ISk(G
′) (4.1)

∀i ∈ V v∅ = v(i,R) + v(i,B) + v(i,Y ) (4.2)

∀π, ∀I, J ⊆ V ′ s.t. |I| , |J | ≤ k vI · vJ = vπ(I) · vπ(J) (4.3)

We now show that the relaxation 3COL1(G) is equivalent to strict vector 3-

coloring, one of the standard SDP relaxation for 3-coloring, which was defined in

Section 3.1. This will be useful in the following sections, as we will present an SDP

rounding algorithm which uses the algorithm KMS′ defined in Chapter 3. For every
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vertex i ∈ V , by constraints (2.11), (4.2) and (4.3), we have v∅ ·v(i,R) =
∥∥v(i,R)

∥∥2
= 1

3
.

Thus every v(i,R) can be written as

v(i,R) = 1
3
v∅ +

√
2

3
ui, (4.4)

where ui is a unit vector orthogonal to v∅. We claim that the vectors {ui} are a

strict vector 3-coloring of G, that is, that they satisfy

∀(i, j) ∈ E ui · uj = −1
2
. (4.5)

Indeed, this follows immediately from (4.4), since for edges (i, j) ∈ E we have

0 = v(i,R) · v(j,R) =
1

9
v2
∅ +

2

9
ui · uj.

It is not hard to see that one can similarly construct a solution to 3COL1(G) given

any vector 3-coloring {ui}.

4.2 A New Rounding Algorithm

To describe our algorithm we need the following notation. Given a solution {vI} of

3COL3(G), and vertices i, k ∈ V s.t. v(i,R),(k,R) 6= 0, let wik be the unit vector which

satisfies

v(i,R),(k,R) =

(∥∥v(i,R),(k,R)

∥∥
∥∥v(i,R)

∥∥

)2

v(i,R) +
∥∥v(i,R),(k,R)

∥∥
√√√√1−

(∥∥v(i,R),(k,R)

∥∥
∥∥v(i,R)

∥∥

)2

wik

= 3
∥∥v(i,R),(k,R)

∥∥2
v(i,R) +

∥∥v(i,R),(k,R)

∥∥
√

1− 3
∥∥v(i,R),(k,R)

∥∥2
wik.

(4.6)
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By (2.11),
∥∥v(i,R),(k,R)

∥∥2
= v(i,R),(k,R) · v(i,R), hence such a vector exists, and wik ⊥

v(i,R).

Our algorithm is as follows:

KMS∗(G)

1. Solve the SDP 3COL3(G) to get vector solution {vI}.
2. Run KMS′(G, {ui}), and let I ⊆ V be the independent set returned.

3. For all i, let Vi =
{

k
∣∣∣
∥∥v(i,R),(k,R)

∥∥2
> 1

6

(
1− 1√

ln n

)}
.

4. Run KMS(Vi, {wik | k ∈ Vi} , (ln n)1/4), to get independent set Wi.

5. Output the largest set among I and the various Wi (for all i ∈ V ).

Figure 4.1: Algorithm KMS∗

Recall that by Lemma 2.2.1, if the threshold parameter t > 0 is exactly c-

inefficient, then N(t) = Θ̃(∆− 1
3+3c ). Thus, our objective is to find the largest pos-

sible c = c(∆) for which KMS∗ is guaranteed to return an independent set of size

Ω(N(t)n) for a c-inefficient threshold t. Using this terminology, we give the following

explicit guarantee for the performance of KMS∗.

Theorem 4.2.1. For every τ > 6
11

there exists c2(τ) > 0 such that for 0 < c < c2(τ),

and any n vertex graph G with maximum degree ≤ nτ , if the threshold t is (at most)

c-inefficient for G, then KMS∗(G) returns an independent set of size Ω(N(t)n).

Furthermore, c2(τ) satisfies

c2(τ)
def
= min

{
1

2
, c̃2(τ)

}
,
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where

c̃2(τ)
def
= sup

{
c

∣∣∣∣∣ min
0≤α≤ c

1+c

(
1
3
− 1+c

τ
+ 1

1−α2 + 1
2

(√
1− α−

√
b(1 + α)

)2
)

> 0

}
.

Corollary 4.2.2. For any n-vertex 3-colorable graph G with maximum degree ≤
∆ = n0.6546, KMS∗(G) returns an independent set of size Ω(∆−0.3166n).

Combining this result with the Blum coloring tools (see Theorem 3.7.2), imme-

diately yields the following result:

Theorem 4.2.3. For 3-colorable graphs, one can find an O(n0.2072) coloring in

polynomial time.

4.3 Overview of Analysis of KMS∗

In this section we give an informal description of the analysis of KMS∗. Recall that

in KMS′ we have, by Lemma 3.1.4, for all nodes i ∈ V ,

Pr[i is eliminated from Vζ(t) | i ∈ Vζ(t)] ≤ Pr[∃j : ζ · u′ij ≥
√

3t]. (4.7)

Our goal is to show that, in step 2 of KMS∗, either the probability on the right is

small for many vectors (and thus, in expectation an Ω(N(t))-fraction of them will

be in I), or we can extract a large independent set from the 2-neighborhood Γ(Γ(i))

of some vertex i in step 4. For the purposes of the current discussion, we will make

a few simplifying assumptions. First, we assume that the SDP solution corresponds

to a distribution over legal 3-colorings. Let col(·) be a random assignment of 3-
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colorings chosen according to this distribution. Then, for example,

ui · uj = Prcol[col(i) = col(j)]− 1

2
Prcol[col(i) 6= col(j)]. (4.8)

Secondly, we assume that the vectors do not display any statistically significant

behavior other than the above constraints. This roughly corresponds to the case

where the parameter t is chosen such that N(t) ≈ ∆−1/3, and KMS′ in step 2 fails

for this value of t (in fact, we make the stronger assumption that the right-hand-side

of inequality (4.7) is large for all vertices i ∈ V ).

We would first like to show that joint neighborhoods (intersections of two neigh-

borhoods) are clustered. Consider some vertex i ∈ V , a neighbor j ∈ Γ(i) of i, and

some neighbor k ∈ Γ(j) of j. By our assumption about statistically significant be-

havior, if we condition on the choice of color col(j), any neighbor of j is assigned with

equal probability one of the two remaining colors, one of which must be col(i). Thus,

Pr[col(i) = col(k)] ≈ 1
2
. Now consider i and k as fixed, and think of j, j′ as a random

pair of vertices in Γ(i)∩Γ(k). Then col(j) = col(j′) whenever col(i) 6= col(k) (since

in a legal 3-coloring, the joint neighborhood of two distinctly colored vertices must be

monochromatic). On the other hand, conditioning on the event col(i) = col(k) = C

for some color C, we have Pr[col(j) = col(j′) | col(i) = col(k) = C] ≥ 1
2
− o(1) for

many pairs j, j′ ∈ Γ(i) ∩ Γ(k) (since in a large set of events, most pairs of events

can be only weakly anti-correlated – see the discussion preceeding Lemma 2.1.1).

Summarizing, for such pairs we have

Pr[col(j) = col(j′)] = Pr[col(i) 6= col(k)]

+ Pr[col(i) = col(k)] · Pr[col(j) = col(j′) | col(i) = col(k)]

≥ 1
2

+ 1
2
· 1

2
− o(1) = 3

4
− o(1)
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Now, by (4.8), this implies that uj ·uj′ ≥ 5
8
−o(1). This, in turn, implies u′ij ·u′ij′ ≥

1
2
− o(1), so the vectors {u′ij | j ∈ Γ(i) ∩ Γ(k)} form a 1

2
-cluster (this intuition is

formalized in Lemma 2.1.1). The cardinality of such clusters must be small, since

otherwise, by the bound in Lemma 2.2.3, they would have a disproportionately

small contribution to the probability in (4.7). This is made precise in Lemma 4.4.5,

which in this case implies that for i, k ∈ V as above, |Γ(i) ∩ Γ(k)| ≤ √
∆.

This now implies that the number of vertices at distance 2 from i is large. Indeed,

∆2 = |{(j, k) ∈ E | j ∈ Γ(i)}| = ∑
k∈Γ(Γ(i)) |Γ(i) ∩ Γ(k)| ≤ |Γ(Γ(i))|

√
∆,

and thus |Γ(Γ(i))| ≥ ∆3/2. On the other hand, as we mentioned earlier, for most

k ∈ Γ(Γ(i)), Pr[col(i) = col(k)] ≈ 1
2
. Thus the expected number of vertices in

Γ(Γ(i)) with the same color as i is 1
2
|Γ(Γ(i))|. In particular, the set Γ(Γ(i)) contains

an independent set which is nearly half of all its vertices. In this case we can use

any of a number of Vertex Cover approximations to extract an independent set of

size Ω̃(|Γ(Γ(i))|) = Ω̃(∆3/2) (in fact, as we shall see, the subgraph induced on a

significant portion of this set is almost vector 2-colorable, allowing us to simply use

KMS in step 4). This gives the following trade-off: For t s.t. N(t) ≈ ∆−1/3, either

step 2 produces an independent set of size N(t)n ≈ ∆−1/3n, or step 4 produces an

independent set of size Ω̃(∆3/2).

Slightly relaxing the above argument (by decreasing the threshold t in KMS′,

hence increasing the size of the independent set produced in step (2)), gives a better

trade-off in the worst case, as long as ∆−1/3n < ∆3/2, i.e. ∆ > n6/11. However, de-

creasing t introduces error-terms at every step of the argument, possibly decreasing

the guaranteed size of Γ(Γ(i)). The subtle trade-off between these two parameters

is the main focus of the analysis.
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4.4 Analysis of KMS∗

In this section we prove Theorem 4.2.1. The goal of the analysis is to show that if

KMS∗ does not find a large independent set in step (2), then one of the sets Vi is

large. We first note that this is sufficient, since Vi is nearly vector 2-colorable.

Lemma 4.4.1. For any vertex i ∈ V , let the vertex set Vi be as in algorithm

KMS∗. Then KMS(Vi, {wik | k ∈ Vi} , 4(ln n)1/4) returns an independent set of size

Ω(|Vi|N(4(ln n)1/4)) = Ω̃
(
|Vi|n−8/

√
ln n

)
.

Proof. For any k, k′ ∈ Vi s.t. (k, k′) ∈ E we have v(i,R),(k,R) · v(i,R),(k′,R) = 0, and

hence by equation (4.6),

wik · wik′ = − 3
∥∥v(i,R),(k,R)

∥∥ ∥∥v(i,R),(k′,R)

∥∥
√(

1− 3
∥∥v(i,R),(k,R)

∥∥2
)(

1− 3
∥∥v(i,R),(k′,R)

∥∥2
) < −1 +

2√
ln n

.

In particular, ‖wik + wik′‖2 < 4/
√

ln n. Thus, for t = 4(ln n)1/4, the probability

that both k, k′ ∈ Vζ(t) is at most

Prζ [ζ · (wik + wik′) ≥ 2t] = N(2t/ ‖wik + wik′‖)

< N
(
4
√

ln n
)

= O
(
n−8

)
. by Lemma 2.2.1

Note that, again by Lemma 2.2.1, N(t) = Ω̃
(
n−8/

√
ln n

)
. In particular, the expected

number of edges contained in Vζ(t) is at most o(N(t)), whereas the expected number

of vertices is Ω(|Vi|N(t)).

The following theorem, together with Lemma 4.4.1, directly implies Theorem 4.2.1.
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Theorem 4.4.2. For every τ > 6
11

and 0 < c < c2(τ), there exists some ε =

ε(τ, c) > 0 s.t. for sufficiently large n, any n vertex graph G with max degree ≤ nτ ,

and threshold t which is at most c-inefficient for G, either

1. The independent set I found in step (2) of KMS∗(G) has expected size Ω(N(t)n),

or

2. There exists some vertex i for which |Vi| ≥ N(t)n1+ε.

The rest of this section is devoted to proving Theorem 4.4.2. Recall the definition

of (s, δ)-covers defined in Section 3.1. We further refine this definition as follows:

Definition 4.4.3. A set of unit vectors X is said to be a uniformly c-inefficient

(s, δ)-cover, if |X| ≥ δN(s)−(1+c), and every subset S ⊆ X is a (s,N(s)1+c |S|)-cover.

Note that a uniformly c-inefficient cover is indeed a c-inefficient cover. In the

above definition, we have

1 ≥ Pr[∃x ∈ X : ζ · x ≥ s] ≥ N(s)1+c |X| (4.9)

≥ N(s)1+cδN(s)−(1+c) = δ, (4.10)

which shows that X is an (s, δ)-cover. The c-inefficiency condition follows from (4.9).

Using this definition, we will show that every cover which has bounded inefficiency,

contains a large core which has bounded uniform inefficiency.

Lemma 4.4.4. Let X be a c-inefficient (s, δ)-cover. Then

1. For some 0 ≤ b ≤ c + O(ln(1/δ)/s2), there exists a subset X ′ ⊆ X which is a

uniformly b-inefficient (s, Ω(δ/s2))-cover.

2. If, in addition, X is a ρ-cluster and δ = Ω
(

1
poly(s)

)
, then b ≥ ρ

1−ρ
− Õ(1

s
).
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Proof. We assign to the elements in X some additive measure µ(·) s.t. µ(X) ≥ δ

and every subset S ⊂ X is a (s, µ(S))-cover, i.e. Prζ [∃x ∈ S : ζ · x ≥ s] ≥ µ(S).

A natural choice is given by µ(x)
def
= Prζ [ζ · x ≥ s and ζ · x = maxx′∈X ζ · x′]. Let

X+ = {x | µ(x) > δN(s)1+c/2}, and X− = X \ X+. Then, by the efficiency and

cover properties of X, we have

δ ≤ µ(X) = µ(X−) + µ(X+) ≤ |X| δN(s)1+c/2 + µ(X+) ≤ δ/2 + µ(X+).

Thus, µ(X+) ≥ δ/2, and, by Lemma 2.2.1 and definition of X+, for every x ∈ X+,

µ(x) = N(s)1+bx for some bx ∈ [0, c + O(ln(1/δ)/s2)]. Divide this range into s2

subintervals Ii of length (c + O(ln(1/δ)/s2))/s2, and divide X+ into corresponding

bins Xi = {x ∈ X+ | bx ∈ Ii}. Thus, some such bin must have measure µ(Xi) ≥
δ/(2s2). Thus we can show part (1), as this Xi is uniformly b-inefficient for b =

max Ii. Indeed, by definition of Ii, for all X ′ ⊆ Xi we have µ(X ′) ≥ |X ′|N(s)1+b.

The required lower bound on |Xi| follows from the following observation:

δ

2s2
≤ µ(Xi) ≤ |Xi|N(s)1+min Ii

≤ |Xi|N(s)1+b−c/s2

= O
(|Xi|N(s)1+b

)
. by Lemma 2.2.1

As noted earlier, this implies in particular that Xi is a b-inefficient (s, Ω(δ/s2))-

cover. For part (2), let r be such that N(rs) = o(δ/s2). By Lemma 2.2.1 there is

some r = O(
√

log(s2/δ)/s) = O(
√

log s/s) satisfying this property. Therefore, by
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Corollary 2.2.4, we have

δ

2s2
≤ µ(Xi) ≤ poly(s) |Xi|N(s)1+ρ/(1−ρ)−O(r) + o(δ/s2)

≤ poly(s)N(s)−(1+b)+1+ρ/(1−ρ)−O(r) + o(δ/s2). by b-inefficiency of Xi

And so the desired lower bound on b follows, since by the above inequality, we have

N(s)−b+ρ/(1−ρ)−O(
√

log s/s) ≥ δ

2s2
(1− o(1)) ≥ 1/poly(s) = N(s)O(log s/s2).

We now show that uniformly efficient covers of cardinality k do not contain

ρ-clusters significantly larger than k1−ρ.

Lemma 4.4.5. Let X be a uniformly b-inefficient (s, δ)-cover, then for all ρ ≥
b/(1 + b) + 3 ln s/s2 any ρ-cluster in X has cardinality at most

O(poly(s)N(s)−(
√

1−ρ+
√

bρ)2).

Proof. Let the subset K ⊂ X be a ρ-cluster of cardinality N(s)−β, and let r =

√
ρ−

√
b(1− ρ) + η for η = (3 + 3b) ln s/s2. Then by Lemma 2.2.3 (with the above
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choice of r), we have

Prζ [∃x ∈ K : ζ · x ≥ s] ≤ O
(
e−(1+b+η/(1−ρ))s2/2 |X|

)
+ 2N(rs)

≤ O
(
s−(1+b)/2N(s)1+bN(s)−β

)
+ 2N(rs) by Lemma 2.2.1

= o
(
N(s)−β+1+b

)
+ 2N(rs)

≤ o
(
N(s)−β+1+b

)

+ poly(s)N(s)

(√
ρ−
√

b(1−ρ)
)2

. by Lemma 2.2.1

On the other hand, since X is uniformly b-inefficient, we have Prζ [∃x ∈ K : ζ · x ≥
s] ≥ N(s)−β+1+b. Hence, we have

|K| = N(s)−β ≤ poly(s)N(s)

(√
ρ−
√

b(1−ρ)
)2−(1+b)

= O(poly(s)N(s)−(
√

1−ρ+
√

bρ)2).

We are now ready to prove Theorem 4.4.2.

Proof of Theorem 4.4.2. In algorithm KMS′ (in step 2 of KMS∗) consider the inde-

pendent set V ′
ζ (t) produced for a c-inefficient threshold t. Since KMS′ tries all possi-

ble values of t, we have E [|I|] ≥ E [∣∣V ′
ζ (t)

∣∣]. If for at least n/2 vertices i ∈ V we have

Prζ [i ∈ V ′
ζ (t)] ≥ 1

2
N(t), then by linearity of expectation, we have E [|I|] = Ω(N(t)n).

Suppose not. Now prune as in Lemma 3.6.11, and for simplicity, assume G = (V, E)

is the remaining graph. Now, fixing some i ∈ V , we have that {u′ij | j ∈ Γ(i)} and

the sets {u′jk | k ∈ Γ(j)} for every j ∈ Γ(i) are all uniform
(√

3t, 1
8
−O

(
1

log t

))
-

covers which are at most c-inefficient. Moreover, there exists some constant C > 0

such that letting Wj =
{

k ∈ Γ(j)
∣∣∣−C

t2
≤ u′ji · u′jk ≤ c

1+c
+ C

log t

}
for every j ∈ Γ(i),
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the sets
{
u′jk | k ∈ Wj

}
are

(√
3t, Ω (1/t3)

)
-covers. Note that for all j ∈ Γ(i),

Wj ⊆ Vi. Therefore, it suffices to give a lower bound on
∣∣∣⋃j∈Γ(i) Wj

∣∣∣.
Now, subdivide the interval [−C

t2
, c

1+c
+ C

log t
] into O(t) subintervals Il of length 1/t.

For every j ∈ Γ(i) there is some l = l(j) such that the set {u′jk | u′ji ·u′jk ∈ Il(j)} is a

(
√

3t, Ω(1/t4))-cover. Moreover, there is some l0 such that, defining Ui = {j ∈ Γ(i) |
l(j) = l0}, the set {u′ij | j ∈ Ui} is a (

√
3t, Ω(1/t))-cover. Let α be such that Il0 =

[α, α+1/t). By Lemma 4.4.4, there is some subset U ′
i ⊆ Ui s.t. the set {u′ij | j ∈ U ′

i}
is a uniformly b-inefficient (

√
3t, Ω(1/t3))-cover for some 0 ≤ b ≤ c+o(1). Similarly,

for every j ∈ U ′
i , there is some set W ′

j ⊆ {k ∈ Γ(j) | u′ji · u′jk ∈ Il(0)} for which

the set {u′jk | k ∈ Wj} is a uniformly aj-inefficient (
√

3t, Ω(1/t6))-cover, where, by

part 2 of Lemma 4.4.4, aj ≥ α2/(1− α2)− o(1) (since the sets {u′jk | u′ji · u′jk ∈ Il0}
are α2-clusters for all j ∈ Γ(i)). Let us summarize the situation:

1. U ′
i is a uniformly b-inefficient (

√
3t, Ω(1/t3))-cover for some 0 ≤ b ≤ c + o(1).

2. ∀j ∈ U ′
i , the set {u′jk | W ′

j} is a uniformly aj-inefficient (
√

3t, Ω(1/t5))-cover

for some aj ≥ α2/(1− α2)− o(1).

3. ∀j ∈ U ′
i , k ∈ W ′

j :

v(i,R) · v(k,R) =
1

9
+

2

9
ui · uk

=
1

9
+

2

9

(
1

4
+

3

4
u′ji · u′jk

)
∈ [(1 + α)/6, (1 + α)/6 + o(1)].

4. −o(1) ≤ α ≤ c/(1 + c) + o(1).

For the sake of simplicity, we will strengthen property 3, and assume that in fact

for all j ∈ U ′
i , k ∈ W ′

j ,
∥∥v(i,R),(k,R)

∥∥2
= v(i,R) · v(k,R) = 1+α

6
. This is w.l.o.g. as the

o(1) error terms will have a negligble effect. By constraint (4.3), this also implies
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∥∥v(i,B),(k,B)

∥∥2
=

∥∥v(i,Y ),(k,Y )

∥∥2
= (1+α)/6. Moreover, since (as can be easily checked)

1
3

=
∥∥v(i,B)

∥∥2
=

∑
C∈R,B,Y

∥∥v(i,B),(k,C)

∥∥2
, we have (again by (4.3)),

∥∥v(i,B),(k,Y )

∥∥2
=

∥∥v(i,Y ),(k,B)

∥∥2
=

1

2

(
1

3
− 1 + α

6

)
=

1− α

12
.

Similarly, for j ∈ Γ(i) ∩ Γ(k) and (C1, C2) ∈ {(B, Y ), (Y,B)}, we have by con-

straints (4.1) and (4.3),

v(i,C1),(k,C1) · v(j,R) =
1

2

∥∥v(i,C1),(k,C1)

∥∥2
=

1 + α

12
,

and

v(i,C1),(k,C2) · v(j,R) =
∥∥v(i,C1),(k,C2)

∥∥2
=

1− α

12
.

Finally, we note that for all (i, j) ∈ E,

v(j,R) =
1

3
v∅ +

√
2

3
uj

=
1

3
v∅ − 1

3
√

2
ui +

1√
6
u′ij

=
1

2
v∅ − 1

2
v(i,R) +

1√
6
u′ij

=
1

2

(
v(i,B) + v(i,Y )

)
+

1√
6
u′ij. by constraint (4.2)

We now fix some k ∈ ⋃
j∈U ′i

W ′
j , and apply Lemma 2.1.1, where for all C1 ∈ {B, Y },

we let pC1 =
∥∥v(i,C1)

∥∥2
= 1

3
, pC1qC1 = v(i,C1) · v(j,R) = 1

6
, and for all C1 ∈ {B, Y } and

C2 ∈ {R, B, Y } we let

pC1,C2 =
∥∥v(i,C1),(k,C2)

∥∥2
=





1+α
6

C1 = C2

1−α
12

C1 6= C2
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and

pC1,C2qC1,C2 = v(i,C1),(k,C2) · v(j,R) =





1+α
12

C1 = C2

1−α
12

C2 ∈ {B, Y } \ C1

0 C2 = R.

By the lemma, there is some unit vector

x′0 ∈ Span ({vI | I ⊆ ({i} × {B, Y }) ∪ ({k} × {R, B, Y })})

such that for all j ∈ U ′
i s.t. W ′

j 3 k, we have

x′0 ·
1√
6
u′ij =

√ ∑
C1=B,Y

∑
C2=R,B,Y

pC1,C2q
2
C1,C2

−
∑

C1=B,Y

pC1q
2
C1

=

√
2 · 1 + α

6
·
(

1

2

)2

+ 2 · 1− α

12
− 2 · 1

3
·
(

1

2

)2

=

√
1− α

12 .

Thus, for all k, the set {u′ij ∈ U ′
i | W ′

j 3 k} is in fact a (1 − α)/2-cluster,

and so by property 1 above and Lemma 4.4.5, we have
∣∣{j ∈ U ′

i | W ′
j 3 k}

∣∣ ≤
N(
√

3t)
−

(√
(1+α)/2+

√
b(1−α)/2

)2−o(1)
. Hence,

∑

j∈U ′i

∣∣W ′
j

∣∣ =
∣∣{(j, k) | j ∈ U ′

i and k ∈ W ′
j}

∣∣

=
∑

k∈⋃
j∈U′

i
W ′

j

∣∣{j ∈ U ′
i | W ′

j 3 k}
∣∣

≤
∣∣∣

⋃

j∈U ′i

W ′
j

∣∣∣ ·N(
√

3t)
− 1

2

(√
1+α+

√
b(1−α)

)2−o(1)
.

Yet, by properties 1 and 2,
∑

j∈U ′i

∣∣W ′
j

∣∣ ≥ N(
√

3t)−(1+b)−(1+α2/(1−α2))+o(1).
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Thus we have shown

∣∣∣
⋃

j∈U ′i

W ′
j

∣∣∣ ≥ N(
√

3t)
−

(
2+α2/(1−α2)+b− 1

2

(√
1+α+

√
b(1−α)

)2
)

+o(1)

= N(
√

3t)
−

(
1/(1−α2)+ 1

2

(√
1−α−

√
b(1+α)

)2
)

.

(4.11)

As a final simplification, we note that the function above is monotonically decreasing

in b for all b ≤ (1− α)/(1 + α). This is consistent with the range of b (up to o(1)),

since the fact that c ≤ 1
2

and property 4 imply (1−α)/(1+α) ≥ c−o(1). Therefore,

from (4.11) we get, for some constant ε′ > 0

∣∣∣
⋃

j∈Γ(i)

Wj

∣∣∣ ≥
∣∣∣

⋃

j∈U ′i

W ′
j

∣∣∣

≥ N(
√

3t)
−

(
1/(1−α2)+ 1

2

(√
1−α−

√
c(1+α)

))
+o(1)

≥ N(
√

3t)
1
3
− 1+c

τ
−ε′+o(1) since c < c2(τ)

≥ N(
√

3t)
1
3
−ε′+o(1)∆1/τ by c-inefficiency of t

= N(
√

3t)
1
3
−ε′+o(1)n

= ω(N(t)n). by Lemma 2.2.1
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Chapter 5

Maximum Independent Set in

3-Uniform Hypergraphs

In this chapter, we describe relaxations for Maximum Independent Set in 3-uniform

hypergraphs which arise from SDP hierarchies. We present two algorithms which,

for every γ > 0, in any n-vertex 3-uniform hypergraph containing an independent set

of size γn, find an independent set of size nΩ(γ2). Each of these rounding algorithms

works for vector solutions which satisfy the Θ(1/γ2)-level of some SDP hierarchy.

For the hierarchy used in the first algorithm, we also present an integrality gap

which rules out this performance guarantee at any level up to 1
γ

+ 1.

5.1 Previous Relaxation for MAX-IS in 3-Uniform

Hypergraphs

The relaxation proposed in [28] may be derived as follows. Given an independent

set I ⊆ V in a 3-uniform hypergraph H = (V,E), for every vertex i ∈ V let xi = 1

if i ∈ I and xi = 0 otherwise. For any hyperedge (i, j, k) ∈ E it follows that
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xi + xj + xk ∈ {0, 1, 2} (and hence |xi + xj + xk − 1| ≤ 1). Thus, we have the

following relaxation (where vector vi represents xi, and v∅ represents 1:

MAX-KNS(H)

Maximize
∑

i ‖vi‖2 s.t. v2
∅ = 1 (5.1)

∀i ∈ V v∅ · vi = vi · vi (5.2)

∀(i, j, l) ∈ E ‖vi + vj + vk − v∅‖2 ≤ 1 (5.3)

The existence of local distributions on independent sets corresponding to solu-

tions to ISmix
l (H) and ISLas

l (H) (for l ≥ 3) implies that all valid constraints involving

at most l vertices (other than integrality gaps) hold true for these relaxations. In

particular, constraints (5.2) and (5.3) above are implied by such SDP relaxations,

and all results pertaining to the relaxation proposed in [28] hold true for the tighter

relaxations we shall consider.

5.2 A Simple Integrality Gap

As observed in [28], MAX-KNS(H) ≥ n
2

for any hypergraph H (even the com-

plete hypergraph). In this section we will show the necessity of using increasingly

many levels of the SDP hierarchy MAX-ISmix to yield improved approximations, by

demonstrating a simple extention of the above integrality gap:

Theorem 5.2.1. For every integer l ≥ 3 and any 3-uniform hypergraph H, we have

MAX-ISmix
l ≥ 1

l−1
n.

Proof. Suppose V (H) = [n] and let v∅, u1, . . . , un be n+1 mutually orthogonal unit

vectors. For every i ∈ V let vi = 1
l−1

v∅+
√

1
l−1

− 1
(l−1)2

ui, and y{i} = 1
l−1

. Let y∅ = 1
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and for every pair of distinct vertices i, j ∈ V let y{i,j} = 1
(l−1)2

. For all sets I ⊆ V

s.t. 3 ≤ |I| ≤ l, let yI = 0.

It is immediate that constraint (2.13) and the Sherali-Adams constraint (2.7)

are satisfied. Since yI = 0 for all sets I of size 3, Sherali-Adams constraint (2.9)

is also satisfied. To verify Sherali-Adams constraints (2.8), it suffices to show, for

any set S ⊆ [n] of size l, a corresponding distribution on random 0 − 1 variables

{x∗i | i ∈ S}. Indeed, the following is such a distribution: Pick a pair of distinct

vertices i, j ∈ S uniformly at random. With probability l
2(l−1)

, set x∗i = x∗j = 1 and

for all other l ∈ S, set x∗l = 0. Otherwise, set all x∗l = 0.

5.3 The Algorithm of Krivelevich, Nathaniel and

Sudakov

We first review the algorithm and analysis given in [28]. Let us introduce the

following notation: For all h ∈ {0, 1, . . . , blog nc}, let Th
def
= {i ∈ V | h/ log n ≤

‖vi‖2 < (h + 1)/ log n}. Also, since ‖vi‖2 = v∅ · vi, we can write

vi = (v∅ · vi)v∅ +
√

v∅ · vi(1− v∅ · vi)ui, (5.4)

where ui is a unit vector orthogonal to v∅. They show the following two lemmas,

slightly rephrased here:

Lemma 5.3.1. If the optimum of KNS(H) is ≥ γn, there exists an index h ≥
γ log n− 1 s.t. |Th| = Ω(n/ log2 n).

Lemma 5.3.2. For index h = β log n and hyperedge (i, j, k) ∈ E s.t. i, j, k ∈ Th,
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constraint (5.3) implies

‖ui + uj + uk‖2 ≤ (6− 9β)/(1− β) + O(1/ log n). (5.5)

Note that constraint (5.5) becomes unsatisfiable for constant β > 2/3. Thus, for

such β, if KNS(H) ≥ βn, one can easily find an independent set of size Ω̃(n). Using

the above notation, we can now describe the rounding algorithm in [28], which is

applied to the subhypergraph induced on Th, where h is as in Lemma 5.3.1.

KNS-Round(H, {ui}, t)
• Choose ζ ∈ Rn from the n-dimensional standard normal distribu-

tion.

• Let Vζ(t)
def
= {i | ζ ·ui ≥ t}. Remove all vertices in hyperedges fully

contained in Vζ(t), and return the remaining set.

Figure 5.1: Algorithm KNS-Round

The expected size of the remaining independent set can be bounded from be-

low by E[|Vζ(t)|] − 3E[|{e ∈ E : e ⊆ Vζ(t)}|], since each hyperedge contributes at

most three vertices to Vζ(t). If hyperedge (i, j, k) is fully contained in Vζ(t), then

we must have ζ · (ui + uj + uk) ≥ 3t, and so by Lemma 5.3.2, ζ · ui+uj+uk

‖ui+uj+uk‖ ≥
(
√

(3− 3γ)/(2− 3γ) − O(1/ log n))t. By Lemma 2.2.1, and linearity of expecta-

tion, this means the size of the remaining independent set is at least

Ω̃(N(t)n)− Õ(N(t)(3−3γ)/(2−3γ) |E|).

Choosing t appropriately – roughly, so that N(t) = Θ̃
(
(n/ |E|)2−3γ) (assume γ ≤

2/3) – then yields the guarantee given in [28]:

Theorem 5.3.3. Given a 3-uniform hypergraph H on n vertices and m hyperedges
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containing an independent set of size γn, one can find, in polynomial time, an

independent set of size Ω̃(min{n, n3−3γ/m2−3γ}).

Note that m can be as large as Ω(n3), giving no non-trivial guarantee for γ ≤
1
2
. Using techniques similar to those used in Chapter 4, one can show that when

the vectors satisfy ISLas
3 (H), the same rounding algorithm does give a non-trivial

guarantee (nε) for γ ≥ 1
2
− ε (for some fixed ε > 0). However, it is unclear whether

this approach can work for arbitrarily small γ > 0.

Let us introduce the following notation for hyperedges e along with the corre-

sponding vectors {ui | i ∈ e}:

α(e)
def
= 1

|e|(|e|−1)

∑
i∈e

∑
j∈e\{i} ui · uj.

In particular, when the hyperedge e is of size 3, we have

α(e)
def
= 1

6

∑
i∈e

∑
j∈e\{i} ui · uj.

Using this notation, we note the following Lemma which was implicitly used in

the above analysis, and which follows immediately from Lemma 2.2.1.

Lemma 5.3.4. In algorithm KNS-Round, the probability that a hyperedge e is fully

contained in Vζ(t) is at most Õ
(
N(t)3/(1+2α(e))

)
.

5.4 Improved Approximation Via Sherali-Adams

Constraints

Before we formally state our rounding algorithm, let us motivate it with an informal

overview.
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Suppose ‖vi‖2 = γ for all i ∈ V . A closer examination of the above analysis

reveals the reason the KNS rounding works for γ > 1
2

: For every hyperedge e ∈ E

we have α(e) < 0. Thus, the main obstacle to obtaining a large independent set

using KNS-Round is the presence of many pairs of vertices i, j with large (positive)

inner-product ui · uj. As we shall see in Section 5.5, we can use higher-moment

vectors in the Lasserre hierarchy to turn this into an advantage. However, just

using local integrality constraints, we can efficiently isolate a large set of vertices on

which the induced subhypergraph has few hyperedges containing such pairs. This

property in turn allows us to successfully use KNS-Round on this subhypergraph,

thus extracting a large independent set.

Indeed, suppose that some pair of vertices i0, j0 ∈ V with inner-product vi0 ·vj0 ≥
γ2/2 participates in many hyperedges. That is, the set S1 = {k ∈ V | (i0, j0, k) ∈ E}
is very large. In that case, we can recursively focus on the subhypergraph induced

on S1. According to our probabilistic interpretation of the SDP, we have Pr[x∗i0 =

x∗j0 = 1] ≥ γ2/2. Moreover, for any k ∈ S1 the event “x∗k = 1” is disjoint from

the event “x∗i0 = x∗j0 = 1”. Thus, if we had to repeat this step recursively due to

the existence of bad pairs (i0, j0), . . . , (is, js) (thus focusing on the subhypergraphs

induced on a chain of sets S1 ⊇ S2 ⊇ . . . ⊇ Ss+1), then the events “x∗il = x∗jl
= 1”

would all be pairwise exclusive. Since each such event has probability Ω(γ2), the

recursion can have depth at most O(1/γ2), after which point there are no pairs of

vertices which prevent us from using KNS-Round.

We are now ready to describe our rounding algorithm. The algorithm takes as

input an n-vertex hypergraph H for which MAX-ISmix
l (H) ≥ γn, where l = Ω(1/γ2)

and {vi} is the corresponding SDP solution, and outputs an independent set in H.

We will use the notation {ui} as in (5.4).
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H-Round(H = (V, E), {vi}, γ)

1. Let n = |V | and for all i, j ∈ V , let Γ(i, j)
def
= {k ∈ V | (i, j, k) ∈ E}.

2. If for some i, j ∈ V s.t. vi ·vj ≥ γ2/2 we have |Γ(i, j)| ≥ {n1−vi·vj/2},
then find an ind. set using H-Round(H|Γ(i,j), {vk | k ∈ Γ(i, j)}, γ).

3. Otherwise,

(a) Define unit vectors {wi | i ∈ V } s.t. for all i, j ∈ V we have
wi · wj = γ

24
(ui · uj) (outward rotation).

(b) Let t be s.t. N(t) = n−(1−γ2/16), and return the independent
set found by KNS-Round(H, {wi | i ∈ V }, t).

Figure 5.2: Algorithm H-Round

Theorem 5.4.1. For any constant γ > 0, given an n-vertex 3-uniform hypergraph

H = (V, E), and {vi} satisfying ISmix
4/γ2(H) and | ‖vi‖2−γ| ≤ 1/ log n (∀i ∈ V ), algo-

rithm H-Round finds an independent set of size Ω(nγ2/32) in H in time O(n3+2/γ2
).

Combining this result with Lemma 5.3.1, we get:

Corollary 5.4.2. For all constant γ > 0, there is a polynomial time algorithm

which, given an n-vertex 3-uniform hypergraph H containing an independent set of

size γn, finds an independent set of size Ω̃(nγ2/32) in H.

Before we prove Theorem 5.4.1, let check us that we make few recursive calls in

Step 2, and that |V | is still large when Step 3 is reached.

Proposition 5.4.3. For γ > 0, H = (V, E), and {vi}as in Thereom 5.4.1:

1. Algorithm H-Round makes at most 2/γ2 recursive calls in Step 2.

2. In the final recursive call to H-Round, |V | ≥ √
n.

Proof. Let (i1, j1), . . . , (is, js) be the sequence of vertices (i, j) in the order of
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recursive calls to H-Round in Step 2. Let us first show that for any s′ ≤ min{s, 2/γ2},

s′∑

l=1

vil · vjl
≤ 1. (5.6)

Indeed, let T =
⋃{il, jl | 1 ≤ l ≤ s′}. Since vectors {vi} satisfy ISmix

4/γ2(H), and

|T | ≤ 2s′ ≤ 4/γ2, there must be some distribution on independent sets S ⊆ T

satisfying Pr[k, k′ ∈ S] = vk · vk′ for all pairs of vertices k, k′ ∈ T . Note that by

choice of vertices il, jl, we have il2 , jl2 ∈ Γ(il1 , jl1) for all l1 < l2. Thus, the events

“il, jl ∈ S” are pairwise exclusive, and so

s′∑

l=1

vil · vjl
= Pr[∃l ≤ s′ : il, jl ∈ S] ≤ 1.

Similarly, if s′ ≤ min{s, 2/γ2 − 1}, then for any vertex k ∈ ⋂
l≤s′ Γ(il, jl) we have

∑s′
l=1 vil · vjl

+ vk · vk ≤ 1. However, by choice of il, jl, we also have
∑s′

l=1 vil · vjl
+

vk · vk ≥ s′γ2/2+ γ− (1/ log n). Thus, we must have s ≤ 2/γ2− 1, otherwise letting

s′ = d2/γ2 − 1e and k = is′+1 above, we derive a contradiction. This proves part 1.

For part 2, it suffices to note that the number of vertices in the final recursive call

is ≥ n
∏

(1−vil
·vjl

/2), and that by (5.6) we have
∏

(1−vil ·vjl
/2) ≥ 1−∑

vil ·vjl
/2 ≥ 1

2
.

We are now ready to prove Theorem 5.4.1.

Proof of Theorem 5.4.1. For simplicity, let us assume that ‖vi‖2 = γ for all i ∈ V .

Violating this assumption can affect the probabilities of events or sizes of sets in our

analysis by at most a constant factor, whereas we will ensure that all inequalities

have polynomial slack to absorb such errors. Thus, for any i, j ∈ V , we have

vi · vj = γ2 + (γ − γ2)ui · uj. (5.7)
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For brevity, we write vi · vj = θijγ for all i, j ∈ V (note that all θij ∈ [0, 1]). We

reintroduce the notation α(e) introduced earlier, in the context of the vectors {wi}:

α(e) =
1

6

∑
i∈e

∑

j∈e\{i}
wi · wj.

The upper-bound on the running time follows immediately from part 1 of Propo-

sition 5.4.3. By part 2 of Proposition 5.4.3, it suffices to show that if the condition

for recursion in Step 2 of H-Round does not hold, then in Step 3b, algorithm KNS-

Round finds an independent set of size Ω(N(t)n) = Ω(nγ2/16).

Let us examine the performance of KNS-Round in this instance. Recall that for

every i ∈ V , Pr[i ∈ Vζ(t)] = N(t). Thus, by linearity of expectation, the expected

cardinality of Vζ(t) is N(t)n. To retain a large fraction of Vζ(t), we must show that

few vertices participate in hyperedges fully contained in this set, that is E[|{i ∈ e |
e ∈ E ∧ e ⊆ Vζ(t)}|] = o(N(t)n). In fact, since every hyperedge in Vζ(t) contributes

at most three vertices, it suffices to show that E[|{e ∈ E | e ⊆ Vζ(t)}|] = o(N(t)n).

We will consider separately two types of hyperedges, as we shall see.

Let us first consider hyperedges which contain some pair i, j for which θij ≥ γ/2.

We denote this set by E+. We will assign every hyperedge in E+ to the pair of

vertices with maximum inner-product. That is, for all i, j ∈ V , define Γ+(i, j) =

{k ∈ Γ(i, j) | θik, θjk ≤ θij}. By (5.7), for all i, j ∈ V and k ∈ Γ+(i, j) we have

α(i, j, k) ≤ wi · wj =
γ

24
(ui · uj) =

γ(θij − γ)

24(1− γ)
≤ θijγ

24
. (5.8)

Now, by our assumption, the condition for recursion in Step 2 of H-Round was not
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met. Thus, for all i, j ∈ V s.t. θij ≥ γ/2, we have

|Γ+(i, j)| ≤ |Γ(i, j)| ≤ n1−θijγ/2. (5.9)

By linearity of expectation, we have

E[|{e ∈ E+ | e ⊆ Vζ(t)}|] =
∑
e∈E+

Pr[e ⊆ Vζ(t)]

≤
∑
e∈E+

Õ
(
N(t)3/(1+2α(e))

)
by Lemma 5.3.4

≤
∑
i,j∈V

θij≥γ/2

∑

k∈Γ+(i,j)

Õ
(
N(t)3/(1+ 1

12
θijγ)

)
. by (5.8)

By (5.9), this gives

E[|{e ∈ E+ | e ⊆ Vζ(t)}|] ≤
∑
i,j∈V

θij≥γ/2

Õ
(
n1− 1

2
θijγN(t)3/(1+ 1

12
θijγ)

)

= N(t)
∑
i,j∈V

θij≥γ/2

Õ
(
n1− 1

2
θijγN(t)(2− 1

12
θijγ)/(1+ 1

12
θijγ)

)

= N(t)
∑
i,j∈V

θij≥γ/2

Õ
(
n1− 1

2
θijγ−(1− 1

16
γ2)(2− 1

12
θijγ)/(1+ 1

12
θijγ)

)

≤ N(t)
∑
i,j∈V

θij≥γ/2

Õ
(
n1− 1

2
θijγ−(1− 1

8
θijγ)(2− 1

12
θijγ)/(1+ 1

12
θijγ)

)

= N(t)
1

n

∑
i,j∈V

θij≥γ/2

Õ
(
n−

5
96

θ2
ijγ2/(1+ 1

12
θijγ)

)

≤ N(t)nÕ
(
n−

5
384

γ4/(1+ 1
24

γ2)
)

= o(N(t)n).
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We now consider the remaining hyperedges E− = E \ E+ = {e ∈ E | ∀i, j ∈ e :

θij ≤ γ/2}. By (5.7), and by definition of {wi}, we have

α(e) ≤ − γ2

48(1− γ)
(5.10)

for every hyperedge e ∈ E−. Thus we can bound the expected cardinality of {e ∈
E− | e ⊆ Vζ(t)} as follows:

E[|{e ∈ E− | e ⊆ Vζ(t)}|] ≤
∑
e∈E−

Pr[e ⊆ Vζ(t)]

≤
∑
e∈E−

Õ
(
N(t)3/(1+2α(e))

)
by Lemma 5.3.4

= N(t)
∑
e∈E−

Õ
(
N(t)(2−2α(e))/(1+2α(e))

)

≤ N(t)n3Õ
(
N(t)(2−2γ+ 1

24
γ2)/(1−γ− 1

24
γ2)

)
. by (5.10)

By our choice of t, this gives

E[|{e ∈ E− | e ⊆ Vζ(t)}|] ≤ N(t)Õ
(
n3−(1− 1

16
γ2)(2−2γ+ 1

24
γ2)/(1−γ− 1

24
γ2)

)

= N(t)Õ
(
n1−( 1

8
γ3− 1

384
γ4)/(1−γ− 1

24
γ2)

)
= o(N(t)n).

This completes the proof.
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5.5 A Further Improvement Using The Lasserre

Hierarchy

Here, we present a slightly modified algorithm which takes advantage of the Lasserre

hierarchy, and gives a slightly better approximation guarantee. As before, the al-

gorithm takes an n-vertex hypergraph H for which MAX-ISLas
l (H) ≥ γn, where

l = Ω(1/γ2) and {vI | |I| ≤ l} is the corresponding SDP solution.

H-RoundLas(H = (V,E), {vI | |I| ≤ k}, γ)

1. Let n = |V | and let h = γ′ log n − 1 be as in Lemma 5.3.1 (where
γ′ ≥ γ). If γ′ > 2/3 + 2/ log n, output Th.

2. Otherwise, set H = H|Th
, and γ = γ′.

3. If for some i, j ∈ Th s.t. ρij = vi · vj ≥ γ2/2 we have
|Γ(i, j)| ≥ {n1−ρij}, then find an independent set using
H-Round(H|Γ(i,j), {vI |x∗i =0∨x∗j =0 | I ⊆ Γ(i, j), |I| ≤ l − 2}, γ/(1 −
ρij)).

4. Otherwise,

(a) Define unit vectors {wi | i ∈ V } s.t. for all i, j ∈ V we have
wi · wj = γ

12
(ui · uj) (outward rotation).

(b) Let t be s.t. N(t) = n−(1−γ2/8), and return the independent
set found by KNS-Round(H, {wi | i ∈ V }, t).

Figure 5.3: Algorithm H-RoundLas

For this algorithm, we have the following guarantee:

Theorem 5.5.1. For any constant γ > 0, given an n-vertex 3-uniform hypergraph

H = (V, E) for which MAX-ISLas
8/(3γ2)(H) ≥ γn and vectors {vI} the corresponding

solution, algorithm H-RoundLas finds an independent set of size Ω(nγ2/8) in H in

time O(n3+8/(3γ2)).
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We will not prove this theorem in detail, since the proof is nearly identical to

that of Theorem 5.4.1. Instead, we will highlight the differences from algorithm

H-Round, and the reasons for the improvement. First of all, the shortcut in step 1

(which accounts for the slightly lower level needed in the hierarchy) is valid since (as

can be easily checked) constraint (5.3) cannot be satisfied (assuming (5.2) holds)

when ‖vi‖2, ‖vj‖2, ‖vk‖2 > 2/3.

The improvement in the approximation guarantee can be attributed to the fol-

lowing observation. Let {(i1, j1), . . . , (is, js)} be the pairs of vertices chosen for

the various recursive invocations of the algorithm in Step 3. Then in the proba-

bilistic interpretation of the SDP solution, we have carved an event of probability

ρ = ρi1j1 + . . . + ρisjs out of the sample space, and thus the SDP solution is con-

ditioned on an event of probability 1 − ρ. Hence, the hypergraph in the final call

contains nρ ≥ Ω̃(n1−ρ) vertices (as in the proof of Proposition 5.4.3), and the SDP

value is γρnρ where γρ ≥ γ/(1 − ρ). Thus one only needs to show that assuming

the condition in Step 3 does not hold, the call to KNS-Round in Step 4b returns an

independent set of size at least

n
γ2

ρ/8
ρ ≥ nγ2/(8(1−ρ))

ρ ≥ nγ2/8.

The proof of this fact is identical to the proof of Theorem 5.4.1.
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Chapter 6

Conclusion

We have presented two algorithms for coloring 3-colorable graphs, and one for Max-

imum Independent Set in 3-uniform hypergraphs. At present, the latter two algo-

rithms give the best known approximation guarantees for their respective problems.

The algorithms and proof techniques discussed make crucial use of non-local anal-

ysis, and in some cases non-local SDP relaxations.

For graph coloring, there is a possibility for obtaining an improved guarantee

by proving certain geometric conjectures [3] and applying them in the context of

the analysis in Chapter 3. However, this approach seems to require a more nuanced

understanding of measure concentration which may be out of reach at this time.

Moreover, given the integrality gaps in [16], this direction cannot yield legal color-

ings using fewer than n0.156 colors unless we can make crucial use of tighter SDP

relaxations.

Indeed, we have used tighter relaxations in Chapter 4 to obtain an algorithm

with a better performance guarantee. Generalizing this approach appears to be a

promising direction which merits further investigation.

For Maximum Independent Set in 3-uniform hypergraphs, Theorem 5.4.1, to-
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gether with the integrality gap of Theorem 5.2.1, demonstrate that the hierarchy

of relaxations MAX-ISmix
k gives an infinite sequence of improved approximations for

higher and higher levels k. We do not know if similar integrality gaps hold for

the Lasserre hierarchy, though we know that at least the integrality gap of The-

orem 5.2.1 cannot be lifted even to the second level in the Lasserre hierarchy. In

light of our results, we are faced with two possible scenarios:

1. For some fixed k, the kth level of the Lasserre hierarchy gives a better ap-

proximation than MAX-ISmix
l for any (arbitrary large constant) l, or

2. The approximation curve afforded by the kth level Lasserre relaxation gives

strict improvements for infinitely many values of k.

While the second possibility is the more intriguing of the two, a result of either

sort would provide crucial insights into the importance of LP and SDP hierarchies

for approximation algorithms. Recently Schoenebeck [36] has produced strong in-

tegrality gaps for high-level Lasserre relaxations for random 3XOR formulas, which

rely on properties of the underlying 3-uniform hypergraph structure. It will be

very interesting to see whether such results can be extended to confirm the second

scenario, above.

From the recent work of Raghavendra [33], we know that improved approxima-

tions at unboundedly many constant levels of an SDP hierarchy are not possible

for binary CSPs which admit a constant-factor approximation, unless the Unique

Games Conjecture [25] is false. While disproving the Unique Games Conjecture (for

example, by obtaining improved algorithms for Unique Games based on tighter SDP

relaxations) is an exciting prospect, there remains much scope for improvement for

problems such as the ones we have discussed here, where we do not believe that

constant-factor approximations are achievable.
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