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Abstract 

Modern computational biology draws on the historical strengths both of computer science and of 

molecular biology. It requires careful attention to algorithmic development, data structures, 

storage, and manipulation, efficient software engineering, and machine learning; but it also 

drives towards a deeper understanding of the causes and cures of disease, the organization of life 

at both micro- and macroscopic levels, and the molecular systems governing every living 

organism. In particular, the field must take advantage of the ever-increasing availability of 

experimental assays that provide whole-genome measurements: the sequences of the human and 

other genomes, the abundances of every transcript in a cell, the distribution of gene activity 

across cell or tissue types, and the interactions among proteins and protein complexes. These data 

can be combined and analyzed in an integrated manner to enable biological discoveries not 

obtainable from single experiments, but this requires both the computational ability to 

manipulate large, heterogeneous, and noisy datasets as well as the biological ability to ask 

targeted questions of these diverse data. This manuscript presents four broad solutions to these 

challenges. First, we discuss the closer integration of computational techniques with laboratory 

experimentation to study S. cerevisiae mitochondria. This confirms that biological discoveries can 

be made much more efficiently in the laboratory if informed by computational inference and that 

computational algorithms can be much more accurate if informed by appropriate experimental 

design. Second, we present a set of specific software tools created to address biological needs, 

ranging from the efficient analysis of very large data collections to the visualization of dense 

biological networks. Third, we detail several ways in which statistical models can be applied to 

genomic data so as to describe specific biological phenomena, including cellular growth rate, 

aneuploidy, and phosphorylation. Finally, we provide methods for integrating heterogeneous 

genomic data designed specifically for very large data collections and complex organisms (e.g. 

human beings); this allows one to study not only traditional biological questions, such as the 

interactions between individual genes and proteins, but also the interactions between entire 

pathways and processes at a systems level. These tools, techniques, and discoveries provide a 

basis from which further computational research can readily develop as biological 

experimentation explores more data, examines new organisms, and brings us ever closer to 

understanding and eliminating disease.  
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Large Scale Computational Biology: An Introduction 

You are most likely reading this using some combination of the 108 cells making up your optic 

system, in conjunction with a portion of the 1011 neurons in your central nervous system (or, 

possibly, using your millions of auditory or tactile cells instead). These represent only a few of 

the roughly 200 different cell types into which the 1014 cells of the human body can be classified; 

as you read, some 1011 cells of your immune system are fending off perhaps 1010 bacteria and 

other foreign organisms, but allowing the 1013 symbiotic bacteria in your digestive tract to 

continue their work unharmed. Inside each of your cells lies just over three billion pieces of 

genetic information, encoding the ~25,000 different genes that are used to construct each cell's 

~109 protein components. And that's just in one of you, not taking into account the other six 

billion human inhabitants and over 1030 other organisms on the planet (Blinkov and Glezer 1968; 

Janeway, Travers et al. 2001; Schiffman 2001; Sears 2005; Lodish, Berk et al. 2007). 

Needless to say, biology - the study of this massive diversity of life - is complicated. Fortunately, 

this document is being written on a machine containing about 109 transistors, running programs 

that together account for maybe 108 lines of code, all of which we understand (more or less) 

perfectly. Computer science is a field intimately acquainted with the study, management, and 

organization of complexity, from the engineering of the systems making up a modern processor 

to the statistics of uncovering informative signals in noisy data. As technological advancements 

in biology have made us increasingly able to detect, measure, and quantify the activities of the 

molecular components of life, the field has turned to computer science to process and understand 

this data. Remarkably, most of these developments have happened only within the last ten years 

- the first complete genome of a free-living organism (Haemophilus influenzae) was sequenced in 
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1995 (Fleischmann, Adams et al. 1995) - and computer science and biology alike are still growing 

into their new roles. 

The interdisciplinary field that has grown out of these joint efforts is referred to as computational 

biology or bioinformatics. In some usages, the former refers specifically to biological discoveries 

made by applying computational techniques and the latter to algorithmic discoveries that happen 

to employ biological data; this manuscript will use the two terms interchangeably. Ideally, no 

such distinction is necessary, as the most successful research will advance our knowledge of both 

scientific areas. It is the challenge of bioinformatics to collect, organize, and understand the ever-

increasing variety of data produced by our measurements of the biological world, ranging from 

population studies in ecological communities to the activities of individual molecules within 

single cells. Much bioinformatic work, particularly in this manuscript, focuses particularly on 

molecular biology and on the assessment of subcellular activity. The tiny scale on which the 

molecular activity of life is carried out makes it difficult to observe, and thus much of computer 

science's role in computational biology lies in using machine learning to discover meaningful 

signals in experimental data and in using these to infer the purpose and structure of cellular 

processes. 

This manuscript will discuss four specific areas in which we have contributed to computational 

biology. First, one of the ways in which the field is still adapting is in the optimization of 

laboratory investigations; often, experimental work is time-consuming and expensive, while 

computational analyses - even those requiring sophisticated algorithmic design and complex data 

processing - can be performed more quickly and cheaply. This implies that using computational 

predictions to guide laboratory work can greatly increase the efficiency with which new biology 

is discovered, and, conversely, that by designing experimental assays appropriately, their results 
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can more easily be incorporated into computational algorithms to improve their accuracy. We 

verify this hypothesis using yeast mitochondria as an experimental system; in approximately six 

person-months, we tripled the number of known mitochondrial proteins, incorporated this new 

knowledge into our computational predictions, and showed that such predictions can be 

extremely accurate even in areas of biology where our prior knowledge is very sparse (e.g. newly 

sequenced or previously unstudied organisms). 

Second, we have created a variety of software systems to address specific biological questions. 

The core of these tools is the Sleipnir library, which provides C++ implementations of many 

algorithms developed to allow rapid processing of large biological data collections. Public data 

repositories have already grown to contain hundreds of thousands of experimental results, and 

Sleipnir represents the first set of computational tools capable of integrating and learning from 

this data efficiently. Other software we discuss includes the Nearest Neighbor Networks 

clustering algorithm, designed to find genes performing similar functional roles in biological 

data, and the Graphle application for interactive, collaborative exploration of large biological 

networks. Finally, we also present COALESCE, a system for integrating many different data 

types and experiments to infer comprehensive regulatory networks in higher organisms. 

Our third section will address ways in which statistical models can be applied to understand 

biological data and to predict cellular behavior. By applying linear models to measurements of 

the cellular response to various perturbations (specifically changes in growth rate and 

chromosomal copy number), we can explicitly catalog which of an organism's genes are activated 

(or inactivated) under those conditions. Conversely, these models also allow us to predict how a 

cell perceives its environment if we are given only information about its genetic activity (e.g. if 

we know which genes are active in some population, we can estimate how quickly the 
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population is growing). Other statistical analyses applied to data on specific protein 

modifications reveal how the cell uses those modifications to regulate its activity and, when 

compared to similar modifications in other organisms, how the regulatory network has evolved 

over time. 

Finally, we will present several ways in which we have leveraged very large biological data 

collections in order to better understand entire biological systems. In particular, by integrating a 

substantial portion of all currently available experimental data pertaining to human beings (~30 

billion data points), we can make accurate predictions of gene function, interactions, and 

involvement in human disease. An algorithm for doing this is integrated in the HEFalMp 

(Human Experimental/Functional Mapper) system. In the organism S. cerevisiae, similar data is 

used by the MEFIT system to understand gene function and the yeast response to dataset-specific 

environment perturbations. We discuss ways in which large scale genomic data collections such 

as these can be used to understand the overall molecular and cellular activity in any organism, 

allowing meaningful maps of biological regulation and interactions to be constructed by 

integrating thousands of experimental results. 

Writing from a computational perspective, we provide a brief overview below of the areas of 

computer science most involved in computational biology, as well as a more in-depth 

introduction to the cellular processes and biological assays common in the field and in this 

manuscript. In addition to detailed descriptions of our specific contributions, we will conclude 

with several possible future directions for this research and for the field as a whole. 
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An Overview of Computational Tools 

The areas of computer science most intimately related to computational biology are machine 

learning and related fields: statistics, information retrieval, artificial intelligence, numerical 

computation, modeling, and computer vision (Aluru 2005). This manuscript assumes a general 

computational background, so this section will touch briefly on the main terminology and 

techniques used throughout the subsequent text. For other broad reviews, see (Kitano 2002; Ray, 

Chong et al. 2002), and for recent reviews particularly relevant to this work, see (Troyanskaya 

2005; Markowetz and Troyanskaya 2007; Troyanskaya 2007). Computational biology as a whole 

is still in its infancy and, as a result, is one of the fastest paced fields in modern science; citations 

more than ten or even five years old are almost uniformly outdated, and a decade from now, this 

text may seem equally archaic. 

Machine Learning, Classification, and Performance Metrics 

Machine learning (Mitchell 1997) is, broadly, the task of constructing algorithms capable of 

improving their performance (under some evaluation measure) as they are exposed to increasing 

training information. Many machine learning tasks of bioinformatic relevance are classification 

problems: given some set of records (each representing an entity of interest using one or more 

data features), partition the set into two or more classes (some formulations of the problem do 

not require a strict partitioning and are referred to as multiclass). Classification can be 

supervised, in which case the target class (i.e. label) for some (or all) of the records is known a 

priori; or it can be unsupervised, in which case the records are separated based solely on 

characteristics of their data features. We will briefly review supervised classification here, and 

unsupervised classification is discussed below in its incarnation in graph clustering algorithms. 
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Formally, consider a set of records R in which each r R is an ordered list of features (f1, f2, ..., fn). 

Each feature fi is drawn from some set Fi, which can be categorical (i.e. |Fi| is finite, also referred 

to as discrete) or continuous (|Fi| infinite, often integral or real valued). One feature is often set 

aside as the label or dependent variable to be predicted, with the others serving as data or 

independent variables used during learning; when labels are present and binary, they are often 

referred to as positive and negative examples. A set of records can contain missing values, in 

which case not every record possesses a value for every feature, or it can contain errors, in which 

case some record/feature values are numerically or categorically incorrect. Typically, records are 

split into a training set from which a classifier is learned and a test set used to evaluate its 

performance; records from the training set alter the classifier's behavior (presumably improving 

its performance), but during evaluation of the test set, the classifier becomes a read-only system. 

Classifier evaluation itself is a complex research area whose details will not be covered here 

(Mitchell 1997). 

Classification algorithms tend to fall into two categories: generative models, which describe the 

entire feature set of the records R, and discriminative models, which only fully describe the 

output label as it depends on other features. Probabilistically, this is the difference between 

generatively modeling the joint distribution P(F1, F2, ..., Fn) and discriminatively modeling, for 

some label F1, the conditional distribution P(F1|F2, F3, ..., Fn). In bioinformatics, this distinction 

often boils down to the difference between modeling the world, i.e. constructing a generative 

model that describes how a biological system behaves, and predicting some outcome, i.e. 

constructing a discriminative model that uses observed data to infer some unobserved property. 
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Bayesian Networks 

A generative model that will be used repeatedly in this text is the Bayesian network, one of the 

class of graphical models (Neapolitan 2004) that capture dependencies between data in terms of 

conditional probability distributions. A Bayesian network can be represented as a directed acyclic 

graph G=(V, E) in which each vertex vi represents an event or random variable. Independence 

among these events is captured by the edge structure of the graph, such that the joint probability 

over all vertices P(v1, v2, ..., vn) is equal to the product of all conditional probabilities P(vi|u1, u2, ..., 

um such that (uj, vi) E). In other words, the probability of an event is completely described by the 

values of its parent events, independently of all other events in the graph. 

Bayesian networks are Bayesian in the sense that Bayes' theorem is central to their definition and 

implementation: 

)(

)()|(
)|(

BP

APABP
BAP  

That is, the posterior probability of some event A given some evidence B is proportional to the 

product of P(B|A) and the prior probability of A. For example, the prior probability of a fire in 

one's apartment is very low; however, the posterior probability of a fire given that the smoke 

alarm is going off is substantially higher. Conversely, it is much more likely that one burns 

dinner than that one's apartment is on fire, an event that can also activate the smoke alarm. These 

relationships and probabilities are summarized in the example Bayesian network in Figure 1. 

Given evidence for zero or more of the events in a Bayesian network, the probability of all other 

events can be inferred (in a process referred to as Bayesian inference) using Bayes' theorem. For 

example, the probability of the smoke alarm going off under any circumstances is: 
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P(SA) = P(SA|F, BD)P(F, BD) + P(SA|F, ~BD) + P(SA|~F, BD) + P(SA|~F, ~BD) = 

0.999∙0.001∙0.1 + 0.95∙0.001∙0.9 + 0.9∙0.999∙0.1 + 0.001∙0.999∙0.9 = 0.0918 

Suppose that one hears the smoke alarm go off while visiting one's neighbor. The probability that 

your apartment is in trouble is: 

P(F|SA) = P(SA|F)P(F)/P(SA) = [P(SA|F, BD)P(BD) + P(SA|F, ~BD)P(BD)]P(F)/P(SA) = 

(0.999∙0.1 + 0.95∙0.9)∙0.001 / 0.0918 = 0.0104 

Sadly, the probability that your dinner is in trouble is in this case P(BD|SA)=0.981. Fortunately, 

however, one can be reassured that the smoke alarm is "explained" by one's dinner being burned 

if this is later discovered to be true: 

P(F|SA, BD) = P(SA, BD|F)P(F)/P(SA, BD) = P(SA|F, BD)P(BD)P(F)/[P(SA|BD)P(BD)] = 

0.999∙0.1∙0.001/((0.999∙0.001+0.9∙0.999)∙0.1) = 0.00111 

These calculations remain essentially identical for non-binary discrete probability distributions, 

and they can be extended similarly to linear combinations of normal distributions in continuous 

Bayesian networks (Fu and Tsamardinos 2005). 
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Figure 1: Example Bayesian network capturing three binary random events. A fire might occur with 

probability P(F)=0.001, and one's dinner might be burned with probability P(BD)=0.1; either of these events 

influences the probability of the smoke alarm being activated, P(SA|F, BD). Probabilities are, hopefully, 

illustrative and not an accurate reflection of reality; example inspired by (Pearl 1988). 

This type of probabilistic explanation is formalized by the concept of a Markov blanket (Pearl 

1988). A node v's Markov blanket consists of its parents, children, and children's parents; any 

other set of nodes in a Bayesian network is conditionally dependent of v given the values of 

events in its Markov blanket. This is also referred to as d-separation, in that if two sets of nodes X 

and Y are conditionally independent given a third set Z, they are said to be d-separated by Z. 

While exact Bayesian inference (and many types of approximation) are known to be NP hard 

(Cooper 1990), this type of decomposition has led to a variety of efficient algorithms taking 

advantage of network structure, decomposition, message passing, parallelism, and 

approximation (MacKay 2003). This ability to rapidly estimate one or more event probabilities 

given any amount of prior evidence has contributed greatly to the utility of Bayesian networks in 

computational biology. 
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Another important factor in the use of Bayesian networks for bioinformatics is the ease with 

which their structure and parameters can be learned from data (Neapolitan 2004). Given a 

predefined network structure, one can consider a set of records R in which features correspond to 

nodes in the Bayesian network. If these records are discrete and contain no missing values, then 

we can obtain maximum likelihood estimates for the network parameters (also referred to as 

conditional probability tables or CPTs) by counting: P(vi=xi|u1=y1, u2=y2, ..., um=ym) is simply the 

number of records containing (xi, y1, y2, ..., ym) divided by the number containing (y1, y2, ..., ym). 

These estimates can be further modified by techniques such as Laplace smoothing (Jurafsky and 

Martin 2008). If the records do contain missing values, maximum likelihood estimates can still be 

obtained using the Expectation Maximization (EM) algorithm, which iteratively infers probability 

distributions (expectations) over the missing values using the network's current parameters and 

then updates (maximize the likelihood of) these estimated parameters using the resulting 

distributions (Neapolitan 2004). This is guaranteed to converge to a local maximum (since no one 

iteration can decrease the probability of the observed data), but it is thus sensitive to initial 

conditions (i.e. initial parameter values) and to the computational complexity of calculating the 

maximum likelihood values. In the case of Bayesian networks, this depends multiplicatively on 

the maximum in-degree of the network's nodes and can thus be a significant factor. 

Bayesian structure learning is, in general, a much more difficult problem due to the tremendous 

size of the search space: given a set of event vertices V, the number of possible graphs is 

superexponential in |V|. The first class of algorithms dealing with this problem (Rebane and 

Pearl 1987) begin by establishing undirected dependence between variables (i.e. determining that 

two events are joined by an edge without assigning directionality to it) by statistical tests for 

significant mutual information. Directionality (i.e. causation) is assigned by, first, considering all 
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triplets of connected variables and directing pairs of edges so as to preserve the observed 

conditional independencies; remaining undirected edges are directed so as to avoid cycles. A 

second class of algorithms instead treats the problem explicitly as a search, moving through the 

space of possible graph structures (and parameter settings) by making small, directed 

modifications and evaluating the likelihood (or other scoring function) of the resulting network 

(Hastie, Tibshirani et al. 2001). While Bayesian structure learning has been successfully employed 

in computational biology (Sachs, Perez et al. 2005), it often suffers from a lack of appropriate data 

(i.e. noise) and from intractability when many variables are involved, and it will not be a focus of 

this manuscript. 

Instead, we take advantage of a special class of Bayesian networks that are particularly suited for 

large, noisy data collections: naive Bayesian networks. Also referred to as naive Bayes classifiers, 

these comprise the class of graph structures in which a single root or class node is the only parent 

of all other nodes (the data or feature variables), i.e. G=(V, E), V={c, f1, f2, ..., fn}, E={(c, f1), (c, f2), ..., 

(c, fn)}. This is thus a direct encoding of a supervised classification problem in which all data is 

assumed to be independent - an assumption that is almost never strictly true but which, for 

various potentially defensible reasons, performs remarkably well in practice (Hand and Yu 2001). 

Learning the maximum likelihood parameters of such a model is efficient even in the case of 

missing data (requiring only counting and no iteration), and regression models have even been 

proposed which coopt the Bayesian structure to provide maximum a posteriori (i.e. 

discriminative rather than generative) parameter estimates (Greiner and Zhou 2005). Likewise, 

inference given any combination of observed or missing data is a simple multiplication P(c|f1, f2, 

..., fn)  ∏i P(fi|c). Naive Bayesian classifiers are thus similar in spirit, if not mathematics, to linear 
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models as discussed below, and they represent the primary generative model employed in this 

text. 

Support Vector Machines 

A canonical discriminative classification algorithm is the support vector machine or SVM 

(Vapnik 1998). SVMs are typically discussed as binary classifiers over one or more real valued 

data features, but multiclass and continuous algorithms also exist, as well as means of dealing 

optimally with categorical data (Schölkopf and Smola 2002). SVMs integrate a number of 

concepts, but in the simplest case reduce to a problem of maximum margin linear classification. 

As pictured in Figure 2, consider a number of positive and negative training examples in some 

high dimensional, real valued space. These can be separated by infinitely many different 

hyperplanes (each with parameters equal to the dimensionality of the space), but only one such 

hyperplane will do so while also maximizing the distance to the nearest examples. Thus, consider 

a set of training records R={(c1, d1), ..., (cn, dn)} where di=(di,1, ..., di,m), ci {0, 1}, and di,j . A 

hyperplane in this m-dimensional space can be described by all x such that w∙x - b = 0, where w is 

a perpendicular vector specifying the hyperplane's orientation and b indicates its offset from the 

origin. The boundaries of the space separating the training examples can in turn be described by 

parallel hyperplanes w∙x - b = 1 and w∙x - b = -1; to maximize the intervening margin 2/|w|, we 

thus minimize the norm |w|. To exclude training examples from the intervening space, we 

constrain w∙di - b ≥ 1 if ci=1 and w∙di - b ≤ 0 if ci=0, which taken together forms a constrained 

optimization problem that can be solved using quadratic programming (Vapnik 1998). 

Further extensions are required if the data are not linearly separable, i.e. to correctly deal with 

misclassification errors when they are unavoidable. This can be addressed (Cortes and Vapnik 

1995) by introducing a soft margin parameter C that balances the optimization between margin 
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maximization and misclassification by minimizing |w|2/2 + C∑iεi, where εi is zero if ri is correctly 

classified and equal to the distance between it and the hyperplane if it is not. Similarly, the 

method was limited to linear classification until the introduction of kernel methodology to 

transform the problem space (Boser, Guyon et al. 1992). This replaces the optimization dot 

products w∙di with any positive semi-definite kernel function k(w, di), which can be shown to be 

equivalent to a dot product of two vectors ϕ(w)∙ϕ(di) for some function ϕ (which does not have 

to be explicitly known to the SVM) (Aizerman, Braverman et al. 1964). Commonly used 

numerical kernels include polynomials (w∙di)d and Gaussian radial basis functions exp(-0.5|w - di 

|2/σ2), while custom kernels specific to biological data have also been used in bioinformatics 

(Lanckriet, Deng et al. 2004). 

+

+

+

+
+

+

-

-

-

-

-

-

Positive examples

Negative examples

Separating 
hyperplane

Margin

Support 
vectors

 

Figure 2: Schematic diagram of a support vector machine (SVM). The most basic SVM is a hyperplane 

separating sets of positive and negative examples in some high dimensional, real valued space. The 

hyperplane is chosen to maximize the margin between the nearest training examples, referred to as the 

support vectors. 
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Performance Metrics 

Performance evaluation techniques in computational biology are essentially a combination of 

those found in information retrieval (Jurafsky and Martin 2008) and in medical informatics 

(Altman and Bland 1994). Supervised techniques rely on a "gold standard" collection of example 

records labeled with a known class; predictions can then be made on held out, unlabeled 

examples, and the predicted labels compared with the gold standard. This is most easily 

considered in the binary case, where all labels are either positive (one) or negative (zero). In this 

situation, any set of predictions can be partitioned into four sets: true positives (records predicted 

to be positive and labeled as such in the gold standard), false positives (records predicted to be 

positive but labeled as negative), true negatives (predicted and labeled negative), and false 

negatives (predicted negative but labeled positive). Given some set of predictions, the fraction of 

correct labels is the precision (also referred to as positive predictive value): 

FPTP

TP
precision  

The recall is the fraction of all positive labels included in the predicted set: 

FNTP

TP
recall  

Typically, predictions are generated in some rank order, e.g. decreasing confidence or 

probability. This allows a precision/recall curve to be constructed by moving a cutoff through this 

rank order and calculating the precision and recall for each induced partition, ranging from high 

confidence/low recall/high precision to low confidence/high recall/low precision; for an example, 

see Figure 17. In some fields, recall is referred to as sensitivity, and is generally paired with 

specificity (in place of precision) as a measure of accuracy: 
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FPTN

TN
yspecificit  

Specificity thus represents the fraction of incorrect labels that are excluded; while analogous to 

precision, the two measures can behave very differently as the ratio of positive to negative 

training examples varies. Like precision and recall, sensitivity and specificity are often plotted as 

a curve over a sliding rank cutoff. This is referred to as a Receiver Operating Characteristic (ROC) 

curve (Zweig and Campbell 1993), and the area under such a curve, or AUC, is often used as a 

summary statistic for overall performance over an entire ranked list of predictions. This can be 

calculated analytically using the Wilcoxon rank-sum test (also referred to as the Mann-Whitney U 

or Mann-Whitney-Wilcoxon test (Wilcoxon 1945; Mann and Whitney 1947)); for examples, see 

Figure 23, Figure 24, Figure 39, etc. Rarer variants of these metrics include the area under a 

precision/recall curve, AUPRC, consisting of the integral over a precision/recall curve just as 

AUC integrates over a sensitivity/specificity curve, and the log-likelihood score (LLS), consisting 

of a logarithm of the ratio of actual to random predictive performance: 
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Linear Models 

A supervised statistical tool that we employ to model biological measurements is the linear 

model (Davidson 2003), consisting of a vector of observations y, a matrix of observed values X, a 

vector of unknown parameters b, and a vector of residual errors ε: 

y = Xb + ε 
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X typically (but not always) includes at least one constant term (e.g. a column of ones) and one 

additional variable, in which case this clearly models a simple linear regression. A full linear 

model thus predicts a set of output variables as a sum of linearly weighted input variables, with 

the attractiveness of the model arising from its simplicity, the frequency of linear relationships in 

natural data, and the ease with which unknown parameters b can be estimated algorithmically. 

Under the assumption of independent errors ε normally distributed about zero, the maximum 

likelihood parameters b can be estimated using the method of least squares. A related calculation 

that will not appear here, but which is frequently useful in computational biology, is the analysis 

of variance (ANOVA), which partitions the variability of y into components correlated which 

each component of X using equivalent techniques. 

In a biological setting, such a model is useful (when applied to appropriately linear data) for two 

reasons. The first is descriptive: if the components of y represent biological measurements and 

the components of X experimental conditions, the inferred parameters b provide estimates of the 

relationship of each measurement to the environment. If these measurements correspond, for 

example, to protein activity within the cell under various environmental perturbations (e.g. 

chemical exposure, nutrient availability, temperature, disease, etc.), this can establish strong 

evidence that proteins with high magnitude parameters under some conditions are specifically 

responsible for cellular tasks relating to those conditions. All proteins with large b under heat 

shock, for example, might catalog the cell's machinery for responding to high temperatures. 

Conversely, a learned linear model can also be predictive of a protein's activity (or other observed 

quantity) under novel conditions. In other words, by learning such a model b from experimental 

measurements, we can then extrapolate how we expect a cellular system y to respond for new 

values of the environmental conditions X. 
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Graphs and Clustering 

The usage of graph structures in mathematics, computer science, and biology varies so widely 

and with such extensive histories in each field that we will give only a cursory introduction here; 

for details, see (Diestel 2005), (Cormen, Leiserson et al. 2001), and (Junker and Schreiber 2008), 

respectively. Briefly, a graph or network (terms which this document will use interchangeably) 

G=(V, E) consists of a set of nodes or vertices V and a set of edges E; in most cases (and all cases in 

this document), each pair of nodes has at most one edge connecting them, making E VxV. 

Likewise, although graphs can formally allow self connections (i.e. e E, v V, e=(v, v)), these will 

generally not appear in this manuscript (although they can be relevant in biological networks, 

e.g. for self-regulation). Graphs can be directed, in which case an edge (v, u) implies a directional 

relationship between nodes v and u and is distinct from (u, v); or they can be undirected, in which 

case these two edges are equivalent (or, equivalently, (v, u) E implies (u, v) E, or edges can be 

represented as sets {u, v}). Graphs can also be weighted, in which case each edge possesses some 

numerical weight w(e). 

In computational biology, graphs are typically used to represent gene or protein interaction 

networks: each vertex represents a protein (or gene), and each edge represents some type of 

relationship between the proteins: physical binding (i.e. do those two proteins ever directly 

interact in the cell), regulation, sequence similarity, etc. Particularly in unweighted protein-

protein interaction networks, this has led to a focus on network topology. Defining the degree of 

a vertex as the number of incident edges (i.e. d(v)=|{e E | e=(v, u) or e=(u, v), u V}|), one can 

imagine a random graph in which edges are placed by selecting nodes at random (Erdos and 

Renyi 1960), resulting in a Poisson degree distribution with few outliers. Interestingly, most 

"natural" networks from biology (and other fields) do not appear to behave this way; instead, 
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their distribution of degrees follows a power law with a "long tail" of high-degree nodes 

(Barabasi and Oltvai 2004). These high-degree vertices are referred to as hubs, and in biology can 

represent, for example, proteins that act to coregulate diverse processes or to tie together multiple 

cellular components. Graphs of this class are in turn referred to as scale-free or as having the 

small-world property (i.e. any two nodes are connected by a relatively short path). This family of 

network structures has additional implications in biological modeling: scale-free or near-scale-

free networks can arise as the result of specific evolutionary processes (Middendorf, Ziv et al. 

2005) such as genome duplication, giving computational biology a way to test evolutionary 

hypotheses using modern measurements of cellular networks. 

Another way in which biological networks are often characterized is by searching the network for 

subsets of nodes exhibiting specific interconnectivity properties. The most classical such property 

analyzed in unweighted graphs is the presence of fully connected subgraphs, referred to as 

cliques. For example, in an undirected graph G=(V, E), a three-clique is any set of three vertices {t, 

u, v} V in which all edges {t, u}, {t, v}, and {u, v} are in E. Again, these can be indicative of specific 

biological features, e.g. cliques appearing in protein-protein interaction networks may indicate 

protein complexes; in computer science, they are of interest since clique finding is NP hard (Karp 

1972), leading to a variety of optimizations and approximation algorithms. A related problem in 

computational biology is that of network motif finding (Milo, Shen-Orr et al. 2002), in which 

graphs are characterized based on other connectivity properties of subgraphs (e.g. by counting 

the number of triangles (three-cliques), squares, vees, or other subgraphs indicative of specific 

biological regulatory relationships). Likewise, the term modules in this context often refers to 

subgraphs exhibiting unusually high interconnectivity and/or low connectivity to the rest of the 

network, which can be indicative of a cohesive biological pathway or function (Ravasz, Somera et 
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al. 2002); these are thus often called functional modules, and particularly in weighted graphs, 

their discovery is closely linked to the problem of clustering. 

Clustering, or the problem of finding closely related groups of entities, has been at the core of 

computational biology since its inception. Mathematically, clustering is an unsupervised 

classification operation on the vertices of weighted graphs that organizes them i) into strictly 

partitioned sets, referred to as hard clustering, ii) by assigning them in a weighted or probabilistic 

manner to zero or more sets, referred to as soft clustering, or iii) into hierarchical subsets, referred 

to as hierarchical clustering (MacKay 2003). For largely historical reasons, analysis of biological 

data has been dominated by two forms of clustering: k-means (Tavazoie, Hughes et al. 1999) and 

agglomerative hierarchical clustering (Eisen, Spellman et al. 1998). The former is a hard clustering 

algorithm in which every vertex in a graph is assigned to exactly one of k clusters, where k is an 

integral input parameter. Briefly, a typical implementation resembles: 

1. Input integer k>0 and weighted graph G=(V, E). 

2. Randomly select H G, |H|=k, and seed C={{h} | h H}. 

3. Loop until convergence: 

4.  For each g G, insert g into the set 
ch

hgw
cCc

),(
||

1maxarg
 . 

This calculation will, of course, rely on the semantics of the edge weights w and can be modified 

to use the minimum, maximum, or centroid in place of the average. Hierarchical clustering, as the 

name implies, instead embeds each vertex in a hierarchy of subsets in which the innermost 

subsets indicate the most (or, depending on semantics, least) heavily weighted connections: 
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1. Input weighted graph G=(V, E). 

2. Loop until |V|=1: 

3.  Let (v, u)=argmaxu,v V w(v, u). 

4.  Remove u and v from V; insert a new node {u, v}. 

5.  Remove all edges incident to u or v from E. 

6.  For all t≠u,v insert new edges (t, {u, v}) with weight 
vux

xtw
vu

),(
||||

1
. 

Again, maxima and minima are dependent on semantics, and averaging can be replaced with 

minimization, maximization, or a centroid calculation. Clustering is particularly useful in 

microarray analysis, in which the specific distance or similarity measure used to calculate 

weights also plays a critical role; this is discussed below in more detail. 

Biological Background and Terminology 

Molecular biology is the study of the interactions and functional roles of biomolecules within the 

cell (Alberts, Johnson et al. 2007). Cells, the basic building blocks of life, are microscopic 

structures that represent the most basic self-reproducing machines. Using remarkably few 

fundamental building blocks, cells combine a small number of organic molecules into biological 

macromolecules; these go on to perform the basic needs of the cell, forming structural 

components, performing mechanical work, storing and transporting information, and carrying 

out regulatory programs. A computer is an example of an electronic machine that accepts input 

from its environment (e.g. from the keyboard), processes it using a set of predetermined 

relationships between transistors (e.g. programs), and uses this information to maintain a 

consistent internal state (e.g. a functional operating system) and to influence its surroundings 
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(e.g. by displaying appropriate output on a monitor). Likewise, a cell is a molecular machine that 

detects input from its environment, processes it using a set of predetermined relationships 

between molecules, and uses this information to maintain a consistent internal state (referred to 

as homeostasis) and to influence its surroundings - all by relying on biomolecular interactions in 

place of transistors and programming. 

There are three main types of macromolecules that carry out these cellular tasks, the most famous 

being DNA: deoxyribonucleic acid. As popularized by James Watson and Francis Crick (Watson 

and Crick 1953), DNA consists of a double helical structure (i.e. a "twisted ladder") in which the 

"rungs" are made up of base pairs. An individual base pair is made up of two nucleotides, each 

one a small organic molecule consisting of a base, a sugar (deoxyribose in DNA), and a 

phosphate linking one adjacent nucleotide to the next. While each side or strand of DNA is made 

up of nucleotides linked covalently by phosphate groups, the bridging rungs of the base pairs are 

formed by noncovalent, chemical attractions between complementary bases. Four specific 

nucleotides are found in natural DNA, differentiated by the composition of their bases: the 

purines adenine (A) and guanine (G) containing large, double-ringed bases, and the pyrimidines 

cytosine (C) and thymine (T) with smaller, single-ringed bases. While any base pairs can appear 

adjacent to each other within one strand of DNA, only complementary base pairs appear across 

from each other to form the base pair rungs of a DNA double helix. This complementarity 

between specific large and small bases results in DNA "rungs" being made up of adenine-

thymine (A-T) and guanine-cytosine (C-T) base pairs. As a double helix, DNA molecules are 

extremely large (containing potentially billions of base pairs), stable, and intrinsically error 

correcting (since each base is mirrored by its complement in the opposite strand). These 

characteristics make DNA ideal for information storage and transmission within the cell; like the 
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source code of a computer program, DNA by itself performs essentially no cellular work, but 

when read and implemented by other machinery, it contains all of the information necessary to 

replicate a cell and carry out its vital tasks. 

The second major cellular biomolecule is RNA, ribonucleic acid, which is similar to DNA in both 

name and structure. RNA is normally single stranded, such that an RNA molecule is roughly 

equivalent to a single half or side of a DNA molecule; however, RNA nucleotides (which are thus 

unpaired) employ ribose as their sugar and incorporate the base uracil (U) in place of thymine 

(the two bases are structurally very similar). Also unlike DNA, RNA is typically an unstable 

molecule, easily degraded both passively by entropic forces and actively by cellular machinery; 

this makes it ideal for carrying short-lived messages, which is one of its main cellular tasks. Since 

RNA can represent exactly the same information as DNA (consisting of an equivalent four base 

code), its main purpose in the cell is to copy short fragments of information from DNA and 

transport it for use to various locations in the cell, leaving the important DNA information 

storage mechanism secure and unmodified. RNA made to perform this task is referred to as 

messenger RNA or mRNA. However, since RNA molecules are single stranded and flexible, they 

can form various three-dimensional structures to carry out other mechanical tasks, leading to a 

minor zoo of RNA subtypes: transfer or tRNA, which transport individual cellular building 

blocks; ribosomal or rRNA, which is a structural component of the ribosome (discussed below); 

small interfering siRNA and micro miRNA, which bind to and interfere with mRNA; and many 

types of ribozymes, which have arbitrary structures specialized to carry out specific interactions 

within the cell. 

The third and most prevalent biomolecule is the protein; these form the main structural building 

blocks and functional machinery of all cells and represent the vast majority of biomass on the 
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planet. If DNA represents the source code of the cell, proteins are its executables. Like RNA, they 

are single stranded chains of repeating units, but in proteins, these units are amino acids: one of 

20 molecules consisting of an amine, a carboxyl group, and a variable molecular side chain that 

determines the identity and chemical activity of the amino acid. Also like DNA and RNA bases, 

each amino acid is assigned a single letter code: tyrosine is represented as Y, lysine as K, and so 

on for all 20 residues. Chains of amino acid (referred to as peptides) fold into extremely complex 

three-dimensional structures based on noncovalent chemical forces, and the structure and 

chemical composition of the resultant protein determines how it interacts with other molecules in 

the cell and what tasks it can carry out. Structural proteins make up the membranes, supports, 

cables, and glue from which the cell is built; enzymes catalyze specific chemical reactions to 

modify other proteins or small molecules; and signaling peptides communicate and receive 

information intra- and intercellularly. Proteins can work together physically in groups referred to 

as complexes, building larger machines out of smaller ones, or they can work together 

conceptually in groups called pathways; proteins in the same pathway generally transmit 

information to each other by various signaling mechanisms, modify related molecules or 

metabolic products, or represent related functions necessary to carry out the pathway's 

overarching cellular role. Proteins themselves are also modified by the covalent attachment and 

removal of various small molecules, and the modification state of a protein can increase or 

decrease its functional activity, providing an important regulatory mechanism for the cell. 

The relationship among these three biomolecules is described by a process known as the central 

dogma of molecular biology: DNA stores information that is transcribed (i.e. copied) for use into 

messenger RNA. This RNA carries the information to protein complexes called ribosomes that 

translate the sequence of bases into a corresponding sequence of amino acids based on the 
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genetic code. The resulting peptide folds into an active protein that goes on to carry out tasks 

necessary for the survival and reproduction of the cell. The genetic code itself is shared almost 

identically among all life, and maps three base pair codons to individual amino acids: three 

adenines in a row (AAA) are translated into a single amino acid lysine (K), two adenines and a 

cytosine (AAC) dictate the incorporation of asparagine (N), and so forth. Thus, an organism's 

genome can be thought of as a single large sequence of DNA normally totaling between a million 

and several billion bases; genes are specific subsequences of the DNA (a particular physical 

location within a genome is referred to as a locus) that are transcribed to RNA and, if protein 

coding (some genes encode tRNA, miRNA, and other non-mRNA features), translated into 

proteins. Interestingly, neither an organism's total amount of DNA nor the number of encoded 

genes have been found to correlate with organismal complexity, and many higher organisms 

have huge amounts of repetitive, non-protein-coding DNA whose function is still poorly 

understood. 

Critically for the cell - and for computational biology - all three steps of the central dogma 

provide opportunities for regulation, since decreasing the transcription, translation, or 

posttranslational efficiency of a protein can effectively turn it "off" and stop its biological activity 

(or vice versa for increased activity). At the transcriptional level, specific cellular machinery (a 

protein complex generically referred to as polymerase) moves along a DNA strand encoding a 

gene, constructing a new RNA strand that replicates the DNA base sequence. The initiation, 

frequency, and speed of this process can be increased by proteins known as transcriptional 

activators or decreased by repressors, referred to collectively as transcription factors or TFs; these 

proteins typically interact with DNA near a gene's locus to regulate its transcription at sites called 

transcription factor binding sites (TFBSs). After transcription, the quantity of mRNA for a 
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particular gene (referred to as a transcript) and the efficiency with which it is translated can also 

be modulated by mRNA interactors, typically miRNAs or RNA binding proteins; these are 

currently an area of very active research. Post-translationally, proteins' activities are modulated 

by a wide variety of modifications: they can interact with other proteins to form complexes 

(thereby being activated or inactivated), be covalently modified by small molecule side chains, be 

physically moved to specific locations in the cell (preventing or allowing them to interact with 

other molecules), degraded, or secreted from the cell. The combination of these regulatory 

activities is what dictates the systems level operation of the cell - that is, the engineering that 

allows it to survive, grow, replicate, and interact with its environment. Individual proteins 

represent the building blocks of the cell, just as individual transistors are the building blocks of a 

processor; counting transistors will tell you less about a computer than will a schematic 

overview, though, and likewise, one of the goals of computational biology is to build regulatory 

schematics of the molecular systems of the cell. 

This task is complicated by an array of factors with which molecular biologists have wrestled for 

decades. Real life is, unsurprisingly, more complex than the summary captured by the central 

dogma. The core of the problem is perhaps captured by the "one gene, one enzyme" hypothesis 

advanced by George Beadle and Edward Tatum (Beadle and Tatum 1941). This is the idea that 

each gene, located at a specific position within an organism's genome, encodes one transcript, 

which is translated to one protein, which performs one specific cellular function. This idea was 

close enough to the truth to elicit a Nobel Prize and to drive molecular biology for nearly 50 

years, but as is so often the case with natural phenomena, we continue to discover that reality is 

far more convoluted. Genes encoded in DNA are typically made up of two subparts, introns and 

exons: introns are sequences of DNA that are transcribed but removed from the mRNA (spliced 
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out) before translation, and exons go on to be translated into proteins. Not only have we found 

that transcription can start and stop at slightly different loci around a gene, but transcripts are 

often alternatively spliced, resulting in multiple splice forms (and thus multiple translated 

proteins) per gene. Likewise, specific proteins can perform multiple cellular roles, either by 

participating in multiple distinct pathways, by responding differently to different stimuli, or by 

demonstrating different activity depending on subcellular localization or modification state. 

An additional layer of complexity is introduced by the temporal and physical necessities of the 

cell cycle, which is the repeating set of tightly regulated processes by which a cell replicates itself. 

Reproduction is one of the defining characteristics of life, and this is equally true at a cellular 

level: the cell cycle, and particularly its interrelationship with the information stored in DNA, is 

central to many aspects of molecular biology. To reproduce, in addition to building the physical 

structure of a new cell out of protein components, a cell must duplicate its DNA precisely, exactly 

once, and ensure that each of the two new cells (referred to as mother and daughter) receive one 

identical copy apiece. This process is organized in temporal phases, including the controlled 

replication of the DNA itself. In order to package and organize billions of base pairs of DNA, it is 

typically wrapped around special proteins called histones in a structure resembling beads on a 

string; this structure in turn condenses into large bundles of DNA called chromosomes, and these 

are segregated to the mother and daughter cells during division. However, critically for 

computational biology, histones also play a (currently only partially understood) regulatory role 

in the normal transcription process. A short segment of DNA looped around a single histone is 

referred to as a nucleosome; these nucleosomes can be further organized into a regular structure 

called chromatin, which bundles the DNA and histones together into a compact form. Not only 

can chromatin on a large scale silence the transcription of genes within the structure, the 
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placement of individual nucleosomes can influence transcription by blocking access of TFs or 

polymerase to a gene's DNA. Determining the placement of nucleosomes (which may or may not 

be static over time) and its influence on gene regulation is another area of current research (Segal, 

Fondufe-Mittendorf et al. 2006). 

Finally, while all life shares the basic features of the central dogma, its specific organization and 

complexity can vary greatly over the various taxonomic kingdoms. This manuscript will deal 

almost exclusively with eukaryotes, the class of organisms to which essentially all multicellular 

life belongs; eukaryotic cells are characterized by the presence of intracellular organelles defined 

by membranes, most notably the nucleus that contains the cell's DNA. Prokaryotes are single 

celled organisms without a nucleus and, generally, with a single circular chromosome. While 

eukaryotes can be unicellular (e.g. the yeast Saccharomyces cerevisiae, a single celled fungus 

responsible for fermentation in brewing and baking), the kingdom also comprises multicellular 

plants and animals (metazoans), including human beings. Even though genome size does not 

strictly correlate with organismal complexity, higher organisms do introduce increasingly many 

layers of regulation and interactions and are also much more difficult to study holistically, part of 

the reason it is still difficult to understand human biology and disease at the molecular level.  

Computational biology is thus the application of computer science to the understanding of this 

dazzling array of biological complexity. Throughout most of the centuries-long history of 

biology, we have only been able to gather information about the workings of life through 

observation at the macroscopic level; microscopes with cellular resolution have been available 

since the Renaissance, investigations into molecular composition and interactions began more or 

less in the 18th century, and our understanding of the central dogma and its consequences has 

only crystallized since the early 1900s (Morange 1998). Fortunately, and not coincidentally, the 
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advent of whole-genome sequencing and the consequent explosion of biological measurements at 

the molecular level has coincided with the widespread availability of computational analysis and 

algorithms for data processing. Having provided an extremely high-level overview of the 

molecular forces at work in the cell, it remains to discuss how this flurry of infinitesimally small 

activity is observed and assayed in modern biology. 

High- and Low-Throughput Assays in Modern Biology 

While the contributions of computation to biology and of biology to computer science continue to 

grow more and more diverse, the inspiration for bioinformatics lies in the analysis of biological 

data. Due to the miniscule scale on which molecular biology proceeds, essentially all biological 

assays are more or less indirect; similarly, due to molecular biology's tremendous complexity, 

they are all more or less imprecise. These factors, fortunately, are exactly what machine learning 

has been created to deal with, with its foundations in robustness to noise, missing data, and 

hidden variables. This is perhaps epitomized by the problem of genome sequencing: given a 

population of cells, determining the sequence of As, Cs, Gs, and Ts making up their 

chromosomes and overall DNA was, as of only a few decades ago, a daunting experimental 

challenge. The earliest DNA sequencing was carried out (and modern sequencing is still inspired 

by) a method referred to as Sanger sequencing (Sanger and Coulson 1975). Briefly, once DNA is 

purified from a sample, it can be duplicated in vitro by adding DNA polymerase in combination 

with deoxynucleotide monomers, individual A, C, G, and T triphosphates. By repeatedly 

performing individual reactions in which one of these monomers is replaced with a non-

extensible (terminating) dideoxy- form, a population of DNA fragments can be built up, 

consisting of every possible substring of the isolated DNA beginning from one end and 



31 

 

extending, in the longest fragments, to the other. These fragments can be radioactively or 

fluorescently labeled and appropriately detected, resulting in A-, C-, G-, or T-specific signals at 

increasing lengths (and thereby positions within the genome). 

In practice, nothing is as simple as it sounds in theory. Due to differences in incorporation of the 

four bases and the limited dynamic range of differentiating DNA fragment lengths, individual 

sequencing reads using these methods were originally limited to several dozen bases and are 

currently limited to roughly 1,000. In order to sequence whole genomes (consisting of billions of 

bases), this led to a strategy called shotgun sequencing in which a genome is randomly 

fragmented and these fragments are individually amplified and sequenced. This leads to literally 

billions of tiny, overlapping DNA sequences that must be stored, organized, and reassembled 

computationally (Ewing, Hillier et al. 1998). Modern high throughput sequencing techniques 

(also referred to as deep sequencing) have largely replaced termination and length-based assays; 

these employ reversible termination, fluorescence quantification, or various 

ligation/hybridization strategies and are currently developing extremely rapidly (Strausberg, 

Levy et al. 2008). However, as a whole, these strategies uniformly exchange higher throughput 

for shorter reads, increasing the opportunity for algorithmic improvement in genome assembly. 

Once genomes are assembled, a host of computational data collection and analysis possibilities 

emerge. The detection of genes within a genome and of substructure within genes has been 

performed using a host of techniques, primarily based on Hidden Markov Models (Durbin, Eddy 

et al. 1998). Genomes and individual genes can be compared between organisms over 

evolutionary timeframes, leading to models of evolution, mutation, selection, and speciation. 

Since the genetic code is constant, DNA sequences can be computationally translated to amino 

acid sequences, which can in turn be compared, examined for substructure (e.g. reused or 
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conserved protein domains, small recurring functional units), or algorithmically folded to 

estimate three-dimensional protein structure using physical models (Kryshtafovych, Fidelis et al. 

2007). Transcription factor binding sites (and other regulatory binding motifs) can also be 

predicted directly from DNA sequences, although these are more often assayed experimentally as 

described below. 

Although genome sequences were one of the first types of high-throughput genomic data, 

classical low-throughput laboratory experiments were the other. Molecular biology has a rich 

history of hundreds of experimental types spanning hundreds of thousands of experiments, 

collected in literature and community knowledge over the course of decades. When 

computational biology started to become a reality with the advent of genome sequencing, it 

became practical to collect these individual data points into large repositories for analysis as well. 

These data repositories (which have only become more important as they accumulate modern 

high-throughput data alongside classical low-throughput results) generally catalog a few specific 

types of results: the participants in specific pathways, direct protein-protein interactions, 

transcriptional regulators, and so forth. They also tend to divide into curated databases focusing 

on high-level functional information summarized from literature and experimental databases 

focusing on lower-level, raw experimental results. Some primary examples of the former are the 

Gene Ontology (Ashburner, Ball et al. 2000) (GO, cataloging protein roles, biochemical functions, 

and subcellular localization in a semihierarchical ontology), the Kyoto Encyclopedia of Genes and 

Genomes (Kanehisa, Araki et al. 2008) (KEGG, specific pathways, mainly metabolic), the Munich 

Information center for Protein Sequences (Ruepp, Zollner et al. 2004) (MIPS, strictly hierarchical 

protein roles), Reactome (Vastrik, D'Eustachio et al. 2007) (individual curated enzymatic 

reactions), and Online Mendelian Inheritance in Man (Hamosh, Scott et al. 2005) (OMIM, genes 
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linked to known disorders). Common examples of the latter include the Human Protein 

Reference Database (Mishra, Suresh et al. 2006) (HPRD, curated protein-protein interactions and 

modifications), the Biomolecular Interaction Network Database (Bader, Donaldson et al. 2001) 

(BIND, protein-protein and synthetic interactions), the General Repository for Interaction 

Datasets (Stark, Breitkreutz et al. 2006) (bioGRID, protein-protein and synthetic interactions), the 

Database of Interacting Proteins (Salwinski, Miller et al. 2004) (DIP, protein-protein interactions), 

the InterAction database (Kerrien, Alam-Faruque et al. 2007) (IntAct, various experimental 

interactions), and the Molecular Interaction database (Chatr-aryamontri, Ceol et al. 2007) (MINT, 

protein-protein interactions). 

Although traditional entries in these databases have been made using a tremendous assortment 

of experimental techniques, a number of high-throughput assays have been recently developed 

specifically for detecting protein-protein physical interactions (Fields and Song 1989; Walhout 

and Vidal 2001; Vasilescu and Figeys 2006). Genome-scale varieties of these assays tend to fall 

roughly into two categories: affinity/mass spectrometry and yeast two-hybrid (Y2H). Both rely on 

the framework of screening a collection of proteins (the prey, usually extracted from some 

cellular population of interest) with some known protein or compound (the bait). Many baits are 

used in affinity-based methods, ranging from antibodies developed to attract specific proteins 

(and their interaction partners) to small molecule interactors to metal ions. Once the bait has been 

used to separate interacting (and only interacting) prey from the sample, the proteins in the 

retained prey are characterized, often by mass spectrometry (Gavin, Bosche et al. 2002; Ho, 

Gruhler et al. 2002; Krogan, Cagney et al. 2006). Y2H screens rely on genetically manipulated 

yeast strains in which several modified proteins have been inserted. The first is a reporter gene 

placed downstream of a promoter sequence that is normally inactive. The second is a 
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transcription factor that will activate this promoter, but it is broken into two parts: a binding 

domain (BD) that will physically bind this promoter sequence, and an activation domain (AD) 

that will initiate transcription. The BD is fused to one protein (e.g. the bait), the AD to another 

(e.g. all prey), and only if the two fusion proteins physically interact will the transcription factor 

be active and the reporter transcribed. Since Y2H relies on several assumptions and technical 

abnormalities (e.g. strong overexpression of the target proteins, nuclear localization to initiate 

transcription, etc.), its accuracy has still not been reliably quantified, but it has been used with 

great success for several genome-wide screens for protein-protein interactions in yeast (Uetz, Giot 

et al. 2000; Ito, Chiba et al. 2001). 

A second type of relationship between two proteins that is less physically based, but equally 

biologically important, is referred to as a synthetic (or genetic) interaction. A protein-protein 

interaction or PPI refers specifically to two proteins coming into physical contact in the cell, either 

transiently or semi-permanently in a complex. A synthetic interaction instead refers to two 

proteins that, when both disrupted, produce a phenotype that is unusual relative to the effects of 

their two individual disruptions (Novick, Osmond et al. 1989; Tong and Boone 2006). An 

illustrative example is synthetic lethality: two proteins that, when individually removed from an 

organism's genome (often referred to as deletion or knockout), cause no extreme phenotype, but 

when both removed, render the organism inviable. Synthetic interactions can also be beneficial 

(e.g. synthetic rescue, in which deletion of individual genes is lethal and deletion of both genes is 

not) or quantitative, in which case beneficial and detrimental interactions are referred to as 

alleviating or aggravating (also synthetic sickness). While the physical basis of synthetic 

interactions is not fully characterized, they are thought to reflect mainly on two types of protein 

relationships: operation within the same pathway and membership in parallel redundant 
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pathways. The former is expected to result in alleviating interactions; once the pathway is 

disrupted by the removal of one protein, the removal of the second will have no effect. The latter 

is expected to incur aggravating interactions, as the cell can fall back to the redundant pathway 

when one is disrupted, but cannot recover from the loss of both pathways. Interestingly, 

synthetic interactions between cocomplexed proteins can be either alleviating (if deletion of one 

protein immediately disrupts the complex) or aggravating (if the complex remains stable after 

losing one protein but destabilizes with the removal of both). While quantitative models of the 

expected effects of synthetic lethality are still being developed (Tong, Lesage et al. 2004; St Onge, 

Mani et al. 2007), whole-genome synthetic screens have also been quite successful in yeast (Tong, 

Evangelista et al. 2001; Giaever, Chu et al. 2002). 

A final experimental method for genomic data collection that we will discuss is high-content 

microscopy. This family of techniques is qualitatively fairly different from protein interaction 

assays, relying on either microscopic observation of cellular phenotypes or subcellular structures 

to quantify the effects of protein disruption, chemical exposure, or other environmental 

perturbations (Carpenter and Sabatini 2004; Edwards, Oprea et al. 2004). A simple example of 

such a technique is flow cytometry, in which some cellular component (e.g. an individual protein 

or the cell's DNA) is labeled with a fluorescent marker; single cells flow over a scanner, which 

records the amount of fluorescence in each cell. This is most often used to determine the 

distribution of cell cycle phases within a population of cells, since labeling DNA will cause twice 

as much fluorescence in dividing cells, but it can be used to quantify the per-cell frequencies of 

any subcellular marker. Flow cytometry and other cell sorting techniques (e.g. robotic deposition 

of specific strains on high density plates) can be coupled with automated microscopy to capture 

individual cellular images and thus phenotypes beyond overall fluorescence levels. These can be 
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at the whole cell level (e.g. cell size, shape, or division characteristics (Ni and Snyder 2001; 

Giaever, Chu et al. 2002; Jorgensen, Nishikawa et al. 2002)) or at a subcellular level (e.g. various 

fluorescent tagging techniques (Huh, Falvo et al. 2003; Sprague, Pego et al. 2004; Sapsford, Berti 

et al. 2006; Sieben, Debes Marun et al. 2007)) and combined with automated image processing to 

extract detailed statistics on the cell's response to experimental perturbations. 

Microarrays 

At present, the single experimental assay that has provided the richest, most abundant genomic 

data and the greatest impetus to computational biology is the microarray. Although microarrays 

have since evolved to quantify an assortment of biological phenomena, their original purpose 

(which also remains their most common current use) was to measure the abundance of many 

individual mRNAs within a mixed population (Kulesh, Clive et al. 1987; Schena, Shalon et al. 

1995). Microarrays for this purpose, sometimes more specifically referred to as gene expression 

microarrays, rely on the fact that two isolated DNA strands will anneal to form a double-

stranded helix only if their respective bases are complementary. This can be taken advantage of 

in a manner similar to the bait/prey techniques used to detect protein-protein interactions: many 

copies of a particular single-stranded DNA sequence can be constructed as bait, and if allowed to 

interact with a pool of unknown single-stranded DNA, only sequences that are complementary 

will "stick" as prey. Measuring the amount of prey attracted to a particular bait reveals how much 

DNA with the bait's sequence (or, more properly, a complementary sequence) was present in the 

original population. Since, as discussed above, it is relatively easy to synthesize artificial DNA 

with a known sequence, this can easily be repeated with many different baits to fully characterize 

all sequences of interest within a population. 
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In any cellular culture, genes are transcriptionally up- or down-regulated under specific 

conditions in order to produce more (or fewer) proteins appropriate to those conditions: when 

provided with a particular nutrient, cells will produce proteins to metabolize it; when stressed by 

a particular chemical, cells will produce proteins to render it harmless or to export it; and so 

forth. When genes are thus regulated at the transcriptional level, the amount of mRNA 

corresponding to some gene (and thus to one or several of its protein products) is an excellent 

indicator of its activity (and, often, functional relevance) under some condition. However, mRNA 

(which is inherently single-stranded) does not form stable helices in the same manner as DNA 

and is thus not directly amenable to the bait/prey technique. Thus, in order to reliably assay 

mRNA from some cellular sample, an enzyme (reverse transcriptase) is used to construct a 

complementary DNA strand (referred to as cDNA) from the RNA template, just as RNA is 

transcribed in the cell from a complementary DNA template. This process is quantitative, so by 

measuring the amount of each cDNA prey in such a pool using many known baits, we can 

observe the abundance of each mRNA transcript in our original cellular sample (Lashkari, DeRisi 

et al. 1997). 

An assortment of physical platforms has been developed to perform this quantification; 

commercialization of microarray technology has led to a host of competing (and often 

complementary) techniques. The earliest microarrays used robotic pinning of known DNA 

libraries onto glass microscope slides (Duggan, Bittner et al. 1999). These DNA fragments are 

typically selected to anneal specifically to a single gene's transcript (or, in higher organisms, to a 

specific mRNA splice form). Referred to as spotted cDNA arrays, these can achieve a density of 

thousands to tens of thousands of probes (bait sequences) per slide, and are thus capable for 

many organisms of quantifying the transcripts of every gene in the genome. Prey abundances are 
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measured by incorporating a fluorescent dye into the sample cDNA during the reverse 

transcription process; since the position and sequence of every bait probe are known, a laser 

scanner then determines the level of fluorescence at each spot and thus the amount of that 

sequence's corresponding mRNA transcript. Since hybridization efficiency can vary depending 

on experimental conditions and the specific probe sequence used to target a gene, an internal 

control is generally employed. This usually consists of mRNA sampled from some neutral, 

control condition and labeled with a second dye fluorescing at a different frequency (cyanine 3 

and cyanine 5, or Cy3 and Cy5, are by far the most common such dyes (Stears, Martinsky et al. 

2003)). By simultaneously hybridizing both samples to the same microarray and comparing the 

intensities of the two dyes, one can precisely determine whether and by how much each gene has 

been up- or down-regulated in the experimental condition relative to the control condition; such 

microarrays are correspondingly referred to as dual-channel or two-color. 

Other technologies exist for constructing probes with known sequences and locations on a slide 

and for quantifying single-channel fluorescence intensities. Affymetrix (Lockhart, Dong et al. 

1996) provides a single-channel microarray technology in which 25-base oligonucleotide 

(synthetic single-stranded DNA) sequences are built directly on the chip substrate using mask-

based photolithography. This can achieve much greater probe density (currently ~106 probes per 

array), and a combination of careful probe design and the use of many probes per gene allows 

quantification of absolute transcript levels in a single-channel hybridization. Similarly, 

Nimblegen (Singh-Gasson, Green et al. 1999) uses individually controlled micromirrors to 

photolithographically build approximately two million 25- to 85-base oligomer probes on each 

array; these are also generally hybridized using a single channel. Since building a new 

photolithographic mask is a time consuming process, and micromirrors can be reconfigured 
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instantaneously, Nimblegen arrays are much more amenable to custom probe design than are 

Affymetrix arrays. Agilent (Lee, Rinaldi et al. 2002) uses techniques derived from inkjet printing 

to deposit 60-base oligomers onto arrays at (currently) ~105 probes per array; these are typically 

hybridized as dual-channel arrays. Finally, Illumina (Oliphant, Barker et al. 2002) constructs 50-

base oligomers on the surfaces of extremely small silica beads; these are then affixed to a chip 

substrate randomly at a density between 106 and 107 probes per array and hybridized using either 

one or two channels. This is interesting in that the probe locations are not known a priori and are 

decoded by incorporating sequence-specific, detectable tags into the synthesized oligomers. 

Given this remarkable diversity of manufacturing processes, each platform unsurprisingly offers 

its own strengths, weaknesses, and bioinformatic analysis opportunities. 

The reality of any microarray is messy: concentrations of reagents can vary, hybridization can be 

more or less efficient, fluorescent dyes can decompose, bubbles can block access to specific 

probes, cross-hybridization can occur between slightly mismatched sequences, or a host of other 

systematic or unsystematic biases can be introduced. Thus, while a fluorescent scanner will 

blithely report the intensity of each probe, it is up to the computational biologist to correctly 

interpret the millions of resulting numbers as specific transcript abundances (Quackenbush 2002). 

A scanner will typically report many individual pixel intensities per probe; these must be 

reconciled and, if in disagreement, discarded as inconsistent data. Similarly, the intensity of the 

background fluorescence level reported by the scanner and any position-specific biases (e.g. 

bubbles of non-hybridization) will vary spatially, and affected probes must be removed or 

corrected. In dual-channel arrays, the intensity distributions of the two dyes are typically quite 

different and must be reconciled before comparison. When multiple probes per gene (or other 

biological target of interest) are present, they must also be resolved; and when multiple 
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microarrays are used as part of a single dataset, inter-array variation must be taken into account. 

Finally, the data is typically logarithmically transformed (either as raw single-channel intensities 

or as ratios of dual-channel intensities, referred to as log ratios) and one resulting value assigned 

to each gene; if desired, values missing as a result of this processing can often be accurately re-

imputed based on the remainder of the data (Troyanskaya, Cantor et al. 2001). 

Since their inception, the concepts underlying microarrays have developed to quantify many 

biological targets other than mRNA abundance. Many assays rely on tiling arrays; rather than 

using one (or a few) probes specific to particular genes, these microarrays use as many probes as 

possible spaced linearly along an organism's genome (or portions thereof). Tiling arrays thus 

tend towards higher density and shorter probe lengths; for example, current Affymetrix arrays 

tiling the S. cerevisiae genome place 25-mer probes every five bases along the genome, resulting in 

a 20-base overlap between probes (Gresham, Ruderfer et al. 2006). One use for such an array is 

comparative genomic hybridization (CGH), in which the genomic DNA of a sample is 

fragmented and hybridized directly to an array in place of reverse transcribed cDNA 

(Schwaenen, Nessling et al. 2004). When compared with a reference sample containing exactly 

one copy of every genomic locus, this can be used to detect loci or entire chromosomes that have 

been duplicated; amplification or deletion of loci and chromosomes in this manner is a hallmark 

of several genetic disorders, particularly cancer (Alberts, Johnson et al. 2007). 

Another application of tiling arrays is chromatin immunoprecipitation on chip, or ChIP-chip, in 

which a sample's genomic DNA is chemically cross-linked (i.e. covalently bound) to any proteins 

interacting with it in some environment: transcription factors specific to that environment, DNA 

replicating proteins during the cell cycle, and other regulators and structural components (Ren, 

Robert et al. 2000). The DNA is then fragmented and all unbound fragments discarded. A protein 
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prey of interest (e.g. a specific transcription factor) is then captured using an antibody bait, other 

proteins (and their bound sequence) are allowed to escape, and the DNA sequences bound 

specifically to the prey are released. These can then be quantified on a microarray to determine 

all of the target protein's genomic binding sites. This technique can be extended to discover the 

locations of all nucleosomes in an organism's genome (Segal, Fondufe-Mittendorf et al. 2006) or 

to determine where an organism's DNA has been epigenetically modified by methylation 

(Schumacher, Kapranov et al. 2006). Finally, since the probes on such tiling arrays are typically 

short, single base mismatches will cause a quantifiable decrease in binding efficiency; this can be 

taken advantage of in order to find single nucleotide polymorphisms (SNPs) in a manner akin to 

very high resolution CGH (Gresham, Ruderfer et al. 2006). 

Location-based arrays have also seen increasing use for substances other than DNA probes. 

Protein arrays, for example, spot specific bait proteins in place of DNA oligomers and quantify 

the binding of protein prey (MacBeath and Schreiber 2000); this provides a more direct assay of 

protein abundance than does mRNA level detection. These arrays generally employ antibodies 

both as bait and in the detection of bound protein, the former being developed to bind specific 

known proteins and arrayed accordingly, the latter in order to quantitatively associate various 

fluorescent dyes with the captured prey. Whole cells can also be printed in a similar manner 

(Wheeler, Carpenter et al. 2005), referred to as cell or transfection arrays, with specific genes up- 

or down-regulated at each spot; these can then be quantified using methods similar to those 

described above for cytometry, e.g. fluorescent markers or whole cell imaging. Even gene 

expression microarrays are themselves slowly being supplemented by high throughput (also 

called deep) sequencing, in which cDNAs are individually sequenced, identified, and counted 
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rather than being indirectly quantified by (possibly relative) fluorescence levels (Strausberg, Levy 

et al. 2008). 

Regardless of the experimental platform, most of these assays share the same goal and, in 

concept, produce the same type of information: numbers representing the activity levels of each 

gene in an organism's genome under a specific experimental condition. This reduces the genome 

(under one condition) to a vector of numbers; when multiple assays are performed under several 

related conditions, this produces a matrix of continuous values, typically with rows 

corresponding to genes and columns to experimental conditions. This vector- and matrix-

oriented view of microarray data is itself amenable to a tremendous array of bioinformatic 

techniques, one of the most canonical of which is referred to as differential expression analysis 

(Golub, Slonim et al. 1999; Alizadeh, Eisen et al. 2000). This is a supervised problem in which a 

set of microarrays is partitioned into one or more subsets with known class labels. For example, a 

group of tumor samples might be broken into specific cancer subtypes. The problem lies in the 

discovery of one or more genes with characteristic, different expression patterns within each 

class. Such a set of marker genes can then be used to predict the class of new, unlabeled samples. 

A naive approach in the binary case is to t-test each gene's expression vectors between the two 

classes; all significantly differing genes can then be assembled into a composite diagnostic 

signature. Many techniques that are more sophisticated have also been developed for discovering 

both clinical and scientific biomarkers (Cui and Churchill 2003). 

Differential expression analysis is a supervised technique in that it requires labeled examples (i.e. 

preclassified microarrays) in order to determine diagnostic gene sets; one unsupervised 

technique for discovering common patterns in gene expression is singular value decomposition 

(SVD, a specific instance of principle component analysis, PCA (Wall, Rechtsteiner et al. 2003)). 
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SVD is a general mathematical technique that transforms a collection of high-dimensional data 

points into equivalent points in a new space; the bases of this new space (called singular vectors 

or, slightly improperly, eigenvectors) are the orthogonal axes of greatest variance in the data. 

This is demonstrated in two-dimensional space in Figure 3; the data does not change, but its 

representation does, as each point is now constructed out of a weighted combination of singular 

vectors. Algebraically, SVD decomposes an mxn matrix X (in which, for microarray data, each 

row represents a gene and each column a condition) into three matrices: an mxn U, left singular 

vectors or eigenconditions, encoding the normalized weights of each new basis vector for each 

gene; a diagonal nxn matrix Σ, singular values or eigenvalues, representing the global weights of 

the new basis vectors in the data (i.e. the commonality or strength of that expression pattern); and 

a transposed nxn matrix Vt, right singular vectors or eigengenes, which are the basis vectors 

themselves (i.e. the expression patterns capturing the most common variability in the data): 

Xmxn = UmxnΣnxnVtnxn 

Since the singular vectors V represent the axes of greatest variation in the data, they often (but 

certainly not always) capture some degree of significant biological activity (Alter, Brown et al. 

2000). It must be stressed that, as an unsupervised method, these axes of greatest variation 

(eigengenes) may or may not represent meaningful biological variability; each eigengene might 

represent a single specific biological response, an overlapping combination of many such 

responses, or a completely unrelated concordance of noise in the data. Reprojecting gene 

expression vectors onto such a basis when it is not biologically motivated is no better - and often 

worse - than analyzing the original microarray directly; conversely, when a few specific signals 

are disproportionately strong in the data, this reprojection can accurately recover underlying 

biological information that would otherwise have been difficult to detect (Hibbs, Hess et al. 2007). 
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Figure 3: An application of singular value decomposition (SVD) to a two-dimensional sample dataset. A) 

Five data points are represented in standard Cartesian coordinates using the usual x=[1, 0] and y=[0, 1] 

bases. B) The same five data points are transformed using SVD to coordinates based on the axes of 

maximum variation, x'=[0.71, -0.71] and y'=[0.71, 0.71] as encoded in the matrix V. The singular values Σ 

indicate the overall magnitude of this variability, i.e. the range of the data is 3.5 times greater along y' than 

along x'. The transformed data points themselves can be recovered by multiplying UΣ as illustrated in the 

diagram. This decomposition can be performed equivalently for data of arbitrarily high dimension, e.g. 

transforming a matrix of many microarray samples into an equivalent combination of eigenconditions, 

singular values, and eigengenes (the latter representative of the strongest patterns of variability in the data). 

Finally, by far the most common high-level analysis performed on microarray data is the 

unsupervised operation of clustering. As described above, clustering can be either hard (e.g. k-

means), soft, or hierarchical, and all forms have been applied in endless permutations to 

microarray data. Both the first and most lasting microarray clustering algorithms have been 

hierarchical (Eisen, Spellman et al. 1998); see Figure 21, Figure 28, Figure 41, etc. for examples. 

Hierarchical clustering has the benefit of leaving the values of an entire input genes-by-

experiments matrix unchanged and simply reordering the rows and/or columns to improve 
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visualization. Its two main drawbacks, however, are that it can be driven by the strongest few 

signals in the data (thus leaving genes sharing weaker signals scrambled among the hierarchy) 

(Sherlock 2000) and that it has no allowance for genes participating in multiple clusters (Tanay, 

Sharan et al. 2002). Any form of microarray clustering depends, of course, on the distance or 

similarity measure used to transform a matrix of expression values into a weighted graph of gene 

pair scores. Most commonly, Pearson correlation or Euclidean distance are used to compare gene 

expression vectors, with the assumption being that genes expressed at similar levels over many 

conditions are more likely to be functionally related. Substantial evidence indicates that this is 

generally true (Huttenhower, Flamholz et al. 2007), and while countless other clustering 

algorithms and similarity measure have been proposed, hierarchical clustering using simple 

correlation remains one of the most powerful and widespread means of global microarray 

analysis. 
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Wet Lab, Dry Lab: Applying Computational Biology to Laboratory 

Experiments 

One of the greatest current opportunities in modern biology is the closer integration of 

computational analyses with laboratory efforts. The last decade has seen the addition of in silico 

experimentation to the canon of in vivo and in vitro assays, but while experimentalists have long 

taken advantage of the complementarity of in vivo and in vitro results, the place of in silico models 

and predictions remains less clear. Computational biology offers many advantages: it can 

integrate large quantities of noisy and heterogeneous data to make systems-level predictions, it 

can statistically discover small but consistent effects, and it can do so more quickly and cheaply 

than many laboratory assays. But its obvious disadvantage is that, at the end of the day, any 

computational result is simply a prediction that must be reconciled with biological reality. 

Cementing the relationship between computational and experimental biology involves at least 

two important aspects: the optimization of computational protocols so they are maximally 

biologically relevant, and the sociological reconciliation of computational and biological 

techniques. Put simply, experimental biology is a field whose history spans centuries; 

bioinformatics, even with the great strides made in the past decade or two, has not yet 

completely adapted itself to the needs of biologists, and biologists have not yet fully determined 

how to best take advantage of computational tools. Solving this problem itself requires further 

experimentation to see how computational predictions can best direct laboratory work and how 

the results of this work can, in turn, feed back into computational methodologies. 
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Here, we provide a detailed analysis of one end-to-end solution to these problems: we design a 

computational protein function prediction system specifically geared toward informing 

laboratory work; this system directs quantitative experimental assays themselves designed to 

inform future computational work; we demonstrate that computational input vastly improved 

our capacity for biological discovery; and we analyze the impact of biological input on the 

behavior of computational systems in general. While a complete understanding of how best to 

integrate computational and biological experimentation will certainly take additional decades of 

effort from both fields, this study provides both an initial demonstration of success and a 

framework within which to continue future endeavors. 

We would like to thank David C. Hess and Amy A. Caudy for their extensive experimental 

collaboration on this project, as well as Matthew A. Hibbs and Chad L. Myers for their work on 

the computational aspects and the assembly of related manuscripts. 

Investigating S. cerevisiae Mitochondria: Computational and 

Experimental Design 

In order to better understand the interplay between computational and experimental biology, we 

chose protein function prediction as a computational environment and S. cerevisiae mitochondria 

as an experimental system. The former is an established problem in bioinformatics that dates 

from the earliest days of the field (Fleischmann, Moller et al. 1999; Ashburner, Ball et al. 2000; 

Rost, Liu et al. 2003): given some amount of experimental data, potentially ranging from DNA 

sequence to protein-protein interactions to gene expression measurements, identify the cellular 

pathways and processes within which a protein participates. Given that i) the amount of publicly 
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available experimental data has increased exponentially since this early work and ii) many 

proteins even in simple organisms still have no characterized functions (let alone in higher 

organisms or considering multiple functions per protein), identifying protein functions is still an 

area of very active research (Pena-Castillo, Tasan et al. 2008). 

We focused on three computational systems (Myers, Robson et al. 2005; Huttenhower, Hibbs et 

al. 2006; Hibbs, Hess et al. 2007) for protein function prediction, with the goals that i) they be 

particularly capable of guiding laboratory experiments with high precision (possibly at the 

expense of recall) and ii) they be able to incorporate the results of experiments into their 

algorithmic pipeline in order to iteratively improve performance. In other words, they must make 

a few good predictions, and after these predictions are tested in the laboratory, the algorithms 

must learn from the results and make a new set of better predictions. bioPIXIE (Myers, Robson et 

al. 2005), the first of the three systems, weights heterogeneous genomic data probabilistically in 

order to predict protein-protein functional interactions; given a set of known mitochondrial 

genes, these predicted relationships can be turned into predicted functions using various 

measurements of "guilt by association." Likewise, MEFIT (Huttenhower, Hibbs et al. 2006), the 

second system, probabilistically weights large collections of microarray data to predict 

interactions; for both algorithms, laboratory results can be incorporated by expanding the set of 

"known" mitochondrial genes. Finally, SPELL (Hibbs, Hess et al. 2007) uses a query-based 

approach to dynamically search through databases of gene expression values; new mitochondrial 

predictions can be made by querying on known mitochondrial proteins, and new laboratory 

results can be incorporated into these queries. 

Likewise, yeast mitochondria represent a complex and dynamic area of biology with both basic 

scientific (Dimmer, Fritz et al. 2002; Westermann and Neupert 2003; Shutt and Shadel 2007) and 
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clinical (Foury and Kucej 2002; Tomaska 2002; Schwimmer, Rak et al. 2006) relevance. Unlike 

most eukaryotes, yeast can survive without functioning mitochondria; this condition (referred to 

as "petite" (Ogur and St John 1956)) is both easily detectable through reliable assays (Ogur, St. 

John et al. 1957) and directly indicative of a disruption of mitochondrial function. Moreover, 

petite colonies occur in standard laboratory yeast at a baseline rate of ~20% (Baruffini, Ferrero et 

al. 2007); when a protein involved in mitochondrial function is impaired in any way (e.g. by 

deletion from the genome), this rate can increase or decrease, and precise quantification of a yeast 

mutant's petite frequency thus represents an opportunity to observe both subtle and catastrophic 

defects. In combination with S. cerevisiae's genetic tractability, this provides an ideal system for 

coupling laboratory experiments with computation: given proteins predicted to be involved in 

mitochondrial function, they can be deleted from the genome and the resulting phenotypes 

assayed, and the quantitative nature of these assays can be incorporated into future predictions. 

We successfully implemented this system, screening 193 of the most confident computational 

predictions to discover 109 proteins required for proper mitochondrial function. This was 

achieved in less than one person-year, demonstrating the computational input can vastly 

decrease the amount of time required to make substantial, rigorously confirmed laboratory 

discoveries. These 109 proteins include functions not only in general mitochondrial activity but 

also specific confirmations in the areas of mitochondrial motility, aerobic respiration, and several 

multi-protein synthetic interactions. Moreover, these discoveries represent multiple iterations of 

computational prediction, in which the results of the first iteration (141 assays) were provided to 

the computational systems in order to improve the results of the second iteration (52 assays). Not 

only does this represent a tremendous biological advance, but by examining our computational 

performance using standard evaluation techniques, we observe that computational function 
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prediction can often produce even more accurate results than would be expected by most 

numerical (as opposed to laboratory) evaluations. This study thus represents not only a 

substantial advance for yeast mitochondrial biology, but also expands our understanding of 

computational function prediction as a field and provides a framework for any future integration 

of computational and laboratory techniques. 

Biological Ramifications: Computation Works 

In order to understand molecular biology at a systems level, it is first necessary to learn the 

functions of genes by identifying their participation in specific cellular pathways and processes. 

While protein sequence and structural analyses can provide valuable insights into the 

biochemical roles of proteins, it has proven much more difficult to associate proteins with the 

pathways where they perform these roles. Recently, high-throughput and whole-genome screens 

have been used to form basic hypotheses of protein participation in biological processes. 

However, the results of these studies are not individually reliable enough to functionally 

associate proteins with pathways. Many computational approaches have been developed to 

integrate data from such high-throughput assays and to generate more reliable predictions 

(Sharan, Ulitsky et al. 2007), but protein function cannot be confidently assigned without rigorous 

experimental validation targeted specifically to the predicted pathway or process. Surprisingly 

few follow-up laboratory efforts have been performed on the basis of computational predictions 

of protein function, and as such, these approaches remain largely unproven, and consequently 

underutilized by the scientific community (Murali, Wu et al. 2006; Pena-Castillo, Tasan et al. 

2008). Here, we demonstrate that computational predictions can successfully drive the 

characterization of protein roles using traditional experiments. To test the approach, we 
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systematically measured the mitochondrial inheritance rates of a tractable set of S. cerevisiae 

strains carrying deletions of genes predicted to be necessary for this biological process. 

The mitochondrion is an organelle central to several key cellular processes including respiration, 

ion homeostasis, and apoptosis. Proper biogenesis and inheritance of mitochondria is critical for 

eukaryotes, as 1 in 5,000 humans suffers from a mitochondrial disease (Schaefer, Taylor et al. 

2004). Saccharomyces has proven to be an invaluable system for studying a variety of human 

diseases (Botstein, Chervitz et al. 1997; Smith and Snyder 2006), including cancer (Hartwell 2004), 

neurologic disorders (Walberg 2000), and mitochondrial diseases (Foury and Kucej 2002; 

Tomaska 2002; Schwimmer, Rak et al. 2006). Yeast is a particularly attractive model system for 

studying mitochondrial biology due to its ability to survive without respiration, permitting the 

characterization of mutants that impair mitochondrial function. In fact, experimental efforts in 

yeast have identified genes crucial for mitochondrial organization and biogenesis (Dimmer, Fritz 

et al. 2002), including mutants that affect the sub-processes of mitochondrial genome inheritance 

(Contamine and Picard 2000), protein targeting and import (Pfanner and Geissler 2001), protein 

synthesis (Myers, Pape et al. 1985), protein complex assembly (Model, Meisinger et al. 2001), and 

actin-based transmission of mitochondria to the daughter cell (Boldogh and Pon 2007). In 

addition to the experimental utility of yeast, it is well suited for the application of computational 

prediction approaches due to the availability of manually-curated annotations of yeast biology 

and the available wealth of genome-scale data. 

Previous efforts have focused on identifying mitochondria-localized proteins through laboratory 

techniques such as mass spectrometry and 2D-PAGE (Sickmann, Reinders et al. 2003; Reinders, 

Zahedi et al. 2006) and through computational predictions of cellular localization (Calvo, Jain et 

al. 2006; Prokisch, Andreoli et al. 2006). These approaches have resulted in the identification of 
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over 1,000 mitochondria-localized proteins in S. cerevisiae (Westermann and Neupert 2003). 

However, despite yeast's convenience as a model system, mitochondrial phenotypes of ~370 of 

these 1,000 localized proteins have not been characterized, so the mitochondrial role of these 

predictions is unknown (over half of these 370 have no known function in any cellular process). 

Previous computational efforts have attempted to address this problem by predicting putative 

mitochondrial protein modules (Perocchi, Jensen et al. 2006) and examining expression 

neighborhoods around mitochondrial proteins (Mootha, Bunkenborg et al. 2003). While valuable, 

these efforts have not been reliably confirmed through comprehensive experimental follow-up, 

which is required in order to convert these types of predictions into concrete knowledge (Shutt 

and Shadel 2007). 

Here, we describe a strategy that combines computational prediction methods with quantitative 

experimental validation in an iterative framework. Using this approach, we identify new genes 

with roles in the specific process of mitochondrial inheritance by directly measuring the ability of 

cells carrying deletions of candidate genes to propagate functioning mitochondria to daughter 

cells. We assayed our 193 strongest predictions with no previous experimental literature evidence 

of phenotypes and interactions establishing a function in mitochondrial inheritance. By these 

assays we experimentally discovered an additional 109 proteins required for proper 

mitochondrial inheritance at a level of rigor acceptable for function annotation. Further, we 

identified more specific roles in mitochondrial biogenesis for several predicted genes through 

mitochondrial motility assays and measurements of respiratory growth rates. We also discovered 

genes with redundant mitochondrial inheritance roles through targeted examination of double 

knockout phenotypes. This demonstrates that using an ensemble of computational function 
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Figure 4: An overview of our iterative framework integrating computational and experimental 

methodologies for discovery of gene function. Our study uses an ensemble of computational gene function 

prediction methods (bioPIXIE (Myers, Robson et al. 2005), MEFIT (Huttenhower, Hibbs et al. 2006), and 

SPELL (Hibbs, Hess et al. 2007)), each of which predicts new genes involved in mitochondrial function 

based on high-throughput data and examples of known mitochondrial proteins (the gold standard). We 

selected test candidates by integrating these approaches based on estimated precision of each method and 

tested these predictions experimentally using three biological assays (see Methods for details). Upon 

evaluating these experimental results, the proteins newly discovered to be involved in mitochondrial 

function were added to the known examples, and the process was iterated to comprehensively characterize 

additional mitochondrial proteins. See Table 1 for an overview of our results. 
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prediction methods to target definitive, time-consuming experiments to a tractably sized set of 

candidate proteins can result in the rapid discovery of new functional roles for proteins. Our 

results also show that most mutants resulting in severe respiratory defects have already been 

discovered. This is likely to be the case for mutant screens in many fundamental biological 

processes, because saturating screens have discovered mutations with strong phenotypes. Even 

in a well-studied eukaryote like S. cerevisiae, there are many processes that need to be fully 

characterized by identifying all proteins required for its normal function (Pena-Castillo and 

Hughes 2007). As such, most of the remaining undiscovered protein functions are only 

identifiable by rigorous, quantitative assays that can detect subtle phenotypes, such as those used 

by our study. 

Results 

We utilized an ensemble of computational gene function prediction approaches to systematically 

identify candidates for involvement in mitochondrial inheritance. These candidates were 

experimentally assayed, and the confirmed predictions were then utilized as inputs for a second 

round of prediction and experimentation. A schematic overview of this approach is shown in 

Figure 4. 

An ensemble of computational function prediction methods was used to iteratively target 

experiments 

We trained an ensemble of three computational prediction methods (bioPIXIE (Myers, Robson et 

al. 2005; Myers and Troyanskaya 2007), MEFIT (Huttenhower, Hibbs et al. 2006), and SPELL 

(Hibbs, Hess et al. 2007)) using genomic data that we collected from many sources and a set of 

106 genes known to be involved in mitochondrial organization and biogenesis based on published 

experiments as curated by the Saccharomyces Genome Database (SGD) (Issel-Tarver, Christie et al. 



55 

 

2002). Genes are assigned by SGD to this biological process if published experiments have 

definitively demonstrated functions involved in the formation, assembly, or disassembly of a 

mitochondrion. This includes genes that affect mitochondrial morphology and distribution, 

replication of the mitochondrial genome, and synthesis of new mitochondrial components. 

An intuitive description of our computational methods is that each employs "guilt by association" 

to identify genes exhibiting similar data patterns to the genes used for training (further details in 

Methods). The ensemble was used to rank all genes in the genome from most likely to be 

involved in mitochondrial inheritance to least likely. We selected the top 183 most confident 

genes that were not included in the training set for experimental validation. Of these, we found 

existing experimental literature evidence of involvement in mitochondrial inheritance for 42 

proteins, and as such we included these in our set of positive controls (along with 6 genes from 

the training set). The remaining 141 proteins comprised our set of first iteration predictions, as 

none of these proteins appeared in published experiments that demonstrated their requirement 

for proper mitochondrial inheritance. We assayed these predicted genes experimentally as 

described below. We then augmented our training set of genes known to be involved in 

mitochondrial inheritance with the experimentally verified predictions (using both our 

experiments and the uncurated published literature, see methods) and repeated this process to 

generate a second iteration of predictions. From this second iteration, we selected the 52 most 

confident predictions that were not previously tested and performed the same experimental 

assays. 

Petite frequency assay quantitatively detected defects in mitochondrial inheritance 

In order to confirm the potential roles of our candidate genes in mitochondrial biogenesis and 

inheritance, we employed an experimental assay that measures the rate of generation of cells 
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lacking respiratory competent mitochondria (called "petite" cells (Ogur and St John 1956)). This 

assay reliably detects defects in mitochondrial inheritance, but it is too time consuming to 

perform on a whole genome scale. Wild-type yeast from the S288C genetic background produces 

petite daughter cells at a baseline frequency of ~20% (Baruffini, Ferrero et al. 2007), but mutation 

of genes involved in mitochondrial inheritance and biogenesis can significantly alter this rate. 

We measured the frequency of petite formation for single gene deletion strains of all 193 

candidate genes (141 from the first iteration, 52 from the second) and for 48 positive control 

genes. To reduce the effects of suppressor mutations and aneuploidy associated with the yeast 

deletion collection (Game, Birrell et al. 2003), we sporulated the heterozygous Magic Marker 

deletion collection (Pan, Yuan et al. 2004) and isolated six independent haploid deletion mutants 

for every gene tested. Individual deletion strains were grown in media requiring aerobic 

respiration for growth (glycerol), and strains completely unable to grow were deemed respiratory 

deficient and did not continue in the assay. The remaining mutants were then assayed by 

measuring the ratio of petite cells to total cells in a colony founded from a single cell. At least 

twelve matched wild-type sporulation isolates were assayed on each day of experiments in order 

to establish baseline frequencies. For each gene tested, petite frequencies were measured for at 

least eight colonies and compared to the distribution of wild-type frequencies measured in 

parallel on each day of experiments, which allowed us to quantitatively detect subtle phenotypes 

with statistical rigor. A schematic of this assay is shown in Figure 5 and further details are 

available in Methods. 
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Figure 5: Schematic overview of the petite frequency assay. 1) Initially, strains were grown in a non-

fermentable carbon source (liquid YP-Glycerol) for 48 hours. All cells growing under this condition must be 

respiratory competent and contain functional mitochondria. Any strain with no viable cells after this step 

was deemed respiratory deficient and did not continue in the assay. 2) Cell cultures were serially diluted 

and plated on a fermentable medium (YPD) and grown for 48 hours to form colonies founded from a single 

cell. At this point, the requirement for respiratory competency is lifted, so that daughter cells can survive 

while losing respiratory function. 3) A single colony is picked and briefly re-suspended in water. 4) The 

suspension is diluted and plated on YPD and grown to form colonies founded from single cells. After 48 

hours, soft agar containing tetrazolium is overlaid on the plates. Colonies founded by respiratory competent 

cells will take up the tetrazolium and appear large and red. Colonies founded from respiratory deficient 

cells ("petite" colonies) appear smaller and white. 
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Computationally-driven experimentation discovered a new role in mitochondrial inheritance for 

109 proteins 

In our first iteration of prediction and experimental testing, 82 of our initial 141 predictions (58%) 

were confirmed to play a role in mitochondrial inheritance as they exhibited a significantly 

altered petite frequency rate compared to the wild-type distribution (FDR corrected Mann 

Whitney U-test p-value < 0.05; see Figure 6A). These 82 newly confirmed predictions were added 

to the training set, and we then performed another iteration of prediction and experimentation. In 

this second iteration, 17 of the 52 predictions (33%) were experimentally confirmed (Figure 6A). 

Based on the second iteration predictions, we also examined a targeted set of double knockout 

mutants and experimentally confirmed 10 more proteins that exhibit synthetic petite frequency 

defects (full details below). Further, the petite frequency assay demonstrated a high level of 

sensitivity as 44 of our 48 positive controls (92%) exhibited a significant phenotype (the 

remaining 4 are discussed further below). All together, after both iterations of our approach we 

discovered a role in mitochondrial inheritance by demonstrating significant phenotypic 

alterations for 109 of our 193 (56%) total predictions (see Table 1 for breakdown). 

These newly characterized functions include 42 genes with other previously known functions 

(not in mitochondrial inheritance) and 67 genes with no previously characterized cellular role. 

For example, we observe that mutation in the functionally uncharacterized TOM71 causes a 44% 

increase in petite frequency. While Tom71 has been co-localized with the translocase complex 

responsible for protein import through the mitochondrial outer membrane, previous work 

(largely in vitro) has not identified a strong functional defect associated with Tom71 in 

translocase activity (Schlossmann, Lill et al. 1996). Our confirmation that TOM71 significantly 

affects mitochondrial inheritance rates strongly suggests that it does indeed play a role in 
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mitochondrial import, at least for some subset of proteins required for mitochondrial inheritance 

or biogenesis. The identification of a functional role for 67 previously uncharacterized proteins is 

particularly striking as this covers roughly 1 in 18 of the remaining ~1,200 proteins in yeast that 

still have no known functional roles (Pena-Castillo and Hughes 2007). 

Subtle phenotypes are predominant among our new discoveries 

We observed a striking difference in the severity of petite frequency phenotypes in single gene 

knockouts between the confirmed gene predictions and the positive controls (Figure 6B). Of the 

44 positive controls demonstrating a significant phenotype, the majority exhibited a complete loss 

of respiratory function (28 of 44, 64%) as opposed to the more subtle phenotype of altered 

mitochondrial inheritance (16 of 44, 36%). The proportions of subtle and severe phenotypes were 

reversed in our predictions experimentally confirmed by single gene knockouts, in which 79 of 99 

mutants (80%) showed altered mitochondrial inheritance while only 20 of 99 mutants (20%) were 

 

 Number tested Number with significant 

mitochondrial phenotype 

Positive Controls 48 44 

First Iteration Predictions 141 82 

Second Iteration Predictions 52 17 

Synthetic Interaction Predictions 27 10 

Table 1: Summary of results. We iteratively employed an ensemble of computational function prediction 

methods to select candidate genes for experimental testing. Confirmed predictions from the first iteration 

were added to the training set for the second iteration. Promising candidates for synthetic interactions were 

also selected after our second iteration for testing with double mutant assays. 
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Figure 6: The combination of computational predictions and quantitative assays discovers novel genes 

involved in mitochondrial function. A) Mitochondrial inheritance rates of single gene knockouts were 

determined for 193 genes predicted to be involved in mitochondrial function and for 48 control genes 

known to be involved. A box plot is shown for each deletion strain tested; red indicates the inability to grow 

on a non-fermentable carbon source (glycerol), yellow indicates a mitochondrial inheritance rate 

significantly altered from wild type, and gray indicates no significant difference from wild type. Significance 

was determined using a Mann-Whitney U-test comparing at least 12 independent measurements of wild 

type to at least 8 independent measurements of each mutant strain. The green shaded region indicates one 

quartile above and below the median rate for all 358 wild type replicates. A total of 99 of the 193 prediction 

candidates were confirmed (an additional 10 genes were confirmed through double knockout analysis, see 

Figure 7). B) Distribution of petite frequency phenotypes among positive controls (left), first iteration 

predictions (center), and second iteration predictions (right) with colors as in A. Severe phenotypes (red) 

were more prevalent among positive controls, while the majority of confirmed predictions exhibited an 

intermediate phenotype (yellow). We hypothesize that this difference is due to a bias towards detection of 

extreme phenotypes in classical genetic screens and high throughput methodologies. 
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respiratory deficient. The quantitative nature of these phenotypes among our novel discoveries 

may indicate why they have not been previously associated with mitochondrial inheritance by 

either classical genetic screens or high-throughput techniques (Shutt and Shadel 2007; Perocchi, 

Mancera et al. 2008), which generally assay extreme rather than subtle phenotypes. In further 

support of this observation, since undertaking this study, 7 of our 99 confirmed candidates have 

been associated by other groups to mitochondrial inheritance (COA1 (Pierrel, Bestwick et al. 

2007), IBA57 (Gelling, Dawes et al. 2008), GUF1 (Bauerschmitt, Funes et al. 2008), ATP25 (Zeng, 

Barros et al. 2008), QRI5 (Barros, Myers et al. 2006), GRX5 (Rodriguez-Manzaneque, Tamarit et al. 

2002), REX2 (van Hoof, Lennertz et al. 2000)), and 3 of these 7 exhibited the most extreme 

phenotype of respiratory deficiency in our study. 

Decreased petite frequency identifies petite negative mutants 

Among our deletion strains exhibiting the subtle phenotype of altered petite frequency, we 

observed mutants with both statistically significant increases and decreases in frequency. 

Increased petite formation clearly indicates a failure in normal mitochondrial biogenesis or 

inheritance, while decreased petite frequency is a distinct phenotype referred to as "petite 

negative" (Chen and Clark-Walker 2000). Petite negative mutants display synthetic lethality or 

sickness with respiratory deficiency, which impairs the survival of petite cells and thus decreases 

their frequency. Known petite negative mutations occur in mitochondria-localized proteins that 

normally support the maintenance of the mitochondrial membrane potential in the absence of 

respiration (Chen and Clark-Walker 2000). Decreased petite frequency was observed in nine 

(19%) of our positive controls, two of which (FMC1 and PHB1) are known petite negative 

mutants (Dunn, Lee et al. 2006). Previously, traditional genetics and genome-wide screens have 

identified 21 petite negative mutations that result in synthetic lethality (Dunn, Lee et al. 2006). 
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Among our 99 discoveries in mitochondrial biogenesis from single gene knockouts, we found 32 

additional mutants exhibiting a decreased petite frequency indicative of non-lethal synthetic 

interactions. Many of the characterized petite negative genes have roles in the assembly and 

turnover of ATP synthase complexes, and so these genes may be a rich target for further study 

(Dunn, Lee et al. 2006). 

Computational iteration identifies candidates with redundant mitochondrial function verified 

through double mutant analysis 

The confirmation rate from our second iteration decreased from our first iteration (58% to 33%), 

which suggests we may be nearing the limit of predicted genes that can be verified using the 

single knockout petite frequency assay. In particular, examining single gene deletion strains 

prohibits characterization of the roles of redundant proteins or genes that only exhibit synthetic 

phenotypes. In fact, all four of our 48 positive controls that did not exhibit a significant petite 

frequency phenotype are known to synthetically interact with at least one other gene involved in 

mitochondrial biogenesis and inheritance (Rep, Nooy et al. 1996; Mozdy, McCaffery et al. 2000; 

Saracco and Fox 2002; Sesaki, Southard et al. 2003). Furthermore, our most confident 

unconfirmed prediction (RMD9) was recently discovered to have a redundant role with Oxa1 in 

the processing and stability of mitochondrial mRNA (Nouet, Bourens et al. 2007). However, our 

second iteration prediction results indicate which of our unconfirmed predictions are worthy of 

further investigation with double mutant analysis or additional assays, particularly in light of 

additional localization evidence. Following the second round of computational prediction, 27 of 

the 59 initially unconfirmed predictions persisted as highly ranked candidate genes while the 

remainder decreased in confidence. Of these, 23 (85%, hypergeometric p-value <10-9) candidates 
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are known to localize to the mitochondria, while only 1 of the remaining 32 unconfirmed 

candidates (3%) is similarly localized. 

To test the hypothesis that these 27 high-confidence unconfirmed predictions represented genes 

that had redundant mitochondrial function, we performed targeted double mutant analysis 

looking for synthetic interactions. We chose 4 deletion mutants (aim17Δ, rvs167Δ, tom6Δ, and 

ehd3Δ) confirmed to be involved in mitochondrial inheritance with modest petite frequency 

phenotypes to cross with these 27 candidates. Choosing mutants with modest phenotypes was 

necessary to allow for a strong synthetic interaction to be observed. We tested 103 double mutant 

strains and observed 15 significant synthetic phenotypes (FDR corrected Wilcoxon rank-sum p-

value < 0.05) spanning 10 of 27 mutants that did not display a single mutant phenotype (Figure 

7). While some of our double mutants exhibit suppression, we did not focus on these interactions 

because of the modest nature of the single mutant phenotypes. Instead, we focused on synthetic 

defects that we could rigorously define as the double mutant petite frequency being significantly 

different from both single mutants and the wild-type petite frequency. Of the genes exhibiting 

significant double mutant phenotypes, 2 were synthetic respiratory deficient and 8 demonstrated 

altered petite frequency. Among these 10 genes showing synthetic phenotypes was the 

previously mentioned RMD9. An rmd9Δ is hypothesized in Nouet et al. to have a pleiotropic 

effect on mitochondrial biogenesis (Nouet, Bourens et al. 2007). Our results support this 

hypothesis as RMD9 has synthetic respiratory deficiencies in all 4 of the double mutant strains 

we examined (Figure 7). In contrast to rmd9Δ, the remaining 9 genes showed more specific 

patterns of synthetic phenotypes, as 7 interacted with only 1 of the 4 known mitochondrial 

inheritance genes used to generate double mutants. These specific synthetic interactions suggest 

the functions these genes may perform in mitochondrial inheritance. For example, the four genes 
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(AIP1, MPM1, YDL027C, and YDR286C) that specifically interact with rvs167Δ are potentially 

involved in the actin-based transmission of mitochondria to the daughter cell, as Rvs167 is a 

regulator of actin polymerization (Balguerie, Sivadon et al. 1999). In fact, the only known actin-

localized protein among our 27 candidates, Aip1, had a genetic interaction only with the 

rvs167Δ (Figure 7). 

 

 

 

Figure 7: Double mutant petite frequency phenotypes. Based on their persistence as strongly predicted 

candidates during our second iteration, we selected 27 genes unconfirmed by single mutant analysis for 

investigation of synthetic phenotypes. The single mutant petite frequency is shown for each of these strains 

on the left. Each of the 27 strains was crossed with 4 genes known to be involved in mitochondrial 

inheritance (aim17Δ, tom6Δ, rvs167Δ, and ehd3Δ) to create ~100 double mutant strains. Results are shown in 

blue for each of the 4 strains crossed into, followed by all 27 double mutants constructed against that strain. 

The order of the double mutants is the same as in the 27 single mutants shown on the left. Colors are as in 

Figure 6. Significantly altered double mutant strains are marked with numbers, corresponding to the key 

above the box plots. 
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The high rate of synthetic phenotype recovery (10 out of 27 candidates tested) was made possible 

by the use of computation to limit the number of double mutants queried. There were 59 

unconfirmed predictions from the first round of our analysis, and 95 genes tested in this study 

have the quantitative petite frequency phenotypes necessary for double mutant analysis. 

Combining these 95 confirmed genes with the 59 unconfirmed genes yields 5,605 possible double 

mutants to assay, which is far too large to reasonably test with the quantitative petite frequency 

assay. However, we used computation in two ways to reduce the number of double mutants 

screen to ~100. First, we used computational iteration to identify the subset of unconfirmed 

predictions most likely to be involved in mitochondrial inheritance. Second, we used the 

functional networks generated by the bioPIXIE algorithm (Myers, Robson et al. 2005) to select 

four genes from different sub-functions in mitochondrial inheritance. This allowed us to test less 

than 2% of the possible double mutants, but still identify phenotypes for 10 of 27 candidates 

(37%) due to the efficiency of our computational approach. 

Computationally targeted experiments characterize new protein functions regardless of known 

localization 

While we expect high correlation between localization to the mitochondria and involvement in 

mitochondrial inheritance, many non-mitochondria-localized proteins are vital for regulating 

mitochondrial function and inheritance (Boldogh and Pon 2007). Thus, a candidate gene 

approach based solely on protein localization would neglect many important participants in 

normal mitochondrial biogenesis. Our use of computational predictions to drive experimental 

discovery is unbiased with respect to any one genomic feature or assay. In this study, 47 (43%) of 

our 109 newly confirmed discoveries are not known to localize to the mitochondria (Issel-Tarver, 

Christie et al. 2002; Prokisch, Scharfe et al. 2004) and would have been overlooked in a screen of 
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mitochondria-localized proteins lacking known functions. Further, the accuracy of our 

predictions for non-mitochondria-localized proteins is comparable to that for mitochondria-

localized proteins (44% vs. 59%, respectively). Thus, computational predictions can broaden the 

scope of potential discoveries beyond a more restricted candidate gene approach based on a 

single experimental technique or data source. 

AIM21 is required for proper mitochondrial motility 

Specific examples of non-mitochondria-localized proteins critical for mitochondrial biogenesis 

include proteins linking mitochondria to the actin cytoskeleton. Several of our novel discoveries 

have literature evidence associating them to the actin cytoskeleton but no evidence suggesting a 

role in mitochondrial inheritance (Huh, Falvo et al. 2003; Gavin, Aloy et al. 2006; Collins, Miller et 

al. 2007). One of these genes, the uncharacterized ORF YIR003W (AIM21), has been shown to co-

localize with actin in high-throughput studies (Huh, Falvo et al. 2003) and was predicted as an 

interactor with the actin cytoskeleton with high confidence by our system bioPIXIE (Myers, 

Barrett et al. 2006). We found that strains carrying a deletion of YIR003W grow normally on 

glycerol but form petites at a frequency of 166% of wild type cells, one of the highest petite 

frequencies observed in our experiments. 

To better understand the mitochondrial inheritance defect in this mutant, we used our 

computational predictions to direct experiments targeting the role of the actin cytoskeleton in 

mitochondrial inheritance. The morphology of the actin cytoskeleton and of the mitochondria in 

this mutant was visualized by dual immunofluorescence (Figure 8A and B). In the yir003wΔ 

mutants, the actin skeleton appears relatively normal, with typical polarization of actin patches 

toward the daughter, and the mitochondria show no gross perturbation in these mutants. 

However, by observing sustained mitochondrial movement events, we assessed mitochondrial 
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motility for this mutant and found severe defects comparable to a puf3Δ strain (Figure 8C), a gene 

known to be involved in mitochondrial motility (Garcia-Rodriguez, Gay et al. 2007). Even though 

this mutant displayed no overt morphological phenotypes, detailed analysis of YIR003W 

uncovered a subtler, specific defect in mitochondrial motility. 

Respiratory growth fitness indicates specific roles in mitochondrial biogenesis 

To further characterize our predictions, we assayed single gene knockout mutants for respiratory 

growth defects, as assembly of the complexes required for respiration is a critical step in 

mitochondrial biogenesis. We quantitatively measured growth profiles of most of our single gene 

deletion mutants under respiratory growth conditions (glycerol) comparing them to growth in 

fermentative conditions (glucose) as a control. A 96-well plate incubator and optical density 

reader was used to determine growth profiles for six independent replicates of each deletion 

strain tested and for two matched wild-type isolates of each strain (24 control wells per plate, see 

Methods for details). Exponential growth rates and saturation densities were calculated for each 

strain (Figure 9A), and both of these parameters were assessed for statistical significance relative 

to the distribution of all wild-type controls. Significant phenotypes were only reported if the 

defect was unique to the glycerol growth condition (i.e. was not present in the glucose growth 

curve) in order to ensure that the growth defect is respiration specific. By combining the growth 

rates and saturation densities (Figure 9C), we arrived at a respiratory growth phenotype that 

classifies each mutant as severe, moderate, weak, or unaffected. An example growth curve of 

each class is shown in Figure 9B. 
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Figure 8: YIR003W (AIM21) is required for mitochondrial motility. A, B) Dual immunofluorescence of 

mitochondria (outer membrane protein porin stained in red) and actin (total actin, stained in green) in the 

indicated yeast strains (scale bar 2μm). C) Mitochondrial motility was measured in strains carrying an 

integrated mitochondrially-targeted GFP by tracking the movement of the tip of a mitochondrion within a 

budding cell every second for two minutes. A sustained mitochondrial movement is defined as movement 

in the same direction for at least three consecutive seconds. PUF3 is a gene with known involvement in 

mitochondrial motility (Garcia-Rodriguez, Gay et al. 2007). To determine the frequency of sustained 

mitochondrial movement resulting from Brownian motion or other passive processes, sustained 

mitochondrial movement was measured in the presence of the metabolic inhibitors sodium azide (NaN3) 

and sodium fluoride (NaF). 10mM concentrations of these inhibitors were compared to a control of 10mM 

sodium chloride (NaCl). Due to its lack of static actin or mitochondrial phenotypes, AIM21's motility defect 

would be difficult to find without integrative computational predictions driving specific experimental 

assays. 
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Figure 9: Respiratory growth phenotypes. A) Scatter plot of growth rate and saturating density measured 

from growth curves in minimal non-fermentable media. The vertical axis indicates the maximum 

(saturating) optical density achieved by the strain, and the horizontal axis represents the estimated doubling 

time based on an exponential fit to the growth curve. Green shading indicates the distribution of all 536 wild 

type measurements. Triangles represent strains with saturation density and/or doubling time significantly 

altered on glucose, while squares represent strains that showed normal growth on glucose. Each point is 

colored by the strength of its respiratory growth phenotype (see part C). B) Example growth curves for wild 

type and strains representing each of the three phenotypic classes: weak, moderate, and severe respiratory 

growth defects. C) Determination of respiratory growth phenotype. Each growth parameter (saturation 

density and doubling time) was statistically scored as no effect (+), intermediate effect (+/-), or extreme effect 

(-). The combination of saturation density and doubling time results produces a final respiratory growth 

phenotype, with maroon representing a severe defect, purple a moderate defect, blue a weak defect, and 

gray no defect. 
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As expected, nearly all mutants classified as respiratory deficient in the petite frequency assay 

were classified as severely defective in the respiratory growth assay. However, we also observed 

significant respiratory growth phenotypes for 29 mutants without previously reported 

respiratory impairments in the literature. Of these, 22 exhibited a weak or moderate defect that 

may have been difficult to observe in whole-genome screens assaying respiratory growth 

(Giaever, Chu et al. 2002; Steinmetz, Scharfe et al. 2002); the remaining 7 severe phenotypes 

might have been previously overlooked due to suppressor mutations in the systematic deletion 

collection. While employing multiple replicates in such assays lowers overall throughput, these 

results suggest that testing many replicates enables more complete discovery of subtle 

respiratory growth phenotypes. 

Mitochondrial biogenesis and respiratory growth are partially overlapping processes that 

intersect in the translation and assembly of respiration complexes. As such, 55 of the 67 assayed 

mutants (82%) that exhibited an altered petite formation frequency had only weak or unaffected 

phenotypes in the respiratory growth assay (Table 2). The remaining 12 mutants exhibiting 

altered inheritance rates were classified as either severe or moderate in the respiratory growth 

assay; thus, these mutants demonstrate both an inheritance defect and a strong defect in 

respiration. These include four positive controls (CIT1, COX14, FMC1, and MRP49) known to be 

directly involved in the translation and assembly of respiratory complexes (Suissa, Suda et al. 

1984; Fearon and Mason 1992; Glerum, Koerner et al. 1995; Lefebvre-Legendre, Vaillier et al. 

2001). Additionally, since the beginning of this study, two of the eight additional genes in this 

class (MAM33 and COA1) have been shown to function in aerobic respiration (Muta, Kang et al. 

1997; Mick, Wagner et al. 2007; Pierrel, Bestwick et al. 2007). This suggests that the remaining six 

genes newly characterized by this study (AIM8, AIM23, AIM24, AIM34, CTK3, and UBX4) are 
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also functioning in the assembly of respiration complexes. Thus, performing additional 

experimental assays allows us to determine more specific roles several genes that we have newly 

associated with mitochondrial inheritance. 

Computationally directing experimental efforts can accelerate discovery rates 

We employed thorough assays performed in replicate in order to detect important but subtle 

phenotypic variations. As such, it is impractical to scale these assays to the entire genome at the 

same level of rigor. In fact, given our rate of experimental efforts, it would require nearly 7 years 

for us to apply the petite frequency assay to all viable single gene deletion strains. However, by 

using computational predictions of protein function as a form of initial genetic screen, we were 

able to target our efforts towards the most promising candidates first. This is important for 

testing single gene deletions, but it is imperative for assaying potential synthetic defects. There 

are 18 million possible double gene knockouts in Saccharomyces, a number far too large to 

comprehensively test for a broad range of phenotypes. However, we were able to discover 15 

synthetic mitochondrial inheritance defects by assaying a small, computationally chosen fraction 

of this available space. In all, by utilizing computational predictions of proteins involved in 

mitochondrial inheritance, we have rapidly characterized new functional roles for 109 genes. 

Discussion 

We have used computational predictions of gene function to direct focused, non-high-throughput 

laboratory experiments, confirming 109 proteins required for normal mitochondrial inheritance 

in S. cerevisiae. These discoveries include 67 genes with no previously known function (5% of the 

remaining ~1,200 uncharacterized S. cerevisiae genes) and 47 proteins not currently known to 

localize to the mitochondria. For several genes, our results provide evidence of involvement in 
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     Petite frequency phenotype 

Respiratory growth phenotype Respiratory deficient Altered inheritance rate Unaffected 

Severe 28 4 0 

Moderate 0 8 2 

Weak 2 12 9 

Unaffected 0 43 50 

Table 2: Overlap between petite frequency and respiratory growth phenotypes. We observe that the 

majority of single deletion strains deemed respiratory deficient in our petite frequency assay exhibited 

severe respiratory growth defects as well. Interestingly, 12 mutants with altered mitochondrial inheritance 

rates exhibited either severe or moderate respiratory growth defects, indicating that these genes may be 

involved in respiratory complex assembly. 

specific sub-processes of mitochondrial inheritance (e.g. AIM21/YIR003W in mitochondrial 

motility). No previous study has systematically tested computational predictions using non-high-

throughput laboratory techniques; the 56% accuracy established by our study demonstrates the 

potential of such computationally driven genetic investigations for direct future biological 

discoveries. Of our newly characterized mitochondrial genes, 51 have strictly defined human 

orthologs, 5 of which are associated with known disease. 

Computation identifies subtle phenotypes confirmed by experimentation 

Computational function prediction and non-high-throughput laboratory experiments 

complement each other in another important way highlighted by these results: the combination 

of these two techniques can rapidly identify subtle, quantitative phenotypes that are difficult to 

detect with high-throughput assays. When investigating well-studied processes (such as 

mitochondrial biology), most genes for which loss of function completely disrupts the process 

have already been discovered, since such extreme phenotypes are relatively easy to detect. This is 

evidenced by the strong enrichment for severe phenotypes among our positive control set. Many 

important biological functions also tend to be redundant, such that disruption of a single gene 
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results in only a mild (but quantifiable) perturbation of the process rather than loss of function. 

This is likely to be even more prevalent in higher organisms, which employ far more redundancy 

than does Saccharomyces, and it is also key to understanding the molecular mechanisms of many 

diseases. Deletion of yeast orthologs of human mitochondrial disease genes is significantly more 

likely to cause a modest respiratory growth defect than a severe defect (Perocchi, Mancera et al. 

2008); similarly, since aerobic respiration is essential for mammalian viability, many disease-

related mutations are unlikely to completely disrupt human mitochondrial function. Rather, 

these mutations tend to cause diseases by partially compromising the mitochondria (Shutt and 

Shadel 2007). Recently, (Fan, Waymire et al. 2008) compared several mouse models of 

mitochondrial disease, and found that subtle mutations caused disease in adult animals, while 

more severe mutations were suppressed at a high frequency. Subtle defects accrued over time 

have also been of increasing recent interest as related to aging in human beings (Lambert and 

Brand 2007). As the field continues to investigate the molecular basis of human disease and 

aging, the relationship between diseases and mutations incurring subtle functional perturbations 

is likely to extend far beyond mitochondrial biology. 

Computational approaches quickly provide accurate, unbiased predictions of protein function 

Using computational techniques to generate candidate gene lists for further investigation has 

several advantages relative to individual high-throughput experimental screens with comparable 

accuracy. First, computational data integration has the capacity to take advantage of large 

collections of existing publicly available experimental data; this can reveal information on a 

process of interest (e.g. mitochondrial function) by simultaneously examining many previous 

results. Additionally, computational predictions can often be generated in days or weeks, in 

contrast to the months or years required to conduct many traditional experimental assays. 
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Computational integration of multiple data sources can also be less biased to any one biological 

feature of the candidate genes. For example, high-throughput localization studies have identified 

hundreds of mitochondrial genes without known functions (Westermann and Neupert 2003; 

Prokisch, Scharfe et al. 2004), but this approach would have missed the 51 genes (~50%) 

discovered in this study that do not have known mitochondrial localization. This lack of bias 

assisted us in discovering functions for 67 of the uncharacterized genes in S. cerevisiae, all of 

which represent healthy and viable mutants in the yeast deletion collection with no extreme 

single mutant phenotype detected by previous screens. Thus, while genetic screens are important 

and valuable for candidate selection, particularly in areas with prior knowledge, computational 

prediction approaches integrating existing data are a viable, accurate alternative. 

Mitochondrial phenotypes are unlikely to represent pleiotropic effects 

The 51 genes we confirm to be necessary for mitochondrial inheritance that have no known 

mitochondrial localization raise the possibility that these mutants are somehow indirectly 

affecting inheritance. Several lines of evidence argue against this possibility. First, we expect that 

many of these 51 proteins will localize to specific cellular structures controlling inheritance 

outside of the mitochondria. For example, 13 of the 51 are known to localize to actin cytoskeleton 

and/or the bud neck, both structures that play intimate roles in mitochondrial inheritance. Of the 

remaining 38 proteins, 3 were computationally predicted to localize to the mitochondria by 

another study (Prokisch, Scharfe et al. 2004), 11 have no known localization, and 7 have only been 

localized to the cytoplasm by high-throughput microscopy (which does not exclude 

mitochondrial localization). Further study of these 38 proteins may identify as-yet-undiscovered 

mitochondrial localization or highlight the importance of other cellular processes necessary for 
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mitochondrial inheritance (e.g. transcriptional regulation of nuclear-encoded mitochondrial 

genes). 

Extensions to specific mitochondrial sub-processes and other biological systems 

Mitochondrial inheritance and biogenesis comprises a number of sub-processes that work 

together to ensure that new mitochondria are generated and segregated to a daughter cell. This 

starts with the nuclear genes encoding mitochondrial proteins being transcribed, translated, and 

targeted to the mitochondria for import. The mitochondria must also replicate its own genome 

and assemble the numerous membrane-bound complexes necessary for proper function. During 

inheritance, the mitochondria themselves move along actin cables to the bud neck, where they 

are then segregated between the mother and daughter cells. While additional work will be 

necessary to associate all of the proteins discovered in this study with specific sub-processes, we 

have already identified two groups with interesting potential responsibilities in mitochondrial 

inheritance. 

 The first group of 8 proteins (AIM8, AIM23, AIM24, AIM34, COA1, CTK3, MAM33, and UBX4), 

which are likely to be involved in cellular respiration, was identified by comparing our glycerol 

growth data with the petite frequency results. This comparison identified mutants with 

respiratory growth rates far lower than would be predicted by their petite frequencies alone, 

suggesting a proximal role in respiration. Though the components of the mitochondrial 

complexes that generate ATP have been identified for some time in yeast, extensive chaperone, 

assembly, and turnover machinery for these complexes remains to be fully elucidated. The 

assembly and maintenance of these respiratory complexes is thus a likely role for these 8 

proteins. The second group consists of 11 genes known to be associated with the actin 

cytoskeleton, including AIM21 as described in Results. The biochemical functions of the other 10 
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proteins with respect to actin have been previously described (Ayscough and Drubin 1996; 

Riezman, Munn et al. 1996; Goode, Drubin et al. 1998; Sekiya-Kawasaki, Groen et al. 2003), but 

they had no previously known mitochondrial roles. For example, Cap2p has been characterized 

in vitro to bind the barbed ends of actin filaments and prevent further polymerization (Kim, 

Yamashita et al. 2004), but it has not been previously implicated in mitochondrial inheritance. 

Interestingly, many of this specific subgroup of actin-associated proteins have also been 

implicated in actin/membrane interactions for endocytic trafficking (Toret and Drubin 2006). This 

raises the intriguing possibility that these proteins have specialized in interactions between actin 

and intracellular membranes. 

Our general approach can be successfully extended to other processes beyond mitochondrial 

inheritance in yeast and to other organisms. We have applied our computational ensemble 

(Myers, Robson et al. 2005; Huttenhower, Hibbs et al. 2006; Hibbs, Hess et al. 2007) to 388 other 

processes in Saccharomyces with promising results, and we report functional predictions for these 

processes. Computational methods have also been successfully applied in other organisms with 

readily available genomic data collections (Sharan, Ulitsky et al. 2007; Guan, Myers et al. 2008; 

Pena-Castillo, Tasan et al. 2008), and the iterative nature of our approach may be particularly 

useful in higher eukaryotes where current functional knowledge is relatively sparse. 

These results demonstrate the utility of employing computation to direct quantitative, 

functionally definitive assays. Here, we have used this technique to newly confirm the 

involvement of 109 proteins in the process of mitochondrial inheritance in S. cerevisiae by 

assaying the frequency of petite colony formation. A subset of these proteins was also 

characterized using growth profiling and immunofluorescence microscopy, revealing 

participation in specific sub-processes of mitochondrial biogenesis. In particular, AIM21 was 
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shown to be required for proper mitochondrial motility, a discovery which would have been 

difficult to make without specifically targeted computational predictions. As these techniques can 

be naturally extended to additional organisms and processes, close integration of computational 

function prediction with experimental work in other biological systems promises to quickly 

direct experimenters to novel facets of their areas of interest. 

Materials and Methods 

Petite frequency assay 

This protocol is adapted from the original petite frequency (Ogur and St John 1956) and 

tetrazolium overlay (Ogur, St. John et al. 1957) assays. For each mutant strain tested, we grew 

several replicates of the strain for 48 hours in liquid YP Glycerol at 30C (Amberg, Burke et al. 

2005). Strains able to grow on glycerol were diluted and plated for single colonies on YPD plates, 

which releases the requirement for functional mitochondria. Thus, as colonies formed, cells 

without functional mitochondria were generated. When the colony is fully formed, it is a mixture 

cells with functional mitochondria and cells without functional mitochondria. We measured this 

ratio by re-suspending a colony and plating a dilution of this re-suspension such that 100-300 

colonies are formed on a YPD plate. By overlaying with soft agar containing tetrazolium, cells 

with functional mitochondria were stained red, while cells without functional mitochondria 

remained white. The final mixture for agar overlay contains: 0.2% 2,3,5-triphenyltetrazolium 

chloride (available from Sigma), 0.067M phosphate buffer pH 7.0 and 1.5% bacto agar. The ratio 

of white cells to total cells gives the petite frequency. Eight independent petite frequencies 

(biological replicates) were measured for each strain tested. The distribution of these frequencies 

was compared to the frequency of petite generation in wild-type yeast. Strains identified as 

having the altered mitochondrial inheritance phenotype in this assay exhibit at least a 20% 
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change in petite frequency from wild type, and have a p-value of less than 0.05 when comparing 

the petite frequency distributions of that strain to the wild-type petite frequency distribution, 

using a Mann-Whitney U test. 

Computational prediction ensemble methodology 

The three computational systems employed in our study were bioPIXIE (Myers, Robson et al. 

2005; Myers and Troyanskaya 2007), MEFIT (Huttenhower, Hibbs et al. 2006), and SPELL (Hibbs, 

Hess et al. 2007). Each was used to analyze genes involved in the GO biological process 

mitochondrion organization and biogenesis (GO:0007005). All methods were initially trained and/or 

evaluated using the 106 annotations to this process as of April 15th, 2007. Detailed descriptions of 

these methods can be found in their respective publications. 

Identification of additional control genes with literature evidence 

42 of our initial computational predictions had strong literature evidence for involvement in 

mitochondrial biogenesis and inheritance and were determined to be "under-annotated," 

meaning that they already had strong literature evidence for their involvement in mitochondrial 

organization and biogenesis, but were not yet annotated to the corresponding GO term. These 42 

genes, along with 6 genes already annotated, were included as our positive control set of 48 

genes. In most of these 42 cases the information was already curated by SGD in the form of 

annotations to other GO terms, such as integral to the mitochondrial membrane or mitochondrial 

protein import. In addition to these 42 genes, we identified an additional 95 genes that we believe 

have enough literature evidence to warrant their inclusion in this process without further 

laboratory testing, for a total of 137 under-annotated genes. All 137 of these genes were included 

in the training set for our second iteration of computational predictions. 
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Selection of prediction candidates for experimental testing 

Novel candidates for laboratory evaluation were chosen on the basis of both the three individual 

computational approaches as well as the ensemble of their predictions. We limited ourselves to 

consider only those genes with viable knockouts available in the heterozygous deletion collection 

(Giaever, Chu et al. 2002). Furthermore, we chose to evaluate predictions to both genes with no 

previously known function as well as genes known to be involved in a biological process other 

than mitochondrial inheritance and biogenesis. We chose the 20 most confident genes of unknown 

function and the 20 most confident genes with existing annotations from each of the three 

individual methods for validation. Due to overlaps between the predictions of each method, 

there were 87 genes in this group; however, 20 of these genes we determined to be under-

annotated and were tested as positive controls, leaving 67 genes used as novel candidates 

without any prior literature evidence. We then chose an additional 74 genes from the ensemble 

list of predictions with no previous literature evidence to arrive at our total of 141 test candidates 

in our first round of laboratory evaluation. 

Iterative re-training, prediction, and verification 

After our first round of testing, 82 of the 141 novel predictions were discovered to have 

involvement in mitochondrial inheritance and biogenesis. Combined with the original 106 annotated 

genes and the 137 genes identified as under-annotated, this results in a total of 325 genes. Each of 

the three computational methods was re-applied using this updated training set of 325 genes and 

the same procedure was used to form an updated ensemble list of predictions. We selected the 52 

genes with the highest confidence from the updated results that were not previously tested for 

laboratory investigation. The petite frequency assay was used, and an additional 17 genes 

demonstrated a significant phenotype. 
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Double mutant construction and testing 

Deletion alleles marked with the ClonNAT resistance gene (rather than the G418 KanMX 

resistant marker) were prepared for the four tested strains (aim17Δ, rvs167Δ, tom6Δ, and ehd3Δ). 

A ClonNAT marked ura3Δ allele was prepared as a control (all other strains contained a ura3Δ0 

allele. These ClonNAT restant strains contained the Magic Marker reporter (Pan, Yuan et al. 2004) 

as well as can1Δ and lyp1Δ mutations to reinforce haploid selection. These five strains were 

crossed to a set of deletion strains marked with the G418 resistant KanMX marker, and diploids 

were selected on YPD-G418-ClonNAT. The diploids were then sporulated as described for our 

single mutant assays, except that double mutants were selected on media containing G418 and 

ClonNAT, and three controls were isolated for each sporulation: G418 resistant mutant, 

ClonNAT resistant mutants, and wild-type strains. The petite frequency assay was applied to 

these double mutant strains as described above. Phenotypic calls were determined for the double 

mutants based on the significance of the difference between the distributions of petite frequencies 

of the double strain versus both of the corresponding single strains. If the FDR corrected joint 

Wilcoxon rank sum p-value of both of these comparisons was <0.05, and the distribution of the 

double mutant strain was significantly different from wild type, then we scored the double 

mutant as significantly altered. 

Yeast strains and media 

All S. cerevisiae strains used in this study are descended from the S288C derivative used for the 

deletion consortium project (Giaever, Chu et al. 2002). Methods for individual mutant 

manipulation are described below. Standard methods for media preparation were used as 

previously described (Amberg, Burke et al. 2005). 

  



81 

 

Deletion set manipulation 

The Magic Marker heterozygous yeast deletion set (Pan, Yuan et al. 2004) was pinned from 

glycerol stocks onto enriched sporulation agar as described (Tong and Boone 2006). Single 

colonies developing on these random spore plates were re-struck for single colonies on the same 

medium and tested for presence of the G418 resistant KanMX marker (Pan, Yuan et al. 2004) to 

identify the spore as wild-type or a deletion mutant. Single colonies that grew from this re-

streaking process were picked and arranged in 96 well plates containing YPD. Each set of strains 

for a given candidate gene of interest were placed in a single column (1-12 of a 96 well plate); 

mutant isolates were placed in the first six wells (A-F) and sister wild type isolates were placed in 

wells G and H. These 96 well plates were glycerol stocked.  

Growth rate assay 

Strains were measured for their ability to grow in both respiratory (2% glycerol as carbon source) 

and fermentative (2% glucose as carbon source) conditions in minimal media supplemented for 

auxotrophies. Cultures were grown at 30C. Growth curves were generated in a 96-well plate 

format (described above in "Deletion set manipulation") that tests 12 mutants per run. For each 

mutation tested, 6 independent deletion mutants of that gene were grown in separate wells. 

Twenty-four replicate wild-type strains were also present in each 96-well plate format. Plates 

were grown and measured using a Tecan GENios plate incubator and reader, which recorded 

densities every 15 minutes for 24 hours for glucose cultures and 48 hours glycerol cultures. 

Growth rate data processing 

Growth rates were derived from these curves by using Matlab to fit an exponential model: 

y a2bx  
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For each well, this model was fit over the entire curve, the first 2/3, and the first half; whichever 

yielded the best fit was used in downstream analysis (to avoid plateau effects and to model only 

exponential growth). Wells with an adjusted R2<0.9 were marked as non-growing, and growth 

rates for the remaining wells were determined by subtracting the row, column, and plate means 

for each well from the exponential parameter b, yielding a rate b' for each well. These b' 

parameters for each mutant strain were tested for significance against the total wild type 

population (excluding non-growing wells) using a Mann-Whitney U test. Significance was only 

considered for b' parameters indicating a slower growth rate than wild-type. 

To detect colonies growing exponentially but with significant differences in fitness, smoothed 

maximum densities d were also calculated for all wells, consisting of the average of the optical 

density readings for the last five time points in each growth curve. From these, plate, row, and 

column averages were subtracted from each well, generating adjusted maxima d'. Mutants which 

did not double in optical density at least once (i.e. where d' was less than twice the baseline 

optical density) were considered to be non-growing. The remaining d' values for each mutant 

were again compared with the wild type values (excluding non-growing wells) using a Mann-

Whitney U test. Significance was only considered for d' parameters indicating a lower saturation 

density than wild-type. Combined with the exponential rate tests, this assigned each mutant 

phenotypes in rich media and in glycerol of no effect, no growth, or significant sickness. 

In either assay, mutants with inconsistent results (disagreement among more than one of the six 

replicates) were deemed inconclusive and marked as "mixed." Phenotypes were never assigned 

based on such mixed phenotypes. For a mutant to be classified as having a respiratory growth 

defect, that defect was required to be specific to the glycerol media (i.e. no phenotype in glucose). 
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If the mutant grew slowly in both glycerol and rich media, then it was not considered to have a 

defect in respiration. 

Immunofluorescence 

Yeast immunofluorescence was carried out using standard methods (Amberg, Burke et al. 2005). 

Briefly, strains were grown to exponential phase in synthetic complete medium, and fixed in 

freshly prepared formaldehyde for 1 hour at 30C. (Mutant strains were isolated from the Magic 

Marker deletion set as described above; FY4 was used as a wild type strain for comparison.) Cells 

were washed, digested with Zymolyase and attached to polyethyleneimine-coated coverslips. 

Cells were blocked with BSA, and exposed to an anti-porin antibody (Invitrogen, A-6449) and a 

guinea pig anti-yeast actin antibody (Mulholland, Preuss et al. 1994). Secondary antibodies were 

Alexa 488-conjugated goat anti-guinea pig (Invitrogen, A-11073) and Alexa 555-conjugated goat 

anti-mouse (Invitrogen A-31621). Coverslips were mounted in PBS/glycerol/phenlyenediamene. 

Microscopy was performed on a Perkin Elmer RS3 spinning disk confocal microscope with a 100x 

objective. Exposures were 1ms per slice, and Z-stacks were taken with a 0.15 um spacing, and 

images were deconvoluted using and assembled into 3D volumes using Volocity (Improvision).  

F-actin staining 

Phalloidin staining was performed according to Methods in Yeast Genetics (Amberg, Burke et al. 

2005). Briefly, strains were growth to exponential phase in synthetic complete medium, and fixed 

in formaldehyde (EMS 15712-5) for one hour. F-actin was stained using Alexa 488 conjugated 

phalloidin (Invitrogen, A12379). Cells were deposited on polyethyleneimine-coated coverslips 

and mounted in PBS/glycerol/phenlyenediamene. Slides were imaged and processed as for 

immunofluorescence.  
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Integration of mitochondrial GFP into deletion strains 

The NatMX cassette was cut from pAG25 (Goldstein and McCusker 1999) using NotI and 

liagated into the EagI site of pYX122-mtGFP, which expresses a mitochondrially targeted GFP 

(directed by the Su9 peptide) under the control of the triose phosphate isomerase promoter 

(Westermann and Neupert 2000). This construct was used as a template to PCR amplify the 

NatMX-mtGFP cassette using primers with 40bp homology to target the cassette for integration 

at the dubious ORF, YDL242W. This integration was performed in the strain Y5563 to create 

ACY50. ACY50 was then mated to the Magic Marker yeast deletion set (Pan, Yuan et al. 2004) 

and selected for haploid deletion mutants carrying the cassette as described (Tong and Boone 

2006).  

Mitochondrial tracking microscopy 

Exponential phase cultures of S. cerevisiae in Yeast Synthetic Complete media (YSC) were plated 

onto glass slides with an agarose bed growth chamber made of low melt agarose and YSC media. 

The slides were covered with a cover slip and sealed using VALAP (Swayne, Gay et al. 2007). 

Cells were then imaged using a Perkin Elmer RS3 spinning disk confocal microscope with a 100x 

objective. Images of mitochondrial GFP fusions were taken using a laser emitting at 488 nm at 

100% power with an exposure of 1s. Phase contrast images were taken using an exposure of 3ms. 

For all images, 2x2 binning was used and gain was set to 255. For each field of view, both an 

initial Z-stack of images and a time course were taken. Each Z-stack was taken at intervals of 

0.2μm through the entire depth of the cells. The time course was taken in a single focal plane for 

two minutes at 1 frame per second. 

To determine the frequency of sustained mitochondrial movement resulting from Brownian 

motion or other passive processes (Doyle and Botstein 1996), sustained mitochondrial movement 
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was also measured in the presence of the metabolic inhibitors sodium azide and sodium fluoride. 

These inhibitors were added to the YSC agarose used for imaging; 10mM concentrations of these 

inhibitors were compared to a control of 10mM NaCl.  

Image processing: frequency of sustained mitochondrial movement 

To measure mitochondrial motility in vivo, individual mitochondrial tips were tracked through 

each frame of a 2m time course using the Manual_Tracking plugin for ImageJ. Image files were 

randomly coded with numbers so that the identity of each imaged strain was not known to the 

investigator performing image tracking. Mitochondria tips for tracking were identified using the 

Z-stacks (which avoids selection of tubules that appear to be tips because other sections are out of 

plane). These Z-stacks were assembled into a Z-projection and merged with the phase contrast 

image using ImageJ to permit identification of budded cells. The selection criteria for 

mitochondrial tips were that the tip is initially present in the mother cell of a budded cell. In cases 

where both termini of a mitochondrion were available for tracking, the tip closer to the daughter 

cell was selected. The position of the bud neck was set as a reference and the position of a 

mitochondrial tip in the mother cell was plotted for each of 120 frames. The distance from the 

mitochondrial tip to the bud neck was calculated at each frame (in our imaging hardware, each 

pixel corresponded to 0.15μm). Mitochondrial movement in each frame was then calculated by 

subtracting the distances to the bud neck in two consecutive frames and dividing by the time 

interval of 1s. The tracking data was saved as a table. Sustained mitochondrial movement events 

consisting of 3 consecutive frames of motion towards (anterograde) or 3 consecutive frames of 

motion away (retrograde) from the bud were identified using a custom Perl script (Garcia-

Rodriguez, Gay et al. 2007). The number of these sustained movement events per minute was 

calculated. 
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Ensemble predictions for additional biological processes  

In addition to the computational predictions used to study mitochondrial biogenesis and 

inheritance in this study, we have applied the same prediction techniques to many additional 

biological processes in S. cerevisiae. We used each of our three computational methods to predict 

gene functions for 387 additional biological processes in the same manner as described above. In 

order to demonstrate that these methods are able to capture information about these processes, 

we have also calculated the average precision (AP) of the cross-validated results as: 

APG
1

G

i

rankii 1

G

 

where G is a group of genes known to be involved in a process, and ranki is the rank order of gene 

i in the prediction results. 

Human ortholog identification 

Orthology between yeast and human genes was based on orthologous clusters in the 

Homologene, Inparanoid (Remm, Storm et al. 2001), and OrthoMCL (Li, Stoeckert et al. 2003) 

databases as of June 2007. Each of these uses a published algorithm for determining clusters of 

orthologous genes, i.e. groups of genes thought to be conserved and perform near-identical 

functions in different organisms. We first took the union of these databases as applied to a core 

set of diverse organisms (yeast, human, mouse, fly, and worm), considering a gene pair to be 

orthologous if declared so by any of the three databases. This resulted in a set of unified 

orthologous clusters, from which we eliminated any cluster containing more than 50 genes. This 

resulted in 14,528 clusters spanning 61,702 genes in the five organisms, and from this set we 

report here the human orthologs of S. cerevisiae genes in our study. 



87 

 

Human ortholog disease-related gene identification 

Disease related human orthologs were determined based on the manual curation of the Online 

Mendelian Inheritance in Man (OMIM) resource (Hamosh, Scott et al. 2005), and the automated 

text mining available through GeneCards (Rebhan, Chalifa-Caspi et al. 1997). We considered all 

of the OMIM curations valid, while we required at least 2 independent publication citations in 

GeneCards for a disease relation to be valid. 

Localization determination 

Both mitochondrial and actin localization was based on the Gene Ontology cellular component 

curation. For mitochondrial localization curation to the term GO:0005739: mitochondrion was used. 

In addition, six genes were marked as computationally predicted to the mitochondrion based on 

the study by Prokisch et al. (Prokisch, Scharfe et al. 2004). For actin localization curation to the 

term GO:0015629: actin cytoskeleton was used. 

Methodological Ramifications: Optimizing Computational Techniques 

Machine learning and data mining techniques have been applied to a wealth of genome-scale 

data to produce meaningful predictions of gene/protein involvement in biological processes and 

pathways (Pavlidis, Weston et al. 2002; Jansen, Yu et al. 2003; Owen, Stuart et al. 2003; 

Troyanskaya, Dolinski et al. 2003; Lanckriet, Deng et al. 2004; Lee, Date et al. 2004; Nabieva, Jim 

et al. 2005; Barutcuoglu, Schapire et al. 2006; Jaimovich, Elidan et al. 2006). As biologists have 

pursued novel findings in a wide range of organisms with finite experimental resources, these 

approaches have promised to direct experimental efforts toward the most likely targets, with the 

hope of greatly accelerating the discovery process (Kitano 2002; Hughes, Robinson et al. 2004). 
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However, surprisingly few large-scale experimental studies of gene function have been 

performed on the basis of computational predictions, despite their great potential to inform and 

guide such investigations. Perhaps as a result, data continue to be generated at a rate that 

outpaces the characterization of gene functions (Pena-Castillo and Hughes 2007). 

This disparity between the computational and experimental aspects of gene function discovery 

may be due to a lack of clear demonstrations of the effectiveness of computation in directing 

laboratory efforts. The few experiments that have been directed by computational systems have 

generally been limited to confirming individual predictions of the functions of single proteins 

((Jansen, Yu et al. 2003; Owen, Stuart et al. 2003) and work from our laboratory (Myers, Robson et 

al. 2005; Huttenhower, Hibbs et al. 2006; Hibbs, Hess et al. 2007)). No large-scale studies have 

been performed to fully explore the ability of computational methods to accurately assign 

functions to sizeable sets of uncharacterized proteins. Without such comprehensive evaluations, 

it remains unclear how computational methods can best be employed to guide experimental 

efforts in discovering novel biology. 

To explore the biological considerations important for computational function prediction and to 

demonstrate the general power of computationally driving experimentation, we have performed 

a large, systematic study of computational predictions for proteins involved in mitochondrial 

organization and biogenesis in S. cerevisiae. Mitochondrial defects are implicated in a variety of 

human diseases (Foury 1997; Steinmetz, Scharfe et al. 2002), including neurodegenerative 

disorders (Babcock, de Silva et al. 1997; Koutnikova, Campuzano et al. 1997) and muscular 

diseases (DiMauro and Schon 1998), making them an interesting and relevant target for such a 

study. The biological mechanisms of mitochondrial biogenesis are largely conserved from yeast 

through humans (60% of mitochondrial yeast genes have a human ortholog), and as many as one 
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in five mitochondrial proteins are known to be involved in human disease (DiMauro and Schon 

1998; Andreoli, Prokisch et al. 2004). Mitochondrial biology is understood well enough to provide 

a sufficient number of training examples for computational prediction methods, but it is also 

thought that at least a quarter of the proteins involved have not yet been identified (Sickmann, 

Reinders et al. 2003; Prokisch, Scharfe et al. 2004). Mitochondrial organization and biogenesis is 

thus an important and tractable area where computational methods can demonstrate their utility. 

In this study, we have examined the biological nature of the predictions made by an ensemble of 

three computational methods, including supervised and unsupervised techniques that analyze a 

variety of underlying data. Above, we show and describe our biological results using these 

predictions to direct a suite of experimental tests, including our discovery of 99 additional 

proteins involved in mitochondrial inheritance. Here, we present detailed analysis of the 

computational methods and their predictions in order to explore the utility and effectiveness of 

computational function prediction methods. In particular, we demonstrate several novel 

observations and conclusions that can greatly impact the use of computational approaches for 

targeting laboratory experimentation. 

First, our results demonstrate that while ~75% of yeast genes are already known to participate in 

at least one biological process or pathway, many of these genes may have multiple functions that 

have not yet been characterized. This further refutes the notion of "one gene, one function," and 

demonstrates that both characterized and uncharacterized genes are fruitful for further 

experimental investigation. Second, by comparison to a new experimental screen of 48 randomly 

selected genes, we show that using computational predictions to guide laboratory experiments 

can greatly increase discovery rates. Third, we demonstrate that the specific predictions made by 

computational approaches are highly dependent on both the algorithmic foundation and 
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underlying biological data utilized by those methods. As such, we show that using an ensemble 

of diverse computational approaches can increase the biological breadth of scope of predictions. 

Lastly, we demonstrate that by iterating phases of computational prediction and laboratory 

experimentation, we can greatly expand our knowledge of gene functions. 

Results 

Our study employed an ensemble of three diverse computational methods (bioPIXIE (Myers, 

Robson et al. 2005; Myers and Troyanskaya 2007), MEFIT (Huttenhower, Hibbs et al. 2006), and 

SPELL (Hibbs, Hess et al. 2007)) to predict novel genes/proteins involved in the process of 

mitochondrial organization and biogenesis. Each of these methods integrated high-throughput 

data sources and utilized existing biological knowledge from the Gene Ontology (GO) 

(Ashburner, Ball et al. 2000) and Saccharomyces Genome Database (SGD) (Cherry, Adler et al. 

1998) to identify candidates for involvement. Briefly, bioPIXIE performs context-specific Bayesian 

integration of a diverse set of genomic data to predict pairwise functional relationships between 

genes. MEFIT also performs Bayesian integration, but is targeted to utilize gene expression 

microarray data. SPELL uses the same compendium of microarray data, but uses a similarity 

search algorithm to identify groups of related genes. The results of all three approaches were 

combined based on the estimated precision of each method to produce our ensemble predictions 

of gene function (further details are in the Methods section). Predictions for genes involved in 

mitochondrial organization and biogenesis were validated using a quantitative laboratory assay 

indicative of involvement in mitochondrial biogenesis and inheritance. The first round of 

prediction and evaluation used only existing GO annotations as a training set. We then 

performed a second iteration of this process after updating our training set to include gene 
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predictions confirmed in the first iteration. A schematic view of our system for prediction, 

verification, and iteration is shown in Figure 10. 

The full biological results of this study are presented above. The next two paragraphs contain a 

brief summary of the results important to the further analyses and conclusions presented here. 

When the study was undertaken, 106 genes were annotated by SGD to the mitochondrion 

organization and biogenesis GO term (GO:0007005 as of 4/15/2007). These genes were used as input 

to the computational methods during the first iteration of testing. We initially evaluated our 184 

most confident computational predictions, and 122 (66%) were validated as exhibiting a 

significant phenotype indicative of involvement in mitochondrial biogenesis. Upon further 

inspection of these confirmed predictions, we found existing literature evidence for 40 of these 

genes. By following this literature, we found evidence for 2 more of our tested genes and 

identified an additional 93 genes with strong evidence for mitochondrial function that had not 

yet been annotated as such by SGD. Many of these genes were annotated to specific categories 

related to mitochondrial organization (e.g. integral to mitochondrial membrane), but were not yet 

cross-annotated to the mitochondrion organization and biogenesis process. In all, we identified a total 

of 135 genes with existing literature evidence that were "under-annotated." We have presented 

this list to SGD and they are evaluating these observations using their established curatorial 

procedures; as of now, nearly half of these genes have been added to the annotations. 

Our second iteration of prediction and validation used a set of 323 genes as input to the 

computational methods (106 original annotations, 82 newly confirmed genes with no prior 

literature evidence, and 135 under-annotated genes). We evaluated the 52 most confident 

predictions that were not previously tested, and 17 (33%) were validated. While this confirmation 

rate is still high, the reduction suggests that we may be nearing the edge of genes that can be 



92 

 

confidently identified using our assays (details below). Altogether, our study identified 234 new 

annotations to the process of mitochondrial organization and biogenesis, which more than triples 

the number of genes previously annotated to this area (Figure 11A). A summary of these results 

is shown in Table 3. While these biological results are striking and important, they also have 

significant ramifications in the application of computational techniques as a whole and in their 

integration with experimental biology, which we discuss in detail below. 

Many genes with known functions also play additional cellular roles 

A common metric for the level of characterization of an organism is the percentage of genes with 

at least one experimentally confirmed function (Hughes, Robinson et al. 2004; Pena-Castillo and 

Hughes 2007). By this metric, one might be led to believe that our functional characterization of 

some model organisms is nearing completion. For instance, in S. cerevisiae, we now have 

established functions for approximately three-fourths of the genome. However, we find evidence 

that suggests our current understanding is much more limited than these numbers suggest. 

Among our 194 tested predictions without existing literature evidence for involvement in 

mitochondrial biogenesis, 76 (39%) are known to be involved in at least one other process, while 

the remaining 118 (61%) have no previously known function. The verification rate for each of 

these classes was the same, as 39 of 76 (51%) genes with other known functions and 60 of 118 

(51%) genes with no known function were confirmed to be involved in mitochondrial biogenesis. 

The notion of "one gene, one function" is clearly not consistent with these findings, and we 

suspect that both uncharacterized genes and genes with previously known functions are fruitful 

areas for exploration. This issue is even more important when considering higher eukaryotes, 

where protein variants encoded by the same gene may participate in multiple, diverse functions 

(Kochetov, Sarai et al. 2005; Blencowe 2006). 
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Figure 10: An overview of our iterative approach integrating computational and experimental 

methodologies. Our study uses an ensemble of computational gene function prediction methods (bioPIXIE, 

MEFIT, and SPELL) trained and evaluated on known biology to predict novel annotations to the GO term 

mitochondrial organization and biogenesis. We selected test candidates based on these computational 

predictions and validated these novel predictions experimentally using a quantitative, statistically verifiable 

biological assay. Upon obtaining the results of these tests, the set of known examples was augmented with 

the validated predictions, and the process was repeated to further explore this biological process. 
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Interestingly, there is a strong enrichment for components of the actin cortical patch among the 

39 genes newly characterized in mitochondrial biogenesis that also have previously known 

functions (9 of 39 genes, hypergeometric p<10-10). Most genes with known functions specifically 

related to mitochondrial biogenesis are not included in this number, since they were explicitly 

reported as under-annotations and treated as positive controls for our study. Though the actin 

cytoskeleton is known to be involved in mitochondrial motility in Saccharomyces, the precise 

mechanism of attachment and movement has remained elusive (Boldogh and Pon 2007). The 

enrichment of actin cortical patch components is particularly notable since the actin cortical patch 

has no explicit role in mitochondrial inheritance, but these nine genes are associated with cellular 

machinery known to move other membrane-bound organelles to daughter cells (Moseley and 

Goode 2006). Our predictions thus provide evidence that the same machinery may be employed 

during mitochondrial inheritance in a context similar to, but independent from, their cortical 

patch roles. By elucidating additional novel functions for previously characterized genes, we not 

only gain a greater understanding of each protein's individual responsibilities within the cell, we 

also form a more complete picture of higher-level interactions between cooperating pathways 

and processes. 

These results are particularly striking within the historical context of the rates at which gene 

functions have been characterized. Since the full sequence of S. cerevisiae was published in 1996 

(Goffeau, Barrell et al. 1996), nearly 3,000 genes have had their first known function 

characterized, while only ~1,700 genes have had a second function characterized (Figure 12). It 

remains unknown how many genes are truly involved in multiple processes, but it is clear that 

even if single functions were known for all yeast genes, we would still be far from a complete 

understanding of the complex network that supports most cellular processes. This further 
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underscores the importance of developing approaches for fast and accurate discovery of protein 

function. 

 

Figure 11: Annotations and phenotypic results for mitochondrion organization and biogenesis. Our study 

began with the 106 genes annotated to the GO term mitochondrion organization and biogenesis. In the first 

round of our iterative computational prediction and laboratory experimentation, we confirmed 122 

additional genes. 40 of these confirmations had previously existing literature evidence for involvement in 

mitochondrial biogenesis, leaving 82 entirely novel discoveries from the first iteration. Based on further 

literature searches, we found an additional 95 genes with evidence for inclusion in this term (including 2 

tested genes that did not exhibit a significant phenotype). During our second iteration of testing, we 

confirmed an additional 17 predictions. A) The number of genes involved in mitochondrial organization and 

biogenesis after each stage of this study. B) The results of our petite frequency assay for genes with previous 

literature evidence (positive controls), our novel first iteration predictions, novel second iteration 

predictions, and a random selection of genes. Note that the majority of novel confirmations exhibited the 

more modest phenotype of "altered mitochondrial inheritance," whereas the majority of previously known 

genes are "respiratory deficient," a more extreme phenotype more easily discovered by high-throughput 

screens. 
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Positive Controls (44/48)    

     

 First Iteration Predictions (122/184)   

     

  Novel Predictions (99/194)  

     
     

Original 

Annotations 

(4/6) 

Under-annotations 

(40/42) 

First Iteration 

Novel Predictions 

(82/142) 

Second Iteration 

Novel Predictions 

(17/52) 

Randoms 

(12/48) 

     

     

 Total Predictions (139/236)  

Table 3: Numbers of genes tested and verified in this study. This table shows a breakdown of the groups of 

genes tested in this study, with the numbers in parenthesis showing the number of verified genes over the 

number of tested genes. Initially, 184 first iteration prediction genes were selected from our computational 

ensemble for testing. We found existing literature evidence for involvement in mitochondrial biogenesis for 

42 of these genes, and thus included these in the positive control set along with 6 genes that were originally 

annotated to the mitochondrion organization and biogenesis GO term. In our second iteration, we selected an 

additional 52 candidate genes, none of which had prior literature evidence for involvement. We also 

selected 48 genes at random from the genome for testing to establish the background genomic rate for our 

assay. 

Guiding laboratory experiments with computation greatly increases discovery rates 

Among our 236 experimentally evaluated computational predictions, 139 were verified, resulting 

in an overall true positive rate of 59%. This result is a striking confirmation that computational 

predictions can successfully direct laboratory experiments; nearly two out of three predictions 

were successfully confirmed, which would make even low-throughput follow-up experiments 

worth pursuing. To quantify our improvement in rate of discovery over the background rate of 

observing the same phenotypic classes, we chose 48 genes at random to establish baseline rates of 

phenotypes. Of these 48 genes, only 12 (25%) exhibited a phenotype consistent with involvement 
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in mitochondrial inheritance. Based on these results, the use of computational methods to guide 

our investigation increased our discovery rate by 236%. 

In addition to a greatly increased discovery rate, we have evidence that our confirmed 

computational predictions are more integral to mitochondrial biogenesis than the rare positives 

resulting from our random screen. As mitochondria are vital for cellular respiration, our assays 

focused on discovering respiratory defects in single gene knockouts, which is a strong indicator 

that the tested gene plays a role in mitochondrial processes (Ogur and St John 1956; Ogur, St. 

John et al. 1957). However, it is possible for secondary effects of non-mitochondrial mutations to 

result in similar phenotypes. For example, one of the randomly selected genes tested, HTA1, is a 

histone whose deletion is known to cause pleiotropic effects on transcriptional regulation of 

carbon metabolism (Grunstein 1990). Consequently, our testing of an hta1Δ knockout strain 

resulted in a phenotype indicating involvement in mitochondrial organization and biogenesis, 

even though the true cause of this phenotype is likely a secondary effect due to a gross 

perturbation of carbon metabolism. 

Given the possibility that secondary effects could occasionally manifest as positive phenotypes, 

we cross-referenced our results with known localization information from SGD. We would 

expect many of the genes involved in mitochondrial organization to localize either to the 

mitochondrion itself or to the actin cytoskeleton, as mitochondria associate with actin cables for 

proper inheritance of the organelle during cell division (Boldogh, Vojtov et al. 1998). Among 

phenotypically positive genes where localization data is available, 72% of our computational 

predictions are localized either to the mitochondrion or to actin, while only 36% of the 12 

phenotypically positive genes from the random screen are similarly localized. The large 
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Figure 12: Historical progression of gene function discovery. We examined the historical context of SGD 

annotations to GO based on the dates of publications used to assign genes to biological processes. Here we 

define a "known function" as an annotation to a GO term within the GO functional slim mapping (Myers, 

Barrett et al. 2006) for S. cerevisiae. Function annotation accelerated after the publication of the yeast genome 

in 1996, but annotation of multiple functions did not accelerate accordingly. 

discrepancy in localization among phenotypic positives from predictions and from the random 

screen indicates that positive mitochondrial phenotypes in some of the genes in the random 

screen may be due to secondary effects. 

While enrichment for localization to the mitochondria is a strong indicator that our 

computational predictions are directly involved in mitochondrial maintenance, it is important to 

note that such localization is not a precondition for involvement. Among all of our novel tested 

computational predictions, 45% are known to localize to the mitochondrion or actin cytoskeleton, 

and of these, 59% were confirmed. However, our confirmation accuracy is also high (45%) among 
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the predictions not known to localize to these areas. Thus, if our study examined only genes 

known to localize to the mitochondrion, it would fail to discover nearly half of the verified genes 

that resulted from our use of computational predictions. Since computational data integration 

can leverage a variety of heterogeneous data sources in an unbiased manner, it can successfully 

direct experimental efforts to targets that might otherwise remain undiscovered. 

Diverse, accurate predictions are made by different computational approaches 

In addition to demonstrating the accuracy of computational function prediction approaches, our 

results also emphasize the importance of considering the specific biological nature of predictions. 

Specifically, our results show that different computational approaches can produce equally 

accurate, but distinct predictions depending on the algorithmic foundation and underlying data 

of each method. Although we did not attempt a comprehensive study of all types of 

computational function prediction methods, the three methods used in this study included both 

supervised and unsupervised approaches utilizing different data sources, and our observations 

are likely to be generally applicable. To demonstrate this generality, we have also analyzed 

additional canonical computational function prediction approaches (a Support Vector Machine 

(SVM) trained using only microarray data, an SVM trained using diverse data, and unsupervised 

correlation across microarray data). This additional analysis supports the results and conclusions 

presented below. Each of the three function prediction methods employed in this study achieved 

similarly high rates of phenotypic positives (Figure 13A). However, there was a relatively small 

overlap between the 40 most confident predictions of each method, as only 8% of the 88 total 

candidates selected from an individual method were common to all three (Figure 13B). True 

positive rates were similar among genes predicted confidently by only one method or by 

multiple methods, indicating that each computational approach was accurately predicting 
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disparate aspects of mitochondrial organization and biogenesis. This variation can be accounted 

for both by differences in the underlying data and by algorithmic diversity among the 

computational approaches. As discussed below, such differences among methods should be 

carefully considered when developing new prediction techniques or applying them in a 

biological setting. 

Underlying data affects the specific biological nature of predictions 

Of the three function prediction methods, two are based on detailed analyses of microarray data 

(MEFIT (Huttenhower, Hibbs et al. 2006) and SPELL (Hibbs, Hess et al. 2007)), while the third 

(bioPIXIE (Myers, Robson et al. 2005; Myers and Troyanskaya 2007)) focuses on integration of 

heterogeneous data sources such as affinity precipitation results, two-hybrid screens, sequence 

information, synthetic genetic interactions, etc. As stated, there was relatively little overlap 

between the three methods' predictions, although all three achieved similar true positive rates 

during laboratory validation. However, the microarray-based predictions from SPELL and 

MEFIT did show slightly more correlation with each other than with predictions from bioPIXIE 

(Figure 13B). 

We characterized the importance of underlying data by examining the cross-validated results for 

the predictions of each method on more specific sub-processes of mitochondrial organization 

(Figure 14, see Methods for details). The microarray-based approaches (MEFIT and SPELL) 

clearly best capture information regarding mitochondrial ribosome and translation, which is 

consistent with other studies that have observed a strong ribosomal bias among microarray data 

(Myers, Barrett et al. 2006). The method based on diverse data (bioPIXIE) best captured 

information about mitochondrial distribution and mitochondrial fission and fusion. This is likely due 
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to the use of physical interaction data, which enables this method to more easily discover 

proteins involved in mitochondrial structure and motility. 

Another significant difference occurs in the area of mitochondrial respiratory complex assembly, 

where the microarray-based methods are more successful than the method based on diverse data. 

Many of the proteins involved in this process are integral membrane proteins, making them 

technologically difficult to assay by common sources of physical interaction data (e.g. yeast two-

hybrid, affinity precipitation). However, because the number of mitochondria in a cell (and thus 

the amount of membrane and membrane-bound complexes) depends on environmental 

conditions, these proteins can be strongly transcriptionally regulated when conditions change. 

This co-expression is captured by microarray data, providing evidence for our microarray-based 

predictors of functional relationships. 

 

Figure 13: Individual method accuracy and overlap. Three computational methods and an ensemble of those 

methods were used to select candidates for experimental evaluation. Of the 184 predictions evaluated in our 

first iteration, 88 were chosen from the top 40 results of at least one individual method, while the remaining 

96 were selected from the ensemble of all three. A) The accuracy of the predictions chosen from each 

method, from genes selected by the ensemble, and the overall accuracy for all candidates tested in our first 

iteration. B) Overlap between candidates selected from the individual methods. Each individual method 

performs with similar accuracy but predicts unique genes. 



102 

 

We have also examined the cellular localization of the predictions made by each of the 

computational methods and those made by the ensemble of all three (Figure 15A). While the 

majority of the predictions made by the microarray-based methods are known to localize to the 

mitochondrion, predictions from the method based on diverse data also contained a significant 

number of proteins known to localize to the actin cytoskeleton. This is consistent with the 

functional enrichments of the prediction methods, as mitochondria interact with actin for 

distribution, fission, and fusion. Interestingly, the verification rate was over 50% among genes 

localized to the mitochondrion and to actin. Precision was even higher (nearly 70%) among 

predicted genes with no known localization (Figure 15B). Additional analysis demonstrating the 

impact of underlying data, including training SVMs with different underlying data, produces 

similar results. 

Algorithmic differences affect specific computational predictions 

Even among methods based on the same underlying data, analyses by different computational 

approaches can produce very different function predictions. Only 20 of the top 40 predictions 

made by each of this study's two microarray-based methods (MEFIT and SPELL) overlapped 

(Figure 13B). However, each method achieved similarly high levels of biological accuracy (Figure 

13A), and the functional and localization enrichments of the predictions made by these methods 

are similar (Figure 14 and Figure 15). These findings can be explained by the fact that these two 

methods employ very different analytical approaches when generating gene function predictions 

from microarray data. 

One important difference is that MEFIT employs a supervised learning process, while SPELL is 

unsupervised. MEFIT relies on supervised Bayesian learning to up- or down-weight datasets, 

using prior knowledge of functional relationships. SPELL performs a query-driven similarity 
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search to identify significant patterns of expression within datasets that are determined to be 

informative for each query. When performing function prediction, MEFIT infers a complete 

functional interaction network, which is mined using "guilt by association" for genes predicted to 

be involved in mitochondrial organization. Conversely, SPELL averages a collection of searches, 

each querying an individual subset of known mitochondrial genes. As the underlying data 

collection and normalization procedures were the same for both methods, these algorithmic 

differences account for the diversity of specific predicted genes. This highlights the potential 

impact of specific algorithms, as well as underlying data, when predicting gene functions. 

 

Figure 14: Biological differences between the three computational prediction methods. We evaluated which 

aspects of mitochondrial biology were targeted by each computational function prediction method. Even 

though all three methods learned and were evaluated using the same set of training genes, the methods 

differ in the sub-groups of mitochondrial biology on which they focused. SPELL and MEFIT are both based 

solely on gene expression microarray data, which explains their strong coverage of the mitochondrial 

ribosome and translation sub-group. bioPIXIE is based on diverse data, including physical binding data, 

which explains its strong coverage of sub-groups involving mitochondrial motility and physical 

interactions. 



104 

 

An ensemble of diverse prediction methods increases breadth of results 

By employing multiple, complementary functional prediction techniques, we substantially 

expanded the breadth of our experimentally assayed genes. As described above, the three 

methods used in this study produced diverse, yet uniformly accurate, predictions spanning many 

biological aspects of mitochondrial organization and biogenesis. In addition to testing the top 40 

predictions of each method individually, we also produced an ensemble prediction set by 

combining the results of each method based on estimated precision (see Methods for details). 

From this list, we selected 96 additional candidates for experimental validation. 

Thus, approximately half of the novel predictions tested in this study did not occur among the 

top 40 predictions of any individual method, but were selected based on the ensemble of all three 

methods. The accuracy of these ensemble predictions is roughly the same (65%) as the 

predictions made by any of the individual methods (Figure 13). Similarly, the localization and 

functional enrichments of the ensemble predictions were distinct from those of any one 

prediction set (Figure 15). By harnessing the diversity and complementarity of our computational 

prediction methods, we were able to expand the biological scope of our investigation. 

Iterative approaches converge on comprehensive prediction sets 

To identify further promising mitochondria-related proteins, we performed a second prediction 

and validation iteration where confirmed predictions were fed back into the gold standard used 

in the computational prediction process. Initially, we selected 184 gene candidates to test, 122 of 

which were verified as likely involved in mitochondrial organization and biogenesis. In addition, 

we found that 40 of our verified candidates had strong existing support in the literature, which 

led us to identify 95 further genes with previously published literature evidence for inclusion in 

this process. After this first round of testing, we created a new training standard of 323 genes 
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including the original annotated genes, the genes with strong literature support, and the 

experimentally verified genes. Using this updated training set with our ensemble classifier, we 

selected an additional 52 novel testing candidates, 17 (33%) of which demonstrated a significant 

phenotype in the lab, resulting in our total of 139 gene function associations (99 entirely novel, 40 

with previous literature support). Beyond simply providing additional genes verified to function 

in mitochondrial biogenesis, this iteration process led us to several important observations. 

 

 

Figure 15: Localization of predictions from computational methods. The known localization of genes 

predicted by our computational methods differed greatly between the microarray based predictions (SPELL 

and MEFIT) and the predictions based on diverse data (bioPIXIE). A) Localization breakdown of the 

predictions made by each method, by the ensemble, and for all of our novel predictions. B) Accuracy of our 

novel predictions by localization. C) Breakdown of localization for those predictions in areas other than the 

mitochondrion or actin cytoskeleton. Accurate predictions are not confined to mitochondrially localized 

genes, suggesting that computation can discover more diverse gene functions than a screen based only on 

localization data. 
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While the predictions from our second iteration were verified at a rate higher than that of the 

random set, the discovery rate decreased relative to our first iteration. This suggests that we may 

be nearing the limit of predictions that can be verified using the single gene knockout assay 

employed in this study. Among our predictions that remain unconfirmed, some may still be 

involved in mitochondrial inheritance without exhibiting a significant phenotype using these 

assays. One of our top unconfirmed predictions, RMD9, was recently shown to synthetically 

interact with the known mitochondrial insertase, Oxa1 (Nouet, Bourens et al. 2007). Our 

remaining confident, but unconfirmed, predictions may thus be further characterized by double-

knockout or over-expression studies. 

Additionally, while the prediction methods differ with regard to which aspects of mitochondrial 

biology they best capture (Figure 14 and Figure 15), the methods begin to converge on similar 

predictions after just one round of re-training. Upon iteration, the correlation between the 

predictions of each method increased greatly (Figure 16). This convergence indicates that we 

have expanded our knowledge of this area to a level of biologically reasonable generality, since 

very different computational approaches can now arrive at similar conclusions. It also suggests 

that we have successfully avoided bias toward any one functional aspect of the mitochondria 

caused by over-reliance on individual methods. 

These aspects of iterative learning - breadth and convergence - are especially important as the 

field moves to less well-studied areas of biology and to less well-understood organisms. Iterative 

applications of computational analysis and directed experimentation provide a means to refine 

the set of novel predictions and to increase the amount of information used for training. Even 

when beginning with relatively little information, this process can enable the accurate annotation 

of a significant number of novel participants in a biological process of interest. 
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Conclusion 

In order to fulfill the broad promise of computational functional genomics, we must undertake 

large-scale, iterative efforts to predict, evaluate, and experimentally verify novel gene functions. 

Our study demonstrates the utility of these types of approaches, and we have made several 

observations potentially relevant to any computationally directed experimental setting. We find 

that both characterized and uncharacterized proteins can be fruitful candidates for laboratory 

investigation. Our results demonstrate that different computational methods can generate 

accurate but unique predictions, with characteristics dependent on both their underlying data 

and algorithmic basis. As such, utilizing an ensemble of diverse methods increased the biological 

breadth of our newly characterized genes. Further, the iterative use of an ensemble with rigorous 

laboratory experiments allowed us to confirm roles for additional genes and to converge on a 

refined prediction set. 

An important aspect of this study discussed more thoroughly above is the enrichment of our 

novel discoveries for subtle phenotypes. Among the novel predictions examined in this study, 

subtly (but significantly) altered mitochondrial inheritance rates comprised 80% of the confirmed 

phenotypes; the remainder exhibited the more extreme respiratory deficient phenotype. Of the 

genes with prior literature evidence, only 36% exhibited altered inheritance rates, while the 

majority were respiratory deficient. Biologically, this is relevant in the study of the molecular 

mechanisms of human disease, since genetic disorders are often caused by mutations that only 

partially impair protein function (Perocchi, Mancera et al. 2008). From a computational 

perspective, it represents an opportunity to explore an untapped reservoir of novel biology. 

Many extreme phenotypes have already been discovered by high-throughput screens. 

Conversely, experimental assays sensitive and quantitative enough to detect these more subtle 
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phenotypes can be more difficult and time-consuming, and they can thus benefit greatly from 

computational direction. 

Computational methods are critical in a field where the collection of functional genomics data is 

outpacing the characterization of novel biological knowledge from these experiments. While we 

used three specific computational approaches to study a particular biological process in yeast, 

our results demonstrate the broader applicability of combining functional prediction methods 

with experimental efforts. By directing laboratory investigations to more promising candidates, 

we can reduce the amount of time and effort required to discover new biology. This includes the 

characterization of multiple functions for individual proteins, an area still largely unexplored. 

Through the careful combination and iteration of computational and experimental biology, the 

rate and breadth of discovery can be enhanced in a variety of conditions, processes, and 

organisms. 

Methods 

A high level overview of our iterative prediction/experimentation/validation approach is shown 

in Figure 10. This section briefly details each of the steps involved in this process. 

Computational prediction methodologies 

We utilized three complementary computational gene function prediction methods in this study 

(bioPIXIE (Myers, Robson et al. 2005; Myers and Troyanskaya 2007), MEFIT (Huttenhower, Hibbs 

et al. 2006), and SPELL (Hibbs, Hess et al. 2007)). Each of the methods generated predictions of 

genes involved in the GO biological process mitochondrial organization and biogenesis (GO:0007005). 

All methods were initially trained and/or evaluated through cross-validation using the 106 

annotations to this process as of April 15th, 2007. Full details of these methods can be found in 
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their respective publications. Here we present a brief summary of each approach and a 

description of how each method was used to produce computational function predictions. 

bioPIXIE utilizes a suite of context-specific Bayesian networks to predict pairwise functional 

relationships between genes, which are then used to create fully-connected graphs weighted by 

confidence of functional interaction, w(i, j):  


w(i, j)   P FRij Dij
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where FRij refers to the presence or absence of a functional relationship between proteins i and j, 

Dnij refers to the observed association in dataset n between the proteins i and j, Bij is the biological 

context of the pair, and α is a normalization constant. This method integrates a wide variety of 

data sources, including physical interaction data (e.g. yeast two-hybrid, affinity precipitation, 

etc.), genetic interaction data (e.g. synthetic lethality, SLAM, etc.), gene expression data, and 

sequence data (e.g. coding and regulatory sequence similarity). The Bayesian classifier was 

trained within the biological process of interest, in this case using the genes annotated to 

mitochondrial organization and biogenesis. Predicted annotations to this term were derived from the 

resulting weighted interaction network by finding the significance of each gene's connectivity to 

known mitochondrial genes: 
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where ci is gene i's confidence of mitochondrial function, M is the set of genes known to be 

involved in mitochondrial organization, G is the set of all genes in the genome, w(i, j) is the 

predicted probability of functional relationship between genes i and j, HG(w, x, y, z) denotes the 

hypergeometric cumulative distribution function (CDF), and {x} indicates that x is rounded to the 

nearest integer. 

MEFIT also predicts pairwise functional relationships using a GO-trained naive Bayesian 

classifier; however, it is based entirely on gene expression data. Both MEFIT and SPELL (below) 

integrate roughly 2,400 microarray conditions that are grouped into ~120 datasets by publication 

and further subdivided by biological process examined. A ranked list of predictions was derived 

from the mitochondrial organization and biogenesis-specific network by calculating each gene's 

ratio of connectivity to known mitochondrial genes: 
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where ci, M, G, and w(i, j) are as above. 

SPELL utilizes the same gene expression microarray data as MEFIT, but uses a query-driven 

search algorithm to identify novel players. While SPELL is not trained in a supervised fashion, it 

assigns a reliability weight to each dataset based on the co-regulation of a specified set of query 

genes and then orders the rest of the genome based on their weighted co-expression with the 

query set. SPELL generated predictions by using all possible subset pairs of known 

mitochondrial organization and biogenesis genes as queries ("leave two in" cross-validation), and 

then averaged these rank orders together to produce a final prediction list. 



111 

 

Each of these methods generated a ranked list of all genes in order of confidence of involvement 

in mitochondrial organization and biogenesis. We assigned an estimated precision level (EP) to 

each gene, g, in each list by calculating the fraction of genes with a higher confidence level that 

were already annotated to this GO term (disregarding genes with no biological process 

annotation or with annotations to the mitochondrial ribosome due to unusually strong 

expression co-regulation): 

EP(g)
#  of annotated proteins with rank  rankg

rankg
 

We created an ensemble of the three methods by averaging these estimated precision levels for 

each gene. In this way, each prediction method contributed to the ensemble based on its 

reliability to recapitulate known biology. Further, this ensemble allows a gene with moderate 

confidence from multiple methods to rise in the overall rankings. 

Identification of under-annotated genes 

Our initial evaluation of the computational predictions led us to discover that 40 of our 

experimentally confirmed predictions were "under-annotated," meaning that they already had 

strong literature evidence for their involvement in mitochondrial organization and biogenesis but 

were not yet annotated to the corresponding GO term. In most of these cases, the information 

was already curated by SGD in the form of annotations to other GO terms, such as integral to the 

mitochondrial membrane or mitochondrial protein import. However, due to the structure of the GO 

hierarchy, these terms are not directly linked to our process of interest, mitochondrial organization 

and biogenesis. Beginning with these 40 genes, we identified an additional 95 genes that we believe 

have enough literature evidence to warrant their inclusion in this process without further 
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laboratory testing (including 2 genes tested that did not exhibit a significant phenotype). We have 

notified SGD of all 135 of these genes, and they are in the process of restructuring the GO 

hierarchy and making additional annotations. As of submission of this manuscript, SGD has 

already updated the annotations for more than half of these genes. 

Selection of candidates for experimental testing 

Novel candidates for laboratory evaluation were systematically chosen on the basis of both the 

three individual computational approaches as well as the ensemble of their predictions. As our 

experimental methodology (described below) is based on assessing phenotypes exhibited by 

single gene knockout mutants, we limited ourselves to consider only those genes with viable 

knockouts available in the heterozygous deletion collection. Additionally, we aimed to evaluate 

both genes with no previously known association to a biological process as well as genes known 

to be involved in an area other than mitochondrial organization and biogenesis. Thus, we divided 

the predictions into genes of entirely unknown function and genes with existing biological 

process annotations. 

We selected the 20 most confident genes of unknown function and the 20 most confident genes 

with existing annotations from each of the three individual methods for testing. Due to overlaps 

between the methods, this resulted in the selection of 88 genes as novel candidates (the overlap 

between methods is shown in Figure 13B). We then chose an additional 96 genes from the 

ensemble list of predictions (38 from genes of unknown function and 58 from genes with known 

non-mitochondrial function) to arrive at our total of 184 test candidates in our first round of 

laboratory evaluation. In this way we could evaluate the performance of each individual method 

as well as the ensemble as a whole. 
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Of these predictions chosen for testing, we identified 42 as under-annotated, whereas the 

remaining 142 predictions have no previous literature evidence for involvement in mitochondrial 

maintenance. We selected 6 additional test candidates from the existing annotations to 

mitochondrial organization and biogenesis, resulting in a total of 48 genes with prior literature 

evidence for involvement in this process. We also chose 48 genes at random from the set of all 

viable single gene knockouts in order to establish baseline rates of phenotypic positives. It should 

also be noted that by chance we would expect some overlap between our random selection of 

genes and our novel candidates; in our case, 3 genes are in common between these two groups. 

Experimental methodologies and evaluation of results 

We utilized two experimental approaches to assess a gene's involvement in mitochondrial 

organization and biogenesis. Both of these methods quantitatively measure a single gene 

knockout phenotype in comparison to the same phenotype for matched wild type strains. Also, 

these methods were performed in replicate for each candidate examined such that robust 

statistical analysis could be performed on the results. 

Strain preparation 

For all of the genes examined, six independent isolates of complete ORF deletions were obtained 

from freshly sporulated strains from the yeast heterozygous deletion collection (Tong, 

Evangelista et al. 2001; Amberg, Burke et al. 2005).  

Petite frequency assay 

Yeast is able to grow and proliferate even without functional mitochondria on fermentable 

carbon sources. As such, yeast cells occasionally fail to pass aerobic respiration competent 

mitochondria on to daughter cells, but these cells can continue to proliferate. Cells lacking 
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functional mitochondria are called petite cells. In this assay, we assessed the rate at which single 

gene knockout strains produced petite offspring. A significantly altered petite formation 

frequency is indicative of a defect in mitochondrial biogenesis and inheritance (Ogur and St John 

1956; Ogur, St. John et al. 1957). 

For each mutant strain tested, we grew several replicates of the strain for 48 hours using glycerol 

as a carbon source. Strains severely deficient in their ability to maintain functional mitochondrial 

cannot grow on glycerol and were classified as respiration deficient in this first stage. Strains able 

to grow on glycerol were diluted and plated for single colonies on rich media (Amberg, Burke et 

al. 2005), which releases the requirement for functional mitochondria. Thus, as colonies formed, 

cells without functional mitochondria were generated. When the colony is fully formed, it is a 

mixture cells with functional mitochondria and cells without functional mitochondria. We 

measured this ratio by re-suspending a colony and plating a dilution of this re-suspension such 

that 100-300 colonies are formed on a plate. By overlaying with soft agar containing tetrazolium, 

cells with functional mitochondria were stained red, while cells without functional mitochondria 

remained white. The ratio of white cells to total cells gives the petite frequency. Eight 

independent petite frequencies were measured for each strain tested. The distribution of these 

frequencies was compared to the frequency of petite generation in wild-type yeast. Strains 

identified as having the altered mitochondrial inheritance phenotype in this assay exhibit at least 

a 20% change in petite frequency from wild type, and have a p-value of less than 0.05 when 

comparing the petite frequency distributions of that strain to the wild-type petite frequency 

distribution, using a Mann-Whitney U test. 
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Assessing the comparative accuracy of the computational methods 

In order to compare which aspect of mitochondrial biology was best captured by each of the 

computational methods, we created a breakdown of known mitochondrial biology into several 

sub-groups. Based on the 106 original annotations and the literature evidence for the 135 under-

annotations we created 7 more specific sub-groups of mitochondrial biogenesis genes shown in 

Figure 14. Given the prediction ordering of each computational method from our first iteration 

(i.e. using the original 106 genes as the training set) we calculated the average precision for each 

of the 7 more specific groups for each of the three computational approaches. The average 

precision was calculated for each sub-group, G, as 

APG
1

G
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where ranki is the rank order of the ith gene appearing from the sub-group in the ordered 

prediction list. For display in Figure 13, the average precisions were normalized by the expected 

average precision if the genome were ordered randomly, which corresponds to the number of 

genes in each sub-group divided by the number of genes in the genome. 

Iterative re-training, prediction, and verification 

After our first round of testing, 122 of the 184 predictions were found to have a significant 

phenotype strongly indicating involvement in mitochondrial organization and biogenesis. 

Combined with the original 106 annotated genes and the 95 genes identified as under-annotated, 

this results in a total of 323 genes. Each of the three computational methods was re-applied using 

this updated training set of 323 genes and the same procedure was used to form an updated 

ensemble list of predictions. We selected 52 of the genes with the highest confidence from the 
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updated results that were not previously tested for a second round of laboratory investigation. 

The same experimental assays and evaluation procedures were used, and an additional 17 genes 

demonstrated a significant phenotype, resulting in a total of 139 out of 234 total predictions 

indicating involvement. 

Performance Evaluation: Incomplete Knowledge Impedes Comparative 

Evaluations 

Methods for gene function prediction and inference of biological networks have recently been of 

interest due to the growing availability of highly informative genomic data. Many different 

learning models have been applied to the problem, including kernel methods (Lanckriet, Deng et 

al. 2004; Barutcuoglu, Schapire et al. 2006), Bayesian networks (Jansen, Yu et al. 2003; 

Troyanskaya, Dolinski et al. 2003; Sachs, Perez et al. 2005), and graph-based approaches (Karaoz, 

Murali et al. 2004; Lee, Date et al. 2004). In these methods (and in this manuscript), "gene function 

prediction" is the task of associating genes with specific biological processes at the cellular level. 

Many of the methods used for this problem are similar to those used in predicting the 

biochemical function(s) of a gene (e.g. kinase activity), but here we focus specifically on the 

problem of predicting involvement in biological processes rather than molecular functions. 

All of these approaches fall into the broad category of supervised machine learning classifiers. As 

such, each method requires trusted sets of examples from the classes it is learning about (e.g. a set 

of known DNA repair genes for learning about the response to DNA damage, etc.) These gold 

standard sets of genes are typically derived from repositories of gene annotations such as the 

Gene Ontology (Ashburner, Ball et al. 2000), KEGG (Kanehisa, Araki et al. 2008), or MIPS (Ruepp, 
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Zollner et al. 2004) databases. Given such a standard and a collection of training data, classifiers 

can be learned from the data using the algorithm of interest. The same gold standard is typically 

used for both learning (training) and assessing classifier performance (testing), usually through 

such techniques as hold-out testing, cross-validation, or jack-knifing (Mitchell 1997). New and 

improved function prediction algorithms are often then justified based on their performance 

relative to existing methods in such evaluations. 

Clearly, these gene annotation databases play a central role in the successful application of 

machine learning techniques to gene function prediction. In fact, this is one of the major reasons 

why so many published methods have been developed and applied only in well-characterized 

model organisms. Gene annotations are generally considered to be more complete for such 

organisms, largely because the biological systems themselves are better understood and because 

of specific annotation efforts in model organism communities (e.g. SGD for yeast (Hong, 

Balakrishnan et al. 2008)). However, even in S. cerevisiae, one of the most extensively curated 

organisms, approximately 20% (~1,100 of ~5,800) genes have no annotations within the biological 

process Gene Ontology. Furthermore, the majority of the remaining genes (~60%) have only a 

single GO term annotation, which likely fails to capture the multiple cellular roles many genes 

are expected to play. The situation in higher eukaryotes such as mouse and human reflects an 

even greater degree of incompleteness. 

The incomplete state of current gene annotations immediately raises at least two questions: how 

does this affect our ability to develop effective machine learning approaches, and how can we 

accurately estimate their performance when much of the ground truth is yet to be established? 

We address these issues with a comprehensive experimental validation of gene function 

predictions related to mitochondrion organization and biogenesis in S. cerevisiae. We employed 
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three previously published approaches for predicting gene function from large collections of 

microarray (Huttenhower, Hibbs et al. 2006; Hibbs, Hess et al. 2007) and other genomic data 

(Myers and Troyanskaya 2007). The most confident predictions from all three methods were 

tested, along with a collection of positive controls (genes known to play a role in mitochondrial 

function). In all, we tested 241 unique genes for association with mitochondrial function, and this 

experimentally confirmed set serves as the basis for answering fundamental questions about 

classifier performance. Coupled with our initial training data and GO-based standard, we 

provide this data as a benchmark for the experimentally validated evaluation of function 

prediction methods. 

In our evaluation, we find that machine learning approaches can learn effectively even from 

current, limited functional annotations; our classification accuracy as confirmed through 

laboratory experiments is much higher than estimated for all three methods (an average of ~40% 

higher precision at 50% recall). However, we also observe substantial discrepancies in the 

estimated and actual relative performance of different prediction methods, even those based on 

exactly the same training data. These discrepancies have serious implications in comparative 

prediction evaluation, which we discuss below. 

The organization of this paper is as follows: we first describe the details of our experimental 

validation, including a brief summary of prediction methods and the experimental assays used to 

test mitochondrial function. Second, we present a comparison of estimated classifier performance 

(based on cross-validation) with actual classification accuracy (based on experimental results). 

Finally, we conclude with a discussion of these results and their implications for the general task 

of predicting gene function. 
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Methods 

To successfully combine computational gene function prediction with medium-throughput 

experimental validation, we employed a pipeline summarized in Figure 16. The system was 

bootstrapped by generating predictions from three computational methods (detailed below) that 

consume information from the Gene Ontology (Ashburner, Ball et al. 2000). These three methods 

generated ranked lists of genes to be assigned to the mitochondrion organization and biogenesis 

(MOB) term, which were then combined into a master list of testable predictions. The first 

evaluation was performed on these predictions using only information currently in GO. 

Genes predicted to function in the mitochondrion were then further validated using medium-

throughput laboratory experiments: assays covering several hundred genes over the course of 4-6 

person-months with the accuracy of low-throughput techniques. In the case of MOB, this 

consisted of a petite frequency assay (detailed below) supplemented with semi-automated liquid 

growth rate measurements, both yielding statistically rigorous results. Genes verified in this 

manner to function in the mitochondrion were added to the GO-derived positive standard, 

augmenting the information available to the computational methods and allowing more accurate 

predictions to be generated. This allowed a second evaluation of our predictions to be performed 

incorporating the results of our laboratory experiments. 

Taking advantage of these experimental results allowed the generation of new, more accurate 

lists of genes predicted to function in mitochondrial biogenesis. These lists were recombined, and 

genes newly predicted to have mitochondrial function were again experimentally validated. We 

found that the accuracy of both the individual prediction methods and of the combined 

predictions was greatly underestimated by the initial GO-derived standard. This implies that 

while GO provides enough knowledge to enable predictive machine learning, GO annotations 
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alone are insufficient (at least for the MOB term) to fully describe a biological process or to allow 

comparative method evaluation. 

Computational predictions 

The three systems employed to generate computational function predictions were bioPIXIE 

(Myers, Robson et al. 2005; Myers and Troyanskaya 2007), MEFIT (Huttenhower, Hibbs et al. 

2006), and SPELL (Hibbs, Hess et al. 2007). The systems' implementation details are provided in 

their respective publications; in brief, bioPIXIE predicts pairwise functional relationships using a 

Bayesian framework consuming diverse genomic experimental data. This framework includes 

one Bayesian classifier per biological context of interest, where in this case, each context was an 

individual Gene Ontology term. A positive standard generated from GO was used to learn 

conditional probability tables specific to MOB. Predicted annotations to this term were derived 

from the resulting weighted interaction network by finding the significance of each gene's 

connectivity to known mitochondrial genes: 
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where ci is gene i's confidence of mitochondrial function, M is the set of 106 genes annotated to 

MOB, G is the genome, w(i, j) is the predicted probability of functional relationship between 

genes i and j, HG(w, x, y, z) denotes the hypergeometric probability distribution, and {x} indicates 

that x is rounded to the nearest integer. 
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MEFIT also predicts pairwise functional relationships using a collection of GO-trained naive 

Bayesian classifiers. It consumes gene expression data drawn from ~2,500 microarray conditions 

drawn mainly from GEO (Barrett, Suzek et al. 2005), SMD (Demeter, Beauheim et al. 2007), and 

ArrayExpress (Parkinson, Kapushesky et al. 2007). A ranked list of mitochondrial function 

predictions was derived from the MOB-specific network by calculating each gene's ratio of 

connectivity to known mitochondrial genes: 
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where ci, M, G, and w(i, j) are as above. 

SPELL is a query-driven system that also consumes these ~2,500 microarray conditions. When 

provided with a set of query genes, SPELL preprocesses each microarray dataset using SVD and 

weights them based on the correlations among the query genes in that data. Using these weights, 

the remainder of the genome is ranked by weighted average correlation with the query genes. To 

generate a set of predicted mitochondrial genes, the 106 genes annotated to MOB were used as a 

query. In all cases, these systems were initially trained and evaluated on the GO structure and 

annotations from April 15, 2007. 

These three prediction methods were also used to produce an ensemble prediction set using 

estimated precision. A unified standard was formed by considering the 106 genes annotated to 

MOB to be positive examples, withholding the 80 genes of the mitochondrial ribosome (due to 

inordinately strong coexpression; see (Myers, Barrett et al. 2006)), and considering the remaining 

4,824 annotated genes in the genome to be negative examples. This allowed the assignment of 
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standard precision/recall scores to each gene in each method's ranked list of predictions (see 

Figure 17). These precisions were thus comparable across methods (unlike the method-specific 

connectivities and weights), and the final combined prediction list was generated by ranking each 

gene by its average precision across the three methods. 

Laboratory experiments 

The primary assay used to validate our mitochondrial predictions was a measurement of petite 

colony frequency, supplemented with a measurement of growth rate in liquid medium. Detailed 

methods for these assays can be found above; in summary, we performed all assays on haploid 

deletion mutants drawn from the S. cerevisiae heterozygous deletion collection (Tong and Boone 

2006). Knockout strains corresponding to genes with predicted mitochondrial function were 

drawn from the collection, sporulated, selected for haploids, and assayed as follows. 

"Petite" yeast colonies form from yeast lacking functioning mitochondria (specifically, 

mitochondrial DNA). The mitochondrial genome is naturally somewhat unstable, and wild type 

S. cerevisiae forms petites in our assay with a base frequency of ~23%. To compare this base rate 

with that of each deletion mutant, we sporulated the heterozygous deletion collection, isolated 

six independent deletion mutants for each gene tested, and grew these strains in media requiring 

aerobic respiration. The resulting plates were stained with tetrazolium, turning respiring colonies 

red and leaving petite colonies white (Ogur, St. John et al. 1957). This allowed colony types to be 

counted manually; these counts were converted into percentages, which were then compared 

against wild type for significance using the Mann-Whitney U test. 

 

 



123 

 

Microarray Data Other Genomic Data

Preprocessing and normalization

Gene Ontology

GO:0007005
Mitochondrion 

organization and 
biogenesis

SPELL MEFIT bioPIXIE

Experimental Validation
Petite Frequency Respiratory 

Growth Rate

Gold Standard
(Genes known to participate in 

mitochondrion organization)

Query-driven search of 
normalized, weighted 

expression data

Context-sensitive 
Bayesian integration of 
normalized expression 

data

Context-sensitive 
Bayesian integration of 

heterogeneous genomic 
data

Combined ensemble of individual methods’ predictions

 

Figure 16: Overview of the system employed for computational function prediction and medium-

throughput experimental validation. We used three computational data integration systems to predict S. 

cerevisiae genes functioning in the area of mitochondrion organization. An initial gold standard was 

generated from the Gene Ontology and used to train two of the machine learning systems: MEFIT, which 

integrates microarray data, and bioPIXIE, which integrates other diverse genomic data. SPELL was queried 

using mitochondrial genes from the same gold standard. Genes predicted to function in mitochondrion 

organization after training or as the result of queries were combined and used to select candidate genes for 

experimental validation. Genes that significantly perturbed mitochondrion organization when deleted were 

added to the gold standard, the three prediction methods were retrained, and a second round of 

experimental validation was performed. By augmenting the gold standard with experimentally validated 

and "under-annotated" genes, we increased the collection of mitochondrion organization and biogenesis 

genes by 220%. 
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Growth curves in liquid media (a measurement of optical colony density over time) were 

determined using a Tecan GENios plate reader and incubator to record colony densities in 96-

well plates every 15 minutes over 42 hours. Each plate contained 12 mutants with six replicates 

each plus 24 wild type replicates. Growth rates were derived from these curves by using Matlab 

(MathWorks, Natick, MA) to fit an exponential model: 

cxbay 2  

This model was fit over each whole curve, the first 2/3, of the first half, whichever yielded the 

best fit (to avoid plateau effects and to model only exponential growth). Wells with an adjusted 

R2<0.9 were marked as non-growing, and growth rates for the remaining wells were determined 

by subtracting the row, column, and plate means for each well from the exponential parameter c. 

This yielded a rate c' for each well, and each knockout's c's were tested for significance against the 

wild type population using a Mann-Whitney U test. 

To detect colonies growing exponentially but with significant differences in fitness, smoothed 

maximum densities d were calculated for all wells deemed exponential. Wells in which the 

maximum density was less than twice the minimum were marked as non-growing. From the 

remainder, plate, row, and column averages were subtracted from each well, generating adjusted 

maxima d'. Each mutant's d's were again compared with the wild type values using a Mann-

Whitney U test. In both exponential growth and maximum saturation measurements, mutants 

with more than one outlier were deemed inconclusive and excluded from the results. 

All defects specific to respiratory growth (i.e. significant in glycerol but not glucose) were 

considered. Mutants that failed to grow by both exponential growth and maximum density 

measurements were assigned a severe phenotype; mutants that failed to grow by one 
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measurement or were significantly defective in both were assigned a moderate phenotype. 

Mutants with a significant defect by only one measurement were assigned a weak phenotype, 

and all other mutants received no phenotype. 

Validation methods and criteria 

Each stage of our experimental validation relied on a combination of controls and replicates to 

ensure statistical rigor. Several categories of mutants were tested, beginning with independently 

isolated wild type control colonies. We chose positive controls for the various experimental 

assays from among the 106 genes annotated to MOB. Finally, three types of predictions were 

tested: under-annotated genes with literature support for mitochondrial function (but not 

annotated to MOB; these were treated as positive controls), known genes with some GO 

annotation outside of MOB (and no current literature support for mitochondrial function), and 

unknown genes with no current GO annotation. See above for a complete list of the 48 positive 

controls (six from MOB, 42 under-annotated), 76 knowns, and 117 unknowns tested in our 

assays. 

The results of experimental assays were deemed significant enough to validate a gene's 

involvement in MOB only after passing stringent statistical requirements. In the case of the petite 

frequency assay, any mutant differing from the wild type controls with effect size >20% and 

p<0.05 was deemed to be verified to MOB. These genes were added to the augmented standard 

used for retraining and in Figure 17. The growth rate assay was used to explore more specific 

subprocesses of the general MOB term, e.g. respiratory growth as discussed below. 
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Results 

It is striking that even in S. cerevisiae, one of the organisms most thoroughly annotated in current 

functional catalogs, publicly available experimental data provide a wealth of gene function 

information not captured by the GO mitochondrial organization and biogenesis term. Figure 17 

contrasts the estimated accuracy of our three function prediction systems (and of the combined 

consensus predictions) before and after multiple rounds of experimental validation. Our initial 

predictions were generated using only preexisting experimental data and GO annotations; 

scoring these against GO (without holdout data) yields Figure 17A. Figure 17B evaluates the 

same predictions using an answer set augmented with the results of our first round of 

experimental validation. Figure 17C and D show the equivalent difference after the prediction 

methods are retrained on this augmented standard and after the standard is augmented again by 

a second round of experimental validation. 

Of particular note is the difference in performance between Figure 17A's GO-based standard and 

Figure 17B's experimentally verified standard, also captured in the expected versus actual 

phenotype counts of Figure 18. Figure 17A and B's precision/recall curves are generated using the 

same set of computational predictions made using only existing high-throughput data and the 

Gene Ontology - but evaluation using GO alone vastly underestimates their accuracy. One may 

conclude from this that, at least in certain functional areas, functional catalogs such as GO 

currently possess sufficient depth to direct accurate machine learning in large datasets, but they 

do not have sufficient breadth to fully characterize novel predictions generated in this way from 

experimental data. We stress that this is no fault of GO in particular or of genomic curators in 

general; it is simply a product of the large amount of biology left to discover even in time-

honored model organisms. 
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Comparative evaluation of predictions can be misleading 

This variation in functional coverage within a gold standard, when combined with similar 

functional variations in prediction methods, can substantially misrepresent both global (Figure 

17A and Figure 18) and function-specific prediction accuracy. As indicated by the experimentally 

validated standards of Figure 17B and D and the experimental phenotypes in Figure 18, our three 

prediction systems perform with roughly equivalent overall accuracies. However, there is 

sufficient diversity in the three prediction sets that they overlap quite differentially with the 

existing 106 GO MOB annotations. Prior to experimental validation, for example, bioPIXIE ranks 

genes such as ARP2 and ARP3 very highly; these are present in the original MOB term and thus 

raise bioPIXIE's precision in Figure 17A. However, genes such as YMR157C and YMR098C were 

ranked highly by MEFIT and SPELL but not initially annotated to MOB. Our experimental assays 

found that these genes do indeed function in the mitochondria, revealing in Figure 17B that all 

three prediction methods were performing quite well despite their initially low apparent 

precision. 

This differential masking of performance by incomplete standards has clear implications in 

comparative evaluation of biological function predictions. Due to the highly complex nature of 

systems biology and the amount of knowledge still missing from even the best-curated functional 

catalogues, it becomes possible - even likely - to learn "real biology" that is not reflected in a gold 

standard and thus degrades, rather than improves, apparent performance. Conversely, it is 

equally possible to overfit a standard, improve performance on computational evaluations, and 

produce fewer experimentally verifiable predictions. It is thus essential that, until a greater 

understanding of the breadth of systems biology allows the construction of more complete 
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functional catalogues, computational predictions are validated using appropriately designed and 

scaled laboratory experiments. 

Many validated predictions assign mitochondrial function to genes also annotated elsewhere 

Of 142 mutants validated to MOB by our petite frequency assay, 99 were novel predictions with 

no prior literature support of mitochondrial function. 39 of these novel predictions, almost 40%, 

already possessed annotations to non-mitochondrial functions within the Gene Ontology. This 

underscores a biological detail not generally reflected in current functional catalogs: many genes 

participate in multiple biological processes. While GO and other functional catalogs are 

specifically designed to encode such characteristics, their significance and commonality has 

perhaps not been fully appreciated. This underrepresentation of functional plurality in current 

standards can, like the lack of coverage discussed above, obscure or bias comparative evaluation 

of gene function predictions. 

Medium-throughput experiments validate predictions 

The fact that these experimental validations were done in medium throughput is key to achieving 

both coverage and reliability in our augmented standards. In addition to the global evaluative 

power of our petite frequency assay demonstrated in Figure 17 and Figure 18, directed medium-

throughput experiments such as the growth rate assay can indicate specific sub-functions for 

particular genes. For example, the myosin MYO3 and the functionally uncharacterized AIM8 

both show much higher than expected petite frequencies (150%, p<10-3 and 136%, p<10-3). 

However, a myo3∆ mutant shows no significant growth defect in liquid media, while aim8∆ is 

significantly impaired (achieving neither exponential growth nor a single doubling of culture 

density). While the petite frequency assay alone could not differentiate these genes' activities 

within MOB, the more specific growth rate assay suggests that AIM8 may function specifically 



129 

 

within respiratory growth. Additionally, this myo3∆ phenotype is in interesting contrast to 

MYO5, which leaves petite frequency essentially unchanged when deleted (108%, p>0.2); to our 

knowledge, these two myosins have not previously been shown to act differentially in 

mitochondrial inheritance (Moseley and Goode 2006). 

 

Figure 17: Prediction accuracy as estimated by prior knowledge, one round of laboratory validation, and a 

second iteration of experimental validation. A) Performance of three function prediction methods and their 

ensemble as evaluated by a GO-based gold standard. B) Accuracy of the same predictions as evaluated by a 

standard augmented with the results of one round of experimental validations (189 tests). C) New 

predictions (generated by the same three methods) evaluated using the augmented standard of B. D) 

Accuracy of these predictions evaluated using additional information from a second round of laboratory 

experiments (52 additional tests). Actual predictive accuracy as evaluated by experimental results is very 

different than would be expected from a GO-based evaluation. 
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Figure 18: Comparison of phenotype frequencies expected from a computational gold standard versus 

experimentally validated frequency. Expected mitochondrial phenotype AUPRCs were calculated from 

Figure 17A using only the Gene Ontology; experimentally validated AUPRCs use the augmented standard 

of Figure 17D. Phenotype frequencies and accuracy of computational predictions are much higher in all 

cases than anticipated by preexisting functional catalogs. 
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Conclusions 

We have described the results of a large-scale experimental validation of gene function 

predictions, focusing on the impact of an initially incomplete standard on machine learning 

behavior and evaluation. While we used mitochondrial organization in yeast as a model system, 

there are important global lessons we can derive from the results. We have demonstrated that, 

while a variety of machine learning methods can discover novel biology based on incomplete 

gold standards, a lack of functional coverage in these standards can seriously bias subsequent 

evaluations of these learning methods. This difficulty in evaluation emphasizes the importance of 

rigorous experimental validation of computational predictions. 

One of the most striking observations throughout our validation process was the lack of existing 

annotations for yeast mitochondria. Our work began in April 2007, at which point there were 106 

S. cerevisiae genes associated with the GO term mitochondrion organization and biogenesis. 

Manual examination of each method's top predictions revealed another 135 genes that had ample 

evidence in the literature for mitochondrial function but had no existing annotation to the MOB 

GO term. Of the 193 additional novel predictions we tested experimentally, we confirmed 

mitochondrial impairment phenotypes for 99 proteins (51%), bringing the total number of new 

MOB annotations to 339. Thus, we have effectively increased the number of annotations to this 

GO term by 220% with only a few months of computationally directed experiments and literature 

review. 

We expect that the fraction of unannotated genes in other yeast processes is similar to that of 

MOB, with the exception of intensively studied processes such as RAS signaling or transcription. 

Mitochondrial processes are highly conserved across eukaryotes, and yeast mitochondria have 

been heavily used as a model system. Thus, annotated knowledge in this area should be 
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representative of general biological processes. This is not a shortcoming of annotation efforts, but 

simply an effect of the relative novelty of genome scale biology, particularly for organisms more 

complex than yeast. This incompleteness should be kept in mind as we use current functional 

catalogues as gold standards and develop new functional prediction techniques. 

A second key observation about our results is that gene function prediction methods are much 

more reliable in this context than anticipated from a purely computational evaluation. For 

instance, using only the Gene Ontology, we estimated that 5-25% of the genes we tested would be 

true positives (the range of average precisions of the three individual methods). However, we 

confirmed mitochondrial phenotypes for 51%, an increase of two- to ten-fold over expected. 

These confirmed phenotypes include both genes of previously unknown function as well as 

genes with known involvement in other processes. Moreover, these confirmations are not just 

peripherally related to mitochondrial function, but some appear to play crucial roles in core 

mitochondrial activities (e.g. respiration or mitochondrial inheritance). These results indicate that 

our prediction methods were able to correctly find novel biological function for 99 proteins and 

to assign under-annotated function to 135 additional proteins. 

Not only does this result speak well of the particular methods employed here, but more 

importantly, it demonstrates the promise of computational approaches to function prediction as a 

whole. While current gold standards remain incomplete, this does not necessarily impair the 

machine learning process; the quality and quantity of available genomic data are sufficient to 

convey rich functional information to existing methods. The limitation to such approaches on a 

large scale is instead the scope and availability of experimental follow-up and validation. 



133 

 

A less optimistic conclusion of this study is the difficulty of relative performance comparisons 

between function prediction methods using the currently available incomplete gold standards. 

We evaluated three different methods using the April 2007 GO annotations and compared this to 

a standard augmented with our experimental validations. We found that the methods' relative 

performance across these two evaluations was dramatically different, even for two methods 

based on identical training data. A comparative evaluation based solely on existing annotations 

was misleading due to incomplete knowledge. 

Unfortunately, functional annotation repositories are one of the only sources of comparative 

evaluations of prediction methods short of more resource-intensive experimental validation; 

computational groups are often left with no other recourse when justifying publication of new 

methods. We certainly do not argue that such evaluations should not be done. However, our 

findings draw into question the field's ability to accurately resolve performance differences 

between competing approaches. This observation suggests that the application of existing gene 

function prediction methods in a laboratory setting can produce more tangible biological results 

than can the incremental refinement and development of new computational approaches. 

When possible, integrative collaboration with experimental groups offers an initial solution to 

this problem. This is, of course, nontrivial; experimental studies based on computational 

predictions require special attention from computational groups and, obviously, substantial 

commitment from experimental labs. However, such collaborations can be highly rewarding 

from both computational and experimental perspectives: our study resulted in hundreds of novel 

candidates for detailed biological follow-up experiments, all of which were identified solely 

through computation. 
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Here, we have experimentally validated 99 computational predictions of novel mitochondrial 

gene function in yeast; in the process, we have demonstrated that the current incompleteness of 

gene annotation repositories does not necessarily impair computational function prediction, but 

it does hamper comparative performance evaluation of different techniques. Through the 

application of medium-throughput experimental validation, we rapidly expanded the annotation 

of the GO mitochondrial organization and biogenesis term by ~220%, and we have begun the 

process of as-signing more specific function to several of these genes. We anticipate that this 

combination of computational effort with rapid laboratory validation can be applied to a variety 

of other biological processes (e.g. DNA repair) to generate more complete, area-specific 

functional catalogues. These would in turn provide more accurate bases for the comparative 

evaluation of computational techniques, although this is still not a substitute for the depth, 

precision, and scientific potential of collaborative computational and laboratory investigation. 

  



135 

 

Efficiency and Effectiveness: Software for Biologists and 

Bioinformaticians 

Since the earliest applications of specialized software to biological problems (Altschul, Gish et al. 

1990; Eisen, Spellman et al. 1998; Ewing, Hillier et al. 1998), it has been necessary to finely balance 

a variety of computational and biological considerations. From the standpoint of computer 

science, much of the research import and challenge of the field lies in the algorithms, often from a 

theoretical perspective: sequence alignment can be solved by dynamic programming (Needleman 

and Wunsch 1970; Smith and Waterman 1981), DNA crossovers can be framed as a sorting 

problem (Gates and Papadimitriou 1979), and Hidden Markov Models can be used to identify 

genes within genomes and domains within proteins (Baum, Petrie et al. 1970). As in any field 

involving applied computation, the divide between algorithmic theory and practical software is 

always present, at times larger than others. 

From a biological perspective, the challenges to be overcome are quite different: again, as in any 

applied field, the engineering issues of efficiency, usability, and reliability often come to the fore. 

Some concerns are specific to biology; for example, when investigating a particular disease or 

pathway, it is often more important to know a few key molecular participants than it is to obtain 

a complete list of every peripherally related gene. This in turn can place a computational 

emphasis on precision at the expense of recall. Likewise, in light of the tremendous complexity 

and sparse prior knowledge regarding many molecular systems, it can be desirable to retain, 

visualize, or learn from all data, even records that might seem too noisy or insignificant to 

represent useful examples. To quote from a seminal paper on practical computational analysis of 

microarrays by Eisen et al: 
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"It is not the purpose of this paper to survey the various methods available to cluster genes on the 

basis of their expression patterns, but rather to illustrate how such methods can be useful to 

biologists in the analysis of gene expression data. We aim to use these methods to organize, but not 

to alter, tables containing primary data; we have thus used methods that can be reduced, in the 

end, to a reordering of lists of genes... we need to develop our ability to 'see' the information in the 

massive tables of quantitative measurements that these approaches produce." 

- Eisen, Spellman, Brown, and Botstein, PNAS 1998 

In this spirit, this chapter presents four examples of computational tools developed to address 

specific biological questions. First, the Sleipnir library brings several of the most critical aspects of 

applied computer science to where they are most needed in modern biology: it provides a 

complete C++ framework for analyzing and integrating genome-scale data. This includes the 

manipulation of microarrays and many other high-throughput data types, the analysis of 

biological sequences, convenient and uniform access to functional catalogs such as GO 

(Ashburner, Ball et al. 2000) and KEGG (Kanehisa, Araki et al. 2008), and machine learning tools 

including Bayesian networks (Druzdzel 1999) and Support Vector Machines (Joachims 1999). 

Efficient manipulation and learning from large collections of genomic data can be difficult or 

impossible without proper computational tools, which this library attempts to provide to the 

biological and bioinformatic communities. 

Second, we describe COALESCE, a comprehensive algorithm for regulatory network discovery 

from large data collections. COALESCE integrates gene expression measurements, genome 

sequence and transcription factor binding information, evolutionary conservation, nucleosome 

positioning, and any other appropriate data in a Bayesian framework to discover coregulated 
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biclusters, i.e. genes coexpressed under specific conditions, and the putative binding sites 

potentially responsible for their coregulation. Again, this process requires both careful 

algorithmic and software engineering development to perform rigorously and efficiently while 

also taking advantage of the depth and breadth of currently available data. Third, we discuss the 

Nearest Neighbor Networks (NNN) algorithm, designed to cluster microarray data with a 

specific biological goal of finding clusters enriched for functional similarity, as opposed to strictly 

tight coregulation. Finally, the Graphle tool provides a web-based interface for collaborative 

sharing and interactive exploration of large biological networks, ranging from protein interaction 

networks to predicted functional relationships to ontologies such as GO. All of these methods 

attempt to balance algorithmic novelty with biological applicability, while also bringing the best 

of both computational and biological worlds to their implementation. 

We would like to thank K. Tsheko Mutungu and Sajid Mehmood for their tremendous efforts on 

the COALESCE and Graphle systems, respectively, as well as Hilary A. Coller for her always-

insightful and helpful biological collaboration. 

Sleipnir: A Software Library for Computational Functional Genomics 

Whole-genome assays have now become pervasive, and the resulting wealth of data represents a 

new opportunity for biological discovery. A single genome-scale dataset can capture a snapshot 

of cellular function; integrative analysis of hundreds or thousands of genome-scale datasets can 

provide even more extensive systems-level insights regarding gene interactions under diverse 

conditions (Troyanskaya 2005). Integrated approaches have already resulted in important 
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biological discoveries (Myers and Troyanskaya 2007; Hong, Balakrishnan et al. 2008), and the breadth 

and depth of possible analyses will only increase as additional experimental data is collected. 

As the amount of data to be analyzed continues to increase, computational efficiency becomes a 

greater concern. Specialized resources exist to enable very high-throughput computing for 

specific applications (Swindells, Rae et al. 2002; Pekurovsky, Shindyalov et al. 2004), but few 

computational options exist allowing researchers to quickly mine large collections of genome-

scale datasets. 

To address this need, we have created the Sleipnir library for computational functional genomics. 

The library contains algorithms and data types for efficiently manipulating and mining very large 

biological data collections. The core C++ library can be integrated into computational systems to 

provide rapid analysis of functional genomic data. Additionally, a variety of tools are provided 

that use the library to perform common tasks: microarray processing, Bayesian and Support 

Vector Machine (SVM) learning, and so forth. Even when analyzing individual datasets, Sleipnir 

often out-performs existing utilities in processing time, memory usage, or both (Table 4). Tools 

provided with Sleipnir address common data manipulation requirements, in many cases 

processing hundreds of datasets on a standard desktop computer. Additionally, the core Sleipnir 

library can be easily employed to efficiently apply new algorithms to complex biological data. 
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Implementation Peak RAM (KB) Time (s) 

Bayesian learning (500 genes, 15 datasets) 

Sleipnir 1376 <1 

GeNIe 6832 4 

BNT 593180 15 

Bayesian inference (500 genes, 15 datasets) 

Sleipnir 1216 1 

BNT 273992 >600 

Missing value estimation (10% missing, k=10) 

Sleipnir 27232 195 

knnimpute 115708 368 

Hierarchical clustering 

Sleipnir 83188 156 

Cluster 3.0 176836 154 

MeV 198292 361 

K-means clustering (k=100) 

Sleipnir 8780 114 

Cluster 3.0 28544 102 

MeV 198292 361 

Table 4: Memory usage and runtimes for Sleipnir and a number of other common tools for Bayesian analysis 

and biological data manipulation (Druzdzel 1999; Murphy 2001; Troyanskaya, Cantor et al. 2001; Saeed, 

Sharov et al. 2003; de Hoon, Imoto et al. 2004). All microarray operations were performed on the 300 

conditions and 6,153 genes of (Hughes, Marton et al. 2000) using Euclidean distance. Bayesian operations 

were performed on simulated data using a binary gold standard and five randomly distributed values per 

dataset. Tests were run in a single thread on a 2GHz Intel Core 2 Duo. In every case, Sleipnir demonstrates a 

substantial advantage in speed, memory usage, or both. 
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Methods 

The Sleipnir library contains a wide variety of tools for consuming standard biological data 

formats, manipulating and normalizing data, and performing machine learning and prediction. 

These are discussed extensively in the user and developer documentation included with the 

library (http://function.princeton.edu/sleipnir) and are presented here in summary. 

Sleipnir provides C++ classes to parse pairwise interaction data and standard microarray file 

formats. Microarray data can be converted into pairwise similarity/distance scores using a variety 

of measures, discretized, normalized, randomized for bootstrapping or synthetic data 

production, split or merged, imputed, or clustered. 

To facilitate functional enrichment analysis, gene function prediction, and gold standard 

generation from known gene functions and relationships, Sleipnir provides a uniform interface to 

several organism-independent function annotation catalogs. Information from organism-specific 

annotations can be merged with these functional annotations. Sleipnir also includes collections of 

data structures for dealing with common biological entities: gene identifiers, sets of genes, groups 

of related files, etc. Other utility classes include resources for multithreading, a ready-made 

network client/server class, and a variety of mathematical and statistical tools. 

Sleipnir provides several tools for rapid machine learning and data mining. The SMILE Bayesian 

network library (Druzdzel 1999) and the SVM Light (Joachims 1999) library are used to learn and 

evaluate Bayesian or SVM models from very large collections of biological data. Arbitrary 

Bayesian structures are allowed, with parameters learned either discriminatively or generatively 

(Greiner and Zhou 2005) from data in a context-specific manner (Huttenhower, Hibbs et al. 2006); 

http://function.princeton.edu/sleipnir
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extremely fast customized learning and evaluation implementations are used for naive 

structures. 

Results 

While Sleipnir's efficiency in integrating and mining biological datasets is most critical for very 

large data collections, it is also practical for single dataset tasks and smaller analyses (Table 4). 

When compared to several common tools for microarray manipulation or Bayesian learning, 

Sleipnir consistently demonstrates a substantial advantage in runtime, memory usage, or both. 

These improvements arise from a variety of optimizations but are broadly attributable to the 

flexibility allowed by C++ in manipulating large quantities of individual data (microarray values, 

interaction pairs, etc.) What Sleipnir trades off in generality (e.g. with respect to BNT) or 

robustness to malformed input (e,g. with respect to MeV), it gains in speed, memory 

management, and overall scalability, allowing it to efficiently manipulate large data collections. 

The Sleipnir library is particularly useful for large integration tasks involving hundreds of 

diverse biological datasets; example applications of Sleipnir in such settings include 

(Huttenhower, Hibbs et al. 2006) and (Myers and Troyanskaya 2007). A schematic of such a task 

is shown in Figure 19, where Sleipnir was used to learn 200 context-specific Bayesian classifiers 

each integrating 186 S. cerevisiae datasets. Conditional probability tables were learned for each 

dataset within each context, entailing ~75,000 probability distributions. The resulting Bayesian 

classifiers were used to infer context-specific functional relationship networks, each consuming 

90MB of disk space and calculated in 16.3 minutes. Sleipnir also supports an online mode for 

functional relationship inference in which no additional disk space is consumed and individual 

context-specific functional relationships can be produced in as little as 100ns. Parallelization on 

four processor cores reduces the total learning and evaluation time by an optimal 4-fold speedup 
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(~13h each for Bayesian learning and inference). Every stage of this complex data integration and 

machine learning task was performed using Sleipnir and its associated tools. 

Discussion 

The Sleipnir library for computational functional genomics provides a wide range of data 

processing and machine learning algorithms optimized for integrating very large collections of 

heterogeneous biological data. These include algorithms for data integration, machine learning 

by Bayesian networks or SVMs, and data types for manipulating microarrays, gene identifiers, 

functional annotations, and other common biological entities. Several tools are provided with the 

core library to perform common tasks, and most algorithms are multithreaded or parallelizable 

for distributed computing. The Sleipnir library enables computational biologists to efficiently 

integrate thousands of genomic datasets and to rapidly mine them for biological knowledge. 

52 discrete interaction 
datasets (3.4M pairs)

8 continuous experimental 
datasets (1M pairs)

126 microarray datasets 
(2.4K conditions)

Automatic discretizationAutomatic discretization

2B data points consuming 7.7GB disk space

Gold 
standard

(10M pairs)
200 

processes of 
interest

Gene 
Ontology 

(2.1K terms, 
6.5K genes)

Pairwise similarity 
scoring (1.9B pairs, 46m)

Context-specific Bayesian 
learning (50h42m)

200 context-specific 
Bayesian networks

Bayesian inference 
(54h27m)

200 context-specific functional relationship networks 
(4.7B interactions consuming 17.5GB disk space)

 

Figure 19: Sample application of the Sleipnir library to integrate 186 heterogeneous genomic datasets in S. 

cerevisiae within 200 biological contexts. Blue boxes indicate externally generated data, green boxes data 

generated by Sleipnir, arrows processing performed by Sleipnir, and red bubbles highlight time-consuming 

tasks. Times were generated on a 2GHz Intel Xeon CPU; peak RAM usage was ~200MB. Sleipnir is 

extensively parallelizable, and running these tasks on four cores reduces processing time by an optimal 4-

fold to ~13h each for Bayesian learning and inference. 
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COALESCE: Data Integration for Biclustering and Regulatory Network 

Discovery 

While the genome sequence of an organism describes its complement of potential proteins, it is 

the controlled expression, translation, and modification of these proteins that allows cells to 

survive and grow. At the level of transcription and mRNA stability, a complex regulatory 

network of transcription factors, RNA binding proteins, and microRNAs governs the interactions 

between components of a cell's internal state and its external environment. Understanding the 

elements of this regulatory network and the stimuli to which it responds in higher organisms has 

been of increasing recent interest (Kloster, Tang et al. 2005; Reiss, Baliga et al. 2006; Elemento, 

Slonim et al. 2007) as a key to metazoan systems biology, particularly as genetic misregulation is 

a major cause of human disease. 

Here, we describe a Combinatorial Algorithm for Expression and Sequence-based Cluster 

Extraction (COALESCE) allowing the discovery of regulatory motifs and modules from large 

collections of genomic data. COALESCE takes advantage of Bayesian integration of multiple data 

types on a large scale to predict coregulated gene modules, the conditions under which they are 

coregulated, and the consensus binding motifs responsible for their regulation. Through a novel 

synthesis of gene expression biclustering, motif prediction, and data integration (including 

expression, DNA sequence, nucleosome positioning, and evolutionary conservation), 

COALESCE can successfully find coregulated modules for organisms ranging from E. coli to 

human beings and from data collections as large as 15,000 experimental conditions. 

We present the results of applying COALESCE to data from a wide range of organisms, 

including H. sapiens, M. musculus, C. elegans, S. cerevisiae, H. pylori, and E. coli. Using ~2,200 yeast 
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expression conditions, we recapitulate many known regulatory interactions (e.g. AFT2 in iron 

transport, STE12 activating mating genes) and highlight the importance of PUF family 3' UTR 

binding in a wide variety of targets, often ribosomal. In an analysis of ~15,000 human gene 

expression conditions, we extract a wide variety of putative upstream binding sites and potential 

3' miRNA sites. On synthetic data comprising 5,000 genes and 100 conditions with 10 "activators" 

and "repressors" generated from a randomized model, COALESCE successfully recovered 60-

90% of the affected genes, conditions, and binding motifs. In five sets of synthetic data containing 

no such regulators, COALESCE generated zero false positives. We are currently in the process of 

testing several novel transcriptional regulators of quiescence in human fibroblasts as predicted by 

COALESCE, as its ability to probabilistically leverage large collections of heterogeneous data is 

particularly suited to unraveling complex metazoan regulatory networks. 

NNN: Nearest Neighbor Networks for Functionally Informative 

Clustering 

The availability of DNA microarrays has made it possible to observe the transcript levels of every 

mRNA in an entire genome simultaneously. This has allowed researchers to monitor global 

changes in gene expression that occur in response to a cellular perturbation or the gene 

expression profiles characteristic of a particular state, such as a tissue type or a disease state. A 

major goal of integrative genomics is to interpret these gene expression patterns in order to 

define underlying signaling networks. 

As the bulk of publicly available coexpression data has grown, a variety of successful techniques 

have been proposed for its analysis. In broad terms, these include normalization and meta-
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analysis (Choi, Yu et al. 2003; Moreau, Aerts et al. 2003; Griffith, Pleasance et al. 2005; Hu, 

Greenwood et al. 2005), detection of differential expression (Ideker, Thorsson et al. 2000; 

Baggerly, Coombes et al. 2001; Cui and Churchill 2003), several forms of clustering (Eisen, 

Spellman et al. 1998; Heyer, Kruglyak et al. 1999; Cheng and Church 2000; Allison, Cui et al. 

2006), and many others. However, each time a new microarray dataset is produced, it is 

ultimately in the hands of the generating biologist(s) to inspect the data and to determine what 

biological insights it might provide. This initial inspection is often aided by classical clustering 

algorithms such as K-means (MacQueen 1967; Tavazoie, Hughes et al. 1999) or hierarchical 

clustering (Sokal and Michener 1958; Eisen, Spellman et al. 1998), both of which are intended to 

present an intuitive, accessible view of genes whose coexpression might indicate similar 

regulation or biological functionality. 

While these traditional algorithms can serve as a convenient first tool for microarray analysis, 

they can also be confounded by certain characteristics of biological data. K-means clustering, for 

example, requires prior knowledge of the number of clusters to find, and it will find that number 

of clusters even in random data (Dougherty, Barrera et al. 2002). Similarly, hierarchical clustering 

is incapable of leaving any genes unclustered, and its results can be driven by strong features in a 

small number of initially clustered genes (Quackenbush 2001). Many more recent clustering 

algorithms have been proposed to overcome these limitations, with Aerie (Gasch and Eisen 2002), 

CAST (Ben-Dor, Shamir et al. 1999), CLICK (Sharan, Maron-Katz et al. 2003), GenClust (Di Gesu, 

Giancarlo et al. 2005), Quality Threshold Clustering (QTC) (Heyer, Kruglyak et al. 1999), and 

SAMBA (Tanay, Sharan et al. 2004) representing a small cross-section of the tools available for the 

purpose of coexpression-based gene clustering. 
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These newer algorithms have overcome the drawbacks of traditional clustering in a number of 

ways. SAMBA, for example, represents a family of biclustering algorithms capable of excluding 

conditions as well as genes from a cluster; CLICK and QTC allow genes to remain unclustered, 

and Aerie and other fuzzy clustering algorithms permit genes to inhabit multiple clusters 

probabilistically. However, it is unclear how these algorithms perform with respect to their 

original purpose: providing biologists with a view of coexpressed biological processes within 

microarray datasets. Given a new dataset containing a collection of active biological pathways or 

functions, do these clustering algorithms accurately group functionally related genes? 

We report below a clustering algorithm based on shared nearest neighbors called Nearest 

Neighbor Networks (NNN) intended to serve as a useful tool for biologists when discovering 

functional activity in coexpression datasets. NNN is unique in its focus on groups of genes 

sharing a mutual nearest neighborhood (based on some distance or similarity measure) rather 

than on groups of genes that are tightly correlated in some absolute measure. We present the 

results of a functional evaluation (Huttenhower, Hibbs et al. 2006; Huttenhower and 

Troyanskaya 2006) demonstrating NNN's ability to retrieve precise clusters that represent the 

diverse biological activity present in six qualitatively different microarray datasets. This 

evaluation also examines the behavior of the eight clustering algorithms discussed above to 

determine their accuracy in producing related gene clusters from many types of coexpression 

data and within many biological processes. Additionally, we compare the behavior of these 

clustering algorithms when presented with random data and when extracting clusters from 

integrated data (i.e. from a merged collection of all six microarray datasets). We believe that 

NNN represents an intuitive, simple tool providing biologists with a way to rapidly obtain and 

visualize a comprehensive collection of the processes coexpressed in a microarray dataset. 
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Implementation 

NNN Algorithm 

In designing a clustering algorithm that would allow us to make highly coherent clusters, we 

were inspired by the approach taken by Stuart and colleagues to define the homologues of a 

specific gene in multiple species (Stuart, Segal et al. 2003). In Stuart et al, a metagene was defined 

as a set of genes across multiple organisms whose protein sequences are one another's best 

reciprocal BLAST hits. We used a similar approach to find clusters of coexpressed genes by first 

identifying small cliques of genes in which each member is within the n nearest neighbors of each 

other. We then group together cliques that overlap to form larger clusters of genes. 

NNN receives as input a set of genes of size m, a similarity measure d(g1, g2) (such as Pearson 

correlation or Euclidean distance between the two genes' expression vectors), a clique size g, and 

a neighborhood size n. Its output is an assignment of each gene to zero or more clusters. 

For each gene gi, the n nearest neighbors N(gi) = {gi,1, ..., gi,n} are calculated based on the similarity 

measure d. If genes are considered to be vertices in a graph, this results in a directed graph in 

which each node is of out degree n (Figure 20A). An undirected graph is then constructed by 

connecting any two genes gi and gj such that gi  N(gj) and gj  N(gi), i.e. the two genes are mutual 

nearest neighbors (Figure 20B). All cliques (complete subgraphs) of size g within this graph are 

identified, and overlapping cliques are merged to produce preliminary networks representing 

potential clusters of related genes (Figure 20C). 

A small number of genes in any genome often serve as interaction hubs connecting a large 

collection of minimally related partners (Tong, Lesage et al. 2004), and these genes can cause 

NNN to merge cliques to an undesirable extent. To address this issue, NNN uses a well-
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established algorithm to remove cut-vertices in its preliminary networks (Tarjan 1972; 

Thulasiraman and Swamy 1992; Gross and Yellen 1999). A cut-vertex is a node whose removal 

results in an additional disconnected component in a graph; in our preliminary networks, such 

nodes represent genes connecting clusters that share no other interactions and are thus likely to 

be functionally irrelevant interaction hubs. Each of our preliminary networks is divided at its cut-

vertices into multiple final networks, and the cut-vertices are included in each of the two 

networks which they induce (Figure 20D). Finally, to further ensure that cliques are not merged 

undesirably, any network (at most one) containing more than half of the input genes is removed. 

NNN runtimes are generally below five minutes with reasonable parameter settings on a modern 

computer; with g = 5 and n = 25, the Hughes dataset (the largest used in our analysis) is fully 

clustered in approximately three minutes running in a single thread on a 2GHz Intel Core 2 Duo 

processor. Clustering with a worst-case g = 5 and n = 40 takes approximately 11.5 minutes, and 

the lower bound g = 3 and n = 10 runs in under 2.5 minutes. In the latter case, most of this time is 

spent calculating gene pair correlations. 

Microarray Data Processing 

To evaluate the abilities of NNN and other clustering algorithms to accurately cluster 

functionally related genes across a range of biological processes, we ran them on six 

Saccharomyces cerevisiae microarray datasets (Spellman, Sherlock et al. 1998; Gasch, Spellman et al. 

2000; Hughes, Marton et al. 2000; Primig, Williams et al. 2000; Haugen, Kelley et al. 2004; Brem 

and Kruglyak 2005). The datasets range from seven to 300 conditions, include Agilent, 

Affymetrix, and custom cDNA arrays, include both time course and isolated measurements, and 

span a wide variety of biological perturbations and conditions. 
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Figure 20: An example of the Nearest Neighbor Networks operating on 14 genes with clique size g = 3 and 

neighborhood size n = 4. A) A directed graph is generated in which each gene is connected to its n nearest 

neighbors. B) An undirected graph is constructed from bidirectional connections. C) Overlapping cliques of 

size g are merged to produce preliminary networks. D) Preliminary networks containing cut-vertices are 

split into final networks, with copies of the cut-vertices occupying both networks. 

In all cases save Haugen et al (who provide data that has already been preprocessed), the 

datasets were filtered to remove genes with more than 50% missing data. Any remaining missing 

values were imputed using KNNImpute (Troyanskaya, Cantor et al. 2001) with k = 10, and 

replicated genes were averaged to ensure that each dataset contained at most one expression 

vector per open reading frame. For single channel data, expression values less than two were 

considered to be missing, and all single channel values were logarithmically transformed as a 

final preprocessing step. The two replicates in Brem et al were averaged together. 

A.

B.

C.

D.

g = 3

n = 4

Cluster 1 Cluster 2 Cluster 3
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In order to construct a merged dataset consisting of conditions from all six individual microarray 

datasets, a data matrix was constructed containing each gene present in any of the datasets. 

Genes were assigned missing values for datasets in which they were not present. This merged 

data matrix was filtered to remove genes missing data for 50% or more of the resulting 664 

conditions, and any remaining missing values were imputed using KNNImpute with k = 10. This 

left 6,160 genes, each represented by an expression vector of length 664 containing no missing 

values. 

Random Data Generation 

Randomized synthetic data was generated to characterize the behavior of NNN and other 

clustering algorithms when presented with data containing clusters present only by chance. Two 

sets of randomized data were generated, both containing 6,000 "genes" and 10 conditions. In the 

uniform case, each data value was drawn uniformly from the range [-1, 1]. In the normally 

distributed datasets, each value was drawn from N(0, 1). Five datasets of each type were 

generated and used for the evaluations discussed below. 

Evaluation Methods 

In order to determine the accuracy and coverage of the functional relationships predicted by 

these clustering methods, we employed an evaluation method similar to that described in 

(Myers, Barrett et al. 2006). Specifically, we used the same 200 functions drawn from the Gene 

Ontology (Ashburner, Ball et al. 2000) as sets of "known" related genes; genes coannotated below 

these terms were considered to be functionally related. To generate negative examples, any gene 

pairs not coannotated below some GO term including at least 10% of the S. cerevisiae genome 

(roughly 645 genes) were considered to be unrelated. This resulted in an answer set of 620,854 

related and 8,531,975 unrelated pairs. 
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Each clustering method was evaluated by considering any gene pair sharing a cluster to be 

related and any gene pair clustered separately to be unrelated; unclustered genes (when 

applicable) were neither related nor unrelated. This process transforms any clustering result into 

a set of related and unrelated gene pairs from which we calculated precision, recall, and/or area 

under a ROC curve (AUC) relative to the answer set. When performing per-biological function 

evaluations, these measures were calculated over subsets of the global answer set relevant to each 

function of interest; specifically, a gene pair was considered relevant to some function if i) it 

represented a positive relationship and both genes were included in the function or ii) it 

represented a negative relationship and one gene was included in the function (Huttenhower, 

Hibbs et al. 2006). All AUCs were calculated analytically using the Wilcoxon Rank Sum formula 

(Lehmann 1975). 

Evaluation Parameters 

Where possible, we evaluated each clustering algorithm over a range of parameters, e.g. K-means 

for values of k ranging from two to 30. By recording the most restrictive parameter setting at 

which each gene pair clustered together, we were able to generate full precision/recall curves for 

most clustering methods. In cases where this was not possible, a single clustering was generated 

per dataset, resulting in a point rather than a curve (but not affecting AUC calculations). All 

applicable clustering algorithms used Pearson correlation as a similarity measure. 

Nearest Neighbor Networks was evaluated using our own Java implementation with the 

neighborhood size parameter n ranging from one to 30 in increments of three. The maximum 

neighborhood size used with the concatenated dataset for the per-function evaluation (Figure 23) 

was increased to 40 in order to provide coverage of a greater number of Gene Ontology terms. In 

all functional evaluations, the clique size g was fixed at five. The effects of varying g can be seen 
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in Supplemental Figure 1, with larger values slightly increasing precision while becoming more 

computationally expensive (Sipser 2005). 

The K-means, CLICK, and SAMBA algorithms were evaluated using the implementation 

provided by the Expander tool (Sharan, Maron-Katz et al. 2003). For K-means, k was varied from 

two to 30 by increments of two. The CLICK and SAMBA algorithms were run with the default 

parameters provided by Expander, resulting in a single clustering. The predicted cluster 

confidences produced by SAMBA were used in lieu of a parameter setting to determine cluster 

specificity, with a higher confidence indicating a more specific cluster. 

 TIGR MeV (Saeed, Sharov et al. 2003) was used to execute the CAST algorithm, with the 

threshold parameter varied from 0.5 to 0.9 by increments of 0.05. Our own C++ implementation of 

Quality Threshold Clustering was used with a minimum cluster size of five and diameters 

ranging from 0.05 to 0.8 by increments of 0.05. QTC was unable to evaluate the concatenated 

dataset due to its reliance on the computationally intensive jackknife distance measure (Heyer, 

Kruglyak et al. 1999). Our own implementation of Pearson correlation was used as a 

representation of hierarchical clustering, with the raw pairwise correlation value itself behaving 

as a parameter over which precision and recall were calculated. 

Implementations of GenClust and Aerie were provided by (Di Gesu, Giancarlo et al. 2005) and 

(Gasch and Eisen 2002), respectively. GenClust was run for 1,000 iterations with cluster counts k 

ranging from two to 30 by increments of two. GenClust failed to produce any output for the 

Hughes or concatenated datasets, apparently due to their high condition counts. Aerie was 

executed with k ranging from 10 to 40 by increments of two, as it failed to produce results for any 

k below 10. Aerie would not operate on the Primig dataset regardless of parameter settings, and 
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produced output for the Haugen dataset only for k up to 22. Since Aerie's k does not correspond 

to a final cluster count, each gene was assigned a vector of centroid distances corresponding to 

different initial ks, and gene pair similarities were calculated as correlations between these 

vectors. 

Results and Discussion 

As shown below, NNN succeeds in producing small, precise clusters from coexpression data, and 

these clusters generally span a wider variety of biological processes than those produced by the 

other clustering algorithms evaluated. While NNN's recall is lower than that of clustering 

algorithms in which all genes are always clustered, the capability to leave genes unclustered 

allows NNN to present an analyst with results consisting of only the high precision results of 

biological interest. This is evidenced, for example, in NNN's behavior when run on random data, 

which is left unclustered (Table 5). Furthermore, Figure 23 demonstrates the functional diversity 

of the clusters obtained from NNN; particularly on larger datasets, NNN detects activity in 

processes such as conjugation and phosphorus metabolism not captured by other clustering 

algorithms. 

Nearest Neighbor Networks 

NNN is intended to be an accessible and convenient tool for rapidly producing functionally 

coherent clusters from coexpression data, and visualization is therefore an important aspect of its 

results. Figure 21 demonstrates a sample of the default NNN output format as visualized by Java 

TreeView (Saldanha 2004). Here, each colored subtree represents a cluster found by NNN; these 

have been internally hierarchically clustered using standard correlation and average linkage for 

visual coherence, and the clusters centroids have in turn been clustered to produce a full tree. 
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Our NNN implementation also provides a tabular output format assigning genes to numbered 

clusters for further computational processing. 

Global Evaluation of Clustering Algorithms 

A global evaluation of NNN and eight other clustering algorithms on each of the six microarray 

datasets appears in Figure 22. As recommended in (Myers, Barrett et al. 2006), we have excluded 

the Gene Ontology term ribosome biogenesis and assembly during these evaluations so as not to bias 

the outcome towards this function. Myers et al discusses the problems raised in coexpression 

analysis by ribosomal genes, in particular their tendency to correlate so strongly even across 

conditions unrelated to ribosomal functions that they can obscure other biological activity. 

Especially in datasets eliciting strong stress responses (e.g. Figure 22B), this has a substantial 

impact on many of the clustering methods, accounting for a portion of their low performance and 

indicating that they may be clustering more easily discovered ribosomal genes at the expense of 

genes coexpressed for other biological reasons. 

Although no one clustering algorithm is appropriate for every situation, Nearest Neighbor 

Networks demonstrates a clear advantage in precision in many of these datasets. In particular, 

the Gasch, Haugen, and Spellman datasets are perhaps best analyzed by NNN, demonstrating a 

robustness to functional bias (Myers, Barrett et al. 2006), low condition count, and periodicity, 

respectively. NNN performs approximately equivalently to QTC and Pearson correlation on the 

Brem dataset, and the Aerie, CAST, and SAMBA algorithms fall slightly beneath these due 

mainly to precision issues at low recall. CLICK is difficult to evaluate in this context due to its 

insensitivity to homogeneity parameter changes, leaving no way to trade off between precision 

and sensitivity. Thus, in a variety of contexts, NNN is best able to extract functionally relevant 

clusters from coexpression data with high precision. 
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Figure 21: A subset of the Nearest Neighbor Networks clusters produced from the (Brem and Kruglyak 

2005) dataset using the parameters g = 5 and n = 10, visualized using Java TreeView (Saldanha 2004). NNN 

clusters have been colored, internally hierarchically clustered, and the cluster centroids have in turn been 

hierarchically clustered to provide an easily interpretable tree. 

NNN falls slightly short of QTC and, to a lesser extent, Pearson correlation in the Primig dataset, 

and QTC and SAMBA are both strong performers on the Hughes data. This latter effect might be 

attributable to the unordered nature of the Hughes data (a deletion study rather than a time 

course) from which SAMBA is able to bicluster correlated conditions as well as genes, and the 

large condition count likely benefits both SAMBA and QTC. NNN's performance in the high 

precision/low recall region of the Primig dataset is impaired by the fact that the Gene Ontology 

annotates MATALPHA1 and HMLALPHA under the development term, STE14 under the protein 

processing term, and STE3 and MF(ALPHA)1 under the reproduction term. This results in our 



156 

 

answer set considering their pairwise combinations (e.g. MATALPHA1 with STE14, STE14 with 

STE3, and so forth) to be unrelated, while NNN predicts them to be tightly clustered together. 

While NNN is never more than slightly below the best performing algorithms, certain specific 

issues with other methods become apparent from this type of functional analysis. For example, 

SAMBA has some difficulty with the extremely small Haugen dataset (Figure 22C) and the 

periodic Spellman cell cycle data (Figure 22F). 

Table 5 provides summary statistics describing the output of NNN using default parameters of g 

= 5 and n = 25 on the six datasets evaluated more fully below, on the concatenation of those six 

datasets, and on random synthetic data. For purposes of comparison, similar statistics have been 

provided from other clustering algorithms (where applicable) using their default parameter 

settings. NNN, QTC, and SAMBA are capable of leaving genes unclustered, and NNN and 

SAMBA succeed in taking advantage of this to recognize and ignore random data. With default 

parameter settings, NNN tends to be conservative, generally producing fewer, smaller, and (as 

evaluated above) more precise clusters than SAMBA. 

Note that the default parameters may not be appropriate for all analyses; they are used here for 

comparison purposes. For example, more clusters can be obtained from the Haugen or 

concatenated datasets (if desired) by increasing n. The global evaluation above and functional 

evaluations below cover a wide range of parameter settings for all clustering methods and show 

results largely independent of specific parameter values. 

Behavior on Random Data 

It is of interest to note that only Nearest Neighbor Networks and SAMBA succeed in excluding 

randomized data from their clustering output. SAMBA achieves this by computing the statistical 
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significance of bicluster weights and retaining only those unlikely to occur by chance (Tanay, 

Sharan et al. 2002). NNN instead takes advantage of the fact that random data of this form tends 

to over-cluster, i.e. for an appropriate neighborhood size, all or nearly all genes cluster together. 

Since substantially overlarge clusters are eliminated by NNN, this results in the removal of 

randomized data from the functional clusters provided to the user. 

Behavior on Concatenated Data 

Only NNN and Pearson correlation succeed in extracting functional relationships from the 

concatenated datasets, with NNN achieving somewhat better recall. As discussed in 

(Huttenhower, Hibbs et al. 2006), algorithms relying solely on correlation measured over a long 

expression vector can be easily misled. This can be caused by differences in normalization 

between the datasets making up the concatenated vector or by overriding "global" signals 

providing high correlation among only a small set of ubiquitously coexpressed genes (e.g. the 

ribosomal genes discussed above). This has the effect of producing a small number of very highly 

correlated genes and relegating most of the correlations of functional interest to near-background 

levels. NNN avoids this problem by regarding both tight and diffuse clusters as equally valid, so 

long as cliques of mutual nearest neighbors are present. 

For example, consider a group of ribosomal proteins coexpressed across all conditions with a 

mutual correlation of 0.9. A group of meiotic genes only activated under specific circumstances 

might achieve a correlation of 0.3 when tested across many conditions, since they will not usually 

be coregulated. If functionally unrelated genes tend to correlate at a level of 0.2, the ribosomal 

cluster will be far easier to discover. However, NNN will not distinguish between absolute 

correlation levels so long as the genes in each group are within each others' nearest 

neighborhoods - which will likely be the case, since their mutual correlations remain above 
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background. Meta-analytic normalization techniques provide another solution to this problem; 

correlations combined by z-scoring substantially outperform raw correlations, and these z-scores 

are in turn outperformed by NNN clustering using z-scores in place of Pearson correlation as 

input (data not shown). 

Functional Evaluation of Clustering Algorithms 

A global evaluation such as the one described above does not reveal the functional diversity of 

the predicted interactions; even with ribosomal interactions removed, it is possible for an 

algorithm to perform well by accurately predicting only a few biological processes. A 

complementary functional evaluation demonstrates that Nearest Neighbor Networks not only 

performs approximately as well or better than other clustering methods in global evaluations, it 

produces clusters that capture a wider array of biological functions. The heat map in Figure 23 

indicates AUC scores for a variety of Gene Ontology terms within each dataset. NNN succeeds in 

accurately predicting clusters for several terms poorly analyzed by other algorithms, particularly 

within the Brem and Gasch datasets. 

The high predictive power of Nearest Neighbor Networks in the Brem dataset likely reflects the 

unique nature of these microarray conditions. This dataset includes gene expression profiles from 

the segregants of a cross between two different strains of yeast. As opposed to most datasets, in 

which haploid yeast of one mating type are profiled, segregants with both the MATA and the 

MATALPHA phenotypes were present in the Brem data, making it possible to identify other 

genes correlated with mating type. In addition, there is a polymorphism between the parental 

strains in the pheromone response G protein GPA1, which is expected to result in differences in 

expression of effector genes among the segregants. Further, an interaction between the mating-

type locus MAT and the pheromone response gene GPA1 has been detected (Brem and Kruglyak 
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2005). The expression profiles of genes in the response to pheromone, sexual reproduction, and 

conjugation functions are consequently related in this dataset and provide an opportunity for 

identifying high precision networks of genes with these Gene Ontology annotations. 

 

Figure 22: Evaluation results for eight clustering algorithms and six microarray datasets based on the global 

answer set (employing 200 GO terms of functional interest and discarding ribosome biogenesis and assembly 

(Myers, Barrett et al. 2006)). Performance has been measured using log2(TP) on the horizontal axis and log-

likelihood score LLS=log2((TP/FP)/(P/N)) for P total positive pairs, N total negative pairs, and TP and FP the 

number of true and false positives at a particular recall threshold. A) Brem 2005. B) Gasch 2000. C) Haugen 

2004. D) Hughes 2000. E) Primig 2000. F) Spellman 1998. G) All six datasets concatenated. 
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 NNN 

g=5, n=25 

CAST 

t=0.8 

CLICK 

h=μT 

QTC 

d=0.5, n=5 

SAMBA 

Brem 2005, 6162 genes, 131 conditions 

Genes 1527 6162 6162 6137 2284 

Clusters 54 3552 82 127 113 

Mean Size 28.4 1.73 75.1 48.3 102 

Size Dev. 49.2 8.14 161 93.3 70.3 

Gasch 2000, 6115 genes, 173 conditions 

Genes 1142 6115 6115 6092 3120 

Clusters 38 2702 9 69 128 

Mean Size 30.1 2.26 679 88.3 130 

Size Dev. 62.5 17.8 787 220 101 

Haugen 2004, 6256 genes, 7 conditions 

Genes 64 6256 6256 6236 280 

Clusters 11 50 16 56 5 

Mean Size 5.82 125 391 11.4 88.4 

Size Dev. 1.19 332 474 258 36.5 

Hughes 2000, 6153 genes, 300 conditions 

Genes 1996 6153 6153 6121 3375 

Clusters 29 4093 75 177 325 

Mean Size 68.9 1.50 82.0 34.6 45.9 

Size Dev. 245.4 4.46 107 57.8 44.1 

Primig 2000, 6005 genes, 24 conditions 

Genes 2247 6005 6005 5970 778 

Clusters 27 872 46 110 25 

Mean Size 83.2 6.89 131 54.3 139 

Size Dev. 390 17.4 187 80.4 96.3 

Spellman 1998, 5701 genes, 25 conditions 

Genes 2050 5701 5701 5669 777 

Clusters 28 782 47 100 32 

Mean Size 73.3 7.29 121 56.7 69.0 

Size Dev. 324 26.9 206 114 37.3 

Concatenated Data, 6160 genes, 660 conditions 

Genes 694 6160 6160 - 4892 

Clusters 29 12 5 - 609 

Mean Size 23.9 513 1232 - 63.7 

Size Dev. 34.7 1691 1768 - 82.0 

Uniformly Distributed Random Data, 6000 genes, 10 conditions 

Genes 0 (±0) 6000 (±0) 3600 (±3286) 5964 (±28.8) 0 (±0) 

Clusters 0 (±0) 228 (±3.05) 9.8 (±9.81) 109 (±4.72) 0 (±0) 

Mean Size 0 (±0) 26.3 (±0.353) 190 (±175) 53.0 (±1.39) 0 (±0) 

Size Dev. 0 (±0) 22.1 (±0.225) 48.8 (±45.7) 35.2 (±0.791) 0 (±0) 

Normally Distributed Random Data, 6000 genes, 10 conditions 

Genes 0 (±0) 6000 (±0) 6000 (±0) 5975 (±4.77) 0 (±0) 

Clusters 0 (±0) 246 (±3.74) 28.8 (±11.9) 124 (±1.30) 0 (±0) 

Mean Size 0 (±0) 24.4 (±0.371) 235 (±82.6) 48.3 (±0.482) 0 (±0) 

Size Dev. 0 (±0) 18.5 (±0.0860) 64.8 (±46.3) 30.9 (±0.374) 0 (±0) 

Table 5: Summary statistics detailing Nearest Neighbor Networks clusters formed from the datasets 

employed in this study, from their concatenation, and from two synthetic random datasets using default 

parameters (g = 5, n = 25). Results from other clustering algorithms with appropriate output formats (CAST, 

CLICK, QTC, and SAMBA) have been included, also utilizing default parameter settings provided by the 

algorithms' implementations. Random values are shown with standard deviations over five different seeds. 
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Figure 23: Function-specific evaluation results for each clustering method on a per dataset and GO term 

basis. Each cell represents an AUC score calculated analytically using the Wilcoxon Rank Sum formula; 

below baseline performance appears in blue, and yellow indicates higher performance. Dataset and term 

combinations for which ten or fewer pairs were able to be evaluated are excluded and appear as gray 

missing values; functions for which less than 10% of methods were available due to gene exclusion by NNN, 

QTC, or SAMBA were removed. Visualization provided by TIGR MeV (Saeed, Sharov et al. 2003). 

NNN clusters tend to describe a broader array of biological processes than those of previous 

methods, and they often relate functional information that might otherwise remain undetected. 

Figure 24 summarizes each clustering algorithm's maximum performance for each biological 

function across all six datasets. Of the 88 functions evaluated in this manner, 40 are predicted at 

biologically uninformative levels (AUC <0.65) by previous methods. NNN improves 18 of these 

functions to an AUC greater than 0.64 (as high as 0.9 in several cases). It further improves 
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performance in an additional 21 functions also predicted well (AUC>0.65) by other algorithms. In 

the concatenated data, NNN improved the best AUC above 0.65 in 14 functions and was the best 

predictor of an additional 10 beyond those. Particularly since clustering has become an essential 

part of microarray analysis, it is critical to provide a method such as NNN that will extract the 

most precise and functionally diverse clusters from a dataset. 

Conclusion 

We present the Nearest Neighbor Networks clustering algorithm as an efficient and convenient 

tool for extracting precise, functionally diverse clusters from coexpression data. NNN leaves less 

active genes unclustered and focuses on networks of potential interaction rather than on 

minimizing distances; this results in smaller clusters with a high degree of functional relationship 

as measured by known annotations in the Gene Ontology. Particularly in complex datasets for 

organisms without comprehensive reference data readily available, NNN's more precise clusters 

should be beneficial in coexpression analysis. Moreover, these clusters span a wider range of 

biological processes than those typically extracted from microarray datasets by other clustering 

algorithms. We hope that these features will allow NNN to serve as a useful method for 

biologists to obtain an overview of the genes and processes active in new datasets. 
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Figure 24: An evaluation of each clustering algorithm's ability to detect the 88 biological processes for which 

data was available in our analysis. For each algorithm, the maximum AUC across all six datasets was 

determined, and the resulting AUCs are presented here in descending order per algorithm. NNN correctly 

clusters genes from substantially more biological processes relative to previous methods. 

Graphle: Interactive Exploration of Large, Dense Graphs 

As the breadth, depth, and quantity of biological data has continued to grow, this data has 

increasingly been represented as graphs for the purposes of analysis and visualization. 

Historically, biological networks have been used to represent the organization of metabolic 

pathways (Kanehisa, Araki et al. 2008), protein complexes (Schwikowski, Uetz et al. 2000; Iragne, 

Nikolski et al. 2005), and regulatory networks (Kohn 1999; Baker, Carpendale et al. 2002), often 

based on painstaking laboratory work carried out before the advent of high-throughput 

technologies. With the introduction of genome-scale data, datasets from protein-protein 
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interaction networks (PPIs, (Breitkreutz, Stark et al. 2003; Prieto and De Las Rivas 2006)) to 

microarray correlations (Chung, Park et al. 2005; Freeman, Goldovsky et al. 2007) have all been 

represented as graphs. Even computational predictions of regulatory networks (Qian, Lin et al. 

2003; Sachs, Perez et al. 2005) or functional relationships (Lee, Date et al. 2004; Myers, Robson et 

al. 2005) are generally presented as network structures. Most commonly, each vertex indicates a 

gene and each edge a biological relationship, weighted or unweighted (e.g. expression correlation 

versus PPIs) and undirected or directed (e.g. PPIs versus regulator/target interactions). Not only 

do graph structures represent a well-understood computational platform for the analysis of these 

networks on a whole-genome scale (Milo, Shen-Orr et al. 2002), they offer a rich visual 

representation of the varied molecular interactions underpinning systems biology. 

The visualization of biological networks has inspired substantial research and tool development, 

ranging from the detailed organization of small, sparse networks as pathways (Gansner and 

North 2000; Baitaluk, Sedova et al. 2006; Cline, Smoot et al. 2007) to visual overviews of entire 

genomes (Adai, Date et al. 2004). Unfortunately, many biological networks of interest fall 

between these two extremes. Genomic data is often large (most organisms of interest have tens of 

thousands of genes), but not so large that it falls into the class of "huge" network visualization 

(e.g. maps of the Internet, with some half a billion current hosts). Similarly, while many types of 

biological networks have a small-world-like property (Middendorf, Ziv et al. 2005) and are thus 

relatively sparse, other graphs are dense or even fully connected (e.g. microarray correlations); 

standard visualizations of such graphs usually degenerate into uninformative "hairballs" 

(Suderman and Hallett 2007). Moreover, regardless of network size, useful biological graph 

visualizations must allow for wide variation in scale and detail: most biologists, when presented 
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with a biological network, want to see both the big picture and the specific interactions 

surrounding their gene(s) of interest. 

We have created Graphle as a tool to address these issues and to provide biologists with a tool for 

exploring large biological networks. As shown in Figure 25, Graphle consists of two parts, the 

main one being a Java-based client that runs in a user's web browser to display interactive, 

controllable portions of large biological networks (as well as associated data on genes, protein 

functions, and experimental datasets). This client allows a user to navigate within a biological 

network either horizontally, by focusing different sets of one or more query genes and viewing 

their network neighborhood, or vertically, by including more or less heavily weighted edges and 

vertices. For example, if edge weights represent microarray correlations, this allows a user to 

view only the most correlated pairs of genes. Underlying the Graphle client is a server that can 

run in a centralized location to manage up to hundreds of biological networks, possibly 

representing several hundred gigabytes of data. Communication between the server and client is 

optimized so that only the small, focused portions of the underlying networks surrounding a 

user's query are communicated to the client, which in turn fine-tunes the visualization of this 

subgraph. Graphle thus allows a user to flexibly explore any biological network and to 

interactively scale between very general and very detailed visualizations of specific genes of 

interest. An implementation of Graphle is available online at 

http:///function.princeton.edu/graphle, showing functional relationship networks predicted for S. 

cerevisiae by the bioPIXIE system (Myers and Troyanskaya 2007) and for human beings by the 

HEFalMp system (Huttenhower, Haley et al. 2009); a downloadable Java implementation with 

source code and documentation are also available at this address. 

  

http://function.princeton.edu/graphle
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Methods 

Graphle is implemented in Java using a client/server architecture to modularize the two main 

components of the system: a graph server that manages a (potentially very large) collection of 

weighted graphs and associated metadata, and a user interface client that provides an interactive 

visualization of portions of this data. This partitions the system to allow hundreds of gigabytes of 

biological network data to be managed on the server while still providing a focused, responsive 

user experience. The responsibilities of the graph server include accessing large amounts of graph 

data on disk in a query-driven manner, caching this data to improve performance, executing 

graph query algorithms based on client input, and providing information on genes (vertices) and 

underlying data (edges) as needed. The graph client must run in a web browser and provide 

rapid, interactive access to all data managed by the server in an informative visualization. 

Fundamentally, just as Google acts as a query-driven server to intelligently filter the content of 

the web into a client browser, the Graphle server acts in a query-driven manner to filter the 

content of biological networks into its interactive client. 

Graph server 

The Graphle server is based on a Java port of portions of the Sleipnir C++ library for 

computational genomics (Huttenhower, Schroeder et al. 2008) that allow it to efficiently manage 

multiple large biological networks. Subgraphs are retrieved from these networks using any graph 

query algorithm (currently the bioPIXIE (Myers, Robson et al. 2005) and HEFalMp (Huttenhower, 

Haley et al. 2009) algorithms are implemented) and communicated to the client using a standard 

socket connection. The graph data organized by the server can include continuous or discrete 

experimental results (e.g. pairwise correlations from microarray data or protein-protein 
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interaction networks), predicted interaction networks, ontological structures such as the Gene 

Ontology (Ashburner, Ball et al. 2000), or any undirected weighted (or unweighted) graphs. 

Graph data is stored using the Sleipnir CDat interface, and can thus be interconverted between 

human-readable text (referred to as the DAT format) and a compact binary (DAB) format. Graphs 

stored as DABs are automatically indexed and memory mapped; due to memory mapping 

restrictions on many platforms, an LRU cache is used to maintain a subset of currently mapped 

graphs. Retiring a graph from this cache, loading a new ~25,000 gene graph, and performing a 

complete graph query takes at most ~20s on a modern server, most of which time is spent in disk 

access. 

Interactive subgraph display
(vertex and edge metadata,

varying edge weight, vertex 

connectivity, etc. within subgraph)

Network 

connection
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Figure 25: Overview of the Graphle system architecture. The Graphle server manages up to hundreds of 

gigabytes of weighted undirected graphs; while any graph data can be used, Graphle is specifically 

designed for biological networks in which vertices represent genes and edges represent experimental results 

(microarray correlations, protein-protein interactions, etc.) or computational predictions (e.g. probabilities of 

functional interactions). The server also associates metadata with graphs (such as what organism or 

biological context they are drawn from), vertices (gene identifiers, aliases, known cellular functions, etc.), 

and edges (e.g. what experiments or data contributed to that edge). The Graphle client communicates user-

provided queries to the server consisting of one or more genes of interest, receives an appropriate subgraph, 

and displays it interactively for the user in a web browser. The user can then change the focused genes or 

the stringency cutoff for vertex or edge weights and can access the associated metadata to interactively 

explore tractable portions of the large underlying graphs. 
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The graph server also maintains metadata describing graphs, vertices, and edges. Each graph is 

assigned to a particular organism (or other broad category) and to a "context" within that 

organism, where a context can be a biological process, tissue type, or other specific subcategory. 

Vertices are described by a unique identifier (e.g. ORF IDs for yeast genes, HGNC (Eyre, 

Ducluzeau et al. 2006) symbols for human genes, etc.) and zero or more synonymous aliases; they 

may also possess zero or more categories of metadata, with each category consisting of an 

arbitrary dictionary of key/value descriptors (e.g. textual descriptions, Gene Ontology 

annotations, etc.) Similarly, edges may also be decorated with arbitrary category dictionaries of 

metadata; this is particularly useful in the case of graphs representing predicted biological 

networks, as it provides a convenient way to indicate what experimental data was integrated to 

produce each predicted interaction (Myers, Robson et al. 2005). 

User interface client 

The Graphle client is a Java applet designed to interactively visualize configurable subgraphs of 

biological networks (or other graph data) in a web browser. The client uses the Prefuse library 

(http://prefuse.org) for graph layout, supplementing it with an interface for selecting organisms 

and contexts, displaying vertex/edge metadata, exporting image or text representations of the 

current graph, and performing graph queries. These queries consists of a user-provided set of 

genes (or other vertex identifiers) sent to the Graphle server, which performs a configurable 

graph query algorithm to return the most relevant portion of the selected (potentially very large) 

complete graph. In addition to controlling which genes make up the current query, the client also 

provides realtime filters for vertex and edge inclusion (based on the weight of the graph's edges 

and the confidence with which the server indicates that nodes are included in the graph query 

http://prefuse.org/
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results). The combination of these three features allows a user to fluidly and tractably navigate 

through large, dense, weighted graphs. 

Results 

Graphle provides a web-based system for interactively browsing large biological networks. These 

graphs can represent experimental results (e.g. protein-protein interaction networks, microarray 

correlations, etc.), computational predictions (e.g. probabilities of functional interaction), or any 

other undirected, weighted graphs. Each underlying graph can be very large (tens of thousands 

of vertices, billions of edges, gigabytes of data), and the Graphle server can manage hundreds of 

such graphs along with associated metadata (organism, biological context, gene, and dataset 

descriptors). The Graphle client executes in a user's web browser and retrieves subgraphs 

focused on a specific set of query genes. This query and the displayed subgraph can be 

interactively modified in realtime, allowing a user to conveniently explore targeted subgraphs of 

interest extracted from the large body of underlying data. 

Graph queries and exploration 

A Graphle query consists of two components: a particular underlying graph specified by an 

organism and biological context (Figure 26D), and one or more gene identifiers specific to that 

organism (Figure 26B and C). For example, a Graphle server may have access to several graphs, 

each covering a specific context in yeast, human, mouse, or another organism's data; contexts 

represent variables such as biological processes (such as the cell cycle, apoptosis, glucose 

metabolism, etc.), tissue or cell types, or developmental stages. A user of the Graphle client 

selects an organism and context from the server-provided list and queries on one or more of the 

organism's genes. These genes are sent to the server, which uses a graph query algorithm (Myers, 

Robson et al. 2005; Huttenhower, Haley et al. 2009) to select the subgraph of the requested 
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network most relevant to the query genes (Figure 26A). This subgraph is of sufficiently small size 

(~50 fully connected vertices and the associated edge weights) that it can be sent to the client in 

full; the client then provides a configurable visualization of the subgraph for the user. 

Edge weights in biological networks often represent the strength of or confidence in an 

experimental outcome: greater sequence similarity, higher correlation between gene expression 

values, or larger probabilities of functional interactions, for example. Similarly, using the concept 

of guilt by association, most graph query algorithms assume that vertices more strongly 

connected to the query set in the aggregate are in turn more biologically related to those query 

genes. Correspondingly, the Graphle client allows a user to fine-tune the visualization of a 

queried subgraph by filtering edges by weight and vertices by score (Figure 26E); filter changes 

automatically rerun the graph layout algorithm, which is animated to maintain visual context. A 

biologist can thus easily visualize both strong and diffuse clusters in the data, expand from the 

most related genes to more distant neighbors, and easily track the relationship(s) of the original 

query genes to these neighbors. 

Multiple organisms and biological contexts 

The Graphle server organizes its collection of graphs using two biologically motivated levels of 

abstraction: each graph is assigned to exactly one organism and one biological context (Figure 

26D). A graph's organism dictates what unique gene identifiers (and non-unique gene aliases) are 

used to label its vertices, since the server maintains sets of known genes specific to each 

organism. A context, practically speaking, can be any unique identifier of a particular graph; in 

practice, a context is often the experiment that generated the graph data, the computational 

algorithm that generated a set of predictions, a specific biological system (cell/tissue type, 

pathway or process, subcellular compartment, etc.), or a combination of these. For example, the 
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Graphle system running at http://function.princeton.edu/graphle offers graphs generated by 

bioPIXIE (Myers and Troyanskaya 2007) in yeast or HEFalMp for human data (Huttenhower, 

Haley et al. 2009), with contexts representing different biological processes on which the two 

algorithms focused. 

Gene (vertex) and data (edge) information 

Graphle maintains arbitrary metadata optionally describing each vertex (gene) and edge in its 

graphs (Figure 26G). For genes, this metadata is most often useful for conveying standard 

knowledge associated with genes: synonymous gene identifiers, chromosomal location, known 

functions cataloged in the Gene Ontology (Ashburner, Ball et al. 2000) or elsewhere, etc. For 

edges, this metadata can provide information on the experimental data underlying the graph 

visualization. This is most important in graphs representing computational data integrations, 

since each edge might then summarize information from many experimental results - the 

specifics of which can be provided in the appropriate edge metadata. 

Exporting graph images and data 

Graphle provides the opportunity for users to export the current subgraph as an image (e.g. for 

publication) or as raw textual data (e.g. for further analysis, Figure 26F). Data exported in this 

manner is provided as a simple edge list linking unique vertex identifiers (i.e. gene names) with 

the weight of the edge joining them (the semantics of which are dependent on the source of the 

underlying graph). The currently visible, filtered subgraph can be exported as an image of 

quality suitable for publication. 

 

http://function.princeton.edu/graphle
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Figure 26: The Graphle client user interface. A user can specify one or more genes that are sent as a query to 

the server. This information allows the server to execute a graph query in the underlying large biological 

network specified by the requested organism and biological context. A subgraph comprising ~50 vertices 

total is returned to the client, which then lays out and displays in real time the most informative portion of 

this subgraph. The visible subgraph can be controlled by modifying the edge and vertex cutoffs. Detailed 

information on the numerical scores of the selected node and its incident edges are shown on the right. The 

current subgraph can be exported as an image (e.g. for publication) or as raw data (e.g. for further analysis). 

Conclusion 

We present Graphle, a system for interactively exploring large, densely connected biological 

networks. This task has been particularly challenging in the past due to the impracticalities of 

storing these graphs (which can each be several gigabytes in size) and visualizing them in an 

informative manner (as they can be fully connected, but with edge weights varying over a 

potentially wide range). Graphle allows collections of dense, weighted graphs to be stored on a 
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server and accessed through focused queries by a web-based client. The data comprised by such 

graphs can range from experimental results to computationally predicted interaction networks, 

and Graphle allows each vertex (i.e. gene) and edge to be annotated with arbitrary descriptive 

metadata. A web-based client sends sets of query genes from a user to the server and 

interactively displays the resulting focused subgraphs, which can be manipulated in realtime and 

exported as data for analysis or as images for publication. The Graphle source code, 

documentation, and a demonstration client can be found at 

http://function.princeton.edu/graphle. Graphle thus provides a complete solution for storing, 

sharing, and exploring biological networks. 

  

http://function.princeton.edu/graphle
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Meaningful Modeling: Biologically Grounded Statistics of High-

Throughput Data 

One of the most straightforward ways in which computational tools can be brought to bear on 

biological problems is by treating them as a target for applied mathematics. Microarrays are 

perhaps the best example of this phenomenon (Quackenbush 2002). In their raw form as an 

image taken straight from a scanner, they are simply a tremendous matrix of pixel intensity 

values - small integral numbers. This image must be gridded (i.e. broken down into discrete 

spots), tested for quality, normalized globally, locally, and between channels, and probe sets 

spanning multiple spots per gene must be resolved. In the end, millions or billions of pixels are 

summarized as a single number per gene. Each of these steps represents transformations between 

matrices, vectors, and one- or two-dimensional distributions of values; the biological content of 

the data becomes almost completely irrelevant, and microarray normalization is largely an 

exercise in linear algebra and applied statistics. 

Likewise, interaction networks have been variously analyzed using techniques from graph theory 

and statistics independently of their biological meaning (Sharan and Ideker 2006). Many 

biological networks are unweighted and undirected (protein-protein interaction networks, 

synthetic lethal interactions, etc.) and thus represent prime targets for statistical analyses: degree 

distribution (Barabasi and Albert 1999), motif frequency (Milo, Shen-Orr et al. 2002), and 

construction mechanisms (Middendorf, Ziv et al. 2005). Other phenomena are better modeled 

with directed graphs (Hasty, McMillen et al. 2001) (e.g. regulatory networks or even journal 

article cocitation), providing additional options for Bayesian analysis and learning (Sachs, Perez 

et al. 2005). When weights are added to these networks, a host of probabilistic (Segal, Taskar et al. 
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2001) and differential equation (El-Samad, Prajna et al. 2006) techniques become applicable as 

well. Again, all of these analysis techniques allow mathematical tools to be applied to data that 

happens to be of biological origin - often with great success. 

Of course, the richness and accuracy of computational modeling of biological data can only be 

improved by taking the field's extensive prior knowledge of biology into account. An 

opportunity in this area that is often overlooked is the ability of directed statistical modeling to 

answer specific biological questions. That is, rather than using general mathematical tools to 

obtain a bird's eye view of some biological dataset, those same tools can often be applied in a 

more nuanced manner to discover new biology; even more promising is the ability of such 

analyses to work in tandem with experimental design. For example, given some collection of 

gene expression data, a broad statistical analysis can easily retrieve information on genes with 

high or low variability or with differential expression. More biologically focused methodology 

can answer questions about the activity of known pathways, protein complexes, or cellular 

processes. But by integrating such techniques into the experimental design process, one can, for 

example, collect a small number of microarrays (or other laboratory results) to precisely and 

quantitatively delineate the activity of a specific process of interest. 

This chapter demonstrates three instances of such studies: numerical analyses coupled with 

directed biological experimentation in such a way as to benefit both analytical aspects. First, we 

present a statistical linear model of gene expression as regulated by cellular growth rate (defined 

as change in biomass over time). This model is inspired by and learned from a set of 36 

microarrays drawn from continuous S. cerevisiae cultures at known growth rates and under 

known nutrient limitations. Due to the focused nature of this dataset, not only is the model 

accurately descriptive of the yeast genome's regulatory response to changes in growth rate, it is 
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predictive of other cultures' growth rates. Given new gene expression data, the model predicts 

the relative instantaneous growth rate of the originating culture, robust to expression 

measurement technology, the culture's growth environment, and even some degree of 

evolutionary distance (as the model has also been successfully applied to other unicellular fungi). 

We continue by developing a similar model of the effects of aneuploidy on gene expression in 

yeast. Aneuploid cells possessing an incorrect number of copies of one or more chromosomes 

have long been known to be common in many tumors (Boveri 1902), and incorrect chromosomal 

copy number is directly responsible for a variety of other genetic disorders (e.g. Down syndrome 

(Epstein 2006)). By constructing yeast mutants monosomic (one copy in a diploid cell), disomic 

(two copies in a haploid cell), or trisomic (three copies in a diploid cell) for individual 

chromosomes, we can model the resulting gene expression changes universally present in these 

aneuploid states and not due merely to changes in a gene's copy number. This demonstrates a 

variety of yeast-specific biological responses (e.g. a marked downregulation of mating pathways 

and upregulation of mitotic cell division in trisomes) as well as potential markers of a general 

aneuploidy response (primarily, as expected, decreased growth and increased transcription, 

translation, and protein degradation). The model thus provides insights into the molecular 

mechanisms of cancer, since it suggests regulatory mechanisms by which cell deal with increased 

protein load as chromosomal copy numbers increase. Likewise, it raises questions for future 

research, since the putative fitness advantage conferred on cancer cells by various aneuploidies 

must somehow offset the general growth defect caused by chromosomal copy number changes. 

Finally, we describe an analysis of the S. cerevisiae phosphorylation network in an evolutionary 

context. That is, given a genome-scale measurement of phosphorylated proteins and specific 

amino acid residues, what can we observe about the conservation of these biological interactions 
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in other organisms, and how does this reflect on the behavior and robustness of phosphorylation 

as a regulatory mechanism? An immediate observation also made by others (Jeong, Mason et al. 

2001) is that phosphoproteins tend to interact with each other and with other proteins 

significantly more than would be expected by chance, confirming the role of phosphorylation as a 

central regulatory mechanism (particularly in processes involving the mitotic cell cycle). 

Surprisingly, while phosphorylation interactions are very strongly conserved across large 

evolutionary distances (e.g. from yeast to human), individual phosphorylation sites are not - a 

finding later confirmed by others (Beltrao and Serrano 2007). This is thought to be indicative of 

the evolutionary benefits of maintaining some plasticity in regulatory networks, i.e. maintaining 

a balance between properly functioning regulatory interactions while also providing an 

opportunity to acquire beneficial mutations. All three of these results - growth rate, aneuploidy, 

and phosphorylation - are predicated on straightforward mathematical analyses applied to 

targeted biological data and demonstrate the potential of such an integrated approach. 

We would like to thank Matthew J. Brauer, Edoardo M. Airoldi, David Gresham, and David 

Botstein for their collaboration in modeling cellular growth rates; Maitreya J. Dunham for her 

extensive experimental work in studying aneuploidy; and An Chi and Donald F. Hunt for their 

examination of the yeast phosphoproteome. 

Transcriptional Regulation and Cellular Growth Rates 

Proper regulation of growth rate is a key systems-level challenge for all cells, particularly 

microorganisms facing an ever-changing and often hostile environment. Cell growth, defined as 

an increase in cellular biomass due to biosynthetic processes, is one of the primary functions that 
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must be coordinated with the environment in order for cells to maintain viability and reproduce. 

It is of central importance to our understanding of basic biology to determine how cells integrate 

information from the external environment and from their internal state to mount an appropriate 

response: growing in the presence of nutrients, arresting growth when stressed, and resuming 

afterwards. From a genomic perspective, growth also raises the issue of disentangling correlated 

systems-level behaviors and determining causality. When the expression levels of thousands of 

genes change due to a growth-related stimulus, which underlying regulatory parameters are 

responsible? 

In this paper, we identify quantitative aspects of the transcriptional regulatory mechanisms 

underlying cell growth in Saccharomyces cerevisiae and develop a model to predict instantaneous 

growth rates of cellular cultures based on gene expression data. This provides a mechanism for 

estimating growth rates under any conditions for which microarray data is available, even at time 

scales too brief to measure with standard experimental techniques (Amberg, Burke et al. 2005). 

For example, a culture undergoing continuous growth in a chemostat (Hayes, Zhang et al. 2002) 

can be perturbed from steady state by means of a short heat pulse, but the departure from and 

return to steady state growth is too brief to observe conveniently with optical density 

measurements. Our model allows such a decrease (and subsequent resumption) of growth rate to 

be quantified under a variety of conditions: batch or chemostat cultures, different microarray 

platforms, and under any environmental stimulus for which gene expression can be assayed. 

Surprisingly, this model also successfully predicts growth rates from Saccharomyces bayanus and 

Schizosaccharomyces pombe microarray data, the latter of which is evolutionarily diverged from S. 

cerevisiae by an estimated billion years (Hedges 2002). 
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By analyzing mRNA abundance data we obtained from 36 chemostat cultures (six different 

limiting nutrients each at six different growth rates), we found that a surprisingly large fraction 

(ca. 27%) of all yeast genes are expressed (as measured by relative mRNA abundance) in a way 

that is closely correlated (either negatively or positively) with the growth rate of the culture. We 

showed that the statistically well-defined functional subsets of genes whose expression is most 

sensitive to the growth rate are ones that have been observed previously as coherent groups of 

genes with coordinated behaviors in response to such disparate experimental contexts as 

environmental stress (e.g. (Gasch, Spellman et al. 2000)) and synchronous metabolic oscillations 

(e.g. (Tu, Kudlicki et al. 2005)) and as subsets of genes whose mRNA abundances appear to be 

substantially regulated by changes in mRNA stability (Grigull, Mnaimneh et al. 2004). 

This suggests that our statistical model of cellular growth can provide a broadly applicable 

biological characterization of the transcriptional regulatory network underlying growth rate 

control. This response is functionally cohesive, with genes upregulated with increasing growth 

enriched for translational and ribosomal functions and downregulated genes enriched for 

oxidative metabolism and the peroxisome. This provides a rich environment in which to study 

transcripitional growth regulation; for example, production of new proteins at the ribosome is 

vital to cellular proliferation, and yeast devotes some ~60% of its transcriptional throughput to 

ribosomal RNA (Warner 1999). Similarly, growth rate regulation is highly interconnected with a 

variety of other cellular processes (e.g. the environmental stress response (Gasch, Spellman et al. 

2000), metabolic cycling (Klevecz, Bolen et al. 2004), and the cell cycle (Pramila, Wu et al. 2006)), 

and we discuss potential causative regulatory signals from the Ras/PKA pathway (Wang, Pierce 

et al. 2004) and growth-related transcription factors. 
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Here, we demonstrate that the model can accurately predict relative growth rates under a variety 

of conditions and is robust to the conditions of the originating culture, the technological platform 

used to assay gene expression, and evolutionary conservation to other organisms (S. bayanus and 

S. pombe). This allows us to predict growth rates for published microarray collections (e.g. the 

stress response (Gasch, Spellman et al. 2000) or gene deletions (Hughes, Marton et al. 2000)) and 

for new data we have generated, providing biological insight into the growth rate response at 

very short time scales - minutes, rather than the hours necessary to experimentally assay 

doubling times. These real-world biological predictions are accompanied by an out-of-sample 

validation and outlier analysis to establish the model's statistical accuracy. We have made an 

implementation of this model available to the public at http://function.princeton.edu/growthrate. 

We also apply our model to specifically study two important aspects of cell growth regulation, 

nutrient sensing and the cell cycle. Artificial activation of the Ras/PKA pathway has been 

previously observed to recapitulate approximately 85% of the expression response associated 

with increased growth in the presence of glucose (Zaman, Lippman et al. 2008); here, we show 

that the cell's regulatory state during this activation is indicative of an upregulated growth 

response, even in the absence of appropriate nutrient availability. This conflict between internal 

regulatory state and the external environment leads to rapid cell death. In contrast, analysis of 

growth rate regulation during metabolic cycling (Tu, Kudlicki et al. 2005) and synchronous cell 

cycles (Spellman, Sherlock et al. 1998; Pramila, Wu et al. 2006) indicates that growth rate 

regulation is not specific to cell cycle phases, but it is strongly limited to the oxidative phase of 

the metabolic cycle. These observations, coupled with an analysis of putative transcription factors 

mediating the growth response, establish a substantial foundation on which to base further 

experimental work on the systems-level control of cellular growth rate. 

http://function.princeton.edu/growthrate
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Materials and Methods 

We fit a linear model to a collection of expression data drawn from S. cerevisiae chemostat 

cultures over several growth rates and nutrient limitations. This model provides estimates of 

parameters that characterize each gene's response to changes in growth rate, and these provide 

insight into the transcription factors and regulatory network responsible for yeast growth 

homeostasis. By applying this model to new expression data sets, we are able to predict 

instantaneous growth rates for any yeast culture. This inference process is robust to the biological 

and technical conditions of the originating gene expression data and predicts growth rates at 

instantaneous time scales inaccessible to standard experimental methods (e.g. optical density). 

We have also successfully applied the model to the related organisms S. bayanus and S. pombe. 

Data and tools relating to this model are made available at 

http://function.princeton.edu/growthrate. 

Experimental design and data 

Our model is based on a collection of gene expression measurements from steady state 

(chemostat) cultures limited across several nutrients and growth regimes (Brauer, Huttenhower 

et al. 2008). This experimental design provides the opportunity to discover gene expression 

patterns correlating with growth rate independently of nutrient-specific responses. Briefly, 36 

CEN.PK derived S. cerevisiae chemostat cultures were grown under six nutrient limitations: 

Glucose (G), Nitrogen (N), Phosphate (P), Sulfur (S), Leucine (L), and Uracil (U). Six growth rates 

were used for each nutrient, ranging by steps of 0.05h-1 from 0.05h-1 to 0.3h-1. Agilent Yeast V2 

microarrays were used to measure gene expression in the resulting 36 chemostats; for details, see 

(Brauer, Huttenhower et al. 2008). 

 

http://function.princeton.edu/growthrate
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Figure 27: Representative genes responding to growth rate, specific nutrients, or unsystematically in our 

chemostat-derived training data. Our statistical model of growth rate regulation is based on microarray data 

collected from 36 chemostats at six growth rates (0.05hr-1 through 0.3hr-1) under six nutrient limitations 

(Glucose, Nitrogen, Phosphate, Sulfur, Leucine, and Uracil) as described in (Brauer, Huttenhower et al. 

2008). By employing the genes responding strongly, consistently, and only to changes in growth rate (and 

not specific nutrients) as growth-specific genes, we can apply our model to predict relative growth rates in 

new expression data. Gene expression in our original 36 conditions fell into three main categories as shown 

here. A) Genes strongly up- or down-regulated in response to changes in growth rate, independent of 

limiting nutrient. The most statistically significant members of this set became our growth-specific 

calibration genes for application of the linear model to other expression data. B) A subset of conditions 

highlighting genes with expression levels showing some correlation with growth rate, but with a strong 

nutrient-specific component. This represents a sizeable portion of the genome (~25%), with positively 

growth-correlated genes enriched mainly for ribosomal function and negatively correlated genes enriched 

for oxidative metabolism. C) A subset of conditions highlighting genes showing a non-systematic or 

negligible change in gene expression. Unresponsive genes were enriched for a variety of cellular processes 

not expected to show a strong relationship with growth, e.g. transcription, DNA metabolism and packaging, 

secretion, and many others. 
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Figure 27 highlights the sources of variability in the gene expression profiles that the 

experimental design aims at capturing. The resulting data contain a number of characteristic gene 

expression patterns, including genes with strong growth-specific transcriptional regulation and 

negligible nutrient-specific response (Figure 27A). Other genes include a growth-specific 

expression component but are also strongly up- or down-regulated under specific nutrient 

limitations (Figure 27B). Finally, Figure 27C displays expression profiles that show unsystematic 

or negligible responses under these conditions. The linear model described below summarizes 

the variability in the expression profiles of individual genes specifically due to changes win 

growth rate, which leads to a characterization of growth-specific calibration genes such as those 

shown in Figure 27A. This growth-specific signature enables predictions of the instantaneous 

growth rate of any cellular culture based on the relative expression values these growth-specific 

genes. 

Table 6 summarizes the collections of expression data analyzed in this study. Six collections were 

previously published by others, one was published in our previous work (Brauer, Huttenhower 

et al. 2008), and four are new to this study: 1. chemostats limited for different nitrogen sources, 2. 

heat pulses inducing a temporary departure from steady state growth, 3. artificial activation of 

the Ras/PKA pathway, and 4. S. bayanus diauxic shift and heat shock time courses. All gene 

expression collections were pre-processed as in (Huttenhower, Hibbs et al. 2006). 

Linear models and identification of growth-specific signature 

We sought to identify a small set of genes providing a quantitative summary of cellular growth 

rate regulation. These 36 chemostat-derived microarrays provided us with the opportunity to 

determine which genes were responding consistently (i.e. linearly) and only to changes in growth 

rate (and not to differences in nutrient limitation). To model this statistically, we performed four 
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steps, beginning by using maximum likelihood to fit a linear model of each gene g's expression 

under all training conditions (Yg) based on the conditions' known growth rates (Xc): 

gcggg εXY  

 

 

Experimental Conditions Method Platform Organism Publication 

Nutrient-limited growth Chemostat Agilent S. cerevisiae (Brauer, Huttenhower et al. 2008) 

Cell cycle synchronization Batch Spotted S. cerevisiae (Spellman, Sherlock et al. 1998) 

Cell cycle synchronization Batch Spotted S. cerevisiae (Pramila, Wu et al. 2006) 

Metabolic cycling Batch/Chem. Affymetrix S. cerevisiae (Tu, Kudlicki et al. 2005) 

Environmental stress Batch Spotted S. cerevisiae (Gasch, Spellman et al. 2000) 

Gene deletion mutants Batch Spotted S. cerevisiae (Hughes, Marton et al. 2000) 

Heat pulses Chemostat Agilent S. cerevisiae C. Lu 

Nitrogen-limited growth Chemostat Agilent S. cerevisiae D. Gresham 

RAS/PKA activation Batch Agilent S. cerevisiae J. R. Broach 

Diauxic shift, heat shock Batch Spotted S. bayanus A. A. Caudy, 

M. J. Dunham 

Hydroxyurea response Batch Spotted S. pombe (Chu, Li et al. 2007) 

Table 6: Overview of expression data analyzed in this study. Of the 11 gene expression data sets for which 

we predict and discuss growth rates, four are previously unpublished. These data span various 

experimental conditions, dual- and single-channel expression array platforms, batch and steady-state 

growth regimes, and three species of yeast. Under these varied conditions, our growth model predicts 

instantaneous growth rates and provides insight into regulatory mechanisms for growth homeostasis. 
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This yields two learned parameters per gene, a baseline expression level αg and a growth rate 

response βg. The model is fit to minimize the residual error εg, which can represent either non-

growth-related biological variability or technical noise. We fit this model for the yeast genome 

using the expression levels from our 36 chemostat conditions, recording each gene's αg and βg 

parameters and its goodness of fit (total explained variability) R2g. 

We next used the bootstrap (i.e. randomized resampling) to assess the expected background 

distributions of these parameters in the absence of a growth-related biological signal (i.e. the null 

distributions). We constructed 100,000 randomized expression vectors of length 36 by sampling 

each condition from all equivalent growth across all genes and nutrient limitations. For example, 

the first value randomly chosen for such a vector could be drawn from any gene or nutrient 

limitation in our chemostat data at a flow rate of 0.05h-1, the second from any flow rate of 0.1h-1, 

and so forth. This sampling scheme maintains rate-specific information while normalizing for 

gene- and nutrient-specific signals, producing an estimate of the null distribution in the absence 

of growth related gene expression. This process yields null distributions for parameters αg, βg, 

and the goodness of fit R2g. 

Third, from these null distributions, we assign false discovery rate corrected p-values (Benjamini 

and Hochberg 1995) to each gene's αg, βg, and R2g values. Finally, a gene was deemed to have a 

significant expression response to changes in growth rate if it fit this model well (R2g p<0.05) and 

was up- or down-regulated significantly with growth (βg p<0.05); this information is available in 

(Brauer, Huttenhower et al. 2008). We further characterized a specific set of growth-specific 

calibration genes responding only and significantly to changes in growth rate (βg p<10-5 and R2g 

p<10-5) that we used to infer instantaneous growth rates in new expression data (Supplemental 

Table 1, see also (Brauer, Huttenhower et al. 2008)). 
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Model-based prediction of instantaneous growth rates from expression data 

The set of growth-specific calibration genes defined above represents a quantitative signature of a 

cellular culture's transcriptional regulation of growth rate, i.e. the speed at which its cells are 

proliferating. By examining these genes' expression levels in new data, we can thus predict the 

instantaneous growth rate of the originating cellular culture. This instantaneous growth rate is 

comparable to the derivative of an optical density growth curve, but it can be inferred robustly by 

our model on any time scale (e.g. minutes) from microarray data without the need to measure 

one or more full doubling times of a culture. 

Given expression data for a new experimental condition, we use an iterative maximum likelihood 

approach to infer its growth rate using the parameters captured by our linear model. Formally, 

consider a vector of expression measurements for n calibration genes, Z1:n. As described above, 

the expression of these growth-specific genes varies primarily in response to changes in a 

condition's growth rate, which we model as the mean μ of a Gaussian with variance σ2. Using our 

previously calculated maximum likelihood estimates of the calibration gene parameters α1:n and 

β1:n, the expected value of a gene's expression is thus: 

E[Zi] = αi + βiμ + δ 

Here, δ is a condition-specific parameter capturing the condition's baseline gene expression, i.e. 

an average offset between a new experimental condition and our training data. In dual-channel 

data, this represents differences between a new condition's reference channel and our training 

data; for a single-channel array, it captures the absolute difference between the platform baseline 

and our training data. Similarly, the expected variability is: 

V[Zi] = βi2σ2 
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The likelihood of the expression measurements Z1:n is thus a product of Gaussians: 
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From this, we derive the maximum likelihood estimate of the condition's growth rate μML: 
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Similarly, the maximum likelihood estimate of the condition's baseline δML is given by: 
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Note that the estimate of δML depends on the estimate of μML, and vice versa. To calculate these 

estimates, we initialize μML(0) assuming δML(0)=0 and iterate subsequent computations of μML(t+1) and 

δML(t+1) to convergence. In practice, growth-specific calibration genes with residuals outside the 

inner fences of all calibration gene residuals (more than 1.5 interquartile ranges from the lower or 

upper quartiles (Moore and McGabe 2005)) are noted as outliers and removed from that 

condition's growth rate inference. This allows outlier genes responding to non-growth related 

stimuli (which are, in general, infrequent, e.g. six in one of our most variable conditions as 

discussed below) to be noted for further investigation while also decreasing the cross-validated 

error of predicted growth rates. 

Extending predictions to additional organisms 

In principle, this model of growth rate can be extended to study and predict instantaneous 

growth in any organism for which appropriate homology exists to our set of growth-specific 

calibration genes. To analyze growth rates in expression data from S. bayanus and S. pombe, the S. 
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cerevisiae calibration genes were mapped to known orthologs. This mapping was performed 

using the unambiguous pairings from (Kellis, Patterson et al. 2003) for S. bayanus and the curated 

orthologous groups from (Penkett, Morris et al. 2006) for S. pombe. This resulted in 51 growth-

specific genes for S. bayanus and 74 for S. pombe, the increase being due to one-to-many 

mappings; see Supplemental Table 1. 

Online tool availability 

The data driving our model (individual genes' growth rate response parameters) and tools 

allowing users to predict growth rates in new data sets are available at 

http://function.princeton.edu/growthrate. Specifically, users can upload S. cerevisiae expression 

data (single- or dual-channel in standard PCL format) to receive estimates of relative growth rate 

for each condition. If a reference with known growth rate is provided, absolute rate estimates will 

be generated. This growth rate prediction tool has been implemented in R and is also available 

for offline use, allowing further customization (such as application to additional organisms). 

Results 

We apply our linear model of growth rate regulation to predict instantaneous growth rates for a 

variety of expression data. This includes new chemostat cultures used to assess prediction 

quality, publicly available stress response and gene deletion microarrays from batch cultures, 

growth differences between metabolic cycling and the cell cycle, several different microarray 

platforms, and an out-of-sample validation to quantify model accuracy. We also observe good 

predictive performance for growth rates in S. bayanus and S. pombe data sets, the latter despite up 

to a billion years of evolutionary divergence from our S. cerevisiae training data. This suggests 

that the growth-related transcriptional regulation captured by our model is a key feature of 

http://function.princeton.edu/growthrate


189 

 

unicellular homeostasis, a feature we explore by examining nutrient sensing inputs through the 

Ras/PKA pathway and potential growth rate transcription factors and binding sites. 

Growth rate accounts for a large fraction of the signal in the gene expression pattern 

Hierarchical clustering (Eisen, Spellman et al. 1998) of gene expression from the 36 chemostats is 

shown in Figure 28. Visual inspection of Figure 28 shows a pattern that is strikingly similar for 

the six different media, with large groups of genes that increase their expression with increasing 

growth rate, and comparably large groups decreasing their expression with increasing growth 

rate. In addition, there are much smaller clusters of genes that are expressed strongly in only one 

or two media; in general, these do not show as much relationship to growth rate. Fewer than 8% 

of the genes respond in a uniform, nutrient-specific manner (Figure 28). The largest nutrient-

specific cluster, responding to phosphate limitation, comprises just 133 genes (2.4% of the total). 

Expression of many genes is strongly influenced by growth rate to a degree characteristic for each 

gene 

For each of the 5,537 genes in the imputed data, expression was individually modeled as a linear 

function of growth rate (independent of limiting nutrient). Of these, 3,049 (55.1%) have 

expression patterns than fit (at a bootstrapped p<0.05) this linear model; of these, approximately 

half (1,470, or 26.5% of all genes) have expression patterns that respond significantly 

(bootstrapped p<0.05) to growth rate. 

For those genes whose expression is correlated to growth rate, the magnitude of the effect of 

growth rate on gene expression is given by the slope of the regression of expression on growth 

rate. The distribution of these slopes (shown in Figure 29 as a histogram) is significantly broader 

than the null distribution generated by bootstrap sampling (standard deviation 2.97 vs. 1.41). By 
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plotting the positions of a set of genes on this histogram, one can see systematic relationships 

between the aggregate response to growth rate and any other characteristic a query set of genes 

might share. At http://growthrate.princeton.edu, we provide data for all the genes, including the 

significance with which their expression correlates with growth rate. On the website, we also 

provide a simple utility that plots the distribution of growth rate slopes for any query set of genes 

relative to the overall distribution shown in Figure 29. 

Functional roles of genes strongly correlated with growth rate 

In order to identify the most prominent of the potential functional reasons for the correlation 

between the expression of some genes and the growth rate, we chose 1,608 genes whose 

expression was best linearly correlated with growth rate (see Methods for details). One subset 

(337 genes) had negative slopes (more than 1.5 standard deviations less than the average), 

another subset (291 genes) had positive slopes (more than 1.5 standard deviations more than the 

average) and the third had low variability (bootstrapped p<10-4) and low slope (within 0.5 

standard deviations of average), i.e. their expression was not detectably related to growth rate 

(see the dash-dotted blue line in Figure 29). 

Each of these subsets was submitted to GO Term Finder (Boyle, Weng et al. 2004) querying all 

three ontologies (Process, Molecular Function, and Cellular Component). The nature of the GO 

hierarchy produces highly redundant results in this situation. To maintain only the biologically 

and statistically strongest relationships, we limited further analysis to GO terms with p<10-3. 

These results were sorted by the fraction of genes hit within each GO term, and we focused on 

the terms in which this fraction was at least 15%. The final result (Table 7) gives a very clear 

picture: the processes associated with the gene subset whose expression is negatively related to 

growth rate are focused on energy metabolism, especially oxidative metabolism; the only 

http://growthrate.princeton.edu/
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functional category that met our stringent criteria was oxidoreducase activity, and the only 

cellular component implicated at this level of statistical stringency was the peroxisome. Our 

negatively-growth-correlated subset contained 25% and 67% (designated hits/size in Table 7) of 

the genes annotated to peroxisomes and the peroxisomal matrix, respectively. 

An equally clear picture emerged from the GO term analysis of the subset of genes whose 

expression is positively correlated with growth rate. About half of all the yeast genes associated 

with mitochondrial protein import are found in this subset, and substantial fractions of all the 

genes associated with translation, ribosome biogenesis, and rRNA metabolism are represented. 

Consistently, ribosomal constituents (mitochondrial as well as cytosolic) are very strongly 

represented in both the Function and Component hierarchies.  

In contrast, the 980 genes whose expression is robustly independent of growth rate are annotated 

(with similar statistical certainty and with similar Term Fraction values) to very many (ca. 80) 

diverse GO terms. The many processes that underlie basic cytoplasmic cell biology or non-

nucleolar nuclear biology are well represented in this subset of genes, i.e. those whose expression 

is unrelated to the growth rate. 

Genes whose expression is correlated with growth rate are highly represented in the 

Environmental Stress Response 

One of the questions that can be addressed using the tools developed above is the relationship 

between growth rate and the many genes whose expression changes regardless of the nature of 

the environmental stress imposed. In their dataset of 156 such stress conditions, (Gasch, Spellman 

et al. 2000) found two clusters of genes that were either induced or repressed together in this 

way, which they called the "environmental stress response" (ESR) genes. 
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The distributions of the 283 genes in the ESR-induced cluster (red) and the 585 genes in the ESR-

repressed cluster (green) are superimposed on the histogram of expression versus growth rate 

slopes in Figure 30. Both clusters had very high representations of growth-rate-correlated genes 

and constitute sets of statistically significant outliers to the overall distribution of slopes. 

 

Figure 28: Hierarchical clustering of expression values across dilution rates and limiting nutrients. 

Clustering by Pearson correlation reveals many up- and down-regulated clusters spanning all nutrient 

limitations (e.g. Induced1, Induced2, Repressed) and a few smaller gene groups regulated in a nutrient-

specific manner (e.g. G1-G4, P, S, and N). Reference for all samples is from a glucose-limited chemostat at 

0.25 hr-1. 
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Figure 29: Distribution of experimental growth rate responses versus bootstrapped background distribution. 

A histogram of the estimated regression slopes for 5,537 genes is compared with a 100,000-point 

bootstrapped null distribution of slopes (density estimate; black, solid line) and to the distribution of slopes 

corresponding to genes that do not respond to growth rate (density estimate; dashdotted, blue line). The 

expression responses of genes in our microarray data are significantly broader than expected by chance, 

whereas genes we determine to be largely unresponsive to changes in growth rate have slopes near zero. 
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The 283-gene "ESR induced cluster" has p-values corresponding to Kolmogorov-Smirnov and 

Wilcoxon-Mann-Whitney two-sample tests practically equal to zero, indicating that this cluster 

has a very significant representation of genes whose expression is negatively correlated with 

growth rate. In fact, nearly one quarter of the top 500 genes with negative growth rate regulation 

are in the ESR-induced cluster found by (Gasch, Spellman et al. 2000). The remaining 376 genes 

are enriched for GO process annotation terms relating to carbohydrate metabolism, particularly 

respiratory metabolism and oxidative phosphorylation. The component annotation terms 

indicate a significant enrichment in genes for proteins localized to the lytic vacuole and the 

peroxisome. 

The "ESR repressed" cluster (585 genes) also has Kolmogorov-Smirnov and Wilcoxon-Mann-

Whitney two-sample test p-values of approximately zero, indicating a highly significant positive 

correlation with growth rate. Here again the 500 genes with the most significant positive 

correlations between expression and growth rate include 227 of the ESR repressed genes. The 

remaining growth rate correlated genes are significantly enriched for GO process terms that 

include membrane lipid biosynthesis and protein import into the mitochondrion. 

Not all the ESR genes are expressed in such a way as to be significantly correlated with growth 

rate in our data. We detected no enrichment, for example, in genes for chaperone proteins and for 

some other classes of classical stress response genes. The significant majority of stress-induced 

genes that are expressed at increasingly low growth rates are related to oxidative metabolism; of 

131 genes, 16% are oxidoreductases. 

These results raise the possibility that many of the ESR genes as defined previously may in fact 

not be responding directly to stress, but instead are responding to a reduction in growth rate 
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secondary to the stress. A similar suggestion has recently been made in (Castrillo, Zeef et al. 2007) 

based on a similar set of observations. 

Relative growth rate prediction in novel experimental settings 

Our model of the growth rate transcriptional response can be used to predict relative 

instantaneous growth rates from any S. cerevisiae gene expression data. For example, Figure 31A 

shows our predicted growth rates for a gene expression time course sampled from a steady state 

culture exposed to a brief (<30s) heat pulse. The predictions clearly show a departure from steady 

state within five minutes of the heat pulse, followed by recovery within 15 minutes. Similar 

predictions over a range of chemostat flow rates (Supplemental Figure 2) reveal that this cellular 

behavior is consistent, although there is some variation in the degree of growth cessation during 

stress, in agreement with tolerance and sensitization models of the yeast stress response (Attfield 

1997). Notably, standard experimental assays for growth rate (e.g. optical density) would be 

incapable of monitoring such a response, while our model is able to observe these growth 

changes on an instantaneous time scale. 

A similar application of our model to predict relative growth rates for the stress response 

conditions of (Gasch, Spellman et al. 2000) is presented in Figure 31B (see Supplemental Figure 3 

for complete results). These data represent batch yeast cultures assayed using a variety of 

different reference mRNA samples on a custom spotted microarray platform, none of which 

differences from our training data impair the growth rate estimation process. While there are no 

direct measurements of growth rate in these non-steady-state conditions, our predictions are 

consistent with known yeast biology and agree with expected growth behavior. Most shock time 

courses, including all heat shocks, peroxide, diamide, and hyper-osmotic stress, provoke an 

initial sharp decrease in growth rate followed by a return to initial or near-initial rate; shorter 
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shocks, such as DTT, menadione, and peroxide responses, capture only the rate decrease. Batch 

growth proceeds at a fairly constant rate until nutrients become depleted, at which point the rate 

decreases sharply; this pattern is also seen in intentional nitrogen depletion. Growth rates across 

varying temperatures peak as expected at 25C (Amberg, Burke et al. 2005), falling off at lower 

and higher temperatures. Finally, response to varying carbon sources is also as expected (Granot 

and Snyder 1993), with ethanol inducing the slowest growth and fructose, sucrose, and glucose 

allowing the most rapid. Our model's inference of growth rate from gene expression data alone 

thus allows both post hoc growth analysis (e.g. years after the original experiment) and an 

estimation of growth rates for cultures where it would be difficult or time consuming to measure 

directly. 

When applied to microarray data from yeast mutants, in which one or more genes have been 

deleted, predicted growth rates can be used to approximate single mutant fitnesses. We used our 

model to analyze the knockout collection assayed in (Hughes, Marton et al. 2000); predictions on 

the complete data set are available in Supplemental Table 2. (Hughes, Marton et al. 2000) 

provides direct fitness measurements for 199 of the ~300 mutants assayed by the microarrays. 

Our predictions for these 199 growth rates correlate very strongly with their measured values 

( =0.473, p<10-11) and are derived solely from expression data. In contrast, methods for 

experimentally estimating single mutant fitness from high throughput growth curves showed 

substantially less agreement ( =0.321, p<10-6 (Warringer and Blomberg 2003); =0.108, p>0.2 

(Jasnos and Korona 2007)) with the original publication's direct measurements. This represents a 

compelling argument as to the relevance of our growth rate model for fitness estimation. 
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Slope >1.5 SDs below average    337 genes 

Process 

p-value Gene 

hits 

Term 

size 

Term 

fraction 

Fatty acid β-oxidation 1.80E-04 6 8 75.0 

Glutamine family amino acid catabolic process 4.20E-04 7 13 53.8 

Energy reserve metabolic process 2.61E-05 12 36 33.3 

Glucose metabolic process 8.10E-04 14 65 21.5 

Monosaccharide metabolic process 1.10E-04 18 92 19.6 

Hexose metabolic process 9.50E-04 16 85 18.8 

Cellular carbohydrate metabolic process 7.75E-12 40 213 18.8 

Monocarboxylic acid metabolic process 5.86E-06 23 124 18.5 

Carbohydrate metabolic process 1.37E-12 43 233 18.5 

Energy derivation by oxidation of organic compounds 4.59E-06 25 143 17.5 

Generation of precursor metabolites and energy 5.02E-07 30 181 16.6 

Coenzyme metabolic process 1.40E-04 22 135 16.3 

Component     

Peroxisomal matrix 1.45E-06 8 12 66.7 

Microbody 3.53E-05 14 57 24.6 

Peroxisome 3.53E-05 14 57 24.6 

Slope <1.5 SDs below average    291 genes 

Process 

p-value Gene 

hits 

Term 

size 

Term 

fraction 

Protein import into mitochondrial matrix 1.00E-07 11 22 50.0 

Maturation of SSU-rRNA 1.68E-10 17 44 38.6 

Protein import into mitochondrion 4.67E-07 13 37 35.1 

Protein targeting to mitochondrion 2.23E-05 13 49 26.5 

Mitochondrial transport 6.11E-05 14 62 22.6 

Function     

snoRNA binding 5.52E-06 11 32 34.4 

Structural constituent of ribosome 3.72E-43 71 230 30.9 

Protein transporter activity 2.10E-04 12 53 22.6 

Structural molecule activity 3.34E-30 72 357 20.2 

Component     

Mitochondrial outer membrane translocase complex 2.04E-05 6 8 75.0 

Cytosolic large ribosomal subunit (sensu Eukaryota) 3.72E-25 37 97 38.1 

Cytosolic small ribosomal subunit (sensu Eukaryota) 1.27E-15 24 64 37.5 

Cytosolic ribosome (sensu Eukaryota) 1.02E-43 64 176 36.4 

Cytosolic part 2.36E-41 65 197 33.0 

Large ribosomal subunit 8.13E-26 44 142 31.0 

Ribosomal subunit 4.18E-44 73 240 30.4 

Small ribosomal subunit 7.37E-16 29 98 29.6 

Ribosome 9.44E-38 80 357 22.4 

Small nucleolar ribonucleoprotein complex 3.39E-07 23 132 17.4 

Nucleolar part 4.92E-10 31 179 17.3 

Ribonucleoprotein complex 1.10E-35 101 623 16.2 

Unresponsive genes    980 genes 

Process 

p-value Gene 

hits 

Term 

size 

Term 

fraction 

80 biological processes <1.00E-03   >10.0 

Function     

Exoribonuclease activity, producing 5'-phosphomonoesters 6.60E-04 13 23 56.5 

Exoribonuclease activity 6.60E-04 13 23 56.5 

Guanyl-nucleotide exchange factor activity 7.40E-04 17 37 45.9 

General RNA polymerase II transcription factor activity 6.19E-05 25 62 40.3 

GTPase regulator activity 5.50E-04 27 77 35.1 

RNA polymerase II transcription factor activity 4.90E-04 37 123 30.1 

Transcription regulator activity 2.01E-09 90 327 27.5 

Protein binding 1.40E-04 121 585 20.7 

Component     

~40 cellular components <1.00E-03   >10.0 

Table 7: GO annotation of genes according to growth rate response. 
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Figure 30: Transcriptional response of stress-related and cell cycle-related genes to changes in growth rate. 

Genes expressed periodically during the cell cycle (black line; (Spellman, Sherlock et al. 1998)) are 

distributed essentially as background, whereas genes induced (red line) or repressed (green line) by stress 

(Gasch, Spellman et al. 2000) tend to be conversely repressed or induced as growth rate increases. 
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Figure 31: Predicted growth rates for S. cerevisiae gene expression data sets. Our model of the growth rate 

transcriptional response can be used to predict the growth rate of a cellular culture from gene expression 

data, robust to the originating biological conditions, growth regime, and experimental platform. Here, we 

apply the model to three selected data sets to infer relative and absolute growth rates. A) A brief (<30s) heat 

pulse was administered to a steady state chemostat culture immediately before time zero, and gene 

expression was assayed with a microarray time course (see Supplemental Figure 2). The relative growth 

rates inferred from this data show an abrupt departure from steady state growth, followed by a return to 

steady state (including a brief regulatory overshoot). Our predictions monitor these changes in growth rate 

at an instantaneous time scale (<5m) inaccessible by standard experimental assays for growth rate. B) 

Predicted growth rates for a portion of the (Gasch, Spellman et al. 2000) environmental stress response data, 

assaying the response to a 30–37C heat shock. Our model captures the cessation and resumption of growth 

induced by the stress, even for a batch culture in which the growth rate is not fixed a priori. C) A collection 

of 24 chemostats were run at four growth rates (0.05hr-1 through 0.2hr-1) and limited on six different nitrogen 

sources. Using only expression data from each condition, our model predicts accurate relative growth rates. 

However, when provided with the known growth rate for a single condition, the model is additionally able 

to infer absolute growth rates for all other data sets sharing that condition's mRNA reference channel. 
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Absolute growth rate prediction with one shared reference 

With a small amount of additional information, the relative growth rates inferred by our model 

can be made absolute in units of chemostat flow rate (hr-1). Our model's predicted rates are 

typically relative values; this is due to the unknown quantitative effects of the reference mRNA in 

our dual-channel training data. It is impossible to know a priori the relationship between this 

reference channel and the relative (for dual-channel) or absolute (for single-channel) expression 

levels in new microarray data. However, if an absolute growth rate is known for some 

microarray condition in the data set, our model can make absolute rate predictions for other two-

color data sharing the same reference channel. 

Inferred absolute growth rates such as this can be seen in Figure 31C, which includes growth rate 

estimates for a collection of chemostats at various flow rates limited on one of several different 

nitrogen sources. On normalized dual-channel microarrays, the doubling of any gene's mRNA 

level in these conditions results in a constant increase in its expression readout. This allows one 

unit of our predicted relative rates to correspond to one unit of absolute chemostat flow rate. 

However, since the reference channel differs from that of our training data, all rate predictions 

are vertically shifted by a corresponding constant factor. By normalizing to any one of the 24 

conditions' known growth rates, this shift can be automatically corrected for the 23 other 

microarrays employing the same reference channel. 
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Figure 32: Assessment of accuracy and outlier detection during growth rate inference. A) We performed an 

out-of-sample cross-validation of our model by randomly subsampling 24 of the 36 training microarray 

conditions 1,000 times. We refit our linear model in each random sample, calculated bootstrapped null 

distributions for all gene parameters, and found sets of the most significant growth-specific genes. These 

were then used to infer growth rates for the 12 held-out conditions, providing an estimate of the accuracy of 

the model's growth rate predictions. B) When predicting the growth rate of a new collection of expression 

data, our model excludes any calibration gene with an expression level outside the inner fence (1.5 times the 

interquartile range below or above the first or third quartiles). This improves predicted growth rate accuracy 

while also calling out genes potentially responding to specific non-growth stimuli under some biological 

condition. For example, in the (Gasch, Spellman et al. 2000) mild heat shock time course, two of the six 

outliers are known heat shock genes (HSP26 and HSP78). The other four (YLR327C, MOH1, YBL048W, and 

TMA10) are uncharacterized genes, suggesting potential roles in the response to heat shock. 

Robustness of the model and outlier detection 

We assessed the quality of our growth rate predictions using 1,000 out-of-sample cross-validation 

experiments using the data from (Brauer, Huttenhower et al. 2008), as shown in Figure 32A. In 
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each experiment, we randomly withheld 12 of the 36 conditions for testing, fit our linear model 

on the remaining 24, derived bootstrapped null distributions using only these data, and 

determined calibration gene sets to use for growth rate inference on the held-out conditions. This 

out-of-sample validation allowed us to assess the accuracy and variability of our predictions on 

conditions with known growth rates not included in the model building procedure. In addition 

to the performance indicated by Figure 32A, this demonstrated robustness to the stringency of p-

value cutoffs and number of growth-specific calibration genes; these ranged in number from ~50 

to ~110 across the randomized validations (of a total ~5,500 possible genes), and changes of this 

magnitude in the final calibration gene set had little impact on predicted growth rates. 

In the process of estimating growth rates and determining this confidence score, growth-specific 

calibration genes with outlying expression values are also detected. While most conditions 

induce few outlying growth-specific genes, when they occur, they are not indicative of the 

quality of growth rate predictions. We have found that neither the number of outliers nor their 

variability correlates with prediction error (data not shown), but they call out genes that may be 

responding to non-growth stimuli under specific biological conditions. Excluding outliers from 

the growth rate estimation process improves the accuracy of the predictions, and these outliers 

can in turn be biologically informative: an outlying calibration gene is likely responding 

specifically to a stimulus other than change in growth rate. For example, some of the only outliers 

in the mild heat shock time course from (Gasch, Spellman et al. 2000) occur towards the end of a 

shift from 29C to 33C (Figure 32B). These include HSP26 and HSP78, both known heat shock 

chaperones (Leonhardt, Fearson et al. 1993; Ferreira, de Andrade et al. 2006). Three genes of 

unknown function (YLR327C, MOH1 and the neighboring dubious ORF YBL048W, and TMA10) 

are also outliers in this condition, which is evidence that these genes may have specific 
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expression responses (and thus biological functions) during heat shock. HSP26 and YLR327C are 

frequent outliers in stress-related conditions, perhaps suggesting a more general stress response 

function. 

Predicting growth rates in S. bayanus and S. pombe 

While our growth rate model is based on a transcriptional growth signature in S. cerevisiae, the 

model can be applied to any organism with sufficiently orthologous transcriptional activity. This 

is likely to be the case within the sensu stricto yeasts, separated by ~25 million years of evolution 

(Gao and Innan 2004). By finding the ~50 S. bayanus genes orthologous to our ~70 S. cerevisiae 

growth-specific calibration genes (Kellis, Patterson et al. 2003), we can apply our model directly 

to S. bayanus expression data. Figure 33 demonstrates such a result for two S. bayanus time 

courses assaying the diauxic shift and a response to heat shock. These results have comparable 

profile to those from S. cerevisiae and are similarly biologically compelling. For example, the 

diauxic shift in S. bayanus results in a very similar growth pattern to the known response in S. 

cerevisiae, with a near-cessation of growth during the shift and subsequent rebound. Conversely, 

S. bayanus is less resistant to high temperatures than S. cerevisiae (Kishimoto and Goto 1995), and 

our growth rate inferences show a corresponding failure in its ability to grow following severe 

heat shock. 
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Figure 33: Predicted growth rates for S. bayanus and S. pombe expression data sets. By examining genes 

orthologous to our ~70 S. cerevisiae growth-specific calibration genes, we successfully applied our model to 

predict growth rates in S. bayanus (~50 orthologous growth-specific genes, ~20M years diverged) and S. 

pombe (~75 growth-specific genes due to one-to-many mappings, ~1B years diverged). A) Predicted growth 

rates for S. bayanus undergoing the diauxic shift from fermentative to respiratory growth. As observed for 

the S. cerevisiae diauxic shift in (Brauer, Huttenhower et al. 2008), growth pauses as glucose is exhausted and 

resumes as the yeast begins consuming ethanol. B) Predicted growth rates for S. bayanus exposed to a 25-37C 

heat shock. In contrast to Figure 31B, in which S. cerevisiae is observed to recover from a 37C heat shock, the 

less-thermotolerant S. bayanus (Kishimoto and Goto 1995) is predicted to halt growth at high temperatures. 

C) Predicted growth rates for S. pombe wild-type and rad3Δ time courses, grown normally and exposed to 

hydroxyurea (HU, an inhibitor of DNA synthesis and thus growth) (Chu, Li et al. 2007). Despite the wide 

evolutionary divergence between S. pombe and our S. cerevisiae training data, predicted growth rates are in 

substantial agreement with expected biology. Each time course begins with low growth in a synchronized 

culture. When the synchronization block is released, cells begin growing, wild-type more efficiently than the 

rad3Δ mutant. Exposure to HU decreases growth over time, and this effect is exacerbated by RAD3 deletion. 

While the S. cerevisiae RAD3 ortholog MEC1 is essential, knockouts of the MEC1 pathway members SOD1 

and LYS7 have been previously observed to induce HU sensitivity (Carter, Kitchen et al. 2005). 
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We have also extended our model to a significantly further diverged yeast, specifically the yeast 

Schizosaccharomyces pombe, separated from S. cerevisiae by an estimated one billion years of 

evolution (Hedges 2002). A mapping of our growth-specific calibration genes to S. pombe using 

information from (Penkett, Morris et al. 2006) results in ~75 genes due to one-to-many 

correspondences, but these provide sufficient calibration information to make high quality 

predictions (Figure 33C). Calibration gene outliers and expression cohesiveness are not 

substantially changed relative to S. cerevisiae and S. bayanus, and the inferred relative rates reflect 

various biological expectations. All cultures (data from (Chu, Li et al. 2007)) show an initial 

increase from low growth rates due to stalled growth during synchronization. An expected 

decrease in growth rate is predicted during increased exposure to hydroxyurea (HU), and a 

rad3Δ deletion (S. cerevisiae ortholog MEC1) incurs a mild overall growth impairment as well as 

exacerbating HU sensitivity. While MEC1 is essential in S. cerevisiae, this sensitivity has 

previously been noted for deletions sod1Δ and lys7Δ, both members of the MEC1 pathway 

(Carter, Kitchen et al. 2005), which is necessary for the cell cycle checkpoint function. 

The extent to which transcriptional regulation is conserved between S. cerevisiae and S. pombe, 

which allows us to successfully apply the model despite the evolutionary distance that separates 

these species, is reflective of cellular growth's central role, particularly in unicellular organisms. 

While this model would become less meaningful in metazoans, where the growth of individual 

cells is subjugated to the growth and differentiation of the organism as a whole, certain 

transcriptional growth behavior is of necessity conserved in single celled organisms (Rudra and 

Warner 2004). This is particularly true of the ribosome, one of the main contributors to our 

model's predictive power; rRNA regulation is purely transcriptional, and ribosomal proteins 

must be expressed stoichiometrically. Since any cellular growth requires translation, observation 
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of ribosomal transcription is a strong indicator of unicellular growth (Warner 1999). This is one 

aspect of the transcriptional growth response made quantitative by our model. 

Insights into growth homeostasis 

To further investigate the biological basis of growth rate correlated gene expression, we used our 

model to predict relative growth rates for two interesting cases: the yeast metabolic cycle (Tu, 

Kudlicki et al. 2005) and the mitotic cell division cycle (Spellman, Sherlock et al. 1998; Pramila, 

Wu et al. 2006). The microarray data published by Tu et al. was obtained for cells grown at high 

density in a glucose-limited chemostat. Under this regime, cells within the culture become 

metabolically synchronized and undergo periodic consumption of oxygen (defined as the 

oxidative phase of the metabolic cycle) followed by periods of undetectable oxygen consumption 

(termed the reductive building and reductive charging phases). The cell cycle data sets by 

Spellman et al and Pramila et al were obtained from experiments in which cells were arrested in 

growth using a variety of methods and then released from arrest to undergo the cell division 

cycle as a synchronous population. 

Growth rate prediction applied to the yeast metabolic cycle data revealed a striking periodicity 

(Figure 34A). The cyclical pattern of growth rate variation occurs completely in concert with the 

metabolic cycle as defined by Tu et al. Specifically, the culture's growth rate is predicted to be at 

minima during the reductive phases of the metabolic cycle and reach maxima during the peak of 

the oxidative phases. In contrast, growth rate prediction for the cell cycle (Figure 34B and C) 

show virtually no variation in predicted growth rate during the different stages of cell division. 
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Figure 34: Differences in growth characteristics of a metabolically cycling culture compared to cells 

synchronously undergoing the cell division cycle. We predict periodic bursts of growth during the oxidative 

phase of the metabolic cycle as described by (Tu, Kudlicki et al. 2005). Conversely, we observe essentially no 

variation in growth in cultures synchronously undergoing the cell division cycle, which has been shown to 

primarily occupy the reductive phase of the metabolic cycle (Chen, Odstrcil et al. 2007). A) In cells 

undergoing metabolic cycling, growth rates are predicted to peak during the oxidative phase of the cycle, 

where (Tu, Kudlicki et al. 2005) also observes strong upregulation of translational and ribosomal genes. B) 

The predicted growth rate for the (Spellman, Sherlock et al. 1998) alpha-factor synchronized cell cycle is 

essentially constant, after an initial release from the synchronization block. C) Predicted rates for the 

(Pramila, Wu et al. 2006) alpha-factor synchronized cell cycle also show an initial resumption of growth after 

alpha-factor block followed by relatively constant growth rate. Taken together, these observations support 

the claim that growth rate regulation is not specific to any one cell cycle phase. This also agrees with the fact 

that rapidly growing (and thus fermenting) S. cerevisiae does not partition metabolism into discrete stages, a 

phenomenon only occurring when reductive metabolism is hindered by nutrient limitation or other stresses. 
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These data support and extend our previous assertions (Brauer, Huttenhower et al. 2008) that the 

there is a close connection between the metabolic cycle identified in (Klevecz, Bolen et al. 2004) 

and (Tu, Kudlicki et al. 2005) and the association we identify between growth rate and gene 

expression levels. This result is consistent with two possible explanations. The first is that there is 

variation in the growth rate of cells throughout the metabolic cycle. (Tu, Kudlicki et al. 2005) and 

(Chen, Odstrcil et al. 2007) have shown that under their specific experimental conditions, DNA 

replication and cell division is restricted to the reductive phases of the metabolic cycle. It is 

conceivable that growth per se (i.e. the accumulation of biomass) is paused during the reductive 

phases of the metabolic cycle so that the cell can replicate and segregate DNA and complete the 

complex processes of cell division; growth may then be restricted to the oxidative phase of the 

metabolic cycle. Alternatively, it is possible that as any heterogeneous culture grows faster, a 

greater fraction of cells are in the oxidative phase at any point in time. Thus, the growth rate gene 

expression signature we observe might reflect the increasing fraction of cells in the oxidative 

phase of the metabolic cycle.  

The absence of growth rate differences during the cell division cycle (Figure 34B and C) supports 

our previous claim (Brauer, Huttenhower et al. 2008) that the growth rate expression signature is 

unrelated to the cell cycle. Moreover, since the relevant cell cycle experiments were performed in 

rich media using a fermentable carbon source, the results suggest that rapidly growing cells 

(which are almost exclusively fermenting) do not partition metabolic activity into discrete phases, 

as their energetic requirements are met in a continuously reductive metabolic state. It is only 

when slowed growth is imposed upon the cell, due to stress, nutrient limitation, or other 

suboptimal environments, that the metabolic cycle is required. 
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We sought to further distinguish whether nutrient availability determines growth rate (which in 

turn determines the gene expression pattern) or whether nutrient availability sets the 

transcriptional state (which in turn determines growth rate). To address this issue, we examined 

the regulatory circuit responsible for transcriptional changes in response to glucose availability in 

yeast. Glucose addition to cells growing on glycerol elicits a rapid and massive change in the 

pattern of gene expression, with more than half of all genes changing at least twofold in 

expression. Previous work has shown that the Ras/cAMP/PKA pathway is the major source for 

eliciting this transcriptional change in response to glucose addition (Wang, Pierce et al. 2004; 

Zaman, Lippman et al. 2008). Activation of the Ras/PKA pathway in the absence of 

environmental signals, through induction of an activated allele of RAS2 (RAS2G19V), recapitulates 

in magnitude and direction more than 85% of the changes observed by glucose addition, and 

inhibition of PKA (concurrent with addition of glucose) blocks most of the glucose induced 

transcriptional changes (Zaman, Lippman et al. 2008). This mutation thereby represents a useful 

model connecting S. cerevisiae's glucose sensory signaling to its transcriptional regulation of 

growth rate.  

We constructed a gal1Δ strain carrying the activated allele RAS2G19V under control of the galactose 

inducible GAL10 promoter. Addition of galactose activates the Ras/PKA pathway, but since 

galactose cannot be metabolized by this strain, the metabolic state of the cell remains unaltered 

(Wang, Pierce et al. 2004). When grown on glycerol we predict a relative growth rate of ~0.2 for 

this strain (Figure 35A), which changes to ~0.6 within twenty minutes following glucose addition, 

consistent with the change in doubling time from 5.8hr to 2.6hr. When we performed the same 

experiment on glycerol media and induced the RAS2G19V by means of galactose addition, we 

detected a transcriptional response within sixty minutes. The predicted growth rate of RAS2G19V 
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mutant strain was comparable to the addition of glucose despite the fact that galactose addition 

does not yield an increase in growth, as measured by optical density, since the cells are unable to 

metabolize galactose. In fact, while the model's summarization of gene expression state indicates 

that the culture is attempting to increase growth, induction of the RAS2G19V allele results in an 

immediate decrease in growth rate and complete cessation of growth within four hours (Fedor-

Chaiken, Deschenes et al. 1990). These results are consistent with the cell setting its growth-

specific transcription program on the basis of its perception of nutrients present in the 

environment, rather than on the direct availability of energy or metabolites produced from such 

nutrients. The mechanism by which the cell integrates this external state in order to set the 

appropriate growth rate expression state must be mediated, at least in part, through the 

Ras/cAMP/PKA pathway. 

Potential transcriptional regulators of growth rate 

To investigate the regulatory basis of growth-associated gene expression, we identified motifs 

enriched in the 3' and 5' regions of genes with strong growth rate responses (Figure 35B). We 

assigned genes to clusters based on their growth rate response parameter (βg) using k-means 

clustering with k=10. Using the FIRE motif identification program (Elemento, Slonim et al. 2007), 

we identified enriched motifs in seven of the resulting ten clusters. Consistent with the functional 

enrichments of negatively growth rate correlated genes (Brauer, Huttenhower et al. 2008), we 

identified known binding sites associated with the stress responsive transcription factors Msn2p 

and Msn4p in genes negatively correlated with growth rate. Conversely, genes that are increased 

in expression with growth rate are enriched for the Rap1p consensus motif, which is commonly 

found upstream of genes encoding protein components of the ribosome. 
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Figure 35: Perturbations and potential transcriptional regulators of the growth rate response. A) Predicted 

growth rates for gal1Δ cells shifted to glucose, to galactose, and to galactose with a constitutively active 

RAS2G19V allele. On glucose, rapid growth is induced within ~40m; growth on galactose falls to low levels 

within ~40m, as it cannot be metabolized by this mutant. However, when glucose sensing is emulated by 

artificial activation of the Ras/PKA pathway, the transcriptional regulatory network attempts to induce 

rapid growth within ~60-80m despite the unavailability of appropriate nutrients. This disconnect between 

actual and perceived cellular state leads to cell death within 4-6 hours and suggests that nutrient sensing (as 

opposed to metabolic activity or internal cellular state) is responsible for a large portion of the 

transcriptional growth rate response. B) Regulatory binding sites enriched in growth up- and down-

regulated genes. We clustered the yeast genome by degree of growth rate response, yielding ten clusters 

with average responses ranging from -12.0 (strongly downregulated with increasing growth rate) to 8.6 

(strongly upregulated). The FIRE program (Elemento, Slonim et al. 2007) predicted 10 regulatory motifs in 

the upstream flanks and 3' UTRs of the most up- and down-regulated clusters. These included the known 

stress-responsive MSN2/4 binding sites in downregulated genes, the ribosomal regulators RAP1 and PUF4 

in upregulated genes, and INO4 sites in upregulated genes (possibly corresponding to its role in the stress 

response and fatty acid biosynthesis (Santiago and Mamoun 2003)). We also identified five additional 

putative growth regulatory sites for which the binding factor is not yet known. 
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We also found enrichment of the Ino4p binding site in genes upregulated with increasing growth 

rate. Ino4p forms a heterodimer with Ino2p to activate genes involved in phospholipid, fatty acid, 

and sterol biogenesis, all of which are required in greater abundance with increased growth rates. 

Furthermore, Ino4p has been proposed to have an inhibitory effect on a number of genes, 

including those that encode the heat shock proteins (Hsp12p, Hsp26p) and catalase (Ctt1p) 

(Santiago and Mamoun 2003). We also identified two additional enriched motifs in the 5' UTR for 

which the binding factor is not known, suggesting additional activators of growth-related 

transcriptional programs. 

In addition to 5' upstream motifs, we identified five enriched 3' UTR motifs, which are potential 

binding site for proteins that promote mRNA degradation. Only a small number of mRNA 

binding consensus sequences are known, all of which belong to the Puf family of mRNA binding 

proteins (Gerber, Herschlag et al. 2004). Our analysis identified five enriched motifs in 3' UTRs. 

Two of these motifs, found in genes positively correlated with growth rate, were identified by the 

FIRE program as being targets of Puf4p. As an independent test, we compared the distribution of 

growth rate responses in the known gene targets of the five Puf proteins with the overall 

distribution of growth rate slopes. Targets of both Puf3p (220 genes) and Puf4p (205 genes) are 

enriched for genes that are upregulated with increasing growth (Wilcoxon-Mann-Whitney two 

sample p-values 9x10-23 and 7.23x10-16, respectively). The consensus motifs of Puf3p and Puf4p are 

very similar; investigation of the PUF4 motif identified by FIRE suggests that the enrichment 

signal for at least one of the motifs denoted PUF4 is likely to result from a composite of Puf3p 

and Puf4p target genes (Figure 35B). 

Overall, this analysis is consistent with tight transcriptional regulation underlying the cellular 

growth program; it is likely that mRNAs involved in this process are also subject to extensive 
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post-transcriptional control. Interestingly, since our method is sensitive to changes in gene 

expression levels occurring in just a few minutes, we expect that post-transcriptional regulation 

(both mediated decay of and stabilization of transcripts) is involved in this response. 

Experimental analyses of the effects of perturbations within this regulatory network promise to 

shed further light on its organization. 

Discussion  

We studied 36 yeast chemostat cultures growing at six different growth rates under six different 

nutrient limitations: glucose, sulfate, phosphate, ammonium, leucine (in a non-reverting leu2 

mutant) and uracil (in a non-reverting ura3 mutant). By using a variety of different nutrients to 

limit growth rate, we could focus on quantitative relationships with growth rate per se, and not 

with the particular nutrient regime that limits the growth rate. Our data agree very well with the 

results of others who have done similar studies (Boer, de Winde et al. 2003; Saldanha, Brauer et 

al. 2004; Regenberg, Grotkjaer et al. 2006; Castrillo, Zeef et al. 2007), both with respect to genes 

that are responsive to particular limitations and with respect to genes that respond mainly to 

growth rate. 

We present a statistical model of the gene expression response to changes in growth rate in S. 

cerevisiae. Based on microarray data from a variety of steady state growth rates and nutrient 

limitations, this model captures descriptive information regarding each gene's consistency and 

degree of response to growth rate. As detailed in (Brauer, Huttenhower et al. 2008), 

approximately half of the genome shows a significant transcriptional response to growth rate 

with strong functional cohesiveness; here, we extend this model to show its robustness, 

applicability to new data, and ability to provide insight into the biological systems driving 

cellular regulation of growth rate. New experiments with more complex models (quadratic and 
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hierarchical) demonstrated that additional model parameters did not provide substantial 

performance gains, particularly relative to their added complexity (data not shown). Similarly, 

changes in the stringency of definitions of responding genes or of growth-specific genes did not 

substantially alter results. This is reflected in the out-of-sample validation results, which quantify 

the model's accuracy in predicting relative growth rates from gene expression data. 

Expression of about one-quarter of all yeast genes is correlated with growth rate, but the 

magnitudes of the slope of the relationship is characteristic for each gene 

We identified a large number of genes (ca. 27% of all yeast genes) each of whose expression is 

linearly correlated (either negatively or positively) with the growth rate, independent of the 

limiting nutrient. Some of these genes were much more strongly affected by growth rate than 

others, again independent of the identity of the limiting nutrient. Hierarchical clustering of the 

entire chemostat dataset indicates that the correlation between the steady-state level of mRNA 

and the nominal growth rate applies to many genes. Notably, (Castrillo, Zeef et al. 2007) recently 

published a set of data entirely consistent with the one presented here for glucose, nitrogen, 

sulfur and phosphate limitations. Their analysis also led to the conclusion that many genes are 

expressed in a way correlated with growth rate, independent of the identity of limiting nutrient. 

The combination of each gene's growth rate slope (i.e. strength of transcriptional response) and 

the bootstrap p-values of these slopes (i.e. their statistical significance) allows the rigorous 

identification of genes responding strongly to growth rate in a nutrient-independent manner. A 

histogram of the slopes for all yeast genes allows one to visualize the growth rate sensitivity of a 

single gene or a list of genes relative to the overall distribution (Figure 29). These methods (also 

available on the website http://growthrate.princeton.edu) facilitate the use of the information 

http://growthrate.princeton.edu/
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from this dataset to make inferences for our own analysis, and, as we shall see, to analyze the 

results of others. 

In order to focus on the biology of gene expression as a function of growth rate, we defined a 

subset of 1,608 genes that correlate with a characteristic slope: 337 had a negative slope, 291 a 

positive slope, and 980 a slope near zero (i.e. their expression was roughly the same at all growth 

rates). The point to be emphasized here is that this stringent a selection of 337 + 291 = 628 (i.e. 

about 10% of all yeast genes) necessarily underestimates the number of genes with non-zero 

slopes, since genes with smaller (positive or negative) slopes and/or noisy data are likely to fail 

the statistical tests. The clustering estimates (which suggest larger numbers of growth rate 

responsive genes) are surely closer to reality; we therefore suggest that expression of at least 27% 

of yeast genes is correlated with the nominal growth rate in chemostats, regardless of the nature 

of the limiting nutrient. 

Functional roles of genes whose expression is most strongly related to growth rate 

 GO Term Finder analysis of the subsets of genes with well-defined slopes (Table 7) presents a 

very clear picture. The positive-slope subset of 291 genes focuses on the translation machinery, 

both cytosolic and mitochondrial. This result has very strong precedents in the literature of both 

bacterial and yeast physiology, where the correlation between the number of ribosomes and the 

growth rate was noted very early (Maaloe and Kjeldgaard 1966); see more recent reviews 

(Nomura 1999; Warner 1999; Zhao, Sohn et al. 2003). The biological logic for this relationship is 

virtually self-evident: to grow at a faster rate, more proteins must be made per unit time, which is 

facilitated by having more ribosomes per cell.  
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Many different regulatory mechanisms (most prominent among them the TOR1 signaling 

system) have been implicated in this connection (reviewed in (De Virgilio and Loewith 2006)). Of 

particular relevance are the results of Jorgensen et al. (Jorgensen, Rupes et al. 2004), who found a 

connection between ribosome biosynthesis and cell cycle entry at START (Hartwell, Culotti et al. 

1974) via the regulation of both processes by the products of SFP1 and SCH9. 

The negative-slope subset of 337 genes relates to functions associated with oxidative energy 

metabolism, especially those carried out in peroxisomes. Peroxisomes have been associated with 

fatty acid metabolism, with oxygen metabolism (particularly reactive oxygen) and, more recently, 

with autophagy (see reviews (Kim and Klionsky 2000; van Roermund, Waterham et al. 2003; 

Monastyrska and Klionsky 2006; Rottensteiner and Theodoulou 2006; Wanders and Waterham 

2006)). The biological logic here is less obvious, although the benefits of engaging in autophagy 

and degradation of cellular materials during nutrient limitation are clear. Another possibility 

relates to the metabolism of reactive oxygen species, for which there might be more need when 

time between cell division cycles is longer. A purely metabolic logic (e.g. a need for more beta-

oxidation of fatty acids at slow growth rates) is more difficult to rationalize. While reasonable 

when carbon (in our case glucose) is limiting, it is not obvious how this might work for the other 

limitations, especially those which leave high concentrations of residual glucose in the medium at 

steady-state.  

The statistically derived growth-rate-independent subset (980 genes) is, in this context, equally 

informative. It includes a large number of GO terms that cover much of the remaining yeast cell 

biology. These 84 GO process terms notably include such areas as transcription, DNA 

metabolism, chromatin remodeling, proteolysis, protein secretion and even the cell cycle, among 

many others. 
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Instantaneous growth rate and the Environmental Stress Response 

Among the positively correlated genes, we found many (but not all) of the genes whose 

expression declined during the "environmental stress response" as defined by (Gasch, Spellman 

et al. 2000); among the negatively correlated, we found many (but not all) of the genes whose 

expression increased in the Gasch experiments. Similar data were reported recently in (Castrillo, 

Zeef et al. 2007). These results raise the possibility that much (but probably not all) of what has 

been defined as environmental stress response might equally well be thought of as a general 

response to changes in the instantaneous growth rate. Since it consists mainly of the most 

growth-rate-sensitive genes, much of the response could be secondary to a much smaller number 

of specific responses to individual environmental stresses. It also is worth noting here that the 

steady state mRNA concentrations of the positively growth-rate-correlated genes fall remarkably 

rapidly after applications of stresses (Gasch, Spellman et al. 2000), consistent with the idea of 

regulation at the level of mRNA degradation (Grigull, Mnaimneh et al. 2004) as well as 

transcription. 

Predicting instantaneous growth rates under novel experimental conditions 

Our model can be applied to new gene expression data to infer the relative instantaneous growth 

rate of the originating cellular culture. This instantaneous rate represents a measurement of the 

transcriptional state of cellular growth rate control, and it provides insight into the cell's growth 

rate at arbitrarily short time scales inaccessible by experimental measurements (e.g. optical 

density). Moreover, genes with outlying expression values can be detected during growth rate 

inference, calling out probable biological responses to specific non-growth stimuli. The 

predictions based on this model are robust to changing biological conditions, experimental 

methods, and technological platforms; they also scale from our S. cerevisiae training data to the 
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related yeast S. bayanus and the highly diverged yeast S. pombe, suggesting that the 

transcriptional control of growth rate captured by the model are a fundamental aspect of 

unicellular biology. 

Through further analysis of this regulatory network, we discovered several potential 

transcription factor binding sites enriched in growth-correlated genes, most notably the stress-

responsive Msn2p and Msn4p, the Rap1p ribosomal factor, and Ino4p. Importantly, we have 

identified a likely role for post-transcriptional regulation in modulating transcriptional states 

related to growth rates. This finding is consistent with our ability to measure changes in growth 

rate over very short time scales using gene expression signatures. The abundance of any 

messenger RNA is a function of both its rate of production and of its rate of degradation; 

however, since transcription can be relatively slow, changes in abundance can be most rapidly 

effected by altering the stability of the extant mRNA population. The Puf proteins have known 

roles in mediating mRNA degradation (Olivas and Parker 2000) and in mediating the association 

of functionally related transcripts (Gerber, Herschlag et al. 2004). It has recently been proposed 

that modulation of mRNA stability is an important factor in metabolic regulation (Palumbo, 

Farina et al. 2008). The association of Puf protein binding domains in the 3' UTRs of genes with 

increased expression at higher growth rates suggests that modulating mRNA stability is also 

important in the regulation of the growth response at short time scales.  

From a computational perspective, it is notable that a simple linear model accurately and 

robustly captures a specific biological phenomenon. The model represents a concise, functionally 

cohesive set of expression profiles regarding the genome's transcriptional response to growth. 

This description agrees with known aspects of the growth response, such as the transcription of 

ribosomal components, and provides initial data as to the mechanistic roles of internal feedback, 
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environmental sensing, and the stress response as growth rate varies. By monitoring an ensemble 

of genes - but with few parameters per individual gene - the model is easily applicable to new 

conditions and organisms and is robust to technical and biological variability. These features 

enable our model to serve both as a practical tool for growth rate estimation (available at 

http://function.princeton.edu/growthrate) and as a mechanistic building block in the pursuit of a 

systems-level understanding of cellular growth processes. 

Effects of Aneuploidy on Gene Expression in S. cerevisiae 

The gain or loss of entire chromosomes, referred to as aneuploidy, has been a known hallmark of 

cancer cells and other genetic disorders (particularly Down syndrome) for decades. Aneuploid 

cells can arise from a variety of mechanisms that have been intensely studied. In cancer cells, 

aneuploidies are thought to be caused mainly by the failure of mitotic checkpoints; meiotic 

aneuploidies, for which the root causes are less well understood, manifest primarily in spindle 

alignment failures. Once present, it is thought that aneuploidies can be selected for as beneficial 

traits e.g. in a tumorigenic environment, where they can activate oncogenes or deactivate tumor 

suppressors. 

Beyond these general effects, however, it is not clear how a cell's internal regulatory network 

adapts to the massive imbalances imposed by aneuploidies. Without a moderating regulatory 

response, the presence of an extra chromosome would be expected to incur a correspondingly 

greater transcription, translation, and protein load on the cell; a missing chromosome would 

similarly limit a cell's ability to create specific proteins. Coupled with the fact that recent work 

has demonstrated aneuploidy to confer a general growth disadvantage (Torres, Sokolsky et al. 

http://function.princeton.edu/growthrate
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2007), it is thus of great interest to determine how a cell's regulatory network accommodates 

aneuploidy. 

Saccharomyces cerevisiae presents a unique opportunity to study aneuploidies for several reasons, 

not least of which is its well-known amenability to genetic manipulation. Since yeast can grow 

naturally in both haploid and diploid states, this allows the examination of artificially monosomic 

(i.e. diploids missing a copy of one or more chromosomes), disomic (i.e. haploids with an extra 

copy of some chromosome), and trisomic (i.e. diploids with one or more extra chromosomes) 

cells. S. cerevisiae can also stably maintain yeast artificial chromosomes (YACs) carrying inactive, 

non-transcribed DNA. Finally, yeast can be easily cultured either under conditions of unlimited 

exponential growth (batch cultures) or at a controlled rate limited by some specific nutrient 

(continuous or chemostat cultures). The diversity of aneuploidy and growth conditions attainable 

by S. cerevisiae cultures, in combination with whole-genome techniques for monitoring gene 

expression, allow us to study both the transcriptional effects of specific types of aneuploidies and 

the global regulatory response to aneuploidy. 

Here, we use a linear model to statistically determine the changes in S. cerevisiae gene expression 

attributable to specific aneuploidy conditions and to a global regulatory response to aneuploidy. 

By measuring the gene expression of cultures with four types of aneuploidy (monosomy, disomy, 

or trisomy for one or more chromosomes, or carrying a YAC) in three different growth 

environments (batch culture, chemostat cultures limited for phosphate, or chemostat cultures 

limited for uracil), we have the opportunity to decompose the resulting transcriptional programs 

into portions statistically attributable to each stimulus. We find that i) there is a broad, 

functionally diffuse regulatory response to all aneuploidies (even carrying an inactive YAC), ii) 

carrying an active aneuploidy upregulates ubiquitin-mediated protein degradation by the 
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proteasome, iii) the previously reported growth impairment by aneuploidy incurs a separate, 

largely unrelated regulatory response, and iv) trisomy specifically upregulates proteins involved 

in mitosis and downregulates mating signals. Additional regulatory perturbations were incurred 

by aneuploidies of individual chromosomes, e.g. disruption of chromosome XII strongly inhibits 

respiration and oxidative phosphorylation. Taken together, these results provide not only 

detailed insights into S. cerevisiae's response to chromosomal abnormalities, but also form a 

starting point for investigating the broader impact of aneuploidy on gene regulation. 

Methods 

We applied a linear model to the study of gene expression in S. cerevisiae in response to a variety 

of induced aneuploidies (Table 8). Specifically, yeast mutants from a W303 background were 

constructed carrying one of four types of chromosomal aberrations: monosomes (diploids with 

only a single copy of some chromosome), disomes (haploids with two copies of some 

chromosome), trisomes (diploids with three copies of some chromosome), and YACs (yeast 

carrying an artificial chromosome with human or mouse DNA inserted). These mutants were 

then grown under one of three conditions: batch cultures, phosphate limited chemostats, or uracil 

limited chemostats. In each perturbation/environment combination, gene expression levels were 

assayed using microarrays with wild type yeast (grown in the same environment) as a reference; 

for additional biological details, see (Torres, Sokolsky et al. 2007). Here, we model each gene's 

expression as a linear combination of its baseline chromosomal copy number, the type of induced 

chromosomal aberration, the growth environment, and perturbations of individual 

chromosomes. This allows us to discover genes responsive to specific chromosomal abnormalities 

and a program of global gene regulation in response to aneuploidy. 

Collection of gene expression data 
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Briefly, aneuploid yeast strains were generated by a chromosome transfer technique based on 

(Hugerat, Spencer et al. 1994). Disomic mutants were obtained by mating strains with integrated 

HIS3 cassettes in each chromosome with a kar1Δ15 cyh2Q37E strain and selected on cyclohexamide. 

The resulting progeny were in turn mated with a strain carrying the kanMX6 cassette at the same 

locus as the HIS3 integration, as well as the can1-100 allele. Progeny were selected on G418 media 

lacking histidine and containing canavinine. Trisomic strains were generated by replacing the 

kanMX6 marker with URA3, mating the resulting diploids to a haploid strain containing kanMX6 

at the same location, and selecting on -His-Ura+G418 media. Yeast carrying YACs were generated 

in a similar manner by plating on media lacking uracil. For additional details, see (Torres, 

Sokolsky et al. 2007). 

This procedure resulted in yeast with monosomic, disomic, trisomic, and YAC aneuploidies as 

specified in Table 8. These strains were then grown under one of three conditions: batch cultures 

grown to an OD600 of one in -His+G418 media, chemostat cultures limited for phosphate grown 

to steady state at 0.17hr-1, or chemostats limited for uracil at 0.17hr-1. Gene expression in the 

resulting cultures was assayed using Agilent yeast arrays using wild type yeast from identical 

strain backgrounds (but without aneuploidies) grown under the same conditions; biological and 

technical replicates were included when possible. Since standard microarray normalization 

assumes an expected change of zero between reference and test channels, which will not be true 

under whole-chromosome aneuploidies, the average log ratio of all non-aneuploid genes was 

subtracted from the log ratio expression value for all genes on each array. This resulted in global 

average log2 expression values of 0.76 (1.7 fold) for disomic genes, 0.47 (1.4 fold) for trisomes, -

0.71 (0.61 fold) for monosomes, and -0.01 (0.99 fold) over all genes in YAC bearing strains. 
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 YACs Monosomes Disomes Trisomes 

Batch YAC I, I+IX I, II, IV, V, VIII, IX, X, XI, XII, XIII, 

XIV, XV, XVI, VIII+XIV, XI+XV, 

XI+XVI, I+YAC 

- 

Phosphate chemostats YAC V, VI, I+IX I, II, IV, V, VIII, IX, X, XI, XII, XIII, 

XIV, XV, XVI, XI+XVI, II+YAC 

I, II, IV, V, VIII, IX, XI, 

XII, XIV, XV, XVI 

Uracil chemostats - - I, II, IV, V, VIII, IX, X, XI, XII, XIII, 

XIV, XV, XVI, XI+XV, XI+XVI 

- 

Table 8: Aneuploid strains for which gene expression data was collected and analyzed. YAC carrying strains 

were either otherwise wild type or, in two cases (I+YAC and II+YAC), disomic for one yeast chromosome. 

Monosomic strains were diploid missing one copy of one chromosome (or two), disomic strains were 

haploid carrying an extra copy of one chromosome (or two), and trisomic strains were diploid carrying a 

third copy of one chromosome. When no data is present for a particular aneuploid/growth condition 

combination, those strains were not assayed under the specified condition; when a chromosome is not 

indicated in the list of specific aneuploidies, the necessary yeast strain was inviable or otherwise not 

obtained from the chromosomal transfer assay. 

Linear model of aneuploidy response 

The independent variables perturbed by this assay can be summarized by 22 binary values, each 

zero when the condition is not present and one when it is: five types of aneuploidy (YACs, 

monosomy, disomy, trisomy, and transcription, the last including all non-YAC conditions), three 

growth conditions (batch, phosphate limitation, and uracil limitation), and 14 possible 

chromosomal aberrations (I, II, IV, V, VI, VIII, IX, XI, XII, XIII, XIV, XV, and XVI, excluding the 

unobtainable III, VII, and X). Additionally, data was available to analyze six of the possible 

interaction conditions: monosomic, disomic, and transcriptional aneuploidies with batch and 

phosphate growth conditions. Finally, a gene's expression level was assumed to be directly 

dependent on its DNA copy number relative to wild type (0.5, 1.0, or 1.5) and to be transcribed at 

some baseline level (i.e. intercept or constant term). For each condition, these constants can be 
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summarized as a vector of constants xc; for each gene, the corresponding coefficients were 

represented as a vector b: 

b = [ base, dna, 

 yac, mono, diso, tris, trans, 

 batch, pho, ura, 

 mono:batch, mono:pho, diso:batch, diso:pho, trans:batch, trans:pho, 

 chromI, chromII, ..., chromXVI ] 

Accounting for the variable availability of specific aneuploid/condition combinations and for 

missing microarray data, we obtained between 76 and 108 expression values for each gene. These 

dependent values y were then fit using least squares to a linear model: 

y = [x1, x2, ..., xn]b + ε 

That is, for each gene, we fit (at most; see below) 30 parameters, corresponding to the 

aneuploidies, environments, interactions, and chromosomal aberrations as described above, and 

to baseline (intercept) and copy number (DNA) parameters. A gene's expression values y are 

each fit using these coefficients b and a condition-specific vector of constants xc (all binary save 

for the relative DNA content) that describe the combination of aneuploidies and environment 

making up the condition. 

To avoid fitting noise with this sizeable collection of parameters, we employed a modification of 

the method described in (Knijnenburg, Wessels et al. 2008). When fitting each gene's linear model 

using R (R Core Development Team, Vienna, Austria), we began with an empty parameter set 

(i.e. y = ε). Then, for each parameter, we used a bootstrap evaluation across the gene's expression 

values to determine which single parameter would, if added, provide the greatest reduction in 
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error. If this parameter was also significantly different from zero (at the 0.01 level Bonferroni 

corrected for the 30 possible parameters), it was added to the vector b and the process was 

repeated, halting at (and excluding) the first parameter not significantly nonzero. Interaction 

terms were only used if they reduced error more than the addition of both of their constituent 

individual terms. Unlike (Knijnenburg, Wessels et al. 2008), due to our much smaller biological 

effect sizes, no restriction was placed on the minimum value of each parameter. This resulted in 

zero to eight parameters being learned per gene, the former due to missing values in the 

microarray data and the latter extremely rare (only five genes using more than six parameters). 

This model fit significantly (Bonferroni-corrected p<0.01, minimum adjusted R2≈0.2) to the 

majority of the genome (4,997 genes), and except when specifically considering genes not fit by 

the model, further analysis was limited to these genes. 

Bootstrap assessment of significance 

To validate the significance of the linear model's fit to our yeast aneuploidy gene expression 

measurements, we used bootstrapping (Efron 1993) to randomly resample 10,000 synthetic 

"genes." In order to preserve the structure of the independent variables (e.g. conditions of 

monosomy, disomy, and trisomy are mutually exclusive, and any one of them entails a condition 

of transcriptional aneuploidy), we performed this resampling as follows. First, consider the set of 

6,256 measured yeast genes G={g1, ..., g6,256} with a total of 740,677 expression measurements e=[e1, 

..., e740,677], where g(ei) G indicates the gene providing measurement ei. Each of these expression 

measurements ei was taken under some conditions described by a vector xi containing the (mainly 

binary) variables detailed above, inducing a matrix X with rows x1 through x740,677. For each gene 

gi, let n(gi) be the number of expression measurements (i.e. elements of e) assayed for gi. Then for 
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our synthetic genes Gs={gs1, ..., gs10,000}, we generated synthetic expression values es and conditions 

Xs: 

1. For gsi Gs: 

2.  For a random g G, let n=n(g). 

3.  Repeat n times: 

4.   Draw e randomly from e. 

5.   Draw x randomly from the rows of X.  

6.   Set g(e)=gsi, add e to es, and add x to Xs. 

This yielded 10,000 synthetic genes, each with between 76 and 108 randomized expression 

measurements and conditions, for a total of 1,070,637 bootstrapped expression values. These data 

were fit using an identical model and procedure to the experimental data as described above. 

The S. cerevisiae Phosphoproteome 

We present an analysis of the yeast phosphoproteome based on data that uses endo-Lys C as the 

proteolytic enzyme, immobilized metal affinity chromatography (IMAC) for phosphopeptide 

enrichment, a 90 min, nanoflow-HPLC/electrospray-ionization tandem mass spectrometry 

experiment for phosphopeptide fractionation and detection, gas phase ion/ion chemistry (ETD) 

for peptide fragmentation, and the open mass spectrometry search algorithm (OMSSA) for 

phosphoprotein identification and assignment of phosphorylation sites. From a 30μg (~600pmol) 

sample of total yeast protein, we identify 1,252 phosphorylation sites on 629 proteins. Identified 

phosphoproteins have expression levels that range from <50 to 1,200,000 copies/cell and are 

encoded by genes involved in a wide variety of cellular processes. We note that most protein-
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kinase recognition-motifs predicted by SCANSITE are significantly enriched in our 

phosphorylation data and present evidence for a novel motif recognized by one or more 

unidentified yeast kinases. We analyze the identified phosphoproteins in the context of 

interaction networks and find that they have a significantly higher number of interactions than 

expected and that yeast kinases themselves contain a disproportionately large number of 

phosphorylation sites. We note that the observed phosphoproteins, but not individual 

phosphosites, are likely to be conserved across very large evolutionary distances. 

Results and Discussion 

Our 629 phosphoproteins were identified from Saccharomyces cerevisiae grown on rich medium 

containing glucose. These proteins represent a random sample of yeast proteins covering most 

cellular processes (Figure 36A). The only GO (Ashburner, Ball et al. 2000) biological process term 

significantly underrepresented is translation elongation. We presume this is because we prepared 

the cells by centrifugation, and the high density of cells in the pellet leads to rapid starvation, 

which would be reflected by a rapid change in the phosphorylation status of translation 

elongation factors (de Haro, Mendez et al. 1996). The abundances of the phosphoproteins 

identified are also similar to the global distribution of protein abundance (Figure 36B) estimated 

from genome-wide protein affinity purification experiments derived from cells grown under 

similar conditions to those used in our studies (Ghaemmaghami, Huh et al. 2003). Together, these 

data suggest that the identified phosphopeptides are encoded by a representative sample of 

genes corresponding to a wide variety of cellular processes and are observed in proportion to 

their expression within the yeast proteome. 

We find the identified phosphoproteins to be enriched in a small number of specific GO 

processes, particularly fermentation, protein synthesis, and phosphorylation-related processes. 
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This is not surprising, given that the cells were grown in rich medium under conditions favoring 

rapid growth and fermentation. Interestingly, the genes are also enriched in a subset cell 

division-specific processes; namely, budding, polarity and cytokinesis. This was unexpected and 

suggests that there is a high degree of phosphorylation-dependent regulation of these events. 

Phosphorylated proteins were significantly more likely to themselves possess known 

phosphotransferase activity. This suggests that phosphorylation is likely to be a common 

regulation mechanism for kinases in yeast. 

We further analyzed the kinase-substrate relationships in our data set by using SCANSITE to 

predict motifs within the phosphorylated proteins from which the peptides were derived 

(Obenauer, Cantley et al. 2003). Nearly every protein kinase recognition motif predicted by the 

SCANSITE was significantly enriched in our phosphorylation data (Supplemental Figure 4). A 

summary of the SCANSITE kinase target-groups found in our data, using medium stringency 

criteria, appears in Supplemental Table 3. Basophilic sites make up the largest group of motifs, 

while acidophilic and proline-directed motifs are also well represented. These results are in 

agreement with data from other large datasets (Beausoleil, Jedrychowski et al. 2004; Nuhse, 

Stensballe et al. 2004). In addition to these known sites, our assay identifies 381 phosphorylation 

sites not found by SCANSITE. The relative occurrence of amino acids flanking the sites of 

phosphorylation appears as a heat map in Figure 36C, D, and E. The acidophilic (Figure 36C) and 

basophilic (Figure 36D) maps are as predicted from SCANSITE. The heat map for the novel sites 

(Figure 36E) shows an enrichment of proline and histidine at positions +1 and –1, respectively, to 

the site of phosphorylation. We suggest that this likely represents a novel motif for one or more 

protein kinases in yeast. 
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The majority of the phosphorylation sites in our data are on serine (82.3%), and the remainder on 

threonine (17.5%) and tyrosine (0.027%). This confirms the extremely low extent of tyrosine 

phosphorylation in yeast (Modesti, Bini et al. 2001). There are no true protein tyrosine kinases in 

yeast, but there are seven dual-specificity kinases predicted on the basis of sequence similarity: 

the MAPKK proteins (Ste7p, Mkk1p, Mkk2p, and Pbs2p) and three kinases that regulate the cell 

cycle (Rad53p, Mps1p, and Swe1p) (Hunter and Plowman 1997). None of the tyrosine-

phosphorylated proteins are obviously related by functional annotation. However, one of the 

proteins, Cnm67p, is a structural component of the spindle pole body and is an excellent 

candidate for a substrate of Mps1p, a protein kinase that regulates spindle pole body duplication 

(Lauze, Stoelcker et al. 1995; Schaerer, Morgan et al. 2001). 

We took advantage of diverse functional genomic and proteomic data to analyze protein kinase 

targets in the context of interaction networks. We began with affinity precipitation and yeast two-

hybrid data consisting of 13,325 interaction pairs and 4,697 proteins (Bader, Donaldson et al. 

2001; Breitkreutz, Stark et al. 2003). We found that phosphoproteins have a significantly higher 

number of total physical interactions than expected and, in particular, interact with other 

phosphoproteins more than expected (Figure 37B, Supplemental Table 4). One explanation for 

this is that signaling cascades are often organized upon molecular scaffolds that promote the 

physical association of proteins participating in the signal-transduction pathway (Bhattacharyya, 

Remenyi et al. 2006). Among genetic interaction data (4,775 interaction pairs, 1,469 proteins), we 

found that genes encoding phosphoproteins also exhibit a strong tendency towards a high degree 

of interaction and exhibit enriched interactions with other phosphoproteins in genetic interaction 

networks as well. This effect has been previously observed for essential proteins and has been 

implicated for conserved proteins (Jeong, Mason et al. 2001). Interestingly, phosphoproteins are 
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not statistically likely to be essential, but they are highly enriched for strongly conserved genes 

(Figure 37C). We propose that non-essential phosphoproteins play a central role in biological 

processes making their conservation evolutionarily advantageous. 

One example of the propensity of phosphorylated proteins to be hubs and to interact with other 

phosphorylated proteins is shown in Figure 37A. The network involves proteins required for 

three successive stages of the cell cycle, and there are two interconnecting hubs that are 

phosphorylated protein-kinases having multiple interactions. Dbf4p is the regulatory subunit of 

the Cdc7p kinase that regulates the initiation of DNA synthesis, and Cdc5p is the polo-like kinase 

that is an important mitotic regulator. The network is especially interesting given that the cell 

must coordinate DNA metabolism with mitosis. Dbf4p interacts with two general classes of 

proteins, one (blue) required for the initiation of DNA synthesis (Cdc7p, Cdc45p, Mcm2p, Orc2p, 

Orc3p, Orc5p, Orc6p, and Swi5p) and the other (green) required for the DNA damage checkpoint 

(Chk1p, Ddc1p, Mec3p, Rad9p, Rad17p, Rad24p, and Rad53p). Similarly, Cdc5p also interacts 

with two general classes of proteins; one (dark grey) is required for chromosome structure and 

executing anaphase (Mcd1p, Smc1p, Smc3p, and Swe1p) and the other (light grey) for the exit 

from mitosis (Cdc15p and Mob1p). One interesting possibility is that the phosphorylation status 

of the hub dictates which of the two classes of interactions occurs. Alternatively, the 

phosphorylation status may regulate interactions between the hubs. 
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Figure 36: Phosphoprotein and amino acid frequencies. A) Comparison of GO Slim (Dwight, Balakrishnan et 

al. 2004) term frequencies between the whole genome and the phosphoproteins. B) Comparison of protein 

abundances between the entire genome and the phosphoproteins. The distribution of phosphoprotein 

abundances is comparable to that of the genomic background. C) log2 ratios of per-site amino acid 

frequencies relative to the genomic background, identified as acidophilic by SCANSITE, D) basophilic, or E) 

not recognized by SCANSITE. 
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Phosphorylation is expected to be evolutionarily conserved given the overall importance of 

phosphorylation in cell signaling and regulation. Indeed, we find that phosphorylated proteins 

are significantly more conserved as compared to other proteins in the proteome, even across 

large evolutionary distances (Figure 37C). Conserved phosphoproteins are much more likely to 

be conserved across large evolutionary distances covering all of the genomes we examined (A. 

gossypi, C. elegans, D. melanogaster, H. sapiens, A. thaliana) (Figure 37C, rightmost bars). Given the 

presumed importance of phosphorylation sites in the functionality of these proteins, it is 

expected that the phosphorylation sites themselves would be more strongly conserved than the 

surrounding protein. 

We compared the conservation of phosphorylation sites within the sequenced fungal genomes 

(including separate tests against sensu stricto and sensu lato that span 10 and 300 million years of 

evolution, respectively) as well as with more distant model organisms (Supplemental Figure 5) 

(Balakrishnan, Christie et al. 2005). Surprisingly, phosphorylated serines and threonines were not 

found to be significantly more conserved than similar residues in the surrounding protein, 

regardless of evolutionary distance. 

We have presented a strategy for the analysis of phosphoproteomes that uses endo-Lys C as the 

proteolytic enzyme, IMAC for phosphopeptide enrichment, ETD for peptide fragmentation, and 

the open mass spectrometry search algorithm (OMSSA) for phosphopeptide identification and 

assignment of phosphorylation sites. With this approach, we identified 1,252 phosphorylation 

sites on 629 proteins in a single experiment on 30 μg (~600pmol) of protein from a yeast whole 

cell lysate. Expression levels of identified phosphoproteins varied from <50 to more than 

1,200,000 copies/cell. By implementing the ETD technology on LTQ-orbitrap and LTQ-FTMS 

instruments, it should be possible to sequence still larger phosphopeptides and, possibly, intact 
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phosphoproteins on a chromatographic time scale and thus to locate multiple phosphorylation 

sites that occur on the same protein molecule. Analysis of the resulting S. cerevisiae 

phosphoproteome reveals that phosphoproteins have a significantly higher number of 

interactions than expected and that kinases are in turn highly regulated by phosphorylation. 

Surprisingly, while phosphoproteins are highly enriched for essentiality and evolutionary 

conservation, individual phosphosites are not, suggesting an interesting evolutionary plasticity in 

the phosphorylation-based regulatory network. 
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Figure 37: Phosphoprotein interactions and conservation. A) A subset of the KEGG sce04110 Cell Cycle 

pathway (Kanehisa, Araki et al. 2008). Proteins phosphorylated in this study appear as black nodes. Known 

physical interactions are represented by green edges, and known genetic interactions are shown as red 

edges. B) A comparison of phosphoprotein interactions to those of random genomic samples. Clique 

interactions represent genetic or physical interactions between phosphoproteins (or within random sub-

samples), and total interactions contain all known genetic or physical interactions between 

phosphoproteins/sampled proteins and the yeast genome. C) A representation of genes with significant 

BLASTP hits across five model organisms (A. gossypi, C. elegans, D. melanogaster, H. sapiens, and A. thaliana). 

Phosphoproteins are much more likely than a random yeast protein to be conserved (leftmost bars), and 

conserved phosphoproteins are much more likely to be conserved in all five genomes examined (rightmost 

bars). Conservation in just one genome is largely explained by the data from the closest organism to S. 

cerevisiae, A. Gossypi (overlay). 
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Scaling Up: Large Data Collections and Complex Organisms 

Throughout most of the history of biology, experimentation has occurred within basically two 

paradigms: macro-scale observations of phenotypes at the level of whole organisms or ecological 

communities, and micro-scale assays investigating the behavior and responsibilities of one or a 

few genes. The former has provided us with our modern body of knowledge regarding medicine, 

physiology, and ecology; the latter has developed into the immense field of molecular biology. 

The last decades of the 20th century provided two new developments that are still in the process 

of reshaping both areas, however, in the form of whole-genome sequencing (Goffeau, Barrell et 

al. 1996; Blattner, Plunkett et al. 1997) and high-throughput experimental assays (Fields and Song 

1989; Schena, Shalon et al. 1995; Tong, Evangelista et al. 2001). For the first time, this data 

provided a view of biology that bridged the gap between individual biomolecules and 

organismal phenotypes, and the incredible subsequent developments in biotechnology and in 

basic science attest its effectiveness (Joyce and Palsson 2006). 

Genome-scale data provides a wide range of immediate benefits. In particular, for unicellular 

organisms, it can monitor the entire organism's DNA (Solinas-Toldo, Lampel et al. 1997; Pinkel, 

Segraves et al. 1998), mRNA (Eisen, Spellman et al. 1998), and protein (Aebersold and Mann 2003; 

Hall, Ptacek et al. 2007) levels in response to any environmental stimulus. For metazoans, it can 

enumerate the gene expression (Kim, Lund et al. 2001) or signaling mechanisms (Garcia, 

Shabanowitz et al. 2005) characteristic of individual cell or tissue types, and it is increasingly 

capable of doing so on a single cell (as opposed to population) level (Bullen 2008). As has been 

observed in previous chapters, these advances have made possible the solution of specific 



236 

 

scientific problems by the collection and analysis of individual, focused high-throughput 

datasets. 

As the availability and diversity of genomic data increased, so did interest in performing 

integrated analyses on these heterogeneous datasets (Marcotte, Pellegrini et al. 1999). This 

immediately raised a host of challenges, for inasmuch as high-throughput data can quickly 

answer many questions, it can quickly raise just as many new ones: genomic data is almost 

always noisier than classical experimental results (Altman and Raychaudhuri 2001), it requires 

various types of technological and biological normalization (Quackenbush 2002), it can be 

difficult to resolve measurements from different experimental platforms or environments (Bader 

and Hogue 2002; Troyanskaya, Dolinski et al. 2003), and in the worst case, near-replicate 

experiments can produce markedly different results (Bullinger, Dohner et al. 2004; Valk, Verhaak 

et al. 2004) (often for perfectly valid biological reasons (Nevins and Potti 2007)). There has since 

been a great deal of effort in integrating data of both related (Bork, Jensen et al. 2004; Rhodes, Yu 

et al. 2004; Huttenhower, Hibbs et al. 2006; Hibbs, Hess et al. 2007) and differing (Karaoz, Murali 

et al. 2004; Lee, Date et al. 2004; Myers and Troyanskaya 2007) experimental types, and the 

success of these methods has been one of the main supporting elements of the genomic 

revolution. 

Now that high-throughput experimental techniques have been in widespread use for nearly a 

decade, tens of thousands of genome-scale datasets are publicly available (Barrett, Suzek et al. 

2005), spanning hundreds of organisms, tens of thousands of genes, and hundreds of thousands 

of experimental conditions. The capabilities of whole-genome assays have immeasurably 

enriched our ability to ask - and answer - biological questions by simultaneously monitoring 

thousands of genes; what new questions can we ask when we can monitor not thousands of 
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genes, but thousands of genomes? Conversely, just as high-throughput data presented new 

computational challenges in order to be meaningfully analyzed, what new problems do we face 

in understanding and integrating this vast amount of information? 

This chapter discusses three aspects of these issues and the biological discoveries that can be 

made when they are overcome. First, an overview of the MEFIT (Microarray Experiment 

Functional Integration Technology) system presents one scalable solution for integrated 

normalization and analysis of gene expression data. From a computational perspective, this 

process introduces methods for manipulating hundreds of microarray datasets and making them 

mutually comparable; from a biological perspective, this provides biologists with a way of 

monitoring genes and detecting common biological signals across thousands of experimental 

conditions, signals that might be too weak to detect with just a single assay. Second, we scale up 

from observations of single genes and proteins to an analysis of the systems-level functional 

structure apparent from large genomic data collections; where one high-throughput dataset 

might provide information on the interactions among individual genes, thousands of such 

datasets can detail the interactions and coregulation among entire pathways or cellular processes. 

Finally, we scale up to the genomic analysis a complex metazoan system with many times more 

genes, cells, and cell types: human beings. The HEFalMp (Human Experimental/Functional 

Mapper) system provides a means of integrating and exploring human genomic data through 

functional maps, which summarize the interactions among individual genes, groups of proteins 

in pathways or complexes, and genetic disorders, all in the context of differing biological 

processes or tissue types. Each of these systems addresses specific computational challenges in 

the normalization and manipulation of large, structured genome-scale datasets, and each 
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provides ways to discover new biology by leveraging the ever-increasing resources of genomic 

data. 

We would like to thank Erin M. Haley and Hilary A. Coller for their experimental collaboration, 

particularly in the validation of the HEFalMp system. 

MEFIT: Graphical Models for Large Scale Microarray Integration 

Within the past decade, biological datasets have become available spanning not just whole 

genomes but multiple genomes, both within and across species. In particular, microarray 

coexpression studies routinely profile whole genomes simultaneously; and with shrinking costs, 

thousands of whole-genome experiments have become publicly accessible for many model 

organisms. Many methods have been proposed for extracting biological meaning from 

microarray data, including normalization and meta-analysis (Choi, Yu et al. 2003; Moreau, Aerts 

et al. 2003; Griffith, Pleasance et al. 2005; Hu, Greenwood et al. 2005), clustering (Eisen, Spellman 

et al. 1998; Heyer, Kruglyak et al. 1999; Butte, Tamayo et al. 2000; Cheng and Church 2000; 

Allison, Cui et al. 2006), signature algorithms (Ihmels, Friedlander et al. 2002; Bergmann, Ihmels 

et al. 2003; Ihmels, Bergmann et al. 2005; Kloster, Tang et al. 2005), detection of differential 

expression (Ideker, Thorsson et al. 2000; Baggerly, Coombes et al. 2001; Cui and Churchill 2003), 

and many others. Although complete analysis of individual microarray datasets is by no means a 

solved problem, it is of interest to begin examining the additional conclusions derivable from 

analysis of many microarray datasets. Integration such as this can enable broader understanding 

of gene regulation in the context of specific pathways and can allow the discovery of 

coexpression relationships too weak to be detected in individual experiments. 
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Such integrated analysis of microarray datasets is challenging because of differences in 

technology, protocols, and experimental conditions across datasets. Thus, any microarray 

integration system must be robust to such differences, and should easily adjust to new datasets, 

perhaps from technologies yet to be developed. Furthermore, in examining any diverse biological 

datasets (such as microarray results drawn from differing experimental conditions), it is critical to 

consider functional specificity, i.e. which biological processes are active in which experiments 

(Huttenhower and Troyanskaya 2006). For example, in a set of a thousand microarray 

experiments over S. cerevisiae, only ten experiments might have been performed under conditions 

inducing sporulation. These few microarrays might show strong coexpression of meiotic genes 

not expressed or not coregulated under other circumstances. This is a benefit in that it provides 

more specific information regarding meiosis-related genes, but such a relatively small signal can 

easily be lost during data processing. The problem of integrating many high-throughput data 

sources thus includes a problem of determining functional relevance; not only can such data 

reveal genes that are functionally related, it can also reveal the biological circumstances under 

which they relate. 

To this end, we propose a Microarray Experiment Functional Integration Technology, MEFIT; 

this is a Bayesian framework facilitating the integration of multiple microarray datasets for 

predicting coexpression-based functional networks of proteins. Furthermore, each of MEFIT's 

predicted functional relationships is provided within the context of a specific biological process. 

These biological functions of interest can be provided directly by a biologist, or they can be 

derived automatically from functional catalogs such as the Gene Ontology (Ashburner, Ball et al. 

2000) or MIPS (Ruepp, Zollner et al. 2004). In addition to its predicted functional relationships, 
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MEFIT's analysis process also provides a functional association score indicating how predictive 

each input microarray dataset is of each biological function. 

Most prior work in large scale microarray integration has been performed in one of two contexts: 

statistical meta-analysis or the introduction of multiple microarray experiments into 

heterogeneous data integration systems. (Choi, Yu et al. 2003), (Rhodes, Yu et al. 2004), (Hu, 

Greenwood et al. 2005), and (Mulligan, Ponomarev et al. 2006) are representative examples of the 

former, all of which use meta-analysis to integrate microarray experiments for the detection of 

differential gene expression. In MEFIT, we take advantage of similar meta-analytic techniques in 

order to make disparate microarray experiments comparable, but we build upon the results to 

make predictions of global coexpression relationships and biological function and to determine 

the functional specificity of input microarray datasets. 

(Pavlidis, Weston et al. 2002), (Clare and King 2003), (Troyanskaya, Dolinski et al. 2003), (Lee, 

Date et al. 2004), and (Butte and Kohane 2006) describe methods for the use of heterogeneous 

data integration to predict gene function or functional relationships, but none of these (or similar) 

systems focus specifically on the way in which microarray experiments are integrated. Most 

often, correlation over individual datasets or all datasets simultaneously is used with minimal 

inter-study normalization. This can result in a surprising amount of lost information, particularly 

since microarrays often represent by far the most extensive body of data available for integration 

(Pavlidis, Weston et al. 2002; Troyanskaya, Dolinski et al. 2003; Karaoz, Murali et al. 2004; Lee, 

Date et al. 2004). MEFIT improves on these prior systems by providing a scalable integration 

system specifically for microarrays that takes advantage of the functional diversity of 

coexpression data to improve prediction accuracy, to provide additional biological context for 

predicted functional relationships, and to identify biological functions in which individual 
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datasets are particularly informative. To our knowledge, none of these prior systems has 

provided a means of predicting both gene pair functional relationships and the specific biological 

processes in which those interactions are expected to occur. 

The MEFIT system predicts functional relationships between genes within individual biological 

processes, consuming microarray datasets and known functional annotations as input. These 

predictions are generated as probabilities using a Bayesian framework trained in a function-

specific manner. This training process allows one to derive relevance scores from the learned 

network parameters indicating how reliable the system finds each dataset to be within each 

biological process. Thus, MEFIT determines which microarray conditions are informative for a 

particular biological function in addition to predicting process-specific functional relationships. 

Methods 

The primary outputs of the MEFIT system are predicted probabilities of gene pair functional 

relationships within individual biological functions. These coexpression networks are derived 

from naive Bayesian networks trained on a per-function basis using microarray data and known 

functional annotations. The learned parameters of these networks also contain information 

regarding how predictive each microarray dataset is of each biological function. Biological 

functions of interest are provided to the system as simple gene sets (i.e. lists of genes annotated to 

processes such as mitotic cell cycle or pathways such as fatty acid biosynthesis), which are used 

to generate known positive pairwise relationships. Known unrelated gene pairs (negatives) are 

provided as a separate input to the system. For these experiments, we use functional annotations 

from the Gene Ontology (Ashburner, Ball et al. 2000) to generate both positive and negative gene 

pairs.  
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As Figure 38 summarizes, microarray data are preprocessed in order to serve as observations 

during training and evaluation of MEFIT's collection of naive Bayesian networks. The input 

functional annotations are used to derive known functional relationships (for training and 

evaluation) as well as to provide functional specificity by dictating the biological contexts for 

which separate Bayesian networks should be constructed. Finally, naive Bayesian inference on 

these per-function networks serves to produce predicted functional relationships for gene pairs 

within each biological function. 

Microarray data preparation 

We assembled S. cerevisiae microarray data available from the Stanford Microarray Database 

(Ball, Awad et al. 2005), the NCBI Gene Expression Omnibus (Barrett, Suzek et al. 2005), and 

several independent sources; see Supplemental Table 5 for a complete list. These data comprised 

40 unique datasets (time courses or other cohesive collections of experiments) drawn from 34 

publications for a total of 712 individual experiments, some single and some dual channel. For 

each individual dataset, genes missing in more than 50% of the experimental conditions were 

removed, and the remaining missing values were imputed using KNNImpute (Troyanskaya, 

Cantor et al. 2001) with k=10. Finally, replicated genes were averaged to ensure that each dataset 

contained at most one expression vector per open reading frame. 
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Figure 38: A schematic of MEFIT's data processing and control methodology. Microarray data sets are 

provided as input; these are preprocessed and quantized to serve as inputs for naive Bayesian networks. A 

single network structure is used for all biological functions, but the parameters of these networks are trained 

individually for each function of interest. Biological functions of interest and known functional relationships 

for training are derived from input sets of functional annotations. Finally, Bayesian inference produces a 

probability of functional relationship for each gene pair within each biological function. 

For single channel data, expression values less than two were considered to be missing, and all 

single channel values were logarithmically transformed as a final preprocessing step. Since 

mismatch hybridization values were not available in many datasets, they were not used in this 

analysis. 

Within each dataset, we calculated Pearson correlations between every pair of genes. These 

correlations were then normalized using Fisher's Z-transform (David 1949): 
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This maps a correlation  into a z-score, where the collection of pairwise z-scores within a dataset 

is guaranteed to be normally distributed. After dividing by the dataset standard deviation and 

subtracting the mean, this distribution will be N(0, 1), making cross-dataset analyses more robust. 

Thus, from each microarray dataset, we produce a collection of gene pair z-scores representing 

the number of standard deviations their correlation lies away from the mean. 

Bayesian data integration 

MEFIT integrates multiple microarray datasets in specific biological contexts to allow for greater 

accuracy when predicting functional relationships. For each biological function of interest, MEFIT 

uses a naive Bayesian model to combine many microarray datasets and produce a single, 

integrated functional relationship score for every pair of genes, creating a function-specific, 

probabilistic coexpression network. Thus, a separate network is trained for each process or 

function of interest. Each of these networks generates predicted functional relationships within 

its particular biological function, and the parameters of the network encode how informative a 

dataset is within that function; an individual dataset is likely to provide varying degrees of 

predictive accuracy across disparate biological functions. 

In each network, the probability of each dataset's observed correlation (represented as z-scores) is 

conditioned on the probability of functional relationship; each dataset's z-scores are discretized 

into five bins (below -1, -1 to 0, 0 to 1, 1 to 2, and above 2) and assigned to a single node in the 

model. Finer binning was found to lead to overfitting and data sparsity issues (data not shown). 

This results in a Bayesian network with one node predicting functional relationships (FR) and n 
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nodes conditioned on FR, each representing the value of some dataset Di. For some gene pair (gi, 

gj) and supporting data {d1(gi, gj), d2(gi, gj), ..., dn(gi, gj)} with dk(gi, gj) {0, 1, 2, 3, 4}, the probability 

of functional relationship is thus: 
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The University of Pittsburgh Decision System Laboratory's SMILE library and GENIE modeling 

environment (Druzdzel 1999) employing the Lauritzen inference algorithm (Lauritzen and 

Spiegelhalter 1988) were used for Bayesian network manipulation, in addition to our own C++ 

implementations of basic naive Bayesian learning and inference (Neapolitan 2004). After training 

(discussed below), this method produces one probability of functional relationship per gene pair, 

referred to in this paper as the BAYESIAN integration process. 

Testing and validation 

MEFIT requires one or more sets of functionally related genes as input (positives), as well as a 

collection of unrelated gene pairs (negatives). For these experiments, we used 200 functions 

drawn from the Gene Ontology as positive sets (Supplemental Table 6); genes coannotated below 

these terms were considered to be functionally related. These terms were hand selected by a 

panel of six yeast genetics experts who were asked to evaluate whether each GO term would be 

informative enough to direct laboratory experiments. We constructed a set of all GO terms 

receiving four or more votes and added their descendants; we then trimmed this set by 

discarding any term for which all paths to the ontology root were blocked by another term in the 

set. Any pair of genes sharing an annotation beneath some term in this set was considered to be 

related (positive). To generate negative examples, any gene pairs not coannotated below some 
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GO term including at least 10% of the S. cerevisiae genome (roughly 645 genes) were considered to 

be unrelated (Supplemental Table 7). This resulted in a set of 619,278 related and 8,853,875 

unrelated pairs.  

Of the genes included in this set of pairs, 20% (951 genes) were randomly selected as test genes 

and held out of all training. Our test set consisted of any pair including at least one of these genes 

(241,408 positive and 3,320,786 negative pairs), and the remaining pairs were used for training. 

Performance was evaluated by areas under the ROC curves (AUC). All AUCs were calculated 

analytically using the Wilcoxon Rank Sum formula (Lehmann 1975). We generally observed only 

small differences between training and test performance. These training and test sets were used 

for the construction and validation of the global integration methods discussed below, and they 

were further subdivided for per-function analyses. 

Global microarray integration 

As discussed above, we implemented a version of our system that trains only one global 

network, referred to as BAYESIAN integration. For comparison purposes, we also implemented 

three non-Bayesian integration methods. Most naively, after preprocessing up to the gene 

averaging stage (excluding Fisher's z-transform), each microarray dataset was individually 

normalized per gene to have mean zero and standard deviation one. After this, all experiments 

were concatenated to create one large expression vector per gene, and pairwise Pearson 

correlations were calculated using these vectors. For each gene pair, conditions in which at least 

one missing value remained (due to genes not present in particular datasets) were removed from 

the correlation calculation. This resulted in the CONCATENATION integration technique. 
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One can also integrate microarray datasets using statistical meta-analysis similar to that 

discussed in (Choi, Yu et al. 2003). To accomplish this, we proceeded through preprocessing as 

described above to the point where each dataset was represented by a collection of pairwise z-

scores drawn from N(0, 1). For each gene pair, these z-scores were averaged over the datasets 

including that pair, producing the Z-SCORE integration data. 

Finally, we implemented a version of the microarray integration method discussed in (Lee, Date 

et al. 2004) in the context of general data integration. In brief, pairwise Pearson correlations were 

calculated per dataset. The pairs in the training set were used to produce a modified 

precision/recall plot (a log-likelihood (LLS)/correlation plot) to which a sigmoid curve could be 

fit. This curve allowed transformation of correlations from the test set into a log-likelihood space 

from which datasets are integrated by taking the average LLS for a gene pair across all available 

data. This will be referred to as the LLS integration. 

Functional analysis 

For microarray integration on a per-function basis, it was necessary to further decompose the 

training and test sets into collections of gene pairs relevant to each biological process of interest. 

In all cases, a gene pair was considered relevant to some function if i) it represented a positive 

relationship and both genes were included in the function or ii) it represented a negative 

relationship and one gene was included in the function. This provides a definition of training and 

test sets for each function provided as input (e.g. the GO terms discussed above). 

When evaluating the performance of the four global integration techniques on individual 

functions, training (for the BAYESIAN and LLS methods) was performed using the entire training 
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set. Evaluation was performed using each function's test set. Functions containing fewer than ten 

genes (45 gene pairs) were not considered during testing. 

Using the same naive Bayesian framework, we also learned one network per function using the 

individual training sets - the MEFIT integration technique. In addition to the predictive benefits 

discussed below, this provided additional information relating each microarray dataset to each 

function of interest. Specifically, we calculated the average difference between the prior and 

posterior probabilities of a functional relationship for each dataset and function. For each 

biological function, dataset, and discretized value, we provided only that datum as input to the 

function's Bayesian network. We then averaged (over the five discretized inputs for a particular 

dataset) the absolute values of the differences between the network's prior and the posterior 

probabilities of functional relationship generated in this manner. This provides a measure of how 

"trustworthy" or influential each dataset is when predicting gene pairs in each function (Figure 

41). 

Results 

Characteristics of functional relationships vary by biological process 

The performance of the five integration techniques on selected GO functions can be seen in 

Figure 39. The MEFIT integration method yields an AUC increase of 5% or more (over the 

maximum of the other four methods) in 54 of the 110 functions for which evaluation of all five 

methods was possible. Performance increased by a smaller amount in 31 of the remaining 

functions and decreased by more than 5% in only two functions. 
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Figure 39: Areas under sensitivity/specificity curves (AUCs) for a selection of biological functions extracted 

from GO, ordered from most to least improvement and evenly spanning MEFIT's performance range. 

MEFIT showed an AUC increase of 5% or more over all other integration techniques in 54 of the 110 

functions evaluated; AUC decreased by 5% or more in only two functions. AUC values range from random 

at 0.5 to optimal at 1.0. We measured performance for the CONCATENATION, Z-SCORE, LLS, BAYESIAN, and MEFIT 

integration techniques. 

Interestingly, the functions in which the simpler CONCATENATION and Z-SCORE techniques 

perform well relative to the other three integration methods are also among those with the 

highest overall AUCs: ribosome biogenesis, rRNA metabolism, RNA methylation, electron transport, 

and cellular respiration. This may indicate that for such high-performing functions, little room for 

improvement exists given the currently available data. Indeed, these functions fall into two 
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categories, ribosomal processing and basic cellular metabolism, both of which are known to have 

clear "global" signals in microarray data (Eisen, Spellman et al. 1998; Jansen, Greenbaum et al. 

2002). That is, given a collection of microarray experiments performed under almost any 

conditions, it is likely that genes related to ribosomes and cellular respiration will be coexpressed 

at detectable levels. This ubiquitousness makes these functions easy to detect by techniques such 

as CONCATENATION; even a modest signal present in most microarrays will be detectable in a 

correlation calculated across all experiments simultaneously. This accounts for the ease with 

which ribosomal function can be predicted from coexpression data (Gasch, Spellman et al. 2000; 

Karaoz, Murali et al. 2004; Lanckriet, Deng et al. 2004). Other functions in which MEFIT shows 

little improvement (such as protein kinase cascade or fermentation) are small or poorly studied 

functions in which data sparsity makes it impossible for any prediction technique to perform 

well. 

Conversely, the functions in which MEFIT provides the most improvement tend to be specific 

functions that are reasonably well represented in the data but are poorly predicted by more 

global methods. For example, genes involved in the meiotic cell cycle/response to 

pheromone/sporulation group of functions should be coexpressed only under very specific 

circumstances; such a signal would be undetectable by correlation across all dataset 

simultaneously. Relative to CONCATENATION and Z-SCORE integration, the LLS method also 

provides some improvement for several such specific functions. Since MEFIT is designed to 

upweight datasets within functions where they demonstrate predictive power, this method is 

able to extract more localized signals originating in a few microarrays performed under 

appropriate conditions. 
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Bayesian integration of microarray datasets 

It is of interest to compare the performance of the four global microarray integration methods - 

BAYESIAN, CONCATENATION, Z-SCORE, and LLS - on the entire answer set, without decomposing the 

results into specific biological functions. Additionally, one can reintegrate the individual 

components of the MEFIT output in a variety of ways to produce a global prediction set; relative 

to the BAYESIAN integration method, this has the benefit of preserving dataset/function 

associations by weighing each dataset by its relevance to each function. Ideally, each gene pair 

should be globally related if it is related in at least one function. In practice, noise in the 

predictions can make this assumption error-prone (a single overconfident prediction can 

dominate the overall probability), so we reintegrate each gene pair by taking the average 

probability of functional relationship over all functions in which that pair is predicted. This 

reintegration of the MEFIT output will be referred to as the AVERAGED MEFIT method. 

Perhaps the most striking feature of a comparison of these global integration techniques (Figure 

40) is the sharp decline in precision of the CONCATENATION method at low recall (i.e. high 

correlation). In other words, gene pairs strongly correlated across an extremely large vector of 

disparate microarray conditions tend to be functionally unrelated. This is caused by factors such 

as transposable elements and similar sources of homology (telomeric sequences, etc.) that can 

lead to non-functionally related coexpression under essentially any experimental conditions. 

These sequences are known to be problematic due to cross-hybridization in coexpression 

experiments (Bozdech, Zhu et al. 2003), and they are excluded from most microarrays; the 

CONCATENATION method interprets this absence as missing data and sees these genes only as very 

strongly correlated across the few datasets in which they are present, resulting in its poor 

performance at low recall. 
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Both the BAYESIAN and AVERAGED MEFIT results retain high precision at low recall cutoffs, with the 

AVERAGED MEFIT method also showing a substantial improvement in high recall areas. These 

integration techniques both explicitly encode the necessity to ignore or downweight inputs that 

tend to be overconfident (e.g. datasets in which a high correlation is not necessarily indicative of 

functional relationship), leading to their improved low recall behavior. AVERAGED MEFIT 

integration is able to perform the same downweighting on a per-function basis, which likely 

contributes to its greater precision at high recall. 

Functional analysis reveals both expected and novel data content 

In addition to per-function and global predictions of gene pair functional relationships, MEFIT 

also provides information on the relationships between microarray datasets and biological 

processes. Specifically, each per-function network learns during training how reliable it expects 

each dataset to be within its function. These reliabilities can be extracted as posterior probabilities 

after Bayesian inference, leading to a single confidence score for each dataset in each biological 

function. 

Several aspects of these confidence scores (Figure 41) demonstrate clear agreement with the per-

function results shown earlier and with existing biological knowledge. Nearly every dataset, for 

example, is highly informative regarding ribosome biogenesis and rRNA metabolism (Figure 41, light 

grey cluster), for the reasons discussed above; this is accompanied by a similar, weaker signal 

from the general translation function. Of the datasets in which ribosomal functions are not well 

predicted, (Angus-Hill, Schlichter et al. 2001) and (Rudra, Zhao et al. 2005) are knockouts in 

which ribosomal genes are specifically disrupted. 
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Figure 40: A comparison of the five global integration methods. A log scale inset is shown to emphasize the 

high precision area of biological interest; the minimum recall is limited to a minimum of 100 positive 

predictions to avoid noise. Performance is shown using the log-likelihood score LLS=log2(TP•N/FP/P) for P 

total positive pairs, N total negative pairs, and TP and FP the number of true and false positives at a 

particular sensitivity threshold. 

Many datasets have moderately strong responses in amine, amino acid, and organic acid metabolism 

(Figure 41, black cluster), but the (Brem and Kruglyak 2005) and (Yvert, Brem et al. 2003) results 

particularly stand out. These are both recombination studies between lab (BY4716) and wine 

(RM11-1a) strains with a focus on regulatory relationships. Other strong signals arise from the 

(Hardwick, Kuruvilla et al. 1999) study investigating rapamycin treatment and nutrient response 

and from the two (Saldanha, Brauer et al. 2004) datasets for leucine and uracil limitation. All of 

these experiments have clear ties to amine and amino acid metabolism. 
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Three datasets are found to be particularly informative for DNA recombination, M phase, meiotic 

cell cycle, and sporulation (Figure 41, dark grey cluster); these are (Primig, Williams et al. 2000) (a 

sporulation time course), (Williams, Primig et al. 2002) (UME6 deletion, a known meiotic 

regulator), and (Jin, Laplaza et al. 2004). While the first two findings seem logical, (Jin, Laplaza et 

al. 2004) studies xylose metabolism and fermentation, which has no obvious connection to 

meiosis. Our functional relevance results in this case alert a biologist to the possibility of a 

sporulation response to an inhospitable medium, a pre-sporulation response (Pringle, Broach et 

al. 1997), or a disruption of the nutrient response pathways due to introduction of the XYL1, 

XYL2, and XYL3 genes (Jin, Laplaza et al. 2004), information that might not have been evident 

without such a per-function analysis. 

A biologist could use such information in at least two ways. Given a set of existing microarrays 

and a pathway or process of interest, this functional decomposition reveals datasets with an 

increased likelihood of containing information regarding that pathway or process. Conversely, 

given a new microarray (possibly generated under experimental conditions spanning many 

functions), functional decomposition produces a summary of pathways potentially disrupted or 

activated under its conditions. These analysis methods would be lost in an integration technique 

not taking advantage of the functional specificity of microarray datasets and of functional 

relationships. 

Novel functional predictions 

Based on the integrated per-function coexpression networks predicted by MEFIT, we can make 

functional predictions for genes previously unannotated in the Gene Ontology. Specifically, we 

examined several functions in which MEFIT showed marked improvement over previous 

integration techniques and extracted the most confident predictions. Searching these predictions 
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for highly connected subgraphs involving both known and unknown genes produced several 

candidates, of which we chose to examine two: YML037C and YHR159W clustered around 

MMS4 in the meiotic cell cycle function, and YKR016W, YNL100W, and YNL274C clustered 

around INH1 and TIM11 in hydrogen transport. 

All six of these genes are uncharacterized open reading frames annotated to biological process 

unknown, save for YNL274C's overly general metabolism annotation (which was unused in our 

analysis). In hydrogen transport, the GO term representing mitochondrial proton processing, INH1 

and TIM11 are both proteins associated with the F1F0-ATP synthase (Brunner, Everard-Gigot et 

al. 2002). Of our predictions, YNL100W and YKR016W are known to localize to the 

mitochondrion (Huh, Falvo et al. 2003), and all three appear in the mitochondrial proteome 

(Sickmann, Reinders et al. 2003). Deletion of YKR016W also shows growth defects on non-

fermentable carbon sources (Steinmetz, Scharfe et al. 2002), which we have confirmed in our lab 

(data not shown). YNL274C shows no strong localization, but its sequence contains a 

hydroxyacid dehydrogenase domain targeting NAD (Mulder, Apweiler et al. 2005), supporting 

our predicted role in cellular respiration. 

Our predicted meiotic cell cycle group is centered on MMS4, which is a meiotic and mitotic gene 

involved in recombination and DNA repair (Xiao, Chow et al. 1998). YML037C shows a strong 

colocalization with clathrin coated vesicles (Huh, Falvo et al. 2003), appears to behave as a 

transcriptional activator (Titz, Thomas et al. 2006), and may be a substrate of the DBF2-MOB1 

mitotic exit regulation complex (Mah, Elia et al. 2005). These characteristics point towards a 

potential mitotic or meiotic regulatory role for YML037C, in agreement with our prediction. 

YHR159W is thought to be a phosphorylation target of CDK1/CDC28, showing cell cycle 

regulation peaking in G1 (Ubersax, Woodbury et al. 2003); tests in our lab have shown that a 
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heterozygous deletion mutant appears to be defective in tetrad formation during sporulation, a 

phenotype that we are currently investigating in more detail. 

Discussion 

Here, we present MEFIT, a methodology for the simultaneous analysis of multiple microarray 

datasets using Bayesian integration augmented by per-function analysis. MEFIT's integration 

improves upon the general predictive power of existing methods for discovery of pairwise 

functional relationships from diverse microarray data. Additionally, it produces a per-function 

analysis for biologists, providing predictions in the context of individual pathways or biological 

processes (which may also be specified initially by the biologist). 

Two strengths of MEFIT lie in its scalability and interpretability. Naive Bayesian learning and 

inference are both computationally inexpensive, and analysis can be performed simultaneously 

for hundreds of datasets spanning thousands of conditions. Additionally, given a single new 

dataset to integrate, no retraining need be performed - the conditional probabilities relevant to 

the new data can be learned independently of existing data. The statistics required for dataset 

normalization are fairly standard, and learned network parameters are readily interpretable and 

visualizable as probability distributions over each dataset and function. 

As defined above, "functions" in this framework are simply gene lists defined by some prior 

method to be functionally related. These might consist of pathways or transcription factor 

modules specified by a biologist or of larger collections of genes; we have used groups of genes 

sharing annotations in the GO ontology (as well as performing initial validations with the MIPS 

hierarchy). This could easily be extended into other organisms, e.g. by using tissue types or 
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cancer pathways in mammalian systems. MEFIT learns to predict novel functional relationships 

similar to those specified in its input sets. 

The output of MEFIT is one naive Bayesian network per function; dataset to function confidence 

values and per-function probabilities of gene pair functional relationships can be immediately 

derived from these learned networks. In other words, MEFIT produces one genetic interaction 

network per function in addition to a global interaction network; if desired, by interpreting 

pairwise probabilities as similarity scores, these predictions can be further visualized (e.g. as per-

function clusters). Since functional relationships are frequently specific to individual biological 

processes (such as STE7/FUS3 interaction during pheromone response versus STE7/KSS1 

interaction during nutrient limitation (Madhani and Fink 1997; Ptashne and Gann 2003)), this 

provides a biological perspective that is both more realistic and, by compartmentalizing 

interactions, more manageable. 

We have made our test predictions available at the MEFIT web site 

(http://function.princeton.edu/mefit/) along with a collection of predictions for the entire S. 

cerevisiae genome constructed by training on all known data and evaluating all gene pairs 

(including unknowns). This site includes an interface for browsing these predictions and the 

large collection of microarray datasets used to generate them. We expect that this microarray 

integration methodology will be useful in the context of heterogeneous data integration tools, 

where it can provide more informative preprocessing of coexpression data. We have already 

established substantial biological evidence for several of MEFIT's predictions, and we hope that it 

will provide a useful tool for guiding future laboratory and high throughput experiments. 

  

http://function.princeton.edu/mefit/
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Figure 41: A portion of the per-function data set confidence scores learned by MEFIT. Brighter cells indicate 

a higher average posterior probability of functional relationship given input from a particular microarray 

data set in a particular biological function. These are calculated from networks averaged over a five-fold 

cross validation and are small due to the volume of microarray data employed (the maximum average 

difference for permuted data is ~0.005). Data sets and ontology terms have been clustered to visually show 

similarities in predictive power. The three colored clusters (amine metabolism in black, meiosis in dark grey, 

and ribosomal in light grey) represent interesting predictions discussed in the text. The heat map was 

generating using TIGR MeV (Saeed, Sharov et al. 2003). 
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Assessing the Functional Structure of Genomic Data 

The technological developments of the past several decades have driven a continuing expansion 

of our understanding of molecular biology and a similar expansion in the analysis techniques 

applied to this data. In particular, genome-scale assays for coexpression (Eisen, Spellman et al. 

1998; Spellman, Sherlock et al. 1998), genetic interactions (Giaever, Chu et al. 2002; Tong, Lesage 

et al. 2004), physical interactions (Gavin, Bosche et al. 2002; Ho, Gruhler et al. 2002), protein 

localization (Huh, Falvo et al. 2003), and regulatory networks (Zhu and Zhang 1999; Harbison, 

Gordon et al. 2004) have all opened up new opportunities for computational data mining that 

have been richly explored. Data such as these have been used in a variety of machine learning 

and other computational contexts (Jansen, Yu et al. 2003; Troyanskaya, Dolinski et al. 2003; 

Karaoz, Murali et al. 2004; Lee, Date et al. 2004; Franke, van Bakel et al. 2006). 

As the amount of available genome-scale data has continued to increase, it has become possible 

to ask higher-level questions about the systems-level functional associations between entire 

pathways and processes. These associations represent the complex interplay between linked 

biological processes: DNA replication and mitosis are distinct cellular processes, for example, but 

they are functionally associated in their biological goals (cell division), regulation, and genetic 

participants. Understanding this network of associations between processes is a critical link 

between functional relationships at the single-gene level and phenotypes at the organismal level. 

By deriving an understanding of large-scale functional structure based directly on genome-scale 

datasets, we also gain an understanding of the data itself. An examination of the pathways and 

processes perturbed by whole-genome experiments allows those experimental results to be 

described in terms of their functional activity. For example, microarrays performed under 
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conditions of heat shock and oxidative stress might both show functional activity related to an 

environmental stress response; this similarity of functional activity reveals biological 

commonalities between otherwise disparate experiments. By combining these two lines of 

inquiry - functional associations between processes and functional similarities between datasets - 

we gain insight into unexpected relationships in existing data, and we can direct experimenters to 

biological areas that are currently unexplored. All of these analyses deal with the high-level 

functional structure of genome-scale data and biological processes, which allows us to answer 

increasingly complex questions using the ongoing flood of high-throughput data. 

We present such an analysis of functional associations among 141 biological processes and over 

180 datasets (spanning >950 publications, >2,300 microarray conditions, and several thousand 

interaction, localization, and sequence-based data) in S. cerevisiae, where a functional association 

entails cooperation, coregulation, or other interaction between pathways and processes to 

perform a cellular task. These associations are derived by examining functional relationships 

between many individual genes, which are in turn predicted in a process-specific, probabilistic 

manner from heterogeneous data integration. This provides a global view of the functional 

structure of biological processes in yeast, including the degree of data-driven associations 

between processes, the experimental cohesiveness of gene behavior within each process, and the 

coverage of individual biological processes by currently available data. Likewise, we obtain 

measures of functional activity within each dataset - that is, which biological processes are 

covered by a dataset, independently of experimental platform. This high-level functional analysis 

technique is not specific to yeast and is extensible to any organism with a sufficiently large body 

of experimental data. 
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This analysis of functional structure produces a number of findings useful for guiding future 

experimental efforts and further computational studies. Specifically, we provide maps of data-

driven associations between biological processes and of similar functional activities among 

datasets. By examining associations between processes, we observe several biological processes 

that could benefit from additional high-throughput data coverage, including ion homeostasis and 

transport and mitochondrion organization. We also highlight biological processes likely to be 

performed by currently uncharacterized genes (e.g. autophagy). Similar functional activities 

among datasets demonstrate commonalities in several large microarray studies and consistency 

between protein localization, synthetic lethality, and protein-protein interaction screens. These 

similarities also expose specific biological relationships, such as a subtle effect due to strain 

background we discovered in three otherwise diverse microarray datasets. All of these 

relationships are fundamentally driven by similarities in gene and protein response across 

hundreds of datasets, and this high-level analysis of such large-scale functional structure is 

valuable for guiding future experimentation and in understanding systems-level associations 

among biological processes.  

Methods 

In summary, we analyzed the large-scale structure of functional relationship networks predicted 

based on Bayesian integration of genomic data. Functional associations between biological 

processes from the Gene Ontology (Ashburner, Ball et al. 2000) were derived by further 

integration and analysis of these networks in a context-sensitive manner. Functional activity 

information for each dataset was calculated during the integration process, and this was used to 

further characterize functional similarities between datasets. The resulting process/process, 

process/dataset, and dataset/dataset association networks were mined for subgraphs and 
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interactions of high weight. All network visualization was performed using Graphviz from 

AT&T (Gansner and North 2000). 

Data collection and gold standard generation 

Data collection. The data employed in this study is a union of that from (Hibbs, Hess et al. 2007) 

and (Myers and Troyanskaya 2007). Non-expression data includes pairwise physical and genetic 

interaction data from a variety of databases (Alfarano, Andrade et al. 2005), (Stark, Breitkreutz et 

al. 2006), protein localization (Huh, Falvo et al. 2003), and sequence and TFBS similarities 

(Harbison, Gordon et al. 2004), (SGD 2006). Pairwise interaction data were represented as binary 

presence/absence values; where applicable, interaction profile similarities were calculated 

between genes from binary data using an inner product. For details, see (Myers and Troyanskaya 

2007). 

Expression data were collected from ~80 publications comprising ~120 datasets and ~2,300 

conditions as described in (Hibbs, Hess et al. 2007) and initially processed as described in 

(Huttenhower, Hibbs et al. 2006). Datasets containing fewer than four experiments were initially 

merged, creating a merged microarray set that was subsequently processed identically to the 

remainder of the datasets. Each of these was converted from expression values to gene pair 

similarity scores using Pearson correlation normalized using Fisher's z-transform (David 1949) 

and subsequently z-scored: 
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That is, the Fisher's transformed score between any two genes gi and gj is a transformation of their 

Pearson correlation , and the final similarity between two genes z(gi, gj) is the pair's Fisher score 

minus the mean Fisher score μf divided by the Fisher score standard deviation σf (both over all 

gene pairs). 

After z-scoring, each expression dataset was quantized using the binnings (-∞, -1.5), [-1.5, -0.5), [-

0.5, 0.5), *0.5, 1.5), *1.5, 2.5), *2.5, 3.5), *3.5, ∞); these represent steps of one standard deviation in z-

score space. Mutual information was calculated between the resulting sets of discrete values, and 

any pairs of datasets sharing more than 15% of the possible information were merged by 

averaging z-scores. PISA (Kloster, Tang et al. 2005) modules (a biclustering algorithm) were also 

calculated for the expression data collection and transformed into pairwise scores for our analysis 

by counting the number of times each pair of genes coclustered after 500 iterations. These 

biclusters offered an orthogonal analysis of the microarray data capable of providing different 

information than the normalize correlation scores. 

Gold standard generation. To perform supervised learning, we generated a gold standard of 

known functionally related and unrelated gene pairs. Biological processes of interest were 

selected from the Gene Ontology (Ashburner, Ball et al. 2000) using a method based on (Myers, 

Barrett et al. 2006). The standard developed in (Myers, Barrett et al. 2006) is specific to S. 

cerevisiae; using a similar voting method and polling six biologists, a set of 433 GO terms were 

selected for this study to be experimentally informative independent of organism. 141 of these 

have at least ten gene annotations in S. cerevisiae, and these were selected as processes (gene sets) 

of interest (Supplemental Table 8). 
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An answer set was derived from these processes of interest as described in (Huttenhower, Hibbs 

et al. 2006). Gene pairs coannotated to any of the 141 terms were considered to be related. A gene 

pair was unrelated in the gold standard if i) the two genes were both annotated to some term in 

the set of 141, ii) the genes were not coannotated to any of these terms, and iii) the terms to which 

the genes were annotated did not overlap with hypergeometric p-value less than 0.05. All other 

gene pairs were omitted from the standard (i.e. they were neither related nor unrelated for 

training and evaluation purposes). 

For context-specific learning, this answer set was decomposed into subsets relevant to each 

process of interest. A gene pair was considered to be relevant to a biological process if either i) 

both genes were annotated to the process or ii) one of the two genes was annotated to the process 

and the pair was unrelated in the standard (i.e. not coannotated to another process). 

Bayesian analysis 

Learning Bayesian classifiers. One naive Bayesian classifier (Neapolitan 2004) was learned per 

biological process of interest; experiments with other network structures were shown to provide 

negligible performance improvements (Huttenhower and Troyanskaya 2006). Briefly, a global 

classifier was learned in which the class to be predicted was gene pair functional relationships (as 

defined in the gold standard) and each dataset formed one node in the network. 141 function-

specific networks were learned with identical structures, each using a subset of the global gold 

standard as described above. When fewer than 25 gene pairs were available for a particular 

dataset/relationship combination, the global probability distribution was used for that condition. 

This defines the predicted probability of functional relationship between genes as a weight: 

D
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That is, the weight between genes gi and gj in function-specific network F is proportional to 

(using Bayes rule) the product over all datasets D of D's probability of experimental value d(gi, gj) 

for the two genes. 

All Bayes network manipulation was performed with a combination of custom C++ software and 

the SMILE library from the University of Pittsburgh Decision Systems Laboratory (Druzdzel 

1999). 

Predicting functional relationships. Each naive Bayesian classifier directly implies a functional 

relationship network in which nodes represent genes and edge weights consist of the posterior 

probabilities of functional relationships between gene pairs. The 141 function-specific networks 

were combined to form a predicted global interaction network by transforming each network's 

edge weights to z-scores (subtracting the mean predicted probability and dividing by their 

standard deviation) and averaging each gene pair's weight across all available networks. 

Functional relationship and dataset enrichment predictions 

Process/process relationships. As described above, for the purposes of this analysis, a biological 

process was defined as a set of related genes. The strength of a predicted functional relationship 

between two processes F and G was calculated as the average edge weight in the global 

interaction network within the edge set: 

},,,|),{(, GFggGgFgggE jijijiGF  

That is, the predicted functional relationship strength between functions F and G is the average 

weight of all edges in the global interaction network between genes gi and gj spanning the two 

gene sets and not coincident to any gene in their intersection. Note that this specifically excludes 
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process similarity due to overlapping curated annotations and retains only data-driven 

functional relationships. 

Similarly, the functional cohesiveness of a process was measured as the ratio of the average edge 

weight in the process to the average edge weight incident to the process: 
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where F is the function of interest, G is the genome, and wF(gi, gj) is the edge weight between 

genes gi and gj in F's predicted functional relationship network. This normalizes for processes that 

are inherently more interactive and have uniformly higher probabilities of functional 

relationship. tRNA genes are omitted for the purposes of these calculations, since they represent 

a large class of very related genes for which essentially no data is available (thus generating a 

large number of misleadingly low weights). 

Process/dataset relationships. The predicted enrichment of each dataset within each biological 

process was derived from the conditional probability tables learned for that dataset's node within 

the appropriate function-specific Bayesian classifier. Specifically, the predicted enrichment for 

process F in dataset D was calculated as the weighted sum of the difference in posterior 

probability of functional relationship induced in F's classifier by evidence from each possible 

value of D: 
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For example, suppose the prior probability of functional relationship in the ribosome biogenesis 

process is 2% (Prb[FR] = 0.02). The GRID- and BIND-based yeast two-hybrid dataset has two 

possible values, 0 representing no observed binding and 1 representing binding, thus D = {0, 1}. 

After learning, the Bayesian classifier for ribosome biogenesis indicates that a lack of binding 

makes little difference (Prb[FR|yth = 0] = 0.025), but gene pairs that bind are very likely to be 

functionally related (Prb[FR|yth = 1] = 0.4). However, there are relatively few such pairs (Prb[yth = 

1] = 10-4), since most gene pairs in the genome have not been observed to interact by available 

two-hybrid data (Prb[yth = 0] = 0.9999). Thus the strength of relationship between the process of 

ribosome biogenesis and the yeast two-hybrid dataset is r = 0.9999|0.02 - 0.025| + 10-4|0.02 - 0.4| ≈ 

0.005. The exact value may differ due to rounding in this example. 

The estimated coverage of a process in currently available data was calculated as the average of 

rel(F, D) over all datasets in our study. 

Dataset/dataset relationships. This calculation of predicted process/dataset enrichments results in 

a vector of 141 values in the range [0, 1] for each dataset. To determine the functional similarity 

between two datasets, each value is first transformed to a log ratio against the average across all 

datasets: 

Dd

dFrelDDFrelDFrel )),(/||),(log(),('  

This normalizes against the fact that certain biological processes are inherently more apparent in 

most high-throughput data (e.g. most microarray datasets have strong signals for processes such 

as translation). The functional similarity between datasets is then the Pearson correlation of the 

resulting r' vectors across all datasets. 



268 

 

Gene/function relationships. For the purpose of predicting gene function based on "guilt by 

association" with known genes in some process, the connectivity of a gene to a process was 

assessed as follows. Each gene/process pair was assigned a functional association score equal to 

the ratio of its average probability of functional relationship to the process over the process's 

cohesiveness: 
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This calculation was also used to predict each biological process's predicted association 

enrichment with unknown genes. A list of 1,451 genes with no annotation below biological 

process was extracted from the Gene Ontology. A function's strength of association with 

unknowns was then the sum of its association scores for these 1,451 genes. 

Robustness. A robustness study was carried out by randomly shuffling data points within each 

dataset prior to Bayesian learning. The resulting networks had average dataset functional 

enrichment scores of 4.46·10-5±1.57·10-4, biological processes cohesiveness of 1.37±1.32, and 

association between processes of 7.14·10-3±0.0293, the last due to the greatly reduced 

differentiation between processes. In contrast, the averages for these values in our results are 

2.43·10-4±6.02·10-4, 15.1±35.9, and 1.94·10-3±0.141, respectively. 

Dense subgraphs. An implementation of a modified greedy heuristic for discovering heavily 

weighted subgraphs (Charikar 2000) was used to mine interaction networks for cohesive 

modules. Briefly, to discover each module within the network of interest, a node set was 

initialized with the most cohesive pair in the network. Nodes were added to this set greedily 

based on edge weight until no node could be added without reducing the average cohesiveness 
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of the node set below the network baseline. The average edge weight of the set was then 

subtracted from each edge between nodes in the set, and the process was iterated to discover the 

next module. In pseudocode: 

1. N = argmax{gi,gj} cohes({gi, gj}) 

2. Loop: 

3.  g = argmaxg cohes(N ∪ {g}) 

4.  If cohes(N ∪ {g}) < 1, stop 

5.  N = N ∪ {g} 

6. If |N| > 2, output N 

7. Let w  be the average edge weight among nodes in N 

8. For each gi, gj  N 

9.  w(gi, gj) = w(gi, gj) - w  

10. Repeat from 1 

Results 

By analyzing functional associations among biological processes and functional similarities 

between high-throughput datasets in a purely data-driven manner, we summarize knowledge 

from thousands of whole-genome experiments in a biologically informative way. This includes 

descriptions of the cohesiveness, data coverage, and associations of biological processes (Figure 

42), which can guide experimenters towards promising targets for future experimental work 

(Table 9). Datasets can also be compared based on functional activity, allowing the detection of 

large-scale functional similarity between the effects of experimental perturbations (Figure 43 and 

Figure 44). These analyses provide an important global summary of interplay between pathways, 
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and they identify processes, process associations, and dataset similarities likely to benefit from 

experimental investigation. 

Discovering data-driven functional associations between biological processes 

Two or more biological processes can interact and work together to perform cellular functions in 

a manner analogous to a relationship between individual genes. A pair of genes might be 

functionally related if they operate in the same complex, pathway, or transcriptional module. Our 

focus is at a higher level, where two processes might be functionally associated if they interact to 

achieve the same cellular goals; for example, nutrient sensing and the translation of new proteins 

at the ribosomes are distinct processes, but they interact to allow controlled cellular growth. 

These process-process associations are thus an extension of gene functional relationships: 

processes are functionally associated if they achieve related cellular goals, and we predict such an 

association if their constituent genes behave similarly in datasets determined to be good 

functional indicators. A small segment of our predicted process association network appears in 

Figure 42, made up of only the most confidently associated biological processes. 

The edges in this process association network summarize information regarding the interactions 

between biological processes. A single biological process is internally cohesive in the currently 

available experimental results if its constituent genes also show strong individual functional 

relationships. If most gene pairs within a process are confidently functionally related, that 

process is reflected well by the available data: its annotations are in agreement with measured 

cellular behavior. If gene pairs within a process are related with low confidence, it often indicates 

an area of biology where further experimentation or annotation efforts may be most beneficial. 

The cohesiveness of biological processes in Figure 42 is represented by node color, where more 

cohesive processes appear in brighter yellow. 
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Figure 42: High-confidence associations between biological processes predicted from large-scale data 

integration. Each node represents a biological process extracted from the Gene Ontology; edges represent 

predicted functional associations between these terms based on their constituent genes' behavior in a 

compendium of >180 S. cerevisiae datasets. Node color intensity represents cohesiveness of the process, a 

measure of predicted relationship density within the process's gene set (white indicates background 

cohesiveness, yellow maximum cohesiveness). Border thickness summarizes estimated coverage of the 

biological process by available data. These edges represent only the strongest associations in the complete 

network, so coloration is relative, ranging from green (least strong) through black to red (strongest). 

Biological processes with high cohesiveness but low data coverage represent particularly promising targets 

for future experimental screens. 

Finally, we also determined the degree to which each biological process is covered by available 

data. Our integration method provides a statistical measure of how active each biological 

function is within each dataset; we can thus sum over all datasets to estimate a biological 
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process's total representation within the data. This coverage measure is summarized by border 

width in Figure 42, with thicker borders indicating well-covered processes. Cohesive biological 

processes (yellow nodes) not covered well by available data thus represent promising candidates 

for future investigation: they show evidence of strong functional similarity, but they may not yet 

have been specifically targeted by high-throughput studies. 

This interplay between functional associations, cohesiveness, and data coverage is evident in 

several of the example processes in Figure 42. Ribosome biogenesis and rRNA metabolism, for 

example, are processes strongly evident in most microarray data (Myers, Barrett et al. 2006), and 

this ubiquity is demonstrated by their extremely strong coverage and association. They are not as 

cohesive as many other processes, however, due to the large number of snRNAs and rRNAs 

annotated to these processes for which little or no high-throughput data is available. This 

analysis thus highlights an area for future exploration, even in an area as thoroughly studied as 

the ribosome. Other processes with relatively low coverage for their size (not shown in Figure 42) 

include protein complex assembly, ion homeostasis and transport, and mitochondrion organization, all 

representing opportunities for future directed screens. Processes with low cohesiveness can either 

be particularly diverse (e.g. amino acid and derivative metabolism, protein processing) or not yet fully 

characterized, representing further opportunities for future experimental investigations. 

Processes predicted to be enriched for uncharacterized genes. Networks of functional associations 

between processes represent a richly structured summarization of high-throughput data; they 

implicitly encode predicted details regarding pathway structure, association between gene sets, 

and the functional diversity of currently available data. In addition to associating known 

processes and pathways, though, similar relationships can also be inferred to find areas of 
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biology enriched for uncharacterized genes. These represent specific processes for which targeted 

genomic screens might uncover substantial new information. 

A selection of processes that we find to be highly associated with uncharacterized genes is shown 

in Table 9, in addition to statistics describing the processes (see Supplemental Table 8 for 

complete results). The autophagy term, despite being the smallest and most cohesive process in 

this subset, still maintains a very strong association with uncharacterized genes. It is moderately 

well covered by available data, falling roughly in the middle of our 141 coverage estimates; it is 

thus possible that further information regarding autophagy could be gleaned from existing data, 

even though few experiments have specifically investigated the process in yeast. However, this 

predicted association with uncharacterized genes also suggests that substantial new functional 

assignments could be made by targeted screens for involvement in autophagy. 

Similar functional activity in high-throughput datasets 

While most high-throughput experiments are designed with fairly specific goals in mind, almost 

every dataset contains information about a variety of biological processes, and our analysis 

provides several ways of exploring these data. Our Bayesian learning process results in a 

probabilistic score indicating the activity of each biological process within each dataset. 

Collecting all such scores for a single dataset results in a functional profile for the dataset, and 

these numerical vectors can be compared between datasets to evaluate functional similarity. The 

network in Figure 43 contains a selection of datasets with similar functional activities. 
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Process Size 

(Genes) 

Cohes. Rel. Data 

Coverage 

Assoc. with 

Unch. Genes 

carbohydrate metabolism 233 2.09 3.75 972.1 

phosphorus metabolism 201 1.95 2.35 895.3 

reproductive physiological process 308 1.87 1.95 863.5 

establishment of protein localization 279 1.82 1.77 862.0 

sporulation 120 2.48 1.68 832.7 

autophagy 40 3.69 1.22 797.6 

one-carbon compound metabolism 94 1.94 2.57 794.9 

cell wall organization and biogenesis 196 2.11 1.40 788.2 

chromosome organization and biogenesis 557 1.96 4.53 773.1 

cofactor metabolism 169 2.60 2.52 743.8 

Table 9: Biological processes highly associated with yeast genes currently uncharacterized in the Gene 

Ontology. Association with uncharacterized genes is measured as the sum of predicted functional 

relationships between genes in a process and uncharacterized genes, normalized by the cohesiveness (and 

thus size) of the process. The cohesiveness of a process indicates the ratio of average in-process relationship 

weight to the average out-of-process relationship weight (with 1.0 thus the genomic background). Relative 

data coverage is a scaled sum of all datasets' predicted association weight with the given biological process. 

Because of their likely association with uncharacterized genes, these processes represent good candidates for 

future genomic screens. 

Even in this small subset of analyzed datasets, several patterns are apparent. On the left, the first 

of the two main clusters contains primarily localization data from (Huh, Falvo et al. 2003). Within 

the localization subsets, dataset similarity is correlated with cellular localization: the periphery 

and bud are associated with the main body of data by way of actin, the Golgi stages are 
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associated with each other, the endosome and peroxisome are related, and so forth. Three 

synthetic genetic array screens are also similar to the localization data. (Davierwala, Haynes et al. 

2005) is associated primarily with the Golgi and ER, and one of the primary findings of this study 

was the characterization of PGA1, a gene essential for ER activity. (Krogan, Kim et al. 2003) and 

(Zhao, Davey et al. 2005) show similar functional activity to a variety of localization subsets 

(including several not shown in Figure 43) and to (Krogan, Peng et al. 2004), all of which are 

enriched for nuclear functions (DNA packaging, chromosome organization, transcription, RNA 

elongation, etc.) These functional similarities were generated solely by automatic data mining 

and call out important biological associations between disparate experimental results. 

On the right, the cluster of microarray data is centered around a core of large datasets exploring 

very diverse conditions and thus enriched for many different biological processes (Hughes, 

Marton et al. 2000; Brem, Yvert et al. 2002; Yvert, Brem et al. 2003; Brem and Kruglyak 2005). The 

other main components of the cluster are stationary phase growth and carbon metabolism 

(Ideker, Thorsson et al. 2001; Stuart, Segal et al. 2003; Martin, Demougin et al. 2004; Pitkanen, 

Torma et al. 2004; Brauer, Saldanha et al. 2005) and various stresses (Gasch, Spellman et al. 2000; 

Jelinsky, Estep et al. 2000; Bro, Regenberg et al. 2003; O'Rourke and Herskowitz 2004). 

Interestingly, (Chitikila, Huisinga et al. 2002), (Bulik, Olczak et al. 2003), and (Schawalder, Kabani 

et al. 2004) are all likely included due to their use of galactose-inducible promoters while 

investigating other diverse processes; these datasets all share a carbohydrate metabolism 

enrichment in addition to their more specific targets (e.g. biopolymer biosynthesis, a parent of chitin 

biosynthesis, in (Bulik, Olczak et al. 2003)). This demonstrates the power of associative functional 

analysis to uncover both primary and secondary enrichments, a consideration essential to getting 

the most out of any experimental result. 
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Figure 43: Similarities in functional activity between high-throughput datasets. Each node represents a 

dataset, each edge the correlation between two datasets' functional activity profiles. These edges represent 

only the strongest correlations (by Kendall's т), so coloration is relative from green (least strong) to red 

(strongest). This associates collections of datasets that explore related areas of biology, either by specific 

experimental design (e.g. protein localization) or by provoking similar biological responses (e.g. the diauxic 

shift and stationary phase growth). This also confirms that multiple genetic (SLAM and Tong et. al. 2004) 

and physical (DIP and MINT) interaction collections offer similar functional coverage. 

Simultaneous association of datasets and biological processes 

Because our method assesses functional activity within datasets, functional similarities between 

datasets, and associations between biological functions, it provides a means of coclustering 

datasets and processes in a biologically meaningful way. This raises the possibility of exploring 

complex data, potentially summarizing millions of individual measurements, in an intuitive 

manner. Each predicted weight between two datasets, two processes, or a dataset and a process 

represents a measure of similar biological function, and thus an investigation of heavily weighted 

subgraphs in this space provides a way of exploring groups of related data and processes. 



277 

 

An example of such a cluster appears in Figure 44, which highlights one of the densest functional 

areas and the datasets in which these functions are most active. This consists of metabolic 

processes including alcohol, aldehyde, and carbohydrate metabolism, cellular respiration, hydrogen and 

electron transport, and mitochondrion biogenesis; while they have been removed for visual clarity, 

several other related processes are also members of this cluster, including cofactor metabolism, 

autophagy, and aging. The group of associated microarrays again represent a combination of broad 

genomic response (Yvert, Brem et al. 2003; Brem and Kruglyak 2005), carbon metabolism (Segal, 

Shapira et al. 2003; Schawalder, Kabani et al. 2004), and stresses (Gasch, Spellman et al. 2000), the 

latter likely included due to the relationship between stress response and growth rate (Brauer, 

Huttenhower et al. 2008). These are linked into the cluster of biological processes primarily 

through carbohydrate metabolism, but also through the biclustering modules (PISA). These 

biclustering results incorporate all of the available microarray conditions, in contrast to the 

normalized correlation scores used to analyze individual datasets. Biclustering thus represents a 

view of expression data orthogonal to pairwise correlations and tends to be more sensitive to 

metabolic functions in general (phosphorus, amino acid, and nitrogen compound metabolism in 

addition to those appearing in Figure 44). 

The non-microarray datasets associated with this functional cluster are diverse, including 

mitochondrial localization (in association with several mitochondrial and respiratory functions), 

cytoplasmic localization (in association with more general metabolism), two sequence-based 

analyses (downstream sequence similarity and shared transcription factor binding sites from 

(Harbison, Gordon et al. 2004)), and synthetic lethality interaction profiles from GRID (Stark, 

Breitkreutz et al. 2006) and BIND (Alfarano, Andrade et al. 2005). Synthetic lethality profiles and 

shared binding sites both provide good coverage of many biological processes and are included 
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largely due to moderate association with many of the functions within the cluster (most edges are 

not shown in Figure 44); this is reflected in their relative isolation in the network. Broad 

downstream (and upstream) sequence similarity tends to capture structural features of the 

genome, in this case the close positional association of the GAL genes. 

A case study: detecting a specific biological response in diverse data 

At a more specific level, these interprocess associations and functional descriptions of datasets 

can be used to uncover detailed biological responses in high-throughput data. We were struck by 

the correlation in functional activities between three seemingly diverse datasets: (Chitikila, 

Huisinga et al. 2002), an investigation of TBP inhibitors, (Martin, Demougin et al. 2004), an 

analysis of tor2 mutants described in (Helliwell, Howald et al. 1998), and (Pitkanen, Torma et al. 

2004), a pmi40 deletion assayed over varying mannose concentrations. These three microarray 

collections share functional enrichments with other datasets assaying similar conditions (e.g. the 

nutritional cluster discussed above including (Martin, Demougin et al. 2004) and (Pitkanen, 

Torma et al. 2004)), and no one pair of the three correlations is unusually high. They also 

represent two different experimental platforms: (Martin, Demougin et al. 2004) and (Pitkanen, 

Torma et al. 2004) both employ single channel microarrays, while (Chitikila, Huisinga et al. 2002) 

uses a two-color array. However, the average functional correlation between the three datasets is 

highly significant ( 316.0'rel , p<10-3) for arrays under such apparently diverse conditions. 

All three datasets are enriched for activity in distinct biological processes, and all three present 

unique biological conclusions that are in no way undermined by this unexpected similarity. 

Upon inspection of the three datasets' experimental protocols, however, the common factor 

appears to be the use of a specific plasmid shuffle transformation employing a strain background 

of the form ura3 trp1 leu2 his3 or his4. We have confirmed this similarity in a fourth dataset we are 
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currently developing investigating temperature-sensitive dbf4 mutants (Myers, Robson et al. 

2005). Although the overarching biological conditions of our dataset share little in common with 

(Chitikila, Huisinga et al. 2002), (Martin, Demougin et al. 2004), and (Pitkanen, Torma et al. 2004), 

our mutants were also constructed using a similar plasmid transformation, and the resulting 

microarrays produce highly correlated functional profiles. Even when strain background and 

reference channels (when applicable) are all properly controlled, the plasmid shuffle process and 

associated auxotrophies result in subtle changes in global transcription detectable by large-scale 

functional analysis. 

 

Figure 44: Coclustering datasets and biological processes in an area of dense functional associations. By 

mining associations between biological processes for dense subgraphs, we recover a collection of processes 

(rectangular nodes) predicted to be highly related based solely on experimental data. We then extract the 

datasets (oval nodes) most informative for those processes and display the most confident process/process, 

dataset/dataset, and dataset/process associations among these nodes. Each edge type is individually 

weighted, and only the strongest edges are shown, ranging in weight from green (least strong) to red 

(strongest). This network thus represents a snapshot of one area of yeast biology, the interconnections 

among its constituent processes, and datasets exploring these processes. 
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This effect is quite subtle, a fact which we stress for two reasons. First, it is a secondary effect 

within the more prominent biological features assayed by these three datasets, and it is only by 

large-scale analysis of their functional content in the context of many other datasets that the 

similarity was discovered. Second, we emphasize that it in no way diminishes these datasets' 

primary results, and instead provides additional functional insight into their coexpression 

measurements. Most previous computational data integration has focused on associating genes 

with functions or genes with genes. As more high-throughput data becomes available, it opens 

up opportunities for associating entire datasets with broad functional activity and with other 

datasets, allowing the detection of biological signals and similarities that would remain 

undetectable at smaller scales. 

Discussion 

We present a high-level functional analysis of very large compendia of genomic data and apply it 

to S. cerevisiae. By computationally summarizing thousands of whole-genome experimental 

conditions, we elucidate the current data coverage of S. cerevisiae biological processes, the 

cohesiveness of its functional annotations, and associations among these processes based on high-

throughput experimental results. We also determine the functional activity in high-throughput 

datasets, allowing us to discover subtle relation-ships such as shared strain backgrounds in 

otherwise diverse microarray conditions. This analysis begins with specific functional 

relationships between individual genes predicted from large-scale data integration, and it 

extends into high-level information including functional associations between datasets, 

uncharacterized genes, and biological processes. 

A primary application of this system lies in directing future experimental efforts. In particular, 

high-throughput screens of any sort can be costly to implement and assay fairly general 
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conditions; for example, if two proteins bind only during fermentation, their interaction will not 

be observed in a genomic screen during respiratory growth. A high-level functional analysis 

serves to call out underrepresented biological processes and those with increased likelihoods of 

novel discovery, which can in turn provide focus for experimental screens. This is analogous to 

candidate gene selection at a whole-genome level, a form of "candidate process" selection, just as 

our predicted associations between biological processes represent functional relationships at a 

larger scale. 

High-level functional analysis also provides very specific information on individual experimental 

results, in addition to its larger scale applications. This is exemplified by the functional signature 

of the plasmid shuffle strain discussed above; given any new high-throughput dataset, 

microarray or otherwise, we provide a means for establishing its functional activity in the context 

of existing data. Both this post-hoc analysis and the a priori predictions of underrepresented 

functions are of particular use in less well-studied organisms. By designing experiments to 

explore processes shown to lack functional coverage and by leveraging all available data to 

interpret new results, laboratory work can be quickly guided to areas of biological interest and 

potential. 

Finally, the functional information summarized by our system can also be employed in the 

continuous process of functional cataloging. While we have used examples from the Gene 

Ontology, any sets of functionally related genes could drive analyses such as this, and the results 

can guide annotators in cataloging existing data much as they can guide experimenters in 

generating new data. By providing a means of directing annotators to potentially under-

annotated functions and the datasets associated with them, our analysis simplifies a curation and 

cataloging task that grows with each new publication. By analyzing and presenting the large-
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scale functional structure of genome-scale data, we hope to guide annotators and experimenters 

alike in exploring the potential of the ongoing genomic revolution. 

HEFalMp: A Functional Map of the Human Genome 

The completion of the Human Genome Project and the subsequent flood of genomic data and 

analyses have provided a wealth of information regarding the entire catalog of human genes. 

Comprehensive assays of gene expression, protein binding, genetic interactions, and regulatory 

relationships all provide snapshots of molecular activity in specific cell types and environments, 

but turning these biomolecular parts lists into an understanding of pathways, processes, and 

systems biology has proven to be a challenging task. This abundance of data can sometimes 

obscure biological truths: the size of the human genome, the complexity of human tissue types 

and regulatory mechanisms, and the sheer amount of available data all contribute to the 

analytical complexity of understanding human functional genomics. 

In order to take advantage of large collections of genomic data, they must be integrated, 

summarized, and presented in a biologically informative manner. We provide a means of mining 

tens of thousands of whole-genome experiments by way of functional maps. Each map 

represents a body of data, probabilistically weighted and integrated, focused on a particular 

biological question. These questions can include, for example, the function of a gene, the 

relationship between two pathways, or the processes disrupted in a genetic disorder. Functional 

integrations investigating individual genes' relationships have been successful with smaller data 

collections in less complex organisms (Lee, Date et al. 2004; Date and Stoeckert 2006; Myers and 

Troyanskaya 2007), although (as discussed below) it is particularly challenging to scale these 
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techniques up to the size and complexity of the human genome. Each functional map, based on 

an underlying predicted interaction network, summarizes an entire collection of genomic 

experimental results in a biologically meaningful way. 

While functional maps can readily predict functions for uncharacterized genes (Murali, Wu et al. 

2006), it is important to take advantage of the scale of available data to understand entire 

pathways and processes. Cross-talk and co-regulation among pathways, processes, and genetic 

disorders can be mapped by analyzing the structure of underlying functional relationship 

networks. This includes the association of disease genes with (potentially causative) pathways; 

for example, many known breast cancer genes are involved in aspects of the cell cycle and DNA 

repair, and novel associations of this type can be mined from high-throughput data. Similarly, 

associations between distinct but interacting biological processes (e.g. mitosis and DNA 

replication) can be quantified by examining functional relationships between groups of genes, 

allowing the identification of proteins key to interprocess regulation. 

The functional maps we provide for the human genome include information on protein function, 

associations between diseases, genes, and pathways, and cross-talk between biological processes. 

These are all based on probabilistic data integration using regularized naive Bayesian classifiers. 

While naive Bayesian systems have been used successfully to analyze protein-protein interaction 

data (Rhodes, Tomlins et al. 2005; von Mering, Jensen et al. 2007) and to perform functional 

integration in simpler organisms with smaller data collections (Date and Stoeckert 2006; Myers 

and Troyanskaya 2007), they have not previously been scaled to provide a functional view of the 

human genome driven purely by experimental results. In addition to challenges of computational 

efficiency in the presence of hundreds of genome-scale datasets, naive classifiers assume that all 

input datasets are independent; this becomes increasingly untrue and problematic as more 
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datasets are analyzed, resulting in a paradox of decreasing performance with increasing training 

data. To address this, we use Bayesian regularization (Steck and Jaakkola 2002), a process by 

which an observed distribution of data can be combined with a prior belief in a principled 

manner. Intuitively, this results in groups of datasets containing similar information making a 

more modest contribution to the integration process, upweights unique datasets, and prevents 

overconfident predictions. Our regularization of the naive classifier parameters using a score 

based on mutual information up- and down-weighted appropriate subsets of data, maintaining 

both efficiency and accuracy. 

While Bayesian regularization enables the prediction of functional relationship networks from 

very large genomic data collections, functional mapping further analyzes these networks to 

answer specific biological questions. Naive Bayesian classifiers alone can accurately weight 

individual experimental results, e.g. high microarray correlation or physical protein binding, 

with respect to their ability to predict functional relationships. Regularization adds the ability to 

weight entire datasets with respect to their predictive power, and both of these weightings can be 

applied in a process-specific manner (e.g. a microarray dataset may be highly predictive for 

transcriptionally regulated processes but cannot detect post-translational modifications). Thus, 

regularized Bayesian integration summarizes billions of data as millions of predicted 

relationships; this is clearly still too large a body of data to explore directly. Functional mapping 

solves this problem by further summarizing sets of functional relationships into specific 

predicted associations between genes, pathways, or diseases. For example, two related processes 

such as DNA synthesis and the cell cycle are likely to share substantial regulatory cross-talk, i.e. 

the distribution of predicted functional relationships spanning genes in the two processes will be 

significantly different from that expected by chance. Functional mapping can statistically identify 
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such associations based solely on genomic data, predict specific proteins serving as potential 

regulatory hubs, and highlight the experimental data underlying these predictions. 

We applied our functional maps to a specific biological question in the area of autophagy, the 

process by which a cell can recycle its own biomass under conditions of starvation or stress 

(Klionsky 2007). Among many proteins predicted to participate in this biological process by an 

early version of our maps, we chose to investigate LAMP2 and RAB11A in the laboratory. We 

demonstrated through multiple lines of experimental evidence that these proteins are indeed 

involved in macroautophagy in amino acid-starved human fibroblasts, a specific type of 

autophagy in which bulk cytoplasm is lysosomally degraded. The results of our integration are 

available through a web-based interface, HEFalMp (Human Experimental/Functional Mapper), at 

http://function.princeton.edu/hefalmp. This tool allows a user to interactively explore functional 

maps integrating evidence from thousands of genomic experiments, focusing as desired on 

specific genes, processes, or diseases of interest. 

Results 

Using the system outlined in Figure 45A, we generate functional maps of predicted gene 

functions, pathway and process associations, and genetic disorders in 229 biological areas, 

incorporating information from ~30,000 genome-scale experiments. Within each biological area, 

maps are derived from a functional relationship network predicted using regularized Bayesian 

integration of the genomic data. The features and contents of the resulting interaction networks 

are analyzed to produce gene-, process-, and disease-centric functional maps specific to each 

biological area. We have experimentally confirmed two genes newly predicted to be active in the 

area of macroautophagy, LAMP2 and RAB11A. 
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Data integration for functional mapping 

A functional map is a view of genomic data focused on a particular area of interest: genes, 

processes, diseases, and their associations and interrelationships. To derive these maps, we 

analyze functional relationship networks predicted based on Bayesian integration of ~30,000 

genome-scale experiments. These are organized into 656 datasets (grouped by related microarray 

experiments, individual interaction databases, and so forth) and probabilistically weighted based 

on their functional activity in 229 biological areas of interest (e.g. autophagy, mitotic cell cycle, 

protein processing, etc.). As summarized in Table 10, one product of this integration process is an 

estimate of the biological processes active in each dataset. Further, as highlighted in Table 11, 

over 25% of our predicted functional relationships are supported by at least 100 datasets, and 

many genes' predictions include information from over 500 genome-scale datasets. 

Using only the information in these predicted functional relationship networks before they have 

been further processed into functional maps, we can accurately recapitulate known biology from 

catalogs such as the Gene Ontology (Figure 45). As observed in (Myers and Troyanskaya 2007), 

functional integration benefits substantially from context-awareness, a fact we take advantage of 

in our use of process-specific functional maps. Performance differs only slightly between an 

evaluation of the entire genome and of a held-out test set, demonstrating naive classifiers' 

robustness to overfitting. Most significantly, Bayesian regularization provides a dramatic increase 

in performance by downweighting groups of similar datasets and upweighting unique, 

informative datasets in each biological process. 

Features of the functional relationship networks 

Functional maps are generated by analysis of functional relationship networks, and each network 

is based on probabilistic integration of genomic data within a particular biological area. In 
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addition to providing maps of higher-order associations among processes and diseases, these 

functional relationship networks can be examined directly to provide insights into protein 

function, functional modules, and characteristics of the integrated experimental data. Table 11 

presents summary statistics for several of the networks we analyzed. A substantial fraction (26%) 

of the networks' edges are supported by evidence from more than 100 datasets, and ~10,000 edges 

are supported by over 500 datasets. There is strong variation in probabilities and dataset 

weighting between biological processes, with the most confident coverage offered by 

reintegration across all available processes. While different genes tend to be highly connected in 

each process-specific network, commonalities emerge in the global networks and interprocess 

averages. These proteins (HNF4A, RUNX2, GHRHR, and others from the rightmost table 

column) tend to be components of complexes or receptors; they are thus predicted to have a 

relatively small number of extremely confident relationships with their other complex members 

or ligands. This is confirmed by the fact that these genes are also among the most variable, 

although their predictions are not generally supported by the most datasets. Instead, to find these 

particular relationships, subsets of appropriately reliable data are upweighted by our integration 

system in a process-specific manner. 

Individual functional relationship networks can also be used to predict protein function using 

"guilt by association," as diagrammed in Figure 46A. If a gene has many strong, specific predicted 

relationships with genes in a particular biological process, it is itself likely to participate in that 

process. ALOX5AP, for example, is a membrane protein required to activate ALOX5 for 

leukotriene synthesis; this pathway is a clinical target for the treatment of asthma, heart disease, 

and obesity (Peters-Golden and Brock 2003; Mehrabian, Allayee et al. 2005). Our integration 
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Figure 45: Overview and performance of genomic data integration for functional mapping. A) Data from 

~30,000 genome-scale experiments (~15,000 microarray conditions and ~15,000 interaction and sequence-

based assays) were organized into 656 related datasets. These datasets were used as inputs for 229 process-

specific naive Bayesian classifiers each trained to predict functional relationships specific to a particular 

biological area and one process-independent global classifier. Mutual information was calculated between 

each pair of datasets and used to regularize these classifiers and prevent overconfident predictions. Each 

classifier was used to infer a predicted functional relationship network for a particular biological process. 

These networks were then analyzed to find statistically significant sets of functional relationships spanning 

gene groups of interest. This results in functional maps focusing on individual genes, groups of genes, 

biological processes, or genetic disorders. Each map provides an informative summarization of the genomic 

data collection focused on the current biological entity of interest. B) Performance of predicted functional 

relationship networks in recapitulating known biology. To confirm that the predicted functional 

relationships underlying our functional maps were accurate, we scored their ability to recover information 

from a held-out portion (25% of genes) of our gold standard. This evaluation includes the global process-

independent network tested on all genes and the holdout set, a global mean of the process-specific networks 

tested on all genes and the holdout set, and an unregularized global process-independent network tested on 

all genes. Precision is well above baseline, and since naive classifiers are generally robust to overfitting, 

performance of the holdout set is only slightly below that of the entire genome. Bayesian regularization 

provides a large performance increase at low recall by preventing overconfident predictions. 
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 Data points Sets Pubs. Conds. Mean 

max. 

posterior 

Mean 

norm. 

weight 

Most informative 

functional areas 

Interactions 

(physical and genetic) 

11,244,053 14 >15,000 >15,000 0.375 0.000286 Response to DNA 

damage, 

membrane 

potential, 

regulation of cell 

cycle, cell death, 

DNA metabolism 

Sequence comparisons 

(nucleotide and protein) 

452,199,430 7 6 NA 0.162 0.00197 Cell adhesion, cell 

surface receptor 

signal transduction, 

phosphorus 

metabolism, 

chromosome 

organization 

Microarrays 27,248,177,875 635 417 14,671 0.0270 0.000606 Cell surface 

receptor signal 

transduction, cell 

adhesion, RNA 

splicing and 

metabolism, ion 

transport 

All data 27,711,621,358 656 >15,500 ~30,000 0.0378 0.000619  

Table 10: Summary of integrated genomic data. 21 interaction and sequence-based datasets were assembled 

from various sources consolidating >15,000 publications; 635 microarray datasets spanning >14,000 

conditions were downloaded from GEO (Barrett, Suzek et al. 2005). The mean maximum posterior and 

normalized weights are calculated across the 229 analyzed functional areas. Particularly active functional 

areas are determined for each dataset based on the weight given to the data by each process-specific 

classifier; microarrays, for example, are particularly good at detecting the strong transcriptional signals of 

RNA processing and co-complexed proteins such as ATP synthases. While genetic and physical interactions 

are generally the most reliable data sources, they are also the least common. This results in them being given 

a high weight (posterior) during Bayesian integration, but when this weight is normalized by the amount of 

available data (prior probability), sequence-based data (shared protein domains, transcription factor binding 

sites, etc.) are found to provide the best balance between coverage and informativity. 

system predicts it to have many specific functional relationships with other membrane proteins 

involved in the inflammatory chemotaxis response in leukocytes (among other predicted 

relationships). While neither ALOX5AP nor ALOX5 are annotated to a chemotactic pathway in 
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the Gene Ontology, one of their immediate biosynthetic products, LTB4, is a known activator of 

chemotaxis (Peters-Golden and Brock 2003). This is an example of uncovering an uncataloged 

protein function by functional mapping, and we provide details below of our experimental 

confirmation of novel predicted functions for LAMP2 and RAB11A in autophagy. 

 Ave. rel. 

conf. 

Rel. above 

prior 

High-

conf. rel. 

Genes 

with >10 

high-conf. 

rel. 

Most connected 

genes 

Most variable 

genes 

Global 

(process-independent) 

0.0381 

(0.117) 

60,189,940 51,890 2,278 RUNX2, PRLR, 

GHRHR, ATP2B2, 

OPRM1 

RUNX2, GHRHR, 

OPRM1, PRLR, 

ATP2B2 

Representative processes 

Autophagy (20 genes) 0.000561 

(0.0113) 

30,054,992 5,981 234 CDK4, SUMO1, 

PPM1G, HPRT1, 

HINT1 

CDK4, PPM1G, 

SUMO1, RAN, 

HINT1 

Chemotaxis (137 genes) 0.0103 

(0.0644) 

42,265,832 137,957 3,784 GHRHR, HTR4, 

FSHR, SERPINA4, 

OPRM1 

GHRHR, HTR4, 

FSHR, SERPINA4, 

MLN 

Cell death (724 genes) 0.00968 

(0.0313) 

17,919,145 9,818 348 KPNB1, HNRPK, 

VEGFA, MSH2, 

HNRPA2B1 

HNF4A, GRB2, 

KPNB1, TP53, 

YWHAZ 

Average across 

individual processes 

0.0111 

(0.0186) 

42,515,815 

(34,336,803) 

66,663 

(126,498) 

1,135 

(1,179) 

HNF4A, GHRHR, 

FSHR, HTR4, 

RUNX2 

GHRHR, HTR4, 

OPRM1, HTR6, 

ADRA1A 

Global 

(process-aware) 

-

0.001570 

(0.444) 

NA 1,871,380 11,614 HNF4A, COPS5, 

VBP1, DDX1, 

PSMD14 

TP53, GRB2, 

PCNA, COPS5, 

HDAC1 

Nodes (genes) Edges (rel.) Rel. with >100 datasets Rel. with >500 datasets 

24,433 298,473,528 78,519,235 10,317 

Table 11: Features of functional relationship networks predicted from data integration. We inferred 231 

networks predicting functional relationships among 24,433 human genes. 229 of these are process-specific 

and provide interaction probabilities within a particular functional area. The remaining two are global (non-

process-specific) and indicate probabilities of functional relationship either without consideration for 

biological process (process-independent) or as a normalized average across all processes (process-aware), 

respectively. The 229 process-specific networks and the global non-process-specific network consist of 

probabilities in which the threshhold for high confidence was 0.95. The global integrated-process network is 

normalized to contain z-scores, which can be negative, and an equivalent high-confidence threshhold was 

set at 2.0. Data for three representative processes of varying sizes are shown, in addition to averages across 

process-specific networks (standard deviations in parentheses). As detailed in (Huttenhower, Hibbs et al. 

2006), reintegration across processes produces a more confident and reliable global network than is obtained 

from ignoring process-specificity. Many predicted relationships are supported by several hundred datasets, 

and protein interactions vary strikingly between biological areas as they participate in different pathways 

and processes. 
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By extracting highly connected clusters from functional relationship networks, we can also 

discover putative functional modules showing high similarity in experimental data without 

being directly associated with pre-annotated gene sets or processes. These modules may 

represent novel pathways, complexes, or other groups of proteins interacting to carry out cellular 

tasks. The modules can be merged to create a hierarchical structure reminiscent of catalogs such 

as the Gene Ontology; a small subset of our predicted functional modules appears in Figure 46B. 

The most specific module in the hierarchy links the transcriptional regulators PIAS3, MITF, and 

PAX6 with very strong evidence drawn from multiple direct binding assays in the BioGRID 

(Stark, Breitkreutz et al. 2006). This module has two main branches of more general parents in the 

hierarchy. The first contains several cell growth, death, and differentiation transcriptional 

modulators, including JUN, NFKB1, and BCL3. The second contains multiple cell cycle related 

oncogenes, oncogene activators, and TGF-β family mediators, almost all of which are also 

transcriptional modulators (Kim, Wang et al. 2000). This is likely indicative of two interrelated 

regulatory programs, the former focused on cell development and differentiation and the latter 

responding more specifically to extracellular signaling. We have automatically mined and 

hierarchically organized ~17,000 functional modules from our integrated data, spanning all 

~25,000 genes for which we have data and ranging in size from three to 5,600 genes. 

Functional associations: genetic disorders and biological processes 

By examining the behavior of entire pathways in integrated genomic data, we derive functional 

maps of cross-talk between related biological processes (Figure 47A). Just as functional 

relationships between genes are predicted by finding significant agreement among many 

integrated datasets, functional associations between processes are discovered by observing strong 

relationships among many of their constituent genes, based on similar behavior of the processes' 
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genes in many genomic data sources and not on prior knowledge of genes shared between 

processes. 

For example, if we focus on the process of cell fate commitment, we predict associations with many 

specific processes of cell differentiation and development. Several of these associations are driven 

by proteins known to be involved in multiple processes, e.g. the association with gastrulation 

involves many shared genes including TGFB2, BMP4, TBX6, and TRIM15. On the other hand, an 

apparently similar association with axis specification is driven mainly by genes not yet cataloged 

as involved in a cell fate decision (e.g. TDGF1, T, MDFI, etc.) Maps associating interrelated 

biological processes (and detailing the proteins predicted to drive those associations) can be 

derived from high-throughput data for any biological area of interest. This provides a way of 

exploring pathway cross-talk in genomic data and quickly identifying potential regulatory hubs. 

In a similar manner, groups of known disease-related genes can be associated with each other or 

with (potentially causative) pathways and processes. An example in Figure 47B focuses on 

ovarian cancer, currently recorded in OMIM (OMIM 2008) as being influenced by at least seven 

genes. While known shared genes drive some of these associations (e.g. MSH6 in aging or ERBB2 

in epithelial cell proliferation), others are more surprising. For example, AKT1, a protein known to 

contribute to ovarian cancer, is predicted to be related to B3GNTL1 and PHKG2 in biopolymer 

biosynthesis (i.e. DNA synthesis) due mainly to high microarray correlation across a wide variety 

of conditions; these proteins are also involved in the estrogen and insulin pathways, respectively, 

which have been observed to interact (Hamelers and Steenbergh 2003). Similarly, while there is a 

growing understanding of the link between breast and ovarian cancer and hormone stimulus 

(Dumeaux, Fournier et al. 2005), we predict explicit molecular connections driven by LYN, 

EIF2B5, and MMS19L. We also observe links between ovarian cancer and other cancers, including 
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breast cancer, osteosarcoma, colorectal cancer, and hepatocellular carcinoma, mainly due to 

interactions or high microarray correlation with BRCA1, MSH6, and other known cancer-related 

proteins. Functional mapping can thus call out potentially overlooked associations between 

diseases as well as posit new molecular connections between biological processes and genetic 

disorders. 

Finally, if an investigator has a specific biological hypothesis in mind, it can be explored using 

functional mapping of user-provided gene sets. Figure 47C demonstrates a query of known 

autophagy genes ATG7, BECN1, and MAP1LC3B with test genes LAMP2, RAB11A, and VAMP7 

in the context of autophagy. This produces two clear clusters, a group of known autophagy genes 

related to a group of vesicular and transport genes (including the three test genes). These two 

clusters are associated primarily by RAB11A/BECN1, CLTC/BECN1, ARPC5/CLN3, and 

SH3GLB1/MAP1LC3B relationships, as well as less heavily weighted links through DPM1 and 

PSMC2. The four primary relationships are driven by a wide variety of microarray correlations, 

led by datasets investigating retinal pigment epithelium (Tian, Ishibashi et al. 2004), macrophage 

infection (Detweiler, Cunanan et al. 2001), bone marrow (Graf, Iwata et al. 2002), and DNA 

damage (Rieger and Chu 2004). The secondary relationships are also predicted based on diverse 

microarray data and information from the GSEA gene sets (Subramanian, Tamayo et al. 2005). All 

of these genes are known to be involved in ER/Golgi trafficking, the secretory and vesicular 

system, and protein degradation; these associations led us to investigate whether LAMP2, 

RAB11A, and VAMP7 play roles in the specific activation of macroautophagy. Our experimental 

confirmation of two of these predictions is detailed below. 
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Figure 46: Analyses of functional relationship networks predicted from data integration. The process-

specific functional relationship networks underlying functional maps can themselves provide information 

on individual genes' and modules' behavior in the underlying genomic data. A) Focusing on ALOX5AP, a 

membrane protein participating in leukotriene synthesis, highlights a predicted association with the process 

of chemotaxis in leukocytes, driven by multiple predicted relationships with known chemotaxis proteins. 

While ALOX5AP has not been formally cataloged as participating in chemotaxis, its immediate biosynthetic 

product LTB4 is a known activator of chemotaxis (Peters-Golden and Brock 2003). B) A subset of the 

functional modules predicted by mining highly-connected clusters from functional relationship networks. 

Each module consists of genes predicted to be related based on multiple informative genomic datasets. 

Here, a specific module consisting of PIAS3, MITF, and PAX6 generalizes through two main branches into 

modules enriched for various transcriptional regulation activities in the cell cycle, apoptosis, and 

intercellullar signaling. We have automatically mined and hierarchically organized ~17,000 functional 

modules of varying specificities from our integrated data. 
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Figure 47: Results of functional mapping. Functional maps derived from experimental data integration 

provide information on groups of genes, including cross-talk between pathways, processes, and genes 

associated with genetic disorders. In all figure parts, thicker arrows indicate stronger associations, and 

directed arrows point to the gene group in which the background connectivity was calculated. A) 

Associations between biological processes derived by functional mapping. A focus on the process of cell fate 

commitment predicts it to be associated with a cluster of cell development and differentiation processes. 

Arrow width indicates the strength of predicted association, and border thickness indicates the internal 

cohesiveness of each process in the integrated genomic data. These predicted associations are based on a 

combination of proteins known to participate in multiple processes and novel data-driven predicted 

relationships. B) Associations between genetic disorders and biological processes. Focusing on ovarian 

cancer, known to be influenced by at least seven genes (OMIM 2008), we predict associations with the cell 

cycle, cell proliferation, and hormone stimulus, as well as with several other cancers. These associations are 

each based on relationships among individual genes predicted from integrated genomic data. C) 

Visualization of a functional map generated by querying a custom gene set. We chose to focus on the known 

autophagy proteins ATG7, BECN1, and MAP1LC3B, in addition to genes of interest LAMP2, RAB11A, and 

VAMP7, in the context of autophagy. This extracts two clear clusters of predicted autophagy-specific 

functional relationships, one consisting mainly of known autophagy proteins and one enriched for ER/Golgi 

and vesicular trafficking proteins (including the three test genes). This led us to experimentally test and 

confirm the hypothesis that LAMP2 and RAB11A are involved in macroautophagy in amino acid-starved 

human fibroblasts. 



296 

 

LAMP2 and RAB11A are required for macroautophagy in human fibroblasts 

Autophagy is the process by which cells can consume their own biomass in order to survive 

when starved or otherwise stressed. Particularly in human biology, it is an area of active research, 

with recent work discovering links to tumorigenesis and bacterial infection (Klionsky 2007). 

Specifically, macroautophagy is the process of engulfing and degrading the contents of bulk 

cytoplasm, while chaperone-mediated autophagy and microautophagy employ different 

mechanisms to target specific proteins to the lysosome (Yorimitsu and Klionsky 2005). We will 

use the terms autophagy and macroautophagy interchangeably, as we focus here only on 

macroautophagy. Using an early version of our functional maps, we chose to experimentally 

investigate three proteins predicted to function in autophagy: LAMP2, RAB11A, and VAMP7. 

Previous work has shown these proteins to be involved in the lysosome and vesicular trafficking 

(Chen, Pan et al. 1985; Prekeris, Klumperman et al. 2000; Ward, Pevsner et al. 2000), with LAMP2 

playing a known role in chaperone-mediated autophagy (Cuervo and Dice 1996), but they have 

not been specifically associated with macroautophagy. Punctate localization of the MAP1LC3 

protein to autophagy-specific vesicles known as autophagosomes and its cleavage from the 

MAP1LC3-I to the MAP1LC3-II isoform are common markers for cells undergoing autophagy; 

both of these markers are obviated by the inhibition of proteins necessary for autophagy, e.g. 

ATG5 (Kabeya, Mizushima et al. 2000; Mizushima, Yamamoto et al. 2004). We found these 

markers to be decreased in primary human fibroblasts in which LAMP2 or RAB11A have been 

knocked down by siRNA, suggesting that these two proteins are required for successful 

autophagy (Figure 48). 

LAMP2 and RAB11A depletions both significantly diminish autophagy as measured by 

quantification of fluorescent GFP-tagged MAP1LC3 (Figure 48A). Automated image analysis 
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using CellProfiler (Carpenter, Jones et al. 2006) demonstrates a significant drop in MAP1LC3 

fluorescence (and thus autophagosome formation) under starvation conditions when ATG5 

(positive control), LAMP2, or RAB11A levels are depleted by siRNA. In addition to overall 

decreased levels of fluorescence, both proteins' depletions also specifically abrogate the 

localization of MAP1LC3 to autophagosomes, as quantified by the number of fluorescent 

MAP1LC3 labeled puncta in a collection of 80 microscopic images (Figure 48B and C, 

Supplemental Figure 6). A VAMP7 knockdown showed no effect in any assay, which is possibly 

due to known variation in its behavior in different cell types; this is discussed in more detail 

below. The modest decrease in MAP1LC3-II incurred by the RAB11A knockdown (see 

Supplemental Figure 6), as opposed to its strong fluorescence and localization effect, raises the 

interesting possibility that it participates in the formation of autophagosomal membranes 

containing MAP1LC3 after it has been processed by ATG3 and ATG7 to the MAP1LC3-II isoform 

(Kabeya, Mizushima et al. 2004). Further investigation is necessary to determine the specific roles 

of LAMP2 and RAB11A in mammalian autophagy, but these assays provide strong evidence for 

their involvement in as predicted by functional mapping. 

HEFalMp: a web-based interface for interactive functional mapping 

Our functional maps can be explored interactively using the HEFalMp (Human 

Experimental/Functional Mapper) tool at http://function.princeton.edu/hefalmp. As shown in 

Figure 49, HEFalMp provides an interface through which a user can focus on a particular subject 

of interest - a gene, group of genes, biological process, or disease - and examine its predicted 

associations. For example, this can predict gene function (gene/process associations), cross-talk 

between pathways (process/process associations), or processes associated with genetic diseases, 

 

http://function.princeton.edu/hefalmp
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Figure 48: Impaired autophagosome formation confirms the predicted involvement of LAMP2 and RAB11A 

in human macroautophagy. An early version of our functional maps predicted LAMP2, RAB11A, and 

VAMP7 to be involved in autophagy, the process of recycling cellular biomass in order to survive under 

conditions of starvation or stress. While VAMP7 knockdowns showed no effect (see Discussion), siRNA 

knockdowns of LAMP2 and RAB11A inhibited normal autophagy. A) Automated image analysis detects a 

significant decrease in fluorescent GFP-tagged MAP1LC3 under starvation conditions for ATG5, LAMP2, or 

RAB11A knockdowns. Bars show standard error of average cytoplasmic intensity per cell as quantified by 

CellProfiler (Carpenter, Jones et al. 2006) over a collection of 10 images per condition (80 total). This 

decrease in fluorescence indicates that normal MAP1LC3-II processing (and thus autophagy) is impaired 

when ATG5, LAMP2, or RAB11A levels are reduced. B) Quantification of punctate autophagosome 

formation. The numbers of fluorescent puncta (MAP1LC3-II labeled autophagosomes) per cell were 

averaged over counts from three independent investigators in 10 images per normal (-) or starvation (+) 

condition, unlabeled and randomized (80 images total; see Supplemental Figure 2 for standard errors). The 

resulting distribution of puncta frequencies is low under all non-starved conditions and significantly 

increased under a negative control (luciferase) condition. It is only slightly increased for the ATG5 positive 

control and for the LAMP2 and RAB11A predictions. C) Punctate localization of fluorescent GFP-LC3 to the 

autophagosome during autophagy. Under normal conditions (-), MAP1LC3-I is localized diffusely through 

the cytoplasm; starvation (+) induces autophagy and localization to the autophagosome membrane. 

Knockdowns of ATG5 (positive control), LAMP2, and RAB11A abrogate this localization, indicating that 

these proteins are required for successful macroautophagy. 
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and all predictions can be made in any of the >200 biological areas for which we have constructed 

functional maps. A variety of visualizations are used for different query types, and all results can 

be downloaded for offline analysis. All predictions between groups of genes can be expanded 

into the specific functional relationships driving the analysis, and individual functional 

relationships can always be traced to the genomic datasets on which they are based. HEFalMp 

provides a convenient and informative way to explore functional maps summarizing data from 

~30,000 genome-scale experiments. 

Discussion 

While the growing amount of publicly available genomic data can answer a wide variety of 

biological questions, usefully integrating, mining, and summarizing these data is an ongoing 

challenge. Using information from over 650 genome-scale datasets drawn from thousands of 

publications, we produce functional maps that provide specific information focused on an 

investigator's area of interest. This can include gene function, functional modules, cross-talk 

between pathways and processes, or interactions among genetic disorders. We have 

experimentally confirmed predicted involvements of RAB11A and LAMP2 in human 

macroautophagy, and we provide the HEFalMp web-based interface for biologists to explore our 

results and to generate new functional maps in their areas of interest. 

Applications of functional mapping 

Functional mapping can guide further laboratory and computational investigations by taking 

advantage of large collections of genomic data in a biologically meaningful way. As 

demonstrated by our confirmation of the participation of LAMP2 and RAB11A in autophagy, 

functional associations of individual genes with pathways and processes can be used to suggest 

directed laboratory experiments. In the area of human disease, this can be even more significant, 
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since functional mapping predicts associations of genetic disorders with potentially causative 

processes and with specific individual genes. It is key that computational methods take 

advantage of modern high-throughput biology to guide researchers to novel disease genes based 

on information from thousands of experimental results. 

Functional mapping can further leverage high-throughput data to better inform functional 

cataloging and annotation efforts. As seen above with ALOX5AP, many human proteins have 

ample literature evidence to link them to established pathways and processes but have not yet 

been fully annotated in catalogs such as GO or KEGG. Functional mapping can rapidly direct 

annotators to such under-annotated genes, providing an opportunity to substantially improve 

functional catalogs based on existing literature evidence. 

Bayesian regularization enables very large scale data integration 

It is notable that previous data integration techniques do not scale adequately to the size of the 

human genome and the amount of currently available genomic data. Bayesian structure learning 

has been applied successfully to very small groups of genes with focused datasets (Sachs, Perez 

et al. 2005), but its computational complexity makes it inapplicable on a whole-genome scale. 

Even TAN classifiers, which are only minimally more complex than naive networks, can be 

inefficient to learn from very large, incomplete data collections (Tian, Wang et al. 2005). While 

naive Bayesian classifiers can perform rapid data integration and can be learned and evaluated 

very quickly, their inherent independence assumption can produce overly confident predictions 

in the presence of many datasets (Supplemental Figure 7). In order to maintain accuracy when 

dealing with very large data collections, we use Bayesian parameter regularization (Steck and 

Jaakkola 2002) to assign a uniform prior to each dataset with belief inversely proportional to the 
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amount of unique data in the dataset. This allows particularly diverse, informative datasets to 

efficiently provide a stronger contribution to the integration and mapping process. 

Mutual information, which we use to evaluate similarities between datasets when performing 

regularization, also reveals surprising large-scale structure in our collection of genomic data 

(Figure 50). While most datasets share very little information by an absolute measure, small but 

consistent patterns emerge when considering hundreds of datasets spanning thousands of 

experimental conditions. Since most available genome-scale data is expression based, microarray 

platform is one of the broadest factors by which datasets cluster. Within these large platform-

based groups, other similarities are detectable based on a variety of factors ranging from tissue 

type to array normalization algorithm. It is striking that a straightforward data mining measure 

such as mutual information, when applied to a sufficiently large collection of genome-scale data, 

can discover various underlying classes of datasets. Even though the amount of information 

shared based on factors such as array platform is small, its ubiquity violates the independence 

assumption of naive classifiers, and it thus provides the basis for the performance improvement 

we observe when using regularized parameters. 

Next steps: tissue specificity and temporal resolution  

A variety of biological features and prior knowledge could be added to further improve 

functional mapping's integration of genomic data. Most significantly, tissue and cell type is a key 

aspect of metazoan biology that is not currently taken advantage of by our functional maps. This 

is perhaps evident in our investigation of VAMP7, a vesicle-association membrane protein 

known to show widely varying behaviors in different tissue types (Advani, Yang et al. 1999; 

Siddiqi, Mahan et al. 2006). It has characterized roles in the late endosome/lysosome, and our 

functional maps predict extensive relationships with other synaptosomal proteins, in agreement 
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with VAMP7's function in neuronal morphogenesis (Rossi, Banfield et al. 2004). While we found 

that decreasing the expression of VAMP7 in human fibroblasts did not detectably influence their 

induction of autophagy, it is possible that VAMP7 participates in autophagy in other cell or tissue 

types. 

Similarly, just as many functional associations are cell-type specific, others are dependent on 

subcellular localization or on temporal characteristics (e.g. cell cycle phase). Our results, as well 

as previous work (Myers and Troyanskaya 2007), show that explicitly modeling functional 

relationships within individual biological processes significantly improves accuracy. Differences 

in cell type, localization, and temporal character represent equally significant cases in which the 

same proteins can carry out different functions. Incorporating information such as cell and tissue 

types is thus an important way in which the mapping process can be further developed in the 

future. 

The features, diversity, and amount of genomic data will certainly continue to increase, and 

functional maps provide a flexible means by which this data can be informatively summarized 

and explored. By integrating over 650 datasets spanning thousands of experimental conditions, 

we have predicted functional relationship networks specific to a variety of individual biological 

processes. Mapping these networks allows an investigator to mine this data from several 

different perspectives, focusing on associations between genes, pathways, processes, or genetic 

disorders of interest. We have experimentally confirmed predicted participation of LAMP2 and 

RAB11A in the process of macroautophagy, demonstrating that functional mapping can 

accurately direct experiments to specific genes and functional areas. These predicted associations 

can be extended to any group of genes, e.g. allowing an experimenter to investigate novel 
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Figure 49: The HEFalMp tool for functional mapping. We have provided a web interface, the Human 

Experimental/Functional Map (HEFalMp), at http://function.princeton.edu/hefalmp for interactively 

exploring our predicted functional maps. A user can focus on a gene, gene set, biological process, or genetic 

disorder of interest and investigate its predicted associations with other genes, processes, or diseases. These 

predictions are presented using a variety of visualizations, and all data is downloadable for further analysis. 

A) Associating a gene with biological processes. An investigator wishes to study which biological processes 

the TROAP protein is predicted to participate in. B) Associating a gene with genetic disorders. In the context 

of one of TROAP's most likely biological processes, chromosome segregation, it is predicted to be particularly 

associated with genes causing melanomas and breast cancer. C) Visualizing a predicted functional 

relationship network for specific genes. Focusing on a gene set consisting of TROAP, two of its most likely 

relationship partners (UBE2C and TPX2), and two of its most likely partners in chromosome segregation 

(TOP2A and NCAPH) retrieves a predicted functional relationship network specific to the area of 

chromosome segregation. D) Viewing genomic data contributing to a prediction. Clicking on a predicted 

functional relationship or specifically focusing on TROAP's relationship with CDC25C displays the genomic 

data used to generate the prediction. Here, TROAP is predicted to relate to CDC25C, a highly conserved 

mitotic regulator, due to very high correlation between the genes' expression in a variety of microarray 

conditions. Taken together, this evidence suggests that TROAP is strongly cell cycle regulated and may play 

an as-yet-uncharacterized role in mitosis. 

http://function.princeton.edu/hefalmp
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Figure 50: Overview of hierarchically clustered mutual information (MI) between genomic datasets. We 

used MI among 656 genomic datasets to perform regularization of the parameters of our 230 process-specific 

Bayesian classifiers. Datasets with a greater proportion of shared information were more heavily mixed with 

a uniform prior, resulting in the overall upweighting of particularly unique and informative data. 

Additionally, a global view of the mutual information scores reveals structure in the data. Primarily 

platform-based effects can be observed among the expression datasets we obtained from GEO (Barrett, 

Suzek et al. 2005), most of which use Affymetrix arrays; tissue type, cell type, and array normalization 

algorithms can all cause small amounts of information to be shared between many datasets. For example, 

Robust MultiArray (RMA) normalization causes a noticeable shift in the information shared among HG-

U133A arrays. While the amount of MI between any two datasets is generally low (this figure saturates at 

one bit of shared information), an accumulation of many small overlaps can result in overconfidence during 

Bayesian data integration, accounting for the success of parameter regularization. 
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associations among genes linked to genetic disorders. Our results and functional maps have been 

made available to the community through the interactive HEFalMp tool at 

http://function.princeton.edu/hefalmp. 

Methods 

We integrated 656 genome-scale datasets, comprising ~15,000 microarray conditions and ~15,000 

interaction and sequence-based results, to predict process-specific functional relationship 

networks in 229 biological areas. Data integration was performed using naive Bayesian classifiers, 

with parameters regularized using a mutual information score between datasets. The resulting 

functional relationship networks were analyzed to generate functional maps for genes, processes, 

and diseases within each biological area. Evidence from immunoblotting and fluorescent 

microscopy was used to confirm novel predictions of the involvement of the LAMP2 and 

RAB11A proteins in macroautophagy. 

Briefly, functional mapping relies on the construction of process-specific functional relationship 

networks. These are interaction networks in which each node represents a gene, each edge a 

functional relationship, and an edge between two genes is probabilistically weighted based on 

experimental evidence relating those genes. We integrate evidence from many datasets, with each 

dataset weighted in a process-specific manner. To generate functional maps, these networks are 

mined for functional associations between groups of genes, which might represent individual 

genes, pathways, processes, or diseases. A functional association summarizes the overall strength 

of predicted association between the two groups, and it takes four features into account: 

relationships between genes spanning the two groups, relationships within the groups, each 

group's background strength of relationship to the entire genome, and the baseline probability of 

http://function.princeton.edu/hefalmp
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relationship for all genes. These four features are converted into a p-value by comparing their 

ratio to a randomized null distribution. 

Data preparation 

We collected 635 human microarray datasets from the NCBI Gene Expression Omnibus (GEO) 

repository (Barrett, Suzek et al. 2005) comprising 14,671 conditions. These were processed largely 

as in (Huttenhower and Troyanskaya 2008), with additional manipulation to handle single 

channel data and the ambiguity of human probe mapping. Within each dataset, negative and 

very small (<2) single channel values were removed, genes with missing values in >30% of the 

conditions were removed, and the remaining missing values were imputed using KNNImpute 

(Troyanskaya, Cantor et al. 2001) with k=10. 

Probe IDs were mapped to HGNC symbols using the appropriate GEO platform files. When 

multiple probes mapped to a single HGNC symbol, a consensus set of probes was generated by 

finding pairwise Euclidean distances more likely to have been generated from the dataset's 

distribution of intra-gene probe pairs than from the distribution of inter-gene probe pairs. If this 

consensus set contained at least half of the probes mapping to a gene symbol, the consensus set's 

average value became the expression vector for that gene. 

Within each dataset, a similarity score for each pair of genes was generated by first calculating 

the Pearson correlation  between the vectors. These correlations were normalized using Fisher's 

Z-transform, shifted by the mean, and divided by the dataset standard deviation, yielding a 

collection of pairwise scores with distribution N(0, 1). Finally, these were binned into one of 

seven discrete values in the ranges (-∞, -1.5], (-1.5, -0.5], (-0.5, 0.5], (0.5, 1.5], (1.5, 2.5], (2.5, 3.5], 

(3.5, ∞). 
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Non-microarray pairwise datasets were, for the most part, discretized into two bins: interaction 

and no interaction/no data. In some cases, negative interactions were explicitly recorded by a 

third bin. Pairwise data was generated from sequence information (transcription factor binding 

sites, protein domains, etc.) by calculating either the inner product or the Euclidean distance of 

the occurrence vectors for each gene pair. 

Gold standard construction 

Biological processes of interest were selected from the Gene Ontology (Ashburner, Ball et al. 

2000) by polling a panel of six biologists as described in (Huttenhower and Troyanskaya 2008). Of 

the 433 GO terms selected to be experimentally informative, 229 had at least ten human gene 

annotations, becoming our processes of interest. 

An answer set of known functionally related and unrelated proteins was derived by combining 

these gene sets with information from KEGG (Kanehisa, Araki et al. 2008), HPRD (Mishra, Suresh 

et al. 2006), Pfam (Finn, Mistry et al. 2006), Reactome (Vastrik, D'Eustachio et al. 2007), the 

Pathway Interaction Database (PID) (Schaefer 2006), and the curated GSEA pathways 

(Subramanian, Tamayo et al. 2005), all of which represent manually curated databases of 

functional interactions. A gene pair was considered functionally related if annotated as such in 

any of these databases and unrelated if annotated to two different terms in GO, KEGG, or PID 

(the other databases not providing explicit negatives). Genes pairs annotated to terms 

overlapping with a hypergeometric p-value below 0.05 were excluded from unrelated pair 

generation (i.e. they were neither related nor unrelated for training and evaluation purposes). 

This resulted in a gold standard containing 16,184 genes, 8,692,471 functionally related pairs, and 

45,712,399 unrelated pairs. 
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To train and evaluate process-specific classifiers, this answer set was decomposed into subsets 

related to each biological area of interest. A gene pair was used for training/evaluation in a 

particular biological process if either A) both genes were annotated to the process in GO or B) one 

of the two genes was annotated to the process and the pair was unrelated in the standard (i.e. not 

coannotated to another process). 

Evaluation was performed using a holdout set of 6,129 genes (~25% of the genome). Any gene 

pair including at least one of these genes was withheld from training and used for evaluation of 

precision/recall, with AUCs calculated analytically using the Wilcoxon rank-sum test.  

Data integration 

One naive Bayesian classifier was trained per biological area of interest, using the appropriate 

subset of the gold standard as described above, in addition to one global process-unaware 

classifier trained using the complete gold standard. Each classifier f consisted of a class node 

predicting the binary presence or absence of a functional relationship (FR) between two genes 

and n nodes conditioned on FR, each representing the value of a dataset Dk. 

Parameter regularization was performed as described in (Steck and Jaakkola 2002) using mutual 

information between datasets to estimate a strength of prior belief for each dataset. While a large 

amount of shared information does not guarantee a redundant dataset, since the same subset of 

information could be shared many times, it provides a valuable quantitative estimate of dataset 

uniqueness. For each dataset Dk, we calculated a heuristic sum of shared information Uk relative 

to the dataset's entropy: 
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We then used this value to weight the strength of prior belief in a uniform distribution for the 

dataset, based on the technique in (Steck and Jaakkola 2002). This exponentially decreased the 

weight of a dataset as its shared information increased. Let us notate |Dk| as the number of 

possible observations in dataset Dk (discretization levels). For some gene pair (gi, gj), supporting 

data {d1(gi, gj), d2(gi, gj), ..., dn(gi, gj)}, and an effective document count of two, the probability of a 

FR in function f is thus: 
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When fewer than 25 gene pairs were available for a particular dataset/relationship combination, 

the global probability distribution was used for that condition. Remaining zero counts were 

Laplace smoothed. 

An additional global process-aware FR network was generated by transforming each set of 

process-specific probabilities into z-scores and averaging the results for each gene pair across all 

processes. Specifically: 
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We used the C++ implementations of naive Bayesian learning and inference provided in 

(Huttenhower, Schroeder et al. 2008), relying on the SMILE library and GeNIe modeling 

environment (Druzdzel 1999) from the University of Pittsburgh Decision Systems Library for 

Bayesian network manipulation. 
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Process-specific analysis 

The parameters learned by the naive classifiers in this manner yield a functional activity score 

(FAS) indicating the strength of the contribution of each dataset within each biological process of 

interest. A dataset's FAS is the sum of the change each of its possible values makes in the 

classifier's posterior times the prior probability of observing that value; this yields high scores for 

data that are both frequent and accurate. The score for dataset D within function f was thus 

calculated as: 

Di

fD iDPPiDPFAS || )|FR()FR()(,  

Functional modules 

Novel functional modules (FMs) are defined within the global process-aware FR network using 

an algorithm based on (Charikar 2000). We begin with a minimum initial score σ and a minimum 

final ratio  and fill a set of genes Gk and a set of excluded edges E. We repeatedly selected the 

most related pair of genes not being excluded. To this set, we repeatedly add the gene most 

related on average until this average relationship probability reaches some fraction  of the seed 

pair's original score. If no such gene can be added, the seed pair is marked as excluded; 

otherwise, each edge weight in the resulting set is reduced by the average connection weight, and 

the current Gk is output as a functional module. 

Each FM is generated with two parameters: the input ratio  and a final average edge weight 

score S(Gk).  is akin to a depth within GO. FMs generated at low  are larger, more general, and 

"higher" in the functional hierarchy; FMs generated at high  are smaller, more specific, and 

"lower" in the hierarchy. The score S(Gk) is an estimated confidence in the FM such that a higher 

value indicates a more self-contained, certain module. In pseudocode, the algorithm is: 
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1. Input minimum initial score σ and minimum final ratio  
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5. If Zi,j(FR)<σ, stop 

6. Let Gk={gs1, gs2} 

7. Begin loop 

8.  Let ),(maxarg ki
g

t GgSg
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9.  If S(gt, Gk)/Zs1,s2(FR)< , break 

10.  Gk=Gk∪{gt} 

11. If |Gk|=2 

12.  E=E∪{(gs1, gs2)} 

13.  Go to step 4 

14. Output module Gk with parameters , S(Gk) 

15. For all gi,gj Gk 

16.  Zi,j(FR) = max({Zi,j(FR) - S(Gk), 0}) 

17. Go to step 4 

To generate novel FMs, we ran this algorithm on the global process-aware human FR network 

with σ=0.95 and {0.01, 0.025, 0.05, 0.075, 0.1, 0.2, ..., 0.5}, generating a set of preliminary FMs 

M=M0.01∪M0.025∪...∪M0.5. To remove redundant FMs, we merged by union any pair with Jaccard 
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index at least 0.5, with the newly formed FM occupying the more specific depth. Specifically, for 

all pairs of modules Mi and Mj within module sets Mx and My (  depths x and y): 

1. Until no changes occur 

2.  For all Mx, My M 

3.   For all Mi Mx, Mj My 

4.    If J(Mi, Mj)≥0.5 

5.     Mx=Mx-{Mi} 

6.     My=My-{Mj} 

7.     Mmax(x,y)=Mmax(x,y)∪{Mi∪Mj} 

To form the resulting merged FMs into a DAG similar to the structure of GO, parent/child 

relationships were established only from higher to lower depths when i) an indirect descendant 

relationship did not already exist and ii) the higher FM contained at least 2/3 of the lower FM's 

genes. This generated parent/child relationships p(Mp, Mc): 

1. For x from 0.5 to 0.01 

2.  For y from x to 0.01 

3.   For all Mi Mx and Mj My 

4.    If Mj is not a descendant of Mi and |Mi∩Mj|/|Mj|≥2/3 

5.     p(Mi, Mj)=1 

This process resulted in 17,759 FMs across the nine depth levels, 11,674 parent/child 

relationships, and 10 connected components in the DAG (nine singletons). 
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Functional mapping associations and p-values 

The functional association of two gene sets quantifies the degree of specific overall relationship 

between their constituent genes. This score is made up of four parts. The score between two gene 

sets within a process is the average probability of all edges between them. Their background score 

in a process is the average probability of all edges incident to either set. The baseline score is the 

average probability of an edge in the process-independent network. The score within a single 

gene set is the average edge probability assuming nodes are self-connected with baseline 

strength, and the score within two gene sets is their unweighted average. The between and baseline 

scores are divided by the background and within scores to calculate two gene sets' functional 

association, which is thus increased if they are more interconnected and decreased if they are 

more self-connected. 

This score was designed to mitigate several sources of variation and potential false positives in 

the networks. Known disease genes tend to be well-studied, providing them with more data and 

increasing their overall probability of functional relationship. Sets of genes representing genetic 

disorders can thus be very small and highly connected, which is normalized by the within score 

and its unweighted average. This and the baseline are calculated in the process-independent 

network, which also has lower variability than the process-specific networks. Normalizing by the 

baseline guarantees an expected value of one, and assuming self-connections with baseline weight 

allows the functional association score to extend seamlessly to arbitrarily small sets. 

Thus, within any functional relationship network f, two gene sets G1 and G2 were assigned a 

functional association score as follows. For f0 the global process-independent network and n 

genes in the genome, let: 
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All averages are Winsorized by 10% of their length to mitigate outliers; Winsorization is a 

standard robust averaging process in which the n largest and smallest values are replaced by 

copies of the n-1st largest and n-1st smallest value, respectively. This defines the functional 

association between two gene sets as: 
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This score was converted into a p-value by interpolating over a bootstrapped null distribution. 

For each combination of sizes 1, 2, 5, 10, 15, 20, 25, 50, 100, and 500, pairs of sets were generated 

randomly 62,500 times within each process and the resulting functional association score 

calculated. The distributions of these scores were approximately normal, and the standard 

deviations were asymptotic in the sizes of the two gene sets. Fitting these empirical curves with a 

ratio of linear polynomials allowed real-time computation of an approximate standard deviation 
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for any pair of gene set sizes, which then allowed the conversion of functional association scores 

into p-values using a normal distribution function. 

Web-based interface 

HEFalMp was implemented in two parts, combining a web-based front end using Ruby on Rails 

(37signals, Chicago, IL) with a C++ back-end for rapid data processing using the Sleipnir library 

(Huttenhower, Schroeder et al. 2008). For details, see http://function.princeton.edu/hefalmp. 

Experimental validation 

Human dermal fibroblasts were cultured in subconfluent conditions in fibroblast basal medium 

supplemented with FBS, insulin, and fibroblast growth factor (Lonza Group Ltd., Switzerland). 

Cells received fresh media every two days. 

For siRNA transfection, 1.2x105 fibroblasts were transiently transfected with 100nM duplex 

siRNA designed by the Rosetta algorithm (Sigma, St. Louis, MO) against control targets (ATG5 or 

luciferase) or experimental targets (RAB11A, LAMP2, VAMP7) using Oligofectamine transfection 

reagent (Invitrogen, Carlsbad, CA). On the day of experimentation, cells were either supplied 

with fresh media (not starved), or starved for amino acids for 4 hours in Kreb's Ringer 

Bicarbonate (KRB) solution (Sigma) at 37C. 

Western blots were performed using cell lysates collected on ice by scraping each plate into RIPA 

buffer (50mM Tris-Cl pH 7.4, 150mM NaCl, 1% Triton X-100, 1% sodium deoxycholate and 0.1% 

SDS) supplemented with a protease inhibitor cocktail tablet consisting of chymotrypsin 

(1.5μg/mL), thermolysin (0.8μg/mL), papain (1mg/mL), pronase (1.5μg/mL), pancreatic extract 

(1.5μg/mL), and trypsin (0.002μg/mL) (Roche Diagnostics, Indianapolis, IN) at either 48 hours 

(RAB11A) or 72 hours (LAMP2 and VAMP7) post-transfection. Freeze-thawing of lysates was 

http://function.princeton.edu/hefalmp
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avoided whenever possible, and freshly denatured samples were run on appropriate percentage 

SDS-PAGE gels and transferred onto PVDF membranes (Perkin Elmer, Boston, MA) using 

BioRad electrophoresis equipment (BioRad, Hercules, CA). Antibodies for Western blot analysis 

were used at the following concentrations in PBS plus BSA: rabbit anti-LC3 at 2μg/mL (Novus 

Biologicals, Littleton, CO), rabbit anti-RAB11A at 1mg/mL (Sigma), rabbit anti-LAMP2 at 

1mg/mL (Sigma), rabbit anti-VAMP7 at 1μg/mL (Abcam Inc., Cambridge, MA). 

A GFP-LC3 fusion was used as a fluorescent marker for autopaghy. We generated fibroblasts 

stably expressing a GFP-LC3 fusion protein by infecting subconfluent fibroblasts with a retroviral 

construct encoding GFP and the rat LC3 sequence (C. Thompson, University of Pennsylvania). 

GFP-LC3 fibroblasts transfected with siRNA against control or experimental targets were 

cultured in uncoated glass bottom culture dishes (MatTek Corp., Ashland, MA) and visualized 

either 48 hours (RAB11A) or 72 hours (LAMP2 and VAMP7) post-transfection. Transfected GFP-

LC3 fibroblasts were imaged using a Zeiss LSM510 confocal microscope. 

MOIRAE: Evolutionary Conservation at a Systems Level 

The field of comparative genomics has expanded tremendously as the complete genome 

sequences of many organisms - both closely and distantly related - have become available. 

Comparative genomics, or the study of gene sequences, functions, and interactions as they vary 

across multiple organisms (Hardison 2003), provides insights not easily obtainable from other 

fields or experimental results; these can range from the mechanisms of molecular evolution 

(Dujon, Sherman et al. 2004; Durand and Hoberman 2006) to fundamental catalogs of gene 

composition and utilization (Boffelli, McAuliffe et al. 2003; Cliften, Sudarsanam et al. 2003) to 



317 

 

complex maps of regulatory networks as they change over millennia (Kellis, Patterson et al. 2003; 

Xie, Lu et al. 2005). In a case of scientific coevolution, the field of functional genomics (Ivakhno 

2007) has developed in tandem and by utilizing much of the same data. Functional genomics 

seeks to define the biological roles played by individual genes (Fleischmann, Moller et al. 1999; 

Ashburner, Ball et al. 2000; Rost, Liu et al. 2003), groups of proteins in pathways or complexes 

(Kundaje, Lianoglou et al. 2007; Markowetz and Spang 2007), and, at a systems level, the ways in 

which functional modules within the cell are organized and coordinated (Hood, Heath et al. 2004; 

Sauer, Heinemann et al. 2007). The intersection of these two research areas has already led to 

breakthroughs ranging from the clinical (Lee, Chu et al. 2004) to the theoretical (Flannick, Novak 

et al. 2006). 

By leveraging results from both fields, comparative functional genomics has the potential to 

realize one of the major goals of systems biology: a delineation of the high-level functional 

modules common to all organisms, their regulatory interplay, and the reasons and mechanisms 

underlying their organization. Functional genomics has advanced a variety of algorithms for 

inferring functional networks from genomic data (Lee, Date et al. 2004; Myers, Robson et al. 2005; 

Franke, van Bakel et al. 2006), and comparative genomics has likewise proposed multiple ways to 

align biological networks in a principled manner (Stuart, Segal et al. 2003; Sharan, Suthram et al. 

2005; Sharan and Ideker 2006). Building on these principles, we have integrated experimental 

data from seven model organisms spanning over 1.6 billion years of evolution (Hedges, Blair et 

al. 2004) and four taxonomic kingdoms: H. sapiens, M. musculus, D. melanogaster, C. elegans, S. 

cerevisiae, A. thaliana, and P. falciparum. This represents information from over 1,700 datasets 

comprising approximately 25,000 publications and over 50,000 experimental conditions. From 
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these data, we infer and align functional networks, within which we observe the behavior and 

evolution of biological pathways and processes among these diverse organisms. 

Specifically, we predict functional relationship networks for these seven organisms using 

probabilistic, context-specific Bayesian data integration (Myers and Troyanskaya 2007; Guan, 

Myers et al. 2008; Huttenhower, Haley et al. 2009) in 433 biological contexts. For each organism, 

we provide biological networks in which each edge represents a predicted functional interaction 

between two proteins, where functional interactions may entail any relationship by which two 

proteins carry out the same cellular tasks (Troyanskaya, Dolinski et al. 2003). Moreover, context-

specificity results in multiple predicted networks per organism, each describing the functional 

interactions occurring within a specific biological process; for example, the yeast protein Cdc7p 

interacts specifically with Mer2p in the context of the meiotic cell cycle (Sasanuma, Hirota et al. 

2008; Wan, Niu et al. 2008) and with Mcm2p during the mitotic cell cycle (Hardy, Dryga et al. 

1997; Lei, Kawasaki et al. 1997), whereas it interacts with Dbf4p in both contexts (Toone, Aerne et 

al. 1997; Lo, Wan et al. 2008). These networks are then aligned using protein orthology mappings 

from the Homologene, InParanoid (Remm, Storm et al. 2001), and OrthoMCL (Li, Stoeckert et al. 

2003) databases. The resulting aligned biological networks are made available online through the 

MOIRAE system (Multi-organism Orthologous Integrated Resolution and Alignment of 

Experiments) and represent a rich resource for biologists wishing to investigate genes of interest 

in specific model organisms and as conserved across evolution. 
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Next Steps: Conclusions and Future Work 

In summary, modern biology is an area in which computation, machine learning, and data 

mining have become invaluable, and the successful integration of computer science with biology 

continues to enrich both fields. Not only does such interdisciplinary research push the bounds of 

computer science, it is vital for our understanding of molecular biology and of the mechanisms of 

human disease. As large collections of genomic data are made publicly available by 

experimentalists worldwide, the principled application of computational techniques to this vast 

amount of information has the potential to rapidly expand our knowledge of molecular and 

systems biology. 

Here, we have described four major areas in which principled analyses of large genomic data 

collections have been particularly effective: the guidance of laboratory experiments by 

computational predictions (and vice versa), the development of algorithmic and software tools to 

address specific biological questions, tractably capturing biological systems using directed 

statistical models, and systems-level functional prediction and mapping by very large scale data 

integration. The successes of each of these areas are interrelated; our ability to discover new 

mitochondrial proteins in yeast relies on accurate statistical models of experimental data, our 

ability to manipulate very large data collections requires efficient software development, and so 

on. As David Botstein (Director of the Lewis-Sigler Institute for Integrative Genomics at 

Princeton University) has stated, "Any budding researcher needs a foundation in several fields to 

be able to work on the most important problems confronting scientists today," and this statement 

is as true of seasoned researchers - and seasoned research - as it is of undergraduate trainees. The 

best computational biology is also the best computation and the best biology. 
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Despite the tremendous growth in computational biology in the past decade, however, biology as 

a whole remains unsolved. The treatment of human disease, the production of optimal medicinal 

and food crops, and the maintenance of ecological stability are all still open problems, and each 

has countless facets addressable by future bioinformatic work. We anticipate three specific 

biological areas in which this research in understanding large scale experimental data will be 

particularly useful, as well as several broader concerns of the field that must be addressed in the 

near future. Plant genomics is currently poised to generate tremendous quantities of data and 

new biology, as driven by the basic science of microRNAs and alternative splicing and by the 

practical considerations of crop development and biofuels. Similarly, metagenomics is rapidly 

generating new types of data aimed at understanding microbial communities, pathogenic and 

symbiotic relationships in crops, and human microflora as they relate to nutrition, aging, and 

disease. Finally, with increased data of any type comes an increased ability to distinguish signal 

from noise, leading to the possibility of making more detailed and context-specific predictions 

than have previously been possible. 

Complex and Underrepresented Organisms: Applications to Plant 

Genomics 

At present, some 3,500 microorganisms have been sequenced, in addition to roughly 100 animals; 

fewer than five plants have been fully sequenced, although dozens more are currently in progress 

(Benson, Karsch-Mizrachi et al. 2008; Cochrane, Akhtar et al. 2008). This represents a tremendous 

opportunity for functional genomics, since the availability of plant genome sequences will 

immediately allow high-throughput data collection (e.g. microarrays), data integration, 
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comparative genomics, and a host of other analyses in a eukaryotic kingdom of great commercial 

and scientific importance. Not only would a greater understanding of plant genomics offer 

immediate benefits to an agricultural industry struggling to feed a global population, but basic 

science, pharmaceutical development, and, increasingly, bioenergy production all stand to gain 

immeasurably from an increased focus on plant sequencing and analysis. 

The mustard weed Arabidopsis thaliana has long been the plant model organism of choice, due to 

its rapid and relatively simple cultivation in the laboratory, genetic tractability, and small 

genome size (Meinke, Cherry et al. 1998). It was the first plant to be fully sequenced (Arabidopsis 

Genome Initiative 2000), and in the subsequent eight years since its genome became available, a 

vibrant computational and biological community has arisen around it (Duvick, Fu et al. 2008; 

Swarbreck, Wilks et al. 2008). Nevertheless, a variety of practical issues have made it difficult to 

computationally analyze Arabidopsis, notably a lack of data integration and systematization 

(Bevan and Walsh 2005), and bioinformatic analysis has lagged as a result; for example, the 

journal Bioinformatics has to date published twice as many articles on the complex eukaryote 

Drosophila melanogaster and almost three times as many on S. cerevisiae than it has on Arabidopsis. 

Perhaps even more surprising is the dearth of crop plant resources; the rice genome has been 

available for several years (Goff, Ricke et al. 2002; Yu, Hu et al. 2002), and the currently 

progressing tomato, soy, wheat, potato, and corn genomes are garnering increasing attention, but 

there a remarkable scarcity of genomic and computational resources are devoted to these 

incredibly important organisms. Unfortunately, several major causes of this delay arise from 

exactly the features that make these domesticated plants so important: historical selection by 

humans has rendered even ancestrally related genomes relatively incomparable, and not only are 

plants complex, multi-tissue, developmentally staged eukaryotes, their genomes are often more 
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repetitive and difficult to sequence than even those of mice or humans (Burke, Burger et al. 2007). 

These issues are in turn somewhat dwarfed by the societal hurdles to be overcome by crop plant 

research and the stigma of genetically modified organisms (Cockburn 2002). 

The practical benefits of increased computational and integrative analysis of genomic plant data 

are obvious: in a world spending billions of dollars on biofuel development and struggling to 

feed billions of people, every advance in our understanding of the food we eat and the 

foundation of our agricultural economy is invaluable. The ways in which a focus on plant 

informatics will benefit basic science are less sweepingly dramatic but equally critical. Due in 

part to tens of thousands of years of human cultivation, successful Quantitative Trait Locus 

(QTL) mapping has flourished in plants (Abiola, Angel et al. 2003; Ashikari, Sakakibara et al. 

2005; Salvi and Tuberosa 2005), allowing us to discover the genetic bases of desirable agricultural 

traits. microRNAs are currently believed to have a somewhat different, more easily detectable 

architecture in plants, leading to a recent burst of insightful research (Carrington and Ambros 

2003; Mallory and Vaucheret 2006; Zhang, Pan et al. 2006). Because of its prevalence in plants, 

alternative splicing is being actively studied in Arabidopsis (Iida, Seki et al. 2004; Wang and 

Brendel 2006), and due to the impact of parasitic infections on crops, plants are rapidly becoming 

a platform for studying host-pathogen interactions at a molecular level (Simpson, Reinach et al. 

2000; Bhattacharyya, Stilwagen et al. 2002; Lee, Park et al. 2005). 

Our specific interests in this area begin with straightforward extensions of our previous and 

current work in other eukaryotes. As detailed in (Committee on the National Plant Genome 

Initiative 2008), there is still a need to establish the basic functions, interactions, and regulatory 

programs for most plant (i.e. Arabidopsis) genes; the abundance and richness of genomic data for 

Arabidopsis makes this a prime target for heterogeneous genomic data integration. Moreover, 
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with the advances discussed here regarding pathway and process understanding from large data 

collections, this represents an immediate opportunity to discover the molecular bases of novel 

plant-specific biology. Our own early results and recent work by others (Gunner 2008) already 

indicate that photosynthetic processes are particularly amenable to bioinformatic 

characterization, and with the near-availability of the tomato genome, the development of 

fruiting bodies will be an ideal subject for context- and tissue-specific analysis (Alba, Payton et al. 

2005; Fei, Tang et al. 2006). We are particularly interested in studying the regulatory networks 

underlying these processes, based on our expertise in transcriptional and posttranslational 

regulatory modeling. Likewise, the incipient release of multiple extremely diverse fruiting plant 

genomes (orange, melon, berry, grape, etc.) raises the possibility of rapidly gaining an in-depth 

understanding of gene and protein function in these organisms by means of comparative 

functional genomics. 

Metagenomics and Microflora 

As mentioned above, the complete genome sequences of thousands of single celled organisms are 

currently available. The impetus for sequencing so many microorganisms has been, in part, the 

emerging fields of metagenomics (Raes, Foerstner et al. 2007; Warnecke and Hugenholtz 2007) 

and, specifically, the study of human microflora (Backhed, Ley et al. 2005; Ley, Lozupone et al. 

2008; Moya, Pereto et al. 2008; Ruby 2008). The relationships between microflora and their hosts 

(human, plant, or otherwise) are still poorly understood, and advancing the basic science in this 

area will eventually be of both agricultural and clinical significance. Again, this is an area where 

other aspects of large scale data manipulation will play an important part, since data integration 
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across hundreds of species is certainly more challenging than integration within a single 

organism. 

Current work in these areas has proceeded along three main avenues. The first, championed by 

the J. Craig Venter Institute, has focused on canonical metagenomics through environmental 

sampling, e.g. with the Global Ocean Sampling expedition (Rusch, Halpern et al. 2007; Yooseph, 

Sutton et al. 2007). Progress in this area has focused mainly on high-level phylogenetics: 

characterization of families of organisms, population distributions, protein domains and families, 

statistics of base pair and codon usage, and so forth. From a purely experimental point of view, 

this has spurred tremendous advances in high-throughput sequencing technology (Venter, 

Remington et al. 2004), and this has in turn made available a large body of data with strikingly 

novel characteristics and structure (Seshadri, Kravitz et al. 2007). However, this data has yet to be 

thoroughly investigated from a functional perspective, and it is likely to provide invaluable 

insights into microbial community interaction, photosynthetic and metabolic diversity, and, as a 

greater variety of environmental samples becomes available, the relationships between ecological 

niches and molecular systems (Whitham, Difazio et al. 2008). 

The second area in which metagenomics is playing an increasing role is the microflora 

communities of commercial and model organisms, particularly crop plants as mentioned above. 

Not only do parasitic interactions (both micro- and macroscopic) destroy billions of dollars of 

crops annually (Granett, Walker et al. 2001; Lee, Park et al. 2005), but even healthy plants live 

with a remarkable diversity of soil microbes that we are only beginning to understand at a 

molecular level (Wardle, Bardgett et al. 2004; Johnson, Ijdo et al. 2005; van der Heijden, Bardgett 

et al. 2008). Fungal plant symbiotes have been recognized for over a century (Bonfante 2003; 

Finlay 2008), and we have barely begun to collect and analyze genomic data on mycorrhizal 
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systems (Martin, Aerts et al. 2008; Pain and Hertz-Fowler 2008). Bacterial interactors are equally 

important (Stougaard 2001; Puhler, Arlat et al. 2004) (and have, albeit in less beneficial forms, 

made the genetic manipulation of plants possible in the first place (Joos, Timmerman et al. 1983)), 

and again, we have only recently begun to develop molecular and genomic perspectives on these 

communities. When extended to consider fungal and bacterial organisms that actively degrade 

biomass (Antoni, Zverlov et al. 2007; van Zyl, Lynd et al. 2007), these studies also have immediate 

applications in bioethanol production. 

Finally, human microflora are themselves a great priority due to their as-yet-unknown roles in 

disease, obesity, aging, individual variation, and basic human health (Nicholson, Holmes et al. 

2005; Dethlefsen, McFall-Ngai et al. 2007). Interestingly, there are many similarities between the 

metagenomic studies of human and environmental microflora, since it is becoming increasingly 

apparent that there may be remarkable variation in composition and function of these 

microorganisms between hosts and between microenvironments within a host (e.g. mouth, skin, 

stomach, and gut in humans) (Dethlefsen, McFall-Ngai et al. 2007). This is an area in which 

functional genomics is particularly critical, since identifying the cellular roles of proteins in 

symbiotic organisms reflects directly on the impact they have on host phenotypes. This has, for 

example, been the source of several recent advances in the understanding of human 

parasitization by the malaria agent P. falciparum (Sakata and Winzeler 2007; Birkholtz, van 

Brummelen et al. 2008), and similar discoveries in the realm of symbiotic microflora could drive 

fundamental personalized medicine and nutrition. 

In addition to identifying new symbiote proteins and protein functions, an immediate application 

of large-scale genomic data integration to this area lies in identifying cross-species regulatory and 

functional interactions. There have to date been relatively few genome-scale efforts to identify 
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host-pathogen regulatory networks (Musser and DeLeo 2005; Tailleux, Waddell et al. 2008), and 

it is vital to our understanding of the human and crop plant microbiomes that we extend these 

studies to symbiotic organisms as well. In human beings, as metabolic profiling becomes more 

widespread (Jernberg, Sullivan et al. 2005; Dumas, Barton et al. 2006; Assfalg, Bertini et al. 2008), 

this will also provide a key new type of data to be functionally integrated, representing a high-

throughput experimental link between the unicellular and organismal worlds. Finally, 

complementing the many ways in which these advances can contribute to basic science, it is 

necessary to continue both computational and biological outreach programs in order to increase 

public understanding of the potential agricultural and clinical benefits of modern biotechnology. 

Drilling Down: Predicting and Analyzing Specific Biological Pathways 

As described above, both our work and that of others has provided a variety of ways to construct 

networks of protein functional relationships (Troyanskaya, Dolinski et al. 2003; Karaoz, Murali et 

al. 2004; Lee, Date et al. 2004; Myers, Robson et al. 2005; Huttenhower and Troyanskaya 2008). A 

"functional relationship" represents a very general prediction regarding proteins that may 

actually be directly binding, regulating, or colocalizing with each other in the cell. Biology, of 

course, deals not just with whether proteins are related, but how: whether they interact 

physically, if so at what residue, whether they are coregulated, if so by what factor, and what 

purposes these relationships serve in the greater context of cellular function. By simultaneously 

considering thousands of experimental results, it becomes possible to make specific predictions of 

protein-protein relationship types and to assemble them into discrete, biologically detailed 

pathways (Markowetz and Spang 2007; Markowetz and Troyanskaya 2007). This problem of 

pathway prediction consists of assigning directionality and biological specificity to previously 
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predicted (or known) functional relationships; it is, of course, much more computationally 

challenging, but when successful can be equally more biologically revealing. 

Previous efforts at pathway prediction have often relied upon structural learning of graphical 

models (Friedman 2004; Schafer and Strimmer 2005; Werhli, Grzegorczyk et al. 2006). This is 

roughly akin to predicting which genes or proteins exert regulatory influences on other specific 

proteins, either transcriptionally, post-translationally, or indirectly. These methods tend to be 

computationally expensive, require large amounts of low-noise data, and offer a level of 

specificity not far beyond that of general functional relationships - but they are extremely 

statistically robust and, under the right circumstances, can produce high-quality results (Sachs, 

Perez et al. 2005). Similarly focused efforts have been made for transcriptional regulation 

networks (Segal, Shapira et al. 2003; Basso, Margolin et al. 2005; Markowetz, Bloch et al. 2005) 

and for predicting protein-protein interactions (Ben-Hur and Noble 2005; Shen, Zhang et al. 2007; 

Burger and van Nimwegen 2008) by a variety of methods, mainly kernel methods and, again, 

graphical models. Like (Sachs, Perez et al. 2005), these methods tend to focus on a single type of 

biological interaction derived from a single genomic dataset. Expanding upon these efforts to 

predict rich, structured models of biomolecular interactions from large, heterogeneous genomic 

data collections is a clear opportunity for data integration techniques. 

An orthogonal way in which biological detail can be added to existing models lies in the concept 

of context specificity (Huttenhower, Hibbs et al. 2006; Myers and Troyanskaya 2007); biology has 

always known that the same protein may play different roles in different cells or at different 

times, and it is critical that computational approaches take this into account. In single-celled 

organisms such as yeast, context often differs only from pathway to pathway, whereas context in 

metazoan systems can include tissue and cell type, developmental stage, and long-term temporal 
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changes (e.g. cell cycle phases or the entry and exit from quiescence). Explicitly modeling these 

tissue and temporal contexts computationally will vastly expand our ability to make specific, 

molecular-level predictions and our ability to understand systems-level regulatory processes 

(and thus misregulation in disease). 

To date, most approaches to biological context specificity have used one of two brute-force 

techniques: development of entire systems focused solely on one context (Li and Zhan 2006; 

Becker and Palsson 2008), or simple replication of some entire system with minimally 

differentiated parameters for each context (Huttenhower, Hibbs et al. 2006; Myers and 

Troyanskaya 2007). Many methods take experimental context specificity into account (Liu, 

Sivaganesan et al. 2006; Hibbs, Hess et al. 2007), which can act as a partial proxy for certain types 

of biological contexts (e.g. the aggregate of processes perturbed by some experimental condition), 

and yet more studies have delineated context by simple separation of cell or tissue type (Yu, Lin 

et al. 2006; Huang, Lin et al. 2007; Shlomi, Cabili et al. 2008) or by phases of temporal processes 

(Spellman, Sherlock et al. 1998; Tu, Kudlicki et al. 2005; Pramila, Wu et al. 2006). A few recent 

works (Rachlin, Cohen et al. 2006; Huttenhower and Troyanskaya 2008) have begun to take 

advantage of the fact that, while these various contexts are distinct, they are not unrelated; the 

processes of data integration, machine learning, and data visualization and exploration can all 

take advantage of context specificity in a broader way to offer a more complete picture of real 

biology. 

In both cases - lack of interaction specificity and lack of context specificity - large scale integrative 

analyses can offer solutions. For the former, work on hierarchical classification such as 

(Barutcuoglu, Schapire et al. 2006) has demonstrated methods for reliably making the "most 

specific" prediction possible given an ontology (i.e. hierarchy) of more or less specific 
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possibilities. In combination with an ontology of protein interaction types (Hermjakob, 

Montecchi-Palazzi et al. 2004; Kushida, Takagi et al. 2006) and a sufficient body of genomic data, 

this may allow the inference of very specific biological interaction networks with standard 

machine learning techniques. Principled modeling of biological context (i.e. tissue and temporal 

specificity) is likely to prove more challenging, as it raises many of the same issues as does 

semantic understanding in language processing: in natural language, a word can appear 

lexicographically and semantically identical, yet have completely different meanings in different 

usages. A protein can "mean" the same thing in every context, in some contexts, operate very 

differently in different contexts, or any combination thereof, and this variation can itself vary 

among the thousands of proteins in a genome. This raises the interesting possibility of modeling 

protein and interaction "synonyms" (Fellbaum 1998) and inferring relationship networks among 

these rather than the underlying multifunctional proteins themselves. 

Opportunities Abound 

A final, broader concern that grows out of the expansion of biological data collections is the 

organization and integration of the research community itself. The physics community has dealt 

with massive data collections for decades and evolved successful solutions revolving around 

distributed computing, centralized storage, approximations, and just plain discarding data when 

necessary (Doctorow 2008). In biology, a number of difficult practical questions have arisen as 

intra- and inter-species data integration has become of increasing interest: how can biological 

data be shared securely and effectively, how can meta-information describe experimental 

systems, how can biological entities (genes, transcripts, proteins, etc.) be identified systematically, 

and how can biological knowledge be encoded so as to be both human- and machine-readable? 
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These questions represent important computational challenges in large scale database and 

ontology design that have not yet been fully overcome - particularly in human beings, where 

competing standards, multiple transcripts, incomplete knowledge, and clinical considerations 

combine to present huge practical and scientific hurdles. The organization and distribution of 

experimental results, computational predictions, and biological tools through publicly available 

databases must be improved in order to aid the progress of biologists and bioinformaticians 

alike. 

Here, we have discussed four areas in which our research in computational biology has 

specifically impacted the field, and each of these in turn has its own potential to benefit future 

studies. Our development of a method closely integrating computational predictions of gene 

function with confirmatory laboratory experiments allowed us to triple the number of S. cerevisiae 

genes known to operate in mitochondrial inheritance (from 106 to 340) in less than one person 

year. Beyond the implications for yeast mitochondrial biology and their applications in 

understanding human mitochondrial disease, similar advances could be realized in any organism 

or biological area. By designing computational systems to be explicitly aware of biological prior 

knowledge and the experimental regime in which they will be applied, and by choosing that 

experimental regime to be appropriate to the computational system, both algorithmic and 

laboratory efforts are made more efficient and accurate. 

Likewise, software development for specific biological purposes requires not only a 

comprehensive understanding of efficient algorithms but also of relevant biology. The tools 

discussed here, such as the Sleipnir library for computational functional genomics, advance 

computer science through their use of large scale data management and machine learning, but 

they also advance biology by providing a way to inspect and interpret experimental results. 
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Nearest Neighbor Networks clustering and the Graphle interface to biological networks provide 

novel interfaces to gene expression beyond basic coexpression, and COALESCE integrates an 

array of genomic data in order to reconstruct underlying regulatory networks. Like a microscope 

or centrifuge, bioinformatic algorithms represent tools for examining life in new ways and for 

allowing us to make observations that would otherwise remain inaccessible - and like these 

instruments, they must be carefully engineered, understood, and employed. 

Statistical models of biological phenomena serve a dual purpose. From a descriptive perspective, 

they summarize potentially noisy, high-dimensional data along a few axes of interest, potentially 

revealing new avenues of interpretation in the process. By discovering genes responding 

consistently to growth rate based on a collection of microarray data, we provide a catalog of 

growth-regulated genes in yeast; by capturing the vital statistics of the yeast phosphoproteome, 

we open a window on the role of phosphorylation in all organisms. From a predictive 

perspective, however, these models allow us to generate new, concrete hypotheses that can be 

tested in the laboratory - they actively encourage their own proof or disproof. As with our study 

of yeast mitochondria, each model represents an opportunity to more quickly, easily, and 

accurately confirm our understanding of biology through directed experimentation. 

Finally, genomic data integration is both the underlying theme of all of these results as well as a 

research problem in its own right. Science as a whole is a process of data integration, of realizing 

that the falling apple and the orbiting moon have something in common; biology just tends to be 

smaller, messier, and harder to understand. Systems such as MEFIT or HEFalMp represent only 

the first steps towards mapping the tremendous amount of data that is currently available, let 

alone the exponentially more complex discoveries to be made in the next years and decades. 

Computation represents only one tool in organizing these data, and machine learning only one 
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means of suggesting the next steps forward. For the first time, however, modern biotechnological 

techniques provide a means to observe the molecular mechanisms that allow us to develop from 

single cells to human beings, and the interpretation of these observations is the fundamental 

responsibility of computational biology. 
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Appendix A: Supplemental Information 

S. cerevisiae S. bayanus S. pombe S. cerevisiae S. bayanus S. pombe 

YEL040W YEL040W SPBC21B10.07 YGR032W YGR032W SPCC1840.02C, 

SPAC19B12.03, 

SPAC24C9.07C, 

SPBC19G7.05C 

YOL014W YOL014W  YGR236C YGR236C  

YGL076C  SPAC664.06, 

SPAC3H5.07, 

SPBC18H10.12C 

YJL161W YJL161W  

YML056C YML056C SPBC2F12.14C YMR196W YMR196W  

YOL039W YOL039W SPAC1071.08, 

SPBC23G7.15C, 

SPBP8B7.06 

YDR070C YDR070C  

YOL120C YOL120C SPAPB17E12.13, 

SPBC11C11.07 

YMR174C YMR174C  

YDL081C  SPCP1E11.09C, 

SPBC3B9.13C, 

SPAC644.15 

YPL280W  SPCC757.03C, 

SPBC947.09, 

SPAC5H10.02C, 

SPAC1F7.06, 

SPAC11D3.13 

YOR167C YOR167C SPCC285.15C, 

SPAC25G10.06 

YDL085W YDL085W SPBC947.15C, 

SPAC3A11.07 

YNL301C  SPAPB17E12.13, 

SPBC11C11.07 

YMR322C  SPCC757.03C, 

SPBC947.09, 

SPAC5H10.02C, 

SPAC1F7.06, 

SPAC11D3.13 

YDL130W YDL130W SPCP1E11.09C, 

SPBC3B9.13C, 

SPAC644.15 

YGL156W YGL156W SPAC513.05 

YLR406C YLR406C SPAC890.08 YLL026W  SPBC16D10.08C 

YDL014W YDL014W SPBC2D10.10C YNL093W YNL093W SPAC6F6.15 

YBR085W  SPBC530.10C YBR169C YBR169C SPAC110.04C 

YMR242C YMR242C SPAC26A3.04, 

SPAC3A12.10 

YCR021C YCR021C SPCC31H12.02C 

YEL026W YEL026W SPAC607.03C Q0130  SPMIT.10 

YBR291C YBR291C SPAC19G12.05 YIL136W YIL136W  

YBL087C YBL087C SPCC1322.11, 

SPAC3G9.03 

YGR256W YGR256W SPBC660.16 

YGL031C  SPAC22E12.13C, 

SPCC330.14C, 

SPAC6G9.09C 

YOL052C-A   
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YHR128W YHR128W SPAC1B3.01C, 

SPAC1399.04C, 

SPAC1002.17C 

YML128C YML128C SPAC23C4.05C, 

SPBC365.12C 

YLR112W   YDR171W YDR171W SPCC338.06C, 

SPBC3E7.02C 

YLR149C  SPCC4G3.03 YOR173W YOR173W SPBP4H10.20 

YJL144W YJL144W  YBL049W YBL049W SPAPJ691.02 

YNL237W YNL237W SPBC3B8.06 YLR312C YLR312C  

YLL067C   YPL186C YPL186C  

YGR070W YGR070W SPAC1006.06, 

SPCC645.07 

YJL116C YJL116C SPBC2G2.17C, 

SPAC1002.13C 

YHR138C YHR138C  YGL121C YGL121C  

YJR008W YJR008W SPAC4H3.04C YGR043C YGR043C SPCC1020.06C 

YGR142W YGR142W  YLR327C YLR327C  

YDR379C-A YDR379C-A SPAC664.12C YBL048W   

YDR258C YDR258C SPBC4F6.17C YIL160C YIL160C  

YOR338W YOR338W SPCC1682.13, 

SPAC14C4.12C 

YBR116C   

YLR178C   YBR072W YBR072W SPCC338.06C, 

SPBC3E7.02C 

YDL169C YDL169C  YHR096C YHR096C SPCC548.06C, 

SPBC1348.14C, 

SPCC1235.13, 

SPCC1235.14, 

SPBC1683.08, 

SPAC1F8.01, 

SPBC4B4.08, 

SPCC548.07C 

YKR046C YKR046C     

Supplemental Table 1: S. cerevisiae calibration genes used for growth rate prediction in this study with S. 

bayanus and S. pombe orthologs. S. cerevisiae calibration genes were defined to have a bootstrapped p-value 

of growth rate response and linear fit less than 10-5. S. bayanus orthologs were drawn from (Kellis, Patterson 

et al. 2003) and S. pombe orthologs from (Penkett, Morris et al. 2006). 

 

  



357 

 

Mutant Rate Mutant Rate Mutant Rate Mutant Rate 

ade1 0.256 hda1 0.248 sbh2 0.255 yhl013c 0.250 

ade16 0.256 hdf1 0.253 sbp1 0.244 yhl029c 0.248 

ade2 haploid 0.246 hes1 haploid 0.254 scs7 0.254 yhl042w 0.253 

aep2 0.238 hir2 0.255 sgs1 0.248 yhl045w 0.252 

afg3 haploid 0.239 his1 0.253 sgt2 0.245 yhr011w 0.241 

ald5 0.256 hmg1 haploid 0.259 she4 0.236 yhr022c 0.251 

anp1 0.245 hog1 haploid 0.256 sin3 0.248 yhr031c 0.247 

aqy2a 0.257 hpa3 0.249 sir1 0.255 yhr034c 0.251 

aqy2b 0.256 hpt1 0.254 sir2 0.252 yhr039c 0.251 

ard1 0.248 hst3 0.239 sir3 0.254 yil037c haploid 0.246 

are1/are2 

haploid 

0.252 imp2 0.246 sir4 0.268 yil117c haploid 0.252 

arg5/6 0.255 imp2 0.253 sod1 haploid 0.254 yjl107c haploid 0.262 

arg80 0.254 isw1 0.251 spf1 0.247 yml003w 0.255 

ase1 0.254 isw1/isw2 0.251 ssn6 haploid 0.216 yml005w 0.255 

ate1 0.257 isw2 0.256 sst2 haploid 0.243 yml011c 0.254 

bim1 0.237 jnm1 0.252 stb4 0.255 yml018c 0.255 

bni1 haploid 0.247 kim4 0.240 ste11 haploid 0.256 yml033w 0.254 

bub1 haploid 0.244 kin3 0.250 ste12 haploid 0.252 yml034w 0.255 

bub2 0.257 kre1 0.255 ste18 haploid 0.257 ymr009w 0.255 

bub3 0.244 kss1 haploid 0.253 ste2 haploid 0.255 ymr010w 0.254 

bub3 haploid 0.244 mac1 0.255 ste20 0.259 ymr014w 0.256 

bul1 0.250 mad2 0.254 ste24 haploid 0.255 ymr025w 0.253 

cat8 0.251 mak10 0.251 ste4 haploid 0.250 ymr029c 0.252 

cbp2 0.252 mbp1 0.256 ste5 haploid 0.254 ymr030w 0.256 

cem1 0.244 med2 haploid 0.248 ste7 haploid 0.253 ymr031c 0.255 

cin5 0.254 mnn1 0.254 swi4 0.241 ymr031w-a 0.251 

cka2 0.237 mrpl33 0.249 swi5 0.251 ymr034c 0.253 

ckb2 0.245 mrt4 0.245 swi6 haploid 0.244 ymr040w 0.254 

cla4 haploid 0.252 msu1 0.241 tec1 haploid 0.251 ymr041c 0.257 

clb2 0.250 npr2 0.257 tom6 0.252 ymr044w 0.253 

clb6 0.255 nrf1 0.257 top1 haploid 0.255 ymr140w 0.252 

cmk2 0.251 nta1 0.254 top3 haploid 0.257 ymr141c 0.246 

cna1/cna2 

haploid 

0.252 ost3 0.251 tup1 haploid 0.234 ymr145c 0.251 

cnb1 0.253 pac2 0.251 ubp8 0.256 ymr147w 0.255 

cue1 0.257 pau2 0.253 ubr1 0.256 ymr187c 0.256 

cup5 0.247 pch1 0.255 ubr2 0.253 ymr237w 0.251 

cyc2 0.255 pcl6 0.253 utr4 0.252 ymr244c-a 0.254 

cyt1 0.250 pep12 0.247 vac8 0.243 ymr258c 0.253 

dfr1 0.253 pet111 0.250 vma8 0.243 ymr269w 0.253 

dig1 0.255 pet117 0.247 vps21 0.256 ymr285c 0.253 

dig1/dig2 0.242 pet127 0.255 vps8 0.246 ymr293c 0.239 

dig1/dig2 

haploid 

0.250 pex12 0.258 whi2 0.257 ynd1 0.253 

dig2 0.252 pfd2 0.241 yaf1 0.253 yor006c 0.258 

dot4 0.261 phd1 haploid 0.257 yal004w 0.255 yor009w 0.254 

eca39 0.257 ppr1 0.253 yap1 0.252 yor015w 0.253 

ecm1 0.251 prb1 0.252 yap3 0.252 yor021c 0.253 

ecm10 0.250 qcr2 haploid 0.235 yap7 0.252 yor051c 0.254 
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ecm18 0.255 rad27 0.252 yar014c 0.247 yor072w 0.254 

ecm29 0.254 rad57 0.244 yar030c 0.256 yor078w 0.255 

ecm31 0.257 rad6 haploid 0.244 yea4 0.255 yor080w 0.237 

ecm34 0.253 ras1 0.256 yel001c 0.253 ypl216w 0.252 

eft2 0.259 ras1 haploid 0.253 yel008w 0.257 zds1 0.253 

erd1 0.249 ras2 haploid 0.256 yel010w 0.257 AUR1 (tet) 0.248 

erg2 0.238 rgt1 0.254 yel020c 0.256 CDC42 (tet) 0.244 

erg3 haploid 0.245 rip1 0.242 yel028w 0.254 ERG11 (tet) 0.222 

erg4 haploid 0.244 rml2 0.240 yel033w 0.260 FKS1 (tet) 0.249 

erg5 0.254 rnh1 0.254 yel044w 0.242 HMG2 (tet) 0.241 

erg6 0.249 rnr1 haploid 0.244 yel047c 0.254 IDI1 (tet) 0.250 

erp2 0.253 rpd3 haploid 0.237 yel059w 0.254 KAR2 (tet) 0.239 

erp4 0.256 rpl12a 0.252 yel067c 0.254 PMA1 (tet) 0.232 

far1 haploid 0.254 rpl20a 0.255 yer002w 0.253 RHO1 (tet) 0.253 

fks1 haploid 0.251 rpl27a 0.259 yer024w 0.256 YEF3 (tet) 0.257 

fpr1 0.248 rpl34a 0.256 yer030w 0.262 X2 deoxy-D-glu. 0.251 

fre6 0.254 rpl6b 0.256 yer033c 0.254 Calcofluor white 0.251 

fus2 0.257 rpl8a 0.253 yer034w 0.255 Cycloheximide 0.261 

fus3 haploid 0.252 rps24a 0.256 yer041w 0.255 Doxycycline 0.247 

fus3/kss1 

haploid 

0.252 rps24a haploid 0.257 yer044c haploid 0.239 FR901-228 0.245 

gal83 0.259 rps27b 0.264 yer050c 0.238 Glucosamine 0.256 

gas1 0.240 rrp6 0.247 yer066c-a 0.254 HU 0.246 

gcn4 0.254 rtg1 0.241 yer067c-a 0.256 Itraconazole 0.236 

gfd1 0.253 rts1 0.247 yer071c 0.253 Lovastatin 0.246 

gln3 0.257 rvs161 haploid 0.252 yer083c 0.240 MMS 0.234 

gpa2 0.249 sap1 0.252 yer084w 0.255 Nikkomycin 0.252 

gyp1 0.258 sap18 0.253 yer085c 0.256 Terbinafine 0.251 

hat2 0.254 sap30 0.243 CMD1 (tet) 0.234 Tunicamycin 0.243 

Supplemental Table 2: Predicted relative growth rates for microarray data from the (Hughes, Marton et al. 

2000) deletion collection. Our predictions for the 199 mutants for which Hughes et al directly measured 

growth rates show significant correlation to the experimental gold standard ( =0.473, p<10-11), in contrast to 

other single mutant fitness estimates based on growth curve analysis (e.g. (Warringer and Blomberg 2003), 

=0.321, p<10-6; (Jasnos and Korona 2007), =0.108, p>0.2). 

Scansite Group Phosphoproteins 

Tyrosine kinase 4 

Src homology 2 3 

Src homology 3 14 

Basophilic 184 

DNA damage 18 

Acidophilic 51 

Proline-dependent 59 

Supplemental Table 3: Counts of phosphoproteins as detected by SCANSITE per kinase target family. 
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 Group Interactions Total Interactions 

 Genetic Physical Genetic Physical 

Random mean (deviation) 49.5 (18.8) 145.1 (27.8) 989.4 (204.3) 2762.2 (227.3) 

Phosphoproteins 124 238 1421 3139 

p-value <10-4 <10-3 0.035 0.098 

Supplemental Table 4: Interaction counts within phosphoprotein groups (or identically sized random 

subsamples) and across all known interactions of the target phosphoproteins within the yeast genome. 

Genetic interactions were drawn from synthetic lethality data, and physical interactions were taken from 

yeast two-hybrid and co-immunoprecipitation studies. 
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First Author Year Pubmed ID Title 

Angus 2001 11336698 rsc3/rsc30 knockouts 

Belli 2004 14722110 Oxidative stress and glutaredoxin 5-deficient mutant 

Bernstein 2000 11095743 Trichostatin A treatment time course 

Brauer 2005 15758028 Diauxic shift time course (Batch2) 

Brem 2002 11923494 Transcriptional regulation (II) 

Brem 2005 15659551 Genetic variation in gene expression among parents and 

progenies 

Caba 2005 15878181 Genotoxic stress 

Casagrande 2000 10882108 Unfolded protein response 

Causton 2001 11179418 heat response 

Causton 2001 11179418 Sorbitol response 

Chu 1998 9784122 Sporulation time course 

Cohen 2002 12006656 yap1 and yap2 knockouts with peroxide and cadmium added 

Duvel 2003 12820961 post heat shock, delayed rapamycin exposure time course 

Eriksson 2005 16199888 SPT10 global transcription regulator null mutant 

Fleming 1999 11830665 proteasome inhibition with exposure to PS-341 

Gasch 2000 11102521 Menadione exposure time course 

Gasch 2000 11102521 Hydrogen peroxide response time course 

Gasch 2000 11102521 Heat Shock 30C to 37C time course 

Gasch 2000 11102521 Heat Shock from various temp to 37C 

Gasch 2000 11102521 Carbon sources 

Hardwick 2000 10611304 rapamycin exposure 

Ideker 2001 11340206 GAL mutants 

Iyer 2001 11206552 SBF-MBF genomic distribution (intergenic_v1.0) (I) 

Jin 2004 15528549 Xylose metabolism 

Keller 2001 11504737 Haa1 analysis 

Lee 2005 15989963 rnt1 null mutant expression profile 

Martin 2004 15476558 TOR2-controlled transcription 

Ogawa 2000 11102525 Phosphate-regulated pathway (I) 

Orlandi 2004 14623890 Deubiquitinating enzyme UBP10 inactivation 

Primig 2000 11101837 Sporulation of two strains 

Roberts 2000 10657304 Pheremone response 

Rudra 2005 15692568 fhl1 and ifh1 deletion mutants 

Saldanha 2004 15240820 limitation by Uracil 

Saldanha 2004 15240820 limitation by Leucine 

Schawalder 2004 15616569 IFH1 overexpression: time course 

Segal 2003 12740579 Stationary phase, ypl230w mutant 

Spellman 1998 9843569 Cell cycle, alpha-factor block-release 

Spellman 1998 9843569 Cell cycle, elutriation 

Tai 2005 15496405 Nutrient limitation under aerobic and anaerobic conditions 

Williams 2002 12370439 Ume6 regulon (Ye6100subB) 

Yamamoto 2005 15647283 Heat shock transcription factor 1 mutant response to heat stress 

Yoshimoto 2002 12058033 Na(+) exposure 

Yvert 2003 12897782 Trans-acting regulatory variation 

Supplemental Table 5: Microarray data integrated by the MEFIT system. 
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Term ID Description Term ID Description 

GO:0000067 DNA replication and chromosome 

cycle 

GO:0009266 response to temperature 

GO:0000074 regulation of cell cycle GO:0009268 response to pH 

GO:0000160 two-component signal transduction 

system (phosphorelay) 

GO:0009302 snoRNA transcription 

GO:0000278 mitotic cell cycle GO:0009303 rRNA transcription 

GO:0000279 M phase GO:0009305 protein amino acid biotinylation 

GO:0000280 nuclear division GO:0009306 protein secretion 

GO:0000338 protein deneddylation GO:0009308 amine metabolism 

GO:0000746 conjugation GO:0009314 response to radiation 

GO:0000902 cellular morphogenesis GO:0009410 response to xenobiotic stimulus 

GO:0001101 response to acid GO:0009415 response to water 

GO:0001510 RNA methylation GO:0009452 RNA capping 

GO:0001522 pseudouridine synthesis GO:0009581 detection of external stimulus 

GO:0005975 carbohydrate metabolism GO:0009636 response to toxin 

GO:0006033 chitin localization GO:0009743 response to carbohydrate stimulus 

GO:0006056 mannoprotein metabolism GO:0009847 spore germination 

GO:0006066 alcohol metabolism GO:0009966 regulation of signal transduction 

GO:0006081 aldehyde metabolism GO:0010035 response to inorganic substance 

GO:0006082 organic acid metabolism GO:0015791 polyol transport 

GO:0006112 energy reserve metabolism GO:0015833 peptide transport 

GO:0006113 fermentation GO:0015837 amine transport 

GO:0006118 electron transport GO:0015849 organic acid transport 

GO:0006260 DNA replication GO:0015891 siderophore transport 

GO:0006265 DNA topological change GO:0015893 drug transport 

GO:0006266 DNA ligation GO:0015931 nucleobase, nucleoside, nucleotide and 

nucleic acid transport 

GO:0006276 plasmid maintenance GO:0015976 carbon utilization 

GO:0006280 mutagenesis GO:0016032 viral life cycle 

GO:0006308 DNA catabolism GO:0016050 vesicle organization and biogenesis 

GO:0006310 DNA recombination GO:0016071 mRNA metabolism 

GO:0006323 DNA packaging GO:0016072 rRNA metabolism 

GO:0006352 transcription initiation GO:0016073 snRNA metabolism 

GO:0006353 transcription termination GO:0016074 snoRNA metabolism 

GO:0006354 RNA elongation GO:0016192 vesicle-mediated transport 

GO:0006360 transcription from RNA polymerase I 

promoter 

GO:0016458 gene silencing 

GO:0006366 transcription from RNA polymerase II 

promoter 

GO:0016481 negative regulation of transcription 

GO:0006383 transcription from RNA polymerase 

III promoter 

GO:0016485 protein processing 

GO:0006390 transcription from mitochondrial 

promoter 

GO:0016925 protein sumoylation 

GO:0006399 tRNA metabolism GO:0016926 protein desumoylation 

GO:0006401 RNA catabolism GO:0016998 cell wall catabolism 

GO:0006417 regulation of protein biosynthesis GO:0017006 protein-tetrapyrrole linkage 

GO:0006457 protein folding GO:0018065 protein-cofactor linkage 

GO:0006461 protein complex assembly GO:0018193 peptidyl-amino acid modification 

GO:0006473 protein amino acid acetylation GO:0018410 peptide or protein carboxyl-terminal 

blocking 
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GO:0006476 protein amino acid deacetylation GO:0018987 osmoregulation 

GO:0006508 proteolysis and peptidolysis GO:0019236 response to pheromone 

GO:0006512 ubiquitin cycle GO:0019748 secondary metabolism 

GO:0006518 peptide metabolism GO:0019932 second-messenger-mediated signaling 

GO:0006519 amino acid and derivative metabolism GO:0019953 sexual reproduction 

GO:0006629 lipid metabolism GO:0019954 asexual reproduction 

GO:0006662 glycerol ether metabolism GO:0030261 chromosome condensation 

GO:0006725 aromatic compound metabolism GO:0030397 membrane disassembly 

GO:0006730 one-carbon compound metabolism GO:0030435 sporulation 

GO:0006766 vitamin metabolism GO:0030447 filamentous growth 

GO:0006790 sulfur metabolism GO:0030705 cytoskeleton-dependent intracellular 

transport 

GO:0006793 phosphorus metabolism GO:0031023 microtubule organizing center 

organization and biogenesis 

GO:0006800 oxygen and reactive oxygen species 

metabolism 

GO:0031123 RNA 3'-end processing 

GO:0006807 nitrogen compound metabolism GO:0040029 regulation of gene expression, 

epigenetic 

GO:0006811 ion transport GO:0042044 fluid transport 

GO:0006818 hydrogen transport GO:0042157 lipoprotein metabolism 

GO:0006839 mitochondrial transport GO:0042176 regulation of protein catabolism 

GO:0006858 extracellular transport GO:0042180 ketone metabolism 

GO:0006869 lipid transport GO:0042214 terpene metabolism 

GO:0006913 nucleocytoplasmic transport GO:0042594 response to starvation 

GO:0006914 autophagy GO:0043037 translation 

GO:0006944 membrane fusion GO:0043094 metabolic compound salvage 

GO:0006970 response to osmotic stress GO:0043284 biopolymer biosynthesis 

GO:0006974 response to DNA damage stimulus GO:0044419 interaction between organisms 

GO:0006984 ER-nuclear signaling pathway GO:0045116 protein neddylation 

GO:0006986 response to unfolded protein GO:0045184 establishment of protein localization 

GO:0006997 nuclear organization and biogenesis GO:0045185 maintenance of protein localization 

GO:0007001 chromosome organization and 

biogenesis (sensu Eukaryota) 

GO:0045333 cellular respiration 

GO:0007005 mitochondrion organization and 

biogenesis 

GO:0045454 cell redox homeostasis 

GO:0007009 plasma membrane organization and 

biogenesis 

GO:0045471 response to ethanol 

GO:0007010 cytoskeleton organization and 

biogenesis 

GO:0045595 regulation of cell differentiation 

GO:0007029 ER organization and biogenesis GO:0045941 positive regulation of transcription 

GO:0007030 Golgi organization and biogenesis GO:0046483 heterocycle metabolism 

GO:0007031 peroxisome organization and 

biogenesis 

GO:0046677 response to antibiotic 

GO:0007032 endosome organization and 

biogenesis 

GO:0046713 boron transport 

GO:0007033 vacuole organization and biogenesis GO:0048284 organelle fusion 

GO:0007034 vacuolar transport GO:0048285 organelle fission 

GO:0007039 vacuolar protein catabolism GO:0048308 organelle inheritance 

GO:0007046 ribosome biogenesis GO:0050790 regulation of enzyme activity 

GO:0007047 cell wall organization and biogenesis GO:0050801 ion homeostasis 

GO:0007059 chromosome segregation GO:0050821 protein stabilization 
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GO:0007155 cell adhesion GO:0050874 organismal physiological process 

GO:0007166 cell surface receptor linked signal 

transduction 

GO:0051049 regulation of transport 

GO:0007243 protein kinase cascade GO:0051052 regulation of DNA metabolism 

GO:0007264 small GTPase mediated signal 

transduction 

GO:0051129 negative regulation of cell organization 

and biogenesis 

GO:0007530 sex determination GO:0051169 nuclear transport 

GO:0007568 aging GO:0051180 vitamin transport 

GO:0007584 response to nutrients GO:0051181 cofactor transport 

GO:0007624 ultradian rhythm GO:0051186 cofactor metabolism 

GO:0008213 protein amino acid alkylation GO:0051236 establishment of RNA localization 

GO:0008219 cell death GO:0051238 sequestering of metal ion 

GO:0008298 intracellular mRNA localization GO:0051248 negative regulation of protein 

metabolism 

GO:0008380 RNA splicing GO:0051252 regulation of RNA metabolism 

GO:0008643 carbohydrate transport GO:0051258 protein polymerization 

GO:0009100 glycoprotein metabolism GO:0051261 protein depolymerization 

GO:0009116 nucleoside metabolism GO:0051301 cell division 

GO:0009117 nucleotide metabolism GO:0051321 meiotic cell cycle 

GO:0009225 nucleotide-sugar metabolism GO:0051325 interphase 

Supplemental Table 6: Gene Ontology terms deemed to be experimentally informative and used for positive 

gold standard generation and evaluation in MEFIT. 

 

Term ID Description Term ID Description 

GO:0000280 nuclear division GO:0009100 glycoprotein metabolism 

GO:0005975 carbohydrate metabolism GO:0009116 nucleoside metabolism 

GO:0006056 mannoprotein metabolism GO:0009117 nucleotide metabolism 

GO:0006066 alcohol metabolism GO:0009225 nucleotide-sugar metabolism 

GO:0006081 aldehyde metabolism GO:0009308 amine metabolism 

GO:0006082 organic acid metabolism GO:0015791 polyol transport 

GO:0006091 generation of precursor metabolites 

and energy 

GO:0015833 peptide transport 

GO:0006259 DNA metabolism GO:0015837 amine transport 

GO:0006276 plasmid maintenance GO:0015849 organic acid transport 

GO:0006350 transcription GO:0015891 siderophore transport 

GO:0006403 RNA localization GO:0015931 nucleobase, nucleoside, nucleotide 

and nucleic acid transport 

GO:0006457 protein folding GO:0015976 carbon utilization 

GO:0006461 protein complex assembly GO:0016032 viral life cycle 

GO:0006464 protein modification GO:0016044 membrane organization and 

biogenesis 

GO:0006518 peptide metabolism GO:0016050 vesicle organization and biogenesis 

GO:0006519 amino acid and derivative 

metabolism 

GO:0016070 RNA metabolism 

GO:0006629 lipid metabolism GO:0016192 vesicle-mediated transport 

GO:0006662 glycerol ether metabolism GO:0016265 death 

GO:0006725 aromatic compound metabolism GO:0016458 gene silencing 

GO:0006730 one-carbon compound metabolism GO:0019748 secondary metabolism 

GO:0006766 vitamin metabolism GO:0031023 microtubule organizing center 

organization and biogenesis 
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GO:0006790 sulfur metabolism GO:0042044 fluid transport 

GO:0006793 phosphorus metabolism GO:0042157 lipoprotein metabolism 

GO:0006800 oxygen and reactive oxygen species 

metabolism 

GO:0042180 ketone metabolism 

GO:0006807 nitrogen compound metabolism GO:0042592 homeostasis 

GO:0006811 ion transport GO:0043037 translation 

GO:0006818 hydrogen transport GO:0043094 metabolic compound salvage 

GO:0006869 lipid transport GO:0043241 protein complex disassembly 

GO:0006914 autophagy GO:0043284 biopolymer biosynthesis 

GO:0006944 membrane fusion GO:0045229 external encapsulating structure 

organization and biogenesis 

GO:0006997 nuclear organization and biogenesis GO:0046483 heterocycle metabolism 

GO:0007005 mitochondrion organization and 

biogenesis 

GO:0046903 secretion 

GO:0007010 cytoskeleton organization and 

biogenesis 

GO:0046907 intracellular transport 

GO:0007028 cytoplasm organization and 

biogenesis 

GO:0048284 organelle fusion 

GO:0007029 ER organization and biogenesis GO:0048285 organelle fission 

GO:0007031 peroxisome organization and 

biogenesis 

GO:0048308 organelle inheritance 

GO:0007032 endosome organization and 

biogenesis 

GO:0050789 regulation of biological process 

GO:0007033 vacuole organization and biogenesis GO:0050874 organismal physiological process 

GO:0007049 cell cycle GO:0050896 response to stimulus 

GO:0007059 chromosome segregation GO:0051180 vitamin transport 

GO:0007154 cell communication GO:0051181 cofactor transport 

GO:0007275 development GO:0051186 cofactor metabolism 

GO:0008104 protein localization GO:0051235 maintenance of localization 

GO:0008283 cell proliferation GO:0051261 protein depolymerization 

GO:0008643 carbohydrate transport GO:0051276 chromosome organization and 

biogenesis 

GO:0009056 catabolism GO:0051301 cell division 

Supplemental Table 7: Gene Ontology terms to which less than 10% of the yeast genome is annotated, used 

for negative gold standard generation by MEFIT.  
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Term Assoc. 

Unch. 

Genes 

Term Assoc. 

Unch. 

Genes 

carbohydrate metabolism 972.14 RNA splicing 336.31 

phosphorus metabolism 895.33 transcription from RNA polymerase III 

promoter 

333.74 

reproductive physiological process 863.52 nucleobase, nucleoside, nucleotide and 

nucleic acid transport 

329.01 

establishment of protein localization 862.03 response to pheromone 326.68 

sporulation 832.73 ribosome biogenesis 322.36 

autophagy 797.55 membrane fusion 314.22 

one carbon compound metabolism 794.90 glycoprotein metabolism 307.35 

cell wall organization and biogenesis 788.22 regulation of protein biosynthesis 307.31 

chromosome organization and biogenesis 

(sensu Eukaryota) 

773.14 establishment of RNA localization 301.47 

cofactor metabolism 743.81 metabolic compound salvage 301.07 

vesicle mediated transport 742.26 lipoprotein metabolism 300.53 

RNA editing 734.47 translation 293.39 

M phase 733.32 sulfur metabolism 280.19 

cell division 732.04 transcription from RNA polymerase I 

promoter 

270.30 

biopolymer biosynthesis 731.06 vacuole organization and biogenesis 270.08 

vacuolar transport 706.45 carbohydrate transport 269.92 

proteolysis 692.12 mitochondrial transport 265.94 

cell morphogenesis 691.10 RNA elongation 263.94 

alcohol metabolism 690.93 transcription initiation 258.83 

vitamin metabolism 667.45 nuclear organization and biogenesis 254.96 

meiotic cell cycle 665.35 second messenger mediated signaling 250.00 

lipid metabolism 658.82 regulation of DNA metabolism 246.22 

positive regulation of transcription 637.66 snoRNA metabolism 241.68 

energy reserve metabolism 630.33 asexual reproduction 217.43 

protein complex assembly 619.45 organic acid transport 212.69 

cytoskeleton organization and biogenesis 617.33 cell redox homeostasis 212.18 

transcription from RNA polymerase II 

promoter 

613.66 nucleoside metabolism 207.18 

regulation of progression through cell cycle 609.89 RNA 3' end processing 202.24 

ubiquitin cycle 601.92 small GTPase mediated signal transduction 200.57 

response to DNA damage stimulus 594.10 peroxisome organization and biogenesis 196.31 

mitochondrion organization and biogenesis 592.31 amine transport 192.19 

organic acid metabolism 590.30 protein kinase cascade 178.71 

pseudouridine synthesis 575.34 protein amino acid alkylation 175.79 

DNA recombination 573.36 electron transport 175.23 

ion transport 571.40 regulation of RNA metabolism 159.27 

mitotic cell cycle 563.44 cell surface receptor linked signal 

transduction 

152.45 

negative regulation of transcription 561.83 protein amino acid acetylation 150.95 

ion homeostasis 552.71 response to inorganic substance 150.53 

response to osmotic stress 545.04 sex determination 136.88 

mRNA metabolism 520.03 regulation of catalytic activity 134.23 

response to temperature stimulus 516.43 lipid transport 128.82 

nucleotide metabolism 516.34 hydrogen transport 125.50 
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protein processing 499.81 peptide metabolism 124.92 

cellular respiration 496.70 negative regulation of protein metabolism 123.77 

filamentous growth 489.90 DNA catabolism 116.25 

nitrogen compound metabolism 485.11 maintenance of protein localization 111.07 

tRNA metabolism 480.44 protein amino acid deacetylation 90.98 

DNA packaging 480.25 secondary metabolism 87.43 

RNA catabolism 472.10 fermentation 85.13 

response to toxin 448.72 maintenance of cellular localization 84.47 

regulation of gene expression, epigenetic 446.79 response to unfolded protein 76.93 

aldehyde metabolism 444.22 organelle fusion 70.21 

gene silencing 432.75 regulation of signal transduction 57.83 

aging 429.83 transcription termination 55.28 

nucleocytoplasmic transport 408.31 establishment of nucleus localization 52.87 

nuclear transport 408.31 vesicle organization and biogenesis 51.59 

heterocycle metabolism 401.12 chromosome condensation 43.30 

interphase 396.30 plasmid maintenance 40.65 

protein folding 387.26 mannoprotein metabolism 35.48 

cell death 379.45 response to nutrient 34.81 

amino acid and derivative metabolism 379.01 peroxisomal transport 33.31 

rRNA metabolism 373.56 cytoskeleton dependent intracellular 

transport 

27.98 

chromosome segregation 371.42 drug transport 26.53 

sexual reproduction 368.60 protein depolymerization 24.35 

conjugation 368.60 response to acid 23.21 

vacuolar protein catabolism 363.47 microtubule organizing center organization 

and biogenesis 

22.50 

DNA replication 360.78 intracellular mRNA localization 19.44 

organelle inheritance 356.23 regulation of transport 13.75 

response to starvation 349.83 cofactor transport 9.71 

peptidyl amino acid modification 340.43 protein sumoylation 2.15 

aromatic compound metabolism 336.93   

Supplemental Table 8: Association of each biological process of interest with the ~1,500 uncharacterized 

genes of the yeast genome. Each score represents the ratio of the average predicted probability of functional 

relationship between the uncharacterized genes and the set of genes known to participate in each biological 

area, normalized by that process's cohesiveness. 
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Supplemental Figure 1: Effect of clique size on NNN performance. The concatenated dataset clustered using 

NNN with clique size g = 3, 4, 5, and 6, ranging over n from one to 40 by increments of three. Performance 

varies relatively little as g is varied, with lower clique sizes trading a small amount of recall for increased 

precision and runtime. 
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Supplemental Figure 2: Growth rate predictions for chemostat cultures subjected to a brief heat pulse at 

various flow rates. Microarray time courses were taken for a collection of chemostats at increasing growth 

rates, each subjected to a brief (<30s) heat pulse at time zero. Predicted growth rates show an immediate 

departure from steady state as the heat pulse is administered immediately before time zero, followed by a 

gradual return to steady state and regulatory overshoot. This behavior is consistent across growth rates, 

with the lowest growth rates potentially showing a lesser shock response due to stress tolerance. 
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Supplemental Figure 3: Growth rate predictions for all conditions in the (Gasch, Spellman et al. 2000) stress 

response microarrays. These predictions are generally consistent with known yeast biology and agree with 

expected growth behavior; most shock time courses, including all heat shocks, peroxide, diamide, and 

hyper-osmotic stress, provoke an initial sharp decrease in growth rate followed by a return to initial or near-

initial rate. Shorter shocks, such as DTT, menadione, and peroxide responses, capture only the rate decrease. 

Batch growth proceeds at a fairly constant rate until nutrients become depleted, at which point the rate 

decreases sharply; this pattern is also seen in intentional nitrogen depletion. Growth rates across varying 

temperatures peak as expected at 25C, falling off at lower and higher temperatures. Response to varying 

carbon sources is also as expected, with ethanol inducing the slowest growth and fructose, sucrose, and 

glucose allowing the most rapid. The model's inference of growth rate from microarray data alone thus 

allows both post hoc growth analysis (e.g. years after the original experiment) and an estimation of growth 

rates for cultures where it would be difficult or time consuming to measure directly. 
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Supplemental Figure 4: Counts of each SCANSITE motif recovered in phosphopeptides relative to those 

drawn from identically sized random genomic samples. 
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Supplemental Figure 5: Conservation of phosphorylation sites relative to identically sized random samples. 

SS and TT represent conserved serine and threonine sites, while ST and TS represent serines in yeast 

converted to threonines in another organism and vice versa. The five model organisms used were A. 

gossypii, C. elegans, D. melanogaster, H. sapiens, and A. thaliana. The fungal scan covered all genomes covered 

by BLASTP through the Saccharomyces Genome Database. 
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Supplemental Figure 6: Quantification of autophagosome formation in starved cells. MAP1LC3 is typically 

diffuse throughout the cytoplasm in non-starved cells. Under normal conditions, starved cells will initiate 

autophagy, process MAP1LC3 to the MAP1LC3-II isoform, and form punctate autophagosomes to which it 

is localized. We measured the degree to which this was impaired by luciferase (negative control), ATG5 

(positive control), LAMP2, RAB11A, and VAMP7 siRNA depletions using immunoblotting and manual 

inspection of ten images for each condition (totaling 80 images). While VAMP7 knockdowns showed no 

effect (see Discussion), siRNA knockdowns of LAMP2 and RAB11A inhibited normal autophagy. A) 

Measurement of the autophagosome-bound MAP1LC3-II isoform by immunoblotting. Under a control 

condition (luciferase siRNA), starvation (+) induces autophagy in human fibroblasts and upregulates the 

autophagy marker MAP1LC3-II; this upregulation is inhibited by knockdown of some proteins required for 

autophagy, e.g. ATG5. B) Manual inspection of the number of puncta per cell shows decreased 

autophagosome formation when autophagy is impaired. Error bars indicate standard error over counts by 

three independent investigators viewing randomized, unlabeled images. The number of puncta increases 

when cells are starved under the luciferase control condition, but this increase is substantially impaired in 

ATG5 (positive control), LAMP2, and RAB11A siRNA conditions. 
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Supplemental Figure 7: Bayesian parameter regularization prevents overconfident probability estimation in 

the presence of many datasets. While naive Bayesian classifiers provide an accurate and efficient way to 

integrate hundreds of genomic datasets, they assume complete independence between all data. Violations of 

this assumption, which occur due to shared biological and technical signals between datasets, become 

increasingly problematic as the number of integrated datasets increases. We use Bayesian parameter 

regularization to combine each dataset's probability distribution with a uniform prior, mixing this prior in 

with weight proportional to the amount of information shared by each dataset. Intuitively, this results in 

datasets with strong, unique signals being upweighted during the integration process, while groups of 

datasets sharing most of the same information will be downweighted. Without regularization, a low-

confidence datum contributed by many datasets can inappropriately result in a high-confidence prediction 

of functional relationship. Regularization downweights such shared data and results in a more biologically 

realistic distribution of low- and high- probability functional relationships. 


