THE SYMMETRY TRANSFORM AND ITS

APPLICATIONS

JOSHUA PODOLAK

A DISSERTATION
PRESENTED TO THEFACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE
BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: SZYMON RUSINKIEWICZ

NOVEMBER 2008

© Copyright by Joshua Podolak, 2008. All rights reserved.

ii
Abstract

Recent improvements in methods for acquiring and gengy&in shape data over the
last few decades have motivated the need for ever compléxtmanalyze and edit such
information. As a result, in the last few years, numerousho@s$ have been introduced
to improve the ways in which computers understand shapeselimethods vary in the
type of data they measure, ranging from from low-level, laggometry information to
high-level semantic information.

Symmetry has long been known as an important cue for non{horaan recognition
of shape, and as such has been a key component in Vision aptiGapplications. A
second important feature of symmetry is that it is prevalergal-world models. Pipe and
gear models contain rotational symmetries, buildings aju@use objects contain 4-point
symmetry, and nearly every natural or man-made object wilt@in some reflectional
symmetry. This prevalence is important because this méet@pplications relying on
symmetry information will work on a large range of models.

In this thesis, we introduce the notion ofSymmetry Transfora measure of “the
amount of” or “the degree of” symmetry present in a 3D shapelen some class of
transformations. This can be the set of all plane-refleatisgmmetries, the set of all
point reflections or some arbitrary set of transformatio& concentrate on point and
reflection symmetry transforms, providing some theoréteasoning for the transforms.
We show efficient means for computing them, discuss stohamt and analyze some of
their properties, including noise resistance, continun@uggtion under deformation, and
stability with missing data.

While computing the transform of an entire model can be udefua general un-
derstanding of shape, strong symmetries (such as the cainger ellipse or the main

reflection planes of a rectangle), are easily identified bydws and represent an impor-

tant subset of the transform. In this thesis we provide a otetbr efficiently extracting
these “principal symmetries”, and discuss some of theipgries.

Finally, the symmetry transform provides mid-level infaton about the nature
of a 3D object that can be utilized in a wide range of applaai We explore how
symmetry may be used to improve alignment, matching, viéemselection, remeshing,

and segmentation.

Acknowledgments

Psalm 3.14

My advisor is my Shepherd | shall not want.

He maketh me overturn green pastures, He leadeth me to guestiwaters.

Yea, though | walk in the valley of the shadow of a paper subiois | will fear no
reviewers for thou art with me; Thy rebuke and thy praise t@myfort me.

Thou preparest a defense before me in the presence of mg ttesmittee, thou anoin-
test my dissertation with suggestions, my references tharmer.

Surely publications and awards shall follow me all the ddyswlife and | will graduate

from the university of my advisor forever.

| would like to thank my advisor, Szymon Rusinkiewicz, fos Innentorship and con-
tinuing support. Besides contributing in many ways to thepletion of this dissertation,
he has also been a steady source of reassurance and iosgioatie. | always felt more
confident about the universe after every conversation we haduld also like to thank
the other graphics professors, Thomas Funkhouser and Ad#alstein for their ever
welcome feedback and guidance. Without their collabonatis dissertation would not
be possible.

| have had an incredible time bouncing ideas off of peoplédumy time at Princeton
University, while | can’t possibly begin to acknowledge svperson I've had interactions
with, I'd especially like to thank my office-mates Christ@plDeCoro, and Michael Burns

as well as the rest of the graphics lab: Benedict Brown, Paldr@Gia, Forrester Cole,

Aleksey Golovinskiy, Misha Kazhdan, Diego Nehab, and Philée. Life at Princeton
would have been much duller and a lot less fulfilling withoatly

| would like to thank Princeton University for supporting myrk. This work was
also funded by Air Force Research Lab grant FA8650-04-18%fild NSF grants CCF-
0347427 and 11S-0121446.

Of course, graduate school is more than “staring-at-a-coemscreen” research, and
I'd like to single out Sam Cohen, Andy Plaks and Toby and EdXwobison for creating
a very welcome atmosphere for grad students a long way frameho

Finally | would like to thank my parents, my family and esgdlgi my wife Dahlia
for putting up with long hours, frustrated moods and ovagldescriptions of my work.
None of this would have been possible without your suppoextNime, things will be

easier. | promise. -)

Contents

Abstract e e
1 Introduction 1
1.1 Symmetry e e
1.1.1 Symmetry AsaDescriptor,
1.1.2 SymmetryMeasure e
1.1.3 Symmetry Transform
1.1.4 Principal Symmetries o
1.2 3D Analysis Applications 6
1.2.1 Alignment
1.22 Matching e
1.2.3 ViewpointSelection
1.3 3D Editing Applications
1.3.1 Remeshing
1.3.2 Segmentation
2 Symmetry 11
2.1 Perfect Symmetries
2.2 LocalSymmetry. e

CONTENTS

2.3 Approximate Symmetry

24 SymmetryMeasure

3 Symmetry Transform

3.1 Point Symmetry Transform (PST)
3.1.1 Definingthe PST
3.1.2 Computation
3.1.3 PropertiesofthePST

3.2 Planar Reflective Symmetry Transform (PRST)

3.2.1 Definingthe PRST
3.22 Storage
3.2.3 Computation
3.2.4 Propertiesofthe PRST
3.3 Principal Symmetries

4 Analysis Applications

4.1 Alignment
411 PreviousWork
4.1.2 Symmetry Transform
413 Results
4.1.4 Limitations and FutureWork

4.2 Matching
4.2.1 ShapeDescriptor
422 PreviousWorko
423 Symmetry

424 Results

CONTENTS v
4.3 ViewpointSelection. 45
43.1 PreviousWork 55
4.3.2 Symmetry e 58
433 Results 60
4.3.4 Limitationsand FutureWork 60
5 Editing Applications 62
51 Remeshing 62
5.1.1 PreviousWork 63
5.1.2 SymmetricRemeshing 66
5.1.3 Results 74
5.1.4 DISCUSSION o it e 79
5.2 Segmentation e 81
5.2.1 PreviousWork 82
5.2.2 Symmetry e e e 84
523 Results 87
6 Conclusions and Future Work 89
6.1 Conclusion 89
6.2 Future Work 90
6.2.1 Symmetry e e e e 90
6.2.2 Inversion 91
Bibliography 92

List of Figures

1.1 In this example we show a set of models classified usinghalsileft-
right symmetry criterion. Models on the left are left-rigggmmetric,
while models on therightarenot.

1.2 Examples of reflective symmetry transforms. Unlessratise noted,
points are colored by the symmetry measure of the plane hétherrgest
symmetry passing through them, with darker lines reprasgstronger
symmetries. Note how the symmetry of the flower remains gtod@spite
beingincomplete.

1.3 Example of principal symmetries. Starting with a 2D shépft), we
compute a reflective symmetry transform (center), and miaeklacal
maxima (right). Note that the perfect symmetry is found adl a& a
number of local symmetries. Principal symmetries are nthikédlue. . .

1.4 In this example we demonstrate the problem of alignmAnteft, the
airplane models are not aligned. At left, we have aligneanthusing
symmetry considerations. Note how all the airplanes haviegeleft-

right symmetry and relatively strong up-down symmetry.

Vi

LIST OF FIGURES

15

1.6

3.1

3.2

3.3

3.4

3.5

In this figure we show an example of shape matching. Attle& user
inputs a 3D model of a car as a query. The system then seafuoegh
a database of 3D models for a similar shape (center), ygkinother car
model (right).
In this figure we show an example of remeshing. At left wawskthe
original model of a hippo. At right we show the simplified mbadsote

how simplified the model retains the left-right symmetrylué priginal. .

Visualization of the PST for several simple 2D shapess&hexamples

show the variation of the PST for several common boundarydeations.

Computing the PRST for many planes at once by: (a) sagpliren-
tations and convolving over plane translations, or (b) darggositions
and convolving over planerotations.
The efficient Monte Carlo algorithm selects a pair of poand votes for
the plane between them. The vote must be weighted, accguiotirthe
fact that as a point is father away from the plane of reflectioa chance
of finding a reflection point is increased (the size of the laltea is larger
when the points are fartherapart).
Comparison of error in the Monte Carlo approximationh® PRST, as
a function of time. For typical grid sizes, such as thé @ded in the
applications in following sections, computing the PRSTeta&nly a few
SECONDS. o e

Visualization of the PRST for several simple 2D shapé&s€ examples

Vil

10

21

25

show the variation of the PRST for several common boundatygmations. 31

8

LIST OF FIGURES viii

3.6 Atleft, we show an iteration d&P. We select random points (red), reflect
them through the candidate plane of symmetry (gray), anddiosest
points on the surface (green). We then update the plane eftiefh
to optimize the sum of Gaussian distances between corrdsmppoint
pairs (samples with low weight have been culled in this Vigaton).

At right, we show the support of the final local symmetry maim as
indicated by the graylevel., 34

3.7 In this visualization, the triangles of the bull are ¢eldto show how
symmetric they are with respect to the plane of symmetrylaysal, with
black meaning no support of the plane reflection. Planessepting
the four strongest local maxima of the PRST are shown herée how
points supporting reflections across planes (2), (3), ante(to cluster
into regions corresponding to the neck, body, and headectisply. . . . 35

3.8 An example of principal symmetries of a 3D model, exgddrom the
3D symmetry transform. Note that these capture the pardkgproxi-

mate symmetries of the ears, head, body and legs of the bunny.. . . 36

4.1 Aline drawing of a mug with and without handles. The theteeof mass
and PCA axes are drawn in dotted green — note that they mowendep
ing on the presence of handles. A visualization of the PR®Veslaid on
the drawings, and the center of symmetry and principal sytmynaxes
are shown in solid red —they remain stable under perturbatiothe

shape. 39

LIST OF FIGURES

4.2

4.3

4.4

4.5

4.6

Alignment for translation and rotation based on cerdésymmetry and
principal symmetry axes, as compared to center of mass arwd PC

each case, the red, green, and blue lines represent thesécsind, and

third principal axes, and their intersection is the comgutenter.

To evaluate the stability offered by symmetry-baseghatient in a scan
recognition application, we computed eight virtual scah®@/ mod-
els (top two rows of images), and for each computed coordiframes
using our symmetry-based approach and PCA. Note how therseot

symmetry computed from the partial scans (shown as crass)lcluster

near the center of the whole car better than do the centerasd.m. . . .

Histograms of translational (a) and rotational (b) tigsenent in our
virtual-scan experiment. In blue we show alignment basedetter of
symmetry and PSA, with center of mass and PCA in green. Laajaes
near the left of each graph indicate better matching peidoce.

While these cars have different sizes, rotations, amat,cthey are all
considered to have similar shape. A robust matching algoriheeds
to account for such transformations when producing a sritylanetric.
(images courtesy of the Princeton Shape Repository).
Symmetries can play an important role in recognizingcisj within the
same class. Note that even though the chairs have diffeeegihts and
widths, they all share the same symmetries: perfect Igfitrsymmetry,

and strong symmetries in the seat, leg and back (imagesesyudf

Digimation).

43

44

LIST OF FIGURES

4.7

4.8

4.9

5.1

5.2

Plot of precision versus recall achieved with four shaya¢ching meth-
ods: PRSD (magenta), PRST (thick blue), GEDT (green), aaa¢dm-

bination of PRST and GEDT (thick red). Note that the PRST wagst
information complementary to other shape matching methoslsce can
be used to augment their retrieval performance.

The PRST provides better retrieval performance for soasses (top),
while the GEDT is better for others (bottom). Combined, tpeyduce

better retrieval performance than eitheralone.
At left, we show the viewpoint score for each model as @spél func-

tion. The visualization is obtained by scaling unit vectamghe sphere in
proportion to the quality of the viewpoint from that diremii The images
at center show the best viewpoint selected by our algoriffime.images

at right show the worst viewpointselected.

Remeshing without symmetry does not create a symmatiggulation
without explicit accounting for symmetry. Column (a) shosvsnodel
(62K triangles) of a relatively symmetric mask. Column (bhpws the
triangulation of the model using QSlim [18] algorithm, cwln (c) shows

the triangulation using [11], and column (d) shows the resiubur algo-

(a) A proxy with two patches. The purple patch is assediatith the
identity and the green patch is associated with the reflegii@ne shown.
(b) When a triangle (orange) is assigned to a proxy (grebaeighbor-
ing triangles (black) are added to the queue. The triangiessa the

plane of reflection (red) are addedaswell.

52

53

59

LIST OF FIGURES Xi

5.3

5.4

5.5

5.6

5.7

This model is quite symmetric, except for the gash inigje side of the

chin. Note how our algorithm does not create symmetric petdbr the
proxies that approximate that area, because the erroduntenl would

be too great. The remainder of the head however, has synompatahes.

The model was remeshed using 50 proxies and one plane of syynme
(up to two patches per proxy). e 69
This figure shows the need for splitting faces that crass ceflection
planes. (a) Without splitting faces, triangles that crdwes glane of re-
flection are assigned to only one of the reflections of the yrokhis
causes a jagged triangulation. (b) When we split the trestiiat cross

the reflection plane, the tessellation is symmetric. Theeatwhave 342

and 358 facesrespectively. L o Lo 72
At left, we show a bull remeshed to 200 proxies with twapkasimulta-
neously, one passing through the head and one passing thiteeigody.

In the center column we show results using the bastcmetric @ = 0).

At right, we show results whea = 0.4. Note that the model becomes
more symmetric, at the expense of geometric accuracy. 74
Increasing the amount of geometric simplification (tmsaight) results

in greater symmetry preservation. Images in the bottom mexcalored

to represent deviations from symmetry (how far each poiffitas the
reflected surface) with blue indicating perfect symmetry. 76
3D scan of a sacrum (605K polygons, shown at left) remeshed24ith
proxies (right). Note that the model is only approximatejynsetric

MIddIE). o o o o 77

LIST OF FIGURES Xil

5.8 The bunny is shown here remeshed with 250 proxies, usildg @r 4
planes of symmetry. Note that increasing the number of syimesere-
sults in progressively more symmetric and more intuitivengulations,
while retaining plausible triangulations at the boundaeé symmetric
FEQIONS. e e e e e

5.9 Example of local support: Given a 2D model (a), we complutesym-
metry transforms on it (b), and extract principal symmetri&hen, for
every symmetry we find which portion of the model it reflectdl\ieed, e).

In the example shown, the square is reflected by the first tangsl of
symmetry (c,d), while the ellipse is reflected the the thed {This leads
to an intuitive segmentation of the model (square vs. dlipdn this
visualization, principal planes are shown in blue and thppsu of those
planesisshowninred.

5.10 In this example, the point on the bursypportsthe three planes shown
to varying degrees. Concatenating the support valuesesr@ateature-
vector describing how symmetric this point is with respectach plane
of symmetry. The feature-vector for this point(8.1,0.5,0.9...). In
this visualization points are colored based on how symmétey are
with respect to the plane shown, with red meaning symmeiritcltdue
meaning non-symmetric. e

5.11 These images show segmentations of a range of modeltheoull we
show segmentation intq 2, and 8 segments. The skeletal hand is shown

segmentedinto4and18parts. o

86

Chapter 1

Introduction

Accurate portrayal of 3D geometry has always been an impbdspect of computer
graphics, and so the creation of 3D content has long been poriamt requisite of the
graphics community. Traditionally, this geometry was ¢omsged by hand: either on a
point by point basis, or using basic shapes such as cubegndecs to create progres-
sively complex forms. More recently, a wide range of 3D s@agrechnologies have
become common, enabling the easy acquisition of incregsdedailed representations
of real-world objects. Finally, with the proliferation oD3tontent on the Internet, an easy
method of creating 3D composition is to find and combine axgstnodels found online.
This method, combined with the increasing number of 3D nmeodehilable raises the
demand for ever more complex 3D processing tools to helgkdar and edit existing
models, with the goal of creating new content.

3D geometry analysis processing algorithms have long baewk to the graphics,
geometry and vision communities, and can be split into threr categories.

Local descriptors concentrate on local surface infornmatibhat is, algorithms have

been developed to describe properties such as curvatuomtisness, or sharpness, all

CHAPTER 1. INTRODUCTION 2

qualities that can be described as functions of tbeal geometry. These properties are
often used in tools that analyze or edit multiple points oroaleh, such as locating salient
features or noise removal.

Global descriptors use a single set of numbers to descrileata® model. Classical
examples of such numbers are the center of mass, the surezaiad the volume of
the model. Another type of global descriptor is a stati$tcelysis of local functions.
Examples of such a descriptor would be the average smodatlufies model, or a his-
togram of the curvature. Global descriptors are useful enge of applications, and are
particularly noted for their use in shape matching.

Finally, mid-level descriptors are used to describe a portif the model. A simple
example of such a descriptor would be to segment a model erts pnd run a global
descriptor on each.

In our thesis we describe a method for measuring symmetrgnaacal descriptor,

and show how symmetry information can be used to solve a vaidge of problems.

1.1 Symmetry

Symmetry has long been known to provide visual cues for huwision [14], be an
important developmental attribute in Evolutionary Biojdd 3] and a physical necessity
in various manufactured objects. As such, over the last feeades there have been
numerous methods proposed for detecting and measuringugdiorms of symmetry in

2D and 3D.

CHAPTER 1. INTRODUCTION 3

(2) ()

@) (4) (7) (8)

Figure 1.1: In this example we show a set of models classifsgagua simple left-right
symmetry criterion. Models on the left are left-right syntrmiee while models on the
right are not.

1.1.1 Symmetry As a Descriptor

Traditionally, when a person claims that an object looksmeatnic, they mean that certain
areas of that object look similar to other areas. More adelyrawe can say that an
object contains symmetry if it appears unchanged afteryappla transformation to it
(e.g. rotating it by 90 degrees or reflecting it through soma@g). Thus, by classifying
objects based on their symmetric properties, we are usmgetry as a shape descriptor.
The simplest way to use symmetry as a descriptor is to chosmsformation (e.g.
left-right reflection) and compute for every model whethdasisymmetric or not. This
would generate a very simple (and not particularly usefldpagl shape descriptor. We
see an example of this in Figure 1.1, where objects are filbdiased on whether they

have left-right symmetry or not.

CHAPTER 1. INTRODUCTION 4

1.1.2 Symmetry Measure

Rather than describing symmetry as a discrete property @ehwan be 'symmetric’
or 'not symmetric’ with respect to some transformation), @@ describe the degree of
symmetry a model has. A fully symmetric object would have %08ymmetry, while
non-symmetric objects would have 0% symmetry. Usiogtinuous symmetifpr shape
description is more useful than discrete symmetry, as mahyal objects contain strong
symmetries, while not being perfectly symmetric. Moregesen perfectly symmetric
objects may result in non-symmetric scanned 3D models,usecaf noise or scanner
miscalibration. A good example of a strong symmetry thabisperfect can be shown in
Figure 1.1(7). While the helicopter model does not conparfectleft-right symmetry,
the body of the helicopter is symmetric. Thus we can clainmttihelicopter model has

at least 90% left-right symmetry.

1.1.3 Symmetry Transform

Using the notion of continuous symmetry, we can defilgymmetry Transforna func-

tion over an entire space of symmetries (e.g. all reflecjidescribing how symmetric
the model is with respect to every symmetry in the space. giniss us a much richer
description of the symmetries of the model. In the examptawshin Figure 1.2 we see
a few examples of a 2D reflection symmetry transform. Noté Wiale the strongest
symmetries are most noticeable, there are many other symeshet the model that are
captured in the transform. In all the 2D reflection symmettgreples shown, points
are colored using the symmetry measure of the plane withatiges$t symmetry passing

through that point, with darker lines representing strorsyenmetries.

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Examples of reflective symmetry transforms. edslotherwise noted,
points are colored by the symmetry measure of the plane \Wwihldrgest symmetry
passing through them, with darker lines representing gegosymmetries. Note how
the symmetry of the flower remains strong despite being imteta.

In this thesis we describe methods to efficiently computersgiry transforms for 2D
and 3D models and explore their properties. Additionally,demonstrate methods to uti-

lize the symmetry information in the transform to improveioas geometry processing

applications.

1.1.4 Principal Symmetries

Since the symmetry transform is a function that measureass @df symmetry over an
entire object, it can be very informative to analyze the lanaxima of this function.
These maxima form a subset of strong symmetries that camelsfp various perfect,
local and partial symmetries of the the whole object. Dud&irtnature, thesBrincipal
Symmetriegare important for many applications. In the example showrigure 1.3 we
show a 2D shape with its principal symmetries highlightedted\that how both perfect
and non-perfect symmetries are found.

In this thesis we describe a method to find interesting loaatima in the transform

and compute their exact position.

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Example of principal symmetries. Starting vai?D shape (left), we compute
a reflective symmetry transform (center), and mark the lo@alima (right). Note that the
perfect symmetry is found as well as a number of local symegetPrincipal symmetries
are marked in blue.

1.2 3D Analysis Applications

Whenever we try to fit two puzzle pieces together, we are pmiftg shape analysis
on those pieces. Any investigation of a 3D model, such adiigerg the purpose of a
piece of furniture or finding similarly shaped proteins,uigs some understanding of
the shape of that object. Shape analysis tools endeavopfystihat understanding by
guantifying various properties of the object analyzed.

In this work we will show how to use symmetry information edred from the

symmetry transform to improve a few analysis applications

1.2.1 Alignment

Perhaps the most fundamental analysis problem in compiaehigs is to find the correct
orientation of a model. While humans have no difficulty inifosing objects (e.g. on
shelf), computers have no obvious way of telling which waiug’. One simple method
of approaching the problem is to note that many objects hawagleft-right symmetry.

Thus, finding the largest symmetry of the model and using thadeft-right axis is a

CHAPTER 1. INTRODUCTION 7

3) 4) (7) (8)
Figure 1.4: In this example we demonstrate the problem ghatent. At left, the airplane
models are not aligned. At left, we have aligned them usimgrsgtry considerations.
Note how all the airplanes have perfect left-right symmatrg relatively strong up-down
symmetry.
good start toward solving the problem. An example of thishondtcan be shown in
Figure 1.4, where the airplane models are automaticaljynatl using their perfect left-

right symmetry. In section 4.1 we discuss a more robust waglign models using

symmetry.

1.2.2 Matching

A key component of retrieving 3D content from a database pos#ory is the ability

to efficiently search for a desired model. To this end, masydemethods have been
proposed that enable querying for a desired 3D shape. Wixtebsed queries may be
available if the database is tagged or classified, a morerglemethod of searching uses
a 3D input model as a query, and attempts to retrieve sintilapss from the database.

An example of such a query can be found in Figure 1.5. The ugerts a car model as

CHAPTER 1. INTRODUCTION 8

Query Database Result

Figure 1.5: In this figure we show an example of shape matciihigft, the user inputs a

3D model of a car as a query. The system then searches thralagalzase of 3D models
for a similar shape (center), yielding another car modghfii

a query (left), the system then compares the model to all imad¢he database (center).

Finally, the system returns the model that is most similegh¢). In Section 4.2 we

describe a method that uses symmetry information to impmostehing.

1.2.3 Viewpoint Selection

Finally, an interesting analysis problem is to find the besgation for displaying a 3D
model. Suppose that you wanted to make a catalog of 100 sbjem which direction
would you take the photograph for each of those objects? ¢tid®e4.3 we show how to

use symmetry information to find the best direction autooadly.

CHAPTER 1. INTRODUCTION 9
1.3 3D Editing Applications

Shape analysis leaves the object untouched, but many applis require that editing
operations be preformed on the object, such as smoothiieg)gsl or distorting. The
importance of symmetry to the utility of an object (e.g. &nes need to be left-right
symmetric) means that we frequently wish to retain the symnaharacteristics of the
object through the editing process, and so the addition winsgtry information to the
editing algorithm will automatically improve the resultstbe operation.

In this work we show how to use symmetry information to imgrdwo editing

applications: Remeshing and Segmentation.

1.3.1 Remeshing

A typical problem in 3D modeling is that the data-sets canvgey large. This is a big
concern of applications that require rapid computation@Dm®dels, such as interactive
rendering, editing, or physical simulation. One solutifte employed by such applica-
tions is to firsremeshthose models, simplifying them while closely approximgtiheir
geometry, curvature or other properties. An example of sanfeshing can be found in
Figure 1.6, where the model of the hippo is remeshed to haverfpolygons while still
preserving the features of the original shape. Since synyroah be an important feature

that we would like to preserve, we show a method for explidtling so in Section 5.1

1.3.2 Segmentation

Any serious editing tool must have some way to let a useraplibject into parts, even if

it's only by allowing the removal of individual trianglesntart segmentation algorithms

CHAPTER 1. INTRODUCTION 10

Figure 1.6: In this figure we show an example of remeshingeftle show the original
model of a hippo. At right we show the simplified model. Notetsamplified the model
retains the left-right symmetry of the original.

automatically find optimal cuts, splitting the model intduitive components. Section
5.2 demonstrates a method using symmetry to segment madelsatically.

The remainder of the thesis will be organized as follows: Webggin by discussing
previous and current work done with symmetry in chapter 2mllelescribe the Symme-
try Transform in detail in chapter 3, and discuss methodsextmacting useful information
from it. In chapters 4 and 5 we will describe improvements tmmber of analysis and

editing applications using the symmetry transforms, andw¥econclude in chapter 6

with some discussion and future work.

Chapter 2

Symmetry

Symmetry is an important feature of almost all shapes: ypeartry man-made object
contains at least one plane of perfect symmetry, and mostalaibjects exhibit near-
perfect symmetries (look around your office and count thersginic objects). This
prevalence combined with the importance of symmetry to thredm visual system [14],
has made it an important avenue of research. As such, ovéadhéew decades there
have been numerous methods proposed for detecting and mmgagarious forms of

symmetry in 2D and 3D.

2.1 Perfect Symmetries

The simplest form of symmetry is perfect symmetry or whdbgeot symmetry. For
objects that contain perfect symmetry, applying the symyrteinsformation causes one
half of the model to be exactly mapped to the other half. Faticis reasons, perfect

point symmetry can only happen about the center of masssgeadtational symmetry

11

CHAPTER 2. SYMMETRY 12

can only occur about an axis going through the center anegeaéflectional symmetry
can only happen with a plane passing through the center af.mas

Because of this constraint, perfect symmetries are thegasi search for, and many
efficient algorithms have been described for finding whddgect symmetry.

The earliest works on symmetry detection [3, 50, 55] redubedproblem to the
detection of symmetry in circular strings and then usedstubg matching algorithms
to detect the symmetries by exhaustively searching foamtss of a string within
the concatenation df with itself - tt. While this method is robust, searching through
all possibilities can be prohibitive for large models. Ratithan using an exhaustive
search, [34] use an octree representation to efficientlscedar possible candidates of
the symmetry plane. Other methods include using the exteGdeissian image [46] and
the singular value decomposition of the points of the modg2] [n order to efficiently
find symmetry planes.

More recently, Martinet et al. [33] have introduced a methaded on generalized
moments to detect perfect symmetry in 3D shapes accurdtbesir approach combines
the property that even order moments contain the same symemas the model with an
efficient method for calculating moment coefficients usirgpherical harmonic decom-
position.

While perfect symmetry is an important feature of 3D modelg limited in how
well it can describe a model. In the first place, most modelsagihtain only a single
plane of perfect symmetry. Having two planes of symmetnallgumeans that the model
is rotationally symmetric, and only very simple shapes likdbes have three or more
perfect planes of symmetry that do not all intersect alorgstéime axis. Furthermore,
in order to have perfect symmetry there must be no noise imibeel. Depending on

the algorithm used, small amounts of noise or tessellatifiarence in the model can

CHAPTER 2. SYMMETRY 13

prevent detection of otherwise perfect symmetry. Finalllgrge class of models are not
symmetric themselves (i.e. do not have perfect symmetwy)aile composed of parts that

are symmetric. For these types of models we require locafrsstny.

2.2 Local Symmetry

Local symmetry occurs when an entire object is not symmgdtitcontains some portion
of it that is perfectly symmetric. A good example of model @oning local symmetry
is a motor. The motor itself is not symmetric, but it contamany parts such as axles,
cylinders and gears that are all perfectly symmetric.

As a recent example, Thrun and Wegbreit [47] detect perfeonsetries in scanned
models by explicitly searching ever-growing sets of pointsle maintaining a list of
possible rotational and reflectional perfect symmetrias.this way, scans of models
composed of symmetrical parts may be completed by extenk@wpeasured symmetries
to the entire model

Further methods are available for describing local symiegtvith a respect to a
point—e.g., the medial axis [6]. However, since these nedhmonsider only perfect
symmetries, they are unstable with added noise or missitegathal fail to recognize the

potentially important cues of imperfect symmetries.

2.3 Approximate Symmetry

Rather than describing symmetry as a discrete property (eehuan be 'symmetric’ or
'not-symmetric’), In the last decade, methods have beewiged for measuring imper-

fect symmetries. Given a 3D model it is possible to descriveafgiven transform the

CHAPTER 2. SYMMETRY 14

degree of symmetry a model has. A fully symmetric object wWdwdve 100% symmetry,
while non-symmetric objects would have 0% symmetry for trextsform. For example,
Zabrodsky et al. defined tlsymmetry distanoaf a shape with respect to a transformation
as the distance from the given shape to the closest shape geatectly symmetric with
respect to that transformation [54, 53]. They provide amwligm to find the symmetry
distance for a set of connected points for any given reflectivotational transformation.
Their method however, considers symmetry with respect tp @me point or plane at a
time, and thus not efficient for general cases where appieisymmetry is required for
a large set of transformations.

Mitra et al.[35] search for approximate reflectional symmypet 3D polygonal models
by sampling pairs of points on the model. Since for each pairet is exactly one plane
that reflects one point onto the other, each point pair clates a “vote” for that plane.
They then cluster these votes to find the strongest plangguhstry and show how to

use this information for segmentation and compression.

2.4 Symmetry Measure

Kazhdan et al. used the same continuous measure of impsyfechetries to define a
shape descriptothat represents the symmetries of an object with respedt ames

and rotations through its center of mass [24, 26]. Their wethegins by defining the
symmetry distancef a vectorv with respect to symmetry transforyras the distance to

the nearest vectarthat is symmetric with respect {0

SD(vy)= min [v—ul.
uly(u)=u

CHAPTER 2. SYMMETRY 15

Using the fact that vectors symmetric with respecj éve a subspace, they show that
the nearest symmetric vector is the projectiow ohtoy. Since the space of reflectional
symmetries is orthogonal, this means that the projectionaitoy is the average o¥

andy(v). Thus

V+Yy(V)
2

vyl

v
2

SD(Vv y) =

Since we want the symmetry distance to be no greater thamsditftance is normal-

ized.

Finally, in order to obtain the symmetry measure, they cemgent the distance.
SM(vy) = 1-SD(vy) =

SP(VY) V=YW

IvI[> vz

M2 = 2v-y(v) + [1I*

1—
4|\vif?

Obtaining a function that is 1 whanis itself symmetric with respect tpand 0 when
Vv is anti-symmetric.

In the next section we will show how we use this formulatiohaltasis for computing
transforms for capturing the symmetry around every poiSfl{Pand every plane (PRST)

in a 3D model.

Chapter 3

Symmetry Transform

Having precise definitions for continuous symmetry allovesta describe a specific
partial or approximate symmetry in a model. However, mostdet® contain multiple
symmetries, and many applications often require a holigtiderstanding of a model,
encompassing most or all of those symmetries to work welbréter to capture an entire
such range of symmetries in a model, we define the notion oharstrytransform a
function that measures a class of symmetry over an entiremod

In the following sections, we explore transforms for two syetries: ThePoint
Symmetry Transforrand thePlanar Reflective Symmetry TransforrRortions of this
work were performed in collaboration with Philip ShilandeRsey Golovinskiy, Szymon

Rusinkiewicz and Thomas Funkhouser, and were previoudilighed as [39].

3.1 Point Symmetry Transform (PST)

In this section we describe the Point Symmetry Transfornewshow to compute it

efficiently, and discuss it’s possibilities and limitateon

16

CHAPTER 3. SYMMETRY TRANSFORM 17

3.1.1 Defining the PST

The Point Symmetry Transform is a mapping from a scalarediwnctionf defined
over ad-dimensional space of points to another scalar-valuedimmP ST over the same
space, such that the scalar value associated with eachipainteasure of’'s symmetry
with respect to that point.

Following the work mentioned in the previous chapter by B4, 26] on symmetry,
assuming we have rasterized our surface to a volumetriciomé, we define the Point
Symmetry Distanc®SD(f, p) of f with respect to a poinp as thel, distance between

f and the nearest function that is invariant to the reflectiwaugh that point:

PSDf,p)= min ||f—qg|.
of.p) = min |t =gl

WhereP is the reflection through the poipt
Since the symmetry distance lies between 0afjdand provides a measure of the “anti-
symmetry” of the shape with respectpgpwe complement it and divide by the magnitude

of f, to produce a normalized symmetry measure for our PST, sath t

PSD¥(f,p)

PSTZ(f,p):l— HfHZ

As before, the nearest symmetric functionfts simply the average df andp(f)

PSD(. P) — Hf_ f+P<f>H =l

2 2

Combining the two equations, yields

PSD(fp)_, [[f-P(D)|?
HE ZHE

PST(f,p)=1

CHAPTER 3. SYMMETRY TRANSFORM 18

12 =2F - P(F) +[IP(F)]2

1

4 t]I2
If fisnormalized, thefiP(f)||=||/f|| =1 (since norms are preserved by reflection), and
we obtain
PST(f.p) =1 1-2f-P(f)+1_ 1+ f-P(f).

4 2

Thus, we obtain the required resultRST(f, p) = 1 if f is perfectly symmetric with
respect top, O is f is perfectly anti-symmetric with respect f{§ and an intermediate

value for partial symmetries.

3.1.2 Computation

As we have shown in the previous subsection, the calculatidghe symmetry measure

for a single point reduces to the calculation of a dot prothetiveenf and its reflection:

D(f,p)=f-P(f).

Since we have already rasterized the model to a volumetid¢ grsimple algorithm
for computing the PST would be for every point, sum the prodfieach pair of corre-
sponding elements.

Thus, to compute the PST(f) we would do the following:
for eachpointpin f:
for each pointx:
X «— P(x)

PST(f,p) += f(x)- f(X)

CHAPTER 3. SYMMETRY TRANSFORM 19

Note that for 2D this method tak€¥n?) to compute the PST for each point onram
grid (O(n®) in 3D). To obtain the full Point Symmetry Transform, this e computed
for O(n?) points O(n) in 3D), yielding a total algorithmic complexity @(n*) (O(n®)
in 3D). Obviously, this is prohibitive for large sized grids

Instead, we use the following method to efficiently comptie PST. Note that for
point symmetryP(x) =2 x (p—X)+X= 2p—x. We find that computing the PST for a

given p through allx at once

PST(f,p) = (2p—x)x

Thus computing the PST for gilat once may be given by

PST(f) = Z(Zp—x)x
P

Or a convolution off with itself. This immediately suggests a more efficient noeth
for computing the PST: Instead of computing the transfornef@ry point separately, we
use an FFT to convefftto the frequency domain and do a dot product there. Running an
inverse FFT on the result yields the complete PST. The totalutation for this method
is O(n?log(n)) for 2D andO(n%log(n)) for 3D.
Computation time:

By computing the PST over the entire volume at once, we arstaldbtain the PST
of models efficiently. For example, for a $4rid resolution, computing the PST takes a

4 seconds in Matlab on a 3 GHz processor

CHAPTER 3. SYMMETRY TRANSFORM 20

3.1.3 Properties of the PST

In this subsection, we present experimental results ainmedauating the stability of
the PST in practice. We performed a set of experiments witiple shapes perturbed
by several common transformations, such as rotation, sadtkng noise, adding a small
feature, and deformation.

Figure 3.1 provides empirical evidence for the stabilityred PST. Looking at the top
row of images (Figure 3.1a), we see that it trivially trats$a scales, and rotates with
the input. While our algorithm could potentially introdusmall sampling artifacts, since
it rasterizes the input contour into a regular axis-aligged and stores the PST for a
discrete set of points at regular angular intervals, we ddind this to be a significant
problem in practice.

Looking at the second row of images, we took a shape and agphell perturbations
to the boundary. Note this result is shown empirically forimme 2D example in
Figure 3.1b, but since we compute a GEDT on the surface, theeilsotion of any small
change is minimized.

Finally, the bottom rows, we see how PST varies with largéaserdeformations. In
(Figure 3.1c), the change to the PST is gradual when a sqe#&wents into a rectangle.
This continuity property is guaranteed by the fact that syimmgnmeasurdPST(f, p)
is defined as an integral over the entire functibrior every point (Equation 3.1.1).
Therefore, the impact of any perturbationft@n PST(f, p) is limited by the magnitude
of the perturbation. In (Figure 3.1d) we see a limitationha PST in the sense that point
symmetry measures only rotation of 180 degrees around & poithe example shown,
even though all the polygons have strong symmetry in theitezgpolygons that have an

even number of faces contain strong symmetry along theakite polygons that do not

CHAPTER 3. SYMMETRY TRANSFORM 21

+ T

(a) Similarity transformation

(b) Small perturbations of the boundary

i

(c) Large deformations (changing aspect ratio)

® O ©

(d) Increasingly fine tessellation

Figure 3.1: Visualization of the PST for several simple 2@@s. These examples show
the variation of the PST for several common boundary peatiohs.

CHAPTER 3. SYMMETRY TRANSFORM 22

have an even number of faces will not contain symmetry albagkis, but instead have
a gradual increase in symmetry as you get closer to the center

The method used to visualize these PST is the same as showguire .2 — the
original 2D shape is shown in black, and each point of the B®ifawn shaded according
to its symmetry measure. A dark colored point thus represgmiear-perfect symmetry,
while lighter, more fuzzy regions represent points withtigaisymmetry. In order to
highlight the most significant symmetries, this visual@atuses a nonlinear mapping of

symmetry to intensity corresponding to a power law with apament of 4.

3.2 Planar Reflective Symmetry Transform (PRST)

Unlike the Point symmetry transform, which is a mapping frone function over al-
dimensional space to another function over the same sgecBldnar Reflective Symme-
try Transform is a mapping from a scalar-valued functiatefined over a@-dimensional
space of points to a scalar-valued funct®RST f,y) defined over thel-dimensional
space of (hyper-)planes. This difference causes additcmmaplexities in computing the

PRST, which we will discuss in the following subsections.

3.2.1 Defining the PRST

Once again, we assume that we are given a 3D model that isizast¢o a volumetric
function f. We define the Planar Reflective Symmetry DistaR&SDO f,y) of f with
respect to a plane reflectigras thel; distance betweemf and the nearest function that

is invariant to that reflection:

PRSOf,y)= min [/f—g.
aly(g)=9

CHAPTER 3. SYMMETRY TRANSFORM 23

Since the nearest symmetric functigto f is again the average dfandy(f), we can
follow the same logic we used for the PST(Equation 3.1.1fgiong a final result of:
1 fey(f)

PRSTP(f,y) =—"

As with the PST,PRST(f,y) = 1 if f is perfectly symmetric with respect tg O
if fis perfectly anti-symmetric with respect yp and an intermediate value for partial

symmetries.

3.2.2 Storage

Given a scalar functiori over ad-dimensional space, our goal is to record symmetry
values for all planey in thed-dimensional space of planes. To reach this goal, we need
to discretize the space of planes. In general we want ounpagization to match the
resolution of the input function; finer sampling will yielemdditional information orf,
which is band-limited. Moreover, we would like our paranm&tion to be as uniform
as possible, in the space of planes.

To satisfy the above criteria, we discretize the space ofgddy their normals and
by their distance from the origin, which we chose to be thaerenf mass. Thus, when
working in 2D, for ann-by-n grid, we use a uniform parameterization of the set of lines
by their angle® € [0, and distance from the center of mass [—rmax 'ma{ With n
values in each dimension. We made the slightly unusual etafiangles on a semicircle
with both positive and negative radii because using onlyitpesradii would create a
singularity at the origin. The origin is important becaub@erfect symmetries must pass
through the origin and we wish to capture them accuratelgil&ily, we parameterize

planes in 3D by the spherical coordinates of their nornBads|0,11/2], ¢ € [0, 21] and

CHAPTER 3. SYMMETRY TRANSFORM 24

distance from the origin € [—rmax 'max, Usingn values in each dimension. While in 2D
we could achieve a perfectly uniform discretization, in 8B tbuckets” of planes are not
of uniform size, shrinking towards the poles as&iWe will take this into account when

we show how to compute the transform in the next subsection.

3.2.3 Computation

As we have shown above, computation of the symmetry measura single plane

reduces to the computation of a dot product betwkand its reflection:

D(f,y) = f-y(f).

As with the PST, a naive algorithm for computing the transfevould be to evaluate
PRST(f,y) for every possible plane of reflectignseparately. Since there a@n3)
possible planes throughrex n x n grid, and the evaluation of a dot product over the grid
for each plane required(n?), the total complexity of this brute force algorithmQ@%n®),

which is prohibitively expensive for most applications.

Convolution Rather than evaluating the PRST for each plane separatelgote that
PRST values for planes with the same orientation requirgoamtucts of functions suc-
cessively shifted at regular intervals with respect to amatleer (Figure 3.2a), and so we
can compute them all at the same time with a single convaiut®nce in 3D, the con-
volution for a single direction take®(n® log n), and there ar@(n?) possible directions
through the grid, the total running time of this algorithn@g® log n). Equivalently, we
can consider convolutions over rotations at a discretefgaiats (Figure 3.2b). In this
case, we use the frequency domain algorithm described jri¢2zbmpute the PRST for

all planes througl©®(n) points (Figure 3.2b). Since each invocation of Kazhdan &t al

CHAPTER 3. SYMMETRY TRANSFORM 25

(a) Sampling orientations (b) Sampling translations

Figure 3.2: Computing the PRST for many planes at once bysgipling orientations
and convolving over plane translations, or (b) samplingtfms and convolving over
plane rotations.

algorithm takegn“log n), the total running time is agai@(n° log n). A multiresolution

approximation is possible i®(n* log n) ([26]).

Monte Carlo While the algorithms discussed so far are equally efficientfl func-
tions, rasterized surfaces and point sets naturally leapaosity over the volume. In
this section, we describe a Monte Carlo algorithm for conmguthe PRST that takes
advantage of this sparsity to increase efficiency.
Our discussion of the algorithm begins with the brute-fapproach presented above:
for each planey:
for each pointx:
X' —y(X)
PRSTR(f,y) += f(x)- f(X)
We observe that for sparse functions this is inefficientcesiit performs useless
computation whenever eithdr(x) or f(X) is near zero. Instead, we interchange the

order of computations and perfoimportance samplingh a Monte Carlo framework:

CHAPTER 3. SYMMETRY TRANSFORM 26

for sampled points:
for sampled points’:
y < reflection plane, x)
PRSP(f,y) +=w(x,X,y)- f(x)- f(X)

Intuitively, this algorithm repeatedly picks a pair of ptsrand “votes” for the plane
between them. The sampling afand X is performed according to the energy in the
function f, allowing us to focus effort on computations that will cobtite to the final
answer. For a typical 3D surface, non-negligible valuesapn onlyO(n?) voxels, and
thus this algorithm requires onf(n*) operations to compute the entire PRST.
Weighting: In order for the above algorithm to compute the PRST cowedtlis
necessary to weight the contribution of each “vote” appaiply. This is the role of
the functionw(x, X, y), which consists of two terms. The first term accounts for the
importance sampling that we perform, and is simply the recial of the probability of

having selected andx’:

1

WeamgX X, V) = 5o

The second term representsh@ange-of-variablesaccounting for the two different ways
we have of sampling the space of planes: as a pair of pointS) and with our discretized
bins over(r, 8,). While part of this change-of-variables term is intuitiae¢ounting for
the sinB decrease in bin size), another part accounts for the fatbtha of planes will
receive more votes it andx' are far apart than if they are nearby. For example, both
parts of Figure 3.3 consider the same single bucket of plathesever, for a fixed, it is
clear that more pointg will vote for that bin if the points are further apart, so west

weight the contribution of such pairs lower than votes byrbggoints.

CHAPTER 3. SYMMETRY TRANSFORM 27

Figure 3.3: The efficient Monte Carlo algorithm selects a péipoints and votes for
the plane between them. The vote must be weighted, accguiatirthe fact that as a
point is father away from the plane of reflection, the charfdinding a reflection point
is increased (the size of the blue area is larger when thegaia farther apart).

To derive the change-of-variables weight, we simply coraplé determinant of the

Jacobian of the transformation between the parameteaizafi the planes of reflection

and the reflected points themselves. If we let

sinBcosp
A= sinBsing

coso

be the normal of the plane of reflection, then we can write

CHAPTER 3. SYMMETRY TRANSFORM 28

d = |x=X|
= 2(r—n-x
X = x+di

T 1T 1
Jo= (%) (%) (%)
A

and solve for the determinant:
2 .
Wehange-of-variables— ‘J| = 2d“sin®.
Therefore, we have

W(X, X, Y) = Wsam p Wehange-of-variables
1
f(x) f(X) 2d2sin®’

So, overall, our Monte Carlo estimator is:

1 Nsamp 1
Nsamp i; 2d2sind

D(fvy):

Analysis: Although the worst-case behavior of our algorithn®i&®) if the input func-
tion f is represented on anx n x ngrid, it is asymptotically faster for the sparse functions
typical of 3D models. Good convergence can be achieved iftimeber of Monte Carlo

samples is at least on the order of the number of non-netgigdlues in the grid. So, for

CHAPTER 3. SYMMETRY TRANSFORM 29

100

—32x32x32
— 64x64x64
—128x128x128
—256x256x256

80 -

60 -

40 -

Percent Error

20 -

o T T 1
0.0001 0.01 1 100

Time (sec)

Figure 3.4: Comparison of error in the Monte Carlo approtiorato the PRST, as a
function of time. For typical grid sizes, such as the® @ed in the applications in
following sections, computing the PRST takes only a few sdso

a typical 3D surface that has non-negligible values in @iy?) voxels,O(n*) operations
(samples) are necessary to compute the PRST robustly, wigictiicantly faster than the
O(n®) brute force algorithm. Similarly, onl)(n?) operations are required to compute
the PRST for typical curves. These speedups make compu@n@RST practical for all
but the most complex 3D surfaces.

Computation time: By exploiting sparsity in the volume, the Monte Carlo algjom is
able to compute the PRST of 3D surfaces efficiently. As witiheaddomized algorithms,

noise in the final approximation decreases with additioaah@es, but as shown in

CHAPTER 3. SYMMETRY TRANSFORM 30

Figure 3.4, the algorithm converges quite quickly. For eptayfor the 64 grid resolution

used throughout this paper, computing the PRST to 1% nolsestan average of 8
seconds on a 3 GHz processor, corresponding to two milliompksd point pairs. These
results are typical - there is little variation in compubatitime, except for very large
models (for which the rasterization time can begin to dot@na~or 2D, computing the

PRST for a 128grid resolution takes less than a second in Matlab on a 3 Gétzegsor

3.2.4 Properties of the PRST

In this subsection, we present experimental results aimedauating the stability of
the PRST. We performed the same set of experiments as witSheperturbing simple
shapes by common transformations.

As with the PST, the top row of Figure 3.5 provides empirieadence for the stability
of the PRST with respect to translation, scale, and rotation

In the second and third rows of images, we took a simple shageapplied small
perturbations to the boundary. As with the PST, the contiobuof any small change is
minimized by computing a GEDT on the surface after rastédna

Finally, in the bottom row, we see an advantage of the PRST tnePST. In Fig-
ure 3.5(d), increasing the tessellation of the polygon esube PRST to behave in the
expected manner (i.e. increasing the number of symmetneplawhile in Figure 3.1(d),
the lack of 180 symmetry in odd-numbered polygons causd3$ieto fluctuate between
identifying a strong symmetric center and and having unifesgmmetry throughout the
model.

While the PRST is defined over the space of planes, in ordeivi an intuitive
sense for the information provided by the PRST, and to coenfmathe results obtained

for the PST, the visualizations for shown above are showhenoriginal 2D space. In

CHAPTER 3. SYMMETRY TRANSFORM 31

¥ % ®

(a) Similarity transformation

(b) Small perturbations of the boundary

iy

(c) Large deformations (changing aspect ratio)

®

(d) Increasingly fine tessellation

Figure 3.5: Visualization of the PRST for several simple 2iages. These examples
show the variation of the PRST for several common boundanygetions.

CHAPTER 3. SYMMETRY TRANSFORM 32

these visualizations, symmetry is measured for every pland the darkness of every
point represents the maximum of PRST values over all plaassipg through the point
(darker values represent larger symmetries). As befoeeptiginal 2D shape is overlaid

in black and we use the same nonlinear mapping of symmetnteasity.

3.3 Principal Symmetries

While the PRST taken as a whole characterizes all of an dbjgginmetries, itdocal
maximaform an important and intuitive subset. They may corresponthe principal
symmetries of the whole object, weaker or partial local syftrres, or perfect symme-
tries of parts. Due to their intuitive nature, they are inmpot for several applications,
including several of those described in Chapterss 4 and Snaiediscuss an approach
that builds upon the algorithm presented in the previous@eto find local symmetry
maxima precisely: we extract candidates for local maxiroanfthe discrete PRST, then
refine their locations using an iterative local optimizatedgorithm. This algorithm is
able to find local maxima of the PRST with arbitrary precision

Given the full 3D symmetry transform, tabulated at a moderasolution, we first
look for cells with a higher symmetry value than all their imdmate neighbors. This
yields a large number of candidates, so we apply a numbereghblds to extract only
the strongest symmetries. First, we apply a threshold osttieagth of the symmetry at
that cell. While we could use a single fixed threshold, we havgerved that portions
of the model away from the center naturally have lower symynetlues (since there is
less of the model that could potentially map onto itself urtiese reflections), so it is
more natural to uselawer threshold near the edges of the model than near the center. In

particular, we use a threshold proportional te /g, whereR is the radius of the object

CHAPTER 3. SYMMETRY TRANSFORM 33

andr is the distance of the candidate plane from the center of mESS corresponds
to the symmetry score of a plane passing at a distancdroim the center of a sphere
of uniform thickness with radiuR. On top of the symmetry threshold, we also discard
shallow maxima, which are potentially subject to noise: mpase a threshold on the
discrete Laplacian (sum of second partial derivativeshefRRST. The thresholds are set
automatically ta'/10 of the values at the strongest local symmetry.

Once we have a list of candidate local maxima, we refine thefintbthe planes
of symmetry with high precision. This approach, of findingxinaa of a function by
first tabulating it then locally refining candidate maxim&icommonly used for numer-
ical maximization in general, and also resembles the lopahozation performed by
Martinet et al. [33]. Our refinement method is inspired by lieeative Closest Points
algorithm [4], commonly used to perform pairwise alignmehteshes, but solves for a
plane of reflection rather than a rigid-body transformation

Our “Iterative Symmetric Points” or ISP algorithm begins andomly sampling
points from the mesh (we typically use around 10,000 poietstpration), then reflecting
them across the candidate plane. We match each reflectetitpdhe closest point on
the mesh, then solve for the three parameters of the refteptame that minimizes the
sum of distances (weighted to account for the Gaussian daani Distance Transform)
between corresponding points (note that the minimal sumetglted distances provides
a maximum for Equation 3.2.1 whehis the GEDT of the surface). The process is
iterated until it converges to a local maximum of the PRSguFe 3.6, left, shows an
iteration of ISP, with source points in red, the candidaéaplin gray, and reflected points
in green. The support of the final maximum is shown at right.

If the iteration causes the reflection plane to leave its(aelhe discrete PRST), the

candidate is determined to be an unstable local maximum sedrded. Of course, this

CHAPTER 3. SYMMETRY TRANSFORM 34

Figure 3.6: At left, we show an iteration ¢6P. We select random points (red), reflect
them through the candidate plane of symmetry (gray), and dioglest points on the
surface (green). We then update the plane of reflection iong& the sum of Gaussian
distances between corresponding point pairs (sampledavitiveight have been culled
in this visualization). At right, we show the support of thefilocal symmetry maximum,
as indicated by the gray level.

should not happen if the functiohis sufficiently band-limited by the GEDT. However,
we have found this check is necessary since different pamipéing strategies are used
by the discrete and iterative algorithms.

In our experiments, this two-stage process of first tabuggtne PRST then refining
candidate local maxima has proven both robust and efficiém. local refinement con-
verges in a few seconds for each plane, and we typically fir@Q8trong local maxima
of symmetry for models of moderate complexity. Figure 3.@veh the four strongest

local maxima for a bull model, together with the surface suppf each plane reflection

(white regions of the surface reflect onto each other aciesschosen plane). Note

CHAPTER 3. SYMMETRY TRANSFORM 35

1) (2)

3) (4)

Figure 3.7: In this visualization, the triangles of the batk colored to show how
symmetric they are with respect to the plane of symmetrylaysual, with black meaning
no support of the plane reflection. Planes representingtlvestrongest local maxima of
the PRST are shown here. Note how points supporting reffec@aross planes (2),
(3), and (4) tend to cluster into regions corresponding ® rieck, body, and head,
respectively.

CHAPTER 3. SYMMETRY TRANSFORM 36

Figure 3.8: An example of principal symmetries of a 3D moeetracted from the 3D
symmetry transform. Note that these capture the partiabgptoximate symmetries of
the ears, head, body and legs of the bunny.

that we find planes capturing the global symmetries of thé (@l as well as separate
local maxima capturing symmetries of the neck (2), body &) head (4). Another
interesting example of local maxima can be found in FiguBe 3Vhile it is intuitively
obvious that the bunny has two major planes of symmetry (onehfe head and one
for the body), running the PRST on the model shows that therenafactfour strong
symmetries, capturing the separate symmetries of the bady, head and legs of the

bunny respectively.

Chapter 4

Analysis Applications

With the ever increasing number of 3D models available, thityato sift through a
large number of models and extract relevant informationualloem is of significant
importance. In this chapter we will discuss the ways in wiaginmetry information can

improve results for the applications of alignment, matgrand viewpoint selection.

4.1 Alignment

Assume you have models of two chairs, and you wish to know hvbree is more top-
heavy. A naive way to do this is to compare the centers of miaggdwo chairs and see
which one is higher. In a case in which the models were botlergead using a similar
scanning or modeling system this is probably correct. Unfaately, in the general case,
the models were generated independently, so there is no ftaling if the scale of the
two chairs is the same, what the “up” direction is, and if ic@nsistent. Instead, we
need a preprocess in which we align the scale, orientatidrpasition of the two chairs.

This general problem of alignment is an important step foaety of tasks, including

37

CHAPTER 4. ANALYSIS APPLICATIONS 38

visualization, studying the variation of models acros$edént classes, composition of
scenes, and indexing of 3D model databases.

In the example described above, one solution might be toalige chair to the
other. This is known apairwise alignment A more general case is when we want to
compare the characteristics of many models and pairwigarakent may be prohibitive.
Instead, we automatically align all models to some candmicardinate frame. In this
section, we will concentrate on selecting a global pointaéérence for the origin of 3D
models {ranslation alignmentand a set of axes to determine their orientatiabation
alignmenj. We do not address the scale alignment problem: we assusris greformed

using some other technique such as PCA [12].

4.1.1 Previous Work

Historically, canonical alignments are computed with pipal component analysis (PCA):
the center of mass is of the object chosen as the origin, angrthcipal axes are used
to determine the orientation [12]. However, PCA does nolagbvwproduce compatible
alignments for objects in the same class. Specifically, P@ésghe direction of maximal
variance in an object. Since variance is a function of thieadise squared, the orientation
produced by PCA tends to be overly influenced by small arettsecfurface far from the
center. As an example, consider the drawings of the mugsrsimowigures 4.1. Even
though the mugs look identical to each other with the exoeptif the shape of their
handles, the principal axes (shown in green in Figure 4elywadely different, producing
inconsistent alignments undesirable for most applicatidiote that the center of mass is
similarly affected, though to a lesser extent.

A second weakness of using the center of mass + PCA is thateityrproduces

alignments similar to what a human would select. Again, mershe mugs shown in

CHAPTER 4. ANALYSIS APPLICATIONS 39

Figure 4.1: A line drawing of a mug with and without handlebeThe center of mass and
PCA axes are drawn in dotted green— note that they move damend the presence
of handles. A visualization of the PRST is overlaid on thendings, and the center of
symmetry and principal symmetry axes are shown in solid rebey-remain stable under
perturbation of the shape.

Figures 4.1 and 4.2. Most humans would suggest that theatewxis of these mugs runs
straight up and down through the middle of the cup, and théecesrsomewhere along
this axis. However, in all cases shown, the center of masgsandipal axes are biased
towards the handle to different degrees.

Using symmetry to align classes of models was first suggdstéczhdan et al. [24,
25]. As mentioned in Section 2.4, they created a symmetrgrgesr to measure the
reflective symmetry of an object through all planes pasdingugh the center of mass.
They used the symmetries of the model for rotation alignrbenstill used the center of
mass for translation alignment. While they got improvediltssin their experiment, a
weakness of their approach is that they only capture synyrpassing through the center
of mass. Since any perfect symmetry passing through thercehtnass in the original
model is provably captured by PCA as well, the improvemenhealignment of those

models is not great. For models where the principal symeetio not pass through the

center of mass, the symmetry transform is needed.

CHAPTER 4. ANALYSIS APPLICATIONS 40

wow

Center of mass and PCA

v

Center of symmetry and principal symmetry axes

Tt

Center of mass and PCA

21t

Center of symmetry and principal symmetry axes

Figure 4.2: Alignment for translation and rotation basedcenters of symmetry and
principal symmetry axes, as compared to center of mass ad PCeach case, the
red, green, and blue lines represent the first, second, a&adptfincipal axes, and their
intersection is the computed center.

CHAPTER 4. ANALYSIS APPLICATIONS 41

More recently, Fu et al. [15] proposed a method for findingupeght orientation
of man-made objects by searching through all possible Has#se object and applying
learning techniques to quantify how “stable” each possiientation is. Acknowledg-
ing the prevalence of left-right symmetry, especially inmamaade objects, an explicit
component of their metric is an approximation of the reftatal symmetry of the object

with respect to planes perpendicular to the ground.

4.1.2 Symmetry Transform

Our intuition for using symmetry to align classes of modslbased on the premise that
the shape of an object is very dependent on the fact that wearia physical world.
Consider that a bird without left-right symmetry would nat &ble to fly well, or that
building gears without rotational symmetry is not a simplekt Based on this insight, we
hope to show that not only is symmetry a good candidate fgnalg models consistently,
but that the resulting alignment will be one that is alsoitnta to humans.

We begin by introducing two new concepts, tirancipal symmetry axe@SA) and
thecenter of symmetrlCOS), as robust global alignment features of a model. tingly,
the center of symmetry is a point around which the symmefgyaatest, and the principal
symmetry axes are the normals of an orthogonal set of plaitbswaximal symmetry
passing through that point.

Specifically, given a PRST, we find the plane with maximal syatrgn(the point in the
function with the highest score), and choose its normal tthbdirst principal symmetry
axis. We then select the second axis by searching for the plegh maximal symmetry
among those perpendicular to the first. Since the third axistine perpendicular to the

first two axes, these two planes are enough to create a cahawtiation. In order to find

CHAPTER 4. ANALYSIS APPLICATIONS 42

the center of symmetry, we find the plane with maximal symynitat is perpendicular
to the first two planes. The intersection of the three plasesir center of symmetry.
We find that this simple method produces coordinate framas are indeed both
robust and semantically meaningful for most objects. Rigfgrto the examples men-
tioned above, for the mugs shown in Figures 4.1 and 4.2, theecef symmetry and
principal symmetry axes appear right in the middle of thendyical cup in all cases.
Similarly, for the mailboxes shown in Figure 4.2, the certesymmetry and principal
symmetry axes consistently reside in the middle of the boxttike the center of mass
and principal axes, they are not affected by the shapes aftéimels. In general, we find
that the principal symmetry axes and center of symmetry aterchined by an object’s
large parts with significant symmetries, and thus they ¢yosgtch our intuition of an

object’s canonical coordinate frame.

4.1.3 Results

We ran a number of tests in order to measure the robustnegsnohetry-based align-
ment. In the first test, we experimented with alignments otlsgtically generated range
scans of objects. This experiment is motivated by an obgmgnition application in
which (partial-object) scans are acquired and registeréd/hole-object) meshes stored
in a database, with the hope of automatically recognizingkwvbbject was scanned [43].
For this application, it is useful to align the partial scartlite complete object automati-
cally.

For the experiment, we used a ray tracer to generate eigttetymirange scans of
approximately 10,000 points (Figure 4.3, top) for the 90&hes provided as part of
the Princeton Shape Benchmark test set [44]. For each nfeskirtual scanner was in

turn placed at each of the eight corners of a cube surrounidengnodel, always pointing

CHAPTER 4. ANALYSIS APPLICATIONS 43

(Center of Symmetry) (Center of Mass)

Figure 4.3. To evaluate the stability offered by symmetagdd alignment in a scan
recognition application, we computed eight virtual scaif80¥ models (top two rows of
images), and for each computed coordinate frames usingyoumstry-based approach
and PCA. Note how the centers of symmetry computed from thiggpacans (shown as
cross-hairs) cluster near the center of the whole car bibiderdo the centers of mass.
toward the center of the mesh bounding box. The view distarasetwice the length of
the bounding box diagonal, and the field of view waé fadians (Figure 4.3 top). For
each scan, we voxelized the point cloud, computed the PRSI @#x64x64 grid, and
extracted the principal symmetry axes and center of symyn(Eigure 4.3, bottom left).
Then, we evaluated how well the coordinate frames compuie@dch of the partial
model matched the frames computed for the complete meshesth&i ran the exact

same experiment, using the traditional principal axes tereri mass (Figure 4.3, bottom

right).

CHAPTER 4. ANALYSIS APPLICATIONS 44

— Center of Symmetry — Principal Symmetry Axes
— Center of Mass — Principal Axes

40 -

20 1

Percent of models
w
Percent of Models

0 T T T \ 0 T T |
0 0.2 0.4 0.6 0.8 0 5 10 15
Distance from center Average Angle Difference
(a) (b)

Figure 4.4: Histograms of translational (a) and rotatigbamisalignment in our virtual-
scan experiment. In blue we show alignment based on censgnuhetry and PSA, with
center of mass and PCA in green. Larger values near the leftatf graph indicate better
matching performance.

Figure 4.4 shows the results of this experiment. In the filst, pve see histograms
of the translational misalignment between the partial easgans and the whole objects
when aligned with the center of symmetry (blue curve) andezesf mass (green curve).
In general, the partial scans were sufficient to recover thnsymmetries of the object
correctly, leading to lower average errors for centeryofuetry alignment as compared
to center-of-mass. Of the 907 models tested, the centenuistry for a scan was closer
to that of the entire model 90% of the time. On average, thagwmser by a factor of
1.5, with better results occurring when a particular vieimpoaused significant portions
of the model to be missing.

Figure 4.4b shows histograms of the rotational misaligriroéthe partial scans with
respect to the full object when aligned with principal synimexes (PSA) and with
the principal axes (PCA). Note the large peak near zero ibline curve, indicating that
PSA recovered the rotation for most range scans to withiwalégrees of that computed
for the entire object. In contrast, PCA provided a largeeagrof misalignment angles.

Moreover, even though less than half of the surface wasabtaiin any scan, we found

CHAPTER 4. ANALYSIS APPLICATIONS 45

that the coordinate frame chosen with PSA was within 5 degoé@ human chosen set

of axes for the whole object in 70% of the scans, as opposealydb0% for PCA.

4.1.4 Limitations and Future Work

There are a number of limitations of using PSA. As in the cd4e@A, the main lim-
itation of this method is that axes are only defined up to refiac Specifically, the
coordinate system obtained by our method is invariant tecefin of the model through
its center. In order to overcome this, we use the same solstiggested by [12] and
define “right” (“up”, and “out” respectively) to be the sidettvthe most mass. A second
limitation of the method is that the algorithm for choosihg planes is greedy. Especially
in the case of partial models, rather than choosing the fiestepindependently, a more
robust method might be to find the intersection of three @ytimal planes the contain the
most symmetry. The problem with this alternative methodhét the brute-force search
over the entire PRST to find such a point would t&k@b®) in the size of the grid. A
more efficient method to find such points is in the realm of feitrork. Finally, another
venue for future work is to combine PCA and PSA, as each okthosthods measures a

slightly different quality of the model.

4.2 Matching

Over the last two decades, the ever increasing availabfii® content online has caused
a shift in the general approach people use to create digibaleis. In the past, most

digital models were created from scratch; by combiningdabiapes such as spheres
and cubes to create progressively complex forms, applyirtgat modeling tools to

basic shapes to sculpt a form, or by scanning a real-world ®det Now that large

CHAPTER 4. ANALYSIS APPLICATIONS 46

databases of models (in many cases professionally createtdxtured) are prevalent, a
more common approach is to search for models that are of #yesiequired or that are
similar enough to the desired shape so that simple modditatiffices. This is especially
true for mechanical designs, where the option of using iejstomponents is a serious
consideration.

In this context, a very interesting question is “given a éadatabase of 3D content,
how do | find a model that has a shape similar to the one | am thgotar’? While a
textual search may yield models that have the appropriételdaadded, and in certain
cases searching based on color and texture may suffice, @r twdsolve the general
problem, some method for comparing the shape charactsraftBD models is necessary.

To address precisely this issue, over the last few yearsjetyaf retrieval algorithms
have been proposed that enable the efficient querying of megesitories for a desired
shape. Typically, the query is in the form of a 3D model, argbathm returns a list of
models from the repository that it has computed to have aimsthape characteristics to
the query model. As with any general database retrievaliGgmn, the two principal
concerns of such an algorithm are to discriminate betwetereint classes of models
effectively, and to compute matches efficiently in both gpaicd time.

In this section we will examine some of the traditional algons used for shape
matching, discuss the motivations and characteristichade algorithms, and explore

using the PRST and symmetry information in order to imprdwegpe matching.

4.2.1 Shape Descriptor

In practice, most shape retrieval algorithms us@ape descriptofor matching, a repre-
sentation of shape that can be matched efficiently, and ctadpobustly. Typically,

such a descriptor is a vector of fixed dimensionality, mak&agh model a point in

CHAPTER 4. ANALYSIS APPLICATIONS 47

an N-dimensional descriptor space. This approach has tentafe of reducing the
computation of similarity or “distance” between any two retsdto computing the dis-
tance between two points, often (but not always) using a leirfpiclidean distance
metric, generally satisfying the efficiency requirementted application. Furthermore,
the descriptor for every model in the database may be compuiz preprocessing step,
making the actual retrieval step even simpler.

In order to create a robust shape descriptor, the value®iddhlcriptor must capture
the shape characteristics of the model and not be suseeptilvioise or other modifi-
cations that do not affect our perception of is shape. Onaekey difficulties arising
from this requirement is that humans identify shapes adaimven under various global
transformations. For example, consider the car models gurgi4.5. Even though
some are rotated through various axes, or scaled by varmoosras, a human will still
identify them all as having a similar shape. Thus, a majotlehge faced by a shape
descriptor is to effectively measure the minimal distanetveen two shapes over the
space of all such transformations. In general, there asetbolutions to this challenge:
an exhaustive search over the entire space of transfomsatiormalization of the models
into a canonical coordinate frame so that the models may tmratically assumed to
be optimally aligned, and creating a shape descriptor thatvariant to that class of
transformation. In practice, exhaustively searching a@kierspace of transformations is
prohibitive and so most shape descriptors use one of thamergawo solutions for each
of the basic similarity transforms: Translation, Rotatiand Scale.

In the next subsection we will review some of the shape detgs in common use.

CHAPTER 4. ANALYSIS APPLICATIONS 48

3D Model Search Engine

A Sheieh P Skl e Comepasa Brare [FHap

+ e I I
.

Ko s: g
By,

TS 2 ke A hiials 1 arsagiom
il sl by #hagn Hiesd devile sinps F i ahon i g Fined waralan 3 bagn

Lo
Framn
Ll L
R =
. 9. = B ohhied V. et
Fired shpsibis saame Fiad sy s Flmal phvdon s

S

el T LIS A [RIE Iah e
L E L FTERT Himal aboriatia) il il aduie st Fimd staptas s hipis

Figure 4.5: While these cars have different sizes, rotatiand color, they are all

considered to have similar shape. A robust matching algyoriteeds to account for such
transformations when producing a similarity metric. (iraagourtesy of the Princeton
Shape Repository).

4.2.2 Previous Work

A basic approximation of the shape of a model can be computestidning a histogram
of the surface points, either as a function of the distarm fihe center of masshell3,

as a function of the spherical anglg€gctor$, or a combination of both. These types of
approximations were first used by Ankerst et al. [2] to adsltee challenge of protein
matching, and have the advantage of being translationiamaiUsing the distance from

the center of mass gives an invariance to rotation and usi@gpherical angle allows

CHAPTER 4. ANALYSIS APPLICATIONS 49

invariance to scale. Typically, such a histogram is stored iseries of “buckets” to
ensure robustness to noise, with the values in the buckeslpp smoothed.

As an extension of the Shells and Sectors method, Osadaj40phtlescribe a shape
descriptor that uses a histogram of distances between-pairg (and areas of point-
triples, etc.) on the surface of the model. As with the Shelkthod, theD2 Shape
Distribution method is translation and rotation invariahittrough a series of experiments
using various model databases available online, they shatin&hape Distributions are
both robust to noise and able to discriminate between dasfsaodels.

Horn [21] proposed a shape descriptor known as the Extendad<gan Image (EGI)
that represents a 3D model by a spherical function. Given aragidgle model, EGI
computes for every point on the surface of a unit sphere tbbghility that a random
point on the model will lie on a triangle that is facing in tlttection. This descriptor is
translation and scale invariant and is invertible for corwmdels.

For a given polygonal model, the Gaussian Euclidean Distarensform (GEDT) [24],
creates a 3D voxel grid that encompasses the model and cesnfautevery voxel the
Gaussian euclidean distance to the nearest point on thecsusf the model. Using the
GEDT as a descriptor is based on the notion that the sinyilagtween two models is a
function of the distance between corresponding points em slurfaces. Thus, the GEDT
is a voxel representation that describes not only where tirat pn the surface is, but
also how close an arbitrary point in space is to that surfabe.GEDT is not invariant to
scale, rotation or translation and must be normalized foh e those transformations.

All the above methods use local surface properties to coenpuheaning of shape.
In contrast, Kazhdan et al.[24] described an approach ukgigreflective symmetry de-
scriptor (RSD). They employed the maximum difference betwiae symmetry measures

of any two corresponding planes through the center of massdissimilarity measure

CHAPTER 4. ANALYSIS APPLICATIONS 50

for a pair of 3D meshes. Our method extends the RSD to use tmen8yry Transform

as a descriptor.

4.2.3 Symmetry

Our efforts are motivated by the observation that symmewperties are often consistent
within a class of objects (Figure 4.6). For example, althocigairs may vary in their size,
whether or not they have arms, etc., their reflective playiansetries are almost always
the same (perfect left-right symmetry, a weaker global sytnyrbetween the back and
seat, local symmetries through the seat and back, etc3.i¥ e for many other object
classes as well, including airplanes, tables, people,Rethaps it is possible to classify
3D meshes automatically by comparing their computed symesdb those of meshes in
a supervised training set.

We extend the work done by Kazhdan et al. [24, 26] by considesymmetries with
respect to all planes through an object’'s bounding volumeur matching method, we
measure the dissimilarity between a pair of aligned meshebel ? distance between
their discrete PRSTs (Section 3.2.3), weighting the diffiees between corresponding
bins of the PRST by/sin® (where® is the polar angle of the plane represented by the
bin) to account for different bin sizes. This measure pregdularge distance when there

are planes for which one object is (nearly) symmetric, wthikeother is not.

4.2.4 Results

In order to evaluate the PRST as a shape descriptor for dbesgesl retrieval and classifi-
cation applications, we ran a set of “leave-one-out” experits with the Princeton Shape

Benchmark test set [44], a database of 907 polygonal modelgipned into 92 classes

CHAPTER 4. ANALYSIS APPLICATIONS 51
y

LBk
% &
-

Figure 4.6: Symmetries can play an important role in recziggiobjects within the same
class. Note that even though the chairs have different kegyid widths, they all share
the same symmetries: perfect left-right symmetry, anchgigymmetries in the seat, leg
and back (images courtesy of Digimation).

commonly used for shape matching evaluations. In orderd¢ad@ur study on shape
representation rather than alignment, we manually regidtall models into a common
coordinate frame before matching every model against albthers. Thé 2 distances
between PRSTs were used to produce a ranked retrievallisath “query” model, and
then statistics were computed to evaluate how often mod#étinihe same class appear
at the front of the computed retrieval lists.

Figure 4.7 shows average precision-recall plots comparimgetrieval performance
with that of Kazhdan et al.’s planar reflective symmetry diggor (PRSD) and the Gaus-
sian Euclidean Distance Transform (GEDT), which is cullyeused in at least one shape

based search engine [16]. The horizontal axis of this plptesents increasing recall

CHAPTER 4. ANALYSIS APPLICATIONS 52

09 r

PRST x GEDT —— .
GEDT
PRST —— iy
RSD

0.6 f
05 | AN

Precision

0.2 |
0.1

0 1 1 1 1 1 1 1 1 1
0O 01 02 03 04 05 06 07 08 09 1

Recall

Figure 4.7: Plot of precision versus recall achieved withr fehape matching methods:
PRSD (magenta), PRST (thick blue), GEDT (green), and thebamation of PRST and
GEDT (thick red). Note that the PRST captures informatiompl@mentary to other
shape matching methods, hence can be used to augment thewralgerformance.
values (fraction of the query’s class retrieved), whilebeical axis represents retrieval
precision (fraction of the retrieved models that are in toae class as the query). Higher
curves represent better performance.

We find that the precision achieved when matching with the P@3ck blue curve)
is higher than with the PRSD (magenta curve) for every regalle. This confirms
the expectation that the extra information provided by tRSP (symmetries for off-
center planes) adds precision for shape matching. Of catirsenore expensive to store

(32,768 floats versus,D24 floats) and to compare (0.1 ms versus 0.004 ms), but the ext

cost seems worth the improved performance for most apitat

CHAPTER 4. ANALYSIS APPLICATIONS 53

()
T
O . ~no.| PRST Better
A +40% g 3 :
L= = e
S d £ &S 5z,
O Sssiie 5 =g T S5 N3 o g 228 2 = 3
b4 — 1] s = ° o=
O +20%] o 5.8 5 EEsogtf s Pomxs 880 5 B2
= £ £-5Som2082E :'“|§%§§§_E’£$§EmEEQ%Exg%@EEﬁJEE%
Z e aggagaﬁgggsgsgegsssggésgé 58 e 522585535254
prepreeereem LT THIT
c é REECEESSEERESs2S
= 20% 3 : Bo5e
8- Q1o

4] e £58
&) ? =

- 0/ £5
(- 40%- EE
(b}
O -60%
:‘JDE <4— Object Classes—» GEDT Better

Figure 4.8: The PRST provides better retrieval performaocesome classes (top),
while the GEDT is better for others (bottom). Combined, tpeyduce better retrieval
performance than either alone.

We also find that both the PRSD and PRST provide less matcheaisjpon than the
GEDT (green curve) on average. We believe that this is becemany object classes
within the Princeton Shape Benchmark have the same synasétrig., almost all man-
made objects have perfect left-right symmetry). Even tlhotigg symmetries may be
consistent within a class, they do not always help discrat@netween classes. However,
we observe that the PRST provides better matching resultsdime types of objects
(i.e., ones with distinctive symmetries), while the GED©ydes better results for others
(Figure 4.8). So, we find that combining the two shape desasgby simply multiplying
the L? distances computed separately for the two descriptors)iges better retrieval
performance than either alone (the thick red curve in Figurg¢. The nearest neighbor
classification rate and discounted cumulative gain scanethé combined method were
69.2% and 68.6%, respectively, which represent good velrperformance for this data
set [44]. This leads us to conclude that the PRST, while perimot the best shape

representation for retrieval of this type of data on its oean provide useful information

CHAPTER 4. ANALYSIS APPLICATIONS 54

for shape-based matching and can be used to discriminaiseslaf objects that are

difficult to distinguish with other methods.

4.3 Viewpoint Selection

"You are trying to build a catalog of one hundred models ofrearld objects. In order to
showcase these models, you need to take pictures of themitotpa catalog. From what
direction do you take those pictures?” This problem andrsthike it may be difficult
to solve, because 3D objects may look significantly diffexeinen viewed from diverse
directions.

Neuroscientists and Psychologists have long studied theeps by which humans
recognize 3D objects. One theory is that the recognitiorcgss is based on a number
of primary images of the same object from various viewpoiatsl that the brain tries to
make sense of the current view by trying to interpolate thprgmary images. Support
for this theory may be found in the surprise shown by peopevirig an object from a
new direction for the first time, (e.g. someone seeing theifilp in a mirror for the first
time).

Further research has shown that certain viewpoints canibdets®e preferred by
humans over other viewpoints. This preference may be medsausing a number of
criteria such as the response time or recognition error wizganing objects seen for a
short period. Other criteria include the viewpoint whiclopke say best describes the
model, or even an assignment of “goodness” to various vigwirections.

In computer graphics there have been a number of heuristopped for finding
optimal viewing directions for various problems, but tostliiate, none have included

symmetry. In this section we will explore an automatic solutfor finding preferred

CHAPTER 4. ANALYSIS APPLICATIONS 55

viewpoints of 3D models based on the intuition that symmetgresents redundancy,

and hence should be minimized.

4.3.1 Previous Work

User Studies A preferred viewing direction for an object is called a “carcal view”.
This term was first used by Palmer et al. [37]. to describe & Vimimans find easiest
to recognize and regard as most typical”. They ran a seriexériments where people
classified multiple views (top, side, front and back, as waslintermediate views of 45
degree angles) of a single object (e.g. a horse), and gajecsiub ratings to those views,
based on how well they depicted the object using a scale o¥dry‘“like”) to 7 (“very
unlike”). Further experiments gave a different set of ggpants the same set of images
in a classifying experiment. The images were shown for atgime, and participants
were asked to classify the object seen. The best resultsat¢aeed from images that
had a high ranking in the previous experiment (the prefewiedpoints). Analysis of
these experiments and others indicated that participaetemped the same viewpoints,
independent of the task. Specifically, for most models,igipents preferred off-axis
views to head-on or side viewpoints.

Blanz et al. [5] performed a similar user study to determawtdrs that influence the
canonical views chosen by humans used to display 3D modeiseir study, participants
were given a number of fully shaded digital models to viewoihe of the experiments,
rather than being given a set of images of an object from a feetdof viewpoints,
the participants were allowed to choose the viewpoint frohctv they would take a
photograph. The viewing direction was manipulated usingrae-degrees-of-freedom
input device which gave the participants full control to oke their preferred viewing

direction. Results from their experiments show that viemstaining significant visible

CHAPTER 4. ANALYSIS APPLICATIONS 56

features of the surface are preferred, and that many tiniexisf views are preferable to

front or side axis views, results similar to those found b¥j][3

Automatic Viewpoints There are several proposed algorithms in the graphics cemmu
nity to generate automatic canonical viewpoints for vasimodels:

Based on the observation that a good viewpoint is one thawvalh viewer to see the
most features of a polygonal model, Kamada et al. [22] seekibémize the number of
degenerate polygons in the image. These are polygons iruthent view whose edges
project over the each other. In order to achieve this goair thethod simply minimizes
the maximal angle deviation of the view direction with themal of the polygons in
the model. While this works well for wire-frame models, tmgthod does not take into
account the loss of feature detail resulting from occlusmoreal-world models.

A similar effort is introduced by Vazquez et al. [49]. They to find quality view-
points by maximizing the “interesting” content in a view. éhintroduced the notion
of viewpoint entropyas a method of determining how much information is conveyea b
given set of planar faces. Their method proposes that theianobinformation in a scene
is determined by the amount of faces seen (since every fataine some information
about the scene), and how well those faces are seen (detgefaees to not contribute to

the information gathered). As such, they use the metric

WhereA, is the projected area of fageover a sphere centered pt A; is the area
of the sphere, antll is the number of faces in the scene. Entropy will be maximized
when the relative area of each polygon is the same. Occlisianluded in determining

the projected area of a polygon, solving the issue of hiddefases, but the algorithm

CHAPTER 4. ANALYSIS APPLICATIONS 57

assumes that every face is equally important, and does keirtto account that certain
portions of the model may be more informative than others.

Rather than trying to classify a viewpoint by the amount ofae area it sees, Lee et
al. [28] attempt to measure the information content of eygmtion of the surface. They
note that a flat plane composed of many polygons is less irdtventhan one with rugged
features. Similarly, a portion of the surface that contaimsie reoccurring texture might
not be as important judged by its information content as gumpattern (i.e. letters). In
order to quantify the information content of a viewpointeyhook at theSaliencyof a
mesh. The saliency of a point on a mesh is found by aggregeiegurface curvature of
the mesh at that point on a number of scales. They proposefthages in the curvature
of the mesh correspond to interesting features of the surf&or a given viewpoint,
the quality of the viewpoint is determined by summing up thialtsaliency seen. Note
that their definition of saliency, is very much a local prdapesf the shape (though the
curvature may be computed on mid-sized portions of the mésin surfaces with large
variation at high frequency, may be deemed “interestinghaut really contributing to
the optimality of the viewing direction.

Finally, Abbasi et al. [1] and Lee et al. [29] are interestadinding a minimal
set of primal images of a given object (specifically a face #9]] such that any other
image of the same object taken from any viewing direction lddook similar to one
of the primal images. They accomplish this by taking imadethe object from many
viewing directions. These images are grouped by how sirthiair contours look, and
most are discarded to leave a small set that depicts thebp@ssintours an image of
that object might have from any viewing direction. Whilesthmethod doesn’t solve
the problem of what is the “best” viewing direction, one ormnof the primal images

probably correspond to canonical viewpoints.

CHAPTER 4. ANALYSIS APPLICATIONS 58

4.3.2 Symmetry

The previous methods of [22, 49, 28] for computing the optiw@wing directions are

all based on local characteristics of the model. In each, ¢aseontribution of a portion
of the model to the “goodness” of the viewing direction isepdndent of what other
parts of the model are seen in the same view. If there was agstepeating pattern on
the surface of the object, the method suggested by [28] naigtamatically reduce the
value of those points, but in general terms of informationteat, these methods all fail
to account for redundant information in the form of symmet/¥e propose to remedy
this by explicitly accounting for the symmetry of the model.

In our approach, we minimize the amount of symmetry seen.nmbdel has perfect
left-right symmetry, and we know exactly what one side loliks, no extra information
is gathered from observing the other side. However, evemnfina viewpoint for half a
model is not simple. A purely side view of the model might napture enough informa-
tion about the front or back of the model, and might contadurelant information itself
if the model has any front-back symmetry.

Our method begins with the primary symmetry of the object tnath uses the local
maxima extracted from the PRST to minimize the amount of sgtryrin the direction
of the viewer. More specifically, for each plane appearin@ &scal maximum in the
PRST, the preferred viewing direction is along the normahtoplane. We compute the
viewpoint score for a view directionasS(v) = 5 ,cw |V-U|-M(u) whereu € W is a plane
of local symmetry and/(u) is the symmetry score for that plane.

With this relatively simple scoring function it is enoughdo an exhaustive search
to find the optimal viewpoint, although a gradient descenthoe such as introduced

by [28] may be used to accelerate the computation.

CHAPTER 4. ANALYSIS APPLICATIONS 59

Score Best Worst

Figure 4.9: At left, we show the viewpoint score for each mi@dea spherical function.

The visualization is obtained by scaling unit vectors ongpkere in proportion to the
quality of the viewpoint from that direction. The imageseamter show the best viewpoint
selected by our algorithm. The images at right show the woestpoint selected.

CHAPTER 4. ANALYSIS APPLICATIONS 60

4.3.3 Results

We ran our algorithm on 22 different models, computing th&PRnN a 64x64x64 grid,
and extracted the best viewing direction for each. As carhbes in middle column of
Figure 4.9, the best viewpoint found for these object wasagd20- 35 degrees off-axis,
similar to the findings obtained by [5].

We show the results of our approach in the middle column otifeigl.9 —each
object’s local symmetries repel the viewpoint, such that final selected view is off
of the major axis of the objects. Note that even though we shbw the best viewpoint,
it is possible to extend this implementation to produce ipldt‘interesting” viewpoints
for the user’s selection. This may be done by either consigesecondary local maxima
of the viewing function (left column in Figure 4.9) or by rewneg from the computation
the planes that contribute most to the best viewpoint andgrggain. Viewpoints to be

avoided may be found by finding the minima of the viewpointdimn (right column).

4.3.4 Limitations and Future Work

Our algorithm chooses the optimal viewing direction, betrénis still a degree of freedom
in choosing the rotation around the viewing axis. In our iempéntation we always used 0
degrees rotation, keeping the original angle of the objestiaded. In practice however,
the 'up’ direction of the model should be the 'up’ directianwhich it is most commonly
found. There is no real only way to measure this with symmexpect maybe to assert
that the strongest symmetry is probably left-right, andthséas a basis.

A possible future extension of the application would be tooporate more model
information in order to improve the the viewpoint functidrRelevant information could

include the stability of a pose (the lower the center of masgsketter), an automatic

CHAPTER 4. ANALYSIS APPLICATIONS 61

computation of the “up” direction such as method suggestefiLb], or other global

shape characteristics,

Chapter 5

Editing Applications

In contrast to analysis applications, editing applicagiantively change the model they
are applied to. Examples of editing applications includephing, segmentation, sim-
plification, remeshing, composing, and smoothing. In thhapter we will describe

two applications, segmentation and remeshing, and showwewan use symmetry

information to improve their results.

5.1 Remeshing

The increasing practicality of 3D scanning has caused argegeing trend toward more
accurate 3D models of objects. While the creation of aceunaidels is beneficial for
practically any computer graphics application, this comtethe cost of model complex-
ity. Indeed, over the last few years, models with millionsl @ven tens of millions of
polygons have become commonplace, and new scanning tege®lare promising to

increase this limit further.

62

CHAPTER 5. EDITING APPLICATIONS 63

As a result, many applications that require rapid compaomaguch as interactive
rendering, editing or physical simulation are hard-prdsseope when dealing with very
large models. Consequently, over the last decade many deetiave been developed
to remesh3D models, simplifying them while closely approximatingeithgeometry.
While such approximation methods maintain the geometnhefdriginal model while
remeshing, they generally do not explicitly preserve otyees of high-level information
that might be important to the application.

In this section, we will review some of these methods, ang@se a new “symmetry-
aware” remeshing algorithm that will automatically deginmetric regions and actively
preserve and even strengthen those symmetries duringiSoapbn. Portions of this
work were performed in collaboration with Aleksey Golowis Szymon Rusinkiewicz

and Thomas Funkhouser, and were previously published &s [38

5.1.1 Previous Work

Surface Approximation Due to the general usefulness of simplified models for many
applications in computer graphics, there is a long histdryechniques designed to
approximate 3D surfaces while optimizing for various typégeometric error.

Probably the most common method for mesh simplificationlire®approximating
the surface locally either by greedily clustering localugys of triangles or by collapsing
the edges of a mesh using a local error metric that captueegegbmetry deformation
of the simplified area [19, 27, 18, 48]. Generally the erroseth a method captures
a measure of the locdl? distance between points on the original and approximating
surfaces. Other methods, including Katz et al. [23] and f&fda et al. [45], seek to

combine sets of faces containing similar properties to ggaeharacteristic regions.

CHAPTER 5. EDITING APPLICATIONS 64

An alternative paradigm for simplification involves gerterg a maximally-accurate
approximation with respect to a global error metric, whéducing the number of faces.
Work such as Hoppe et al. [20] generates an energy functioaséd on a point-to-
surface distance of the input mesh. This error functionwrastthe curvature and surface
variations from the original model. Departing slightly finathe use of surface distance
(the L? metric), Cohen-Steiner et al. [11] define a metric based emtirmals of the
surface (Thé->1 metric). They also solve the global error function by fixinguanber of
proxiesand then optimally placing these proxies to best approxarttet surface. Using
normals rather than the more widely used surface distano®ots/ated by the desire
to generate more visually pleasing results, for example lbyenaccurately retaining
highlights.

It is important to note that in all these methods, the metgeduis one that will
approximate the surface locally. At no time does the appnation of any part of
the surface explicitly affect the approximation of the rethe model, except as part
of a global optimization. Thus there is no attempt to presayiobal features such as
symmetry. Consider for example, the mask in Figure 5.1a.ribdel is fairly left-right
symmetric, but the remeshed models created using the tigmisuggested by [18]
(Figure 5.1b) and [11] (Figure 5.1c) do not preserve thatragitny.

Based on on the observation that in general, people aretisertsi symmetry, and
will notice departure from symmetry more readily than sone@egal deformation of
the surface, our remeshing technique incorporates symiimédrmation from the PRST

directly into the algorithm, yielding a symmetric approxétion (Figure 5.1d).

CHAPTER 5. EDITING APPLICATIONS 65

(b) Traditional (c) Symmetric
proxies proxies

(a) Initial model
with symmetry
plane

(d) Traditional (e) Symmetric
triangulation triangulation

Figure 5.1: Remeshing without symmetry does not create am®tnt triangulation
without explicit accounting for symmetry. Column (a) shoavsnodel (62K triangles)
of a relatively symmetric mask. Column (b) shows the tridagon of the model using
QSlim [18] algorithm, column (c) shows the triangulatiorings[11], and column (d)
shows the result of our algorithm.

CHAPTER 5. EDITING APPLICATIONS 66

5.1.2 Symmetric Remeshing

Our goal is to remesh a surface in a “symmetry aware” enviemtiif we were only con-
cerned with perfect symmetries, a simple algorithm woultbhhemesh using any existing
technique, then force symmetry by mirroring the output. ide&r, in most practical situ-
ations, the symmetries will be imperfect. For example gimeay be near-symmetries that
are not perfect because of noise or differing tessellabopartial symmetries in which
regions of the model may be symmetric about different plahreaddition, some models
may exhibit approximate symmetry. In these cases, faittdoieshing (resulting in a
large number of polygons), should prioritize geometricusacy. However, remeshing
such models wittiewerpolygons should result in a symmetric output, provided dogtig
so introduces error of the same order as that necessanbginted by remeshing. In this
way, we avoid symmetrizing if there is no reason to do so: th@ae to remesh with
many polygons shows that the user’s overriding concernpsdeerve detail accurately.
To address this, we propose a framework for model simplioahat automatically
detects symmetric regions and actively preserves and ¢regthens those symmetries
during simplification. Our approach is to modify the algonit proposed by [11] so
that it explicitly preserves symmetry. We chose to begirwitis algorithm because
it has been shown to produce good results for low polygon tspdor which the careful
choice of symmetrization algorithm has the most visibleaetp Specifically, we have
adapted all stages of Variational Shape Approximation ¢tushe symmetry. During the
proxy generation stage, we extend the notion of a proxy tude multiple connected
components related by a pre-defined set of symmetry transtwns (e.g., planar reflec-
tion). Thus, while growing proxies we consider not only rdigring triangles, but also

reflected triangles. In the triangulation stage, we exgifind corresponding symmetric

CHAPTER 5. EDITING APPLICATIONS 67

points based on the proxies grown previously. We force thadulation to follow these

correspondences as much as possible, yielding a more syminengulation.

Symmetric Proxy Generation The first step of the algorithm is to generg®xies
planar regions that closely approximate local sectionhiefsurface. This is done with

an iterative technique based on Lloyd’s algorithm. At eveggation:

1. Every proxy is assigned triangles of the model from a sipgiority queue. When
a triangleA is removed from the queue and assigned to a pf@xall triangles
adjacent ta\ are added to the queue with a weight defined by the compatibiii

those triangles t®. This assures that each proxy is a single connected componen

2. Once all triangles have been assigned, optimal proxynpetexs (i.e., center and

normal) are re-computed based on the triangles currerdlgsd to the proxy.

In order to avoid converging to local minima, small proxies accasionally deleted
and new proxies introduced at appropriate locations (tation”).

Our method follows this approach but generalizes the defmivf a proxy by al-
lowing it to represent a planar region, possibly transfairbg a discrete sef;.. T of
symmetry transformations. This is a key component of ouordlgm, as proxies may
now contain multiple connected components symmetric tcamagher. We allow a max-
imum of one connected component per symmetry transforméticluding the identity),
calledpatches As an example, we show in Figure 5.2(a) a proxy with two padclone
associated with the identity (purple triangles) and oneaated with the reflection plane
shown (green triangles).

In our method, a trianglA may be assigned to a pro®if it is adjacent to a triangle

previously assigned tB, or if the triangle nearest t&(A) has previously been assigned

CHAPTER 5. EDITING APPLICATIONS 68

(a) (b)

Figure 5.2: (a) A proxy with two patches. The purple patchssomiated with the identity
and the green patch is associated with the reflection plamersh(b) When a triangle
(orange) is assigned to a proxy (green), the neighboriaggtes (black) are added to the
gueue. The triangles across the plane of reflection (redjdded as well.
to P. Consider the example shown in figure 5.2(b). The orangadigawas recently
assigned to the proxy shown (dark green), so any of the bldakgles may now be
added to the proxy; under our extended definition, the raddifes may be added as well.

The remainder of the iterative algorithm is nearly unchahgeth triangles extracted
from the priority queue in order of increasing error, and match centers and positions
computed after each iteration. The teleportation proseaagmented to allow individual
patchesin addition to entirgoroxies to be deleted.

After a few iterations, we observe that, where possiblexipowill have symmetric
patches corresponding to “good-enough” symmetry transitions. This will ultimately
lead to symmetric outputs, since the boundaries betwegqprtixées determine the topol-

ogy of the final surface. Note that the order with which trigsgare selected from the

priority queue completely determines whether or not the firaxies are symmetric. That

CHAPTER 5. EDITING APPLICATIONS 69

Figure 5.3: This model is quite symmetric, except for thehgasthe right side of the

chin. Note how our algorithm does not create symmetric dbr the proxies that
approximate that area, because the error introduced wautddogreat. The remainder
of the head however, has symmetric patches. The model washad using 50 proxies
and one plane of symmetry (up to two patches per proxy).

is, symmetric proxies will be created if and only if the erodrdoing so is comparable
to the error introduced by the remeshing itself. Multiplarn@s of local symmetry are
used automatically in the appropriate regions, and no ugervention is required. An

example of this can be seen in Figure 5.3, where the areactbachin is not symmetric.

Therefore, in this region, unlike the the rest of the face,gdioxies are generated without

a reflection.

Point Correspondences Once the proxies are placed, our goal is to place a set of

symmetric points on the surface that we will later trianggila

CHAPTER 5. EDITING APPLICATIONS 70

[11] place two categories of points onto the new surface. fireecategory of points
is anchor verticesplaced at junctions where three or more proxies meet. Tbenske
category of points isecondary pointswhich are placed along the boundaries between
proxies to improve the geometry approximation of the neviesgrand to assure at least
three points per proxy boundary. In each case, the new vpdsitionV is computed
from the original positiorv by calculating for every proxf the optimal positiorP (v)
(the nearest point on the proxy), then averaging these appositions to obtain the final
positionV = 15 B(v) on the new mesh.

Our modifications to this vertex-placing algorithm involdetermining symmetric
correspondences between points. The clearest indicdtmr@spondence occurs when
a set of anchor points are adjacent to the same three praxiadifferent symmetric
transformationgdy..Ty. Thus, for anchor vertices, we check whether the proxiescaait
to somey; all have reflections that meet in an identical configuratiosoanev;. If this is
the case, then we establish a correspondence betweewlv;, and further adjust their
new positions to be perfect reflections of each other.

We find matching secondary points by establishing corredgoces between proxy
boundaries: mesh-edge paths that run between corresgpoadahor vertices are con-
sidered to be in correspondence with each other. When addssgondary vertex to a
boundary, we search through corresponding boundariebdarg¢arest symmetric vertex.
As with anchor vertices, we adjust the positions of suchespondences to be perfect

reflections.

Triangulation Once we obtain all our correspondences between anchor aaddsey

points, all that remains is to triangulate the set of poigtammetrically.

CHAPTER 5. EDITING APPLICATIONS 71

We triangulate the proxies in the same manner suggestedlly This consists of
flooding using Dijkstra’s shortest-path algorithm, where sources are the anchor and
secondary points, and with each edge weighted according kength. At the end of the
flooding, adjacency of regions implies that their sourceafsoshould be connected in the
resulting triangulation. As a final pass, edge flipping angea@moval are run to obtain
a better tessellation.

We use the same flooding algorithm, but run edge flipping oh paaxy separately
to prevent edge flips in one proxy from altering the triangataof its neighbors. This
process is guaranteed to converge to the same topology femsyric proxies if the
associated triangles are co-planar. In practice, we fintl ttha method produces a

consistent topology even when the triangles are not coaplan

Proxies Spanning Reflection Planes The algorithms for proxy assignment and trian-
gulation, as described above, operate at the granularigntwfe triangles of the input.
This leads to potential problems for proxies that lie neargltanes of symmetry, since
triangles that originally cross a symmetry plane will ba@ssd entirely to one or another
component (patch) of a proxy. The result is non-symmetiangulations along the
planes of reflection, as can be seen in Figure 5.4a. Obtaarsggimetric output therefore
requires us to treat this situation as a special case.

We preprocess the model by splitting each triangle thatse®s reflection plane,
creating new vertices where the original triangle’s edgeersect the reflection plane
and replacing the original with three new triangles. Thexpsfitting stage proceeds as
previously described. Then, at the beginning of the tridaignn stage, we explicitly
check each of the split triangles to see if both sides of tlamdgte were assigned to

different patches. If so, we explicitly enforce that thetiears we inserted to perform the

CHAPTER 5. EDITING APPLICATIONS 72

(a) (b)

Figure 5.4: This figure shows the need for splitting faces¢hass over reflection planes.
(a) Without splitting faces, triangles that cross the plaheeflection are assigned to only
one of the reflections of the proxy. This causes a jaggedgulation. (b) When we split
the triangles that cross the reflection plane, the tesemila symmetric. The models
have 342 and 358 faces respectively.

split (lying on the reflection plane) be anchor vertices. idst of the algorithm proceeds
as above, with the result that the triangulation now becasyesmetric (figure 5.4b). In

the examples shown, splitting triangles adds an averag&db3he number of triangles.

Error Metric ~ While it is not possible to change the amount of weight giveesyimme-

try vs. geometric deformation, since all we do is add moentyles for the priority queue
to consider, in certain cases it might be important to ca@rssymmetry more strongly
than surface deformation. In these cases, we have obsémeithel > metric proposed

by [11] is not ideal for preserving symmetry. This is becatig®nsiders only normals,

CHAPTER 5. EDITING APPLICATIONS 73

which tend to be more sensitive to noise and small deformdkian does the geometry
itself. Therefore, in order to allow more freedom for theaalthm to capture a model’s
near-symmetries, we have considered other, more “symrfregndly” error metrics.

We begin by noting that in the?! metric, the distance of a triangle to a proxy depends
only on the normal, and indeed the center of the proxy is nevaat, being set as the
weighted average of the triangles in the proxy for book-kagpurposes only. We note
that if the metric were simply the weighted Euclidean Dis@mof the centers of the
triangles to the center of the proxy, then the optimal proagifpon would also be at the
weighted average of the triangles, without consideratiotm® normal. We expect that
such a purely position-based error metric would allow tlgathm greater opportunity
to capture near-symmetries, at the expense of less-fapdégervation of the original
geometry.

Thus, we have investigated a combined error metric, withterra dependent only

on positions and one only on normals. Specifically, we take

2
Ecombined = O ||Ctriangle — Cproxyl|” +

2
(1—a)Aayg| Ntriangle — Nproxyll

wherec andn represent the average positions and normals of triangtkpaxies Aayg

is the average triangle area (included to ensure that thetéwos are dimensionally
compatible and the metric is scale invariant), anas a user-selected parameter. In
Figure 5.5 we show an example of remeshing a bull with O and witha = 0.4. Note
that the proxies look more symmetric as we increasat the expense of a less-faithful

reproduction of the original surface.

CHAPTER 5. EDITING APPLICATIONS 74

Bull planes ¢ =0) (a=0.4)

Figure 5.5: At left, we show a bull remeshed to 200 proxieshwitvo planes
simultaneously, one passing through the head and one gabksaugh the body. In the
center column we show results using the basi¢ metric @ = 0). At right, we show
results whero = 0.4. Note that the model becomes more symmetric, at the expénse
geometric accuracy.

5.1.3 Results

We evaluate the algorithm described in the preceding sectising a number of well-
known 3D meshes. Our goal is to produce simplified meshesntlaattain and even
enhance symmetries, while minimizing geometric approxiomeerror. In the following
subsections, we analyze the algorithm for both single anlipleiplanes of symmetry

and present running times.

Approximate Symmetries A first example shows results for a mask (Figure 5.1): the
original model (a) contains 62K faces and is only roughly sytric. Figure 5.1(b)
shows proxies for the model generated using the unmodifgegtighm of Cohen-Steiner
et al. [11]. Note that the proxies are not symmetric. Figuddd& shows the result of

using our symmetry-aware algorithm: note that the proxresr®w symmetric. Since

CHAPTER 5. EDITING APPLICATIONS 75

symmetric remeshing allows proxies to have multiple patctve used 100 proxies in the
basic method and 50 proxies in the symmetry-aware versi@msare a similar-quality
tessellation. Note that our algorithm (e) produces a tudatgon with more symmetry
than the traditional method (d), as expected. Moreover, gk that it introduces very
little geometric error in the shape approximation as comgdo the original Cohen-
Steiner algorithm —the RMSD increases by 4%, while the sytnyrexror (RMSD to
reflection) decreases by 50%. This result suggests that-gyonenetric topology can be
provided for approximately symmetric models at very lititest.

Figure 5.6 demonstrates that increasing the amount of giogpion results in meshes
that are more symmetric. At top we show the Max Planck modapbified to 600
and 50 proxies, while at bottom we illustrate deviationsrfrperfect symmetry (blue is
most symmetric while green, yellow, and red indicate moggrasetry). This illustrates
the property of our algorithm that it automatically capsigymmetry if doing so is
compatible with the current deformation error.

A third example is the sacrum in Figure 5.7 (60faces) which was remeshed using
200 proxies. This is model of a natural object that is closgytametric yet not perfectly
so, as shown in the color-coded visualization at center. dihition, this model was
created from a set of[3 scans, meaning that high-frequency scanning noise caused
further deviations from symmetry. At right we show our retmss result, produced in
just over eight minutes. Our method remains robust dedpatéigh-frequency noise, the

presence of holes and the large size of the mesh.

Multiple Symmetries Our first example of remeshing while considering multipk@s
of symmetry is the bull (Figure 5.5). This model has sepgrktees of reflection indicat-

ing approximate symmetries of the head and the body. Theseplere automatically

CHAPTER 5. EDITING APPLICATIONS 76

N
Original 600 50

Figure 5.6: Increasing the amount of geometric simplif@at{towards right) results
in greater symmetry preservation. Images in the bottom n@vcalored to represent
deviations from symmetry (how far each point is from the #ld surface) with blue

indicating perfect symmetry.

CHAPTER 5. EDITING APPLICATIONS 7

Original Asymmetry Remeshed

Figure 5.7: ® scan of a sacrum (605K polygons, shown at left) remeshed 2adth
proxies (right). Note that the model is only approximatstynsnetric (middle).

Lt
41‘\;\ L / ‘

2 symmetry planes 3 symmetry planes 4 symmetry planes

Figure 5.8: The bunny is shown here remeshed with 250 proxsésg 2, 3, or 4 planes of
symmetry. Note that increasing the number of symmetriadtses progressively more
symmetric and more intuitive triangulations, while retagplausible triangulations at
the boundaries of symmetric regions.
extracted by choosing the top two principal planes of the ehaas described in Section
3.3. Note that the remeshing results in symmetric triartgaria for the head and the body
with a reasonable (though not symmetric) triangulatiomatrteck.

Our second example (Figure 5.8) shows results for the Stdbianny.

Recalling that the bunny has four major planes of symmetg)(3ve show in Fig-

ure 5.8 the result of remeshing with respect to two, thred,faar planes of symmetry.

Note that remeshing with only three planes fails to captueesymmetry of the feet, while

CHAPTER 5. EDITING APPLICATIONS 78

considering only two planes (through the body and ears —ttbagest planes resulting
from the symmetry analysis) fails to triangulate the headrstrically. In contrast, the
result at right shows that we are able to take advantage ébwalsymmetry planes to
produce an intuitive result with locally-symmetric triarigtions and smooth transitions
between the symmetric regions.

To produce these results, we segmented the input mesh augadodthe strongest
symmetry at each point, then constrained the proxy floodingnty consider one can-
didate symmetry per triangle. The remeshing itself, howewvas still run on the entire

model, allowing smooth blends between symmetry regions tminputed automatically.

Computation Time We ran our experiments on a 3GHz PC with 1GB of RAM. As a
preprocess, for every model we calculated a symmetry wamsfising a 64x64x64 grid,
then ran the Iterative Symmetric Points algorithm (desatiim Section 3.3) to refine each
of the extracted principal symmetries. While most modelsl@ka single strong plane
of symmetry, we have extracted up to four principal planeshHe models considered in
this section.

Our remeshing algorithm can take up to several minutesifgelé.e., 600k polygons)
models. The most time-consuming phase is the distortianmizing flooding, which
takesO(m- nlogn) time for miterations on a mesh with triangles. Note that this time
is similar to what would be required for the unmodified remeghalgorithm. In com-
parison, the time required for anchor and secondary poatigphent and triangulation is
much lower, ranging from a few seconds to half a minute if thedet is simplified to
have large patches. The total time for the clustering patti@falgorithm can be seen in

Table 5.1. Unless otherwise noted, all the models were reetewitha = 0.002.

CHAPTER 5. EDITING APPLICATIONS 79

Model # Triangles| # Proxies| Time (s)
Mask 62K 50 62
lgea 130K 50 99

Teapot 8.5K 100 7
Bull 49K 200 72

Max Planck 98K 600 85

Sacrum 605K 200 491

Bunny 69K 30 49

Table 5.1: Timing results for the proxy-growing stage of method, for various models
and different numbers of proxies.

5.1.4 Discussion

Since human beings can recognize symmetry easily, retathien symmetry of models
during simplification is important. We have shown how to nfipthe existing remeshing
technique proposed by [11] to directly incorporate symgnetithout deforming the
model too much. In fact, the approximation error introdubgdour algorithm can be
trivially bounded. The upper bound is simply the error of imenodified algorithm with
the same number of proxies, while the lower bound is the @frtre original algorithm
using a number of proxies equal to the number ofgatches For example, if we remesh
using only one plane of symmetry (up to 2 patches per proxygus proxies, the error
will be between the errors resulting from using the tradidlbmethod withK and XK
proxies.

Though we have demonstrated that our algorithm is able te sakantage of im-
perfect symmetries during remeshing, and can producensgibsymmetric tessellation
joined by plausible triangulations for multiple symmesri@ur method has limitations
that suggest avenues for future work.

First, our approach to symmetric remeshing is limited byféoe that our final edge-

flipping technique does not explicitly search for symmetWhile the method works

CHAPTER 5. EDITING APPLICATIONS 80

in cases where entire proxies are symmetric, if a proxy @éesthoth symmetric and
non-symmetric anchor and secondary points, the edgesiligpchnique might adversely
affect the triangulation in the symmetric areas. A furtheakness of this technique is
that running edge-flipping on patches separately, ratteer tim the entire mesh at once,
may reduce the quality of the final triangulation of the moddlus, symmetry-preserving
edge-flipping is a topic for future work.

Another limitation of the approach is our non-reflexive neetlof dealing with sym-
metry. If for example, one side of a model is reflected onlyeowtile the other side is
reflected twice, the number of patches for a proxy in thati@ectepends on the starting
triangle. This is merely a manifestation of a problem witbyd’s algorithm - it doesn’t
converge to a minimum.

There are other limitations of our technique inherited frima underlying Varia-
tional Shape Approximation algorithm. For example, thepdlooding requires a com-
putationally expensive iteration, and the final triangolatalgorithm is constrained to
use original vertices of the model and is not error-drivenordbver, the algorithm is
optimized for the case of significantly fewer output thanunpolygons, thus making
our symmetry-enabled variant inappropriate for symme#raeshing that preserves all
original detail.

A further limitation of this work is that the use of symmets/necessarily coupled
to the error metric. Although we believe that this couplisgheoretically sound and
intuitively understandable, it may be inappropriate fomgoapplications. Therefore, a
future extension of this work may consider explicitly aliogy for greater deformation if

doing so will strengthen symmetry.

CHAPTER 5. EDITING APPLICATIONS 81

Finally, we use planar proxies as the foundation of our atgar, but our algorithm
should work for general proxies. An possible avenue of fitmork is to implement our

algorithm using the generalized proxy definitions of [S1]%R].

5.2 Segmentation

Assume you are trying to color a 3D model of a car. You want theels to be colored
a dull black, the body of the car to be a bright blue, the ioreto be leather brown, and
the hubcaps to shine. The problem is that the model is a buhtfangles floating in
space. How do you label these triangles in order to be ableltw them correctly? This
general problem of segmentation is a key step in a wide rahigeks including collision
detection, texture mapping, compression, and partiaatlpatching.

While for some applications (e.g. collision detection) ight be enough to decom-
pose an object into generic components such as convex doarmany other computer
graphics applications, a key step of the algorithm is idgimiy anintuitive segmentation
of the model. Consider that if an animal is described as “folike a giraffe, but with
a short neck”, or that a car “has a speaker system on top armh'tbave any wheels”,
you get an immediate picture in your mind. Humans readilyniii¢ objects by their
component parts, and so any application for 3D models thagbal of assisting humans
with some form of shape analysis or shape processing (e.ghingt metamorphosis,
modeling by parts) would benefit greatly from intuitive seagrtation.

In computer graphics, there have been various methods geddor computing such
a segmentation, but many of these rely on local surface ahanetric information. In
this section we will review those methods, and show how ttughe symmetry informa-

tion to improve the quality of those algorithms. As we explaelow, we believe that the

CHAPTER 5. EDITING APPLICATIONS 82

non-local nature of symmetry allows its use to generate mes@able segmentations for

many applications.

5.2.1 Previous Work

Convex Segmentation Convex decomposition of 3D models has long known to be a
complex computational geometry problem. For example,entiére are many relatively
simple sub-quadratic solutions for computing triangolasiin 2D (e.g. [17, 10, 8]), in 3D
there are polygonal meshes that cannot be triangulatedéirhedralized) without the
addition of Steiner points. In fact deciding if a mesh canr@ngulated without adding
Steiner points is provablMP—Complete[41]. If Steiner points are allowed, then there
are a number of methods available, such as [7] or [9].

Unfortunately, a convex segmentation is not always inteifor humans. If a 3D
model contains small concavities, the solutions produgeitid above algorithms would
necessarily contain many small convex components. Iniaddilarge planar surfaces
may get unnecessarily partitioned, or partitioned diffidlsebased on small perturbations
of the surface. Instead, for shape analysis type applitgtia segmentation algorithm

that captures some manner of human expectation is morg tixéle useful.

Intuitive Segmentation In the previous decade, there have been a number of methods
suggested for intuitive segmentation of 3D models.

Li et al. [30] segment 3D models using a set of generalizeohdgls called “sweep
paths”. In their method, a polygonal model is first conveited a skeleton using edge
contractions. Skeleton edges are converted into a singletsk-tree, and an ordered
sweep of space is created based on this tree. Thus, theraotie is defined as the cross-

section of a walk along the branches of the skeleton-treee mibbdel is segmented by

CHAPTER 5. EDITING APPLICATIONS 83

creating boundaries where the cross-section changedyapithe tree branches. While

the approach is generally robust to noise, a downside ofntiehod is that smoothing

of the model can create situations where the cross-sedt@mges slowly enough so that
segmentation does not happen.

Mortara et al. [36] use a method similar to sweep paths naragorTGiven a poinp
in a 3D modeM, they characterize the surface aroyndsing the intersection d¥l with
a series of concentric spheres centggeBepending on the nature of the intersection, the
local surface is described as a disc, a tube, or branchingir agmentation algorithm
uses this description to split a model into “limbs” and “bddigach limb is then grown
until some stop criteria is reached, creating a smooth setatien. Further segmentation
may be achieved using smaller radii.

Shlafman et al. [45] use K-means clustering to segment jpolggmeshes. The
weighting scheme they use to cluster the faces of the mestsexon geodesic distance,
convexity and curvature. They also suggest decomposiogartous amounts of clusters
in order to find an optimal segmentation. A general probleth wiis method is that the
boundaries between the components tend to be jagged arepsibseto noise.

Katz and Tal [23] use a technique they chlkzy segmentatiom order to obtain
smoother boundaries. In their method, they first split thelehoto meaningful compo-
nents while keeping the boundaries between the componerzyg by allowing triangles
to belong to multiple components. The metric they use to agmthe distance between
triangles is similar to the one used by [45], and includesgibedesic distance between
centers of adjacent triangles and the the angle betweenrtbenals. Extra weight is
given to concave angles, because convex shapes make lagttkdates for boundaries.
Once the fuzzy components are computed, their techniquevessone boundary at

a time using a graph-cut algorithm to ensure that the spsmeoth and follows the

CHAPTER 5. EDITING APPLICATIONS 84

contours of the model. A refinement to this method is propas¢§gil], where the coarse
segmentation is based on first finding prominent featuretpan a pose insensitive

representation.

5.2.2 Symmetry

As noted in chapter 2, there are many objects that while ndegigy symmetry them-
selves, are composed of symmetric components. For exampleir might only have
left right-symmetry, but its legs will contain front-backr(d top-bottom) symmetry as
well. An engine block may not contain any global symmetries,it's component gears
and tubes need to be symmetric in order to function. More majpdly, each component
has its own unique set of symmetries We propose that a meaningful segmentation
of a 3D model may be computed by analyzing the partial symesefas defined in
section 3.3) inherent in the model and clustering sectidrikeomodel based on which
symmetries they share.

Given a model in the form of a polygonal mesh, our method teelgincomputing the
PRST and obtaining a Ii§th:0 of the principal symmetries. Then, for every polyggn
in the mesh, we compute tthacal support ;. for each pland; in the list. Specifically,
for every trianglelL; j is the average value in the PRST of a poinflireflected byP;.
An example of a 2D model with local support may be seen in Eigu®.

At the end of this step, each triandlds represented by a feature vectokofumbers
defining how wellT; is reflected by each of the principal symmetries. An exampthkis
may be found in Figure 5.10. We now follow the same strateggssted by Katz and Tal
and run fuzzy clustering on these feature vectors, folloiwe@ graph-cut algorithm to

obtain the final boundaries. Intuitively, this method chustfaces that are symmetric with

CHAPTER 5. EDITING APPLICATIONS 85

() (b)
| (©)) ©

Figure 5.9: Example of local support: Given a 2D model (a) campute the symmetry
transforms on it (b), and extract principal symmetries. A Hier every symmetry we find
which portion of the model it reflects well (c,d,e). In the Byae shown, the square is
reflected by the first two planes of symmetry (c,d), while thipse is reflected the the
third (e). This leads to an intuitive segmentation of the elgdgquare vs. ellipse). In this
visualization, principal planes are shown in blue and thgsu of those planes is shown

in red.

CHAPTER 5. EDITING APPLICATIONS 86

Support = 01 Support = B Support =®
Figure 5.10: In this example, the point on the bursapportsthe three planes shown
to varying degrees. Concatenating the support valuesesr@dfieature-vector describing
how symmetric this point is with respect to each plane of sytnmymn The feature-vector
for this point is(0.1,0.5,0.9...). In this visualization points are colored based on how
symmetric they are with respect to the plane shown, with redmng symmetric and
blue meaning non-symmetric.
respect to the same distinct set of planar symmetries, alhdhws segment the model
into usable components.

A limitation of clustering using the PRST is that the majomsyetries dominate the
segmentation. The symmetry of a small part of the model migiitshow up in the
transform at all. In order to support segmentation into émer components, we modify
the above algorithm by using a hierarchy of splits. For e, sve performk-means
clustering (withk = 2) to establish an initial segmentation. Then, for everynsag,
the discrete PRST is recomputed and its local maxima egtidor use in the next level
of segmentation. Segmentation is terminated at a usetisdggepth, or when the only
planes of local maxima reflect either more than 90% or less 1846 of the surface onto
itself.

The result of this process is a segmentation tree, with tbpquty that lower levels in

the tree capture increasingly local symmetries, hencevalpstrong symmetries of even

small parts to influence the segmentation.

CHAPTER 5. EDITING APPLICATIONS 87

@ X

Octopus Dinopet

Skeletal Hand

Figure 5.11: These images show segmentations of a range aglsmoFor the bull we
show segmentation inta 2, and 8 segments. The skeletal hand is shown segmented into
4 and 18 parts.

5.2.3 Results

Figure 5.11 shows some examples of the segmentation prodiyceur method. Note
that for the Teapot the strongest planes of symmetry passighrthe body of the pot.

So, the handle, spout, and top are removed precisely betlaegearenot symmetric

CHAPTER 5. EDITING APPLICATIONS 88

with respect to those planes—i.e., the body of the pot is weiérom the smaller parts,
rather than vice-versa. For the Octopus and Skeletal Hardelmoocal symmetries of
parts are important for obtaining the segmentation shownally, a weakness of our
scheme can be seen in the segmentation of the legs of the &iang Bull. Because we
use a min-cut to smooth our initial guess, the final segmiemtatill seek a shorter cut,
and thus avoid the upper sections of the thigh. Integragngsetry information into the

min-cut algorithm is a topic for future work.

Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis we have defined the Symmetry Transform andeagbla number of general
methods for using symmetry information extracted from ttagasform to improve a wide
range of analysis and editing applications. In particudar,contributions are four-fold.

First, we introduce the point symmetry transform and thealaeflective symmetry
transform, which measure the symmetry of an object witheetsi all points in space,
planes through its bounding volume respectively. We show toocompute them effi-
ciently, using convolution methods and provide a fast Méb&elo method for computing
the PRST when dealing with surface meshes. In empiricabatiaihs, we explore the
properties of these transforms, and demonstrate thattéléesunder small perturbations,
and intuitively responds to rotations and scale.

Second, we provide a method for extracting local maxima ftieediscretized trans-
formation and computing their exact position. We also show these maxima provide

a useful subset of planes for describing the principle sytniaseof a model.

89

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 90

Third, we investigate the utility of the symmetry transfofor several geometric
analysis applications. In particular, we propose thattmer of symmetrgndprincipal
symmetry axeare useful for aligning 3D objects in a common coordinatm&aWe also
show that the reflective symmetry transform can be used fpstexing 3D range scans
into a common coordinate system, matching 3D polygonal nsaafehe same class, and
that good viewpoints for visualization of meshes may be éboyyminimizing symmetry.

Finally, we show that the symmetry transform is useful foitied applications as
well. In particular, we show how symmetry may be used to findmnegful parts in 3D
models, and how to remesh models in a manner that the main symmemare explicitly

maintained.

6.2 Future Work

The investigation of the PRST presented in this thesis isadiep. Our implementation

has several limitations, and there are many avenues farefudsearch.

6.2.1 Symmetry

First, we have investigated only the transform that maps alject to its point and planar
reflective and symmetries. While these types of symmetrparieaps the most prevalent
in real-world objects, and thus makes a good starting pdting, possible to consider
other types of symmetry in future work. For example, one midgfine a rotational
symmetry transform, in which a measure of symmetry is coegbdior every possible
rotation around every possible axis (5D), or a translatipaty offset (3D).

Second, our transform measures symmetries of an entiretobjewever, for objects

containing multiple symmetric parts a useful investigatweould be to understand how

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 91

symmetries can be detected at multiple scales, correspgnadidifferent sized regions
of local support [32]. While we have shown an automatic segat@n algorithm that
extract symmetries of large parts of the model hierarclyigateresting local symmetries
may “be drowned” and not found during this process. A mudsalution scheme, where
the PRST is computed on local sections of the model would teeasting to investigate.
Third, our investigation include only a small subset of thalgsis and editing appli-
cations available. Further applications that might beffrefih symmetry include comple-

tion, compression, texture mapping, and symmetrization.

6.2.2 Inversion

Since the PRST is a 3B» 3D mapping, we raise the question of whether the transform
is invertible. While at first glance the transform is compb®é operations that cause
irrecoverable loss of information, precluding inversiarg believe that there are strong
constraints provided by, for example, the requirementtti@model be bounded (i.e. that
the function is zero at the boundary) that make inversiosipts Using these constraints
we can already show that the transform is invertible in thealid 2D cases, and we
believe we can extend this to 3D. The inversion is currerghsgive to noise however, so
further research is necessary to determine if additionadicaints or stronger variational
relations might make our method practical. We hypothegiaéthe ability to invert the
transform will lead to applications in a variety of domaimsth the ability to not only

analyze but also synthesize symmetries.

Bibliography

[1] S. Abbasi and F. Mokhtarian. Automatic view selectionnmlti-view object

recognition. InProc. ICPR volume 1, page 1013, 2000.

[2] M. Ankerst, G. Kastenmller, H. peter Kriegel, and T. 3eRH shape histograms for
similarity search and classification in spatial databagpegies 207-226. Springer,

1999.
[3] M. Atallah. On symmetry detectiohEEE Trans. on Computer84:663-666, 1985.

[4] P.J.Besland N. D. McKay. A method for registration of 3sBapesIEEE Trans.
PAMI, 14(2):239-256, 1992.

[5] V. Blanz, M. Tarr, H. Buelthoff, and T. Vetter. What objeattributes determine

canonical viewsPerception 28, 1999.

[6] H. Blum. A transformation for extracting new descrigaf shape. In W. Whaten-
Dunn, editorModels for the Perception of Speech and Visual Fqrages 362—-380.
MIT Press, 1967.

[7] B. Chazelle. An optimal convex hull algorithm and new uks on cuttings

(extended abstract). ROCS pages 29-38, 1991.

92

BIBLIOGRAPHY 93

[8] B. Chazelle. Triangulating a simple polygon in lineam&é. Discrete Comput.

Geom, 6(5):485-524, 1991.

[9] B. Chazelle, D. P. Dobkin, N. Shouraboura, and A. Tal.at&gies for polyhedral
surface decomposition: an experimental study.S®G '95: Proceedings of the
eleventh annual symposium on Computational geomgiages 297-305, New

York, NY, USA, 1995. ACM.

[10] K. L. Clarkson, R. E. Tarjan, and C. J. V. Wyk. A fast laggas algorithm for
triangulating a simple polygon. I8CG '88: Proceedings of the fourth annual
symposium on Computational geomepgges 18—22, New York, NY, USA, 1988.
ACM.

[11] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variaabshape approximation.
ACM Transactions on Graphics (Proc. Siggraps3(3):905-914, 2004.

[12] R. Duda, P. Hart, and D. Storlattern Classification, Second Editiodohn Wiley
& Sons, New York, 2001.

[13] M. Enquist and A. Arak. Symmetry, beauty and evolutidvature 372:192-172,
1994.

[14] R. W. Ferguson. Modeling orientation effects in symmetetection: The role of

visual structure. IfProc. Conf. Cognitive Science Socie2900.

[15] H. Fu, D. Cohen-Or, G. Dror, and A. Sheffer. Upright ottigtion of man-made
objects.ACM Trans. Graph27(3), 2008.

BIBLIOGRAPHY 94

[16] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. HaldermBn Dobkin, and
D. Jacobs. A search engine for 3D modeCM Trans. Graph.22(1):83-105,
2003.

[17] M. Garcy, D. Johnson, F. Preparata, and R. Tarjan. §uéating a simple polygon.
volume 7, pages 175179, 1978.

[18] M. Garland and P. S. Heckbert. Simplifying surfaceswablor and texture using
qguadric error metrics. VIS '98: Proceedings of the conference on Visualization

'98, pages 263-269, Los Alamitos, CA, USA, 1998. IEEE Compubersdy Press.

[19] H. Hoppe. Progressive meshesSIGGRAPH '96: Proceedings of the 23rd annual
conference on Computer graphics and interactive techrscgoeges 99-108, New

York, NY, USA, 1996. ACM Press.

[20] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. t3lee Mesh
optimization. INSIGGRAPH '93: Proceedings of the 20th annual conference on
Computer graphics and interactive techniqueages 19-26, New York, NY, USA,
1993. ACM Press.

[21] B. Horn. Extended Gaussian imagesroc. of the IEEE 72(12):1671-1686,
December 1984.

[22] T. Kamada and S. Kawai. A simple method for computingegahposition in
displaying three-dimensional objectsComput. Vision Graph. Image Process.

41(1):43-56, 1988.

[23] S. Katz and A. Tal. Hierarchical mesh decompositiomgduzzy clustering and

cuts. Proceedings of ACM SIGGRARBR2(3):954-961, 2003.

BIBLIOGRAPHY 95

[24] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, andrR8sinkiewicz. A

reflective symmetry descriptor for 3D modeAgorithmica 38(1), Oct. 2003.

[25] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotainvariant spherical
harmonic representation of 3D shape descriptors. Symposium on Geometry

ProcessingJune 2003.

[26] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Symyneééscriptors and 3D

shape matching. IRroc. Symposium on Geometry ProcessR@p4.

[27] R. Klein, G. Liebich, and W. Strasser. Mesh reductiothvarror control. InVIS
'96: Proceedings of the 7th conference on Visualization j8&ges 311-318, Los
Alamitos, CA, USA, 1996. IEEE Computer Society Press.

[28] C. H. Lee, A. Varshney, and D. W. Jacobs. Mesh salierfeypceedings of ACM
SIGGRAPH24(3):659—-666, 2005.

[29] J. Lee, B. Moghaddam, H. Pfister, and R. Machiraju. Figdptimal views for 3d

face shape modeling. FGR, pages 31-36. IEEE Computer Society, 2004.

[30] X.Li, T. Toon, T. Tan, and Z. Huang. Decomposing polygoeshes for interactive
applications. InProceedings of the 2001 Symposium on Interactive 3D graphic

pages 35-42, 2001.

[31] S. K. G. Liefman and A. Tal. Mesh segmentation using deatpoint and core

extraction.The Visual Computef1:865-875, 2005.

[32] R. Manmatha and H. Sawhney. Finding symmetry in intgrishages. Technical

Report UM-CS-1997-007, University of Massachusetts, 1887.

BIBLIOGRAPHY 96

[33] A. Martinet, C. Soler, N. Holzschuch, and F. Sillion. @ugately detecting
symmetries of 3D shapes. Technical Report RR-5692, INR&pt&nber 2005.

[34] P. Minovic, S. Ishikawa, and K. Kato. Symmetry identfiion of a 3D object
represented by octree.I[EEE Transactions on Pattern Analysis and Machine

Intelligence 15(5):507-514, May 1993.

[35] N. J. Mitra, L. Guibas, and M. Pauly. Partial and appnoate symmetry detection
for 3d geometry. INPACM Transactions on Graphicsolume 25, pages 560-568,
2006.

[36] M. Mortara, G. Patane, and M. Spagnuolo. From geométrisemantic human

body modelsComputers & Graphics30(2):185-196, 2006.

[37] S. Palmer, E. Rosch, and P. Chase. Canonical perspeatidt the perception of

objects.Attention and Performance |¥ages 135 — 151, 1981.

[38] J. Podolak, A. Golovinskiy, and S. Rusinkiewicz. Syntrpeenhanced remeshing

of surfaces. IrBymposium on Geometry Processidgly 2007.

[39] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiezyi@and T. Funkhouser.
A planar-reflective symmetry transform for 3D shapeACM Transactions on

Graphics (Proc. SiggraphR5(3), July 2006.

[40] O.R., F. T,, C. B., and D. Dobkin. Matching 3d models wstiape distributions.

Shape Modeling and Applicationsages 154-166, May 2001.

[41] J. Ruppert and R. Seidel. On the difficulty of tetrahdédiag 3-dimensional non-
convex polyhedra. Ir'8CG '89: Proceedings of the fifth annual symposium on

Computational geometrpages 380—-392, New York, NY, USA, 1989. ACM.

BIBLIOGRAPHY 97

[42] M. I. Shah and D. C. Sorensen. A symmetry preserving wdargvalue
decomposition. SIAM Journal of Matrix Analysis and it's ApplicatipiOctober

2005.

[43] Y. Shan, B. Matei, H. S. Sawhney, R. Kumar, D. Huber, andHébert. Linear
model hashing and batch ransac for rapid and accurate ak@agnition. IEEE

International Conference on Computer Vision and Patterndgaition 2004.

[44] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. Thmdeton Shape

Benchmark. IrProc. Shape Modeling Internation&004.

[45] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of petial surfaces using

decomposition. IlComputer Graphics forup2002.

[46] C. Sun and J. Sherrah. 3D symmetry detection using tte:ndrd Gaussian image.
IEEE Transactions on Pattern Analysis and Machine Intelige 2(2):164—-168,
February 1997.

[47] S. Thrun and B. Wegbreit. Shape from symmetry. Rroceedings of the
International Conference on Computer Vision (ICCBgjing, China, 2005. IEEE.

[48] G. Turk. Re-tiling polygonal surfaceSIGGRAPH Comput. Graph26(2):55—64,
1992.

[49] P.-P. Vazquez, M. Feixas, M. Sbert, and W. Heidrich. ewfpoint selection
using viewpoint entropy. I'vVMV '01: Proceedings of the Vision Modeling and
Visualization Conference 200fpages 273—-280. Aka GmbH, 2001.

[50] J.D.Wolter, T. C. Woo, and R. A. Volz. Optimal algoritisrfor symmetry detection
in two and three dimension3he Visual Computed :37-48, 1985.

BIBLIOGRAPHY 98

[51] J. Wu and L. Kobbelt. Structure recovery via hybrid asional surface
approximation. IEUROGRAPHICSvolume 24, pages 277-284, 2005.

[52] D.-M. Yan, Y. Liu, and W. Wang. Quadric surface extractiby variational shape

approximation.GMP, pages 73-86, 2006.

[53] H. Zabrodsky, S. Peleg, and D. Avnir. Completion of actdd shapes using
symmetry. InProc. CVPR pages 678—679, 1993.

[54] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as a caaus feature.Trans.
PAMI, 17(12):1154-1166, 1995.

[55] J. Zhang and K. Huebner. Using symmetry as a feature mogganic images for
mobile robot applications. IRroc. Robotik volume 1679 ofVDI-Berichte pages
263-268, 2002.

