
THE SYMMETRY TRANSFORM AND ITS

APPLICATIONS

JOSHUA PODOLAK

A D ISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: SZYMON RUSINKIEWICZ

NOVEMBER 2008

c© Copyright by Joshua Podolak, 2008. All rights reserved.

iii

Abstract

Recent improvements in methods for acquiring and generating 3D shape data over the

last few decades have motivated the need for ever complex tools to analyze and edit such

information. As a result, in the last few years, numerous methods have been introduced

to improve the ways in which computers understand shape. These methods vary in the

type of data they measure, ranging from from low-level, local geometry information to

high-level semantic information.

Symmetry has long been known as an important cue for non-local human recognition

of shape, and as such has been a key component in Vision and Graphics applications. A

second important feature of symmetry is that it is prevalentin real-world models. Pipe and

gear models contain rotational symmetries, buildings and square objects contain 4-point

symmetry, and nearly every natural or man-made object will contain some reflectional

symmetry. This prevalence is important because this means that applications relying on

symmetry information will work on a large range of models.

In this thesis, we introduce the notion of aSymmetry Transform, a measure of “the

amount of” or “the degree of” symmetry present in a 3D shape, under some class of

transformations. This can be the set of all plane-reflectional symmetries, the set of all

point reflections or some arbitrary set of transformations.We concentrate on point and

reflection symmetry transforms, providing some theoretical reasoning for the transforms.

We show efficient means for computing them, discuss storing them, and analyze some of

their properties, including noise resistance, continuousvariation under deformation, and

stability with missing data.

While computing the transform of an entire model can be useful for a general un-

derstanding of shape, strong symmetries (such as the centerof an ellipse or the main

reflection planes of a rectangle), are easily identified by humans and represent an impor-

iv

tant subset of the transform. In this thesis we provide a method for efficiently extracting

these “principal symmetries”, and discuss some of their properties.

Finally, the symmetry transform provides mid-level information about the nature

of a 3D object that can be utilized in a wide range of applications. We explore how

symmetry may be used to improve alignment, matching, viewpoint selection, remeshing,

and segmentation.

i

Acknowledgments

Psalm 3.14

My advisor is my Shepherd I shall not want.

He maketh me overturn green pastures, He leadeth me to question sill waters.

Yea, though I walk in the valley of the shadow of a paper submission, I will fear no

reviewers for thou art with me; Thy rebuke and thy praise theycomfort me.

Thou preparest a defense before me in the presence of my thesis committee, thou anoin-

test my dissertation with suggestions, my references runneth over.

Surely publications and awards shall follow me all the days of my life and I will graduate

from the university of my advisor forever.

I would like to thank my advisor, Szymon Rusinkiewicz, for his mentorship and con-

tinuing support. Besides contributing in many ways to the completion of this dissertation,

he has also been a steady source of reassurance and inspiration to me. I always felt more

confident about the universe after every conversation we had. I would also like to thank

the other graphics professors, Thomas Funkhouser and Adam Finkelstein for their ever

welcome feedback and guidance. Without their collaboration this dissertation would not

be possible.

I have had an incredible time bouncing ideas off of people during my time at Princeton

University, while I can’t possibly begin to acknowledge every person I’ve had interactions

with, I’d especially like to thank my office-mates Christopher DeCoro, and Michael Burns

as well as the rest of the graphics lab: Benedict Brown, Paul Calamia, Forrester Cole,

ii

Aleksey Golovinskiy, Misha Kazhdan, Diego Nehab, and Phil Shilane. Life at Princeton

would have been much duller and a lot less fulfilling without you.

I would like to thank Princeton University for supporting mywork. This work was

also funded by Air Force Research Lab grant FA8650-04-1-1718 and NSF grants CCF-

0347427 and IIS-0121446.

Of course, graduate school is more than “staring-at-a-computer-screen” research, and

I’d like to single out Sam Cohen, Andy Plaks and Toby and Elaine Robison for creating

a very welcome atmosphere for grad students a long way from home.

Finally I would like to thank my parents, my family and especially my wife Dahlia

for putting up with long hours, frustrated moods and overlong descriptions of my work.

None of this would have been possible without your support. Next time, things will be

easier. I promise. ;-)

Contents

Abstract . iii

1 Introduction 1

1.1 Symmetry . 2

1.1.1 Symmetry As a Descriptor . 3

1.1.2 Symmetry Measure . 4

1.1.3 Symmetry Transform . 4

1.1.4 Principal Symmetries . 5

1.2 3D Analysis Applications .6

1.2.1 Alignment . 6

1.2.2 Matching . 7

1.2.3 Viewpoint Selection . 8

1.3 3D Editing Applications . 9

1.3.1 Remeshing . 9

1.3.2 Segmentation . 9

2 Symmetry 11

2.1 Perfect Symmetries . 11

2.2 Local Symmetry . 13

iii

CONTENTS iv

2.3 Approximate Symmetry . 13

2.4 Symmetry Measure . 14

3 Symmetry Transform 16

3.1 Point Symmetry Transform (PST) .16

3.1.1 Defining the PST . 17

3.1.2 Computation . 18

3.1.3 Properties of the PST . 20

3.2 Planar Reflective Symmetry Transform (PRST) 22

3.2.1 Defining the PRST . 22

3.2.2 Storage . 23

3.2.3 Computation . 24

3.2.4 Properties of the PRST . 30

3.3 Principal Symmetries . 32

4 Analysis Applications 37

4.1 Alignment . 37

4.1.1 Previous Work . 38

4.1.2 Symmetry Transform . 41

4.1.3 Results . 42

4.1.4 Limitations and Future Work . 45

4.2 Matching . 45

4.2.1 Shape Descriptor . 46

4.2.2 Previous Work . 48

4.2.3 Symmetry . 50

4.2.4 Results . 50

CONTENTS v

4.3 Viewpoint Selection . 54

4.3.1 Previous Work . 55

4.3.2 Symmetry . 58

4.3.3 Results . 60

4.3.4 Limitations and Future Work . 60

5 Editing Applications 62

5.1 Remeshing . 62

5.1.1 Previous Work . 63

5.1.2 Symmetric Remeshing . 66

5.1.3 Results . 74

5.1.4 Discussion . 79

5.2 Segmentation . 81

5.2.1 Previous Work . 82

5.2.2 Symmetry . 84

5.2.3 Results . 87

6 Conclusions and Future Work 89

6.1 Conclusion . 89

6.2 Future Work . 90

6.2.1 Symmetry . 90

6.2.2 Inversion . 91

Bibliography 92

List of Figures

1.1 In this example we show a set of models classified using a simple left-

right symmetry criterion. Models on the left are left-rightsymmetric,

while models on the right are not. 3

1.2 Examples of reflective symmetry transforms. Unless otherwise noted,

points are colored by the symmetry measure of the plane with the largest

symmetry passing through them, with darker lines representing stronger

symmetries. Note how the symmetry of the flower remains strong despite

being incomplete. 5

1.3 Example of principal symmetries. Starting with a 2D shape (left), we

compute a reflective symmetry transform (center), and mark the local

maxima (right). Note that the perfect symmetry is found as well as a

number of local symmetries. Principal symmetries are marked in blue. . . 6

1.4 In this example we demonstrate the problem of alignment.At left, the

airplane models are not aligned. At left, we have aligned them using

symmetry considerations. Note how all the airplanes have perfect left-

right symmetry and relatively strong up-down symmetry. 7

vi

LIST OF FIGURES vii

1.5 In this figure we show an example of shape matching. At left, the user

inputs a 3D model of a car as a query. The system then searches through

a database of 3D models for a similar shape (center), yielding another car

model (right). 8

1.6 In this figure we show an example of remeshing. At left we show the

original model of a hippo. At right we show the simplified model. Note

how simplified the model retains the left-right symmetry of the original. . 10

3.1 Visualization of the PST for several simple 2D shapes. These examples

show the variation of the PST for several common boundary perturbations. 21

3.2 Computing the PRST for many planes at once by: (a) sampling orien-

tations and convolving over plane translations, or (b) sampling positions

and convolving over plane rotations. 25

3.3 The efficient Monte Carlo algorithm selects a pair of points and votes for

the plane between them. The vote must be weighted, accounting for the

fact that as a point is father away from the plane of reflection, the chance

of finding a reflection point is increased (the size of the bluearea is larger

when the points are farther apart). .27

3.4 Comparison of error in the Monte Carlo approximation to the PRST, as

a function of time. For typical grid sizes, such as the 643 used in the

applications in following sections, computing the PRST takes only a few

seconds. 29

3.5 Visualization of the PRST for several simple 2D shapes. These examples

show the variation of the PRST for several common boundary perturbations. 31

LIST OF FIGURES viii

3.6 At left, we show an iteration ofISP. We select random points (red), reflect

them through the candidate plane of symmetry (gray), and findclosest

points on the surface (green). We then update the plane of reflection

to optimize the sum of Gaussian distances between corresponding point

pairs (samples with low weight have been culled in this visualization).

At right, we show the support of the final local symmetry maximum, as

indicated by the gray level. 34

3.7 In this visualization, the triangles of the bull are colored to show how

symmetric they are with respect to the plane of symmetry displayed, with

black meaning no support of the plane reflection. Planes representing

the four strongest local maxima of the PRST are shown here. Note how

points supporting reflections across planes (2), (3), and (4) tend to cluster

into regions corresponding to the neck, body, and head, respectively. . . . 35

3.8 An example of principal symmetries of a 3D model, extracted from the

3D symmetry transform. Note that these capture the partial and approxi-

mate symmetries of the ears, head, body and legs of the bunny.. 36

4.1 A line drawing of a mug with and without handles. The the center of mass

and PCA axes are drawn in dotted green — note that they move depend-

ing on the presence of handles. A visualization of the PRST isoverlaid on

the drawings, and the center of symmetry and principal symmetry axes

are shown in solid red — they remain stable under perturbation of the

shape. 39

LIST OF FIGURES ix

4.2 Alignment for translation and rotation based on centersof symmetry and

principal symmetry axes, as compared to center of mass and PCA. In

each case, the red, green, and blue lines represent the first,second, and

third principal axes, and their intersection is the computed center. 40

4.3 To evaluate the stability offered by symmetry-based alignment in a scan

recognition application, we computed eight virtual scans of 907 mod-

els (top two rows of images), and for each computed coordinate frames

using our symmetry-based approach and PCA. Note how the centers of

symmetry computed from the partial scans (shown as cross-hairs) cluster

near the center of the whole car better than do the centers of mass. 43

4.4 Histograms of translational (a) and rotational (b) misalignment in our

virtual-scan experiment. In blue we show alignment based oncenter of

symmetry and PSA, with center of mass and PCA in green. Largervalues

near the left of each graph indicate better matching performance. 44

4.5 While these cars have different sizes, rotations, and color, they are all

considered to have similar shape. A robust matching algorithm needs

to account for such transformations when producing a similarity metric.

(images courtesy of the Princeton Shape Repository). 48

4.6 Symmetries can play an important role in recognizing objects within the

same class. Note that even though the chairs have different heights and

widths, they all share the same symmetries: perfect left-right symmetry,

and strong symmetries in the seat, leg and back (images courtesy of

Digimation). 51

LIST OF FIGURES x

4.7 Plot of precision versus recall achieved with four shapematching meth-

ods: PRSD (magenta), PRST (thick blue), GEDT (green), and the com-

bination of PRST and GEDT (thick red). Note that the PRST captures

information complementary to other shape matching methods, hence can

be used to augment their retrieval performance. 52

4.8 The PRST provides better retrieval performance for someclasses (top),

while the GEDT is better for others (bottom). Combined, theyproduce

better retrieval performance than either alone. 53

4.9 At left, we show the viewpoint score for each model as a spherical func-

tion. The visualization is obtained by scaling unit vectorson the sphere in

proportion to the quality of the viewpoint from that direction. The images

at center show the best viewpoint selected by our algorithm.The images

at right show the worst viewpoint selected. 59

5.1 Remeshing without symmetry does not create a symmetric triangulation

without explicit accounting for symmetry. Column (a) showsa model

(62K triangles) of a relatively symmetric mask. Column (b) shows the

triangulation of the model using QSlim [18] algorithm, column (c) shows

the triangulation using [11], and column (d) shows the result of our algo-

rithm. 65

5.2 (a) A proxy with two patches. The purple patch is associated with the

identity and the green patch is associated with the reflection plane shown.

(b) When a triangle (orange) is assigned to a proxy (green), the neighbor-

ing triangles (black) are added to the queue. The triangles across the

plane of reflection (red) are added as well. 68

LIST OF FIGURES xi

5.3 This model is quite symmetric, except for the gash in the right side of the

chin. Note how our algorithm does not create symmetric patches for the

proxies that approximate that area, because the error introduced would

be too great. The remainder of the head however, has symmetric patches.

The model was remeshed using 50 proxies and one plane of symmetry

(up to two patches per proxy). 69

5.4 This figure shows the need for splitting faces that cross over reflection

planes. (a) Without splitting faces, triangles that cross the plane of re-

flection are assigned to only one of the reflections of the proxy. This

causes a jagged triangulation. (b) When we split the triangles that cross

the reflection plane, the tessellation is symmetric. The models have 342

and 358 faces respectively. 72

5.5 At left, we show a bull remeshed to 200 proxies with two planes simulta-

neously, one passing through the head and one passing through the body.

In the center column we show results using the basicL2,1 metric (α = 0).

At right, we show results whenα = 0.4. Note that the model becomes

more symmetric, at the expense of geometric accuracy. 74

5.6 Increasing the amount of geometric simplification (towards right) results

in greater symmetry preservation. Images in the bottom row are colored

to represent deviations from symmetry (how far each point isfrom the

reflected surface) with blue indicating perfect symmetry. 76

5.7 3D scan of a sacrum (605K polygons, shown at left) remeshed with200

proxies (right). Note that the model is only approximately symmetric

(middle). 77

LIST OF FIGURES xii

5.8 The bunny is shown here remeshed with 250 proxies, using 2, 3, or 4

planes of symmetry. Note that increasing the number of symmetries re-

sults in progressively more symmetric and more intuitive triangulations,

while retaining plausible triangulations at the boundaries of symmetric

regions. 77

5.9 Example of local support: Given a 2D model (a), we computethe sym-

metry transforms on it (b), and extract principal symmetries. Then, for

every symmetry we find which portion of the model it reflects well (c,d,e).

In the example shown, the square is reflected by the first two planes of

symmetry (c,d), while the ellipse is reflected the the third (e). This leads

to an intuitive segmentation of the model (square vs. ellipse). In this

visualization, principal planes are shown in blue and the support of those

planes is shown in red. 85

5.10 In this example, the point on the bunnysupportsthe three planes shown

to varying degrees. Concatenating the support values creates a feature-

vector describing how symmetric this point is with respect to each plane

of symmetry. The feature-vector for this point is(0.1,0.5,0.9...). In

this visualization points are colored based on how symmetric they are

with respect to the plane shown, with red meaning symmetric and blue

meaning non-symmetric. 86

5.11 These images show segmentations of a range of models. For the bull we

show segmentation into 2,4, and 8 segments. The skeletal hand is shown

segmented into 4 and 18 parts. 87

Chapter 1

Introduction

Accurate portrayal of 3D geometry has always been an important aspect of computer

graphics, and so the creation of 3D content has long been an important requisite of the

graphics community. Traditionally, this geometry was constructed by hand: either on a

point by point basis, or using basic shapes such as cubes and cylinders to create progres-

sively complex forms. More recently, a wide range of 3D scanning technologies have

become common, enabling the easy acquisition of increasingly detailed representations

of real-world objects. Finally, with the proliferation of 3D content on the Internet, an easy

method of creating 3D composition is to find and combine existing models found online.

This method, combined with the increasing number of 3D models available raises the

demand for ever more complex 3D processing tools to help search for and edit existing

models, with the goal of creating new content.

3D geometry analysis processing algorithms have long been known to the graphics,

geometry and vision communities, and can be split into threemajor categories.

Local descriptors concentrate on local surface information. That is, algorithms have

been developed to describe properties such as curvature, smoothness, or sharpness, all

1

CHAPTER 1. INTRODUCTION 2

qualities that can be described as functions of thelocal geometry. These properties are

often used in tools that analyze or edit multiple points on a model, such as locating salient

features or noise removal.

Global descriptors use a single set of numbers to describe anentire model. Classical

examples of such numbers are the center of mass, the surface area and the volume of

the model. Another type of global descriptor is a statistical analysis of local functions.

Examples of such a descriptor would be the average smoothness of a model, or a his-

togram of the curvature. Global descriptors are useful in a range of applications, and are

particularly noted for their use in shape matching.

Finally, mid-level descriptors are used to describe a portion of the model. A simple

example of such a descriptor would be to segment a model into parts and run a global

descriptor on each.

In our thesis we describe a method for measuring symmetry, a non-local descriptor,

and show how symmetry information can be used to solve a wide range of problems.

1.1 Symmetry

Symmetry has long been known to provide visual cues for humanvision [14], be an

important developmental attribute in Evolutionary Biology [13] and a physical necessity

in various manufactured objects. As such, over the last few decades there have been

numerous methods proposed for detecting and measuring various forms of symmetry in

2D and 3D.

CHAPTER 1. INTRODUCTION 3

(1) (2) (5) (6)

(3) (4) (7) (8)

Figure 1.1: In this example we show a set of models classified using a simple left-right
symmetry criterion. Models on the left are left-right symmetric, while models on the
right are not.

1.1.1 Symmetry As a Descriptor

Traditionally, when a person claims that an object looks symmetric, they mean that certain

areas of that object look similar to other areas. More accurately, we can say that an

object contains symmetry if it appears unchanged after applying a transformation to it

(e.g. rotating it by 90 degrees or reflecting it through some plane). Thus, by classifying

objects based on their symmetric properties, we are using symmetry as a shape descriptor.

The simplest way to use symmetry as a descriptor is to chose a transformation (e.g.

left-right reflection) and compute for every model whether it is symmetric or not. This

would generate a very simple (and not particularly useful) global shape descriptor. We

see an example of this in Figure 1.1, where objects are classified based on whether they

have left-right symmetry or not.

CHAPTER 1. INTRODUCTION 4

1.1.2 Symmetry Measure

Rather than describing symmetry as a discrete property (a model can be ’symmetric’

or ’not symmetric’ with respect to some transformation), wecan describe the degree of

symmetry a model has. A fully symmetric object would have 100% symmetry, while

non-symmetric objects would have 0% symmetry. Usingcontinuous symmetryfor shape

description is more useful than discrete symmetry, as many natural objects contain strong

symmetries, while not being perfectly symmetric. Moreover, even perfectly symmetric

objects may result in non-symmetric scanned 3D models, because of noise or scanner

miscalibration. A good example of a strong symmetry that is not perfect can be shown in

Figure 1.1(7). While the helicopter model does not containperfectleft-right symmetry,

the body of the helicopter is symmetric. Thus we can claim that the helicopter model has

at least 90% left-right symmetry.

1.1.3 Symmetry Transform

Using the notion of continuous symmetry, we can define aSymmetry Transform, a func-

tion over an entire space of symmetries (e.g. all reflections) describing how symmetric

the model is with respect to every symmetry in the space. Thisgives us a much richer

description of the symmetries of the model. In the example shown in Figure 1.2 we see

a few examples of a 2D reflection symmetry transform. Note that while the strongest

symmetries are most noticeable, there are many other symmetries in the model that are

captured in the transform. In all the 2D reflection symmetry examples shown, points

are colored using the symmetry measure of the plane with the largest symmetry passing

through that point, with darker lines representing stronger symmetries.

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Examples of reflective symmetry transforms. Unless otherwise noted,
points are colored by the symmetry measure of the plane with the largest symmetry
passing through them, with darker lines representing stronger symmetries. Note how
the symmetry of the flower remains strong despite being incomplete.

In this thesis we describe methods to efficiently compute symmetry transforms for 2D

and 3D models and explore their properties. Additionally, we demonstrate methods to uti-

lize the symmetry information in the transform to improve various geometry processing

applications.

1.1.4 Principal Symmetries

Since the symmetry transform is a function that measures a class of symmetry over an

entire object, it can be very informative to analyze the local maxima of this function.

These maxima form a subset of strong symmetries that correspond to various perfect,

local and partial symmetries of the the whole object. Due to their nature, thesePrincipal

Symmetriesare important for many applications. In the example shown inFigure 1.3 we

show a 2D shape with its principal symmetries highlighted. Note that how both perfect

and non-perfect symmetries are found.

In this thesis we describe a method to find interesting local maxima in the transform

and compute their exact position.

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Example of principal symmetries. Starting witha 2D shape (left), we compute
a reflective symmetry transform (center), and mark the localmaxima (right). Note that the
perfect symmetry is found as well as a number of local symmetries. Principal symmetries
are marked in blue.

1.2 3D Analysis Applications

Whenever we try to fit two puzzle pieces together, we are performing shape analysis

on those pieces. Any investigation of a 3D model, such as identifying the purpose of a

piece of furniture or finding similarly shaped proteins, requires some understanding of

the shape of that object. Shape analysis tools endeavor to supply that understanding by

quantifying various properties of the object analyzed.

In this work we will show how to use symmetry information extracted from the

symmetry transform to improve a few analysis applications

1.2.1 Alignment

Perhaps the most fundamental analysis problem in computer graphics is to find the correct

orientation of a model. While humans have no difficulty in positioning objects (e.g. on

shelf), computers have no obvious way of telling which way is“up”. One simple method

of approaching the problem is to note that many objects have strong left-right symmetry.

Thus, finding the largest symmetry of the model and using it asthe left-right axis is a

CHAPTER 1. INTRODUCTION 7

(1) (2) (5) (6)

(3) (4) (7) (8)

Figure 1.4: In this example we demonstrate the problem of alignment. At left, the airplane
models are not aligned. At left, we have aligned them using symmetry considerations.
Note how all the airplanes have perfect left-right symmetryand relatively strong up-down
symmetry.

good start toward solving the problem. An example of this method can be shown in

Figure 1.4, where the airplane models are automatically aligned using their perfect left-

right symmetry. In section 4.1 we discuss a more robust way toalign models using

symmetry.

1.2.2 Matching

A key component of retrieving 3D content from a database or repository is the ability

to efficiently search for a desired model. To this end, many search methods have been

proposed that enable querying for a desired 3D shape. While text-based queries may be

available if the database is tagged or classified, a more general method of searching uses

a 3D input model as a query, and attempts to retrieve similar shapes from the database.

An example of such a query can be found in Figure 1.5. The user inputs a car model as

CHAPTER 1. INTRODUCTION 8

Query Database Result

Figure 1.5: In this figure we show an example of shape matching. At left, the user inputs a
3D model of a car as a query. The system then searches through adatabase of 3D models
for a similar shape (center), yielding another car model (right).

a query (left), the system then compares the model to all models in the database (center).

Finally, the system returns the model that is most similar (right). In Section 4.2 we

describe a method that uses symmetry information to improvematching.

1.2.3 Viewpoint Selection

Finally, an interesting analysis problem is to find the best direction for displaying a 3D

model. Suppose that you wanted to make a catalog of 100 objects. From which direction

would you take the photograph for each of those objects? In Section 4.3 we show how to

use symmetry information to find the best direction automatically.

CHAPTER 1. INTRODUCTION 9

1.3 3D Editing Applications

Shape analysis leaves the object untouched, but many applications require that editing

operations be preformed on the object, such as smoothing, slicing, or distorting. The

importance of symmetry to the utility of an object (e.g. airplanes need to be left-right

symmetric) means that we frequently wish to retain the symmetry characteristics of the

object through the editing process, and so the addition of symmetry information to the

editing algorithm will automatically improve the results of the operation.

In this work we show how to use symmetry information to improve two editing

applications: Remeshing and Segmentation.

1.3.1 Remeshing

A typical problem in 3D modeling is that the data-sets can getvery large. This is a big

concern of applications that require rapid computation on 3D models, such as interactive

rendering, editing, or physical simulation. One solution often employed by such applica-

tions is to firstremeshthose models, simplifying them while closely approximating their

geometry, curvature or other properties. An example of suchremeshing can be found in

Figure 1.6, where the model of the hippo is remeshed to have fewer polygons while still

preserving the features of the original shape. Since symmetry can be an important feature

that we would like to preserve, we show a method for explicitly doing so in Section 5.1

1.3.2 Segmentation

Any serious editing tool must have some way to let a user splitan object into parts, even if

it’s only by allowing the removal of individual triangles. Smart segmentation algorithms

CHAPTER 1. INTRODUCTION 10

Figure 1.6: In this figure we show an example of remeshing. At left we show the original
model of a hippo. At right we show the simplified model. Note how simplified the model
retains the left-right symmetry of the original.

automatically find optimal cuts, splitting the model into intuitive components. Section

5.2 demonstrates a method using symmetry to segment models automatically.

The remainder of the thesis will be organized as follows: We will begin by discussing

previous and current work done with symmetry in chapter 2, wewill describe the Symme-

try Transform in detail in chapter 3, and discuss methods forextracting useful information

from it. In chapters 4 and 5 we will describe improvements to anumber of analysis and

editing applications using the symmetry transforms, and wewill conclude in chapter 6

with some discussion and future work.

Chapter 2

Symmetry

Symmetry is an important feature of almost all shapes: nearly every man-made object

contains at least one plane of perfect symmetry, and most natural objects exhibit near-

perfect symmetries (look around your office and count the symmetric objects). This

prevalence combined with the importance of symmetry to the human visual system [14],

has made it an important avenue of research. As such, over thelast few decades there

have been numerous methods proposed for detecting and measuring various forms of

symmetry in 2D and 3D.

2.1 Perfect Symmetries

The simplest form of symmetry is perfect symmetry or whole-object symmetry. For

objects that contain perfect symmetry, applying the symmetry transformation causes one

half of the model to be exactly mapped to the other half. For obvious reasons, perfect

point symmetry can only happen about the center of mass, perfect rotational symmetry

11

CHAPTER 2. SYMMETRY 12

can only occur about an axis going through the center and perfect reflectional symmetry

can only happen with a plane passing through the center of mass.

Because of this constraint, perfect symmetries are the easiest to search for, and many

efficient algorithms have been described for finding whole-object symmetry.

The earliest works on symmetry detection [3, 50, 55] reducedthe problem to the

detection of symmetry in circular strings and then used sub-string matching algorithms

to detect the symmetries by exhaustively searching for instances of a stringt within

the concatenation oft with itself - tt. While this method is robust, searching through

all possibilities can be prohibitive for large models. Rather than using an exhaustive

search, [34] use an octree representation to efficiently search for possible candidates of

the symmetry plane. Other methods include using the extended Gaussian image [46] and

the singular value decomposition of the points of the model [42] in order to efficiently

find symmetry planes.

More recently, Martinet et al. [33] have introduced a methodbased on generalized

moments to detect perfect symmetry in 3D shapes accurately.Their approach combines

the property that even order moments contain the same symmetries as the model with an

efficient method for calculating moment coefficients using aspherical harmonic decom-

position.

While perfect symmetry is an important feature of 3D models,it is limited in how

well it can describe a model. In the first place, most models will contain only a single

plane of perfect symmetry. Having two planes of symmetry usually means that the model

is rotationally symmetric, and only very simple shapes likecubes have three or more

perfect planes of symmetry that do not all intersect along the same axis. Furthermore,

in order to have perfect symmetry there must be no noise in themodel. Depending on

the algorithm used, small amounts of noise or tessellation difference in the model can

CHAPTER 2. SYMMETRY 13

prevent detection of otherwise perfect symmetry. Finally,a large class of models are not

symmetric themselves (i.e. do not have perfect symmetry), but are composed of parts that

are symmetric. For these types of models we require local symmetry.

2.2 Local Symmetry

Local symmetry occurs when an entire object is not symmetric, but contains some portion

of it that is perfectly symmetric. A good example of model containing local symmetry

is a motor. The motor itself is not symmetric, but it containsmany parts such as axles,

cylinders and gears that are all perfectly symmetric.

As a recent example, Thrun and Wegbreit [47] detect perfect symmetries in scanned

models by explicitly searching ever-growing sets of pointswhile maintaining a list of

possible rotational and reflectional perfect symmetries. In this way, scans of models

composed of symmetrical parts may be completed by extendingthe measured symmetries

to the entire model

Further methods are available for describing local symmetries with a respect to a

point — e.g., the medial axis [6]. However, since these methods consider only perfect

symmetries, they are unstable with added noise or missing data and fail to recognize the

potentially important cues of imperfect symmetries.

2.3 Approximate Symmetry

Rather than describing symmetry as a discrete property (a model can be ’symmetric’ or

’not-symmetric’), In the last decade, methods have been provided for measuring imper-

fect symmetries. Given a 3D model it is possible to describe for a given transform the

CHAPTER 2. SYMMETRY 14

degree of symmetry a model has. A fully symmetric object would have 100% symmetry,

while non-symmetric objects would have 0% symmetry for thattransform. For example,

Zabrodsky et al. defined thesymmetry distanceof a shape with respect to a transformation

as the distance from the given shape to the closest shape thatis perfectly symmetric with

respect to that transformation [54, 53]. They provide an algorithm to find the symmetry

distance for a set of connected points for any given reflective or rotational transformation.

Their method however, considers symmetry with respect to only one point or plane at a

time, and thus not efficient for general cases where approximate symmetry is required for

a large set of transformations.

Mitra et al.[35] search for approximate reflectional symmetry in 3D polygonal models

by sampling pairs of points on the model. Since for each pair there is exactly one plane

that reflects one point onto the other, each point pair constitutes a “vote” for that plane.

They then cluster these votes to find the strongest planes of symmetry and show how to

use this information for segmentation and compression.

2.4 Symmetry Measure

Kazhdan et al. used the same continuous measure of imperfectsymmetries to define a

shape descriptorthat represents the symmetries of an object with respect to all planes

and rotations through its center of mass [24, 26]. Their method begins by defining the

symmetry distanceof a vectorv with respect to symmetry transformγ as the distance to

the nearest vectoru that is symmetric with respect toγ.

SD(v,γ) = min
u|γ(u)=u

‖v−u‖.

CHAPTER 2. SYMMETRY 15

Using the fact that vectors symmetric with respect toγ are a subspace, they show that

the nearest symmetric vector is the projection ofv ontoγ. Since the space of reflectional

symmetries is orthogonal, this means that the projection ofv onto γ is the average ofv

andγ(v). Thus

SD(v,γ) =

∥

∥

∥

∥

v− v+ γ(v)
2

∥

∥

∥

∥

=
‖v− γ(v)‖

2
.

Since we want the symmetry distance to be no greater than 1, this distance is normal-

ized.

SD(v,γ) =
‖v− γ(v)‖
‖v‖ .

Finally, in order to obtain the symmetry measure, they complement the distance.

SM(v,γ) = 1−SD(v,γ) =

SD2(v,γ)
‖v‖2 = 1− ‖v− γ(v)‖2

4‖v‖2 =

1− ‖v‖
2−2v· γ(v)+‖γ(v)‖2

4‖v‖2 .

Obtaining a function that is 1 whenv is itself symmetric with respect toγ and 0 when

v is anti-symmetric.

In the next section we will show how we use this formulation a the basis for computing

transforms for capturing the symmetry around every point (PST) and every plane (PRST)

in a 3D model.

Chapter 3

Symmetry Transform

Having precise definitions for continuous symmetry allows us to describe a specific

partial or approximate symmetry in a model. However, most models contain multiple

symmetries, and many applications often require a holisticunderstanding of a model,

encompassing most or all of those symmetries to work well. Inorder to capture an entire

such range of symmetries in a model, we define the notion of a symmetrytransform, a

function that measures a class of symmetry over an entire model.

In the following sections, we explore transforms for two symmetries: ThePoint

Symmetry Transformand thePlanar Reflective Symmetry Transform. Portions of this

work were performed in collaboration with Philip Shilane, Aleksey Golovinskiy, Szymon

Rusinkiewicz and Thomas Funkhouser, and were previously published as [39].

3.1 Point Symmetry Transform (PST)

In this section we describe the Point Symmetry Transform, show how to compute it

efficiently, and discuss it’s possibilities and limitations.

16

CHAPTER 3. SYMMETRY TRANSFORM 17

3.1.1 Defining the PST

The Point Symmetry Transform is a mapping from a scalar-valued function f defined

over ad-dimensional space of points to another scalar-valued function PSTover the same

space, such that the scalar value associated with each pointis a measure off ’s symmetry

with respect to that point.

Following the work mentioned in the previous chapter by [54,24, 26] on symmetry,

assuming we have rasterized our surface to a volumetric function f , we define the Point

Symmetry DistancePSD(f , p) of f with respect to a pointp as theL2 distance between

f and the nearest function that is invariant to the reflection through that point:

PSD(f , p) = min
g|P(g)=g

‖ f −g‖.

WhereP is the reflection through the pointp.

Since the symmetry distance lies between 0 and‖ f‖ and provides a measure of the “anti-

symmetry” of the shape with respect top, we complement it and divide by the magnitude

of f , to produce a normalized symmetry measure for our PST, such that

PST2(f , p) = 1− PSD2(f , p)

‖ f‖2

As before, the nearest symmetric function tof is simply the average off andp(f)

PSD(f ,P) =

∥

∥

∥

∥

f − f +P(f)
2

∥

∥

∥

∥

=
‖ f −‖(f)‖

2
.

Combining the two equations, yields

PST2(f , p) = 1− PSD2(f , p)

‖ f‖2 = 1− ‖ f −P(f)‖2
4‖ f‖2 =

CHAPTER 3. SYMMETRY TRANSFORM 18

1− ‖ f‖2−2 f ·P(f)+‖P(f)‖2
4‖ f‖2 .

If f is normalized, then‖P(f)‖= ‖ f‖= 1 (since norms are preserved by reflection), and

we obtain

PST2(f , p) = 1− 1−2 f ·P(f)+1
4

=
1+ f ·P(f)

2
.

Thus, we obtain the required result ofPST(f , p) = 1 if f is perfectly symmetric with

respect top, 0 is f is perfectly anti-symmetric with respect top, and an intermediate

value for partial symmetries.

3.1.2 Computation

As we have shown in the previous subsection, the calculationof the symmetry measure

for a single point reduces to the calculation of a dot productbetweenf and its reflection:

D(f , p) = f ·P(f).

Since we have already rasterized the model to a volumetric grid, a simple algorithm

for computing the PST would be for every point, sum the product of each pair of corre-

sponding elements.

Thus, to compute the PST(f) we would do the following:

for eachpoint p in f :

for each pointx:

x′← P(x)

PST2(f , p) += f (x) · f (x′)

CHAPTER 3. SYMMETRY TRANSFORM 19

Note that for 2D this method takesO(n2) to compute the PST for each point on annxn

grid (O(n3) in 3D). To obtain the full Point Symmetry Transform, this must be computed

for O(n2) points (O(n3) in 3D), yielding a total algorithmic complexity ofO(n4) (O(n6)

in 3D). Obviously, this is prohibitive for large sized grids.

Instead, we use the following method to efficiently compute the PST. Note that for

point symmetry,P(x) = 2× (p−x)+x = 2p−x. We find that computing the PST for a

givenp through allx at once

PST(f , p) = ∑(2p−x)x

Thus computing the PST for allp at once may be given by

PST(f) = ∑
p

(2p−x)x

Or a convolution off with itself. This immediately suggests a more efficient method

for computing the PST: Instead of computing the transform for every point separately, we

use an FFT to convertf to the frequency domain and do a dot product there. Running an

inverse FFT on the result yields the complete PST. The total computation for this method

is O(n2log(n)) for 2D andO(n3log(n)) for 3D.

Computation time:

By computing the PST over the entire volume at once, we are able to obtain the PST

of models efficiently. For example, for a 643 grid resolution, computing the PST takes a

4 seconds in Matlab on a 3 GHz processor

CHAPTER 3. SYMMETRY TRANSFORM 20

3.1.3 Properties of the PST

In this subsection, we present experimental results aimed at evaluating the stability of

the PST in practice. We performed a set of experiments with simple shapes perturbed

by several common transformations, such as rotation, scale, adding noise, adding a small

feature, and deformation.

Figure 3.1 provides empirical evidence for the stability ofthe PST. Looking at the top

row of images (Figure 3.1a), we see that it trivially translates, scales, and rotates with

the input. While our algorithm could potentially introducesmall sampling artifacts, since

it rasterizes the input contour into a regular axis-alignedgrid and stores the PST for a

discrete set of points at regular angular intervals, we do not find this to be a significant

problem in practice.

Looking at the second row of images, we took a shape and applied small perturbations

to the boundary. Note this result is shown empirically for a simple 2D example in

Figure 3.1b, but since we compute a GEDT on the surface, the contribution of any small

change is minimized.

Finally, the bottom rows, we see how PST varies with large surface deformations. In

(Figure 3.1c), the change to the PST is gradual when a square deforms into a rectangle.

This continuity property is guaranteed by the fact that symmetry measurePST(f , p)

is defined as an integral over the entire functionf for every point (Equation 3.1.1).

Therefore, the impact of any perturbation tof on PST(f , p) is limited by the magnitude

of the perturbation. In (Figure 3.1d) we see a limitation of the PST in the sense that point

symmetry measures only rotation of 180 degrees around a point. In the example shown,

even though all the polygons have strong symmetry in their center, polygons that have an

even number of faces contain strong symmetry along the axis,while polygons that do not

CHAPTER 3. SYMMETRY TRANSFORM 21

(a) Similarity transformation

(b) Small perturbations of the boundary

(c) Large deformations (changing aspect ratio)

(d) Increasingly fine tessellation

Figure 3.1: Visualization of the PST for several simple 2D shapes. These examples show
the variation of the PST for several common boundary perturbations.

CHAPTER 3. SYMMETRY TRANSFORM 22

have an even number of faces will not contain symmetry along the axis, but instead have

a gradual increase in symmetry as you get closer to the center.

The method used to visualize these PST is the same as shown in Figure 1.2 – the

original 2D shape is shown in black, and each point of the PST is drawn shaded according

to its symmetry measure. A dark colored point thus represents a near-perfect symmetry,

while lighter, more fuzzy regions represent points with partial symmetry. In order to

highlight the most significant symmetries, this visualization uses a nonlinear mapping of

symmetry to intensity corresponding to a power law with an exponent of 4.

3.2 Planar Reflective Symmetry Transform (PRST)

Unlike the Point symmetry transform, which is a mapping fromone function over ad-

dimensional space to another function over the same space, the Planar Reflective Symme-

try Transform is a mapping from a scalar-valued functionf defined over ad-dimensional

space of points to a scalar-valued functionPRST(f ,γ) defined over thed-dimensional

space of (hyper-)planes. This difference causes additional complexities in computing the

PRST, which we will discuss in the following subsections.

3.2.1 Defining the PRST

Once again, we assume that we are given a 3D model that is rasterized to a volumetric

function f . We define the Planar Reflective Symmetry DistancePRSD(f ,γ) of f with

respect to a plane reflectionγ as theL2 distance betweenf and the nearest function that

is invariant to that reflection:

PRSD(f ,γ) = min
g|γ(g)=g

‖ f −g‖.

CHAPTER 3. SYMMETRY TRANSFORM 23

Since the nearest symmetric functiong to f is again the average off andγ(f), we can

follow the same logic we used for the PST(Equation 3.1.1), obtaining a final result of:

PRST2(f ,γ) =
1+ f · γ(f)

2
.

As with the PST,PRST(f ,γ) = 1 if f is perfectly symmetric with respect toγ, 0

if f is perfectly anti-symmetric with respect toγ, and an intermediate value for partial

symmetries.

3.2.2 Storage

Given a scalar functionf over ad-dimensional space, our goal is to record symmetry

values for all planesγ in thed-dimensional space of planes. To reach this goal, we need

to discretize the space of planes. In general we want our parameterization to match the

resolution of the input function; finer sampling will yield no additional information onf ,

which is band-limited. Moreover, we would like our parameterization to be as uniform

as possible, in the space of planes.

To satisfy the above criteria, we discretize the space of planes by their normals and

by their distance from the origin, which we chose to be the center of mass. Thus, when

working in 2D, for ann-by-n grid, we use a uniform parameterization of the set of lines

by their anglesθ ∈ [0,π] and distance from the center of massr ∈ [−rmax, rmax] with n

values in each dimension. We made the slightly unusual choice of angles on a semicircle

with both positive and negative radii because using only positive radii would create a

singularity at the origin. The origin is important because all perfect symmetries must pass

through the origin and we wish to capture them accurately. Similarly, we parameterize

planes in 3D by the spherical coordinates of their normalsθ ∈ [0,π/2],φ ∈ [0,2π] and

CHAPTER 3. SYMMETRY TRANSFORM 24

distance from the originr ∈ [−rmax, rmax], usingn values in each dimension. While in 2D

we could achieve a perfectly uniform discretization, in 3D the “buckets” of planes are not

of uniform size, shrinking towards the poles as sinθ. We will take this into account when

we show how to compute the transform in the next subsection.

3.2.3 Computation

As we have shown above, computation of the symmetry measure for a single plane

reduces to the computation of a dot product betweenf and its reflection:

D(f ,γ) = f · γ(f).

As with the PST, a naive algorithm for computing the transform would be to evaluate

PRST2(f ,γ) for every possible plane of reflectionγ separately. Since there areO(n3)

possible planes through an×n×n grid, and the evaluation of a dot product over the grid

for each plane requiresO(n3), the total complexity of this brute force algorithm isO(n6),

which is prohibitively expensive for most applications.

Convolution Rather than evaluating the PRST for each plane separately, we note that

PRST values for planes with the same orientation require dotproducts of functions suc-

cessively shifted at regular intervals with respect to one another (Figure 3.2a), and so we

can compute them all at the same time with a single convolution. Since in 3D, the con-

volution for a single direction takesO(n3 log n), and there areO(n2) possible directions

through the grid, the total running time of this algorithm isO(n5 log n). Equivalently, we

can consider convolutions over rotations at a discrete set of points (Figure 3.2b). In this

case, we use the frequency domain algorithm described in [24] to compute the PRST for

all planes throughO(n) points (Figure 3.2b). Since each invocation of Kazhdan et al.’s

CHAPTER 3. SYMMETRY TRANSFORM 25

(a) Sampling orientations (b) Sampling translations

Figure 3.2: Computing the PRST for many planes at once by: (a)sampling orientations
and convolving over plane translations, or (b) sampling positions and convolving over
plane rotations.

algorithm takes(n4 log n), the total running time is againO(n5 log n). A multiresolution

approximation is possible inO(n4 log n) ([26]).

Monte Carlo While the algorithms discussed so far are equally efficient for all func-

tions, rasterized surfaces and point sets naturally lead tosparsity over the volume. In

this section, we describe a Monte Carlo algorithm for computing the PRST that takes

advantage of this sparsity to increase efficiency.

Our discussion of the algorithm begins with the brute-forceapproach presented above:

for eachplaneγ:

for each pointx:

x′← γ(x)

PRST2(f ,γ) += f (x) · f (x′)

We observe that for sparse functions this is inefficient, since it performs useless

computation whenever eitherf (x) or f (x′) is near zero. Instead, we interchange the

order of computations and performimportance samplingin a Monte Carlo framework:

CHAPTER 3. SYMMETRY TRANSFORM 26

for sampled pointsx:

for sampled pointsx′:

γ← reflection plane(x, x′)

PRST2(f ,γ) += w(x, x′, γ) · f (x) · f (x′)

Intuitively, this algorithm repeatedly picks a pair of points and “votes” for the plane

between them. The sampling ofx andx′ is performed according to the energy in the

function f , allowing us to focus effort on computations that will contribute to the final

answer. For a typical 3D surface, non-negligible values appear in onlyO(n2) voxels, and

thus this algorithm requires onlyO(n4) operations to compute the entire PRST.

Weighting: In order for the above algorithm to compute the PRST correctly, it is

necessary to weight the contribution of each “vote” appropriately. This is the role of

the functionw(x, x′, γ), which consists of two terms. The first term accounts for the

importance sampling that we perform, and is simply the reciprocal of the probability of

having selectedx andx′:

wsamp(x, x′, γ) =
1

f (x) · f (x′) .

The second term represents achange-of-variables, accounting for the two different ways

we have of sampling the space of planes: as a pair of points(x, x′) and with our discretized

bins over(r, θ, φ). While part of this change-of-variables term is intuitive (accounting for

the sinθ decrease in bin size), another part accounts for the fact that bins of planes will

receive more votes ifx andx′ are far apart than if they are nearby. For example, both

parts of Figure 3.3 consider the same single bucket of planes. However, for a fixedx, it is

clear that more pointsx′ will vote for that bin if the points are further apart, so we should

weight the contribution of such pairs lower than votes by nearby points.

CHAPTER 3. SYMMETRY TRANSFORM 27

Figure 3.3: The efficient Monte Carlo algorithm selects a pair of points and votes for
the plane between them. The vote must be weighted, accounting for the fact that as a
point is father away from the plane of reflection, the chance of finding a reflection point
is increased (the size of the blue area is larger when the points are farther apart).

To derive the change-of-variables weight, we simply compute the determinant of the

Jacobian of the transformation between the parameterization of the planes of reflection

and the reflected points themselves. If we let

n̂ =













sinθcosφ

sinθsinφ

cosθ













be the normal of the plane of reflection, then we can write

CHAPTER 3. SYMMETRY TRANSFORM 28

O
r

n

x’

x

d/2

d/2

γ

d = ‖x−x′‖

= 2(r− n̂·x)

x′ = x+dn̂

= x+2rn̂−2(n̂·x)n̂

J =













↑ ↑ ↑

(∂x′
∂ r) (∂x′

∂θ) (∂x′
∂φ)

↓ ↓ ↓













and solve for the determinant:

wchange-of-variables= |J|= 2d2sinθ.

Therefore, we have

w(x, x′, γ) = wsamp·wchange-of-variables,

=
1

f (x) f (x′) 2d2sinθ
.

So, overall, our Monte Carlo estimator is:

D(f ,γ) =
1

Nsamp

Nsamp

∑
i=1

1
2d2sinθ

Analysis: Although the worst-case behavior of our algorithm isO(n6) if the input func-

tion f is represented on ann×n×n grid, it is asymptotically faster for the sparse functions

typical of 3D models. Good convergence can be achieved if thenumber of Monte Carlo

samples is at least on the order of the number of non-negligible values in the grid. So, for

CHAPTER 3. SYMMETRY TRANSFORM 29

0

20

40

60

80

100

0.0001 0.01 1 100

Time (sec)

P
e
r
c
e
n
t
E
r
r
o
r

32x32x32

64x64x64

128x128x128

256x256x256

Figure 3.4: Comparison of error in the Monte Carlo approximation to the PRST, as a
function of time. For typical grid sizes, such as the 643 used in the applications in
following sections, computing the PRST takes only a few seconds.

a typical 3D surface that has non-negligible values in onlyO(n2) voxels,O(n4) operations

(samples) are necessary to compute the PRST robustly, whichsignificantly faster than the

O(n6) brute force algorithm. Similarly, onlyO(n2) operations are required to compute

the PRST for typical curves. These speedups make computing the PRST practical for all

but the most complex 3D surfaces.

Computation time: By exploiting sparsity in the volume, the Monte Carlo algorithm is

able to compute the PRST of 3D surfaces efficiently. As with all randomized algorithms,

noise in the final approximation decreases with additional samples, but as shown in

CHAPTER 3. SYMMETRY TRANSFORM 30

Figure 3.4, the algorithm converges quite quickly. For example, for the 643 grid resolution

used throughout this paper, computing the PRST to 1% noise takes an average of 8

seconds on a 3 GHz processor, corresponding to two million sampled point pairs. These

results are typical - there is little variation in computation time, except for very large

models (for which the rasterization time can begin to dominate). For 2D, computing the

PRST for a 1282 grid resolution takes less than a second in Matlab on a 3 GHz processor

3.2.4 Properties of the PRST

In this subsection, we present experimental results aimed at evaluating the stability of

the PRST. We performed the same set of experiments as with thePST, perturbing simple

shapes by common transformations.

As with the PST, the top row of Figure 3.5 provides empirical evidence for the stability

of the PRST with respect to translation, scale, and rotation.

In the second and third rows of images, we took a simple shape and applied small

perturbations to the boundary. As with the PST, the contribution of any small change is

minimized by computing a GEDT on the surface after rasterization.

Finally, in the bottom row, we see an advantage of the PRST over the PST. In Fig-

ure 3.5(d), increasing the tessellation of the polygon causes the PRST to behave in the

expected manner (i.e. increasing the number of symmetry planes), while in Figure 3.1(d),

the lack of 180 symmetry in odd-numbered polygons causes thePST to fluctuate between

identifying a strong symmetric center and and having uniform symmetry throughout the

model.

While the PRST is defined over the space of planes, in order to give an intuitive

sense for the information provided by the PRST, and to compare to the results obtained

for the PST, the visualizations for shown above are shown in the original 2D space. In

CHAPTER 3. SYMMETRY TRANSFORM 31

(a) Similarity transformation

(b) Small perturbations of the boundary

(c) Large deformations (changing aspect ratio)

(d) Increasingly fine tessellation

Figure 3.5: Visualization of the PRST for several simple 2D shapes. These examples
show the variation of the PRST for several common boundary perturbations.

CHAPTER 3. SYMMETRY TRANSFORM 32

these visualizations, symmetry is measured for every plane, and the darkness of every

point represents the maximum of PRST values over all planes passing through the point

(darker values represent larger symmetries). As before, the original 2D shape is overlaid

in black and we use the same nonlinear mapping of symmetry to intensity.

3.3 Principal Symmetries

While the PRST taken as a whole characterizes all of an object’s symmetries, itslocal

maximaform an important and intuitive subset. They may correspondto the principal

symmetries of the whole object, weaker or partial local symmetries, or perfect symme-

tries of parts. Due to their intuitive nature, they are important for several applications,

including several of those described in Chapterss 4 and 5. Wenow discuss an approach

that builds upon the algorithm presented in the previous section to find local symmetry

maxima precisely: we extract candidates for local maxima from the discrete PRST, then

refine their locations using an iterative local optimization algorithm. This algorithm is

able to find local maxima of the PRST with arbitrary precision.

Given the full 3D symmetry transform, tabulated at a moderate resolution, we first

look for cells with a higher symmetry value than all their immediate neighbors. This

yields a large number of candidates, so we apply a number of thresholds to extract only

the strongest symmetries. First, we apply a threshold on thestrength of the symmetry at

that cell. While we could use a single fixed threshold, we haveobserved that portions

of the model away from the center naturally have lower symmetry values (since there is

less of the model that could potentially map onto itself under those reflections), so it is

more natural to use alower threshold near the edges of the model than near the center. In

particular, we use a threshold proportional to 1− r/R, whereR is the radius of the object

CHAPTER 3. SYMMETRY TRANSFORM 33

andr is the distance of the candidate plane from the center of mass. This corresponds

to the symmetry score of a plane passing at a distance ofr from the center of a sphere

of uniform thickness with radiusR. On top of the symmetry threshold, we also discard

shallow maxima, which are potentially subject to noise: we impose a threshold on the

discrete Laplacian (sum of second partial derivatives) of the PRST. The thresholds are set

automatically to1/10 of the values at the strongest local symmetry.

Once we have a list of candidate local maxima, we refine them tofind the planes

of symmetry with high precision. This approach, of finding maxima of a function by

first tabulating it then locally refining candidate maxima, is commonly used for numer-

ical maximization in general, and also resembles the local optimization performed by

Martinet et al. [33]. Our refinement method is inspired by theIterative Closest Points

algorithm [4], commonly used to perform pairwise alignmentof meshes, but solves for a

plane of reflection rather than a rigid-body transformation.

Our “Iterative Symmetric Points” or ISP algorithm begins byrandomly sampling

points from the mesh (we typically use around 10,000 points per iteration), then reflecting

them across the candidate plane. We match each reflected point to the closest point on

the mesh, then solve for the three parameters of the reflection plane that minimizes the

sum of distances (weighted to account for the Gaussian Euclidean Distance Transform)

between corresponding points (note that the minimal sum of weighted distances provides

a maximum for Equation 3.2.1 whenf is the GEDT of the surface). The process is

iterated until it converges to a local maximum of the PRST. Figure 3.6, left, shows an

iteration of ISP, with source points in red, the candidate plane in gray, and reflected points

in green. The support of the final maximum is shown at right.

If the iteration causes the reflection plane to leave its cell(in the discrete PRST), the

candidate is determined to be an unstable local maximum and discarded. Of course, this

CHAPTER 3. SYMMETRY TRANSFORM 34

Figure 3.6: At left, we show an iteration ofISP. We select random points (red), reflect
them through the candidate plane of symmetry (gray), and findclosest points on the
surface (green). We then update the plane of reflection to optimize the sum of Gaussian
distances between corresponding point pairs (samples withlow weight have been culled
in this visualization). At right, we show the support of the final local symmetry maximum,
as indicated by the gray level.

should not happen if the functionf is sufficiently band-limited by the GEDT. However,

we have found this check is necessary since different point sampling strategies are used

by the discrete and iterative algorithms.

In our experiments, this two-stage process of first tabulating the PRST then refining

candidate local maxima has proven both robust and efficient.The local refinement con-

verges in a few seconds for each plane, and we typically find 10–20 strong local maxima

of symmetry for models of moderate complexity. Figure 3.7 shows the four strongest

local maxima for a bull model, together with the surface support of each plane reflection

(white regions of the surface reflect onto each other across the chosen plane). Note

CHAPTER 3. SYMMETRY TRANSFORM 35

(1) (2)

(3) (4)

Figure 3.7: In this visualization, the triangles of the bullare colored to show how
symmetric they are with respect to the plane of symmetry displayed, with black meaning
no support of the plane reflection. Planes representing the four strongest local maxima of
the PRST are shown here. Note how points supporting reflections across planes (2),
(3), and (4) tend to cluster into regions corresponding to the neck, body, and head,
respectively.

CHAPTER 3. SYMMETRY TRANSFORM 36

Figure 3.8: An example of principal symmetries of a 3D model,extracted from the 3D
symmetry transform. Note that these capture the partial andapproximate symmetries of
the ears, head, body and legs of the bunny.

that we find planes capturing the global symmetries of the bull (1), as well as separate

local maxima capturing symmetries of the neck (2), body (3),and head (4). Another

interesting example of local maxima can be found in Figure 3.8. While it is intuitively

obvious that the bunny has two major planes of symmetry (one for the head and one

for the body), running the PRST on the model shows that there are in fact four strong

symmetries, capturing the separate symmetries of the ears,body, head and legs of the

bunny respectively.

Chapter 4

Analysis Applications

With the ever increasing number of 3D models available, the ability to sift through a

large number of models and extract relevant information about them is of significant

importance. In this chapter we will discuss the ways in whichsymmetry information can

improve results for the applications of alignment, matching and viewpoint selection.

4.1 Alignment

Assume you have models of two chairs, and you wish to know which one is more top-

heavy. A naive way to do this is to compare the centers of mass of the two chairs and see

which one is higher. In a case in which the models were both generated using a similar

scanning or modeling system this is probably correct. Unfortunately, in the general case,

the models were generated independently, so there is no way of telling if the scale of the

two chairs is the same, what the “up” direction is, and if it isconsistent. Instead, we

need a preprocess in which we align the scale, orientation and position of the two chairs.

This general problem of alignment is an important step for a variety of tasks, including

37

CHAPTER 4. ANALYSIS APPLICATIONS 38

visualization, studying the variation of models across different classes, composition of

scenes, and indexing of 3D model databases.

In the example described above, one solution might be to align one chair to the

other. This is known aspairwise alignment. A more general case is when we want to

compare the characteristics of many models and pairwise alignment may be prohibitive.

Instead, we automatically align all models to some canonical coordinate frame. In this

section, we will concentrate on selecting a global point of reference for the origin of 3D

models (translation alignment) and a set of axes to determine their orientation (rotation

alignment). We do not address the scale alignment problem: we assume this is preformed

using some other technique such as PCA [12].

4.1.1 Previous Work

Historically, canonical alignments are computed with principal component analysis (PCA):

the center of mass is of the object chosen as the origin, and the principal axes are used

to determine the orientation [12]. However, PCA does not always produce compatible

alignments for objects in the same class. Specifically, PCA gives the direction of maximal

variance in an object. Since variance is a function of the distance squared, the orientation

produced by PCA tends to be overly influenced by small areas ofthe surface far from the

center. As an example, consider the drawings of the mugs shown in Figures 4.1. Even

though the mugs look identical to each other with the exception of the shape of their

handles, the principal axes (shown in green in Figure 4.1) are widely different, producing

inconsistent alignments undesirable for most applications. Note that the center of mass is

similarly affected, though to a lesser extent.

A second weakness of using the center of mass + PCA is that it rarely produces

alignments similar to what a human would select. Again, consider the mugs shown in

CHAPTER 4. ANALYSIS APPLICATIONS 39

Figure 4.1: A line drawing of a mug with and without handles. The the center of mass and
PCA axes are drawn in dotted green — note that they move depending on the presence
of handles. A visualization of the PRST is overlaid on the drawings, and the center of
symmetry and principal symmetry axes are shown in solid red —they remain stable under
perturbation of the shape.

Figures 4.1 and 4.2. Most humans would suggest that the central axis of these mugs runs

straight up and down through the middle of the cup, and the center is somewhere along

this axis. However, in all cases shown, the center of mass andprincipal axes are biased

towards the handle to different degrees.

Using symmetry to align classes of models was first suggestedby Kazhdan et al. [24,

25]. As mentioned in Section 2.4, they created a symmetry descriptor to measure the

reflective symmetry of an object through all planes passing through the center of mass.

They used the symmetries of the model for rotation alignmentbut still used the center of

mass for translation alignment. While they got improved results in their experiment, a

weakness of their approach is that they only capture symmetry passing through the center

of mass. Since any perfect symmetry passing through the center of mass in the original

model is provably captured by PCA as well, the improvement inthe alignment of those

models is not great. For models where the principal symmetries do not pass through the

center of mass, the symmetry transform is needed.

CHAPTER 4. ANALYSIS APPLICATIONS 40

Center of mass and PCA

Center of symmetry and principal symmetry axes

Center of mass and PCA

Center of symmetry and principal symmetry axes

Figure 4.2: Alignment for translation and rotation based oncenters of symmetry and
principal symmetry axes, as compared to center of mass and PCA. In each case, the
red, green, and blue lines represent the first, second, and third principal axes, and their
intersection is the computed center.

CHAPTER 4. ANALYSIS APPLICATIONS 41

More recently, Fu et al. [15] proposed a method for finding theupright orientation

of man-made objects by searching through all possible basesfor the object and applying

learning techniques to quantify how “stable” each possibleorientation is. Acknowledg-

ing the prevalence of left-right symmetry, especially in man-made objects, an explicit

component of their metric is an approximation of the reflectional symmetry of the object

with respect to planes perpendicular to the ground.

4.1.2 Symmetry Transform

Our intuition for using symmetry to align classes of models is based on the premise that

the shape of an object is very dependent on the fact that we live in a physical world.

Consider that a bird without left-right symmetry would not be able to fly well, or that

building gears without rotational symmetry is not a simple task. Based on this insight, we

hope to show that not only is symmetry a good candidate for aligning models consistently,

but that the resulting alignment will be one that is also intuitive to humans.

We begin by introducing two new concepts, theprincipal symmetry axes(PSA) and

thecenter of symmetry(COS), as robust global alignment features of a model. Intuitively,

the center of symmetry is a point around which the symmetry isgreatest, and the principal

symmetry axes are the normals of an orthogonal set of planes with maximal symmetry

passing through that point.

Specifically, given a PRST, we find the plane with maximal symmetry (the point in the

function with the highest score), and choose its normal to bethe first principal symmetry

axis. We then select the second axis by searching for the plane with maximal symmetry

among those perpendicular to the first. Since the third axis must be perpendicular to the

first two axes, these two planes are enough to create a canonical rotation. In order to find

CHAPTER 4. ANALYSIS APPLICATIONS 42

the center of symmetry, we find the plane with maximal symmetry that is perpendicular

to the first two planes. The intersection of the three planes is our center of symmetry.

We find that this simple method produces coordinate frames that are indeed both

robust and semantically meaningful for most objects. Referring to the examples men-

tioned above, for the mugs shown in Figures 4.1 and 4.2, the center of symmetry and

principal symmetry axes appear right in the middle of the cylindrical cup in all cases.

Similarly, for the mailboxes shown in Figure 4.2, the centerof symmetry and principal

symmetry axes consistently reside in the middle of the box — unlike the center of mass

and principal axes, they are not affected by the shapes of thestands. In general, we find

that the principal symmetry axes and center of symmetry are determined by an object’s

large parts with significant symmetries, and thus they closely match our intuition of an

object’s canonical coordinate frame.

4.1.3 Results

We ran a number of tests in order to measure the robustness of symmetry-based align-

ment. In the first test, we experimented with alignments of synthetically generated range

scans of objects. This experiment is motivated by an object recognition application in

which (partial-object) scans are acquired and registered to (whole-object) meshes stored

in a database, with the hope of automatically recognizing which object was scanned [43].

For this application, it is useful to align the partial scan to the complete object automati-

cally.

For the experiment, we used a ray tracer to generate eight synthetic range scans of

approximately 10,000 points (Figure 4.3, top) for the 907 meshes provided as part of

the Princeton Shape Benchmark test set [44]. For each mesh, the virtual scanner was in

turn placed at each of the eight corners of a cube surroundingthe model, always pointing

CHAPTER 4. ANALYSIS APPLICATIONS 43

(Center of Symmetry) (Center of Mass)

Figure 4.3: To evaluate the stability offered by symmetry-based alignment in a scan
recognition application, we computed eight virtual scans of 907 models (top two rows of
images), and for each computed coordinate frames using our symmetry-based approach
and PCA. Note how the centers of symmetry computed from the partial scans (shown as
cross-hairs) cluster near the center of the whole car betterthan do the centers of mass.

toward the center of the mesh bounding box. The view distancewas twice the length of

the bounding box diagonal, and the field of view was 0.4 radians (Figure 4.3 top). For

each scan, we voxelized the point cloud, computed the PRST onan 64x64x64 grid, and

extracted the principal symmetry axes and center of symmetry (Figure 4.3, bottom left).

Then, we evaluated how well the coordinate frames computed for each of the partial

model matched the frames computed for the complete meshes. We then ran the exact

same experiment, using the traditional principal axes + center of mass (Figure 4.3 , bottom

right).

CHAPTER 4. ANALYSIS APPLICATIONS 44

0

3

6

0 0.2 0.4 0.6 0.8

Distance from center

P
e
rc
e
n
t
o
f
m
o
d
e
ls

Center of Symmetry

Center of Mass

0

20

40

60

0 5 10 15

Average Angle Difference

P
e
rc
e
n
t
o
f
M
o
d
e
ls

Principal Symmetry Axes

Principal Axes

(a) (b)

Figure 4.4: Histograms of translational (a) and rotational(b) misalignment in our virtual-
scan experiment. In blue we show alignment based on center ofsymmetry and PSA, with
center of mass and PCA in green. Larger values near the left ofeach graph indicate better
matching performance.

Figure 4.4 shows the results of this experiment. In the first plot, we see histograms

of the translational misalignment between the partial range scans and the whole objects

when aligned with the center of symmetry (blue curve) and center of mass (green curve).

In general, the partial scans were sufficient to recover the major symmetries of the object

correctly, leading to lower average errors for center-of-symmetry alignment as compared

to center-of-mass. Of the 907 models tested, the center of symmetry for a scan was closer

to that of the entire model 90% of the time. On average, they were closer by a factor of

1.5, with better results occurring when a particular viewpoint caused significant portions

of the model to be missing.

Figure 4.4b shows histograms of the rotational misalignment of the partial scans with

respect to the full object when aligned with principal symmetry axes (PSA) and with

the principal axes (PCA). Note the large peak near zero in theblue curve, indicating that

PSA recovered the rotation for most range scans to within a few degrees of that computed

for the entire object. In contrast, PCA provided a larger spread of misalignment angles.

Moreover, even though less than half of the surface was available in any scan, we found

CHAPTER 4. ANALYSIS APPLICATIONS 45

that the coordinate frame chosen with PSA was within 5 degrees of a human chosen set

of axes for the whole object in 70% of the scans, as opposed to only 50% for PCA.

4.1.4 Limitations and Future Work

There are a number of limitations of using PSA. As in the case of PCA, the main lim-

itation of this method is that axes are only defined up to reflection. Specifically, the

coordinate system obtained by our method is invariant to reflection of the model through

its center. In order to overcome this, we use the same solution suggested by [12] and

define “right” (“up”, and “out” respectively) to be the side with the most mass. A second

limitation of the method is that the algorithm for choosing the planes is greedy. Especially

in the case of partial models, rather than choosing the first plane independently, a more

robust method might be to find the intersection of three orthogonal planes the contain the

most symmetry. The problem with this alternative method is that the brute-force search

over the entire PRST to find such a point would takeO(n6) in the size of the grid. A

more efficient method to find such points is in the realm of future work. Finally, another

venue for future work is to combine PCA and PSA, as each of those methods measures a

slightly different quality of the model.

4.2 Matching

Over the last two decades, the ever increasing availabilityof 3D content online has caused

a shift in the general approach people use to create digital models. In the past, most

digital models were created from scratch; by combining basic shapes such as spheres

and cubes to create progressively complex forms, applying virtual modeling tools to

basic shapes to sculpt a form, or by scanning a real-world 3D model. Now that large

CHAPTER 4. ANALYSIS APPLICATIONS 46

databases of models (in many cases professionally created and textured) are prevalent, a

more common approach is to search for models that are of the shape required or that are

similar enough to the desired shape so that simple modification suffices. This is especially

true for mechanical designs, where the option of using existing components is a serious

consideration.

In this context, a very interesting question is “given a large database of 3D content,

how do I find a model that has a shape similar to the one I am looking for”? While a

textual search may yield models that have the appropriate labels added, and in certain

cases searching based on color and texture may suffice, in order to solve the general

problem, some method for comparing the shape characteristics of 3D models is necessary.

To address precisely this issue, over the last few years, a variety of retrieval algorithms

have been proposed that enable the efficient querying of model repositories for a desired

shape. Typically, the query is in the form of a 3D model, and algorithm returns a list of

models from the repository that it has computed to have similar shape characteristics to

the query model. As with any general database retrieval application, the two principal

concerns of such an algorithm are to discriminate between different classes of models

effectively, and to compute matches efficiently in both space and time.

In this section we will examine some of the traditional algorithms used for shape

matching, discuss the motivations and characteristics of those algorithms, and explore

using the PRST and symmetry information in order to improve shape matching.

4.2.1 Shape Descriptor

In practice, most shape retrieval algorithms use ashape descriptorfor matching, a repre-

sentation of shape that can be matched efficiently, and computed robustly. Typically,

such a descriptor is a vector of fixed dimensionality, makingeach model a point in

CHAPTER 4. ANALYSIS APPLICATIONS 47

an N-dimensional descriptor space. This approach has the advantage of reducing the

computation of similarity or “distance” between any two models to computing the dis-

tance between two points, often (but not always) using a simple Euclidean distance

metric, generally satisfying the efficiency requirement ofthe application. Furthermore,

the descriptor for every model in the database may be computed in a preprocessing step,

making the actual retrieval step even simpler.

In order to create a robust shape descriptor, the values in the descriptor must capture

the shape characteristics of the model and not be susceptible to noise or other modifi-

cations that do not affect our perception of is shape. One of the key difficulties arising

from this requirement is that humans identify shapes as similar even under various global

transformations. For example, consider the car models in Figure 4.5. Even though

some are rotated through various axes, or scaled by various amounts, a human will still

identify them all as having a similar shape. Thus, a major challenge faced by a shape

descriptor is to effectively measure the minimal distance between two shapes over the

space of all such transformations. In general, there are three solutions to this challenge:

an exhaustive search over the entire space of transformations, normalization of the models

into a canonical coordinate frame so that the models may be automatically assumed to

be optimally aligned, and creating a shape descriptor that is invariant to that class of

transformation. In practice, exhaustively searching overthe space of transformations is

prohibitive and so most shape descriptors use one of the remaining two solutions for each

of the basic similarity transforms: Translation, Rotation, and Scale.

In the next subsection we will review some of the shape descriptors in common use.

CHAPTER 4. ANALYSIS APPLICATIONS 48

Figure 4.5: While these cars have different sizes, rotations, and color, they are all
considered to have similar shape. A robust matching algorithm needs to account for such
transformations when producing a similarity metric. (images courtesy of the Princeton
Shape Repository).

4.2.2 Previous Work

A basic approximation of the shape of a model can be computed by storing a histogram

of the surface points, either as a function of the distance from the center of mass (Shells),

as a function of the spherical angle (Sectors), or a combination of both. These types of

approximations were first used by Ankerst et al. [2] to address the challenge of protein

matching, and have the advantage of being translation invariant. Using the distance from

the center of mass gives an invariance to rotation and using the spherical angle allows

CHAPTER 4. ANALYSIS APPLICATIONS 49

invariance to scale. Typically, such a histogram is stored in a series of “buckets” to

ensure robustness to noise, with the values in the buckets possibly smoothed.

As an extension of the Shells and Sectors method, Osada et al.[40] describe a shape

descriptor that uses a histogram of distances between point-pairs (and areas of point-

triples, etc.) on the surface of the model. As with the Shellsmethod, theD2 Shape

Distribution method is translation and rotation invariant. Through a series of experiments

using various model databases available online, they show that Shape Distributions are

both robust to noise and able to discriminate between classes of models.

Horn [21] proposed a shape descriptor known as the Extended Gaussian Image (EGI)

that represents a 3D model by a spherical function. Given a 3Dtriangle model, EGI

computes for every point on the surface of a unit sphere the probability that a random

point on the model will lie on a triangle that is facing in thatdirection. This descriptor is

translation and scale invariant and is invertible for convex models.

For a given polygonal model, the Gaussian Euclidean Distance Transform (GEDT) [24],

creates a 3D voxel grid that encompasses the model and computes for every voxel the

Gaussian euclidean distance to the nearest point on the surface of the model. Using the

GEDT as a descriptor is based on the notion that the similarity between two models is a

function of the distance between corresponding points on their surfaces. Thus, the GEDT

is a voxel representation that describes not only where the point on the surface is, but

also how close an arbitrary point in space is to that surface.The GEDT is not invariant to

scale, rotation or translation and must be normalized for each of those transformations.

All the above methods use local surface properties to compute a meaning of shape.

In contrast, Kazhdan et al.[24] described an approach usingtheir reflective symmetry de-

scriptor (RSD). They employed the maximum difference between the symmetry measures

of any two corresponding planes through the center of mass asa dissimilarity measure

CHAPTER 4. ANALYSIS APPLICATIONS 50

for a pair of 3D meshes. Our method extends the RSD to use the Symmetry Transform

as a descriptor.

4.2.3 Symmetry

Our efforts are motivated by the observation that symmetry properties are often consistent

within a class of objects (Figure 4.6). For example, although chairs may vary in their size,

whether or not they have arms, etc., their reflective planar symmetries are almost always

the same (perfect left-right symmetry, a weaker global symmetry between the back and

seat, local symmetries through the seat and back, etc.). This is true for many other object

classes as well, including airplanes, tables, people, etc.Perhaps it is possible to classify

3D meshes automatically by comparing their computed symmetries to those of meshes in

a supervised training set.

We extend the work done by Kazhdan et al. [24, 26] by considering symmetries with

respect to all planes through an object’s bounding volume. In our matching method, we

measure the dissimilarity between a pair of aligned meshes as theL2 distance between

their discrete PRSTs (Section 3.2.3), weighting the differences between corresponding

bins of the PRST by
√

sinθ (whereθ is the polar angle of the plane represented by the

bin) to account for different bin sizes. This measure produces a large distance when there

are planes for which one object is (nearly) symmetric, whilethe other is not.

4.2.4 Results

In order to evaluate the PRST as a shape descriptor for shape-based retrieval and classifi-

cation applications, we ran a set of “leave-one-out” experiments with the Princeton Shape

Benchmark test set [44], a database of 907 polygonal models partitioned into 92 classes

CHAPTER 4. ANALYSIS APPLICATIONS 51

Figure 4.6: Symmetries can play an important role in recognizing objects within the same
class. Note that even though the chairs have different heights and widths, they all share
the same symmetries: perfect left-right symmetry, and strong symmetries in the seat, leg
and back (images courtesy of Digimation).

commonly used for shape matching evaluations. In order to focus our study on shape

representation rather than alignment, we manually registered all models into a common

coordinate frame before matching every model against all the others. TheL2 distances

between PRSTs were used to produce a ranked retrieval list for each “query” model, and

then statistics were computed to evaluate how often models within the same class appear

at the front of the computed retrieval lists.

Figure 4.7 shows average precision-recall plots comparingour retrieval performance

with that of Kazhdan et al.’s planar reflective symmetry descriptor (PRSD) and the Gaus-

sian Euclidean Distance Transform (GEDT), which is currently used in at least one shape

based search engine [16]. The horizontal axis of this plot represents increasing recall

CHAPTER 4. ANALYSIS APPLICATIONS 52

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

PRST x GEDT
GEDT
PRST

RSD

Figure 4.7: Plot of precision versus recall achieved with four shape matching methods:
PRSD (magenta), PRST (thick blue), GEDT (green), and the combination of PRST and
GEDT (thick red). Note that the PRST captures information complementary to other
shape matching methods, hence can be used to augment their retrieval performance.

values (fraction of the query’s class retrieved), while thevertical axis represents retrieval

precision (fraction of the retrieved models that are in the same class as the query). Higher

curves represent better performance.

We find that the precision achieved when matching with the PRST (thick blue curve)

is higher than with the PRSD (magenta curve) for every recallvalue. This confirms

the expectation that the extra information provided by the PRST (symmetries for off-

center planes) adds precision for shape matching. Of course, it is more expensive to store

(32,768 floats versus 1,024 floats) and to compare (0.1 ms versus 0.004 ms), but the extra

cost seems worth the improved performance for most applications.

CHAPTER 4. ANALYSIS APPLICATIONS 53

PRST Better

D
iff

e
re

n
ce

 in
 N

N
 C

la
ss

ifi
ca

tio
n

0

+20%

+40%

+60%

-20%

-40%

-60%
GEDT Better

sc
ho

ol
_d

es
k

bu
tte

rf
ly

an
t

tr
ee

_b
ar

re
n

kn
ife

hu
m

an
_w

al
ki

ng
bi

llb
oa

rd
fly

in
g_

bi
rd

tr
ai

n_
ca

r
ro

un
d_

ta
bl

e
ha

t
st

an
di

ng
_b

ird
st

ai
rc

as
e

fa
ce

sh
ip

be
nc

h
po

tte
d_

pl
an

t
co

m
pu

te
r_

m
on

ito
r

ta
bl

e_
re

ct
an

gu
la

r
hu

m
an

_s
ta

nd
in

g
fig

ht
er

_j
et

he
lic

op
te

r
de

sk
_c

ha
ir

on
e_

st
or

y_
ho

m
e

co
m

pu
te

r_
de

sk
to

p
se

da
n

hu
m

an
_a

rm
s_

ou
t

ge
ar

do
or

sw
or

d
do

g
se

a_
tu

rt
le

sh
ov

el
ho

ur
gl

as
s

ho
rs

e
ha

nd
co

m
m

er
ci

al
_a

irp
la

ne tw
o_

st
or

y_
ho

m
e

tie
_f

ig
ht

er
m

on
st

er
_t

ru
ck

ga
ze

bo
co

ve
re

d_
w

ag
on

ch
es

s_
se

t
ca

bi
ne

t
fly

in
g_

sa
uc

er
fis

h
w

he
el

ra
bb

it
ha

m
m

er
ax

e
en

te
rp

ris
e

sa
te

lli
te

ra
ce

_c
ar

m
ai

lb
ox

ha
nd

gu
n

ci
ty

m
ot

or
cy

cl
e

la
rg

e_
sa

il_
bo

at
st

ea
lth

_b
om

be
r

ba
rn

su
bm

ar
in

e
bu

sh
sl

ot
_m

ac
hi

ne
ch

ur
ch

se
m

i_
tr

uc
k

bo
ok

Object Classes

Figure 4.8: The PRST provides better retrieval performancefor some classes (top),
while the GEDT is better for others (bottom). Combined, theyproduce better retrieval
performance than either alone.

We also find that both the PRSD and PRST provide less matching precision than the

GEDT (green curve) on average. We believe that this is because many object classes

within the Princeton Shape Benchmark have the same symmetries (e.g., almost all man-

made objects have perfect left-right symmetry). Even though the symmetries may be

consistent within a class, they do not always help discriminate between classes. However,

we observe that the PRST provides better matching results for some types of objects

(i.e., ones with distinctive symmetries), while the GEDT provides better results for others

(Figure 4.8). So, we find that combining the two shape descriptors (by simply multiplying

the L2 distances computed separately for the two descriptors) provides better retrieval

performance than either alone (the thick red curve in Figure4.7). The nearest neighbor

classification rate and discounted cumulative gain scores for the combined method were

69.2% and 68.6%, respectively, which represent good retrieval performance for this data

set [44]. This leads us to conclude that the PRST, while perhaps not the best shape

representation for retrieval of this type of data on its own,can provide useful information

CHAPTER 4. ANALYSIS APPLICATIONS 54

for shape-based matching and can be used to discriminate classes of objects that are

difficult to distinguish with other methods.

4.3 Viewpoint Selection

”You are trying to build a catalog of one hundred models of real-world objects. In order to

showcase these models, you need to take pictures of them to put in the catalog. From what

direction do you take those pictures?” This problem and others like it may be difficult

to solve, because 3D objects may look significantly different when viewed from diverse

directions.

Neuroscientists and Psychologists have long studied the process by which humans

recognize 3D objects. One theory is that the recognition process is based on a number

of primary images of the same object from various viewpoints, and that the brain tries to

make sense of the current view by trying to interpolate thoseprimary images. Support

for this theory may be found in the surprise shown by people viewing an object from a

new direction for the first time, (e.g. someone seeing their profile in a mirror for the first

time).

Further research has shown that certain viewpoints can be said to be preferred by

humans over other viewpoints. This preference may be measured using a number of

criteria such as the response time or recognition error whennaming objects seen for a

short period. Other criteria include the viewpoint which people say best describes the

model, or even an assignment of “goodness” to various viewing directions.

In computer graphics there have been a number of heuristics proposed for finding

optimal viewing directions for various problems, but to this date, none have included

symmetry. In this section we will explore an automatic solution for finding preferred

CHAPTER 4. ANALYSIS APPLICATIONS 55

viewpoints of 3D models based on the intuition that symmetryrepresents redundancy,

and hence should be minimized.

4.3.1 Previous Work

User Studies A preferred viewing direction for an object is called a “canonical view”.

This term was first used by Palmer et al. [37]. to describe a view “humans find easiest

to recognize and regard as most typical”. They ran a series ofexperiments where people

classified multiple views (top, side, front and back, as wellas intermediate views of 45

degree angles) of a single object (e.g. a horse), and gave subjective ratings to those views,

based on how well they depicted the object using a scale of 1 (“very like”) to 7 (“very

unlike”). Further experiments gave a different set of participants the same set of images

in a classifying experiment. The images were shown for a short time, and participants

were asked to classify the object seen. The best results wereobtained from images that

had a high ranking in the previous experiment (the preferredviewpoints). Analysis of

these experiments and others indicated that participants preferred the same viewpoints,

independent of the task. Specifically, for most models, participants preferred off-axis

views to head-on or side viewpoints.

Blanz et al. [5] performed a similar user study to determine factors that influence the

canonical views chosen by humans used to display 3D models. In their study, participants

were given a number of fully shaded digital models to view. Inone of the experiments,

rather than being given a set of images of an object from a fixedset of viewpoints,

the participants were allowed to choose the viewpoint from which they would take a

photograph. The viewing direction was manipulated using a three-degrees-of-freedom

input device which gave the participants full control to choose their preferred viewing

direction. Results from their experiments show that views containing significant visible

CHAPTER 4. ANALYSIS APPLICATIONS 56

features of the surface are preferred, and that many times off-axis views are preferable to

front or side axis views, results similar to those found by [37].

Automatic Viewpoints There are several proposed algorithms in the graphics commu-

nity to generate automatic canonical viewpoints for various models:

Based on the observation that a good viewpoint is one that allows a viewer to see the

most features of a polygonal model, Kamada et al. [22] seek tominimize the number of

degenerate polygons in the image. These are polygons in the current view whose edges

project over the each other. In order to achieve this goal, their method simply minimizes

the maximal angle deviation of the view direction with the normal of the polygons in

the model. While this works well for wire-frame models, thismethod does not take into

account the loss of feature detail resulting from occlusionin real-world models.

A similar effort is introduced by Vázquez et al. [49]. They try to find quality view-

points by maximizing the “interesting” content in a view. They introduced the notion

of viewpoint entropyas a method of determining how much information is conveyed by a

given set of planar faces. Their method proposes that the amount of information in a scene

is determined by the amount of faces seen (since every face contains some information

about the scene), and how well those faces are seen (degenerate faces to not contribute to

the information gathered). As such, they use the metric

I(S, p) =
N

∑
i=0

Ai

At
log

Ai

At

WhereAi is the projected area of facei over a sphere centered atp, At is the area

of the sphere, andN is the number of faces in the scene. Entropy will be maximized

when the relative area of each polygon is the same. Occlusionis included in determining

the projected area of a polygon, solving the issue of hidden surfaces, but the algorithm

CHAPTER 4. ANALYSIS APPLICATIONS 57

assumes that every face is equally important, and does not take into account that certain

portions of the model may be more informative than others.

Rather than trying to classify a viewpoint by the amount of surface area it sees, Lee et

al. [28] attempt to measure the information content of everyportion of the surface. They

note that a flat plane composed of many polygons is less informative than one with rugged

features. Similarly, a portion of the surface that containssome reoccurring texture might

not be as important judged by its information content as a unique pattern (i.e. letters). In

order to quantify the information content of a viewpoint, they look at theSaliencyof a

mesh. The saliency of a point on a mesh is found by aggregatingthe surface curvature of

the mesh at that point on a number of scales. They propose thatchanges in the curvature

of the mesh correspond to interesting features of the surface. For a given viewpoint,

the quality of the viewpoint is determined by summing up the total saliency seen. Note

that their definition of saliency, is very much a local property of the shape (though the

curvature may be computed on mid-sized portions of the mesh), thus surfaces with large

variation at high frequency, may be deemed “interesting” without really contributing to

the optimality of the viewing direction.

Finally, Abbasi et al. [1] and Lee et al. [29] are interested in finding a minimal

set of primal images of a given object (specifically a face in [29]) such that any other

image of the same object taken from any viewing direction would look similar to one

of the primal images. They accomplish this by taking images of the object from many

viewing directions. These images are grouped by how similartheir contours look, and

most are discarded to leave a small set that depicts the possible contours an image of

that object might have from any viewing direction. While this method doesn’t solve

the problem of what is the “best” viewing direction, one or more of the primal images

probably correspond to canonical viewpoints.

CHAPTER 4. ANALYSIS APPLICATIONS 58

4.3.2 Symmetry

The previous methods of [22, 49, 28] for computing the optimal viewing directions are

all based on local characteristics of the model. In each case, the contribution of a portion

of the model to the “goodness” of the viewing direction is independent of what other

parts of the model are seen in the same view. If there was a strong repeating pattern on

the surface of the object, the method suggested by [28] mightautomatically reduce the

value of those points, but in general terms of information content, these methods all fail

to account for redundant information in the form of symmetry. We propose to remedy

this by explicitly accounting for the symmetry of the model.

In our approach, we minimize the amount of symmetry seen. If amodel has perfect

left-right symmetry, and we know exactly what one side lookslike, no extra information

is gathered from observing the other side. However, even finding a viewpoint for half a

model is not simple. A purely side view of the model might not capture enough informa-

tion about the front or back of the model, and might contain redundant information itself

if the model has any front-back symmetry.

Our method begins with the primary symmetry of the object andthen uses the local

maxima extracted from the PRST to minimize the amount of symmetry in the direction

of the viewer. More specifically, for each plane appearing asa local maximum in the

PRST, the preferred viewing direction is along the normal tothe plane. We compute the

viewpoint score for a view directionv asS(v) = ∑u∈W |v·u| ·M(u) whereu∈W is a plane

of local symmetry andM(u) is the symmetry score for that plane.

With this relatively simple scoring function it is enough todo an exhaustive search

to find the optimal viewpoint, although a gradient descent method such as introduced

by [28] may be used to accelerate the computation.

CHAPTER 4. ANALYSIS APPLICATIONS 59

Score Best Worst

Figure 4.9: At left, we show the viewpoint score for each model as a spherical function.
The visualization is obtained by scaling unit vectors on thesphere in proportion to the
quality of the viewpoint from that direction. The images at center show the best viewpoint
selected by our algorithm. The images at right show the worstviewpoint selected.

CHAPTER 4. ANALYSIS APPLICATIONS 60

4.3.3 Results

We ran our algorithm on 22 different models, computing the PRST on a 64x64x64 grid,

and extracted the best viewing direction for each. As can be shown in middle column of

Figure 4.9, the best viewpoint found for these object was always 20−35 degrees off-axis,

similar to the findings obtained by [5].

We show the results of our approach in the middle column of Figure 4.9 — each

object’s local symmetries repel the viewpoint, such that the final selected view is off

of the major axis of the objects. Note that even though we onlyshow the best viewpoint,

it is possible to extend this implementation to produce multiple “interesting” viewpoints

for the user’s selection. This may be done by either considering secondary local maxima

of the viewing function (left column in Figure 4.9) or by removing from the computation

the planes that contribute most to the best viewpoint and trying again. Viewpoints to be

avoided may be found by finding the minima of the viewpoint function (right column).

4.3.4 Limitations and Future Work

Our algorithm chooses the optimal viewing direction, but there is still a degree of freedom

in choosing the rotation around the viewing axis. In our implementation we always used 0

degrees rotation, keeping the original angle of the object was loaded. In practice however,

the ’up’ direction of the model should be the ’up’ direction in which it is most commonly

found. There is no real only way to measure this with symmetryexpect maybe to assert

that the strongest symmetry is probably left-right, and usethat as a basis.

A possible future extension of the application would be to incorporate more model

information in order to improve the the viewpoint function.Relevant information could

include the stability of a pose (the lower the center of mass the better), an automatic

CHAPTER 4. ANALYSIS APPLICATIONS 61

computation of the “up” direction such as method suggested by [15], or other global

shape characteristics,

Chapter 5

Editing Applications

In contrast to analysis applications, editing applications actively change the model they

are applied to. Examples of editing applications include morphing, segmentation, sim-

plification, remeshing, composing, and smoothing. In this chapter we will describe

two applications, segmentation and remeshing, and show howwe can use symmetry

information to improve their results.

5.1 Remeshing

The increasing practicality of 3D scanning has caused an ever growing trend toward more

accurate 3D models of objects. While the creation of accurate models is beneficial for

practically any computer graphics application, this comesat the cost of model complex-

ity. Indeed, over the last few years, models with millions and even tens of millions of

polygons have become commonplace, and new scanning technologies are promising to

increase this limit further.

62

CHAPTER 5. EDITING APPLICATIONS 63

As a result, many applications that require rapid computation such as interactive

rendering, editing or physical simulation are hard-pressed to cope when dealing with very

large models. Consequently, over the last decade many methods have been developed

to remesh3D models, simplifying them while closely approximating their geometry.

While such approximation methods maintain the geometry of the original model while

remeshing, they generally do not explicitly preserve othertypes of high-level information

that might be important to the application.

In this section, we will review some of these methods, and propose a new “symmetry-

aware” remeshing algorithm that will automatically detectsymmetric regions and actively

preserve and even strengthen those symmetries during simplification. Portions of this

work were performed in collaboration with Aleksey Golovinskiy, Szymon Rusinkiewicz

and Thomas Funkhouser, and were previously published as [38].

5.1.1 Previous Work

Surface Approximation Due to the general usefulness of simplified models for many

applications in computer graphics, there is a long history of techniques designed to

approximate 3D surfaces while optimizing for various typesof geometric error.

Probably the most common method for mesh simplification involves approximating

the surface locally either by greedily clustering local groups of triangles or by collapsing

the edges of a mesh using a local error metric that captures the geometry deformation

of the simplified area [19, 27, 18, 48]. Generally the error ofsuch a method captures

a measure of the localL2 distance between points on the original and approximating

surfaces. Other methods, including Katz et al. [23] and Shlafman et al. [45], seek to

combine sets of faces containing similar properties to generate characteristic regions.

CHAPTER 5. EDITING APPLICATIONS 64

An alternative paradigm for simplification involves generating a maximally-accurate

approximation with respect to a global error metric, while reducing the number of faces.

Work such as Hoppe et al. [20] generates an energy functionalbased on a point-to-

surface distance of the input mesh. This error function captures the curvature and surface

variations from the original model. Departing slightly from the use of surface distance

(the L2 metric), Cohen-Steiner et al. [11] define a metric based on the normals of the

surface (TheL2,1 metric). They also solve the global error function by fixing anumber of

proxiesand then optimally placing these proxies to best approximate the surface. Using

normals rather than the more widely used surface distance ismotivated by the desire

to generate more visually pleasing results, for example by more accurately retaining

highlights.

It is important to note that in all these methods, the metric used is one that will

approximate the surface locally. At no time does the approximation of any part of

the surface explicitly affect the approximation of the restof the model, except as part

of a global optimization. Thus there is no attempt to preserve global features such as

symmetry. Consider for example, the mask in Figure 5.1a. Themodel is fairly left-right

symmetric, but the remeshed models created using the algorithms suggested by [18]

(Figure 5.1b) and [11] (Figure 5.1c) do not preserve that symmetry.

Based on on the observation that in general, people are sensitive to symmetry, and

will notice departure from symmetry more readily than some general deformation of

the surface, our remeshing technique incorporates symmetry information from the PRST

directly into the algorithm, yielding a symmetric approximation (Figure 5.1d).

CHAPTER 5. EDITING APPLICATIONS 65

(a) Initial model

 with symmetry

 plane

(b) Traditional

 proxies

(c) Symmetric

 proxies

(d) Traditional

 triangulation

(e) Symmetric

 triangulation

Figure 5.1: Remeshing without symmetry does not create a symmetric triangulation
without explicit accounting for symmetry. Column (a) showsa model (62K triangles)
of a relatively symmetric mask. Column (b) shows the triangulation of the model using
QSlim [18] algorithm, column (c) shows the triangulation using [11], and column (d)
shows the result of our algorithm.

CHAPTER 5. EDITING APPLICATIONS 66

5.1.2 Symmetric Remeshing

Our goal is to remesh a surface in a “symmetry aware” environment. If we were only con-

cerned with perfect symmetries, a simple algorithm would beto remesh using any existing

technique, then force symmetry by mirroring the output. However, in most practical situ-

ations, the symmetries will be imperfect. For example, there may be near-symmetries that

are not perfect because of noise or differing tessellation,or partial symmetries in which

regions of the model may be symmetric about different planes. In addition, some models

may exhibit approximate symmetry. In these cases, faithfulremeshing (resulting in a

large number of polygons), should prioritize geometric accuracy. However, remeshing

such models withfewerpolygons should result in a symmetric output, provided thatdoing

so introduces error of the same order as that necessarily introduced by remeshing. In this

way, we avoid symmetrizing if there is no reason to do so: the choice to remesh with

many polygons shows that the user’s overriding concern is topreserve detail accurately.

To address this, we propose a framework for model simplification that automatically

detects symmetric regions and actively preserves and even strengthens those symmetries

during simplification. Our approach is to modify the algorithm proposed by [11] so

that it explicitly preserves symmetry. We chose to begin with this algorithm because

it has been shown to produce good results for low polygon counts, for which the careful

choice of symmetrization algorithm has the most visible impact. Specifically, we have

adapted all stages of Variational Shape Approximation to include symmetry. During the

proxy generation stage, we extend the notion of a proxy to include multiple connected

components related by a pre-defined set of symmetry transformations (e.g., planar reflec-

tion). Thus, while growing proxies we consider not only neighboring triangles, but also

reflected triangles. In the triangulation stage, we explicitly find corresponding symmetric

CHAPTER 5. EDITING APPLICATIONS 67

points based on the proxies grown previously. We force the triangulation to follow these

correspondences as much as possible, yielding a more symmetric triangulation.

Symmetric Proxy Generation The first step of the algorithm is to generateproxies,

planar regions that closely approximate local sections of the surface. This is done with

an iterative technique based on Lloyd’s algorithm. At everyiteration:

1. Every proxy is assigned triangles of the model from a single priority queue. When

a triangle∆ is removed from the queue and assigned to a proxyP, all triangles

adjacent to∆ are added to the queue with a weight defined by the compatibility of

those triangles toP. This assures that each proxy is a single connected component.

2. Once all triangles have been assigned, optimal proxy parameters (i.e., center and

normal) are re-computed based on the triangles currently assigned to the proxy.

In order to avoid converging to local minima, small proxies are occasionally deleted

and new proxies introduced at appropriate locations (“teleportation”).

Our method follows this approach but generalizes the definition of a proxy by al-

lowing it to represent a planar region, possibly transformed by a discrete setT1..Tk of

symmetry transformations. This is a key component of our algorithm, as proxies may

now contain multiple connected components symmetric to oneanother. We allow a max-

imum of one connected component per symmetry transformation (including the identity),

calledpatches. As an example, we show in Figure 5.2(a) a proxy with two patches, one

associated with the identity (purple triangles) and one associated with the reflection plane

shown (green triangles).

In our method, a triangle∆ may be assigned to a proxyP if it is adjacent to a triangle

previously assigned toP, or if the triangle nearest toTi(∆) has previously been assigned

CHAPTER 5. EDITING APPLICATIONS 68

(a) (b)

Figure 5.2: (a) A proxy with two patches. The purple patch is associated with the identity
and the green patch is associated with the reflection plane shown. (b) When a triangle
(orange) is assigned to a proxy (green), the neighboring triangles (black) are added to the
queue. The triangles across the plane of reflection (red) areadded as well.

to P. Consider the example shown in figure 5.2(b). The orange triangle was recently

assigned to the proxy shown (dark green), so any of the black triangles may now be

added to the proxy; under our extended definition, the red triangles may be added as well.

The remainder of the iterative algorithm is nearly unchanged, with triangles extracted

from the priority queue in order of increasing error, and newpatch centers and positions

computed after each iteration. The teleportation process is augmented to allow individual

patches, in addition to entireproxies, to be deleted.

After a few iterations, we observe that, where possible, proxies will have symmetric

patches corresponding to “good-enough” symmetry transformations. This will ultimately

lead to symmetric outputs, since the boundaries between theproxies determine the topol-

ogy of the final surface. Note that the order with which triangles are selected from the

priority queue completely determines whether or not the final proxies are symmetric. That

CHAPTER 5. EDITING APPLICATIONS 69

Figure 5.3: This model is quite symmetric, except for the gash in the right side of the
chin. Note how our algorithm does not create symmetric patches for the proxies that
approximate that area, because the error introduced would be too great. The remainder
of the head however, has symmetric patches. The model was remeshed using 50 proxies
and one plane of symmetry (up to two patches per proxy).

is, symmetric proxies will be created if and only if the errorof doing so is comparable

to the error introduced by the remeshing itself. Multiple planes of local symmetry are

used automatically in the appropriate regions, and no user intervention is required. An

example of this can be seen in Figure 5.3, where the area around the chin is not symmetric.

Therefore, in this region, unlike the the rest of the face, the proxies are generated without

a reflection.

Point Correspondences Once the proxies are placed, our goal is to place a set of

symmetric points on the surface that we will later triangulate.

CHAPTER 5. EDITING APPLICATIONS 70

[11] place two categories of points onto the new surface. Thefirst category of points

is anchor vertices, placed at junctions where three or more proxies meet. The second

category of points issecondary points, which are placed along the boundaries between

proxies to improve the geometry approximation of the new surface and to assure at least

three points per proxy boundary. In each case, the new vertexpositionV is computed

from the original positionv by calculating for every proxyPi the optimal positionPi(v)

(the nearest point on the proxy), then averaging these optimal positions to obtain the final

positionV = 1
n ∑Pi(v) on the new mesh.

Our modifications to this vertex-placing algorithm involvedetermining symmetric

correspondences between points. The clearest indication of correspondence occurs when

a set of anchor points are adjacent to the same three proxies for different symmetric

transformationsT0..Tk. Thus, for anchor vertices, we check whether the proxies adjacent

to somevi all have reflections that meet in an identical configuration at somev j . If this is

the case, then we establish a correspondence betweenvi andv j , and further adjust their

new positions to be perfect reflections of each other.

We find matching secondary points by establishing correspondences between proxy

boundaries: mesh-edge paths that run between corresponding anchor vertices are con-

sidered to be in correspondence with each other. When addinga secondary vertex to a

boundary, we search through corresponding boundaries for the nearest symmetric vertex.

As with anchor vertices, we adjust the positions of such correspondences to be perfect

reflections.

Triangulation Once we obtain all our correspondences between anchor and secondary

points, all that remains is to triangulate the set of points symmetrically.

CHAPTER 5. EDITING APPLICATIONS 71

We triangulate the proxies in the same manner suggested by [11]. This consists of

flooding using Dijkstra’s shortest-path algorithm, where the sources are the anchor and

secondary points, and with each edge weighted according to its length. At the end of the

flooding, adjacency of regions implies that their source points should be connected in the

resulting triangulation. As a final pass, edge flipping and edge removal are run to obtain

a better tessellation.

We use the same flooding algorithm, but run edge flipping on each proxy separately

to prevent edge flips in one proxy from altering the triangulation of its neighbors. This

process is guaranteed to converge to the same topology for symmetric proxies if the

associated triangles are co-planar. In practice, we find that this method produces a

consistent topology even when the triangles are not co-planar.

Proxies Spanning Reflection Planes The algorithms for proxy assignment and trian-

gulation, as described above, operate at the granularity ofentire triangles of the input.

This leads to potential problems for proxies that lie near the planes of symmetry, since

triangles that originally cross a symmetry plane will be assigned entirely to one or another

component (patch) of a proxy. The result is non-symmetric triangulations along the

planes of reflection, as can be seen in Figure 5.4a. Obtaininga symmetric output therefore

requires us to treat this situation as a special case.

We preprocess the model by splitting each triangle that crosses a reflection plane,

creating new vertices where the original triangle’s edges intersect the reflection plane

and replacing the original with three new triangles. The proxy-fitting stage proceeds as

previously described. Then, at the beginning of the triangulation stage, we explicitly

check each of the split triangles to see if both sides of the triangle were assigned to

different patches. If so, we explicitly enforce that the vertices we inserted to perform the

CHAPTER 5. EDITING APPLICATIONS 72

(a) (b)

Figure 5.4: This figure shows the need for splitting faces that cross over reflection planes.
(a) Without splitting faces, triangles that cross the planeof reflection are assigned to only
one of the reflections of the proxy. This causes a jagged triangulation. (b) When we split
the triangles that cross the reflection plane, the tessellation is symmetric. The models
have 342 and 358 faces respectively.

split (lying on the reflection plane) be anchor vertices. Therest of the algorithm proceeds

as above, with the result that the triangulation now becomessymmetric (figure 5.4b). In

the examples shown, splitting triangles adds an average of 3% to the number of triangles.

Error Metric While it is not possible to change the amount of weight given to symme-

try vs. geometric deformation, since all we do is add more triangles for the priority queue

to consider, in certain cases it might be important to consider symmetry more strongly

than surface deformation. In these cases, we have observed that theL2,1 metric proposed

by [11] is not ideal for preserving symmetry. This is becauseit considers only normals,

CHAPTER 5. EDITING APPLICATIONS 73

which tend to be more sensitive to noise and small deformation than does the geometry

itself. Therefore, in order to allow more freedom for the algorithm to capture a model’s

near-symmetries, we have considered other, more “symmetryfriendly” error metrics.

We begin by noting that in theL2,1 metric, the distance of a triangle to a proxy depends

only on the normal, and indeed the center of the proxy is not relevant, being set as the

weighted average of the triangles in the proxy for book-keeping purposes only. We note

that if the metric were simply the weighted Euclidean Distance of the centers of the

triangles to the center of the proxy, then the optimal proxy position would also be at the

weighted average of the triangles, without consideration of the normal. We expect that

such a purely position-based error metric would allow the algorithm greater opportunity

to capture near-symmetries, at the expense of less-faithful preservation of the original

geometry.

Thus, we have investigated a combined error metric, with oneterm dependent only

on positions and one only on normals. Specifically, we take

Ecombined = α‖ctriangle−cproxy‖2+

(1−α)Aavg‖ntriangle−nproxy‖2,

wherec andn represent the average positions and normals of triangles and proxies,Aavg

is the average triangle area (included to ensure that the twoterms are dimensionally

compatible and the metric is scale invariant), andα is a user-selected parameter. In

Figure 5.5 we show an example of remeshing a bull withα = 0 and withα = 0.4. Note

that the proxies look more symmetric as we increaseα, at the expense of a less-faithful

reproduction of the original surface.

CHAPTER 5. EDITING APPLICATIONS 74

Bull planes (α = 0) (α = 0.4)

Figure 5.5: At left, we show a bull remeshed to 200 proxies with two planes
simultaneously, one passing through the head and one passing through the body. In the
center column we show results using the basicL2,1 metric (α = 0). At right, we show
results whenα = 0.4. Note that the model becomes more symmetric, at the expenseof
geometric accuracy.

5.1.3 Results

We evaluate the algorithm described in the preceding sections using a number of well-

known 3D meshes. Our goal is to produce simplified meshes thatmaintain and even

enhance symmetries, while minimizing geometric approximation error. In the following

subsections, we analyze the algorithm for both single and multiple planes of symmetry

and present running times.

Approximate Symmetries A first example shows results for a mask (Figure 5.1): the

original model (a) contains 62K faces and is only roughly symmetric. Figure 5.1(b)

shows proxies for the model generated using the unmodified algorithm of Cohen-Steiner

et al. [11]. Note that the proxies are not symmetric. Figure 5.1(c) shows the result of

using our symmetry-aware algorithm: note that the proxies are now symmetric. Since

CHAPTER 5. EDITING APPLICATIONS 75

symmetric remeshing allows proxies to have multiple patches, we used 100 proxies in the

basic method and 50 proxies in the symmetry-aware version toensure a similar-quality

tessellation. Note that our algorithm (e) produces a triangulation with more symmetry

than the traditional method (d), as expected. Moreover, we find that it introduces very

little geometric error in the shape approximation as compared to the original Cohen-

Steiner algorithm — the RMSD increases by 4%, while the symmetry error (RMSD to

reflection) decreases by 50%. This result suggests that more-symmetric topology can be

provided for approximately symmetric models at very littlecost.

Figure 5.6 demonstrates that increasing the amount of simplification results in meshes

that are more symmetric. At top we show the Max Planck model simplified to 600

and 50 proxies, while at bottom we illustrate deviations from perfect symmetry (blue is

most symmetric while green, yellow, and red indicate more asymmetry). This illustrates

the property of our algorithm that it automatically captures symmetry if doing so is

compatible with the current deformation error.

A third example is the sacrum in Figure 5.7 (605K faces) which was remeshed using

200 proxies. This is model of a natural object that is close tosymmetric yet not perfectly

so, as shown in the color-coded visualization at center. In addition, this model was

created from a set of 3D scans, meaning that high-frequency scanning noise caused

further deviations from symmetry. At right we show our remeshed result, produced in

just over eight minutes. Our method remains robust despite the high-frequency noise, the

presence of holes and the large size of the mesh.

Multiple Symmetries Our first example of remeshing while considering multiple planes

of symmetry is the bull (Figure 5.5). This model has separateplanes of reflection indicat-

ing approximate symmetries of the head and the body. These planes were automatically

CHAPTER 5. EDITING APPLICATIONS 76

Original 600 50

Figure 5.6: Increasing the amount of geometric simplification (towards right) results
in greater symmetry preservation. Images in the bottom row are colored to represent
deviations from symmetry (how far each point is from the reflected surface) with blue
indicating perfect symmetry.

CHAPTER 5. EDITING APPLICATIONS 77

Original Asymmetry Remeshed

Figure 5.7: 3D scan of a sacrum (605K polygons, shown at left) remeshed with200
proxies (right). Note that the model is only approximately symmetric (middle).

2 symmetry planes 3 symmetry planes 4 symmetry planes

Figure 5.8: The bunny is shown here remeshed with 250 proxies, using 2, 3, or 4 planes of
symmetry. Note that increasing the number of symmetries results in progressively more
symmetric and more intuitive triangulations, while retaining plausible triangulations at
the boundaries of symmetric regions.

extracted by choosing the top two principal planes of the model, as described in Section

3.3. Note that the remeshing results in symmetric triangulations for the head and the body

with a reasonable (though not symmetric) triangulation at the neck.

Our second example (Figure 5.8) shows results for the Stanford bunny.

Recalling that the bunny has four major planes of symmetry (3.3), we show in Fig-

ure 5.8 the result of remeshing with respect to two, three, and four planes of symmetry.

Note that remeshing with only three planes fails to capture the symmetry of the feet, while

CHAPTER 5. EDITING APPLICATIONS 78

considering only two planes (through the body and ears — the strongest planes resulting

from the symmetry analysis) fails to triangulate the head symmetrically. In contrast, the

result at right shows that we are able to take advantage of allfour symmetry planes to

produce an intuitive result with locally-symmetric triangulations and smooth transitions

between the symmetric regions.

To produce these results, we segmented the input mesh according to the strongest

symmetry at each point, then constrained the proxy flooding to only consider one can-

didate symmetry per triangle. The remeshing itself, however, was still run on the entire

model, allowing smooth blends between symmetry regions to be computed automatically.

Computation Time We ran our experiments on a 3GHz PC with 1GB of RAM. As a

preprocess, for every model we calculated a symmetry transform using a 64x64x64 grid,

then ran the Iterative Symmetric Points algorithm (described in Section 3.3) to refine each

of the extracted principal symmetries. While most models exhibit a single strong plane

of symmetry, we have extracted up to four principal planes for the models considered in

this section.

Our remeshing algorithm can take up to several minutes for large (i.e., 600k polygons)

models. The most time-consuming phase is the distortion-minimizing flooding, which

takesO(m·nlogn) time for m iterations on a mesh withn triangles. Note that this time

is similar to what would be required for the unmodified remeshing algorithm. In com-

parison, the time required for anchor and secondary point placement and triangulation is

much lower, ranging from a few seconds to half a minute if the model is simplified to

have large patches. The total time for the clustering part ofthe algorithm can be seen in

Table 5.1. Unless otherwise noted, all the models were remeshed withα = 0.002.

CHAPTER 5. EDITING APPLICATIONS 79

Model # Triangles # Proxies Time (s)
Mask 62K 50 62
Igea 130K 50 99

Teapot 8.5K 100 7
Bull 49K 200 72

Max Planck 98K 600 85
Sacrum 605K 200 491
Bunny 69K 30 49

Table 5.1: Timing results for the proxy-growing stage of ourmethod, for various models
and different numbers of proxies.

5.1.4 Discussion

Since human beings can recognize symmetry easily, retaining the symmetry of models

during simplification is important. We have shown how to modify the existing remeshing

technique proposed by [11] to directly incorporate symmetry without deforming the

model too much. In fact, the approximation error introducedby our algorithm can be

trivially bounded. The upper bound is simply the error of theunmodified algorithm with

the same number of proxies, while the lower bound is the errorof the original algorithm

using a number of proxies equal to the number of ourpatches. For example, if we remesh

using only one plane of symmetry (up to 2 patches per proxy) using K proxies, the error

will be between the errors resulting from using the traditional method withK and 2K

proxies.

Though we have demonstrated that our algorithm is able to take advantage of im-

perfect symmetries during remeshing, and can produce regions of symmetric tessellation

joined by plausible triangulations for multiple symmetries, our method has limitations

that suggest avenues for future work.

First, our approach to symmetric remeshing is limited by thefact that our final edge-

flipping technique does not explicitly search for symmetry.While the method works

CHAPTER 5. EDITING APPLICATIONS 80

in cases where entire proxies are symmetric, if a proxy contains both symmetric and

non-symmetric anchor and secondary points, the edge-flipping technique might adversely

affect the triangulation in the symmetric areas. A further weakness of this technique is

that running edge-flipping on patches separately, rather than on the entire mesh at once,

may reduce the quality of the final triangulation of the model. Thus, symmetry-preserving

edge-flipping is a topic for future work.

Another limitation of the approach is our non-reflexive method of dealing with sym-

metry. If for example, one side of a model is reflected only once while the other side is

reflected twice, the number of patches for a proxy in that section depends on the starting

triangle. This is merely a manifestation of a problem with Lloyd’s algorithm - it doesn’t

converge to a minimum.

There are other limitations of our technique inherited fromthe underlying Varia-

tional Shape Approximation algorithm. For example, the patch flooding requires a com-

putationally expensive iteration, and the final triangulation algorithm is constrained to

use original vertices of the model and is not error-driven. Moreover, the algorithm is

optimized for the case of significantly fewer output than input polygons, thus making

our symmetry-enabled variant inappropriate for symmetricremeshing that preserves all

original detail.

A further limitation of this work is that the use of symmetry is necessarily coupled

to the error metric. Although we believe that this coupling is theoretically sound and

intuitively understandable, it may be inappropriate for some applications. Therefore, a

future extension of this work may consider explicitly allowing for greater deformation if

doing so will strengthen symmetry.

CHAPTER 5. EDITING APPLICATIONS 81

Finally, we use planar proxies as the foundation of our algorithm, but our algorithm

should work for general proxies. An possible avenue of future work is to implement our

algorithm using the generalized proxy definitions of [51] or[52].

5.2 Segmentation

Assume you are trying to color a 3D model of a car. You want the wheels to be colored

a dull black, the body of the car to be a bright blue, the interior to be leather brown, and

the hubcaps to shine. The problem is that the model is a bunch of triangles floating in

space. How do you label these triangles in order to be able to color them correctly? This

general problem of segmentation is a key step in a wide range of tasks including collision

detection, texture mapping, compression, and partial-object matching.

While for some applications (e.g. collision detection) it might be enough to decom-

pose an object into generic components such as convex regions, for many other computer

graphics applications, a key step of the algorithm is identifying an intuitivesegmentation

of the model. Consider that if an animal is described as “looks like a giraffe, but with

a short neck”, or that a car “has a speaker system on top and doesn’t have any wheels”,

you get an immediate picture in your mind. Humans readily identify objects by their

component parts, and so any application for 3D models that has goal of assisting humans

with some form of shape analysis or shape processing (e.g matching, metamorphosis,

modeling by parts) would benefit greatly from intuitive segmentation.

In computer graphics, there have been various methods proposed for computing such

a segmentation, but many of these rely on local surface and volumetric information. In

this section we will review those methods, and show how to include symmetry informa-

tion to improve the quality of those algorithms. As we explain below, we believe that the

CHAPTER 5. EDITING APPLICATIONS 82

non-local nature of symmetry allows its use to generate moredesirable segmentations for

many applications.

5.2.1 Previous Work

Convex Segmentation Convex decomposition of 3D models has long known to be a

complex computational geometry problem. For example, while there are many relatively

simple sub-quadratic solutions for computing triangulations in 2D (e.g. [17, 10, 8]), in 3D

there are polygonal meshes that cannot be triangulated (i.e. tetrahedralized) without the

addition of Steiner points. In fact deciding if a mesh can be triangulated without adding

Steiner points is provablyNP−Complete[41]. If Steiner points are allowed, then there

are a number of methods available, such as [7] or [9].

Unfortunately, a convex segmentation is not always intuitive for humans. If a 3D

model contains small concavities, the solutions produced by the above algorithms would

necessarily contain many small convex components. In addition, large planar surfaces

may get unnecessarily partitioned, or partitioned differently based on small perturbations

of the surface. Instead, for shape analysis type applications, a segmentation algorithm

that captures some manner of human expectation is more likely to be useful.

Intuitive Segmentation In the previous decade, there have been a number of methods

suggested for intuitive segmentation of 3D models.

Li et al. [30] segment 3D models using a set of generalized cylinders called “sweep

paths”. In their method, a polygonal model is first convertedinto a skeleton using edge

contractions. Skeleton edges are converted into a single skeleton-tree, and an ordered

sweep of space is created based on this tree. Thus, the entiremodel is defined as the cross-

section of a walk along the branches of the skeleton-tree. The model is segmented by

CHAPTER 5. EDITING APPLICATIONS 83

creating boundaries where the cross-section changes rapidly or the tree branches. While

the approach is generally robust to noise, a downside of thismethod is that smoothing

of the model can create situations where the cross-section changes slowly enough so that

segmentation does not happen.

Mortara et al. [36] use a method similar to sweep paths named Tailor. Given a pointp

in a 3D modelM, they characterize the surface aroundp using the intersection ofM with

a series of concentric spheres centeredp. Depending on the nature of the intersection, the

local surface is described as a disc, a tube, or branching. Their segmentation algorithm

uses this description to split a model into “limbs” and “body”. Each limb is then grown

until some stop criteria is reached, creating a smooth segmentation. Further segmentation

may be achieved using smaller radii.

Shlafman et al. [45] use K-means clustering to segment polygonal meshes. The

weighting scheme they use to cluster the faces of the mesh is based on geodesic distance,

convexity and curvature. They also suggest decomposing into various amounts of clusters

in order to find an optimal segmentation. A general problem with this method is that the

boundaries between the components tend to be jagged and susceptible to noise.

Katz and Tal [23] use a technique they callfuzzy segmentationin order to obtain

smoother boundaries. In their method, they first split the model into meaningful compo-

nents while keeping the boundaries between the components fuzzy by allowing triangles

to belong to multiple components. The metric they use to compute the distance between

triangles is similar to the one used by [45], and includes thegeodesic distance between

centers of adjacent triangles and the the angle between their normals. Extra weight is

given to concave angles, because convex shapes make better candidates for boundaries.

Once the fuzzy components are computed, their technique resolves one boundary at

a time using a graph-cut algorithm to ensure that the split issmooth and follows the

CHAPTER 5. EDITING APPLICATIONS 84

contours of the model. A refinement to this method is proposedin [31], where the coarse

segmentation is based on first finding prominent feature points on a pose insensitive

representation.

5.2.2 Symmetry

As noted in chapter 2, there are many objects that while not perfectly symmetry them-

selves, are composed of symmetric components. For example,a chair might only have

left right-symmetry, but its legs will contain front-back (and top-bottom) symmetry as

well. An engine block may not contain any global symmetries,but it’s component gears

and tubes need to be symmetric in order to function. More importantly, each component

has its own unique set of symmetries. We propose that a meaningful segmentation

of a 3D model may be computed by analyzing the partial symmetries (as defined in

section 3.3) inherent in the model and clustering sections of the model based on which

symmetries they share.

Given a model in the form of a polygonal mesh, our method begins by computing the

PRST and obtaining a listPK
j=0 of the principal symmetries. Then, for every polygonTi

in the mesh, we compute thelocal support Li, j for each planePj in the list. Specifically,

for every triangle,Li, j is the average value in the PRST of a point inTi reflected byPj .

An example of a 2D model with local support may be seen in Figure 5.9.

At the end of this step, each triangleTi is represented by a feature vector ofK numbers

defining how wellTi is reflected by each of the principal symmetries. An example of this

may be found in Figure 5.10. We now follow the same strategy suggested by Katz and Tal

and run fuzzy clustering on these feature vectors, followedby a graph-cut algorithm to

obtain the final boundaries. Intuitively, this method clusters faces that are symmetric with

CHAPTER 5. EDITING APPLICATIONS 85

(a) (b)

(c) (d) (e)

Figure 5.9: Example of local support: Given a 2D model (a), wecompute the symmetry
transforms on it (b), and extract principal symmetries. Then, for every symmetry we find
which portion of the model it reflects well (c,d,e). In the example shown, the square is
reflected by the first two planes of symmetry (c,d), while the ellipse is reflected the the
third (e). This leads to an intuitive segmentation of the model (square vs. ellipse). In this
visualization, principal planes are shown in blue and the support of those planes is shown
in red.

CHAPTER 5. EDITING APPLICATIONS 86

Support = 0.1 Support = 0.5 Support = 0.9

Figure 5.10: In this example, the point on the bunnysupportsthe three planes shown
to varying degrees. Concatenating the support values creates a feature-vector describing
how symmetric this point is with respect to each plane of symmetry. The feature-vector
for this point is(0.1,0.5,0.9...). In this visualization points are colored based on how
symmetric they are with respect to the plane shown, with red meaning symmetric and
blue meaning non-symmetric.

respect to the same distinct set of planar symmetries, and will thus segment the model

into usable components.

A limitation of clustering using the PRST is that the major symmetries dominate the

segmentation. The symmetry of a small part of the model mightnot show up in the

transform at all. In order to support segmentation into everfiner components, we modify

the above algorithm by using a hierarchy of splits. For each split, we performk-means

clustering (withk = 2) to establish an initial segmentation. Then, for every segment,

the discrete PRST is recomputed and its local maxima extracted for use in the next level

of segmentation. Segmentation is terminated at a user-supplied depth, or when the only

planes of local maxima reflect either more than 90% or less than 10% of the surface onto

itself.

The result of this process is a segmentation tree, with the property that lower levels in

the tree capture increasingly local symmetries, hence allowing strong symmetries of even

small parts to influence the segmentation.

CHAPTER 5. EDITING APPLICATIONS 87

Teapot Octopus Dinopet

Bull

Skeletal Hand

Figure 5.11: These images show segmentations of a range of models. For the bull we
show segmentation into 2,4, and 8 segments. The skeletal hand is shown segmented into
4 and 18 parts.

5.2.3 Results

Figure 5.11 shows some examples of the segmentation produced by our method. Note

that for the Teapot the strongest planes of symmetry pass through the body of the pot.

So, the handle, spout, and top are removed precisely becausethey arenot symmetric

CHAPTER 5. EDITING APPLICATIONS 88

with respect to those planes — i.e., the body of the pot is removed from the smaller parts,

rather than vice-versa. For the Octopus and Skeletal Hand models, local symmetries of

parts are important for obtaining the segmentation shown. Finally, a weakness of our

scheme can be seen in the segmentation of the legs of the Dinopet and Bull. Because we

use a min-cut to smooth our initial guess, the final segmentation will seek a shorter cut,

and thus avoid the upper sections of the thigh. Integrating symmetry information into the

min-cut algorithm is a topic for future work.

Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis we have defined the Symmetry Transform and explored a number of general

methods for using symmetry information extracted from thistransform to improve a wide

range of analysis and editing applications. In particular,our contributions are four-fold.

First, we introduce the point symmetry transform and the planar reflective symmetry

transform, which measure the symmetry of an object with respect to all points in space,

planes through its bounding volume respectively. We show how to compute them effi-

ciently, using convolution methods and provide a fast Monte-Carlo method for computing

the PRST when dealing with surface meshes. In empirical evaluations, we explore the

properties of these transforms, and demonstrate that it is stable under small perturbations,

and intuitively responds to rotations and scale.

Second, we provide a method for extracting local maxima fromthe discretized trans-

formation and computing their exact position. We also show how these maxima provide

a useful subset of planes for describing the principle symmetries of a model.

89

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 90

Third, we investigate the utility of the symmetry transformfor several geometric

analysis applications. In particular, we propose that thecenter of symmetryandprincipal

symmetry axesare useful for aligning 3D objects in a common coordinate frame. We also

show that the reflective symmetry transform can be used for registering 3D range scans

into a common coordinate system, matching 3D polygonal models of the same class, and

that good viewpoints for visualization of meshes may be found by minimizing symmetry.

Finally, we show that the symmetry transform is useful for editing applications as

well. In particular, we show how symmetry may be used to find meaningful parts in 3D

models, and how to remesh models in a manner that the main symmetries are explicitly

maintained.

6.2 Future Work

The investigation of the PRST presented in this thesis is a first step. Our implementation

has several limitations, and there are many avenues for future research.

6.2.1 Symmetry

First, we have investigated only the transform that maps a 3Dobject to its point and planar

reflective and symmetries. While these types of symmetry areperhaps the most prevalent

in real-world objects, and thus makes a good starting point,it is possible to consider

other types of symmetry in future work. For example, one might define a rotational

symmetry transform, in which a measure of symmetry is computed for every possible

rotation around every possible axis (5D), or a translation by any offset (3D).

Second, our transform measures symmetries of an entire object. However, for objects

containing multiple symmetric parts a useful investigation would be to understand how

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 91

symmetries can be detected at multiple scales, corresponding to different sized regions

of local support [32]. While we have shown an automatic segmentation algorithm that

extract symmetries of large parts of the model hierarchically, interesting local symmetries

may “be drowned” and not found during this process. A multi-resolution scheme, where

the PRST is computed on local sections of the model would be interesting to investigate.

Third, our investigation include only a small subset of the analysis and editing appli-

cations available. Further applications that might benefitfrom symmetry include comple-

tion, compression, texture mapping, and symmetrization.

6.2.2 Inversion

Since the PRST is a 3D→ 3D mapping, we raise the question of whether the transform

is invertible. While at first glance the transform is composed of operations that cause

irrecoverable loss of information, precluding inversion,we believe that there are strong

constraints provided by, for example, the requirement thatthe model be bounded (i.e. that

the function is zero at the boundary) that make inversion possible. Using these constraints

we can already show that the transform is invertible in the 1Dand 2D cases, and we

believe we can extend this to 3D. The inversion is currently sensitive to noise however, so

further research is necessary to determine if additional constraints or stronger variational

relations might make our method practical. We hypothesize that the ability to invert the

transform will lead to applications in a variety of domains,with the ability to not only

analyze but also synthesize symmetries.

Bibliography

[1] S. Abbasi and F. Mokhtarian. Automatic view selection inmulti-view object

recognition. InProc. ICPR, volume 1, page 1013, 2000.

[2] M. Ankerst, G. Kastenmller, H. peter Kriegel, and T. Seidl. 3d shape histograms for

similarity search and classification in spatial databases.pages 207–226. Springer,

1999.

[3] M. Atallah. On symmetry detection.IEEE Trans. on Computers, 34:663–666, 1985.

[4] P. J. Besl and N. D. McKay. A method for registration of 3-Dshapes.IEEE Trans.

PAMI, 14(2):239–256, 1992.

[5] V. Blanz, M. Tarr, H. Buelthoff, and T. Vetter. What object attributes determine

canonical views.Perception, 28, 1999.

[6] H. Blum. A transformation for extracting new descriptors of shape. In W. Whaten-

Dunn, editor,Models for the Perception of Speech and Visual Form, pages 362–380.

MIT Press, 1967.

[7] B. Chazelle. An optimal convex hull algorithm and new results on cuttings

(extended abstract). InFOCS, pages 29–38, 1991.

92

BIBLIOGRAPHY 93

[8] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput.

Geom., 6(5):485–524, 1991.

[9] B. Chazelle, D. P. Dobkin, N. Shouraboura, and A. Tal. Strategies for polyhedral

surface decomposition: an experimental study. InSCG ’95: Proceedings of the

eleventh annual symposium on Computational geometry, pages 297–305, New

York, NY, USA, 1995. ACM.

[10] K. L. Clarkson, R. E. Tarjan, and C. J. V. Wyk. A fast las vegas algorithm for

triangulating a simple polygon. InSCG ’88: Proceedings of the fourth annual

symposium on Computational geometry, pages 18–22, New York, NY, USA, 1988.

ACM.

[11] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation.

ACM Transactions on Graphics (Proc. Siggraph), 23(3):905–914, 2004.

[12] R. Duda, P. Hart, and D. Stork.Pattern Classification, Second Edition. John Wiley

& Sons, New York, 2001.

[13] M. Enquist and A. Arak. Symmetry, beauty and evolution.Nature, 372:192–172,

1994.

[14] R. W. Ferguson. Modeling orientation effects in symmetry detection: The role of

visual structure. InProc. Conf. Cognitive Science Society, 2000.

[15] H. Fu, D. Cohen-Or, G. Dror, and A. Sheffer. Upright orientation of man-made

objects.ACM Trans. Graph, 27(3), 2008.

BIBLIOGRAPHY 94

[16] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and

D. Jacobs. A search engine for 3D models.ACM Trans. Graph., 22(1):83–105,

2003.

[17] M. Garcy, D. Johnson, F. Preparata, and R. Tarjan. Triangulating a simple polygon.

volume 7, pages 175–179, 1978.

[18] M. Garland and P. S. Heckbert. Simplifying surfaces with color and texture using

quadric error metrics. InVIS ’98: Proceedings of the conference on Visualization

’98, pages 263–269, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[19] H. Hoppe. Progressive meshes. InSIGGRAPH ’96: Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, pages 99–108, New

York, NY, USA, 1996. ACM Press.

[20] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh

optimization. InSIGGRAPH ’93: Proceedings of the 20th annual conference on

Computer graphics and interactive techniques, pages 19–26, New York, NY, USA,

1993. ACM Press.

[21] B. Horn. Extended Gaussian images.Proc. of the IEEE, 72(12):1671–1686,

December 1984.

[22] T. Kamada and S. Kawai. A simple method for computing general position in

displaying three-dimensional objects.Comput. Vision Graph. Image Process.,

41(1):43–56, 1988.

[23] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and

cuts.Proceedings of ACM SIGGRAPH, 22(3):954–961, 2003.

BIBLIOGRAPHY 95

[24] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, and S. Rusinkiewicz. A

reflective symmetry descriptor for 3D models.Algorithmica, 38(1), Oct. 2003.

[25] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical

harmonic representation of 3D shape descriptors. InSymposium on Geometry

Processing, June 2003.

[26] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Symmetry descriptors and 3D

shape matching. InProc. Symposium on Geometry Processing, 2004.

[27] R. Klein, G. Liebich, and W. Strasser. Mesh reduction with error control. InVIS

’96: Proceedings of the 7th conference on Visualization ’96, pages 311–318, Los

Alamitos, CA, USA, 1996. IEEE Computer Society Press.

[28] C. H. Lee, A. Varshney, and D. W. Jacobs. Mesh saliency.Proceedings of ACM

SIGGRAPH, 24(3):659–666, 2005.

[29] J. Lee, B. Moghaddam, H. Pfister, and R. Machiraju. Finding optimal views for 3d

face shape modeling. InFGR, pages 31–36. IEEE Computer Society, 2004.

[30] X. Li, T. Toon, T. Tan, and Z. Huang. Decomposing polygonmeshes for interactive

applications. InProceedings of the 2001 Symposium on Interactive 3D graphics,

pages 35–42, 2001.

[31] S. K. G. Liefman and A. Tal. Mesh segmentation using feature point and core

extraction.The Visual Computer, 21:865–875, 2005.

[32] R. Manmatha and H. Sawhney. Finding symmetry in intensity images. Technical

Report UM-CS-1997-007, University of Massachusetts, Jan.1997.

BIBLIOGRAPHY 96

[33] A. Martinet, C. Soler, N. Holzschuch, and F. Sillion. Accurately detecting

symmetries of 3D shapes. Technical Report RR-5692, INRIA, September 2005.

[34] P. Minovic, S. Ishikawa, and K. Kato. Symmetry identification of a 3D object

represented by octree.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 15(5):507–514, May 1993.

[35] N. J. Mitra, L. Guibas, and M. Pauly. Partial and approximate symmetry detection

for 3d geometry. InACM Transactions on Graphics, volume 25, pages 560–568,

2006.

[36] M. Mortara, G. Patanè, and M. Spagnuolo. From geometric to semantic human

body models.Computers & Graphics, 30(2):185–196, 2006.

[37] S. Palmer, E. Rosch, and P. Chase. Canonical perspective and the perception of

objects.Attention and Performance IX, pages 135 – 151, 1981.

[38] J. Podolak, A. Golovinskiy, and S. Rusinkiewicz. Symmetry-enhanced remeshing

of surfaces. InSymposium on Geometry Processing, July 2007.

[39] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. Funkhouser.

A planar-reflective symmetry transform for 3D shapes.ACM Transactions on

Graphics (Proc. Siggraph), 25(3), July 2006.

[40] O. R., F. T., C. B., and D. Dobkin. Matching 3d models withshape distributions.

Shape Modeling and Applications, pages 154–166, May 2001.

[41] J. Ruppert and R. Seidel. On the difficulty of tetrahedralizing 3-dimensional non-

convex polyhedra. InSCG ’89: Proceedings of the fifth annual symposium on

Computational geometry, pages 380–392, New York, NY, USA, 1989. ACM.

BIBLIOGRAPHY 97

[42] M. I. Shah and D. C. Sorensen. A symmetry preserving singular value

decomposition. SIAM Journal of Matrix Analysis and it’s Application, October

2005.

[43] Y. Shan, B. Matei, H. S. Sawhney, R. Kumar, D. Huber, and M. Hebert. Linear

model hashing and batch ransac for rapid and accurate objectrecognition. IEEE

International Conference on Computer Vision and Pattern Recognition, 2004.

[44] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton Shape

Benchmark. InProc. Shape Modeling International, 2004.

[45] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of polyhedral surfaces using

decomposition. InComputer Graphics forum, 2002.

[46] C. Sun and J. Sherrah. 3D symmetry detection using the extended Gaussian image.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(2):164–168,

February 1997.

[47] S. Thrun and B. Wegbreit. Shape from symmetry. InProceedings of the

International Conference on Computer Vision (ICCV), Bejing, China, 2005. IEEE.

[48] G. Turk. Re-tiling polygonal surfaces.SIGGRAPH Comput. Graph., 26(2):55–64,

1992.

[49] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint selection

using viewpoint entropy. InVMV ’01: Proceedings of the Vision Modeling and

Visualization Conference 2001, pages 273–280. Aka GmbH, 2001.

[50] J. D. Wolter, T. C. Woo, and R. A. Volz. Optimal algorithms for symmetry detection

in two and three dimensions.The Visual Computer, 1:37–48, 1985.

BIBLIOGRAPHY 98

[51] J. Wu and L. Kobbelt. Structure recovery via hybrid variational surface

approximation. InEUROGRAPHICS, volume 24, pages 277–284, 2005.

[52] D.-M. Yan, Y. Liu, and W. Wang. Quadric surface extraction by variational shape

approximation.GMP, pages 73–86, 2006.

[53] H. Zabrodsky, S. Peleg, and D. Avnir. Completion of occluded shapes using

symmetry. InProc. CVPR, pages 678–679, 1993.

[54] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as a continuous feature.Trans.

PAMI, 17(12):1154–1166, 1995.

[55] J. Zhang and K. Huebner. Using symmetry as a feature in panoramic images for

mobile robot applications. InProc. Robotik, volume 1679 ofVDI-Berichte, pages

263–268, 2002.

