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Abstract

Online property reconstruction: Large data sets are ubiquitous today with the
advent of high speed computing and the explosion of data storage capabilities. Using
this data as an input is quite a challenge, since we do not even have the luxury of
reading the whole data. Linear time algorithms are too slow, and we are forced to
move into the realm of sublinear time algorithms.

Usually, data sets are useful because they satisfy some structural property. An
ordered list of numbers may be in sorted order, and this property may be central to
the usefulness of this list. Such a property is very sensitive to noise. Given a large
data set f that does not satisfy some such property P, can we modify f minimally
to make it have P? Furthermore, this data set is large and we may not have access
to it all at once. We would ideally like to make this change online.

These considerations led to the formulation of the online property reconstruction
model, which we investigate in this thesis. We are given oracle access to a function
f (defined over an appropriate discrete domain) which does not satisfy a property
P. We would like to output a function g which satisfies f and differs from f at very
few values. The function g is output by a sublinear time online procedure, called a
filter. Such a procedure takes as input a domain point x, and outputs g(x) in time
sublinear to the domain size. We design filters for the following scenarios:

1. Monotonicity : The functions are real-valued on the d-dimensional domain
[1, n]d, and the property to be maintained is monotonicity. This is a natural
starting point for discussing the online reconstruction model, and involves the
development of many sublinear techniques to study monotonicity. We show
the surprising result that once a random seed of size (d log n)O(1) is fixed, the
value of g(x) (for any input domain point x) can be computed in (logn)O(d)

time. These results are provided in Chapter 2 and are joint work with Michael
Saks.

2. Convexity : We take property reconstruction to the geometric world and study
convexity in two and three dimensions. Given a polygonal chain or a 3D
terrain, we design filters that minimally modify the input and make it convex.
Especially for 3D, we require a large set of geometric tools. We also prove
lower bounds showing a complexity gap between 2D and 3D. This is joint
work with Bernard Chazelle and given in Chapter 3.

3. Expansion : The input is a bounded degree graph which we want to make
into an expander. The main algorithmic technique used here is random walks.
We initiate a discussion into the behavior of random walks in graph that are
almost expanders - graphs formed by arbitrarily connecting a small unknown
graph to a large expander. We show interesting mixing properties of walks in
such graphs, and use this to construct a filter for expansion. These results are
given in Chapter 4 and are joint work with Satyen Kale and Yuval Peres.

Self-improving algorithms: A real world algorithm performs the same task,
say sorting, repeatedly on inputs coming from some source. It is natural to assume
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that this source, although unknown, may possess some structure that allows for
faster running time. We investigate ways in which an algorithm can improve its ex-
pected performance by fine-tuning itself automatically with respect to an arbitrary,
unknown input distribution. Assume that the inputs to the algorithm are generated
indepedently from a fixed distribution D. A self-improving algorithm learns about
D and then makes optimizations specific to D. This allows it to beat the worst-case
running time for the given problem. We give such self-improving algorithms for
sorting and computing Delaunay triangulations. The highlights of this work: (i) an
algorithm to sort a list of numbers with optimal expected limiting complexity; and
(ii) an algorithm to compute the Delaunay triangulation of a set of points with opti-
mal expected limiting complexity. These results are described in Chapter 5 and are
joint work with Nir Ailon, Bernard Chazelle, Ken Clarkson, Ding Liu, and Wolfgang
Mulzer. In both cases, the algorithm begins with a training phase during which it
adjusts itself to the input distribution, followed by a stationary regime in which the
algorithm converges to its optimized incarnation.
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Chapter 1

Introduction

The first step that a traditional algorithm usually takes is to read the whole in-
put. In the past, algorithms were always allowed time at least linear in their input
size. This view of algorithms has changed considerably in the past decade. From
a theoretical perspective, algorithms that did not read their input completely were
used in proving the PCP theorem [17, 18]. Concepts such as self-testing and self-
correction [23] required algorithms that gave some verification of program correct-
ness without checking all possible outputs. In the real world, the size of data sets
has been increasing at an exponential rate, and reading the whole input itself is
an unaffordable luxury. We need sublinear time algorithms that read a vanishingly
small fraction of their input and still say something intelligent and non-trivial about
input properties.

The model of property testing [72] has been very useful in understanding the
power of sublinear time. In the standard algorithmic setting, we accept an input
when it satisfies some property and reject it otherwise. We relax this condition by
introducing the notion of distance to a property. The algorithm, called a property
tester, accepts inputs that satisfy the property and reject those that are far from
satisfying it. All other inputs can be dealt with arbitrarily. Sublinear, or even con-
stant time algorithms are surprisingly good at this task. In many circumstances,
they can even approximate certain parameters of the input. In local and list decod-
ing [16,78], we have algorithms that again infer properties from noisy codewords by
reading a very small portion of them.

Philosophically, the major question is : what can be known without reading the
whole input? One of the aims of this thesis is to push the boundaries of what sublin-
ear time can achieve. We introduce the model of sublinear distributed reconstruction
and show many sublinear time algorithms in this model. These algorithms are far
more powerful than property testers and allow us to modify an input to give it some
structural property (instead of only telling us whether the input possesses it or not).

In this vein of attempting to go beyond “standard lower bounds” (i.e., the linear
time lower bound for processing an input), we introduce self-improving algorithms.
The previous topic was about designing sublinear time algorithms to deal with
massive inputs. In a different direction, we build algorithms that exploit input dis-
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tributions and optimize running times. Normally, an algorithm is created to process
a fixed task repeatedly (on different inputs). Indeed, in such a situation, it is highly
likely that the input is generated by some unknown and unrepresentable distribution.
Can we somehow glean enough information about this distribution and improve our
running time? In this thesis, we construct such self-improving algorithms that have
the ability to adapt themselves to the current input distribution.

1.1 Online property reconstruction

The process of assembling large data sets is prone to varied sources of error, such
as measurement error, replication error, and communication noise. Error correction
techniques (i.e. coding) can be used to reduce or eliminate the affects of some
sources of error, but some residual errors may be unavoidable. Despite the presence
of such inherent error, the data set may still be very useful.

One problem in using such a data set is that even small amounts of error can
significantly change the behavior of algorithms that act on the data. For example,
if we do a binary search on an array that is supposed to be sorted, a few erroneous
entries may lead to behavior that deviates significantly from the “correct” behavior.

This is an example of a more general situation. We have a data set that ideally
should have some specified structural property, i.e., a list of numbers that should
be sorted, a set of points that should be in convex position, or a graph that should
be a tree. Algorithms that run on the data set may rely on this property. A small
amount of error may destroy the property, and result in the algorithm producing
wildly unexpected results, or even crashing. In these situations, a small amount of
error may be tolerable only if the structural property is maintained.

The extensive theory of property testing algorithms (see surveys [43, 45, 70])
provides means to detect such problems in existing data sets in sublinear time.
However, in applications it may not suffice to just detect such problems, since one
needs to actively process the data to perform useful tasks. Usually, it is reasonable
to minimally modify the data to restore the property, so that further processing can
take place without problems. Yet, since the input is so massive, one cannot afford
to read the whole input and then fix it.

Thus, this may seem like an impossible task, but usually access to the large input
is provided in the form of local queries: for example, if the input is, say, the web
graph, then typical queries to the input would ask for all the outgoing links from
a given webpage. In such cases, we would like to repair the input as and when we
read it in sublinear time.

These considerations motivate the formulation of the online property reconstruc-
tion model (introduced in [6]). We are given a data set, that we think of as a function
f defined on some domain Γ. This can be used to model geometric data as well as
graphs. Ideally, f should have a specified structural property P, but this property
may not hold due to unavoidable errors. We wish to construct online a new data
set g such that (1) g has property P and (2) d(g, f) is small, where d(g, f) is the
fraction of values x ∈ Γ for which g(x) 6= f(x).
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How small should d(g, f) be in condition (2)? Define εf = εf (P) to be the
minimum of d(h, f) over all h that satisfy P. Of course, εf is a lower bound on the
deviation of g from f . The error blow-up of g is the ratio d(g, f)/εf . This error
blow-up can be viewed as the price that is paid in order to restore the property P,
and we want this to be a small constant.

An offline reconstruction algorithm explicitly outputs such a g on input f . In
the context of large data sets, the explicit construction of g from f requires a con-
siderable amount of computational overhead (at least linear in the size of the data
set). Instead, we want to have an algorithm, called a filter, that given a domain
point x ∈ Γ outputs g(x) in sublinear (o(|Γ|)) time.

1.1.1 Distributed property reconstruction

We now consider a more general notion of reconstruction than the one above. This
new notion will generalize property testing (this shall be explained in more detail in
Section 1.1.2). We motivate this by describing a distributed setting for reconstruc-
tion. There are many independent users who want to use the large reconstructed
data set g. The function g was output using a filter, which is necessarily a random-
ized algorithm (each query must be handled in sublinear time, and that certainly
needs randomness). Since we wish to provide all users that same function g, we
would like to construct a distributed filter. Consider a small random sublinear seed
ρ. Any user who wants access to g is provided with ρ. The distributed filter is a
sublinear time algorithm that only uses ρ for random bits1. Given domain point
x ∈ Γ, the filter outputs g(x). Note that because all users have the same random
seed, they all see the same function g. Since the random seed is sublinear and the
running time of the filter is sublinear, the total space that is ever needed is sublinear.

We now provide a formal definition. A distributed filter [74] for reconstructing
property P is an algorithm A that has oracle access to a function f on domain Γ
and to an auxiliary random string ρ (the “random seed”), and takes as input x ∈ Γ.
For fixed f and ρ, A runs deterministically on input x to product an output Af,ρ(x).
We want A to satisfy the following properties:

1. For each f , with high probability (with respect to the choice of ρ), the function
Af,ρ should satisfy P.

2. For each f , with high probability (with respect to the choice of ρ), the function
Af,ρ should be “suitably close” to f .

3. For each x, Af,ρ on x can be computed very quickly.

4. ρ should be “much smaller” than |Γ|.

Since the filter is essentially a randomized procedure, the guarantees of the
properties of the function Af,ρ are probabilistic (we usually require that these hold
with with very high probability over the random seed ρ). For a distributed filter,

1Alternatively, the filter is a deterministic procedure that takes ρ as input.
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there are three parameters of interest: the error blow-up, the time per query and the
number of random bits needed for ρ, that is, to initialize the filter. The memory used
by a distributed filter is bounded by the sum of the length of ρ and the maximum
time of a single query.

As we mentioned before, if εf is the distance of f to the property P, we want
d(f, g) = O(εf ). The running time and the size of ρ should be bounded by o(|Γ|).
Ideally, we would like this running time to be independent of εf . In other words,
the amount of time we spend for reconstruction does not depend on how far f is
from satisfying P. Interestingly, we will show that such a filter is not possible for
reconstructing convexity in 3-dimensions.

A much weaker notion of reconstruction is that of sequential reconstruction [6],
which actually predates its distributed cousin. Here, we assume that the domain
point queries are coming in sequential order x1, x2, · · · . Given query xi, we wish to
output g(xi) in sublinear time. We are allowed to store all the previous answers,
and thereby, actually use linear space in the long run. Furthermore, the function g
may depend on the sequence of input queries.

Although distributed reconstruction is a more natural (and possibly cleaner)
concept, thinking about sequential reconstruction seems to be a very helpful step in
designing distributed filters. Indeed, for the problem of monotonicity reconstruction,
the results on sequential filters [6] provided the necessary insight to build distributed
ones. Also, sequential filters can usually be made to run faster and have lower error
blow-up.

An interesting side-effect that we get out of studying properties from the per-
spective of reconstruction is the variety of tools developed. The present array of
tools for sublinear algorithms and property testing are usually inadequate for recon-
struction, and we are forced to delve deeper into the problem. As a result, we end
up with newer and more powerful techniques for sublinear algorithms, and a list of
questions of independent interest.

In this thesis, we will present filters for monotonicity, convexity, and for expan-
sion. We will not present the results on sequential filters for any of these problems.
The description of the distributed filters are self-contained and no further insight is
provided their simpler sequential forms.

1.1.2 Previous work and relation to property testing

One case of property reconstruction that has been extensively studied is error cor-
recting codes. If C ⊆ {0, 1}n is such a code and P is the property of being a code
word then the error correction problem for C is the same as the reconstruction
problem for property P. Distributed property reconstruction corresponds to local
decoding of the code. Note that in general, reconstruction can be much harder than
error correction - in error correction, we assume that there is only one codeword
(or a few words, in list decoding) that are “close” to the given word. On the other
hand, for a general property P, there may be many functions that are in P and
are sufficiently close to the given function. This makes reconstruction a lot harder,
because there is no unique correct output for the filter.
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There is a similar connection to the concept of program checking and self-
correction, as introduced by [23]. Here, we can think of the input function as a
somewhat buggy program that is supposed to perform a fixed task, and we wish to
correct the faulty outputs. Again, there is only one possible correct output func-
tion. There has been a lot of work regarding list-decoding of low-degree polynomials
[16, 78] (where the property we wish to enforce is that the input is a set of values
generated by a low-degree polynomial), that can be seen as a special case of property
reconstruction.

A slightly related notion of reconstruction was discussed in [47], for generalized
partition problems in dense graphs. Given a input dense graph that satisfies some
partition property (say k-colorability), we wish to construct a partition of the ver-
tices that has an ε-fraction of violating edges. The reconstruction here can be done
with a small random subset (in this case, some function of ε independent of n) of the
vertices. For any other vertex, we can decide the set of the partition it belongs to by
looking at only the small random subset. This is very reminiscent of a distributed
filter, since each decision can be made in sublinear time 2.

In [71], a sublinear time algorithm to approximate the vertex cover of a graph
is constructed from a distributed algorithm. This shows an interesting connection
between distributed and sublinear algorithms. Distributed filters can be seen as
going in the opposite direction : we use sublinear tools to get a distributed algorithm.

In property testing [72], we are given a property P and a distance parameter
ε ∈ [0, 1]. Given a function f , we wish to distinguish between the following cases :
(1) f has the property P, and (2) f is ε-far from satisfying P,i.e., ming∈P d(f, g) > ε.
There has been a large amount of work done on property testing in various models
(see surveys [43, 45, 70]). The problem of monotonicity in the context of property
testing has been studied in [39,41,46]. Geometric testing problems have been looked
at in [32,36]. More closely related to reconstruction is the notion of tolerant property
testing [68] which deals with actually estimating the distance in sublinear time.
Sublinear algorithms for determining the distance of a function to monotonicity
have been given in [5, 68].

We note that distributed reconstruction is a strict generalization of these settings.
Given a distributed filter for a function f , we can query it at a random domain point
x and check if g(x) 6= f(x). By repeating this test suitably many times, we can
actually estimate εf (upto a multiplicative factor of the error blow-up) in sublinear
time.

1.1.3 Monotonicity reconstruction

We start the discussion of distributed reconstruction with the property of mono-
tonicity. The most basic case of this problem is to consider the universe of functions
of the form f : [n] → R with the property P of all monotonically non-decreasing
functions (think of sorted arrays). The most natural extension into higher dimen-

2We add that the running time, in these algorithms, depends on the parameter ε, whereas our
filters have running time independent of that.
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sions is to consider functions of the d-dimensional lattice - f : [n]d → R. Instead of
a total order on the domain, we have a partial ordering. A domain point x is less
than y if all coordinates of x are less than the respective coordinates of y. Such a
function f is monotone if, for any x less than y, f(x) ≤ f(y).

In Chapter 2, we construct a distributed filter for monotonicity for these func-
tions with the following performance:

• The time per query is (log n)O(d).

• The error blow-up is 2O(d2), independent of n.

• The number of random bits needed to initialize the filter is (d log n)O(1).

The running time per query is strongly sublinear in the domain size, and at
some level, it is actually surprising that such a filter can be constructed. We give
more details on the technical difficulties later on. The basic ideas and techniques
for this filter come from sublinear time algorithms for estimating the distance to
monotonicity [5]. We greatly extend and enhance these tools. One of the interesting
features of this result is the construction of a data structure that allows us to sample,
in sublinear time, contiguous portions of the domain at various scales.

1.1.4 Convexity reconstruction

In the geometric realm, we consider the problem of convexity reconstruction. In the
two-dimensional case, the input is a polygonal chain represented by a doubly-linked
list. In three dimensions, we are provided with a terrain : this is a triangulated
planar graph in the xy plane with z-coordinates assigned to every vertex. By linear
interpolation, we get a triangulated three-dimensional surface. The aim is to gener-
ate a convex surface that is close to the input, using a distributed filter. The filter
modifies the coordinates of the vertices to make the terrain convex. The queries are
made for the vertices of a face (or an edge, in two-dimensions).

In the following, n denotes the size of the input and the distance between two
terrains (polygons) is defined as the minimum number of faces (edges) whose coor-
dinates need to be modified to transform one into the other. In Chapter 3, we give
filters for reconstructing convexity in two and three dimensions:

1. A Õ(n2/3 ) time3 distributed filter for reconstructing the convexity of a simple
polygon represented as a doubly-linked list. We assume that each vertex is
labeled with its rank in the list. To show a gap between property testing and
reconstruction, we also give an almost optimal Õ(n1/3) time property tester
and prove an Ω(n1/2) lower bound for the running time of a filter.

2. A distributed filter for reconstructing the convexity of a bounded aspect ratio4

terrain presented in triangulated DCEL format with a worst case query time

3The notation Õ(·) hides polylogarithmic factors in n.
4A terrain is said to have bounded aspect ratio if the xy-projections of the faces have bounded

sides and angles.
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of O(n12/13+δ + ε
−O(1)
D ). In the DCEL (doubly-connected edge list, look at

Section 2.2 in [37]) format, we have vertex, edge, and face tables. For each
vertex, we have access to the real coordinates of the corresponding point in
space, and to all incident edges in cyclic order. For each edge, we have pointers
to the incident faces, and for each face, we have access to bounding edges in
cyclic order. This data structure allows us to perform walks on the terrain,
and obtain geometric information in this process. Here, δ is an arbitrarily
small positive constant and εDn is the terrain’s distance to convexity, ie, the
minimum number of faces whose coordinates need to be modified in order to
make the terrain convex. We also prove a lower bound that explains why the
complexity must depend on εD.

The error blow-up in both cases is O(1).

Many tools are required to achieve this result, including the planar separator
theorem, balanced trapezoidal decompositions, and sublinear time approximation
algorithms for vertex cover. A completely new technique that we apply here is
sampling in range spaces of unbounded VC dimension. Another puzzling fact is that
the 2D filter’s complexity does not depend on the distance εD but its 3D counterpart
does. By showing that online 3D reconstruction requires Ω(ε−1

D ) time, we prove
that this difference is intrinsic and represents yet another complexity gap between
2D and 3D. Of independent interest, we also give a sublinear time algorithm that
computes small balanced separators for geometrically embedded planar graphs. It
is unlikely that this construction is optimal and we pose an intriguing problem : the
construction of optimal sized separators in sublinear time.

In related previous work, offline geometric reconstruction has been studied be-
fore, but usually the metric is geometric (like the Hausdorff distance) and not com-
binatorial. Examples include finding the best approximation of surfaces satisfying
certain criteria [1–3, 12]. On the other hand, a notion of combinatorial distance is
certainly present when studying the computational aspects of the Erdős-Szekeres
theorem [29] or other Ramsey-like results. Geometric properties have been well
studied within the purview of property testing [32, 36], program checking [63], and
sublinear algorithms [28]. Efficient testers have been given for convexity [32,36,41],
clustering [10,53,54,65], and Euclidean MST [31,33], but there too the relevance to
our work is only tangential.

1.1.5 Expander reconstruction

The input is a huge bounded degree graph represented by adjacency lists. We wish
to make the graph into an expander, i.e. for any subset of vertices of at most half
the size of the graph, the number of outgoing edges (i.e., to the complement of the
subset) is a significant fraction of the total number of edges incident on the vertices
in the set. The queries are in the form of requests for the adjacency list of a specified
vertex.
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More formally, we are given a bounded degree graph G = (V,E), with n vertices,
represented by adjacency lists. All vertices have degrees bounded by some fixed
constant d. We are also provided a conductance parameter 0 < φ < 1 - we wish
to make the conductance of G as close to φ as possible, while changing the graph
minimally (and maintaining the degree bound). The parameter φ should be thought
of as a constant. In Chapter 4, we design a distributed filter with a running time
of Õ(

√
n/φ2) per query5 that outputs a graph G′ of conductance φ2/ log n. The

symmetric difference of G and G′ is O( 1
φOPT), where OPT is the optimal number

of edges (of G) to be changed to make the conductance at least φ. Note that for
constant φ, the filter changes only a constant factor more than the optimal change
necessary.

We show that expander reconstruction is connected to some intriguing questions
about random walks in “noisy” expanders. Suppose one is given a graph G that
consists of a large expander connected arbitrarily to some small unknown graph (the
noise). The graph G is probably not an expander, but we would like to show that
random walks on the expander part are not greatly affected by the noise. Turning
this around, we can ask: what portion of the large expander is affected by this noise?
Can we still hope that from almost all of the expander, we can reach a vast majority
of the expander by short random walks? We prove the rather strong statement that
the noise can only affect a part of the expander that is proportional in size to the
noise. We believe that this result should be useful in other contexts as well, and we
present it in the general setting of arbitrary irreducible Markov chains rather than
for our specific application.

For the reconstruction problem, we design a sublinear time procedure based on
random walks that can very accurately distinguish between vertices in a high ex-
pansion part of the graph, and vertices of the noisy part. This procedure essentially
measures the distance between the probability distribution induced by a random
walk on an undirected graph to the stationary distribution. Previous algorithms
for measuring such distances [20] are not efficient enough for our situation, and we
design new tools for these scenarios. Using our general result on the noise-tolerance
of expanders, we show that the number of vertices from which a random walk mixes
poorly is a good measure of the combinatorial distance (in terms of edges changed)
of a graph to being an expander. This establishes a link between these two different
notions of distance.

1.2 Self-improving algorithms

The classical approach to analyzing algorithms draws a familiar litany of complaints:
worst-case bounds are too pessimistic in practice, while average-case complexity too
often rests on unrealistic assumptions. Efforts have been made to analyze algorithms
under more complex models (e.g., Gaussian mixtures, Markov model outputs) but
with limited success and lingering doubts about the choice of priors.

5The size of the random seed is also Õ(
√

n/φ2).
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Ideally, one would like to compute a function f with the help of a self-improving
algorithm. Upon receiving its first input instance I0, such an algorithm would com-
pute f(I0) with, say, good worst-case guarantees and nothing more. Think of newly
installed software that knows nothing about the user and runs in its “vanilla” con-
figuration. Subsequently, as it is called upon to compute f(Ik) for k = 1, 2, . . .,
the algorithm would gradually improve its performance through automatic finetun-
ing. Intuitively, if the Ik’s are drawn from a low-entropy distribution, the algorithm
should be able to spot that and learn to be more efficient.

The obvious analogy is data compression, which seeks to exploit low entropy to
minimize encoding size. Our aim is : given an unknown distribution D, design a
self-improving algorithm whose running time that converges to the optimal expected
running time. The second goal, which is to optimize the convergence speed, is more
of a machine learning nature. One of the surprises of this work is how minimal
distribution learning suffices for dramatic self-improvement.

The starting point of this research is the observation that, trimmed of noise,
real-world data is often of much lower entropy than size alone suggests. Hidden
Markov models for speech recognition can be remarkably effective with only a few
thousand states. Anecdotal evidence can also be gleaned from the current trend
toward personalization in the design of web tools (search engines, recommendation
systems, etc). Input data is often lodged in a tiny slice of input space that cannot
be captured by closed-form distributions. To make predictions about the slice is
the essence of machine learning [40,56,66]. To take computational advantage of the
slice is what self-improving algorithms are all about.

1.2.1 Results

The performance of a self-improving algorithm is measured with respect to an un-
known memoryless random source D of input instances. The algorithm is given
instances I0, I1, . . . drawn independently from D, which it must solve one at a time
in batch mode with: (1) no prior knowledge of future instances, that is, f(Ik) must
be computed before any of the Ij ’s (j > k) are known; and (2) no prior knowledge of
D. The algorithm may store auxiliary information to help improve its performance.
(Unlike self-organizing data structures, however, none of that information should be
necessary for the algorithm to complete its task.) We use D as shorthand for Dn,
the n-th member of an infinite ensemble of distributions—one for each input size.
After a training phase, we expect the algorithm to settle into its steady state whose
expected running time is called its limiting complexity. Note that from the user’s
perspective the only difference noticeable in the training phase is that the system
might be a little slower.

Our first result is, in some sense, the first truly optimal sorter. Given a source D
of real-number sequences (x1, . . . , xn), let D< be the distribution over the symmetric
group induced by the ranks of the xi’s (using the indices i to break ties). The
complexity of our algorithm depends on the entropy H(D<). Note this quantity can
be much smaller than the entropy of the source itself but can never exceed it.
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• Sorting: We give a self-improving algorithm with a limiting complexity of
O(H(D<) + n) and prove that it is optimal. If the input (x1, . . . , xn) to be
sorted is obtained by drawing each xi independently (from a distribution that
might depend on i), then for any ε > 0 the storage can be made O(n1+ε) for
an expected running time of O(ε−1H(D<) + n): this tradeoff is optimal for
distributions of high enough entropy. The training takes O(nε log n) rounds.
We also show that independence is necessary: without it, the storage must be
exponential in n.

We take the concept of self-improving algorithms to the geometric realm and address
the classical problem of computing the Delaunay triangulation of a set of points in
the Euclidean plane.

• Delaunay Triangulations: Assuming a distribution of n points, each one
drawn independently from its own unknown (arbitrary) random source, we
give a self-improving algorithm of optimal limiting complexity. We get time-
space tradeoffs as well as lower bounds similar to those for sorting.

1.2.2 Previous work

Related concepts have been studied before. List accessing algorithms and splay
trees are textbook examples of how simple update rules can speed up searching
with respect to an adversarial request sequence [7, 24, 52, 76, 77]. It is interesting
to note that self-organizing data structures were investigated over stochastic input
models first [9, 22, 51,61,69,73].

Algorithmic self-improvement differs from past work on self-organizing data
structures and online computation in two fundamental ways: (i) self-improving al-
gorithms operate offline and do not lend themselves to competitive analysis; (ii)
they do not exploit structure within any given input but, rather, within the ensem-
ble of input distributions. For example, suppose that the distribution D consists
of two random but fixed permutations, each one equally likely. Any solution in
the adaptive, self-organizing/adjusting framework requires Ω(n log n) time. It is
trivial, however, to design a self-improving algorithm of linear limiting complexity:
sort the two permutations and store them; given any input instance, apply both
permutations separately and output the permuted instance that is sorted.
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Chapter 2

Monotonicity Reconstruction

2.1 Introduction

Our first result on distributed reconstruction is that of monotonicity reconstruction.
The input is a function f : [1, n]d → R, and we wish to output a monotonically non-
decreasing (with respect to a partial order on the domain) function g. The function
g is generated by a sublinear time distributed filter.

Monotonicity has been well-studied, from a property testing perspective [39,41,
46]. The testing techniques have been used to devise approximation algorithms [5,68]
for the distance to monotonicity. The present result can be viewed as the next step in
this sequence of work. The filter we design goes beyond approximating the distance
to monotonicity and tells us (at any domain point) what the function value (of a
close enough monotone function) should be.

2.1.1 Preliminaries

We consider functions defined on a fixed finite domain Γ. A property P is a set of
functions defined on Γ. The distance between two functions f and g, denoted d(f, g)
is the fraction of x ∈ Γ for which f(x) 6= g(x). For a function f and a property P,
the distance of f to P, εf = εf (P) is the minimum of d(f, h) for h ∈ P.

For a positive integer m, [m] denotes the set {1, 2, . . . ,m}. Throughout this
paper, Γ = [n]d = {(x1, . . . , xd) : ∀i ∈ [d], xi ∈ [n]} for some integers n and d. We
fix n and d, and assume, without (much) loss of generality that n = 2k where k is a
positive integer. Γ is partially ordered with respect to the product relation: x ≤ y
if and only if xi ≤ yi for all i ∈ [d]. Elements of Γ are called points. Points are
generally denoted by lower case letters, sets of points are denoted by upper case
letters and sets of sets of points by caligraphic letters.

We consider functions mapping Γ to the nonnegative reals (for simplicity of
presentation). Such a function f is monotone if f(x) ≤ f(y) whenever x ≤ y.
Note that the range is not discrete and has no upper bound. We do not use the
actual value of the function in any non-trivial way (being more general than many
monotonicity testers that use a bounded and discrete range [39,46]).
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As defined in the introduction, a distributed filter uses randomness only in the
choice of the string ρ that initializes the filter. All probability statements are made
with respect to the choice of this string ρ. In general, when we say that an event
occurs with low probability we mean that its probability is 1/|Γ|ω(1), i.e. superpoly-
nomially small in |Γ|. Conversely, a high probability event is one having probability
1− (1/|Γ|ω(1))).

The main theorem of this chapter is :

Theorem 2.1.1. Let ρ be a random seed of length (d log n)O(1). There exists a
determinstic process Af,ρ (the distributed filter) with the following properties that
takes as input a domain point x and outputs a real number.

• With high probability, the function g defined by g(x) := Af,ρ(x) is monotone.

• With high probability, the function g differs from f at at most 2O(d2)εfn
d

points.

• The running time of Af,ρ(x) is (log n)O(d).

2.1.2 Why are distributed filters hard to design?

The starting point for the construction of our distributed filter for monotonicity is
the online sequential filter of [6], which in turn is based on sublinear time approxi-
mations for εf [5]. We now give the main ideas of their construction, and indicate
the difficulties in making their construction distributed. In the discussion below,
when we say an algorithm is “fast”, we mean that it runs in time polylogarithmic
in |Γ|.

We start with the case d = 1, i.e., the one-dimensional case. The basic idea
(implicitly used) in [6] is to classify the domain points as good and bad in such a
way that the following conditions hold -
(1) There is a fast algorithm for testing whether a given point is good or bad.
(2) There are not many bad points.
(3) The function restricted to the set of good points is monotone.

The third property ensures that it is possible (though not necessarily efficiently
possible) to change the function only on bad points and make the function monotone.
To do this define m(x) for x ∈ Γ, to be the largest good point less than or equal to
x, and define g(x) = f(m(x)). It is easy to see that this yields a monotone function.

Note that a filter that can do such a classification in sublinear time can immedi-
ately be used for approximating the distance to monotonicity. As mentioned in the
introduction, reconstruction is a harder problem than property testing or tolerant
testing.

In [6], a point x is classified as bad if (roughly) there is an interval around x that
contains a large fraction of points whose f values are out of order with respect to
f(x). With this good/bad classification there seems to be no fast way to compute
m(x). Instead, given query point x, the filter in [6] finds a good point y that
is a “sufficiently close” random approximation to m(x) and sets g(x) to be f(y).
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Choosing a random approximation to m(x) rather than m(x) creates a significant
problem: we are no longer guaranteed that the function g defined in this way is
monotone. For example, suppose y < m(x) is the approximation to m(x), and
f(y) < f(m(x)). Suppose that after setting g(x) to f(y), a query is made to reindex
m(x). Since m(x) is good, we want to define g(m(x)) = f(m(x)), but this will
violate monotonicity with the already defined g(x) = f(y).

In online reconstruction, this problem can be handled since the algorithm can
save the previously answered queries in a sorted list and impose the condition that
future g values be consistent with previously assigned g values. This is what is done
in [6].

Distributed reconstruction does not have this luxury. Thus the main challenge
in designing a distributed filter is to redefine the notion of good and bad in a way
that will allow us to quickly find m(x) exactly for any given x. Why is this difficult?
Since m(x) may be quite far away from x, and we want to find m(x) quickly it would
seem that the algorithm would need to use random sampling to explore the vicinity
of x. Such sampling will provide only an approximate picture of the vicinity of x,
but the closest good point is something exact and we cannot tolerate any error in
determining it. Our new definition of good/bad is a somewhat involved modification
of the definition in [6] that is carefully designed to allow us to compute m(x) quickly
and exactly. A priori, it is unclear that such a redefinition is even possible. The
notion of “good” and “bad” points does not appear explicitly in the description of
our algorithm, though it provides a useful intuition for what is going on.

The difficulties in designing a distributed filter are substantially greater for the
case of higher dimensional domains (d ≥ 2). Suppose we had a definition of good
and bad satisfying the three conditions stated in the one-dimensional case. It is still
true that, in principle, it is possible to define a monotone g that agrees with f on
all good points. But explicitly computing such a g is more complicated. Given x,
let M(x) be the set of points which are maximal in the set of good points less than
or equal to x. In the one-dimensional case, M(x) has one element m(x), but in the
multi-dimensional case, where the domain is not totally ordered, this is not the case.
Still if we define g(x) to be the maximum of f(y) for y ∈ M(x), then the resulting
g is monotone. To implement this, one would have to find all of the elements of
M(x). Even when M(x) has size 1 (as in the one-dimensional case) this is difficult,
but here the difficulty is compounded because M(x) might be as large as Ω(nd−1),
and we need our computation to run in time polylogarithmic in n. In [6] this is done
by finding a polylogarithmic size set Rep(x) which is a suitable approximation to
M(x), and then defining g(x) to be the maximum of f(y) for y ∈ Rep(x). As with
the one-dimensional case, using an approximation to M(x) destroys the guarantee
that the g defined in this way is monotone, so one must save the values of g to all
queries, and impose the additional requirement that queries are mutually consistent.

Since a distributed filter cannot afford to do this kind of approximation, one
approach is to find a definition of good/bad that satisfies the three conditions above
and one more besides: (4) There is a fast (polylogarithmic time) algorithm which,
given x, outputs M(x). Note that, in particular, this property requires that M(x)
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have size that is polylogarithmically bounded. We did not succeed in finding such
a definition of good/bad.

Nevertheless, we were able to find a distributed filter by modifying the above
approach. As in [6], we construct for each point x a set Rep(x) of points that
approximates M(x) and can be found in polylogarithmic time. But our definition
satisfies an additional property:

(*)For every pair of points x, y with x < y, and for each z ∈ Rep(x)
there is a z′ ∈ Rep(y) with z ≤ z′.

Having constructed such a set Rep(x), we define g(x) to be the maximum of f(z)
for z ∈ Rep(x). It follows that g is monotone, agrees with f on all good points
and can be computed in polylogarithmic time. Condition (*) provides a crucial
difference between our definition and that in [6]. It means that the monotonicity of
g is ensured without having to enforce it artificially by saving all of the past values.
To enforce Condition (*), we are forced to redefine good/bad - in other words, the
function g has to be different from f for more points. This redefinition has to be
done very carefully to ensure that the error blowup is contained.

Finding a definition of good/bad and a suitable definition of Rep(x) takes a
significant amount of work. We start with a quickly testable notion of accepted
and rejected points. The function f is monotone on all sound points, and the
number of unsound points is small enough (in terms of εf ). In [6], this notion
of accepted/rejected serves as their definition of good/bad, but (for the reasons
sketched above) it is not sufficient for our purposes.

The definition of Rep crucially uses a data structure of nested boxes (products
of intervals). Ensuring property (*) is accomplished by as a careful and efficient
“message passing” scheme which passes crucial information about the distribution
of good points in a particular box to its sub-boxes.

2.2 A high level view of the filter

Our filter can be broken down into two procedures, Sift and Build. We specify
below the main guarantees of these two procedures. We will fix a random seed ρ
of (d log n)O(1) length. These procedures are randomized but they will only use the
random seed ρ. The guarantees of these procedures will hold with high probability.
We show that given these procedures, we can easily construct a distributed filter
satisfying the conditions of Theorem 2.1.1.

Given a function f on [n]d, a subset S ⊆ [n]d is f-admissible if the restriction of
f to S is monotone.

The first component of the filter, Sift, takes as input a point x ∈ [n]d and returns
accept or reject. With high probability it satisfies the following properties:

S1 : The set of accepted points is f -admissible.

S2 : The set of rejected points has size at most C1(d)εfn
d where C1(d) is indepen-

dent of n. (In our algorithm C1(d) = 2O(d2).)
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S3 : Sift runs in time (logn)O(d).

The second part of the filter, Build, takes as input a point x ∈ [n]d and (using
Sift) returns a set Rep(x) of representative points for x. This procedure satisfies:

B1 : Every point in Rep(x) is less than or equal to x.

B2 : Every point in Rep(x) is accepted by Sift.

B3 : For all x, y with x ≤ y, for each z ∈ Rep(x) there is a point z′ ∈ Rep(y) such
that z ≤ z′.

B4 : With high probability, the number of points x for which x 6∈ Rep(x) is at most
C2(d) times the number of points rejected by Sift, where C2(d) is independent
of n. (In our algorithm, C2(d) = 2O(d2).)

B5 : Build runs in time (logn)O(d) × running time of Sift.

Our filter is then defined from Build as follows:

Given x, g(x) = max{f(z) : z ∈ Rep(x)}. If Rep(x) is empty, then
g(x) = 0.

Let us show that properties [S1]-[S3] and [B1]-[B5] ensure that the filter has the
required properties of Theorem 2.1.1.

To see that g is monotone, let x ≤ y. By the definition of g, g(x) = f(z) for
some z ∈ Rep(x). By property [B3], there is a z′ ∈ Rep(y) such that z ≤ z′. By
[B2], both z and z′ are accepted by Sift so by [S1], f(z) ≤ f(z′). By the definition of
g(y) we have g(y) ≥ f(z′) and by [S1], f(z′) ≥ f(z), so g(y) ≥ f(z′) ≥ f(z) = g(x)
as required.

To get an upper bound on the number of points for which g(x) 6= f(x), note
that x ∈ Rep(x) implies g(x) = f(x) and so by [B4], the number of points with
g(x) 6= f(x) is at most C2(d) times the number of points rejected by Sift which, by
[S2] is at most C2(d)C1(d)εfn

d as required.
Finally, the desired bound on the running time of the filter follows from [B5] and

[S3].

2.3 The one-dimensional case

In this section, we describe our distributed monotonicity filter for the case d = 1.

2.3.1 The DAG D(k) of intervals

For x, y ∈ [n] we define the interval [x, y] to be the set {z ∈ [n] : x ≤ z ≤ y}. If
I is an interval we write min(I) for its smallest element and max(I) for its largest
element; min(I) and max(I) are the endpoints of I and I − {min(I),max(I)} is the
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interior of I. If min(I) = 1, we say I is left extreme and if max(I) = n we say I is
right extreme.

Our filter makes use of a special set of intervals, which we now define. For
integers i ≥ 1 and j ≥ 0, we define the interval

Ij
i = [j2i−1 + 1, (j + 2)2i−1].

The set {Ij
i : 1 ≤ i ≤ k, 0 ≤ j ≤ n

2i−1 − 2} is denoted I = I(k). The set

Ii = Ii(k), called the ith level, is the set of intervals {Ij
i |j ≥ 0}. The ith level

contains n
2i−1 − 1 intervals each of size 2i.

An interval Ij
i is said to be even if j is even and odd if j is odd. Notice that the

set of even intervals at level i comprise the natural partition of [1, n] into n
2i intervals

of size 2i, while the odd intervals at level i partition the interval [2i−1 + 1, n− 2i−1]
into n

2i − 1 intervals of size 2i.
We define a DAG D = D(k) with vertex set I, with an edge from interval I to

interval J if J ⊆ I and they belong to adjacent levels. The DAG D(k) has k levels
and 2k+1−k−2 vertices (2k+1−i−1 at level i). The interval I0

n = [1, n] is the unique
interval of in-degree 0 and is called the root of D, and the intervals in level 1 (those
having size 2) have out-degree 0 and are called leaves.

Figure 2.1 shows the the DAG D(3) (with edges pointing downwards). Note
that for r < s the sub-DAG consisting of the first r levels of D(s) is isomorphic to
D(r).

Figure 2.1: The DAG D(3)

Suppose I and J are intervals and there is an edge from I to J . We say that
I is the parent of J and J is a child of I. We must have |I| = 2|J |. Furthermore,
parent-child relationships fall into three categories:

• min(I) = min(J). Here we say that J is the left child of I and I is the right
parent of J .

• max(I) = max(J). Here we say that J is the right child of I and I is the left
parent of J .

• min(J) = min(I) + |J |/2 and max(J) = max(I) − |J |/2. Here we say that J
is the central child of I and I is the central parent of J .
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Every interval at level i ≥ 2 has exactly 3 children, one left child, one central
child and one right child.

Every non-root interval I has either one or two parents. If I is an odd interval,
then it has one parent, and that parent is a central parent. If I is an even interval
and neither left-extreme nor right-extreme then it has one left parent and one right
parent. If I is left-extreme it has only a right parent, and if it is right-extreme it
has only a left parent.

I

J

x

I ′

Figure 2.2: Definitions

For an interval I and point x ∈ [n], we define :

• Non-left parent of I: Interval J is a non-left parent of I if it is either a right
parent or a central parent of I. We observe that if I is right-extreme, then it
has no non-left parent, but otherwise I has a unique non-left parent, which we
denote by nonleftpar(I). In Figure 2.2, interval J is the non-left parent of I.

• Non-left path of I: The non-left path of I, path(I), is the unique sequence
I = I1, I2, . . . , It where for 1 ≤ j < t, Ij+1 = nonleftpar(Ij) and It is right-
extreme. In Figure 2.2, the non-left paths of I and I ′ are given by bold lines,
and the intervals in them are shown by light colored circles.

• Non-left ancestor of I: Interval J is a non-left ancestor of I if J ∈ path(I).
Any light colored circle in the bold path leading from I to the root in Figure 2.2
is a non-left ancestor of I.

• I is to the left of x: I is to the left of point x if y ≤ x for all y ∈ I. In the
figure, suppose x is in the interval shown by the arrow and not in I. Then I
is to the left of x.
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• I is left-maximal for x: I is left-maximal for x if I is left of x and x belongs
to the interior of every non-left ancestor of I. For each x there are at most
two intervals at each level that are left maximal for x. The intervals that are
left-maximal for n are precisely those that are right-extreme. In the figure,
the interval I is left-maximal for x.

• upper(I): For I of size at least 4, we define upper(I) to be the subinterval of I
consisting of the greatest |I|/4 points of I. Note that if I is a non-left parent
of an interval J , then every point in J is less than every point in upper(I).

Some useful properties of I are stated below.

I1: Every interval in Ii has size 2i.

I2: Every node of D has at most two ancestors at each level; in particular each
point of [n] belongs to at most two intervals at each level. It follows that every
node has O(log n) ancestors.

I3: For I1, I2 ∈ I, ff I1 ∩ I2 6= ∅ and |I1| < |I2| then I1 ⊂ I2.

I4: For any two points x < y. there is an interval of I of size at most 4|[x, y]|
containing both x and y.

I5: If A is a containment-free subset of I (i.e., no member of A contains another),
then each point x belongs to at most 2 intervals of A.

Properties [I1], [I2] and [I3] are obvious. For property [I4], let t be the integer
such that 2t ≤ |[x, y]| < 2t+1, and let j be the largest integer such that j2t+1 < x.
then Ij

t+2 = [j2t+1 + 1, (j + 2)2t+1] contains x and y and has length 2t+2 ≤ 4|[x, y]|.
For property [I5], note that [I3] and A being containment-free, imply that all

sets in A that contain x must have the same size; hence there are at most 2 of them.
We introduce another important definition.

• θ-dense : If S is a subset of [n] and θ ∈ [0, 1], we say that S is θ-dense in I if
|S ∩ I| ≥ θ|I|. For S ⊆ [n], define Λθ(S) to be the union of all I ∈ I such that
S is θ-dense in I.

Lemma 2.3.1. For any subset S, Λθ(S) ≤ 2
θ |S|.

Proof. Let J be the subset of all I ∈ I for which S is θ-dense in I. Let A be the
set of maximal members of J . Then

|
⋃

I∈J

I| = |
⋃

I∈A

I| ≤
∑

I∈A

|I| ≤ 1

θ

∑

I∈A

|S ∩ I|.

Since A is a containment-free subcollection of I, by property [I5], each element
of S belongs to at most 2 members of A. The final sum is at most 2|S|, giving the
upper bound of 2

θ |S| on |⋃I∈J I|.
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2.3.2 The random seed

Our random seed will be interpreted as an n-ary string, i.e. a sequence selected
independently from the set [n]. In the one-dimensional case, the seed is viewed as a
pair of sequences (s(1), . . . , s(t)) and (r(1), . . . , r(t)) of length t = c(log n)2 elements
of [n], for some large enough constant c. Thus we use 2t log n bits of randomness.

Given a number s(i), we define s(i)(mod I) as follows - suppose I = [i, j].
Then s(i)(mod I) = i + s(i)(mod (j − i)) ∈ I. Using these strings, we define
for each interval I the sequences s(mod I) and r(mod I) in It, respectively to be
(s(1)mod I, . . . , s(t)mod I) and (r(1)mod I, . . . , r(t)mod I).

2.3.3 The subroutine Sift in one dimension

The subroutine Sift takes as input a point x and outputs accept or reject in such a
way that the set of accepted points is f -admissible. Anticipating what we need in the
multidimensional case, we will define Sift in greater generality than we need for the
one-dimensional case. We assume that the set of points is initially partitioned into
sets Eligible and Ineligible points. This partitioning is provided by a subroutine
which, on input x, tests whether x ∈ Eligible. We will show that Sift satisfies the
following conditions:

S1′: Only eligible points are accepted and, with high probability, the set of accepted
points is f -admissible.

S2′: The set of rejected points has size at most C1(εfn
d + |Ineligible|) for some

constant C1.

S3′: Sift runs in time (logn)O(1)T , where T is an upper bound on the time to test
membership in Eligible.

When we use this subroutine for the one-dimensional filter we’ll take Eligible =
[n] and Ineligible = ∅ , but for the higher dimensional filter, we’ll need the more
general version.

Let us define a violation to be a pair (x, y) such that x < y and f(x) > f(y),
or x ∈ Ineligible or y ∈ Ineligible. We also say x is a violation with y (and vice
versa).

Definition 2.3.2. For a point x and A ⊆ [n] -

• violations(x,A) is the fraction of points in A that are in violation with x.

• For µ > 0, x is µ-sound if x ∈ Eligible and for all I ∈ I such that x ∈ I,
violations(x, I) < µ. Otherwise x is µ-unsound.

The following lemma is similar to a result from [6].

Lemma 2.3.3. 1. Every µ-sound point belongs to Eligible.

2. For µ ≤ 1/8, the set of µ-sound points is f-admissible.
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3. For µ ≤ 1/2, the number of µ-unsound points is at most 2µ−1(εfn+|Ineligible|).

Proof. The first part is immediate from the definition of µ-sound.
For the second part, it suffices to show that for each violation (x, y) (x < y)

at least one of x and y is 1/8-unsound. This is immediate if either x or y belongs
to Ineligible, so assume that x, y ∈ Eligible. Since f(x) > f(y), for each z ∈
[x, y] at least one of (x, z) and (y, z) is a violation. Thus violations(x, [x, y]) +
violiations(y, [x, y]) ≥ 1. By property [I4], there is an interval I ∈ I of size at most
4|[x, y]| that contains [x, y], so violations(x, I) + violations(y, I) ≥ 1/4, and so one
of them is at least 1/8.

For the third part, by definition of εf , there is a subset S of size εfn such
that [n] − S is f -admissible. By Lemma 2.3.1, Λµ(S ∪ Ineligible) has size at most
2µ−1(εfn+ |Ineligible|), so it suffices to show that every µ-unsound point x belongs
Λµ(S ∪ Ineligible). This is true for x ∈ S ∪ Ineligible since x belongs to an interval
I ∈ I of size 2, and S ∪ Ineligible is µ-dense in I. If x 6∈ S ∪ Ineligible, then the
set of points violating x is a subset of S ∪ Ineligible. Since x is µ-unsound there is
an interval I containing x that contains at least µ|I| points violating x. Therefore
S ∪ Ineligible is µ-dense in I and x ∈ Λµ(S ∪ Ineligible).

We define a subroutine Violations which takes as input a point x and interval
I ∈ I and returns an estimate of violations(x, I). This estimate is defined to be
the fraction of points in the sample s mod I (as described in Section 2.3.2) that
are violations with x. Clearly Violations runs in time (logn)O(1). We say that
Violations fails for x and I if |Violations(x, I) − violations(x, I)| > 1/100. We
say that Violations fails if it fails for some x, I where I ∈ I and x ∈ I, and we say
it succeeds otherwise.

Sift(I) : On input x, Sift rejects x if there exists some I ∈ I (x ∈ I) such that
Violations(x, I) ≥ 11/100, and accepts x otherwise.

We say that Sift succeeds provided that:

• Every 1/10-sound point is accepted

• Every 1/8-unsound point is rejected.

Since there are O(logn) intervals of I containing x, and the sequence s of samples
has length t = (log n)O(1), we conclude that the running time of Sift is (log n)O(1)

(thus condition [S3] of Section 2.2 holds). From Lemma 2.3.3, we deduce that if Sift
succeeds, then conditions [S1] and [S2] of Section 2.2 also hold.

Corollary 2.3.4. If Sift succeeds then:

1. The set of points accepted by Sift is f-admissible.

2. The number of points rejected by Sift is at most 20(εfn+ |Ineligible|).

Finally, we observe that the probability that Sift fails is very small.
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Lemma 2.3.5. The probability that Sift fails is (n log n)2−Ω(t), where t is the length
of the random sequence s.

Note that for the given choice of t, this is n−ω(1).

Proof. If Sift fails then there is a point x and I ∈ I containing x for which
|Violations(x, I)−violations(x, I)| ≥ 1/100. Fix x and I and let p = violations(x, I).
Then Violations(x, I) is the average of t independent 0–1 random variables each
with expectation p, and so by a standard Chernoff-type bound, Pr[|Violations(x, I)−
violations(x, I)| ≥ 1/100] ≤ 2−Ω(t). A union bound over the O(n logn) pairs (x, I)
gives the lemma.

2.3.4 The procedure Build: 1-dimensional case

We now turn to the description of the procedure Build (for the 1-dimensional case).
We will use the procedure Sift with the trivial subroutine Eligible that accepts every
point.

Recall that Build is supposed to take as input a point x and return a set Rep(x)
consisting of (some) eligible points less than or equal to x. The main ingredients
are a pair of procedures Sample and Refine. Each takes as input an interval I and
returns a small subset of points of I. For a set S, let Sift(S) denote the set of points
of S accepted by Sift. We now describe the procedures Sample and Refine.

Sample(I): Consider t, as defined in Section 2.3.2. If |I| ≤ t, Sample(I) = I.
If |I| > t, Sample(I) is the set of points in the sequence r mod I = (r(1)
mod I, . . . , r(t) mod I), as described in Section 2.3.2.

Refine(I): On input I, determine Sample(J) for each J ∈ path(I). If Sift(Sample(J))
∩upper(J) 6= ∅ for all J ∈ path(I) then Refine(I) = Sift(Sample(I)). Other-
wise, Refine(I) = ∅.

Claim 2.3.6. If Refine(I) is nonempty then Refine(J) ∩ upper(J) 6= ∅ for all
non-left ancestors J of I.

Proof. We first show that ifRefine(I) is nonempty thenRefine(J) = Sift(Sample(J))
for all non-left ancestors J of I. Consider some interval I at depth d such that
Refine(I) is nonempty. By definition, Sift(Sample(I ′)) ∩ upper(I ′) 6= ∅ for all
I ′ ∈ path(I) and Refine(I) = Sift(Sample(I)). Note that for non-left ancestor J ,
J ∈ path(I). Obviously, Sift(Sample(J ′)) ∩ upper(J ′) 6= ∅ for all J ′ ∈ path(J) and
Refine(J) = Sift(Sample(J)).

For all non-left ancestors J of I, Sift(Sample(J)) ∩ upper(J) 6= ∅. Therefore,
Refine(J) ∩ upper(J) 6= ∅ .

Finally we define the procedure Build.

Build(x): On input x, the output Rep(x) is defined to be the union of Refine(I)
over all intervals I that are left-maximal with respect to x.
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For the sake of definition and implementation, we can redefine Refine(I) to
simply be the largest point in the present Refine(I). We describe Refine(I) as a
set for two reasons - (1) to make the proof of [B3] more convenient, (2) to prepare
for the extension to the multi-dimensional case where Refine(I) can not be taken
to be a single point. We now verify properties [B1]-[B5] of Section 2.2.

[B1] and [B2]: By definition of Rep(x), all points in Rep(x) are less than or
equal to x, and each point in Rep(x) is accepted by Sift.

[B3]: Let x, y be arbitrary points in [n] with x ≤ y and let z ∈ Rep(x). We must
show that there is a z′ ∈ Rep(y) with z ≤ z′. Since z ∈ Rep(x), there is an interval I
that is left-maximal for x such that z ∈ Refine(I). If I is left-maximal for y then we
take z′ = z. Otherwise, let J be the largest interval in path(I) that is to the left of y ;
by definition J is left maximal for y. Since Refine(I) 6= ∅, Refine(J)∩upper(J) 6= ∅
(by Claim 2.3.6) so we can select z′ ∈ Refine(J) ∩ upper(J). Since J is a non-left
ancestor of I, every point in I is less than every point in upper(J) (this follows by
an easy induction on |J |), so z ≤ z′.

[B4]: We bound the number of points for which x /∈ Rep(x). We say that
Sample fails for interval I if at least half the points of upper(I) are accepted by Sift,
but no points in Sample(I)∩upper(I) are accepted by Sift. We say that Sample fails
if Sample fails for some interval I of size at least 4, and Sample succeeds if it succeeds
for all intervals I of size at least 4, that is, if for each such interval I, if at least |I|/8
points of upper(I) are accepted by Sift, then Sift(Sample(I) ∩ upper(I)) 6= ∅.

We will prove shortly that Sample succeeds with high probability. Assuming
that Sample succeeds, we prove an upper bound on the number of points x for
which x 6∈ Rep(x). For each x ∈ [2, n], the interval [x − 1, x] is left-maximal for x.
If x 6∈ Rep(x) then x 6∈ Refine([x− 1, x]). Therefore either Sift rejects x or there is
a non-left ancestor J of [x− 1, x] such that Sift(Sample(J)) ∩ upper(J) = ∅. Since
Sample succeeds, fewer than half the points in upper(J) are accepted by Sift, which
means at least 1/8 of the points of J are rejected by Sift. Letting Reject be the
set of points rejected by Sift, the set of points for which x 6∈ Rep(x) is a subset of
Λ1/8(Reject). By Lemma 2.3.1, the number of such points is at most 16|Reject|.

Proposition 2.3.7. Sample succeeds with probability > 1−nO(1)2−Ω(t) = 1−n−ω(1).

Proof. We first give an upper bound on the probability that Sample fails for a
fixed interval I. If fewer than half the points of upper(I) are accepted by Sift, then
Sample succeeds on I. So assume that at least half the points of upper(I) are
accepted by Sift. Then for each point in Sample(I), the probability that it is one
of the points in upper(I) accepted by Sift is at least 1/8. By the independence of
the samples in Sample(I), we can apply a simple Chernoff bound argument to show
that Pr[Sift(Sample(I) ∩ upper(I)) = φ] = 2−Ω(t). A union bound over all intervals
and points completes the proof.

[B5]: The running time of Build is bounded as follows. For any x, there are at
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most 2 log n intervals (at most 2 on each level) that are left-maximal with respect
to x. For each such I, we compute Refine(I) which involves computing Sample(J)
for each of the at most log n non-left ancestors J of I and calling Sift for each of the
points in Sample(J). Since the size of Sample(J) is t = O((log n)2) the running
time of Build is at most the cost of O((log n)4) calls to Sift. (No attempt has been
made to optimize the exponent of logn in this description.)

This completes the description and proof of correctness for the filter in the 1-
dimensional case.

2.4 A filter for multidimensional data

2.4.1 Boxes and lines

For x, y ∈ [n]d, [x, y] denotes the set {z : x ≤ z ≤ y}. This set is a product
of (1-dimensional) intervals [x1, y1] × · · · × [xd, yd] and is called a box. For a box
B = [x, y], we write B = B1 · · · × · · ·Bd where Br = [xr, yr] is the interval obtained
by projecting B onto the rth coordinate axis.

A box B is degenerate in direction r if |Br| = 1, non-degenerate in direction r if
|Br| > 1, and spanning in direction r if Br = [1, n].

An r-line is a box that is spanning in dimension r and degenerate in every other
dimension. The r-lines partition [n]d into nd−1 sets, each of size n. We say that
x ≤r y if x ≤ y and x, y lie in the same r-line. The r-line passing through x is
denoted by x(r).

There is a natural bijection between an r-line L and the set [n] given by x ∈
L ↔ xr. For j ∈ [n] we write jL for the corresponding point on L, and for S ⊆ [n]
we write SL for the corresponding subset of L. Define IL to be the set of IL for
I ∈ I, where I = I(k) as defined in Subsection 2.3.1.

2.4.2 The random seed

The random seed (which consists of independent uniformly random elements selected
from [n]) is divided into 2d sequences s1, . . . , sd, r1, . . . , rd, each of length t(d) =
cd(log n)2 (for some constant c).

2.4.3 The function Sift, multi-dimensional case

We define some auxiliary procedures based on which Sift will be constructed.

Linesiftj(x): For j ∈ [d] - On input x, Linesiftj runs the one-dimensional Sift on
x with respect to the j-line x(j), using the random sample sj . As with Sift,
Linesiftj requires an auxiliary procedure Eligiblej , which we assume does not
use the random sample sj .

For each j-line L, the analysis of the one-dimensional Sift applies to Linesiftj .
For each line L, one defines the notion of µ-soundness of a point x ∈ L with respect
to the line L in the obvious way. We say that Linesiftj succeeds for a j-line L if -
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• Every point that is 1/10-sound point with respect to L is accepted

• Every point that is 1/8-unsound with respect to L is rejected.

We say that Linesiftj succeeds if it succeeds on every j-line. By Lemma 2.3.5,
the probability that Linesiftj fails for a particular j-line is bounded above by
n logn2−Ω(t). Therefore the probability that Linesiftj fails on some j-line is bounded
above by nd log n2−Ω(t). For the selected t = cd(log n)2 this is n−ω(d).

This holds for any choice of the auxiliary procedure Eligiblej , provided that
Eligiblej does not depend on the random string sj .

Siftj(x): For 0 ≤ j ≤ d - Sift0 accepts every input point x. For 0 ≤ j ≤ d, Siftj is
obtained by running Linesiftj , taking Eligiblej to be Siftj−1.

Sift(x): This is defined to be Siftd.

Let Acceptedj (resp., Rejectedj) be the set of points accepted (resp., rejected)
by Siftj . Let Cj be the partition of [n]d into nd−j classes, where points are assigned
to classes according to their last d−j coordinates. Two points x, y in the same j-line
with x <j y form a j-violation if f(x) > f(y) or one of them is in Ineligiblej =
Rejectedj−1.

Lemma 2.4.1. Assume that Linesift1, Linesift2, . . . , Linesiftd all succeed.
For each j ∈ {0, . . . , d},

1. For each C ∈ Cj, the set C ∩Acceptedj is f-admissible.

2. |Rejectedj | ≤ (20j+1 − 20)/(19)εfn
d,

3. Let Tj be the running time of Siftj. Then Tj ≤ (log n)O(j).

Proof. We proceed by induction on j; the case j = 0 is trivial.
Part 1 : Assume j ≥ 1 and that the lemma is true for j − 1. Let C ∈ Cj ; we

want to show that C ∩ Acceptedj is f -admissible. Consider y, z′ ∈ C with y < z′

and f(y) > f(z′); we want to show that at least one of them is not in Acceptedj .
This is clear if either one is in Rejectedj−1, so we may assume that y, z′ are both
in Acceptedj−1.

Let L be the j-line through y and L′ be the j-line through z′ (possibly L = L′.)
For x ∈ L, let x′ ∈ L′ be the point such that xj = x′j . We denote by z the point
on L such that zj = z′j . Let S ⊆ L be the interval of points [y, z] and S′ be the
corresponding interval [y′, z′]. By property [I4], there is an interval I ⊆ L that
corresponds to an interval of I, contains S and has size at most 4|S|. Let I ′ be the
corresponding interval in L′.

We claim that for each w ∈ S, w is a violation of y or w′ is a violation with z′ (see
Figure 2.3). If f(y) > f(w) or f(w′) > f(z′) again we are done, so assume f(y) ≤
f(w) and f(w′) ≤ f(z′), then we have f(w′) < f(w). The points w and w′ belong
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Figure 2.3: The points y, z, w, y′, z′, w′ in proof of Lemma 2.4.1, Part 1

to the same class B ∈ Cj−1, and by the induction hypothesis Acceptedj−1 ∩B is f -
admissible which means that at least one of w and w′ is in Rejectedj−1 ⊆ Rejectedj ,
which completes the proof of the claim.

It follows that violations(y, S) + violations(z′, S′) ≥ 1 and so violations(y, I) +
violations(z′, I ′) ≥ 1/4 and so one of these is at least 1/8. This implies that one of
y or z′ is 1/8-unsound with respect to L, and so under the assumption that Linesiftj
succeeds, one of them is rejected. This completes the proof of the first part.

Part 2 : There is a subset S of [n]d of size εfn
d such that [n]d−S is f -admissible.

Let point x ∈ Rejectedj−(S∪Rejectedj−1). The point xmust be 1/10-unsound with
respect to the j-line L = x(j). Therefore, there is some interval I ⊆ L corresponding
to an interval in I containing x such that S ∪ Rejectedj−1 is 1/10-dense in I.
For each j-line ℓ, let ε(ℓ) = |S ∩ ℓ|/n and let Rj−1(ℓ) = Rejectedj−1 ∩ ℓ and
Rj(ℓ) = Rejectedj ∩ ℓ. By Lemma 2.3.1, |Rj(ℓ)| ≤ 20(ε(ℓ)n+ |Rj−1(ℓ)|). Summing
over all j-lines, we get |Rejectedj | ≤ 20(εfn

d + |Rejectedj−1|). Using the induction
hypothesis, we complete the proof of the second part.

Part 3 : The procedure Siftj makes (log n)O(1) calls to Siftj−1 (refer to Sec-
tion 2.3.3). A simple induction completes the proof.

Corollary 2.4.2. With high probability :

1. The function f restricted to the set of points accepted by Sift is monotone.

2. The number of points rejected by Sift is at most 20d+1εfn
d.

2.4.4 The DAG ∆d(k)

Before describing the function Build, we need some additional definitions.
We consider the set B = B(k)d to be the set of of all boxes of the form B =

B1×· · ·Bd where each Bj ∈ I(k) (the set of intervals defined for the one-dimensional
case). For each r ∈ [d], we define an equivalence relation on B: for B,C ∈ B, B ∼r C
if Bj = Cj for all j 6= r. For each r-equivalence class C, the mapping taking B ∈ C
to Br is a bijection between C and I(k).

We define a DAG ∆ = ∆d(k) on vertex set B as follows: (B,C) is in ∆ if and
only if for some r ∈ [d] B ∼r C and (Br, Cr) ∈ D, where D is the DAG defined
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Figure 2.4: Sample(B) and Lines(B)

for the one-dimensional case. In this case we say that B is an r-parent of C. We
adapt the terminology from the one-dimensional case, If B is an r-parent of C we
say that C is the (left,right,central) r-child of B if Cr is the (left,right,central) child
of Br, and we say that B is the (left,right,central,non-left) r-parent of C if Br is the
(left,right,central,non-left) parent of Cr.

For a point x and box B we say that B is to the left of x if for each j ∈ [d], Bj

is to the left of xj . We say that B is left-maximal for x if for each j ∈ [d], Bj is
left-maximal for xj .

We say that a box C is a non-left ancestor of B if for all j ∈ [d], Cj is a
non-left ancestor of Bj with respect to the one-dimensional dag D. Intuitively, a
non-left ancestor of B is obtained by repeatedly taking a non-left parent along some
direction. The number of non-left ancestors of B is (log n)O(d), since any interval in
I has at most O(log n) non-left ancestors.

2.4.5 The function Build : multi-dimensional case

We now turn to the description of the procedure Build. We will make use of the
multi-dimensional version of Sift.

Recall that Build is supposed to take as input a point x and returns a set Rep(x)
of points. Similar to the one-dimensional case, Build will use a pair of procedures
Sample and Refine, each of which take as input a box B ∈ B and returns a small
subset of points of B. The procedure Refine takes as input a box B and only
returns points that are accepted by Sift.

upper(S) : This is the set consisting of the largest |S|/4 points in a segment S of
size at least 4.

Sample(B) : Remember that t = cd(logn)2, for sufficiently large constant c. If
|B| ≤ t, Sample(B) = B. If |B| > t, Sample(B) is defined to be the product
set Sample(B) =

∏d
i=1 Samplei(B) where Samplei(B) is the set of points of

the form ri(j) mod Bi, where 1 ≤ j ≤ t. Refer to Figure 2.4. The points in
Sample(B) are the points of some kind of a random grid.

Lines(B) : This is the set of all lines L (in one of the d coordinate directions) such
that |L ∩ B| ≥ 4 and L ∩ Sample(B) 6= ∅. In Figure 2.4, each of the lines
shown are in Lines(B).
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Figure 2.5: Refine and BadBoxes

We will define two procedures which take as input a box B, Refine(B) and
BadLines(B) (abusing notation, these will also denote the outputs). The outputs
will be of the form Refine(B) ⊆ Sample(B), and BadLines(B) ⊆ Lines(B).

Refine(B) : This is the set of x ∈ Sample(B) that are (i) accepted by Sift, and (ii)
not contained in any line L that is in BadLines(P ) for some non-left parent
P of B.

BadLines(B) : This is the set of those lines L ∈ Lines(B) of size at least 4 such
that upper(L ∩ C) ∩ Refine(B) is empty. Note that BadLines(B) contains
BadLines(P ), for any non-left parent of B.

Given B, if BadLines(P ) is computed for all non-left parents P of B, then
Refine(B) can be computed. If Refine(B) has been computed, then BadLines(B)
can be computed. Both these procedures can be computed by consider all non-left
ancestors C of B in non-increasing order of size. Refer to Figure 2.5. The bigger box
is C and it has a child C ′. The line L is in Lines(C). If none of the sample points in
upper(L∩C) (shown by dark circles) are in Refine(C), then L is in BadLines(C).
As a result, no point in L ∩ C ′ is in Refine(C ′).

Build(x) : On input x, the output Rep(x) is defined to be the union of Refine(B)
over all boxes that are left-maximal for x.

We now verify properties [B1]-[B5] of Section 2.2.

[B1] and [B2]: Properties [B1] and [B2], that all points in Rep(x) are less than
or equal to x, and that each point in Rep(x) is accepted by Sift, are immediate from
the definition of Rep(x).

[B5]: We bound the running time of Build. There are at most (log n)O(d) boxes
that are left-maximal for x. For each such box B we need to compute Refine(B).
For this we must compute Refine(C) and BadLines(C) for each of the at most
(log n)O(d) non-left ancestors C of B. For this, we need to look at each of the at
most (log n)O(d) points y ∈ Sample(C), and apply Sift (which takes time (log n)O(d)),
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and test whether y belongs to one of the at most (logn)O(d) lines in BadLines(C ′)
for some parent C ′ of C. The overall running time is therefore (logn)O(d).

[B3] : Let x, y be arbitrary points in [n]d with x ≤ y and let z ∈ Rep(x). We
must show that there is a z′ ∈ Rep(y) with z ≤ z′. It suffices to consider the case
that x and y differ only in one coordinate, say coordinate j, since the general case
will then follow by an easy induction on the number of coordinates in which x and
y differ.

Since z ∈ Rep(x), there is a box B with z ∈ Refine(B), such that B is a left-
maximal for x. Define the box C such that Ci = Bi for i 6= j and Cj is equal to the
largest non-left ancestor of Bj that is left of yj . It follows that C is left-maximal for
y.

Let L be the j-line through z. We claim that upper(L∩C)∩Refine(C) 6= ∅; if
so we can select z′ to be any element of upper(L∩C)∩Refined(C) and then z ≤ z′
and z′ ∈ Rep(y). Suppose for contradiction, upper(L ∩ C) ∩ Refine(C) = ∅, then
by definition L belongs to BadLines(C). A simple induction shows that for every
j-descendant C ′ of C, L ∩ Refine(C ′) = ∅, but this contradicts that z ∈ B (since
B is a j-descendant of C).

[B4]: This is the hardest part and we break it into a separate subsection.

2.4.6 Proof that Build satisfies [B4]

We want to get an upper bound on the number of points x for which x 6∈ Rep(x) that
holds with high probability. We assume throughout this analysis that the random
strings s1, . . . , sd used for Sift are fixed in such a way that Sift succeeds (in the sense
defined earlier.)

Let A(x) be the box [x1 − 1, x1] × [x2 − 1, x2] × · · · × [xd − 1, xd]. A(x) is left-
maximal for x and so Refine(A(x)) ⊆ Rep(x). So it suffices to prove an upper
bound on the number of x for which x 6∈ Refine(A(x)).

For each box C, we define Lines′(C), Refine′(C) and BadLines′(C) in a way
that parallels Lines(C), Refine(C) and BadLines(C), the key difference being that
we look over all points in C not just those in Sample(C). Lines′(C) is the set of all
lines L such that |L∩C| ≥ 4. Refine′(C) is defined to be the set of x ∈ C that are
(i) accepted by Sift, and (ii) not contained in any line L that is in BadLines′(P ) for
some non-left parent P of C. BadLines′(C) is the set of those lines L ∈ Lines′(C)
such that |L ∩ C| ≥ 4 and |L ∩ (C −Refine′(C))| ≥ |L ∩ C|/8.

Observe that, with the random strings s1, . . . , sd being fixed, the functions
Refine′, Lines′ and BadLines′(P ) are deterministic.

We say that Build succeeds if for all boxes B, BadLines(B) ⊆ BadLines′(B).

Lemma 2.4.3. The probability that Build fails is at most nO(d)2−Ω(t).

Proof. Let us say that a box-line pair (B,L) is relevant if |L∩B| ≥ 4 and |upper(L∩
B) ∩ Refine′(B)| > |L ∩ B|/8. For each relevant box-line pair (B,L), define the
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Figure 2.6: Why F (B,L) occurs

event F (B,L) to be the event that Sample(B) contains no points of upper(L∩B)∩
Refine′(B). We prove the following claim.

Claim 2.4.4. If Build fails then one of the events F (B,L) happens.

Proof. Suppose that Build fails. Let B be a box of maximum size for which
BadLines(B) 6⊆ BadLines′(B). Let L ∈ BadLines(B)− BadLines′(B). We show
that (B,L) is a relevant pair and F (B,L) occurred.

Since L 6∈ BadLines′(B), |L ∩ (B − Refine′(B))| < |L ∩ B|/8. Therefore,
|L ∩ B ∩ Refine′(B)| ≥ 7|L ∩ B|/8 and |upper(L ∩ B) ∩ Refine′(B)| ≥ |L ∩ B|/8,
implying that (B,L) is relevant.

Suppose F (B,L) does not occur. Then Sample(B)∩upper(L∩B)∩Refine′(B) 6=
∅. Let z ∈ Sample(B) ∩ upper(L ∩ B) ∩ Refine′(B). Refer to Figure 2.6. If
z ∈ Refine(B), then z ∈ Refine(B) ∩ upper(L ∩ B) contradicting that L ∈
BadLines(B). So z 6∈ Refine(B). Since z ∈ Refine′(B) it must be accepted
by Sift. Since z is accepted and also belongs to Sample(B) − Refine(B) it must
be that z belongs to a line K that is in BadLines(P ) for some parent P of B.
Again, refer to Figure 2.6. Note that K does not have to be aligned with L. But
by the maximality of |B|, K ∈ BadLines′(P ) which contradicts z ∈ Refine′(B).
Therefore if none of the events F (B,L) happen then Build succeeds.

So now we prove an upper bound on the probability of
⋃
F (B,L) over all relevant

pairs (B,L). We will use a union bound; the number of relevant pairs is bounded
above by nO(d), so we need to prove a 2−Ω(t) bound on the probability of F (B,L)
where (B,L) is a relevant pair. It is important to observe that for each such pair the
set upper(L∩B)∩Refine′(B) and the event F (B,L) does not depend on the random
seed r (though they do depend on s), and therefore Sample(B) is independent of the
set upper(L∩B)∩Refine′(B). For relevant (B,L) the probability that Sample(B)
is disjoint from upper(L∩B)∩Refine′(B) is at most (7/8)t and thus the probability
that Build fails is nO(d)(7/8)t.
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Proposition 2.4.5. If Build succeeds then for each point x, Refine′(A(x)) ⊆
Refine(A(x)).

Proof. Sample(A(x)) = A(x), and therefore y 6∈ Refine(A(x)) means that y is
rejected by Sift or y belongs to BadLines(P ) for some non-left parent of A(x). Since
Build succeeds, BadLines(P ) ⊆ BadLines′(P ) and so y 6∈ Refine′(A(x)).

So now it remains to find an upper bound on the size of ∪x(A(x)−Refine′(A(x)).
In Section 2.3.1, we defined Λθ(S) to be the union of all intervals I ∈ I for which

|S ∩ I|/|I| ≥ θ. We adapt this definition to the multidimensional setting.

Λj
θ(S): For j ∈ [d], let Λj

θ(S) be the union over all j-lines L, of the union of all
I ∈ I(L), for which |S ∩ I|/|I| ≥ θ.

Υk
θ(S): Let Υθ(S) =

⋃
j∈[d] Λ

j
θ(S), and Υk

θ(S) is defined by Υ1
θ(S) = Υθ(S) and

Υk
θ(S) = Υθ(Υ

k−1
θ (S)).

We will show:

Lemma 2.4.6.
⋃

xA(x)−Refine′(x) ⊆ Υd
θ(S) where S is the set of points rejected

by Sift and θ = 2−(d+2).

Assuming the lemma, we finish the proof of property [B4]. By Lemma 2.3.1,
Λj

θ(S) ≤ (2/θ)|S|, and therefore Υθ(S) ≤ (2d/θ)|S|. Thus Υd
θ(S) ≤ (2d/θ)d|S|

which for the given value of θ is 2O(d2) times the number of points rejected by Sift.
So it remains to prove Lemma 2.4.6. We first need some additional definitions.

Cylinder: A cylinder is a box that for each direction j, is either degenerate or full.
We say that C is a J-cylinder if J is the set of full directions.

Hyperplane: For j ∈ [d], an ([n]− {j})-cylinder is also called a j-hyperplane. For
r ∈ [n] we write Hj(r) for the j-hyperplane consisting of all points x with
xj = r.

Cylinder type: Note that there is a natural bijection between a J-cylinder C and
the set [n]|J |. Using this bijection, we can define a family of boxes B(C)
contained in C and a digraph ∆(C). Thus each box B ∈ B(C) has the form
B1 × · · · × Bd where Bj = Cj is a singleton for j 6∈ J and Bj ∈ I for j ∈ J .
Let C be the unique cylinder such that B ∈ B(C), which is also the unique
smallest cylinder containing B. We call C the cylinder-type of B.

Dimensionality: The dimensionality of a box B, dim(B) is the number of non-
degenerate directions.

BadBoxes: This is a set of boxes. Consider boxes in increasing order of dimension-
ality. For boxes of the same dimensionality, we consider them in decreasing
order of size. Initially we consider 0-dimensional boxes (points) and declare
such a box to be bad if and only if the point is rejected by Sift. For a box B
of dimension at least 1, we put B ∈ BadBoxes if either of the following hold -
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Figure 2.7: BadBoxes

1. There is a box B′ of the same cylinder type as B that contains B and is
in BadBoxes. (Note that B′ is considered before B.)

2. There is a non-degenerate direction j of B such that for at least 1/2d+2 of
the values r ∈ Bj , Hj(r)∩B ∈ BadBoxes. (Note that each box Hj(r)∩B
has lower dimension than B and is considered before B).

Refer to Figure 2.7. For the two-dimensional box on the right, the boxes
Hj(r) ∩ B could look like the lines. If a large fraction of the lines are in
BadBoxes, then B is in BadBoxes. Suppose B is a three-dimensional box, as
shown in the figure. Then if many of the gray planes shown are in BadBoxes,
then B is in BadBoxes.

Proof of Lemma 2.4.6. Observing that A(x) is a full-dimensional box, the lemma
will follow from:

P1 For any full-dimensional box B ∈ B, if x ∈ B − Refine′(B) there is a cylinder
C containing x such that that B ∩ C ∈ BadBoxes.

P2 Every B ∈ BadBoxes is contained in Υd
θ(S)

Proof of [P1] : We prove [P1] by reverse induction on |B|. If B = [n]d, then
x ∈ B−Refine′(B) iff x is rejected by Sift. We take C to be the singleton cylinder
{x} and {x} = B ∩ C belongs to BadBoxes.

Suppose |B| < nd. If x is rejected by Sift, we take C = {x}. Otherwise, since
x ∈ B − Refine′(B), there is a parent P of B and line L ∈ BadLines′(P ) with
x ∈ P ∩ L. Let j be the direction of L. Refer to Figure 2.8.

Claim 2.4.7. There is a cylinder C containing L such that C ∩ P ∈ BadBoxes.

If this is true, then C ∩B has the same cylinder type as C ∩P . Therefore C ∩B
is in BadBoxes, and C certainly contains x, completing the proof of [P1].
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Figure 2.8: Case 1 of Proof of [P1]
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Figure 2.9: Case 2 of Proof of [P1]

We now prove the claim. Let S = L∩(P−Refine′(P )). Since L ∈ BadLines′(P ),
|S| ≥ |L ∩ P |/8. In Figure 2.8, the square points indicate the points of S. By in-
duction, for each y ∈ S there is a cylinder C(y) such that y ∈ C(y) and C(y)∩ P ∈
BadBoxes. Let J(y) be the set of directions for which C(y) is non-degenerate.

Case 1: There exists a y ∈ S such that j ∈ J(y). The box C(y) ∩ B has the
same cylinder type as C(y) ∩ P . Therefore, C(y) ∩ B is also in BadBoxes and
x ∈ C(y) ∩B. In Figure 2.8, the gray plane is C(y) ∩ P and contains L. Therefore,
j ∈ J(y). The box C(y)∩B is just the gray portion inside B and obviously contains
x.

Case 2: For all y ∈ S, j 6∈ J(y). For J ⊆ [d]− {j}, let S(J) = {y ∈ S : J(y) =
J}. Refer to Figure 2.9 (for clarity, the part of P extending beyond B to the left
is not shown). The direction j is denoted by 1. Therefore, the possible sets for J
are {2}, {3}, {2, 3}. The three possibilities for C(y) ∩ P are lines (in P ) along the
2-direction, the 3-direction, or a slice of P spanning directions 2 and 3. This is
depicted in the figure for the three (square) points of S.
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Figure 2.10: Case 2 of Proof of [P1] : Extending to get C

The set J has 2d−1 possibilities. By a simple averaging argument, there must
be a J∗ ⊆ [d] − {j} such that |S(J∗)| ≥ |S|/2d−1 As mentioned before, since L ∈
BadLines′(P ), |S| ≥ |L ∩ P |/8. We get that |S(J∗)| ≥ |L ∩ P |/2d+2. Extending
C(y) in direction j gives the same cylinder C for all y ∈ S(J∗). We then have
P ∩ C ∈ BadBoxes since for 1/2d+2 of r ∈ Pj , P ∩ C ∩Hj(r) ∈ BadBoxes. Note
that this is why we have the factor of 2d+2 in the definition of BadBoxes. Refer
to Figure 2.10. Suppose that J∗ is {2}, as shown in the figure. We extend C(y)
in direction 1 to get C, so the intersection P ∩ C is the gray plane shown. If J∗ is
{2, 3}, then P ∩ C would be the whole of P .

Obviously, B∩C has the same cylinder type as P∩C and so is also in BadBoxes.
This completes the proof of the claim.

Proof of [P2] : We prove by induction on j = dim(B) that if B ∈ BadBoxes
then B ⊆ Υj

θ(S).
If dim(B) = 1 then B is a (one-dimensional) interval. B ∈ BadBoxes implies

that at least 1/2d+2 of the points of B are rejected by Sift and so B ⊆ Υ1
θ(S).

Now suppose j ≥ 2. Since B ∈ BadBoxes there is a non-degenerate direction i of
B such that for at least at least 1/2d+2 of the values r ∈ Bi, Hi(r)∩B ∈ BadBoxes.
Each of the boxes Hi(r) ∩ B has dimension j − 1, so by induction is a subset of
Υj−1

θ (S). Therefore for each i-line L that meets B, at least a θ = 1/2d+2 fraction of

the points of L∩B is in Υj−1
θ (S), which implies L∩B ⊆ Υj

θ(S) for all L in direction

i meeting B, which implies B ⊆ Υj
θ(S). This completes the proof of [P2].
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Chapter 3

Convexity Reconstruction

This chapter deals with distributed filters for convexity in two and three dimensions.
For our main result, the input is a three-dimensional terrain (surface generated by
a planar graph in the xy-plane with a z-coordinate for each vertex). The queries
are made for faces, and the filter outputs the coordinates of the vertices of the input
face. The filter guarantees that the terrain it outputs is convex and modifies the
minimum number of faces (upto a constant factor) to do so.

There has been work on studying geometric properties from a sublinear perspec-
tive [28,32,36,63], but we do not really borrow any techniques from here. A major
feature of this result is the variety of geometric tools that are used. Also, we devise
many useful techniques to study convexity in sublinear time. One of the most in-
teresting problems explored relates to the classical problem of finding small vertex
separators in planar graphs. Given access to a geometric, straight-line embedding of
a planar graph, can we hope to find small separators in sublinear time? We provide
some partial answers to this problem, but it is by no means the last word.

We first describe a filter for two-dimensional convexity, where the input is a poly-
gon and the queries are made for edges. This is much simpler and provides a warmup
for the harder three-dimensional case. We also present an optimal property tester
for two-dimensional convexity. We prove lower bounds showing a complexity gap
between testing and reconstruction for two-dimensional convexity. At the end, we
also provide a lower bound showing why reconstruction for terrains is fundamentally
harder than for polygons.

3.1 Convexity filters for polygons

In this section, we shall deal with the problem of reconstructing convexity for poly-
gons. For simplicity, we shall begin with reconstructing polygonal chains instead of
polygons. For ease of presentation, we will make the assumption that these chains
are terrains (the projections of the edges on the x-axis do not overlap). The filter for
chains will then be extended to handle general polygons. The input is a 2D polyg-
onal chain D, ie, a polygonal curve with points p1, . . . , pn, where each consecutive
set of points is joined by a directed line segment. These segments are the edges of
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D. The set of edges will be denoted by E. The chain P induces a natural ordering
on the edges - given two edges e = pipi+1, f = pjpj+1, e � f if i ≤ j (e ≺ f if i < j).
We can define the interval [e, f ] = {g ∈ E|e � g � f}.

The edge set E is stored in an ordered doubly-linked list, from which we can
access a random edge and walk from it in either direction. In addition, there exists
an oracle that give the ordering of edges (given edges e, f, g, the oracle outputs their
order in D). Note that for the case of terrains, this is trivial to implement.

Let εDn denote the minimum number of edges that need to be modified to
make D upper convex, without changing the ordering of E. This modification only
refers to changing the actual coordinates of the points of D. Lower convexity means
that (after the modification) for any edge e, it must point towards the increasing x
direction, and all edges must lie to the left halfspace defined by e. Therefore, two
edges are in convex position with each other if they both point from left to right
and lie to the left of each other.

What makes the 2D case remarkable is that a certain easily testable property
allows us to classify any given edge in one of two categories (good or bad) in a way
that leads to a filtering mechanism with a constant approximation factor. (A similar
classification was used for filtering monotone functions in [6].)

Definition 3.1.1. A pair 〈e, f〉 is a violation if e and f are not in convex position.
We also say that e violates f and vice versa.

The following transitivity relation is immediate: if e ≺ f ≺ g and 〈e, g〉 is a
violation, then so is at least one of 〈e, f〉 or 〈f, g〉. This is a simple consequence of
the properties of convexity. Note that for an edge e that points from right to left,
the pair 〈e, f〉 is a violation for all f ∈ E.

Definition 3.1.2. Given any 0 < δ < 1/2, an edge e is called δ-bad if there exists
an edge f such that either (i) e ≺ f and the number of g ∈ [e, f ] that violate e is at
least (1/2 − δ)|[e, f ]| or (ii) f ≺ e and the number of g ∈ [f, e] that violate e is at
least (1/2− δ)|[f, e]|. The edge f is referred to as a witness to e’s badness. An edge
that is not δ-bad is called δ-good.

The next lemma is crucial for proving the correctness of the filter.

Lemma 3.1.3. (i) The 0-good edges have no violating pairs; (ii) at least εDn edges
are 0-bad; and (iii) no more than (3 + 8δ/(1− 2δ))εDn edges are δ-bad.

Proof. (from [5]) Note that by transitivity, for any e ≺ f such that 〈e, f〉 is a
violating pair, either e or f (or both) is 0-bad. Therefore, if we were to remove all
the 0-bad edges, the remaining edges would be in convex position; hence (i) and (ii).

We start by assigning to each δ-bad e a witness fe to its badness (if many
witnesses exist, we just choose any one). If fe ≻ e, then e is called right-bad; else it
is left-bad. (Obviously, the classification depends on the choice of witnesses.)

Let C be a set of εDn edges where D can be modified to make it convex. To
bound the number of right-bad edges, we charge C with a credit scheme. (Then we
apply a similar procedure to bound the number of left-bad edges.) Initially, each
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element of C is assigned one unit of credit. For each right-bad e 6∈ C (in reverse
order from right to left), spread one credit among all the g such that e � g � fe and
〈e, g〉 is a violation (note that g must be in C). We use the word “spread” because
we do not simply drop one unit of credit into one account. Rather, viewing the
accounts as buckets and credit as water, we pour one unit of water one infinitesimal
drop at a time, always pouring the next drop into the least filled bucket.

We now show that no edge in C ever receives an excess of 2 + 4δ/(1− 2δ) units
of credit. Suppose by contradiction that this were the case. Let e be the right-bad
that causes some edge g’s (g belongs to C) account to reach over 2+4δ/(1−2δ). By
construction e is not in C; therefore, the excess occurs while right-bad e is charging
an edge g such that e ≺ g � fe and 〈e, g〉 is a violation. Note that, because e 6∈ C,
any g satisfying these two conditions belongs to C (let us denote the number of
such edges by l) and thus gets charged. With the uniform charging scheme, this
ensures that all of these l elements of C have the same amount of credit by the time
they reach the excess value, which gives a total greater than l(2 + 4δ/(1− 2δ)). By
definition of right-badness, l ≥ (1/2 − δ)|[e, fe]|. But none of these accounts could
be charged before step fe; therefore,

(1/2− δ)|[e, fe]|(2 + 4δ/(1− 2δ)) < |[e, fe]|,

which is a contradiction.
Of the total of at most 2 + 4δ/(1 − 2δ)εDn units of credit, εDn units of credit

came from initially assigning the edges of C one unit of credit each. Therefore, there
are at most 1+4δ/(1−2δ)εDn right-bad edges. By applying a similar argument for
left-bad edges (this time charging from left to right), we prove (iii).

With this classification of edges, we now give an outline of the filter to convexity.
Our aim is to create a skeleton of δ-good edges that is sublinear, yet represents the
convex properties of D quite accurately. Then convexification will be done locally
ensuring that we create no violations with the skeleton. This will ensure convexity
and that at most O(εDn) edges will be modified.

We first describe an offline algorithm offline(L), that given an ordered list of
edges L, finds a close convex polygon to L.

Claim 3.1.4. Let L be an ordered list of edges. The procedure offline(L) outputs
a convex polygon. Furthermore, it generates a matching amongst all edges that are
modified such that if 〈e, f〉 is a matched pair, then 〈e, f〉 is a violation.

Proof. The stack S always contains a list of edges in convex position. This is a
consequence of transitivity. If e is not in convex position with some edge of S, then
it cannot be convex position with the head of S. Whenever edge e is not added to
S, then it is matched with the head of S (which is removed from S).

Next, we design a prcoedure called skeleton which constructs a sublinear sized
approximate convex structure that “represents” the closest convex polygon to D.
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offline (L)

let S be an empty stack

for edge e in L (going in order)

if e is a violation with the head of S
pop head of S

else push e into S
keep edges in S as they are, and for all other edges

linearly interpolate (between edges of S)
to change their coordinates

Figure 3.1: Convexifying offline

skeleton (D)

choose a random set R of n2/3 edges (put them in ordered array)

choose a random set S of n1/3 edges

for each edge e ∈ S
walk along D in increasing order from e for n1/3 log n edges

(call this stretch of edges T)
if for any f ∈ T, the interval [e, f ] has more than a

(1/2− δ)-fraction of violations with e, remove e from S
for all intervals [e, f ] such that

|[e, f ] ∩R| = (1 + δ)j (for some integer j) and |[e, f ] ∩R| > logn
if [e, f ] ∩R contains more than

a (1/2− 4δ)-fraction of violations with e,
remove e from S

repeat the above for intervals of the form [f, e]
output S in order

Figure 3.2: The procedure skeleton
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Claim 3.1.5. The procedure skeleton runs in Õ(n2/3) time. With high probability,
it outputs a list of δ-good edges such that - for any interval I of edges of size at
least n2/3 log n, if I contains at least a δ-fraction of 8δ-good edges then the output
contains at least one such edge.

Proof. First, we show that if an edge e of the random set S is not removed, then
it is δ-good. Suppose e is δ-bad. Then there exists some interval [e, f ] (or [f, e]1)
such that it has more than a (1/2 − δ)-fraction of violations with f . Suppose
|[e, f ]| ≤ n1/3 log n. Then e is definitely removed. If not, then with high probability
(by a Chernoff bound argument), the fraction of violations in R ∩ [e, f ] is at least
(1/2− 3δ). Therefore, there exists some f ′ such that |[e, f ′] ∩R| = (1 + δ)j > logn
and |[e, f ′] ∩R| contains more than a (1/2− 4δ)-fraction of violations with e.

Suppose the interval I contains a δ-fraction of 8δ-good edges. By a Chernoff
bound, with high probability, the random set S contains at least one such edge
g. Using an argument almost identical to that above, we can show that with high
probability, g will not be removed. Taking a union bound over all the error proba-
bilities (there are at most polynomially many events, and the error probabilities are
polynomially small), we complete the proof.

We now get the to the actual reconstruction procedure, convexify (D, e, ρ). The
random seed ρ is of length Õ(n2/3) and is only used to call skeleton. In other words,
there is one fixed skeleton that all calls to convexify use.

Lemma 3.1.6. The reconstruction procedure convexify takes Õ(n2/3) time and out-
puts a convex polygon D′ that differs from D at (5 +O(δ))εDn edges.

Proof. The running time is easy to see. We need to bound the number of edges that
convexify modifies. Consider two consecutive (by the edge ordering) edges f, g in
S. Suppose [f, g] < n2/3 log n. If an edge e ∈ [f, g] is not in convex position with
either f or g, then, by Claim 3.1.5, it must be δ-bad. Suppose that edge e ∈ [f, g]
is modified by the call to offline(L). By Claim 3.1.4, all edges removed by offline
(over all calls for different interval [f, g]) consist of matched pairs. Let C be a set
of εDn edges whose removal leaves D convex. At least one edge in each matched
pair belongs to C, since the matched pairs are violations. Therefore, at most 2εDn
edges can be modified by all the calls to offline.

Suppose, on the other hand, that [f, g] > n2/3 log n. All the edges in this interval
are modified by convexify. By Claim 3.1.5, the fraction of 8δ-good edges in [f, g]
is atmost δ. Using the bound of part (iii) of Lemma 3.1.3, the total number of
modified edges is (3 +O(δ))εDn+ 2εDn = (5 +O(δ))εDn.

3.1.1 Testing

First, we describe a convexity tester. The input polygon D is given as in linked list
format with a ordering oracle. A tester is a randomized algorithm which, given D
and 0 < ε < 1, will do the following in sublinear time :

1Since the proof is identical in both case, we will just assume that it is [e, f ]
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convexify (D, e, ρ)

use ρ and the procedure skeleton to output the skeleton S

walk both in increasing and decreasing order for n2/3 log n steps

find closest skeleton edges f, g smaller and larger than e

if [f, g] < n2/3 log n
let L be the list of edges between the skeleton edges that

are in convex position with them (skeleton edges)

call offline (L) to output set of convex edges

linearly interpolate to get coordinates of all other edges,

and output e accordingly

else linearly interpolate between f and g
(changing all edges in between) to output e

Figure 3.3: Performing reconstruction for e

• If D is convex, output “convex” with prob > 2/3

• If D is ε-far from being convex, output “not convex” with prob > 2/3

Our aim is to prove the following theorem.

Theorem 3.1.7. There exists a tester for convexity of polygons given in linked
list format (and with ordering oracle present) using O(ε−1n1/3) lookups and takes
Õ(ε−1n1/3) time.

We will analyse the procedure is-convex and show that it satisfied the require-
ments of Theorem 3.1.7. If D is convex, then the tester obviously accepts with
probability 1. From now on, we assume that D is ε-far from being convex.

Consider a set of εn edges whose removal makes D convex. The set of edges is
denoted by E. Let these edges be called unsound edges (this set will be denoted by
U , |U | ≥ εDn). The remaining edges are sound (this set will be S). Note that all of
S is in convex position and that there cannot be a set of convex edges whose size is
larger than |S|.

Lemma 3.1.8. There exists a one-to-one function α : U → E such that ∀u ∈ U ,
α(u) violates u.

Proof. We will construct α through an iterative process. Initially, we start with the
set T = U . If there exists a violating pair 〈u1, u2〉 (u1, u2 ∈ T ), we assign α(u1) = u2

and α(u2) = u1. Then we remove u1, u2 from T and repeat. In the end, we end up
with a set T of unsound edges which do not violate each other. In other words, T
is in convex position. Let us now construct a bipartite graph G with T on one side

39



is-convex (D, ε)

choose cε−1/2n1/3 edges at random (for large enough constant c)
if they are not in convex position, output "not convex"

repeat c′ε−1 times (for large enough constant c′)
choose random edge e and walk in D for

n1/3 steps forwards and backwards

if these edges are not in convex position, output "not convex"

output "convex"

Figure 3.4: Testing if polygon D is convex.

and S on other. Any two violating edges are connected. Take any set T ′ ⊆ T . T ′

is in convex position and is totally unsound. Therefore, T ′ should have at least |T ′|
violators in S. If not, we could replace all these violators in S by T ′, and we would
have a set of convex edges whose size is greater than |S|. The number of neighbours
of T ′ in G is ≥ |T ′|. By Hall’s Theorem (Theorem 2.1.2 in [38]), G has a perfect
matching. For every u ∈ T , we set α(u) to be the edge in S that matches u. This
completes the construction of α.

A contiguous set of unsound edges in convex position will be called a stretch.

Claim 3.1.9. For any stretch L of length k, there exist sets of edges AL, BL such
that AL ⊆ L, BL ∩ L = φ, |AL|, |BL| ≥ k/4, and every edge in AL violates every
edge in BL.

Proof. For every u in the middle k/2 edges of L, consider α(u). Without loss of
generality, we can assume that at least half of these edges lie in front (along D)
of L. Let all these edges be BL, and let the rightmost k/4 edges of L be AL. By
transitivity, every edge in AL violates every edge in BL.

Proof. (Theorem 3.1.7) The lookup complexity bound is obvious. The time com-
plexity of checking if cε−1/2n1/3 edges are in convex position requires Õ(ε−1/2n1/3)
time.

We need to show that with high probability, a violation will be detected. The
tester has two stages - the first involves sampling O(n1/3) edges, and the second
involves walks of length n1/3. Consider a stretch L of length k. Let EL denote the
event that some element of AL is chosen in the first 32ε−1/2n1/3 samples and that
some element of BL is chosen in the next 32ε−1/2n1/3 samples in the first stage. The
probability that EL occurs is -

[
1−

(
1− k

4n

)32ε−1/2n1/3
]2

>
[
1− e−8kε−1/2n−2/3

]2
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Case 1 : There exists a stretch L of length k > δε1/2n2/3 (for some small enough
constant δ > 0). Then the probability that EL occurs is a constant. Choosing c large
enough will ensure that EL occurs (and that a violation is detected) with probability
> 2/3.

Case 2 : At least εn/2 unsound edges lie in stretches of length < n1/3. Such an
edge will be found with high probability in the second stage. Walking for n1/3 steps
in both directions along D ensures that a violation will be detected.

Case 3 : At least εn/2 unsound edges lie in stretches of length ≥ n1/3 and all
stretches have length ≤ δε1/2n2/3. With every stretch L of size kL ≥ n1/3 associate
a random variable XL, the indicator variable for the event EL.

E[
∑

L

XL] >
∑

L

[
1− e−8kLε−1/2n−2/3

]2
≥ εn

2n1/3

64n2/3

4εn4/3
≥ 8

(Since no stretch has length > δε1/2n2/3 and x > 0, we can use the inequality
e−x < 1 − x/2. A standard convexity argument then gives us the above bound.)
Lemma 3.1.8 implies that the XL’s are “almost” pairwise independent. We can
show that var(

∑
XL) ≤ 4δE[

∑
XL]. By Chebyschev’s inequality,

∑
XL will take

a positive value (and therefore a violation will be detected) with some constant
probability. The constant c can be chosen large enough to make the probability of
success > 2/3.

3.1.2 General polygons

So far, we made the simplifying assumption that D looks like the graph of a function
in one variable. We now show how to remove this assumption, for both testing and
reconstruction. The algorithms given will remain the same - only the correctness
proofs need to be changed. We choose some arbitrary edge (referred to as e0) and
orient the axes such that e0 is parallel to the y-axis and points in the negative
direction.

We now modify the definition of a violation. First, we call an edge forward if
it points in the positive x direction (otherwise, it is called backward). Given edges
e1, e2, the pair (e1, e2) is a violation if any of the following hold -

1. e1 and e2 are not in convex position.

2. e1 and e2 are forward edges, they are in the cyclic order e0, e1, e2 and the
x-projection of e2 is not strictly in front (along the x-axis) of the x-projection
of e1.

3. e1 and e2 are backward edges, they are in the cyclic order e0, e1, e2 and the
x-projection of e1 is not strictly in front (along the x-axis) of the x-projection
of e2.

4. e1 is a backward edge, e2 is a forward edge, and they are in the cyclic order
e0, e1, e2.
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We can now modify the proof of Claim 3.1.9. (Note that the proof of Theo-
rem 3.1.7 will then hold for general polygons.)

Claim 3.1.9. For any u in the middle k/2 edges of L, consider α(u). Note that if
the cyclic order is e0, u, α(u), then the cyclic order is e0, v, α(u) for any v ∈ L. (A
similar statement can be made if the order is e0, α(u), u.) Using this (and the new
definition of a violation), it can be shown that α(u) violates either the first k/4 or
the last k/4 edges. Wlog, we can assume that half of the α(u)’s (let this be BL)
violate the first k/4 edges of L (let this be AL).

Proving that reconstruction still works is relatively easy. Essentially, we need to
prove that Lemma 3.1.3 is still correct. The proof of (i), (ii) only uses the transitivity
property of convexity. Given edges e1, e2, the transitivity property now holds in
either [e1, e2] or [e2, e1]. In the proof of (iii), we perform a charging procedure that
starts from the rightmost end of D. Now, since D now has no “rightmost” end, we
need to choose some place to start the charging. We can find some edge e′ that
is surrounded by many good edges. The charging argument used to prove (iii) can
now be done by starting from e′ (and moving in cyclic and reverse cyclic orders)
without affecting the proof.

3.1.3 Lower bounds

We first show the optimality of the convexity tester (upto polylogarithmic factors
in n).

Theorem 3.1.10. Testing convexity in 2 dimensions (where the input polygon is
given as a linked list) requires Ω(ε−1/2n1/3) lookups.

Proof. We will give a lower bound for the following problem : given an input polygon
in linked list format which is ε-far from being convex, output a violation. We use
Yao’s minimax principle. We will consider a distribution on the input, and prove
a lower bound on any deterministic algorithm that gives the correct answer with
probability 2/3 over the input.

Suppose some deterministic algorithm makes δε−1/2n1/3 lookups(δ is a suffi-
ciently small constant). The input is a linked list of all the edges. In our model
(taken from [28]), the list is accessed through a table T [1 · · ·n], where the i-th el-
ement is stored in location σ(i) - so T [σ(i)] = i. Consider the following polygon -
D has εn2/3 stretches of length n1/3. Each stretch violates 3n1/3 edges. Figure 3.5
shows a portion of D with the stretches in bold. D is constructed by stitching to-
gether many copies of this structure. The stretches occur far apart and therefore do
not violate one another.

The input distribution is formed by choosing the permutation σ uniformly at
random from the symmetric group on n elements. Any deterministic algorithm can
be seen as executing a sequence of steps of the form : (A) choose a location T (l)
and look up T (σ(i ± 1)), where l = σ(i) (this is equivalent to walking along the
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n1/3 3n1/3

Figure 3.5: Testing Lower Bound

polygon); (B) compute a new index l based on previous indices and look up T (l).
We can see that σ−1(l) is equally likely to lie anywhere in the unvisited portion of
D.

For every stretch L, let XL be the indicator variable for the event that a violation
from L is detected by 2 B-steps. XL is 1 iff an edge from L and an edge from the
violations of L (having size 3n1/3) are chosen.

E[XL] <

[
1−

(
1− 4n1/3

n

)δε−1/2n1/3
]2

<
[
1− e−8δε1/2n−1/3]2

<
64δ2

εn2/3

E[
∑

L

XL] ≤ εn2/3E[XL] < 64δ2

By Markov (and choosing a small enough δ), the probability that
∑
XL exceeds

1 is less than 1/10. In the following, c1 and c2 denote some sufficiently large constant.
Let YL be the indicator variable for the event that a B-step falls within ε−1/2n1/3/c1
of either boundary of L.

E[YL] < 1−
(
1− 4n1/3

c1
√
εn

)δε−1/2n1/3

<
δ/c2

εn1/3

E[
∑

L

YL] ≤ εn2/3E[YL] < (1/c2)δn
1/3

Again by Markov, the probability that
∑
YL exceeds (1/10)δn1/3 is less than

1/10. With probability at least 8/10, B-steps by themselves did not detect a viola-
tion, and at most a 1/10 fraction of edges visited by B-steps fall within ε−1/2n1/3/c1
of a stretch boundary. Assume that this happens. Any violation detected must
involve an A-step. With probability at most 1/10, ≤ ε−1/2n1/3/c1 A-steps were
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Figure 3.6: Reconstruction Lower Bound

needed for detection. Since the total number of steps is δε−1/2n1/3 < ε−1/2n1/3/c1,
(a union bound shows that) the algorithm will fail with probability > 7/10.

We now show a O(
√
n ) lower bound2 for reconstructing convexity. This, com-

bined with the with the Õ(n1/3) algorithm for testing shows a complexity gap (in
terms of the input size n) between testing and reconstruction.

Theorem 3.1.11. Any filter for 2-dimensional convexity requires Ω(
√
n) lookups

per query, where the input is given in linked list format.

Proof. We prove a lower bound for the following problem - given D and an edge e,
output whether e is good or bad. If e is deemed bad, then a violating edge must
be provided. All good edges must be in convex position, and the number of edges
deemed bad must be < cεDn (for some constant c). We use Yao’s minimax principle
and proceed exactly as in the proof of Lemma 3.1.10. We prove a lower bound for a
deterministic algorithm that gives the correct answer on a distribution of inputs with
probability > 2/3. Consider a polygon that has distance εn (for some ε > 0) from
convexity that has stretches of violating edges as shown in Figure 3.6. Essentially,
the polygon is constructed by pasting together many stretches as given in the figure,
and ensuring that the stretches do not violate each other. The downward pointing
part that comes after the stretch of

√
n is just one edge. It is obvious that the bold

edge e is bad. The problem here is to find some edge in the c
√
n range.

The distribution is formed by choosing the permutation σ at random (in the same
model as that in the proof of Lemma 3.1.10). We are given a query for the edge e.

2This lower bound holds even for sequential reconstruction.
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Using an argument similar to the one for the testing lower bound, we can show that
at least δ

√
n (for some constant δ) lookups are required to detect a violation.

3.2 A convexity filter for 3D terrains

The dataset is an n-face triangulated terrain D represented in standard DCEL fash-
ion. We assume that the xy-projection of any face of D is a triangle with both
edge lengths and angles bounded above and below by constants (bounded aspect
ratio condition). The reconstructed terrain Dc is convex in the sense of being the
boundary of the upper hull of its vertex set. There are various equally reasonable
definitions of the parameter εD. For simplicity, we define εDn as the minimum
number of faces of D that need to be removed in order to make the terrain convex.
Note that this definition does not require us to “patch the holes.” Choosing to do
so, however, would only increase the distance by a constant factor, which, for the
purpose of our filter, is immaterial. The edge table allows us to sample random
edges. From this, it is elementary to implement a uniform sampler for triangular
faces as well. (To sample vertices would be more difficult but, fortunately, we do
not need that feature.)

The idea is to break up the terrain into connected patches of suitable size by
removing a small set F of separating faces. The fence F decomposes the terrain
into connected patches of suitable sizes. A critical feature of F is to be of sublinear
size. To achieve this, we use a sublinear version of the classical planar separator
theorem. The weakening is required to make the computation sublinear. The final
processing step is to convexify F . This is a delicate operation which cannot be
performed in isolation with the rest of the terrain: this is a perfect illustration of
why early decisions are crucial in online filtering.

We define a suitable range space (of unbounded VC dimension!) whose sampling
gives us enough global information about the whole terrain to guide the reconstruc-
tion of F . The convexified F fences off the patches in such a way that it is possible
from then on to answer any subsequent query by treating its associated patch in iso-
lation from the rest of the terrain. But, before we can get to online reconstruction,
we need to define two key procedures: one is an offline algorithm for convexifying
the terrain within twice the minimum distance; the other estimates the distance εD
in sublinear time.

Any filter must explore both global and local properties. The difficulty lies
in gathering enough information in sublinear time. Any approach must involve a
combination of sampling and local search. The filter essentially works as follows:
first, it estimates εD using the sublinear time procedure. If the distance is very small,
then the offline algorithm is used for convexification. Otherwise, it constructs a fence
F and convexifies it. It is critical that this convexification be done by taking the
global structure into account—this is achieved by choosing a large enough sample of
faces of D (which then is used to define the range space mentioned in the previous
paragraph) and convexifing F so that it is in convex position with most of the
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Offline-Reconstruction

Initialization: T ← ∅
for each face f of D:

if f is in convex position with T
then T ← T ∪ {f}
else find face g ∈ T not in

convex position with f
T ← T \ {g}

output Dc ← T

sample. This creates a “skeleton” which captures the global properties of D and
also splits D into a set of small connected patches. Now, each patch is reconstructed
independently, ensuring that it stays in convex position with the convexified F .
Since a patch is a small connected portion of D, it can be visited exhaustively by
local search (thereby, the filter gains information about the local properties of D).
In the following subsections, we discuss the various components that constitute the
filter. Finally, we put the pieces together and describe the filter itself.

3.2.1 Offline reconstruction

We describe a 2-approximation offline convexification algorithm, ie, one that, given
D as input, returns a terrain Dc that is convex and is at distance at most 2εDn
from it. Note that Dc can have holes. The convexification proceeds incrementally.
Beginning with the empty terrain T , we consider each face of D one by one and
add it to T if it is in convex position3 with every face currently in Dc. To do this
in quasilinear time, we maintain T in a dynamic data structure which supports
insertion, deletion, and queries in amoritized poly-logarithmic time.

Denote by Tv (resp. Tp) the set of vertices (resp. face-supporting planes) in T .
A terrain face f is in convex position with T if and only if (i) its three vertices lie
below each plane in Tp; and (ii) the points of Tv all lie below the plane supporting
f . By duality, both tests can be reduced to dynamic halfspace emptiness in 3D:
maintain a set of points under insertion and deletion, and for any query plane find
whether whether all points lie on one side, and if they do not, report one point on
each side. Chan [25] has given a halfspace range reporting algorithm which allows
us to do that in O(log6 n) amortized time for each query/insert/delete.

Whenever the procedure finds a face f that is not in convex position with T ,
then a face g ∈ T that is not in convex position with f is removed. Consider a
minimal subset U of εDn faces that need to be removed to make D convex. One of

3 Two triangles are said to be in convex position if both of them are faces of their convex hull.
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f or g has to be present in U . This ensures that the total number of faces removes
is at most 2εDn.

Theorem 3.2.1. Offline convex reconstruction of an n-face terrain can be performed
with an approximation factor of 2 in Õ(n) time.

3.2.2 Estimating the distance to convexity

Consider the violation graph G whose nodes are the faces of D and whose edges
join any two faces not in convex position. Removing all the faces that correspond
to a vertex cover of this graph makes D convex. The minimum vertex cover is
of size εDn, and any maximal matching M in G is of size |M | ≤ εDn ≤ 2|M |.
The offline reconstruction algorithm essentially finds such a maximal matching in
G. Fix any constants 0 < α < β < 1 such that α ≥ 1

2(3β − 1), α ≥ (2β − 1),
and let S be a random sample formed by picking each vertex of G independently
with probability p = nα−β log n. The offline reconstruction algorithm can be used
to build a maximal matching MS for the subgraph GS of G induced by S. The
sample S can be easily specified in O(|S|) time, so that computing MS takes Õ(pn)
time, which is Õ(n1+α−β). As we show below, knowing MS allows us to distinguish
between the two cases: εD ≥ n−α and εD ≤ n−β.

1. εD ≥ n−α: Fix some maximal matching M of G. The size of M is ≥ n1−α/2.
If ξ is the number of edges of M in GS , then Eξ = p2|M |. Since M is a
matching, ξ can be expressed as the sum of independent random variables.
By Chernoff’s bound [11], Prob [ ξ < 1

2p
2|M | ] < e−Ω(p2|M |) = e−Ω(p2n1−α) =

e−Ω(n1+α−2β log2 n). Since α ≥ 2β − 1, with high probability ξ ≥ 1
2p

2|M |.
This implies that GS contains a perfect matching of size at least 1

2 p
2|M | ≥

1
4 p

2n1−α. Its minimum vertex cover is at least that size; therefore, |MS | ≥
1
8 p

2n1−α.

2. εD ≤ n−β: Now, the size ofM is ≤ n1−β . If χ denotes the number of vertices of
M in S, then Eχ = 2p|M | and, by Chernoff’s bound, Prob [χ ≥ 2p|M |+ y ] <
e−y2/|M |, for any y > 0. Setting y = 1

8 p
2n1−α − 2p|M | > 1

9 p
2n1−α, we

find that Prob [χ ≥ 1
8 p

2n1−α ] < e−Ω(p4n1+β−2α) = e−Ω(n1+2α−3β log4 n). Since
the vertices of M provide a vertex cover for G, it follows that, with high
probability, |MS | < 1

8 p
2n1−α.

Theorem 3.2.2. Given any small δ > 0 and any constants 0 < α < β < 1 such
that α ≥ 1

2(3β − 1) and α ≥ (2β − 1), we can compute a 0/1 bit b(D) in Õ(n1+α−β)
time, such that b(D) = 0 if εD ≥ n−α, b(D) = 1 if εD ≤ n−β, and b(D) takes on
any value otherwise.

3.2.3 Fencing off the terrain

Here we describe an algorithm that finds a sublinear set of faces (the fence) of
D whose removal breaks D into connected components (patches) also of sublinear
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size. Let G be the planar triangulation formed by the projection of D onto the
xy-plane. Note the because of the bounded aspect ratio condition, any triangle in G
has bounded sides and angles. The main step in constructing the fence is to design
a sublinear algorithm to find balanced planar separators in such graphs. A balanced
planar separator for a planar graph G with n vertices is a set of vertices whose
removal separates G into connected components, each having size < cn (where c
is some constant less than 1). Lipton and Tarjan [57] gave the first linear time
algorithm to find a balanced planar separator of size O(

√
n). Henceforth, by planar

seperator, we always refers to balanced separators. Our aim is to find a set of faces
in G to remove (note that upto constant factors, this gives a vertex separator of
the same size). We are able to beat the linear time bound because we are provided
with a geometric embedding of the graph. We also assume the bounded aspect ratio
condition.

Figure 3.7: The thick black line, the fence, is a itself collection of o(n) triangles.

The algorithm first randomly selects a set of c
√
n log n faces, for some sufficiently

large constant c. This sample (call it R) is then used to guide the separator. A
random starting vertex v in G is chosen, and then R is used to find geometric paths
(paths in the plane) from v to the boundary of G which pass through at most O(

√
n)

faces. These paths can then be shown to generate a planar separator of O(
√
n) size.

We begin by stating the main lemma of this section (this lemma is of independent
interest).

Lemma 3.2.3. For any vertex v ∈ G (where G is a bounded aspect ratio planar
graph with an embedding), there exists a geometric path from v to the boundary of
G that passes through O(

√
n) faces. Furthermore, this path can be shown to be x

and y-monotone, consisting only of vertical or horizontal line segments. This path
can be constructed in Õ(

√
n) time.

We will need to prove some smaller claims before we can attack this lemma.
Consider the area defined by a horizontal line segment, and two rays pointing in
the positive y-direction. This is called a vertical slab. We will only consider line
segments that have Θ(1) length. Now, we assign a charge to each triangle t (face)
of G, and spread the charge out evenly in the area of t. The total amount of charge
throughout G is n. The charge contained in a slab S can be determined by the
following fact - for a triangle t, if an f -fraction of it (area-wise) lies inside S, then t
contributes f amount of charge.
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Claim 3.2.4. A line segment ℓ of constant size can only intersect a constant number
of triangles.

Proof. First consider two triangles ∆ABC and ∆BCD and suppose that ℓ intersects
AB,BC,CD. Let ℓ intersect AB at E and BC at F . Refer to Figure 3.8. Wlog,
assume that BF > FC. Take ∆BEF . If BE > BF/2, by the bounded angle
condition, we get the EF is at least a constant. On other hand, if BE ≤ BF/2,
then by triangle inequality, we get that EF ≥ BF/2 and is therefore a constant. The
portion of ℓ inside ∆ABC and ∆BCD has length Θ(1). Now take all triangles that
intersect ℓ (let us not consider the triangles that contain the endpoints of ℓ; there are
only two of them). Take the set of triangles that all share one endpoint and put them
in the order in which they intersect ℓ - there can only be a constant number of them,
because the angles are bounded. Note that the last two triangles in this sequence
have the structure of ∆ABC and ∆BCD, where ℓ intersects AB,BC,CD. This
shows that there can only be constant number of such sets of triangles, completing
the proof of the claim.

A

B

C

D
E

F

ℓ

Figure 3.8: Wedge

Claim 3.2.5. If a slab intersects k triangles, then it contains Ω(k) amount of charge.

Proof. Any triangle that is completely inside the slab S contributes one unit charge
(all the charge it contains). The main problem is to deal with triangles that intersect
the boundary of S. Let us denote by ℓ the line segment (assume its horizontal)
defining S, and let r1 and r2 be the rays. Abusing notation, ℓ also denotes the
length of this segment.

By Claim 3.2.4, only a constant number of triangles can intersect ℓ. We shall
now only consider triangles that intersect r1 or r2 - if a triangle does not intersect
any edge of the boundary of S, then it contributes one unit of charge to S. First
consider a triangle t with no vertex inside S. Two edges of t intersect both r1 and
r2. Because the slab has constant width, wlog, the portion of r2 between these edges
is of constant length. This implies that t contributes Ω(1) units of charge to S.

Take a triangle t which has a vertex v inside S and whose edges intersect both
r1 and r2 (call this a triangle of Type 1). Consider the triangle with vertex v and
the intersection points of the edge opposite to v with r1 and r2. This triangle has
constant area and again t contributes Ω(1) units of charge. Now take a triangle t with
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a vertex v inside S which only intersects some ri (i is either 1 or 2). Furthermore,
assume that the perpendicular distance of v from ri is ≥ ℓ/2. This is a triangle
of Type 2. Such a triangle can be easily seen to contribute Ω(1) units of charge
to S. Finally, we take the last case : triangle t has vertex v inside S, its edges
only interesect some ri, and the distance of v to ri is < ℓ/2. But, there must be
some triangle having v as a vertex which is of type 1 or 2. Since the number of
triangles incident to one vertex is Θ(1), this implies that only a constant fraction of
k triangles can be of the final kind. This completes the proof of the claim.

We now complete the proof of Lemma 3.2.3.

Proof. We first describe the algorithm used to find such a path from a starting
vertex v. A random sample of faces R, of size c

√
n log n (where c is a sufficiently

large constant) is chosen. It is easy to show that if some slab intersects > c logn
triangles in R, then the slab intersects > c1

√
n triangles in G. On the other hand,

if the slab intersects ≤ c logn triangles in R, then it intersects < c2
√
n triangles in

G (c1, c2 are some fixed constants, and these hold with high probability).
We draw a constant length horizontal segment ℓ from v in the positive x-

direction. By Claim 3.2.4, ℓ intersects at most a constant number of triangles.
Suppose the vertical slab defined by ℓ intersects ≤ c logn triangles of R. Then
we draw a vertical line (going in the positive y-direction) from ℓ to the boundary
(thereby completing the path). If the vertical slab intersects > c log n triangles of R,
then we move in the horizontal direction by drawing another constant length hori-
zontal segment from the right endpoint of ℓ. If the horizontal segments eventually
hit the boundary of G, then the path is complete.

The path finally obtained has size O(
√
n). Note that the vertical part of the path

can intersect at most O(
√
n) triangles. Each constant length horizontal segment

(except for probably the rightmost one) defines a vertical slab intersecting Ω(
√
n)

triangles. By Claim 3.2.5 the amount of charge in this slab is also Ω(
√
n). All these

slabs are disjoint and the total amount of charge overall is n. There can only be
O(
√
n) such horizontal segments, and the total number of triangles intersected by

these is O(
√
n).

This brings us to the final theorem of this section, where we show how a sublinear
sized fence which leaves patches of sublinear size can be constructed in sublinear
time.

Theorem 3.2.6. There exists a Õ(
√
n) algorithm that finds a balanced planar sep-

arator of size O(
√
n) in any triangulated bounded aspect ratio planar graph G which

is provided as a DCEL (G is given by straight line embedding) with the planar co-
ordinates of the vertices. For any 0 < a < 1, this can be used to find a fence of size
O(n1−a/2) in Õ(n1−a/2) time such that the patches have size O(na).
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Proof. First, we describe how to get a planar separator. Choose a vertex v at ran-
dom. With probability ≥ 3/5, the x-coordinate of v is the middle (3/5)n positions
in the sorted order of vertices based on x-coordinate. Similarly, this hold for y-
coordinates. Therefore, with constant probability, v is the middle (3/5)n positions
for both x-sorted and y-sorted lists of vertices. Wlog, there are at least n/10 ver-
tices with both x and y-coordinates larger than those of v and at least n/10 vertices
with both x and y-coordinates less than those of v. By choosing O(log n) vertices
uniformly at random, we can ensure (with high probability) that we find at least
one vertex that satisfies this property.

Lemma 3.2.3 tells us that there is a geometric path intersecting O(
√
n) triangles

that starts from v and ends at the boundary of G. Also, this path (when directed
from v) only increases in the x-direction and decreases in the y-direction. Similarly,
there is a path starting from v that only decreases in the x-direction and increases
in the y-direction. These paths can be found in Õ(

√
n) time. Together these paths

form a separator of G. This is also balanced, since no component can have size
larger than 9n/10.

Recursive application of this procedure yields a fence of size O(n1−a/2) wth
patches of size O(na). The total running time is O(n1−a/2 log n).

Finding separators in general terrains

As an aside, we describe an algorithm that finds a fence for a general planar graph
G (not nessarily embeddable with bounded aspect ratio). Pick a random sample of
r = na edges inG, for fixed 0 < a < 1, and build its (say, x-oriented) trapezoidal map
Mr. As is well known, with high probability, each trapezoid intersects O((n/r) logn)
triangles. Consider the dual Hr graph of Mr, where each node is a trapezoid
and two nodes are joined if the corresponding (closed) trapezoids intersect. The
graph is planar and so, by iterated application of the planar separator theorem [57],
for any fixed 0 < b < 1, we can find, in O(r log r) time, a set V of O(r1−b/2)
nodes whose removal leaves Hr with no connected component of size exceeding rb.
The fence F is the set of all the terrain’s faces whose projections intersect the
trapezoids associated with the nodes of V . With high probability, the fence consists
of O(r1−b/2(n/r) logn)) = O(n1−ab/2 log n) triangles and its removal from the terrain
leaves connected patches, each one consisting of O(n1+ab−a log n) triangles. Note
that, because it involves triangles (and not trapezoids), the removal may create
much greater fragmentation than is caused within Hr by the removal of V . Finding
the fence takes time O(na log n + n1−ab/2 log n) time, Renaming ab by b, we have
proven:

Lemma 3.2.7. Let G be any planar graph provided with a geometric embedding.
For any 0 < b < a < 1, in O((na + n1−b/2) log n) time, it is possible to find a fence
F consisting of O(n1−b/2 log n) triangles, whose removal from the terrain leaves
connected patches consisting of O(n1+b−a log n) triangles each.
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3.2.4 Reconstructing the fence

It might be tempting to convexify the fence by applying the offline algorithm to it,
but this could doom the reconstruction of the other faces. Instead, we must allow
the global shape of the terrain to influence the reconstruction. To do so, we choose
a random sample Σ of the faces of D—the size of Σ shall be set later. Let Σc be
the offline convexification of the terrain Σ provided by Theorem 3.2.1, and let Σf

the intersection of the halfspaces bounded above by the planes supporting the faces
of Σc (the dual convex hull). The reconstructed fence Fc is obtained by lifting the
triangles of F vertically and “wrapping” them over the surface of Σf . Note that
such a lifting could replace one fence face by many faces, but based on the bounded
aspect ratio condition, we have a bound (proven later in this section) for the total
size of Fc. (The bound holds only when Σ is sufficiently large, but our choice of Σ
will ensure that.)

Lemma 3.2.8. The size of Fc is Õ(n1−a/4).

We now explain why Fc captures the global structure of D. Henceforth, the
term “face” refers to a triangle in 3-dimensions (we introduce this because we later
use “triangle” to refer to an object in the 2-dimensional plane). We define a range
space (X,R), which, although of unbounded VC dimension, has enough sampling
power to guide the convexification of the fence. Regarding both D and F as sets of
faces, we define the ground set X = D \F . Given two sets S, T of faces, let κ(S, T )
be the set of faces in T that are not in convex position with at least one face of S.
Considering all possible sets Γ of |Fc| faces, we define R = {κ(Γ, X) : |Γ| = |Fc| }.

Let us represent a face f by 12 reals - 9 for the vertices of the face, and 3 for the
point in dual space which corresponds to the plane containing f . The face f can be
seen as a point pf ∈ R

12. (Note that the latter 3 reals are completely determined by
the former 9 reals. This is a redundant description and actually not necessary for
what follows, but it will be helpful.) Consider faces f ∈ Γ and x ∈ X. The convex
position of f with respect to x is completely determined by - the position of the
vertices of f with respect to the plane containing x, and (in dual space) the position
of f , which is a point, with respect to the three planes corresponding to the vertices
of x. Let us move to R

12. There is an arrangement of 4 hyperplanes in this space,
such that the convex position x with respect to f is completely determined by the
position of pf in this arrangement. By taking the necessary planes for all x ∈ X, we
get an arrangement of O(n) planes which completely determine the convex position
of f with respect to every face in X.

We can view Γ as a point in pΓ ∈ R
12|Fc|. Using the construction given above

for every face in Γ, it is easy to see why the convex position status of each face
in Γ with respect to X is completely specified by the location of pΓ in a certain
12|Fc|-dimensional arrangement of O(n|Fc|) hyperplanes - we have a set of O(n)
hyperplanes for every face in Γ. It follows that the primal shatter function ϕ grows
as ϕ(m) = O(m|Fc|)12|Fc|. With high probability, if Σ is chosen to be a random
sample of X of size O(r2|Fc| log |Fc|) = Õ(r2n1−a/4), it is a (1/r)-approximation
for (X,R), for any r > 0.
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Figure 3.9: The fence is reconstructed by lifting its faces to the upper boundary of
Σc.

By Theorem 3.2.1, the number of triangles in Σ that were modified during the
convexification is at most 2εΣ|Σ|. Using an argument similar to the proof of Theo-
rem 3.2.2, we can show that, with high probability, this number is O(εD|Σ|). This
implies that |κ(Fc,Σ)| = O(εD|Σ|). Since

∣∣∣∣
|κ(Fc,Σ)|
|Σ| − |κ(F

c, X)|
|X|

∣∣∣∣ ≤
1

r
,

we could easily bound the “damage” caused by the convexification of the fence as
follows:

Lemma 3.2.9. κ(Fc, X) ≤ nr−1 +O(εDn).

We now prove Lemma 3.2.8. For ease of notation, we shall assume that F has
O(nu) faces and Σ has size Õ(nv). We will be concerned only with xy-projections
of D and Σf . In the following proof, triangle refers to the xy-projection of a face of
D, while facet refers to the xy-projection of a face of Σf . Edges refer to the edges
of triangles. Note that all facets are convex, disjoint from each other (except for
their boundaries) and contain a triangle. By the bounded aspect ratio assumption,
the radius lengths of the incircle and circumcircle of any triangle are bounded from
above and below (by some constant). Let v′ be some value less than v.

Definition 3.2.10. For α < n−(1−v′), an α-thin facet is a facet with two edges
e1, e2 such that the minimum distance between e1 and e2 is less than α and the
angle between e1 and e2 is also less than α. The edges e1 and e2 are called sharp
edges. The min-thinness of a facet f is the minimum α such that f is α-thin.

The sharp edges of an α-thin facet form a wedge that contains the facet (Fig-
ure 3.10).

Claim 3.2.11. With high probability, there are at most O(αn) α-thin facets.

Proof. Consider some α-thin facet f which contains triangle t. The distance between
t and the sharp edges is at least Ω(α−1) (since t must be inside the wedge created
by these sharp edges, and has at least constant in-radius). There exists a rectangle
of Ω(α−1) width and Ω(1) height that is present completely inside f but does not
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intersect t (Figure 3.10). Therefore, we can also show that there exist at least
Ω(α−1) edges of D that have at least a constant fraction of their length inside f (let
these edges be bad for f). Note that the offline convexification must have removed
these bad edges. Let the number of α-thin facets be M . Since all facets are disjoint,
an edge can be bad for only a constant number of α-thin facets. The total number
of bad edges is Ω(α−1M). With high probability (by taking a Chernoff bound), at
least (cα−1Mnv−1 logn) of these edges are chosen in Σ (for some constant c). But
this quantity has to be O(nv logn), since that is the number of edges removed by
convexification. This implies that the number of α-thin facets is O(αn).

wedge

Ω(1)

Ω(α−1)

Figure 3.10: Wedge

Claim 3.2.12. For any v′ < v, the total complexity of the lifted fence is O(n1+u−v′

+
nv′

log n).

Proof. The complexity of lifting a fence face is simply the complexity of the cor-
responding triangle when laid over the xy-projection of Σf . A triangle is said to
generate all the faces created by overlaying. The total complexity of all triangles
generating O(n1−v′

) faces is O(n1+u−v′

) (since there are at most O(nu) fence trian-
gles). Consider some triangle t generating k > n1−v′

faces. Each of these faces is
created by the intersection of t with a facet.

We will first show that many of these facets are k−1-thin. Since triangles do
not intersect, no facet can be completely contained inside t. At least Ω(k) facets
intersect some edge e of t. We take a circle C of constant (but large enough) radius
such that C contains e and the minimum distance between e and C is Ω(1). The
intuition for the following proof is quite simple—since C is a constant sized circle
and many facets intersect it, many facets have to be thin (Figure 3.11). Since the
area of a facet is Ω(1), there can be at most a constant number of facets contained
completely inside C. Therefore, at least Ω(k) facets intersect both e and C. A facet
can intersect C in two ways - inward and outward, depending on whether the edges
intersection C tend to converge or diverge after crossing C (Figure 3.12). Consider a
facet f (containing triangle t′) that intersects C only in the inward direction. Either
more than half of t′ is contained in C or the arc length of some intersection between
C and f is Ω(1). Only a constant number of facets can have only inward intersection.
Therefore, Ω(k) facets intersect C outwards, and (by a Markov argument) Ω(k) of
these intersections have arc length < k−1. Consider any such facet f ′ - the two
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edges intersecting C has a minimum distance of less than k−1. Since f ′ intersects
e, the angle between the edges must be O(k−1), and f ′ is O(k−1)-thin. This shows
that for any triangle t generating k faces, Ω(k) of these faces are O(k−1)-thin facets.
We will say that t is a witness for these O(k−1)-thin facets, since the intersection of
C with these facets shows their O(k−1)-thinness. For any facet f of min-thinness
α, note that at most (αn1−v′

)−1 triangles are witnesses for any thinness (since the
minimum distance between sharp edges is < n−(1−v′) and the angle is α.)

We sum up the constributions (in terms of complexity) of all triangles generating
more that n1−v′

faces. Let this sum be S. By the arguments given above, βS comes
from thin facets that are witnessed (for some fixed constant β < 1). Some facets
are counted more than once in βS because many triangles can witness one facet.
Let us consider all witnessed facets with min-thinness in the range [α/2, α]. There
are at most O(αn) such facets and each is counted in S at most 2(αn1−v′

)−1 times.
Therefore, the total contribution of this in S is O(nv′

). We apply this argument for
the values α = n−(1−v′), 2−1n−(1−v′), 2−2n−(1−v′), · · · , (cn)−1 (for some sufficiently
large constant c) and get that S = O(nv′

logn).

C

Figure 3.11: Facets intersecting with C

Inward Outward

Figure 3.12: Inward and Outward

Noting that u = 1 − a/2 and ensuring v > 1 − a/4, we can set v′ = (1 + u)/2.
By the previous claim, the complexity of the lifted fence can be made Õ(n1−a/4),
proving Lemma 3.2.8.
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3D-Terrain-Filter

if b(D) = 1
then convexify D using

Offline-Reconstruction

else
(1) build fence F and convexify

into Fc

(2) identify patch containing query face f
convexify extended patch

with Offine-Reconstruction

3.2.5 Online reconstruction

We now have all the necessary tools required to make the filter. By Theorem 3.2.2,
we estimate the distance to convexity in Õ(n1+α−β) time. If b(D) = 1, then we
convexify the terrain in Õ(n) time by appealing to Theorem 3.2.1. Since εD < n−α,

the running time is Õ(ε−α−1

D ).
Assume now that b(D) = 0, which implies that εD > n−β . By Lemma 3.2.9,

setting r = nβ shows that κ(Fc, X) ≤ O(εDn). A crucial aspect of the reconstructed
fence is that the convexification of any patch can be done in isolation, as long as we
include the fence triangles bounding the patch in question. This follows from this
transitivity lemma, which we prove later. (We use the subscript xy to denote the
projection onto the xy-plane.)

Lemma 3.2.13. Let f, g be two faces of a (possibly discontinuous) terrain and let
F,G be two sets of faces in convex position such that: (i) removing the region Fxy

disconnects fxy from gxy; same is true of Gxy. If f (resp. g) is in convex position
with F (resp. G), then f and g are in convex position with each other.

Given a query f , unless b(D) = 1, the filter finds the patch corresponding to f .
The random seed is used only to compute b(D) and build the convexified fence Fc. n
other words, all queries use the same convexified fence Fc, which ensures consistency
between all the outputs. The filter then proceeds to reconstruct the entire patch
together with all its bordering fence triangles (what we call the extended patch).
By Lemma 3.2.6, computing the fence takes Õ(n1−a/2) time. By our setting of
r = nβ , to find Σ requires Õ(r2n1−a/4) = Õ(n1+2β−a/4) time, and convexification
can be done in time Õ(n1+2β−a/4). Reconstructing the fence adds nothing to the
asymptotic complexity. Convexifying the corresponding patch takes Õ(na). Putting
everything together, we see that the time for answering a query is

Õ(n1+α−β + ε−α−1

D + n1−a/2 + n1+2β−a/4 + na)

56



The constraints 0 < a < 1, 0 < α < β < 1, and α ≥ 1
2(3β − 1) are all satisfied if

we set α to be an arbitrarily small positive constant and a = 12/13 and β = 1/13.

Theorem 3.2.14. Any n-face 3D bounded aspect ratio terrain D has a convexity

filter with a worst case query time of O(n12/13+α + ε
−O(α−1)
D ).

We now prove Lemma 3.2.13. We will prove the following claim, from which
Lemma 3.2.13 will be obvious.

Claim 3.2.15. Let f , g be two faces of a possibly discontinuous terrain and S be a
set of faces in convex position. If removing Sxy disconnects f from g and fxy and
gxy are in convex position with S, then f and g are in convex position with each
other.

Proof. Let B be the (possibly unbounded) convex body formed by the faces of S.
For simplicity, assume that S is minimal - we cannot remove any face from S and
still maintain the lemma assumptions. Take the region in the xy-plane disconnected
by the removal of Sxy. Project the boundary of this region onto B and call this curve
CS - note that the curve CS

xy separates fxy from gxy. By the minimality assumption,

the curve CS is simple. Wlog, let fxy be contained in the inner region defined by
CS

xy. Let Hf be the plane containing f and Cf be the intersection curve of Hf and

B. Note that CS lies completely to one side of Hf . Suppose there is a vertex of g
that lies in the halfspace (defined by Hf ) that does not contain CS . Note that g
lie inside B, since it is in convex position with S. Therefore, it must be the case
that the xy-projection of this vertex lies inside Cf , which lies inside CS . This is
contradicts the fact that CS

xy separates fxy from gxy. The face g lies completely to

one side of Hf .
Defining Hg and Cg (which may not be closed), we can apply a similar argument

to show that f lies completely on one side of Hg.

Pi

Pi+1

Figure 3.13: The concentric rings of the xy-projection.

57



3.2.6 Lower bound

We show that any 3D convexity filter has a worst case query time of Ω(ε−1
D ) time,

thus revealing a fundamental complexity gap between the two and three-dimensional
cases. Recall that the 2D filter made essential use of a certain transitivity feature of
convexity violation: if e, f, g are edges in clockwise order and (e, g) is not in convex
position, then at least one of (e, f) or (f, g) is not either. In designing our filter,
we used a 3D variant of this by letting the fence play the role of f . But, unlike in
2D, the fence cannot be a constant size object. Why this implies a lower bound is
explained below.

We appeal to Yao’s minimax lemma to deal with the fact that our algorithms are
randomized. We will start with εD = Θ(logn/n). After describing the construction
for this value, we will show how to handle any value of εD = Ω(log n/n). Assume
that the filter changes at most cεDn faces, for some fixed c > 1. We define a
distribution of inputs and show that, for any deterministic algorithm that performs
reconstruction, some query takes Ω(n/ log n) expected time over that distribution.

We start with a fixed D and build the distribution around it. Fix some parameter
m > 0. The xy-projection of D consists of Θ(logm) concentric regular polygons
P0, P1, · · · , Pk−1 centered at the origin (Figure 3.13): (i) the innermost polygon
P0 has a constant number of vertices; (ii) Pi has 2i−1|P1| vertices and every other
edge is parallel to an edge of Pi−1; (iii) Pk−1 has m/(c1 logm) vertices, for fixed
c1 > 0. The radii of the Pi’s are chosen so that the boundaries are fairly close
to each other but disjoint. Next, we lift these polygons vertically so that their
edges are all horizontal tangents to the paraboloid C : Z = −(X2 + Y 2) at their
midpoints (Figure 3.14). Each band between consecutive polygons is triangulated
appropriately and the construction is lifted to C to form a convex terrain with
(lifted) P0 as its highest face. Finally, we add an extra polygon Pk that is a slightly
scaled-up version of Pk−1. The band between Pk−1 and Pk consists of m/(c1 logm)
trapezoids, each one of which is now divided up into a stack of c1 logm parallel
subtrapezoids. After lifting, each subtrapezoid finds itself tangent to C. Setting
m = Θ(n), triangulating all faces produces n faces.

The terrain D is convex: we introduce convexity violations by choosing one stack
S of subtrapezoids, and tilting them ever so slightly so that: (i) each subtrapezoid
violates one common triangle of P1; (ii) the stack S violates O(1) triangles per
(Pi, Pi+1) band. This tilting is done so that the common edge between this stack of
subtrapezoids and the trapezoid of Pk−1 does not move (the tilting is done with this
edge hinged). Once this tilting is done, there will have to be slight modifications
performed on this stack and the stacks adjacent to S to ensure that all stacks are
in convex position with each other. Note that εDn < c′ logn (for some constant
c′). Suppose we decide to keep all the stacks of subtrapezoids. There are only O(1)
triangles in each (Pi, Pi+1) band which violate convexity with S. Since there are
O(logn) bands, the total number of faces which are not in convex position with the
stack are c′ logn. All the remaining faces are in convex position with each other.
This constant c′ is independent of c1 - in other words, we can make c1 arbitrarily
larger than c′.
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The filter guarantees to change at most cc′ log n faces. Set c1 logm > cc′ log n >
cεDn. In this way, a query to the common violating triangle of P1 cannot return the
triangle unchanged. Indeed, if it did, then the entire stack S of c1 logm triangles
would later have to be modified, which would prove the filter faulty. Modifying the
violating triangle of P1 appropriately requires knowing where the stack S is placed
around the (Pk−1, Pk) band, which takes Ω(|Pk|) expected time.

Pi

Pi+1

C

Pk−1

Pk

Figure 3.14: A hard terrain to reconstruct.

The extension to higher values of ε is quite straightforward. Essentially, the
number of concentric rings is (upto constant factors) equal to εn. Fix some parame-
ter m. We choose concentric regular polygons P0, P1, · · · , Pk−1 (where k = Θ(εm))
such that P0 has a constant number of vertices, Pi has either |Pi−1| or 2|Pi−1| ver-
tices, and Pk−1 has (c1εD)−1 vertices (for some sufficently large constant c1). The
outermost polygon Pk is as before a slightly scaled up version of Pk−1 and the band
(Pk−1, Pk) consists of stacks of subtrapezoids (as before) with stack size of c1εDm.
One of these stacks is tilted to ensure that it violates one common triangle of P1 but
violates the convexity of at most O(1) subtrapezoids in each ring. The parameter
m = Θ(n) is chosen to ensure that the total number of faces is n. The distance to
convexity εD is Θ(ε). Using the same argument as above, we can force a query for
a common violating triangle in P1 to make a modification. For this, the tilted stack
of subtrapezoids must be detected, which will take Ω(Pk) = Ω(εD

−1) time.

Theorem 3.2.16. Any convexity filter for a terrain D of n faces has a worst case
query time of Ω(ε−1

D ) for any n such that (log n)/n ≤ εD.
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Chapter 4

Expansion Reconstruction

In our final result on reconstruction, we discuss the problem of expander reconstruc-
tion. Given an input bounded degree graph G, the aim is to output a graph on the
vertices of G that has high conductance and is as close to G as possible. The queries
are made for vertices and the filter outputs, in sublinear time, the neighbors of this
vertex (in the output graph).

Property testers for expansion in bounded degree graphs were first discussed
in [49]. One of the observations made was that the mixing rate of random walks
in graphs could be estimate accurately in sublinear time. We take these techniques
further and show that there are many other interesting (random walk related) prop-
erties that can be estimated.

This work deals with an independent concept that has no connections with
sublinear algorithms. It is well known [58, 64] that random walks mix rapidly in
expanders. Suppose we add some “noise” in the form of a small arbitrary graph
connected arbitrarily to an expander. What can we say about the random walks
here? We would expect that the mixing properties of the expander have not been
affected too much. We make this formal and prove that this is indeed the case. A
lot of combinatorial and probabilisitic tools have been used to achieve this.

4.1 Preliminaries

The input is a large graph G = (V,E), with n vertices. We assume that all the
vertices have degrees bounded by some specified constant d, which we assume to be
sufficiently large (say at least 10). The graph G is represented by adjacency lists:
for every vertex v, there is list of vertices (of size at most d) adjacent to v. Given a
subset of vertices S ⊆ V of size at most n/2, let S̄ = V \ S, and let E(S, S̄) denote
the set of edges crossing the cut (S, S̄). The expansion of the cut is defined to be
|E(S, S̄)|/|S|. The expansion of the graph is the minimum expansion over all cuts
in the graph. An expander is a generic term for a graph with high expansion.

We consider a related parameter, the conductance of a cut, which is defined to
be just the expansion of the cut divided by 2d. The conductance of the graph is its
expansion divided by 2d. We are given a parameter 0 < φ < 1, and the input graph
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is supposed to (but may not) have the property that its conductance is at least φ.
We think of φ as a small constant.

The filter is represented by a deterministic sublinear time procedure Recon-

struct takes a vertex v and the random seed s as inputs and outputs at most d
neighbors of v in G′ (the adjacency list of v). To allow for parallel processing of
queries, we assume that a sublinear size random seed s is fixed at the beginning and
used for all queries.

All the answers of Reconstruct are consistent (thereby giving a description
of the graph G′). The final graph G′ has conductance at least φ′ for some φ′ < φ,
degrees bounded by d, and the number of edges changed (from G to get G′) is at
most a small factor more than the optimal number of edges that need to be changed
to make the conductance at least φ. All these properties are satisfied with high
probability over the choice of the random seed s, over all possible queries v.

We now state our main theorem regarding the properties of our filter:

Theorem 1. There is a determinisitic procedure Reconstruct that takes as input
a vertex v and random seed s of length1 Õ(

√
n/φ2), and outputs the adjacency list

of v in G′. The following properties hold with probability at least 1− 1/n2:

1. Queries can be answered in parallel, and each answer takes Õ(
√
n/φ2) time,

2. All query answers are consistent: the vertex u is output as a neighbor of v iff
v is output as a neighbor of u,

3. The final graph G′ has conductance at least φ′ = Ω(φ2/ log n) and degree bound
d,

4. The number of edges changed is at most O( 1
φOPT), where OPT is the optimal

number of edges needed to be changed to make the conductance at least φ.

Note that the parallel filter can be used as a property tester for expansion, so by
the lower bound for testing expansion by Goldreich and Ron [50], the running time
of our filter is optimal upto poly log(n) factors.

4.1.1 Comparison to property testing : why is reconstruction hard?

The input model of adjacency lists for sparse graphs was introduced by Goldreich
and Ron [50], where they designed testers for a large set of problems. More general
results about the testability of large classes of properties were obtained by Czumaj
and Sohler [34] and by Benjamini, Schramm, and Shapira [21]. The technique of
using random walks for testing was first introduced by Goldreich and Ron [48] for
testing bipartiteness.

Goldreich and Ron [49] formally posed the problem of expansion testing (by a
result in [50], there is a lower bound of Ω(

√
n) queries to the input graph). Given a d-

degree bounded input graph G and a distance parameter ε, we want to distinguish

1We use the Õ notation to suppress dependence on poly log(n) factors.
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between the case that G is an expander, and that at least εnd edges need to be
changed in G to make it an expander2. The first progress towards this was made
by Czumaj and Sohler [35]. Further work on testing expansion improving certain
parameters was done in [55,67].

The reconstruction problem is a much harder problem than property testing
for the obvious reasons: first, the property testing problem is a decision problem,
whereas reconstruction algorithm needs to actively take local action in each query
to fix the input graph, and patch up sparse cuts. Second, in the notation of Theo-
rem 1, property testing algorithms only need to distinguish between graphs which
have OPT = 0 and OPT ≥ εnd, whereas reconstruction algorithms are required to
approximately compute OPT, for all values of OPT.

More importantly, the known techniques in property testing algorithms are inad-
equate for reconstruction. Such approaches show that in a graph G that is far from
being an expander, there exists many “bad” vertices starting from which random
walks in G do not mix rapidly. One may expect that adding d edges at random to
all such bad vertices will suffice to make it an expander, and indeed it does, but it
may be an overkill: there are graphs G where all vertices as bad, yet G can be made
an expander by adding very few edges. Think of the case where G consists of two
disjoint expanders - one of size (1− δ)n and the other of size δn (where δ is a very
small constant). We only need to add random edges to every vertex in the smaller
expander to patch the bad cut. But all present testing algorithm would deem all
vertices as “bad”.

We therefore need to devise completely new techniques for reconstruction. The
main approach to reconstruction is to identify weak and strong vertices. Intuitively,
weak vertices are those that lie on the smaller side of bad cuts, and therefore need
edges to be added from them, whereas strong vertices are those that are part of a
large expanding component (if one exists). The reconstruction procedure should be
careful to only add edges to the weak vertices.

The property testing approach is to distinguish between weak and strong vertices
by thresholding the distance from mixing for a short random walk. All the property
testing results are obtained using the L2-distance, but this is too sensitive to noise,
harming the mixing properties of many strong vertices. Thus, we develop completely
new techniques based on the L1 distance, and prove noise-tolerance properties of
Markov chains under this norm. These properties are crucial in our reconstruction
algorithm.

4.2 Noise-tolerance of Markov Chains

First, we discuss our theorem about the noise-tolerance of Markov chains. Later,
we apply this to our setting of expansion reconstruction. Let M be a finite Markov
chain with state set V and transition probabilities puv for u, v ∈ V . The k-step tran-
sition probabilities will be denoted as pk

uv. The vector pk
u represents the probability

2This is not the complete formulation, but it suffices for this discussion.

62



distribution on V for a k-step random walk starting from u (for k = 0, p0
uu = 1 and

p0
uv = 0 for v 6= u). For simplicity, we assume that M is irreducible, and that for

any u ∈ V , puu ≥ 1/2 (so that the chain is aperiodic). In this case, there is a unique
stationary distribution π for the Markov chain. For a subset of states S ⊆ V , define
π(S) =

∑
u∈S πu. Note that the chain need not be reversible.

The conductance of the Markov chain is defined to be the largest number φ such
that for any subset of states S ⊆ V ,

∑

u∈S,v∈V \S

πupuv ≥ φ ·min{π(S), π(V \ S)}.

It is a well-known fact (see, for example [58, 64, 75]) that if the Markov chain has
high conductance, then from any starting state, the chain converges to the stationary
distribution exponentially fast at a rate determined by the conductance.

Suppose we are given a Markov chain which almost has high conductance, in
the following sense. There is a “large” subset of states V ′ ⊆ V such that the chain
restricted to the subset V ′ has high conductance, and nothing can be said about the
remaining “small” part of the state space, B = V \V ′ (the “noise”). Then, we would
like to show that except for a set of states B′ of stationary measure comparable to
that B, from all other starting states the chain will have some fast mixing properties
(i.e. the noise has limited influence).

This turns out to be hard to prove because it can be true for completely different
reasons. Suppose that the noise B is almost disconnected from V ′. Then, a random
walk starting from V ′ will almost never leave V ′ and since V ′ has high conductance,
will definitely mix rapidly inside V ′. On other other hand, suppose that the whole
chain has high conductance (not just restricted to V ′). In this case, although walks
from inside V ′ will encounter B, all walks will still mix rapidly. We need a proof
that can interpolate between these scenarios. A first approach to proving this would
be to estimate the probability that a walk from V ′ never hits B. But such a bound
would be too weak: there are many states (compared to π(B)) which are sufficiently
“close” to B that a random walk from them will almost certainly hit B.

We now proceed to formalize the setting. Given a subset of states V ′ ⊆ V , define
the V ′-conductance of the chain to be the largest number φ such that for any set
S ⊆ V ′, ∑

u∈S,v∈V ′\S

πupuv ≥ φ ·min{π(S), π(V ′ \ S)}.

We also need the notion of a uniform averaging walk in the Markov chain of ℓ steps:
in such a walk, we choose a number k ∈ {0, 1, 2, . . . , ℓ−1} uniformly at random, and
stop the chain after k steps. Thus, the distribution of the final state of the uniform
averaging walk starting from u is p̄ℓ

uv =
∑ℓ−1

k=0 p
k
uv. The total variation distance

between two distributions ξ and ψ on the states is defined to be ‖ξ − ψ‖TV =
maxS |ξ(S)−ψ(S)| = 1

2‖ξ −ψ‖1, where S is an arbitrary subset of states, and ξ(S)
and ψ(S) are, respectively, the measures of S under ξ and ψ respectively.
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Theorem 2. Let the Markov chain M have V ′-conductance φ. Let π0 = min{πu/π(V ′)
: u ∈ V ′}. Then, there is a set B′ such that π(B′) ≤ 2π(B) with the property
that starting from any state s ∈ V \ B′, if the uniform averaging Markov chain of
ℓ ≥ 8 log(1/επ0)/(εφ

2) steps is run, then the final probability distribution p̄ℓ
s satisfies

‖p̄ℓ
s − π‖TV ≤ ε+ π(B).

We prove this theorem as follows. We consider a closely related Markov chain
that is restricted to V ′. We retain all the original transitions in M between any pair
of vertices u, v ∈ V ′ with the same probabilities. We assign all such transitions a
cost of 1. The meaning of this cost will be explained later.

For any pair of vertices u, v ∈ V ′, and for every integer j ≥ 2, define qj
uv to be

the total probability of all length j walks from u to v all of whose states, except for
the end points u and v, are in B. Then we add a new transition ejuv from u to v
with cost j and probability qj

uv. Since M is irreducible, any walk in M that enters
B has to eventually leave it, and hence the new transitions define a Markov chain
on V ′. Call this new Markov chain M ′. Since M is irreducible, so is M ′. The chain
M ′ is called an induced Markov chain by Aldous and Fill [8].

Now, for any walk in M ′, define the cost of the walk to be the total cost of all
transitions in the walk. The cost of a walk in M ′ is naturally mapped to the length
of a corresponding walk taken in M (where taking one of the new transitions is to be
interpreted as taking all the corresponding walks of length equal to the prescribed
cost which are entirely in B, except for the end points).

This correspondence between walks in M and M ′ also implies that the stationary
distribution in M ′ is one that assigns probability π′u = πu/π(V ′) to state u. This
can be seen by considering an arbitrary state z ∈ V ′ and using the fact that the
stationary probability of any state u ∈ V ′ is proportional to the expected number
of visits to u before returning to z, and then using the correspondence between the
walks to argue that the expectation is the same in both M and M ′. For convenience,
for u ∈ B, we define π′u = 0.

Lemma 1. For any integer t > 0, there exists a set B̃ ⊆ V ′ such that π(B̃) ≤ π(B),
with the property that for all v ∈ V ′ \ B̃,

E[cost of t step walk in M ′ from v] ≤ 2t.

Proof. Fix any starting state s ∈ V ′. Let Xk be the k-th state on a t step walk in
M ′ from s. For any u ∈ V ′, let p′ksu be the probability of reaching u from s on step
k of a random walk in M ′.

For any u ∈ V ′, we have E[cost of step k+1 |Xk = u] = E[cost of one step from u],
by the Markov property. So define

cu := E[cost of one step from u] =
∑

v∈V ′

(
puv +

∑
j≥2q

j
uv · j

)
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We have

E[cost of t step walk from s] ≤ t+
t∑

k=1

∑

u∈V ′

[
E[cost of step k + 1 | Xk = u]− 1

]
· p′ksu

= t+
t∑

k=1

∑

u∈V ′

(cu − 1) · p′ksu.

Now, we define

B̃ :=

{
s ∈ V ′ :

t∑

k=1

∑

u∈V ′

(cu − 1) · p′ksu ≥ t

}
. (4.1)

With this definition, it is clear that for any starting state s ∈ V ′\B̃, the expected
cost of an t step walk from s is at most 2t, as required by the statement of the lemma.
We proceed to bound π(B̃) as follows:

t · π(B̃) ≤
∑

s∈V ′

πs ·
[

t∑

k=1

∑

u∈V ′

(cu − 1) · p′ksu

]

=
t∑

k=1

∑

u∈V ′

(cu − 1) ·
∑

s∈V ′

πsp
′k
su

=
t∑

k=1

∑

u∈V ′

(cu − 1) · πu

= t ·
∑

u∈V ′

πu(cu − 1).

where the equality on the second line follows because π′ = π′P ′k, where P ′ is the
transition matrix of M ′, which implies that

∑
s∈V ′ π′sp

′k
su = π′u, and because π′u ∝ πu

for u ∈ V ′.
We now need to bound

∑
u∈V ′ πu(cu − 1). Note that cu is exactly the expected

time to return to the set V ′ starting from u in the original Markov chain M . Since
M is irreducible, by Kac’s lemma (see [8]), we have

∑

u∈V ′

πucu = 1

=⇒
∑

u∈V ′

πu(cu − 1) = 1− π(V ′) = π(B)

Thus, we have t · π(B̃) ≤ t · π(B), which implies that π(B̃) ≤ π(B).

Now, we would like to prove that the set B′ = B̃ ∪ B, where B̃ is defined in
Lemma 1 works for Theorem 2, when t is chosen to be the mixing time of M ′, which
can be bound in terms of the conductance of M ′. The idea is that even without
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the newly added transitions, the Markov chain V ′ has high conductance. Thus, if a
short walk in V ′ mixes, then by Lemma 1, a corresponding short walk in the original
chain should mix as well.

Proof. (Theorem 2) We use the notion of stopping rules for Markov chains [59].
A stopping rule is a rule that observes the walk and tells us whether to stop or
not, depending on the walk so far (but independently of the continuation of the
walk). This decision may be reached using coin flips, so the stopping rule has to
only specify for each finite walk w, the probability of continuing the walk, so that
with probability 1, the walk is stopped in a finite number of steps. The expected
time for a stopping rule to terminate the walk yields bounds on the mixing time of
the chain.

Let B′ = B̃ ∪ B, where the set B̃ is as defined in equation (4.1) in Lemma 1.
Let s ∈ V \ B′ = V ′ \ B̃. We consider a random walk in the original Markov chain
M starting from s with the following probabilistic stopping rule Γ: stop the walk as
soon as it has taken t steps in the induced walk in M ′. Note that this stopping rule
always stops the walk on some state in V ′. Denote by Es[Γ] the expected number
of steps the walk takes starting from s before being terminated by Γ.

Now, because the Markov chain M has V ′-conductance at least φ, the Markov
chain M ′ has conductance at least φ, and hence by the results of [58, 64], a t =
2[log(1/επ0)]/φ

2 step walk starting from smixes on V ′, i.e. ‖p′ts−π′‖TV ≤ ε/2, where
p′ts is the probability vector for a t step random walk starting at s. Furthermore,
we have ‖π′ − π‖TV = π(B), and hence by the triangle inequality, ‖p′ts − π‖TV ≤
ε/2 + π(B). Now, by Lemma 1, we have Es[Γ] ≤ 2t. Thus, for all s ∈ V \ B′,
the stopping rule Γ stops the walk in a distribution that is within total variation
distance ε/2 + π(B) of the stationary distribution within an expected 2t steps.

Lovász and Winkler [59] define H(s, dδ) to be the minimal expected time for
a stopping rule to stop a chain started from s in a distribution that is within
variation distance δ of the stationary distribution, and thus we have shown that
H(s, dε/2+π(B)) ≤ 2t. Now, Theorem 4.22 in [59] implies that for the uniform aver-

aging chain of ℓ steps in M started from s, if p̄ℓ
s is the final distribution, then

‖p̄ℓ
s − π‖TV ≤ ε/2 + π(B) +

1

ℓ
H(s, dε/2+π(B)) ≤ ε+ π(B),

since ℓ ≥ 4t/ε, which completes the proof.

4.3 The Reconstruction Algorithm

We give an overview of the reconstruction algorithm. In the first step, the algorithm
tries to identify vertices that are part of a low conductance cut (a “bad” cut), and in
the second step, it attempts to boost the conductance of the cut by adding edges to
the identified vertices. We use a random walk based procedure to separate vertices
on the smaller side of a bad cut from the larger. The details of this separation
procedure are given in Section 4.3.1.
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One way to fix the bad cuts is to add random edges to the identified vertices. This
works, but doesn’t allow for parallel query processing which requires the randomness
to be fixed in advance. Instead, we use an explicit expander, and construct a
hybrid of the original graph and the expander. The hybridization is locally done to
allows parallel query processing. Details of the hybridization procedure are given in
Section 4.3.2.

4.3.1 Separating vertices

We define a Markov chain on the graph, and study random walks in this Markov
chain. The states of the chain are the vertices of the graph, and the edges represent
transitions, such that from each vertex u, any outgoing edge (u, v) is taken with
probability puv = 1/2d. With the remaining probability, the walk stays at the
current vertex. Note that this is an irreducible (assuming the graph is connected),
aperiodic, and time-reversible chain, and the stationary distribution is uniform on
all the vertices.

Let ℓ = c log(n)/φ2, where c is a sufficiently large enough constant. We will
consider the uniform averaging walk of length ℓ, in two forms based on related
probabilistic stopping rules:

1. Pick an integer t ∈ {0, 1, 2, . . . , ℓ− 1} uniformly at random, and stop the walk
after t steps. This is the uniform averaging walk of length ℓ. Let quv be the
probability of reaching v from u after such a random walk (i.e. quv = p̄ℓ

uv, in
the notation of Section 4.2).

2. Pick two integers t1, t2 ∈ {0, 1, 2, . . . , ℓ−1} uniformly at random, and stop the
walk after t1 + t2 steps. Let Quv be the probability of reaching v from u after
such a random walk.

Let qu be the probability vector of quv’s. For a subset of vertices S, let qu(S) :=∑
v∈S quv (similarly we define Qu and Qu(S)). It is easy to see that for any two

vertices u and v, we have Quv =
∑

w quwqwv =
∑

w quwqvw, because qwv = qvw,
as all edges have the same probability of 1/2d. For ease of notation, we will refer
to the above walks as q-random walks and Q-random walks. In our procedures
and definitions, we will use some constants: c is a sufficiently large integer and
α, β, γ, δ > 0 are sufficiently small (values α = 1/1000, β = 1/10, γ, δ = 1/100 work
3).

We now define weak and strong vertices. Intuitively, strong vertices are those
that can reach a vast majority of vertices with probability Ω(1/n) through a short
random walk. Formally, we will look at the mixing properties of random walks in
the L1 norm. Note that there can be vertices that are neither strong nor weak. In
the following definition, ~1 is the all 1’s vector.

Definition 1 (Strong and Weak vertices).

3We have not optimized these constants.
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1. A vertex u ∈ V is called strong if ‖qu −~1/n‖TV ≤ α (= 1/1000).

2. A vertex u ∈ V is called weak if ‖Qu −~1/n‖TV ≥ 1/4.

Intuitively, strong vertices are those that reach a vast majority of vertices (through
short q-walks) with probability Ω(1/n). The basic idea is to perform many q-walks
from u (and v) and compute the number of collisions between these walks (at the
endpoints): this is a twist on the idea of Goldreich and Ron [49] for using random
walks to estimate the mixing of a random walk. A birthday paradox like argument
suggests that O(

√
n) walks should be sufficient to estimate probabilities of Ω(1/n).

Unfortunately, assuming nothing about the vectors qu and qv, we cannot get a rea-
sonable bound on the variance of our randomized estimate4. For this reason, we
define the reduced collision probability, which disregards collisions that occur due
to vertices reached with extraordinarily high probability. This quantity attempts
to approximate Quv and can be estimated in sublinear time. For the purpose of
separating weak vertices from strong ones, it suffices to estimate these probabilities.

We give a detailed exposition of the procedures that are used to separate weak
vertices from strong ones. The main procedure is based on approximating the re-
duced collision probability values. For technical reasons (which should become clear
soon), we will introduce some extra parameters to the definition of the reduced colli-
sion probability. This will help us deal with the errors introduced by the restriction
of sublinear time.

Definition 2 (Reduced Collision Probability). Consider vertices u, v. Let Sσ
u =

{w : quw ≤ (1 − σ)/
√
n} (set Sσ

v is similarly defined). The σ-reduced collision
probability of vertices u, v (denoted by rσ

uv) is:

rσ
uv =

∑

w∈Sσ
u∩Sσ

v

quwqvw

We will set σ to be some small constant (say 1/4). We prove some useful prop-
erties of strong vertices.

Lemma 2. The following properties of strong vertices hold:

1. For any strong vertex v, there can be at most
√
αn vertices with quv ≤ (1 −√

α)/n.

2. For any strong vertex u and any σ ≤ 1
2 , we have qu(Sσ

u ) ≥ 1/2.

3. Let u and v be strong vertices. Then for any σ ≤ 1
2 , we have rσ

uv ≥ (1− β)/n
for β ≥ 3

√
α.

4Think of the extreme situation where for some w, quw = 1 − 1/n − 1/n2, and quz = 1/n2 for
z 6= w; whereas all qvz = 1/n. Although Quv = Ω(1/n), it is very unlikely that a sublinear time
procedure can detect a collision between q-random walks from u and v.
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Proof. The first part follows immediately from the definition of strong vertices. For
the second part, note that there can be at most 2

√
n vertices in V \Sσ

u . Thus, there
are at least (1−√α)n−2

√
n vertices v ∈ Sσ

u such that quv ≥ (1−√α)/n, and hence

qu(Sσ
u ) ≥ [(1−√α)n− 2

√
n] · (1−√α)/n ≥ 1/2.

We now prove the third part. There are at least (1−√α)n− 2
√
n vertices w ∈ Sσ

u

such that quw ≥ (1 −√α)/n, and a similar statement holds for v. Thus, there are
at least (1 − 2

√
α)n − 4

√
n vertices in Sσ

u ∩ Sσ
v such that both quw and qvw are at

least (1−√α)/n. Hence,

rσ
uv ≥ [(1− 2α)n− 4

√
n] · [(1−√α)/n]2 ≥ (1− 3

√
α)/n.

We now present the Separate algorithm, which distinguishes between strong
and weak nodes. It uses a procedure Estimate-RCP, which produces an estimate
of the ruv values. We will describe Estimate-RCP momentarily.

Separate

Input: Vertex u ∈ V .
Parameters: β, γ, δ, ℓ

1. Choose a random set R of c logn/γ vertices.

2. For every v ∈ R, run Estimate-RCP(u, v), c log n times. If for a majority of
these runs, Estimate-RCP does not abort and outputs r̂uv ≥ (1−β)(1−δ)/n,
then call v accessible.

3. If more than a (1− 2γ)-fraction of vertices in R are accessible, then ACCEPT
u. Otherwise REJECT v.

The main lemma of this section is about Separate, which is proven using the
previous lemma.

Lemma 3. The procedure Separate runs in O(
√
nℓ log2 n) time, and with proba-

bility at least 1− n−3 has the following behavior:

1. Assume there are at least (1 − γ)n strong vertices, for some constant γ. If u
is strong, then the algorithm accepts u.

2. If u is weak, then the algorithm rejects u.

Proof. For the first part, we assume that there are at least (1− γ)n strong vertices.
We now show that if u is a strong vertex, then this test will accept it with probability
of error less than 1/n3. Since the sample size is c logn/γ (for sufficiently large c),
a Chernoff bound argument shows that with probability of error less than 1/n4, at
least a (1− 2γ) fraction of vertices in the sample must be strong.
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Let v be a strong vertex in the sample. By Lemma 2, parts 2 and 3, we have
qu(Sσ

u ) ≥ 1/2, qv(S
σ
v ) ≥ 1/2 and rσ

uv ≥ (1 − β)/n. By Lemma 4, with probability
at least 2/3, Estimate-RCP will not abort and will output a value that is at least
(1− β)(1− δ)/n. Hence, with probability of error less than 1/n4, v will be deemed
accessible. Taking a union bound over all errors, u is accepted with probability at
least 1− 1/n3.

Now we turn to the second part. Let u be a weak vertex. Then it is easy to see
from the definition of weak vertices that there can be at most 7n/8 vertices v with
Quv ≥ 7/8n. Suppose this is not the case. Let S be the set all the vertices v with
Quv < 1/n. At least 7n/8 have Quv ≥ 7/8n. Thus,

‖Qu −~1/n‖TV ≤
∑

v∈S

(1/n−Quv) ≤ (7n/8) · (1/8n) + (n/8) · (1/n) < 1/4,

a contradiction. By the relation between q and Q probabilities, r0uv ≤ Quv, so
again, there can be at most 7n/8 vertices v with r0uv ≥ 7/8n. Now, in our random
sample, (with probability of error less than 1/n4) a 1/9 fraction of vertices v must
have r0uv ≤ 7/8n. Consider any such v. If Estimate-RCP does not abort, then
with probability at least 2/3, it will output an estimate of r0uv that is at most
7/8n + δ/2n. By choosing constants α, β, δ to be sufficiently small, we can ensure
that 7/8n+ δ/2n < (1−β)(1− δ)/n. Thus, with probability of error less than 1/n4,
the algorithm will not call v accessible. A union bound over all v implies that with
probability at least 1 − 1/n3, a 1/9 fraction of vertices in the random sample are
not accessible from u, and if we choose 2γ < 1/9, then the algorithm rejects u.

We now describe the procedure Estimate-RCP. It needs another procedure,
Find-Set, which given a vertex u, finds the set S0

u (approximately).

Estimate-RCP

Input: Vertices u, v ∈ V .
Parameters: δ, m =

√
n/δ2.

1. Let Ŝu :=Find-Set(u), and Ŝv :=Find-Set(v).

2. Keep performing q-random walks from u until m such walks end at vertices in
Ŝu (call this set of walks Wu). If more than 20m walks are performed, then
Abort.

Do the same for walks starting from v as well to obtain the set of m walks Wv.

3. Let X be the number of pairwise collisions between walks in Wu and Wv (if a
walk from Wu and a walk from Wv end at the same vertex, then this counts
as a pairwise collision). Output X/m2.

Lemma 4. Let u and v be two vertices. The running time of Estimate-RCP

is O(
√
nℓ log n). If both qu(Sσ

u ), qv(S
σ
v ) ≥ 1/2, then Estimate-RCP aborts with
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probability less than exp(−O(m)). If Estimate-RCP does not abort, then it outputs
an estimate r̃uv such that with probability at least 9/10,

rσ
uv − δmax{rσ

uv, 1/2n} ≤ r̃uv ≤ r0uv + δmax{r0uv, 1/2n}.

Proof. The running time bound is obvious, since the algorithm runs O(
√
n log n)

random walks from u and v. By Lemma 6, with high probability, we have

Sσ
u ⊆ Ŝu ⊆ S0

u and Sσ
v ⊆ Ŝv ⊆ S0

v .

Thus, if qu(Sσ
u ) ≥ 1/2, by a Chernoff bound, the probability that Estimate-RCP

aborts while performing walks from u is less than exp(−O(m)). This proves the
first part.

Define r̂uv as:
r̂uv =

∑

w∈Ŝu∩Ŝv

quwqvw

Since (with high probability), Sσ
u ∩ Sσ

v ⊆ Ŝu ∩ Ŝv ⊆ S0
u ∩ S0

v , we get that
rσ
uv ≤ r̂uv ≤ r0uv. Assuming that the algorithm does not Abort, let X be the

random variable denoting number of pairs of walks that collide. The algorithm’s
estimate is X/M , where M = m2. We now show that this is a good estimate,
with a high probability. For any pair of walks, the probability that they collide is∑

w∈Ŝu∩Ŝv
quw ·qvw = r̂uv. Thus, the expectation of X is exactly r̂uvM . We can show

that Var(X) ≤ 4r̂uvM
3/2/
√
n (see Lemma 5). Thus, by Chebyshev’s inequality, if

b = max{r̂uv, 1/2n}, then

Pr[|X − r̂uvM | > (δb)M ] ≤ 4r̂uvM
3/2

√
n[(δb)M ]2

≤ 1/10

since M = n/δ4, and we can choose δ to be a small enough constant. This implies
that with probability at least 9/10,

rσ
uv − δmax{rσ

uv, 1/2n} ≤ r̃uv ≤ r0uv + δmax{r0uv, 1/2n}.

Lemma 5. The variance of X, the number of pairwise collisions when Estimate-

RCP is run on vertices u and v, is bounded by Var(X) ≤ 4r̂uvM
3/2/
√
n.

Proof. For convenience of notation, let R := r̂uv. We index the walks from u by
i = 1, 2, . . . ,m, and the walks from v by j = 1, 2, . . . ,m. Define indicator random
variables Xij for any i, j ∈ {1, 2, . . . ,m} which are set to 1 if the ith walk from u
and the jth walk from v collide. Note that Pr[Xij = 1] = R. The random variable
X equals

∑
ij Xij , and thus the expectation of X is Rm2 = RM . We now estimate

the variance of X as follows:

E[X2] =
∑

ij

E[X2
ij ] +

∑

i6=i′,j 6=j′

E[XijXi′j′ ] +
∑

i,j 6=j′

E[XijXij′ ] +
∑

j,i6=i′

E[XijXi′j ].

71



We estimate each term separately. First, E[X2
ij ] = R. Then, if i 6= i′ and j 6= j′,

then Xij and Xi′j′ are independent, and hence E[XijXi′j′ ] = R2.
The last case is if i = i′ and j 6= j′ (the case when i 6= i′, j = j′ is handled

analogously). Then, we have

E[XijXij′ ] = Pr[XijXij′ = 1]

=
∑

w∈Ŝu∩Ŝv

quwq
2
vw

≤
∑

w∈Ŝu∩Ŝv

1√
n
· quwqvw

=
1√
n
·R.

Here, we crucially use the fact that for all vertices w ∈ Ŝv, qvw ≤ 1/
√
n. This is what

bounds the variance and allows us to give a sublinear time procedure to estimate
ruv values.

Thus, we have

Var[X] = E[X2]− E[X]2

≤ m2R+m2(m− 1)2R2 + 2m2(m− 1) · R√
n
−m4R2

≤ 4m3 · R√
n

∵ m = Ω(
√
n)

= 4RM3/2/
√
n.

Now we describe the procedure Find-Set. Since we cannot get S0
u (or indeed

any such set) exactly, we have to settle for some errors. Our final procedure will
not exactly estimate r0uv but some closely related value. Note that what we actually
require of Find-Set is just an oracle that given a vertex v, tells us whether or not it
is in Sσ

u . Since Sσ
u is of linear size, the procedure actually outputs the complement

(which is of size O(
√
n)).

Find-Set

Input: Vertex u ∈ V .

1. Perform c
√
n log n independent q-random walks of length ℓ from u.

2. Return Ŝu, the set of all vertices w such that at most c(1−σ/2) logn q-random
walks from u end at w.

Lemma 6. With probability at least 1 − 1/n, the procedure Find-Set, on input
vertex u, outputs a set Ŝu such that

Sσ
u ⊆ Ŝu ⊆ S0

u.
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Proof. Any vertex w ∈ Sσ
u has quw ≤ (1 − σ)/

√
n, and any vertex v ∈ V \ S0

u has
quv > 1/

√
n. Since we run c

√
n logn random walks from u, the expected number

of times such a walk hits w is at most c(1 − σ) log n, and the expected number of
times such a walk hits v is at least c log n. Thus, by a Chernoff bound, the chance
we have more than c(1 − σ/2) log n walks hitting w and less than c(1 − σ/2) log n
walks hitting v is at most 1/n2, by making c large enough. The statement of the
lemma follows by a union bound.

4.3.2 Hybridizing the graph with an expander

Now that we have a separating procedure, we can describe the actual reconstruc-
tion procedure Reconstruct that hybridizes an expander with our original graph.
Given a query vertex v, the procedure will output at most d vertices which will
be the neighbors of v in the reconstructed graph. We will refer to the final recon-
structed graph as G′, and for cuts (S, S̄) in G′, we use the notation E′(S, S̄) to refer
to the set of edges crossing the cut.

Since we are describing a parallel filter, we assume we have access to a sublinear
sized random seed s of size Õ(

√
n) which is fixed for all queries. Since the total

number of calls to Separate is at most O(n) (for each call to the Reconstruct,
we will make O(1) calls to Separate), by taking a union bound over all the error
probabilities, we can ensure that the guarantees of Lemma 3 hold with probability
at least 1− 1/n2. Since the seed is fixed, we can unambiguously refer to vertices as
accepted or rejected, based on Separate.

For constructing G′, we use an explicit bounded degree expander G∗ with n
vertices. The explicit construction allows us to find all neighbors of a vertex v ∈ G∗

in poly(logn) time. This expander G∗ has degree bound d/2 and expansion at least
ηd for some constant η. Naturally, there is a one-to-one correspondence between
the vertices of G and G∗. Abusing notation, given a vertex v in G, we will refer to
the corresponding vertex in G∗ also as v. To prevent confusion about edges, we will
call edges G,G∗, or G′-edges depending on the graph in consideration.

For the sake of intuition, we can think of the accepted vertices as strong, and
the rejected as weak. The reconstructed graph G′ will be a careful combination of G
and G∗. Starting with G, here is an informal description of how G′ is built. For any
rejected vertex v, we remove all G-edges incident to v and add all G∗-edges incident
to v to get the G∗-edges. This is to ensure that any subset of rejected vertices will
have large conductance. For accepted vertices, we would like to just keep the same
G-edges.

This construction could potentially make some (accepted) vertices have a degree
larger than d. Therefore, we have to remove some G-edges incident to accepted
vertices to maintain the degree bound. These edges are removed based on a simple
local rule. Note that this choice cannot be arbitrary, since we want a parallel filter
(for example, if the G-edge (u, v) is removed on querying v, then it must also be
removed on querying u). Unfortunately, this might affect the condutance of subsets
of accepted vertices. We ensure that every time we remove such an edge, we replace
it by a very short path (again decided by local considerations) between the endpoints
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without affecting the degree bound. This gives us G′ with the desired properties.
Because we want every query to be handled in sublinear time, we give a procedure
that determines the neighbors of a vertex in G′ by running Separate on a constant
number of vertices. We now state the main result of this section.

Lemma 7. The procedure Reconstruct runs in O(
√
nℓ log2 n) time and needs

a random seed s of O(
√
nℓ log2 n) bits. Its outputs are consistent over all queries

(i.e. vertex v is output as a neighbor of u (in G′) iff u is output as a neighbor of
v). The final graph G′ has degree bound d. Furthermore, any cut in G′ has higher
conductance than the same cut in G, and any weak vertex has all its G∗-neighbors
adjacent in G′.

We assume that the explicit expander G∗ is a strong edge expander with the
following property:

Property 4.3.1. The expander G∗ has degree bound d/2. For any set of vertices S
in G∗ with |S| ≤ n/2, we have |E∗(S, S̄)| ≥ η|S|d, where η is a constant.

We assume that there is some global ordering of the vertices (say, according to
the value of their indices). Thus, given any vertex v, there is an ordered list of the
neighbors of v, with possibly some “null” entries at the end (because v might have
degree less than d). When we refer to the ith vertex in some list of vertices, we mean
the ith vertex in the list in the global ordering.

As mentioned before, if any vertex u is rejected by Separate, we remove all the
G-edges incident on it and replace them by G∗-edges. To avoid increasing the degree
of accepted vertices, we need to remove some G-edges between accepted vertices as
well. We now describe a procedure that given an edge e = (u, v) of G, where u and
v are both accepted by Separate, outputs whether the edge needs to be removed,
and if so, what edges are added (because of this removal). The procedure Remove

involves O(d) calls to Separate.

Remove

Input: Edge (u, v) ∈ G.

1. Find the G∗-neighbors of u and v and consider all the rejected vertices (ac-
cording to Separate).

2. Suppose v is the ith neighbor of u, and u is the jth neighbor of v. Let s be
ith rejected G∗-neighbor of u, and let t be the jth rejected G∗-neighbor of v.
Note that one or both of s and t could be null.

3. If both s and t are null, then (u, v) is not removed. If t is null, then the
edges (s, u) and (s, v) replace (u, v). If s is null, then the edges (t, u) and
(t, v) replace (u, v). If neither s nor t is null, then the edges (u, s), (s, t), (t, v)
replace (u, v). In any case, output the new neighbors to u and v.
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Note that if an edge (u, v) is replaced, it is replaced by a path from u to v.
Furthermore, for two different edges, these paths are edge-disjoint. This gives the
following claim.

Claim 4.3.2. |E′(S, S̄)| ≥ |E(S, S̄)|

Using the procedure Remove, we can describe the main reconstruction proce-
dure. This procedure will output all the neighbors of an input vertex u on the
reconstructed graph and involves calling Remove on O(d) edges.

Reconstruct

Input: Vertex v ∈ V .

1. Using Separate, check if v is accepted or rejected.

2. If v is accepted : Call Remove on all the G-edges incident on v. All these
outputs give the neighbors of v in the reconstructed graph.

3. If v is rejected : Remove all G-edges incident on v. Find the G∗-neighbors of
v. For each such u:

(a) If u is rejected, then add edge (u, v) to G′.

(b) If not, suppose v is the ith rejected G∗-neighbors of u. Let w be the ith G-
neighbor of u. If w is rejected by Separate, then add (u, v). Otherwise,
call Remove on (u,w).

All these calls together will output the neighbors of v.

Claim 4.3.3. The procedure Reconstruct is consistent: vertex v is output as a
neighbor of u (in G′) iff u is output as a neighbor of v.

Proof. Suppose u is an accepted vertex and let v be output as a G′-neighbor of u.
The neighbor v came about because of a call to Remove on a G-edge (u,w). If
(u,w) is not removed, then w and v are the same. In this case, u will also be output
as a neighbor of v in G′. Suppose (u,w) is replaced by (u, v) and (w, v) for some
rejected vertex v. Then, for some i, v is the ith rejected G∗-neighbor of u (or w),
and w is the ith G-neighbor of u (or vice versa). When Reconstruct is called on
v, then we can see that Remove will be called on (u,w), and u will be output as a
G′-neighbor of v.

Now suppose that (u,w) is replaced by (u, s), (s, t), (t, w), where s, t are rejected
vertices. Using a similar argument as the one above, we can show that u will be
output as a G′-neighbor of v.

Let u be a rejected vertex. If v is a rejected vertex that is a G′-neighbor of u,
then u will also be output as a G′-neighbor of v. If v is accepted, then we can make
the above argument to prove consistency.
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4.4 Bounds on Number of Edges Changed and Conduc-
tance

We now bound the number of edges changed by Reconstruct in terms of the opti-
mal number of edges to be changed to make the conductance at least φ. Theorem 3
gives such a bound and thus establishes a link between two notions of measuring
the “distance” to having a large conductance: number of edges that needed to be
changed, and the number of vertices from which the random walk mixes poorly (i.e.
the weak vertices).

Theorem 3. The reconstruction algorithm achieves an approximation ratio of O(1/φ)
to the optimal number of edges to be changed to make the conductance of the graph
at least φ.

This follows from the following lemma that shows that there is a large cut of low
conductance:

Lemma 8. Let S be the set of strong vertices. Then there is a cut (B, V \B) with
the property that Ω(n − |S|) ≤ min{|B|, |V \ B|}, which has conductance less than
φ/2.

Proof. We keep recursively partitioning the graph, finding cuts in the remaining
induced graph of conductance less than φ/2, and aggregating these cuts. Our goal
is to show that the final cut obtained has the properties required here.

To be more precise: start out with B = {}. Let B̄ = V \ B. If there is a
cut (S, S̄) in B̄ with |S| ≤ |B̄|/2 having conductance less than φ/2, then we set
B := B ∪ S, and continue, as long as |B| ≤ n/2. If |B| exceeds α

2n, then note that
|B| ≤ (1

2 + α
4 )n, and we are done since min{|B|, |V \B|} ≥ Ω(n) ≥ Ω(n− |S|).

We therefore assume that |B| ≤ α
2n. It is easy to check that the final cut (B, B̄)

also has conductance less than φ/2. Furthermore, the subgraph induced on B̄ has
conductance at least φ/2, or in other words, the B̄-conductance of G is at least φ/2.

Now, we apply Theorem 2 to G, to conclude that there is a set B′ such that
|B′| ≤ 2|B| (because the stationary distribution is uniform) with the property that
starting from any s ∈ V \ B′, the uniform averaging walk, after ℓ steps, ends up in
a distribution p̄ℓ

s = qs such that

‖qs −~1/n‖TV ≤ α/2 + |B|/n, (4.2)

if we choose ℓ ≥ 64 log(2n/α)/(αφ2). Since |B| ≤ α
2n, then inequality (4.2) implies

that we have ‖qs −~1/n‖TV ≤ α for all s ∈ V \B′. Thus, all vertices s ∈ V \B′ are
strong. Hence, |S| ≥ n−|B′| ≥ n−2|B|, and so min{|B|, |V \B|} = |B| ≥ Ω(n−|S|)
in this case as well.

Proof. (Theorem 3) Lemma 8 immediately implies that the optimal reconstruction
of the graph must add at least Ω(φd(n− |S|)) edges to patch up the cut (B, V \B).
Whenever the reconstruction algorithm adds an edge, then one of the endpoints is a
rejected vertex. The total number of removed edges is at most the number of added
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edges. Therefore, we can bound the total change (up to constant factors) by d times
the number of rejected vertices. Suppose the number of strong vertices is less than
(1− γ)n. The graph G is trivially changed by atmost O(nd) = O(d(n− |S|)) edges.
If the number of strong vertices is more than (1− γ)n, then by Lemma 3 all strong
vertices are accepted. Our reconstruction algorithm potentially adds O(d(n− |S|))
edges, which means that we have an approximation ratio of O(1/φ) to the optimal
number of edges to be changed.

Now we give bounds on the conductance of G′.

Theorem 4. The reconstructed graph G′ has conductance at least Ω(φ2/ log n).

Proof. Consider a cut (S, S̄) in the reconstructed graph G′, with |S| ≤ n/2. Suppose
S has a subset T of more than (1 − η/2)|S| weak vertices (where η comes from
Property 4.3.1). By the properties in Lemma 7, all the edges incident to these weak
vertices in G∗ are present in G′. The number of edges leaving T is at least η|T |d,
whereas the number of edges incident on S\T is at most η|T |d/2. This implies that
the conductance of S is Ω(1).

So assume that less than a (1−η/2)-fraction of the vertices in S are weak. Then
we claim that the conductance of S is already at least η/16ℓ. By Lemma 7, it suffices
to prove this for G. Assume for the sake of contradiction that the conductance of
S (in G) is less than η/16ℓ. Then the following modification of the proof of Lemma
4.7 in the work Czumaj and Sohler [35] gives us the desired contradiction.

Consider aQ-random walk starting from the uniform distribution on the vertices.
Since the uniform distribution is stationary, for any k ≥ 0, the kth vertex in the walk
is uniformly distributed in V . Thus, for any edge that is not a self-loop, the chance
that it is selected in the next step of the random walk is (1/n) · (1/2d) · 2 = 1/nd.
Thus, we have

Pr[an edge in E(S, S̄) is used in the step k + 1] ≤ E(S, S̄)

nd
.

Since the walk runs for at most 2ℓ steps, the chance of using an edge in E(S, S̄) is

at most 2ℓE(S,S̄)
nd . The chance that the walk starts in S is |S|

n . Since the conductance
of the cut E(S, S̄)/d|S| < η/16ℓ, we get that

Pr[walk starts in S and doesn’t use an edge in E(S, S̄)] ≥ (1− η/8)
|S|
n
.

Thus, conditioned on starting in S, the chance that the walk never crosses the cut
(or in other words, never leaves the set S) is at least (1− η/8).

Therefore, for at least a (1− η/2)-fraction of vertices in S, the chance that the
random walk starting from them never leaves the set S is at least 3/4. On the set
S̄, the uniform distribution places a mass of at least 1/2 (since |S̄| ≥ 1/2), while the
Q-random walk from one of the aforementioned vertices u ∈ S places a mass of at

most 1/4, which implies that ‖qu − ~1
n‖TV ≥ 1/4. This implies that u is weak, and

thus S contains at least a (1− η/2)-fraction of weak vertices, a contradiction.
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Chapter 5

Self-improving Algorithms

We design self-improving algorithms for sorting and computing Delaunay triangu-
lations. As discussed in the Section 1.2, we assume that the inputs (either lists of
numbers, or lists of points) are repeatedly coming from a fixed but unknown distri-
bution. A self-improving algorithm starts learning about this distribution and tries
to optimize its running time based on this information. We first explain the self-
improving sorter, as a sort of primer. Then, we show how to extend these techniques
to the geometric realm for computing Delaunay triangulations.

5.1 A Self-Improving Sorter

The self-improving sorter takes an input I = (x1, x2, · · · , xn) of numbers drawn from
a distribution D =

∏
iDi (ie, each xi is chosen independently from Di). We denote

by D< the distribution over the symmetric group induced by the ranks of the xi’s
(using the indices i to break ties). By an information theoretic argument, it is easy
to see that any sorter must take expected Ω(H(D<) + n) comparisons with respect
to D. This is, indeed, the bound that our self-improving sorter achieves.

For simplicity, we begin with the steady-state algorithm and discuss the training
phase later. We also assume that the distribution D is known ahead of time and
that we are allowed some amount of preprocessing before having to deal with the
first input instance (§5.1.1). Both assumptions are unrealistic, so we show how to
remove them to produce a bona fide self-improving sorter (§5.1.2). The surprise
is how strikingly little of the distribution needs to be learned for effective self-
improvement.

Theorem 5.1.1. There exists a self-improving sorter of O(H(D<) + n) limiting
complexity, for any input distribution D =

∏
iDi. Its worst case running time is

O(n logn). If the input (x1, . . . , xn) to be sorted is obtained by drawing each xi

independently (from a distribution that might depend on i), then for any ε > 0 the
storage can be made O(n1+ε) for an expected running time of O(ε−1H(D<)+n): this
tradeoff is optimal for distributions of high enough entropy. The algorithm reaches
its steady state within O(nε log n) rounds.
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Remark: Much research has been done on adaptive sorting [42], especially on al-
gorithms that exploit near-sortedness. Our approach is conceptually different. As
we mentioned in the previous section, we seek to exploit properties, not of individ-
ual inputs, but of their distribution. In particular, our sorter runs in linear time
for permutations drawn from a linear-entropy source, even though any individual
input might be a perfectly random permutation. We are not aware of any previous
algorithm that can achieve that.

Can we hope for a similar result similar to Theorem 5.1.1 if we drop the inde-
pendence assumption? The short answer is no.

Lemma 5.1.2. There exists an input distribution D such that any comparison-based
algorithm that can sort a random input from D in expected O(H(D<) + n) time
requires at least Ω(2H(D<)n logn) storage. This holds for any value of the entropy
H(D<) that is smaller than n logn by a large enough constant factor.

Proof. Consider the set of all n! permutations. Every subset S of 2h permutations
induces a distribution DS defined by picking every permutation in S with equal
probability and none other. Note that the total number of distributions is

(
n!
2h

)
>

(n!/2h)2
h

and H(DS
<) = h. Suppose there exists a comparison-based algorithm

AS that sorts a random input from DS in expected time at most c(n + h), for
some constant c > 0. By Markov’s inequality this implies that at least half of
the permutations of S are sorted by AS in at most 2c(n + h) comparisons. But,
within 2c(n+h) comparisons, the algorithm AS can sort a set P of at most 22c(n+h)

permutations. Therefore, any other S′ such that AS′ = AS will have to draw at
least half of its elements from P . This limits the number of such S′ to

(
n!

2h/2

)(
22c(n+h)

2h/2

)
< (n!)2

h−1
2c(n+h)2h

.

This means that the number of distinct algorithms needed exceeds

(n!/2h)2
h
/((n!)2

h−1
2c(n+h)2h

) > (n!)2
h−1

2−(c+1)(n+h)2h
= 2Ω(2hn log n),

assuming that h/(n log n) is small enough. An algorithm is entirely specified by a
string of bits; therefore at least one such algorithm must require storage logarithmic
in the previous bound. 2

Fredman [44] gives a comparison-based algorithm that can optimally sort any
distribution of permutations, but uses an exponentially large data structure to decide
which comparisons to perform. This result shows that the storage used by Fredman’s
algorithm is essentially optimal.

5.1.1 Sorting with Full Knowledge

We consider the problem of sorting I = (x1, . . . , xn), where each xi is drawn from a
distributionDi, which is specified by a vector (pi,1, . . . , pi,N ), where pi,j = Prob [xi =

79



j ] 1. We can assume without loss of generality that all the xi’s are distinct. (If not,
simply replace xi by nxi + i−1 for tie-breaking purposes and enlarge N to n(N+1).
All probabilities and entropies remain the same.)

The first step of the self-improving sorter is to sample D a few times (the training
phase) and create a “typical” instance to divide the real line into a set of disjoint,
sorted intervals. Next, given some input I, the algorithm sorts I by using the typical
instance, placing each input number in its respective interval. All numbers falling
into the same intervals are then sorted in a standard fashion. The algorithm needs
a few supporting data structures.

• The V -list: Fix an integer parameter λ = c log n, for large enough c, and
sample λ input instances from

∏Di. Form their union and sort the resulting
λn-element multiset into a single list u1 ≤ · · · ≤ uλn. Next, extract from it
every λ-th item and form the list V = (v0, . . . , vn+1), where v0 = 0, vn+1 =∞,
and vi = uiλ for 0 < i ≤ n. Keep the V -list in a sorted table as a snapshot of
a “typical” input instance. We will prove the remarkable fact that, with high
probability, locating each xi in the V -list is linearly equivalent to sorting I.
We cannot afford to search the V -list directly, however. To do that, we need
auxiliary search structures.

• The Di-trees: For any i > 0, let predV
i be the predecessor2 of a random

y from Di in the V -list, and let HV
i be the entropy of predV

i (which cannot
exceed the entropy of Di). The Di-tree is an optimum binary search tree [62]
over the keys of the V -list, where the access probability of vk is

∑
j{ pi,j | vk ≤

j < vk+1 } 3, for any 0 ≤ k ≤ n: the same distribution used to define HV
i .

This allows us to compute predV
i using O(HV

i + 1) expected comparisons.

The total space used is O(n2). This can be decreased to O(n1+ε) for any ε > 0;
we describe how later. As we explained earlier, the input I is sorted by a two-phase
procedure. First we search for each xi in the V -list using the previous technique.
This allows us to partition I into groups G1 < G2 < · · · of xi’s sharing the same
predecessor in the V -list. The next phase involves going through each Gj and sorting
their elements naively, say using insertion sort. The first phase of the algorithm takes
O(n+

∑
iH

V
i ) expected time.4 What about the second? Its complexity is O(n), as

follows from:

Lemma 5.1.3. With probability > 1− n−2 over the construction of the V -list -

ED

[
| { i | vk ≤ xi < vk+1 } |2

]
= O(1), for all 0 ≤ k ≤ n.

1All the arguments we give shall hold directly (and obviously) even if the Di’s are continuous.
We have made this assumption for ease of presentation.

2Throughout this paper, the predecessor of y in a list refers to the index of the largest list
element ≤ y; it does not refer to the element itself.

3If the Di’s were continuous, then this would be defined as the probability of xj falling in
[vk, vk+1).

4The HV
i ’s themselves are random variables depending on the choice of the V -list. Therefore,

this is a conditional expectation.
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Proof. Remember that the V -list was formed by taking certain elements from a list
u1 ≤ · · · ≤ uλn, where λ = c logn. Consider two points ui and uj . Note that all
the other λn − 2 points are independent of these two points. For every ℓ /∈ {i, j},
let X

(t)
ℓ be the indicator random variable for the event that uℓ ∈ [ui, uj) = t. Let

X(t) =
∑

ℓX
(t)
ℓ . Since all the X

(t)
ℓ ’s are independent, by Chernoff’s bound [11], for

any β ∈ (0, 1] -

Pr[X(t) ≤ (1− β)E[X(t)]] ≤ e−β2
E[X(t)]/2

With probability at least 1−n−4, if E[X(t)] > 4c logn, then X(t) > 2c logn. We can
apply the same argument for any pair ui, uj . Taking a union bound over all pairs,
we get that with probability > 1 − n−2, if for the pair t, E[X(t)] > 4c logn, then
X(t) > 2c log n.

The V -list is constructed such that for tk = [vk, vk+1), X
(tk) ≤ c logn. Let

Y
(tk)
i be the indicator random variable for the event that xi ∈R Di lies in tk, and

Y (tk) =
∑

i Y
(tk)
i = | { i | vk ≤ xi < vk+1 } |. Note that E[X(tk)] ≥ (log n− 2)E[Y (tk)]

and therefore, E[Y (tk)] = O(1). By independence of the Di’s and by linearity of
expectation -

E[Y (tk)2] = E[(
∑

i

Y
(tk)
i )

2
] =

∑

i

E[Y
(tk)
i

2
] + 2

∑

i<j

E[Y
(tk)
i ]E[Y

(tk)
j ]

≤
∑

i

E[Y
(tk)
i ] + (

∑

i

E[Y
(tk)
i ])2 = O(1)

We have shown that the algorithm takes O(n+
∑

iH
V
i ) time (given a fixed V -

list) plus an O(n) additive expected term (over V and D). We now show that this
running time is indeed optimal.

Lemma 5.1.4. ∑

i

HV
i = O(n+H(D<))

We will actually show this to be the case for any linear sized sorted list V . We
will need a basic claim, which shall be proven for completeness, about the joint
entropy of independent random variables.

Claim 5.1.5. Let H(predV
1 , pred

V
2 , · · · , predV

n ) be the joint entropy of the random
variables
predV

1 , pred
V
2 , · · · , predV

n . Then -

H(predV
1 , pred

V
2 , · · · , predV

n ) =
∑

i

HV
i

Proof. This is a consequence of the independence of the Di’s. We will prove this by
induction over the number of variables the joint entropy includes. For the base case,
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H(predV
1 ) = HV

1 by definition. Assume inductively thatH(predV
1 , pred

V
2 , · · · , predV

k )

=
∑k

i=1H(predV
i ). By the chain rule for conditional entropy 5 and independence,

H(predV
1 , pred

V
2 , · · · , predV

k+1)

= H(predV
1 , pred

V
2 , · · · , predV

k |predV
k+1) +H(predV

k+1) =
k+1∑

i=1

HV
i

It suffices to prove the following lemma.

Lemma 5.1.6.

H(predV
1 , pred

V
2 , · · · , predV

n ) = O(n+H(D<))

Proof. Let there be a string representation s(π) for all permutations π. Let π(I)
denote the permutation induced by the input I. By information theory, there exists
a string encoding s such that ED[|s(π(I))|] = O(H(D<)). Given s(π(I)), we can
uniquely identify the permutation induced by π(I). If we know π(I), we can in
linear time merge I with V to get a sorted list. Then, in linear time, we can output
predV

1 , pred
V
2 , · · · , predV

n . Therefore, the output predV
1 , pred

V
2 , · · · , predV

n can be
uniquely identified by s(π(I)) and 2cn more bits. Again, by information theory,
E[|s(π(I)) + 2cn] ≥ H(predV

1 , pred
V
2 , · · · , predV

n ).

This completes the proof for the optimality of the time taken by the sorter. We
now show that the storage can be reduced to O(n1+ε), for any ε > 0. The main
idea is to prune each of the Di trees to depth ε log n. This ensures that each of
these trees has size O(nε) and the total storage used is O(n1+ε). We also construct
a completely balanced binary tree T for searching in the V -list. Now, when we wish
to search for xi in the V -list, we first search using the pruned Di-tree. At the end,
if we reach a leaf of the unpruned Di-tree, we stop since we have found the right
interval of the V -list which contains xi. On the other hand, if the search in the
Di-tree was unsuccessful, then we use T for searching.

In the first case, the time taken for searching is simply the same that it would
have taken with unpruned Di-trees. In the second case, the time taken is O((1 +
ε) log n). But note that the time taken with unpruned Di-trees is > ε log n (since
the search on the pruned Di-tree failed, we must have reached some internal node
of the unpruned tree). Therefore, the extra time taken is only a O(ε−1) factor of
the original time. As a result, the space can be reduced to O(n1+ε) with only a
constant factor increase in running time (for any fixed ε > 0).

We can show that the storage cannot be reduced to linear. In fact, the tradeoff
between the O(n1+ε) storage bound and an expected running time off the optimal
by a factor of O(1/ε) is optimal.

5Given two random variables X and Y over supports X and Y, the conditional entropy
H(Y |X) =

∑
x∈X

Pr(X = x)H(Y |X = x). The chain rule tells us that H(Y, X) = H(Y |X)+H(X)
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Lemma 5.1.7. For any c large enough and any h ≤ 3
c n logn, there is a distribution

D =
∏

iDi of entropy h such that any comparison-based algorithm that can sort a
random permutation from D in expected time c(h + n) requires a data structure of
bit size Ω(2h/nn logn).

Proof. The proof is a specialization of the argument used for proving Lemma 5.1.2.
Let κ = 2⌊h/n⌋. We define Di by choosing κ distinct integers in [1, n] and making
them equally likely to be picked as xi. This leads to

(
n
κ

)n
> (n/κ)κn choices of

distinct distributions D. Suppose that there is a data structure of size s that can
accommodate any such distribution with an expected running time of at most c(h+
n). Then one such data structure S must be able to accommodate this running
time for a set G of at least (n/κ)κn2−s distributions D. Any input instance that is
sorted in at most 2c(h+n) time by this data structure is called easy: the set of easy
instances is denoted by E .

Each Di is characterized by a vector vi = (ai,1, . . . , ai,κ), so that D itself is
specified by v = (v1, . . . , vn) ∈ Rnκ. (From now on, we view v both as a vector
and a distribution of input instances.) Define the j-th projection of v as vj =
(a1,j , . . . , an,j). Even if v ∈ G, it could well be that none of the projections of
v are easy. However, if we consider the projections obtained by permuting the
coordinates of each vector vi = (ai,1, . . . , ai,κ) in all possible ways we enumerate
each input instance from v the same number of times. Note that applying these
permutations gives us different vectors which also represent D. Since the expected
time to sort an input chosen from D ∈ G is at most c(h+n), by Markov’s inequality,
there exists a choice of permutations (one for each 1 ≤ i ≤ n) for which at least half
of the projections of the vector obtained by applying these permutations are easy.

Let us count how many distributions have a vector representation with a choice
of permutations placing half its projections in E . There are fewer than |E|κ/2 choices
of such instances and, for any such choice, each v′i = (ai,1, . . . , ai,κ) has half its entries
already specified, so the remaining choices are fewer than nκn/2. This gives an upper
bound of nκn/2|E|κ/2 on the number of such distributions. This number cannot be
smaller than |G| ≥ (n/κ)κn2−s; therefore

|E| ≥ nnκ−2n2−2s/κ. (5.1)

In a comparison-based decision tree model, each input instance is associated with
the leaf of a binary decision tree of depth at most 2c(h + n), ie, with one with at
most 22c(h+n) leaves. This would give us a lower bound on s if each instance was
assigned a distinct leaf. But this may not be the case. However, we have a collision
bound, saying that at most 4n instances can be mapped to the same leaf. This
implies that |E|4−n ≤ 22c(h+n); and by (5.1), s = Ω(κn log n); hence the lemma.

To prove the collision bound, we use the tie-breaking rule mentioned earlier:
xi 7→ nxi + i−1. It is clear that two instances mapping to two distinct permutations
must lead to two different leaves of the decision tree. So the only question left
is to bound the number of instances mapping to a given permutation. Let x =
(x1, . . . , xn) be an input instance (no tie-breaking). Represent the ground set of this
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instance as an n-bit vector α (αi = 1 if some xj = i, else αi = 0). Let x be sorted
to give the vector y = (y1, . . . , yn). For i = 2, . . . , n, let βi = 1 if yi = yi−1, else
βi = 0. Given the vectors α, β and the induced permutation, the input instance x
can be recovered. This proves the collision bound.

5.1.2 Learn & Sort

The V -list is built in the first O(logn) rounds. The Di-trees will be built after
O(nε log n) additional rounds, which will complete the training phase. During that
phase, sorting is handled via, say, mergesort to guarantee O(n logn) complexity. The
training part per se consists of learning basic information about HV

i for each i. For
notational simplicity, fix i and let pk = ProbDi [ vk ≤ y < vk+1 ]. Let M = cnε log n,
for a large enough constant c. For any k, let χk be the number of times, over the
first M rounds, that vk is found to be the V -list predecessor of some xi. (We use
standard binary search to compute predecessors in the training phase.) Finally,
define the Di-tree to be a weighted binary search tree defined over all the vk’s such
that χk > Mn−ε. Recall that the defining property of such a tree is that the node
associated with a key of weight χk is at depth O(logχ/χk), where χ =

∑
χk. We

apply this procedure for each i = 1, . . . , n.
This Di-tree is essentially the pruned version of the one mentioned earlier. Like

before, its size is O(M/(Mn−ε) = O(nε). The way we use it is similar to what we
described, with a few minor differences. For completeness, we go over it again: given
xi, we perform a binary search down the Di-tree, stopping as soon as we encounter
a node whose associated key vk is such that xi ∈ [vk, vk+1), in which case we have
the predecessor of xi in the V -list and we are done. If we reach the bottom of the
Di-tree without success, we simply perform a standard binary search in the V -list.

Lemma 5.1.8. Fix i. With probability at least 1−1/n2, for any k, pk > n−ε implies
that Mpk/2 < χk < 3Mpk/2.

Proof. The expected value of χk is Mpk. If pk = Ω(n−ε) then, by Chernoff’s
bound [11] (pages 267–268), the count χk deviates from its expectation by more
than a = Mpk/2 with probability less than

e−a2/(2pkM)+a3/(2p2
kM2) + e−a2/(2pkM) < n−b,

for some constant b growing linearly with c. A union bound (over all k) completes
the proof.

Suppose the condition of the lemma holds for each k (and fixed i). We show
now that the expected search time is O(ε−1HV

i + 1). Consider each element in the
sum HV

i =
∑

k pk log p−1
k .

• pk > n−ε: if vk is in the Di-tree, then the cost of the search is O(logχ/χk),
so its contribution to the expected running time is O(pk logχ/χk). By the
lemma, this is also O(pk(1 + log p−1

k )), as desired. If vk is not in the Di-tree,
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then the search is unsuccessful and costs O(logn) time: its contribution to the
expected running time is O(pk log n). Not being in the tree, however, means
that χk ≤Mn−ε; hence pk < 2n−ε and the contribution is O(ε−1pk log p−1

k ).

• pk ≤ n−ε: the search time is always O(logn) time; hence the contribution to
the expected running time is O(ε−1pk log p−1

k ).

By summing up over all k, we find that the expected search time isO(ε−1HV
i +1).

This assumes the conditions of the lemma. But these are satisfied for all i with
probability at least 1 − 1/n. This leaves a probability 1/n that the training fails
and we are stuck with Θ(n logn) sorting—note that we do not try to detect failure.
But this adds only an additive sublinear term to the expected complexity and is
therefore negligible.

5.2 Delaunay Triangulations

Let I := (x1, · · · , xn) denote an input instance, where each xi is a point in the
plane, generated by a point distribution Di. The distributions Di are arbitrary, and
may be continuous, although we never explicitly use such a condition. Each xi is
independent of the others, and so the input I is drawn from the product distribution
D :=

∏
iDi. In each round, a new input I is drawn from D, and we wish to compute

the Delaunay triangulation of I. We are in the comparison model, so any operation
consists of evaluating a polynomial at some point (more details about this are given
in Section 5.3). Although it is not critical, for the sake of simplicity, we will assume
that the points of I are in general position, which is true with probability one when
all the Di’s are continuous. Also we will assume that there is a bounding box such
that all points always lie inside this box.

The distribution D also induces a (discrete) distribution on the set of Delaunay
triangulations, viewed as labelled graphs on the vertex set [1, n]. Consider the
entropy of this distribution: for each graph G on [1, n], let pG be the probability
that it represents the Delaunay triangulation of I ∈R D. Abusing notation, let the
output entropy H(T (I)) := −∑

G pG log pG. By information-theoretic arguments,
this quantity is a lower bound on the expected time required by any comparison-
based algorithm to compute the Delaunay triangulation of I ∈R D. An optimal
algorithm will be one that has an expected running time of O(H(T (I)) + n).

Our main result is the following.

Theorem 5.2.1. For inputs I1, I2, . . . drawn from the product distribution D =∏
iDi, and for any constant ε > 0, there is a self-improving algorithm for finding

the Delaunay triangulations of the Ij that has a learning phase of O(nε) rounds
and uses O(n1+ε) space 6. The limiting running time is O(ε−1(H(T (I)) + n)), and
therefore optimal.

6The total time required for the learning phase is also O(n1+ε).
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From the linear time reduction of sorting to Delaunay triangulations, the lower
bounds for sorting carry over to Delaunay triangulations. As an immediate corollary
of Lemma 5.1.2, we get -

Corollary 5.2.2. There exists an input distribution D such that any self-improving
algorithm computing the Delaunay triangulation of inputs from D in O(H(D) + n)
limiting running time requires Ω(2n) space.

Furthermore, by Lemma 5.1.7, the time-space tradeoff we provide is essentially
optimal.

5.2.1 The algorithm

We describe the algorithm in two parts. The first part explains the learning phase
and the data structures that are constructed. Then, we explain the how these data
structures are used to speed up the computation in the limiting phase. As before,
the expected running time will be expressed in terms of certain parameters of the
data structures obtained in the learning phase. In the next section, we will prove
that these parameters are comparable to the output entropy H(D). We assume
in this section that the distributions Di are known to us. Furthermore, the data
structures described here will use O(n2) space. Section 5.4 repeats the arguments
of Section 5.1.2 to give the space-time tradeoff bounds of Theorem 5.2.1.

Learning Phase

For each round in the learning phase, we use a standard algorithm to compute the
output Delaunay triangulation. We also perform some extra computation to build
some data structures that will allow speedup in the limiting phase.

The learning phase is as follows. Take the first λ := c log n input lists I1, I2, · · · , Ik,
where c is a sufficiently large constant. Merge them into one list S of λn = cn logn
points. Setting ε := 1/n, find an ε-net V for the set of all open disks. In other
words, find a set V ⊆ S such that for any open disk C that contains more than
εkn = c logn points of S, C contains at least one point of V . Matousek, et al. show
that [60] there exist ε-nets of size O(1/ε) for disks , which here is O(n). Further-
more, a construction and analysis similar to that of Clarkson and Varadarajan [30]
yields a randomized construction (with polynomially small error probability) that
takes n(log n)O(1) time.

We construct the Delaunay triangulation of V , which we denote by T (V ). This
is the equivalent of the V -list for the self-improving sorter. We build an optimal
planar point location structure (called Γ) for T (V ): given a point, we can find in
O(logn) time the triangle of T (V ) that it lies in. Define the random variable ti to
be the triangle of T (V ) that xi falls into 7. Now let the entropy of ti be HV

i . If
the probability that xi falls in triangle t of T (V ) is pt

i, then HV
i = −∑

t p
t
i log pt

i.
For each i, we construct a search structure Γi of size O(n) that finds ti in expected

7Assume that we add the vertices of the bounding box to V . This will ensure that xi will always
fall in some triangle ti.
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O(HV
i ) time. These Γi’s can be constructed using the results of Arya et al. [19], for

which the number of primitive comparisons is HV
i + o(HV

i )). These correspond to
the Di-trees used for sorting.

We will show that the triangles of T (V ) do not contain many points of a new
input I ∈R D on the average. Consider a triangle t of T (V ) and let Ct be its
circumscribed disk; this is a Delaunay disk of V . Let Xt := |I ∩ Ct|, the random
variable that is the number of points of I ∈R D that fall inside Ct. Note that the
randomness comes from the random distribution of S, and so V and T (V ), as well
as the randomness of I. We are interested in the expectation E[Xt] over I of Xt.
All expectations are taken over a random input I chosen from D.

Claim 5.2.3. With probability at least 1 − n−3 over the construction of T (V ), for
every triangle t of T (V ), E[Xt] = O(1).

Proof. This is similar to the argument given in Lemma 5.1.3 with a geometric twist.
Let the list of points S be s1, · · · , skn, the concatenation of I1 through Ik. Consider
the triangle t with vertices s1, s2, s3. Note that all the remaining kn − 3 points
are chosen independently of these three, from some distribution Dj . For each j ∈
[4, kn], let Y

(t)
j be the indicator variable for the event that sj is inside Ct. Let

Y (t) =
∑

j Y
(t)
j . By the Chernoff bound, for any β ∈ (0, 1],

Pr[Y (t) ≤ (1− β)E[Y (t)]] ≤ e−β2
E[Y (t)]/2

Setting β = 1/2, if E[Y (t)] > 48 log n, then Y (t) > 24 log n with probability at
least 1− n−6. We can now consider any triangle generated by some triple of points
si, sj , sm, for i, j,m ∈ [4, λn], and apply the same argument as above. Taking a
union bound over all triples of the points in S, we obtain that with probability at
least 1 − n−3, for any triangle t generated by the points of S, if E[Y (t)] > 48 log n,
then Y (t) > 24 log n. We henceforth assume that this event happens.

Consider a triangle t of T (V ) and its circumcircle Ct. Since T (V ) is Delaunay, Ct

contains no point of V in its interior. Since V is a (1/n)-net for all disks with respect
to S, Ct contains at most c logn points of S, that is, Y (t) ≤ c logn. This implies that
E[Y (t)] = O(logn), as in the previous paragraph. Since E[Y (t)] > (log n− 3)E[Xt],
we obtain E[Xt] = O(1), as claimed.

5.2.2 Limiting Phase

We assume that we are done with learning phase, and have T (V ) with the property
given in Claim 5.2.3: for every triangle t ∈ T (V ), E[Xt] = O(1). We have reached
the limiting phase where the algorithm is expected to compute the Delaunay trian-
gulation with the optimal running time. We will prove the following lemma in this
section.

Lemma 5.2.4. Using the data structures from the learning phase, and the properties
of them that hold with probability 1 − O(1/n), in the limiting phase the Delaunay
triangulation of input I can be generated in expected O(n+

∑n
i=1H

V
i ) time.
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The algorithm, and the proof of this lemma, has two steps. In the first step,
T (V ) is used to quickly compute T (V ∪ I), with the time bounds of the lemma.
In the second step, T (I) is computed from T (V ∪ I), using a randomized splitting
algorithm proposed by Chazelle et al [27], whose Theorem 3 is as follows.

Theorem 5.2.5. Given a set of n points P and its Delaunay triangulation, for any
partition of P into two disjoint subsets P1 and P2, the Delaunay triangulations T (P1)
and T (P2) can be computed in O(n) expected time, using a randomized algorithm.

The remainder of the proof of the lemma, and of this subsection, is devoted to
showing that T (V ∪ I) can be computed in the time bound of the lemma. The algo-
rithm is as follows. For each xi, we use Γi to find the triangle ti of T (V ) that contains
it. By the arguments given in the previous section, this takes time O(

∑n
i=1H

V
i ).

We now need to argue that given the ti’s, the Delaunay triangulation T (I) can be
computed in expected linear time. For each xi, we walk through T (V ) and find
all the Delaunay disks of T (V ) that contain xi, as in incremental constructions of
Delaunay triangulations. This is done by breadth-first search of the dual graph of
T (V ), starting from ti. Let Si denote the set of circumcircles containing xi. The
following standard claim implies that this procedure will work.

Claim 5.2.6. The set of t ∈ T (V ) with Ct ∈ Si is a connected set in the dual graph
of T (V ).

Proof. Consider some triangle t with Ct ∈ Si. We will show that t is connected to
ti by a path in the dual graph of T (V ). Consider the edge e such that xi is in the
sector bounded by Ct and e. Let t′ be the neighbor of t adjacent to e. Note that
since Ct is a Delaunay triangle, t′ ∈ Si. If t′ is ti, we are done. If not, then consider
the edge e′ such that xi is in the sector bounded by Ct′ and e′. Refer to Figure 5.1.
The edge e′ is closer to xi than e. We now consider the neighbor of t′ adjacent to e′

and continue in this manner. Eventually, we must reach ti by a connected path in
the dual graph of T (V ).

Claim 5.2.7. Given all ti’s, all Si sets can be found in expected linear time.

Proof. To find all circles contains xi, do a breadth-first search from ti. For any
triangle t encountered, check if Ct contains xi. If it does not, then we do not look
at the neighbours of t. By Claim 5.2.6, we will visit all Ct’s that contain xi. The
time taken to find Si is O(|Si|). The total time taken to find all St’s (once all the
ti’s are found) is O(

∑n
i=1 |Si|). Define the indicator function χ(t, i) that takes value

1 if xi ∈ t and zero otherwise. We have

n∑

i=1

|Si| =
n∑

i=1

∑

t∈T (V )

χ(t, i) =
∑

t∈T (V )

n∑

i=1

χ(t, i) =
∑

t

Xt.

Therefore, by Claim 5.2.3,

E[
n∑

i=1

|Si|] = E[
∑

t

Xt] =
∑

t

E[Xt] = O(n).
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This implies that all Si’s can be found in expected linear time.

Our aim is to build the Delaunay triangulation of V ∪ I in linear time using
the Si sets. This is done by a standard incremental construction where the xi’s are
added in order x1, x2, · · · , xn. We will show how we can get the set of edges that
each xi will “kill” using the Si sets. We will assume that given any triangle t, we
can get all the Si sets that t belongs to.

Let Vi := V ∪ {x1, · · · , xi}. When we add x1, the edges of T (V ) that will be
affected are the edges of triangles in S1. Therefore, T (V1) can be obtained in O(|S1|)
time. Now suppose we have T (Vi−1) and we add xi. Again, we can show that if
some edge from T (V ) is affected, it must be an edge of a triangle of Si.

Claim 5.2.8. When xi is added to T (Vi−1), suppose that edge e is removed. Then
if the endpoints of e are both in V , then e is an edge of some triangle in Si.

The claim above, which we shall prove shortly, shows that only O(|Si|) time is
required to find edges from T (V ) that are removed. But now, we have the additional
problem of finding affected edges which may not have an endpoint in V , and therefore
are not present in T (V ).

Claim 5.2.9. Suppose e is killed by xi and has an endpoint in I. There is an edge
f ∈ T (V ) such that, for the two triangles t, t′ incident on f , the point xi and the
endpoints of e lie in either Ct or Ct′.

Again, we defer this proof to the end of the section. This now gives us a method
of finding edges of T (Vi−1) affected by the addition of xi. Take a triangle t ∈ Si and
choose an edge e of t (for ease of notation, we will say e ∈ t). Let the neighbour of
t incident to e be t′. Look at the points in {x1, · · · , xi−1} that are in Ct and Ct′ ,
and take the edges of T (Vi−1) between them. These are the edges that need to be
checked.

Claim 5.2.10. Given all Si sets and T (V ), T (Vn) can be generated in expected
linear time.

Proof. The total time taken to handle all edges of T (V ) that get killed is E[
∑n

i=1 |Si|] =
O(n). Consider some t ∈ T (V ) and edge e of t. Let te ∈ T (V ) be incident to e. The
random variable Zt,e is set to be XtXte . By Claim 5.2.9, the total time to find all
(other) affected edges is bounded above by

n∑

i=1

∑

t∈Si

∑

e∈t

Zt,e

For a triangle t, we define the indicator random variable χ(t, i), as before, for the
event that xi falls in Ct. Thus, Xt =

∑n
i=1 χ(t, i).

n∑

i=1

∑

t∈Si

∑

e∈t

Zt,e =

n∑

i=1

∑

t

χ(t, i)
∑

e∈t

XtXte

=
n∑

i=1

∑

t

∑

e∈t

χ(t, i)XtXte
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E[χ(t, i)XtXte ] = E
[
χ(t, i)

n∑

j=1

χ(t, j)
n∑

k=1

χ(te, k)
]

=
n∑

j=1

E[χ(t, i)χ(t, j)χ(te, j)] +
∑

j 6=k

E[χ(t, i)χ(t, j)χ(te, k)]

Since χ(t, i) is an indicator, χ(t, j)χ(te, j) ≤ χ(t, j). For j 6= k, χ(t, j) and χ(te, k)
are independent. For the second summation in the equation above, we can separate
out the case i = j and i = k.

E[χ(t, i)XtXte ] =

n∑

j=1

E[χ(t, i)χ(t, j)χ(te, j)] +
∑

k 6=i

E[χ(t, i)2χ(te, k)]

+
∑

j 6=i

E[χ(t, i)χ(te, i)χ(t, j)] +
∑

j 6=k 6=i

E[χ(t, i)χ(t, j)χ(te, k)]

≤
n∑

j=1

E[χ(t, i)χ(t, j)] + E[χ(t, i)]
∑

k 6=i

E[χ(te, k)]

+
∑

j 6=i

E[χ(t, i)]E[χ(t, j)] +
∑

j 6=k 6=i

E[χ(t, i)]E[χ(t, j)]E[χ(te, k)]

In the first sum, we remove the term where j = i. In the last two terms, we remove
the term dependent on i from the summation.

E[χ(t, i)XtXte ] = E[χ(t, i)] + E[χ(t, i)]
∑

j 6=i

E[χ(t, j)]

+E[χ(t, i)]
∑

k 6=i

E[χ(te, k)] + E[χ(t, i)]
∑

j 6=i

E[χ(t, j)]

+E[χ(t, i)]
∑

j 6=k 6=i

E[χ(t, j)]E[χ(te, k)]

Finally, we upper bound the summations by adding back the terms dependent on i
and then getting terms like E[Xt] which we have bounds for.

E[χ(t, i)XtXte ] ≤ E[χ(t, i)] + 2E[χ(t, i)]
n∑

j=1

E[χ(t, j)] + E[χ(t, i)]
n∑

k=1

E[χ(te, k)]

+E[χ(t, i)]
( n∑

j=1

E[χ(t, j)]
)( n∑

k=1

E[χ(te, k)]
)

= E[χ(t, i)]
(
1 + 2E[Xt] + E[Xte ] + E[Xt]E[Xte ]

)

By Claim 5.2.3, we get that E[χ(t, i)XtXte ] ≤ αE[χ(t, i)], for some fixed constant
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α. The expected running time is bounded by

E
[ n∑

i=1

∑

t∈Si

∑

e∈t

Zt,e

]
=

n∑

i=1

∑

t

∑

e∈t

E[χ(t, i)XtXte ]

≤ α
n∑

i=1

∑

t

∑

e∈t

E[χ(t, i)]

= 3α

n∑

i=1

E
[∑

t

χ(t, i)
]

= 3α
n∑

i=1

E[|Si|] = O(n)

With this claim, it follows that T (Vn) can be computed in expected O(n +∑n
i=1H

V
i ) time, and hence, as discussed at the beginning of this subsection, Lemma

5.2.4 follows. Using the same ideas, we prove another claim which will be useful in
later proofs.

Claim 5.2.11. For all j ≤ i, the expected degree of xj in T (Vi) is O(E[|Sj |]).

Proof. In the incremental construction of T (Vn), the degree of xj never decreases.
Therefore, it suffices to bound the degree of xj in T (Vn). Let us perform the in-
cremental construction such that such that xj is the last vertex to be added. The
edges adjacent to xj involving vertices of V are atmost |Sj |. Let us now bound edges
connecting xj to other vertices of I. This can certainly be bounded (upto a multi-
plicative constant factor) by the number of edges that xj kills. By the arguments
given earlier, this is - ∑

t∈Sj

∑

e∈t

Zt,e′ = O(|Sj |)

We end by giving proofs for Claims 5.2.8 and 5.2.9.

Proof. (Claim 5.2.8) The edge e must be an edge in T (V ). Also, e is an edge of
triangle t in T (Vi−1) and is not a boundary edge. Refer to Figure 5.1. The point
xi is in the sector bounded by Ct and e. Since e ∈ T (V ), there must be a point
y ∈ V such that e and y form a triangle t′ of T (V ) and xi and y are on the same
side of e. The point y cannot be inside Ct, since t is a Delaunay triangle of T (Vi−1).
Therefore, the angle subtended by y at e is smaller than that of xi. The circle Ct′

must contain xi and t′ ∈ Si.

Proof. (Claim 5.2.9) Suppose some edge e in triangle t ∈ T (Vi−1) is killed by xi. We
will denote the vertices of t by u1, u2, and u3. The point xi is inside Ct. Consider
the set of edges of T (V ) that intersect Ct. We can impose a natural linear ordering
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t

e xi

yt′

e′

Figure 5.1: Proofs of Claims 5.2.6 and 5.2.8

C

Ctf

f ′

Figure 5.2: Proof of Claim 5.2.9

on these edges. If none of these edges separate the set points U = {u1, u2, u3, xi},
then they all lie in a triangle t of T (V ) and we are done.

Consider the last edge (in the order from left to right) f that separates U into
Uℓ and Ur. Refer to Figure 5.2. The next edge after f to the right (in the ordering)
that intersects Ct does not separate U . Let the two triangles of T (V ) that share f
as an edge be tℓ, tr (the left and right triangles). The triangle tr contains Ur. Let C
be the circle tangential to Ct at the left of f and having f as a chord. (Note that if
f is actually an edge of t, then Ct and C are just the same, and we will end up with
Claim 5.2.8.) If the vertex of tℓ not on f lies outside C, then Ctℓ will contain all of
Ct which lies to the left of f . This implies that Ctℓ contains Uℓ. The situation is
as follows: triangles tℓ and tr in T (V ) share edge f . Edge f divides U into Uℓ and
Ur and they are contained in Ctℓ and Ctr , respectively, proving the claim (for this
case).

Suppose the third vertex of tℓ is inside C. The triangle tℓ is shown by the
dashed triangle in Figure 5.2 to the left of f . Let the angle to f be θℓ. Let the
angle subtended by any point in the right part of Ct be θr. Note that θℓ + θr > π.
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Therefore, the circle Ctℓ will contain the right part of Ct (and, as a result, Ur).
The edge f ′ is in T (V ) and intersects Ct. Also, f ′ is larger than f in the ordering

of edges. If f ′ does not separate U , then Ctℓ must contain Uℓ and we are done. If
not, then suppose f ′ divides U into U ′

ℓ and U ′
r. The triangle tℓ is actually to the

right of f ′ and Ctℓ contains U ′
r. This leaves us in a situation analagous to f : the

circumcircle of triangle to the right of f ′ contains all points in U to the right of f ′.
Therefore, we can apply the same argument as above: either we will stop, getting
our desired triangles, or we will move to the edge to the right of f ′.

5.3 Running time analysis

In this section, we prove the running time bound in Lemma 5.2.4 is indeed optimal.
Before we get into the analysis of the various entropies that represent the running
time, it is important to clarify the model of computation. We are using comparison
based algorithms, where a single step (or “comparison”) involves evaluating a point
(z1, z2, · · · , zd) ∈ R

d (for constant d) at some polynomial f(z1, z2, · · · , zd) : R
d → R

and checking if the result is positive or negative. Based on this result, the algorithm
chooses the next comparison to make. An algorithm can be completely represented
by a decision tree, with each node representing some comparison. In this model, we
get an information-theoretic lower bound of H(T (I)) for computing the Delaunay
triangulation of input I ∈R D.

Recall that by Lemma 5.2.4, the running time of the our algorithm is expected
O(n+

∑
iH

V
i ). The aim of this section is to prove the optimality of the algorithm

by the following theorem.

Theorem 5.3.1. For HV
i , the entropy of the triangle ti of T (V ) containing xi, and

H(T (I)), the entropy of the Delaunay triangulation of I, considered as a labelled
graph, ∑

i

HV
i = O(H(T (I)) + n).

This theorem will be proven through a chain of lemmas, which will eventually
connect

∑n
i=1H

V
i to H(T (I)). Note that V is a fixed set and there is no randomness

in T (V ). As a result, for the sake of information theory bounds, we can assume that
T (V ) is known in advance: indeed, any computation whatsoever can be done in
advance on the points in V and is not charged as a comparison.

The chain of lemmas begins withH(T (Vn)), which is bounded above byO(H(T (I)+
n) in the lemma below. The entropy H(T (Vn)) is used to bound

∑
i E[Hi] in the

next lemma, where Hi is the entropy of wi, the triangle of T (Vi−1) that contains
xi. After some preliminary lemmas, the final lemma in the chain uses

∑
i E[Hi] to

bound
∑

iH
V
i , as needed for the theorem.

By analogy toH(T (I)), letH(T (Vn)) be the entropy of T (Vn) as a labelled graph,
under the distribution induced by that of I. (Recall that Vn := V ∪ I.) The entropy
H(T (Vn)) is a lower bound for the expected running time of any comparison-based
algorithm that computes T (Vn).
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The first lemma in the chain is the following.

Lemma 5.3.2.
H(T (Vn)) = O(H(T (I)) + n).

Proof. Using Chazelle’s linear-time algorithm to compute the intersection of two
three-dimensional convex polyhedra [26], we can compute T (Vn) in O(n) time, given
T (V ) and T (I). Suppose we represent every graph induced by a Delaunay trian-
gulation on n points by some string, denoted by s(T ). By information theory,
there exists some string encoding such that E[|s(T (I))|] = O(H(T (I))). Suppose,
for input I, we are given the string s(T (I)), so we can uniquely identify T (I).
Now, we use the linear-time algorithm to compute T (Vn). Obviously, this algo-
rithm only perform O(n) comparisons. Therefore, the output T (V ∪ I) can be
uniquely identified by s(T (I)) and cn more bits, for some constant c. We have
E[|s(T (I))|+ cn] ≥ H(T (Vn)). This completes the proof.

Let us consider an incremental construction of T (Vn). At the ith step, xi is
added to T (Vi−1). We can consider a random process associated with this step. The
points x1, · · · , xi−1 are already fixed, thereby fixing T (Vi−1). We can consider the
entropy of the random variable wi that is the triangle of T (Vi−1) in which xi falls.
More precisely, we define

H
T (Vi−1)
i := H(wi) = −

∑

t∈T (Vi−1)

p(t, i) log p(t, i)

where p(t, i) is the probability that xi lies in t. Note that this entropy itself is a
random variable, since T (Vi−1) depends on x1, · · · , xi−1 which are randomly cho-
sen. But wi is independent of this randomness (since the distributions Di’s are
all independent). Therefore, we can take the expectation over the random choices

{x1, · · · , xi−1} Ex1,··· ,xi−1 [H
T (Vi−1)
i ]. Again, let us explain what this means. Given

any set of points x1, · · · , xi−1, we can define the entropy H
T (Vi−1)
i . Now, because

the randomness of wi only depends on the randomness of xi, wi is independent of

x1, · · · , xi−1. Obviously, H
T (Vi−1)
i is a function of x1, · · · , xi−1. We take the expec-

tation over the random choices of x1, · · · , xi−1 to get E[H
T (Vi−1)
i ]. For clarity, we

drop the subscripts and denote this by E[Hi].
In the next lemma, we relate the entropy of this incremental procedure of con-

structing T (Vn) to the actual entropy of the T (Vn).

Lemma 5.3.3. ∑

i

E[Hi] = O(H(T (Vn)) + n)

To prove this, we use Claim 5.2.11 (restated for convenience) and a lemma about
joint entropies.

Claim 5.3.4. For all j ≤ i, the expected degree of xj in T (Vi) is O(E[|Sj |]).
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Lemma 5.3.5.

H(w1, · · · , wn) ≥
n∑

i=1

E[Hi]

Here the H(w1, · · · , wn) is the joint entropy of all w1, · · · , wn, and a lower bound
on the expected length of any string representation of w1, · · · , wn.

Proof. We will prove by induction on k that H(w1, · · · , wk) ≥
∑k

i=1 E[Hi]. Recall
that wk is the triangle of T (Vk−1) that contains xk. As in Claim 5.1.5, this is a con-
sequence of the independence of the xi’s. The reason why we cannot immediately
use independence is that the domain random variable wi does depend on the choices
of x1, · · · , xk−1, because wk is a triangle of T (Vk−1). In some sense, we are just stat-
ing a well known fact about conditional entropies, but this small technical problem
forces us to reprove it for our setting. We proceed with a proof by induction.

base case: For k = 1, H(w1) = H1 (note that H1 is not a random variable).
induction step: Assume the claim is true up to k − 1. For any triangle t (which

is specified by a triple of vertex labels), let p(i, t) be the probability that xi falls in
t. Suppose that x1, · · · , xk−1 are fixed. We have

Hk = −
∑

t∈T (Vk−1)

p(t, k) log p(t, k).

Let γ(t, k − 1) be the indicator variable of the event that T (Vk−1) has triangle t.
This is a random variable, depending on x1, · · · , xk−1. Removing the assumption
that x1, · · · , xk−1 are fixed, we take the expectation of Hk:

E[Hk] = −E[
∑

t

γ(t, k − 1)p(t, k) log p(t, k)]

= −
∑

t

E[γ(t, k − 1)]p(t, k) log p(t, k)

Consider some sequence of triangles ∆k = 〈t1, · · · , tk〉. For i ≤ k, let Ei(∆i) denote
the event that w1 = t1, w2 = t2, · · · , wi = ti.

Pr[Ek(∆k)] = Pr[Ek−1(∆k−1)]×Pr[wk = tk
∣∣Ek−1(∆k−1)]

= Pr[Ek−1(∆k−1)]× p(tk, k)Pr[γ(k − 1, tk) = 1
∣∣Ek−1(∆k−1)]

This is a consequence of the independence of xk from x1, · · · , xk−1. As a result,
the probability p(tk, k) is not affected by the values of w1, · · · , wk−1. Note also
that Pr[wk = tk

∣∣Ek−1(∆k)] = Pr[wk = tk
∣∣Ek−1(∆k−1)]. Taking the convention that
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0 log 0 = 0, we express the entropy H(w1, · · · , wk) as a sum.

H(w1, · · · , wk)

= −
∑

∆k

Pr[Ek(∆k)] log Pr[Ek(∆k)]

= −
∑

∆k

Pr[Ek(∆k)] log(Pr[Ek−1(∆k−1)]× p(tk, k)Pr[γ(k − 1, tk) = 1
∣∣Ek−1(∆k−1)])

= −
∑

∆k

Pr[Ek(∆k)]
(
log(Pr[Ek−1(∆k−1)])

+ log p(tk, k) + log(Pr[γ(tk, k − 1) = 1
∣∣Ek−1(∆k−1)])

)

We now open the parentheses and consider each sum separately.

−
∑

∆k

Pr[Ek(∆k)] log(Pr[Ek−1(∆k−1)])

= −
∑

∆k

log(Pr[Ek−1(∆k−1)])Pr[Ek−1(∆k−1)]×Pr[wk = tk
∣∣Ek−1(∆k−1)]

= −
∑

∆k−1,tk

log(Pr[Ek−1(∆k−1)])Pr[Ek−1(∆k−1)]×Pr[wk = tk
∣∣Ek−1(∆k−1)]

= −
∑

∆k−1

Pr[Ek−1(∆k−1)] log(Pr[Ek−1(∆k−1)])
∑

tk

Pr[wk = tk
∣∣Ek−1(∆k−1)]

= −
∑

∆k−1

Pr[Ek−1(∆k−1)] log(Pr[Ek−1(∆k−1)])× 1

= H(w1, · · · , wk−1).

Now consider the next sum in a similar manner:

−
∑

∆k

log p(tk, k)Pr[Ek−1(∆k−1)]× p(tk, k)Pr[γ(tk, k − 1) = 1
∣∣Ek−1(∆k−1)]

= −
∑

tk

p(tk, k) log p(tk, k)
∑

∆k−1

Pr[Ek−1(∆k−1)] Pr[γ(tk, k − 1) = 1
∣∣Ek−1(∆k−1)]

= −
∑

tk

p(tk, k) log p(tk, k)
∑

∆k−1

Pr[γ(tk, k − 1) = 1]

= −
∑

tk

E[γ(tk, k − 1)]p(tk, k) log p(tk, k) = E[Hk]

The third sum is always non-negative 8. This implies that

H(w1, · · · , wk) ≥ H(w1, · · · , wk−1) + E[Hk] ≥
k∑

i=1

E[Hi].

8Indeed, we can show that this term is always zero, thereby proving equality.
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Proof. (of Lemma 5.3.3) Before giving the details of the proof, let us first sketch
out the main idea. Suppose all the random choices x1, · · · , xn have been made. We
would like to argue that if we know T (Vn), then in linear time we can determine the
wi’s for all i. This will be done by a procedure that goes backwards: it first removes
xn, and then computes the Delaunay triangulation T (Vn−1). This can be done in
time linear in the degree of xn [4]. The triangle wn can be determined in time linear
in the degree of xn. Now, we remove xn−1 and so on, thereby finding all wi’s. It
seems that by a standard backwards analysis argument, we should remove the xi’s
in random order. By a planarity argument, we should get that the expected degree
(over the random order) is constant at every step. But because we remove only the
points in I, which is a strict subset of Vn, this argument will not hold.

Using the properties of V and the randomness of I, we can argue that these
degrees will be expected constant. From Claim 5.2.11, it is easy to see that we can
get the wi’s in O(

∑
i E[|Si|]) time. Let us now apply an argument similar to that in

Lemma 5.3.2. Let there be a string representation s(T (Vn)) for each possible T (Vn).
By definition of entropy, we can assume that E[|s(T (Vn))|] = O(H(T (Vn))). Using
the procedure described above, we can uniquely identify w1, · · · , wn by a string of
expected length E[|s(T (Vn))|] +O(E[

∑
i |Si|]) = O(H(T (Vn)) + n).

The proof now follows by Lemma 5.3.5, since H(w1, · · · , wn) is no more than
E[|s(T (Vn))|.

We now come to the final lemma in our chain of entropy inequalities.

Lemma 5.3.6. ∑

i

HV
i = O(

∑

i

E[Hi] + n)

Proof. Consider x1, · · · , xi−1 to be chosen, fixing the triangulation T (Vi−1). The
entropy Hi is now well defined. As before, wi ∈ T (Vi−1) and ti ∈ T (V ) are the
triangles that xi falls into. We will describe a procedure that given wi finds ti using
O(|Si|) comparisons. First, we look at the Delaunay triangulations as 3-dimensional
polytopes. By projecting onto the paraboloid z = x2+y2, each point of the Delaunay
triangulation is represented by a halfspace in 3-dimensions. Every vertex of the
polytope corresponds to a Delaunay triangle (or disk). Abusing notation, T (V )
and T (Vi−1) are going to be the respective polytopes. We start by tetrahedralizing
T (V ). Since T (Vi−1) is completely contained in T (V ), for every vertex of T (Vi−1),
we can determine a tetrahedron of T (V ) that contains it (maybe on the boundary).
Since we are dealing with HV

i and E[Hi], we do not consider comparisons that deal
with vertices other than xi. All of this can be done before we look at point xi and
are therefore not counted. Given wi, we can determine the tetrahedron that it lies
in without any comparisons. Since the triangle wi will certainly be destroyed on
the addition of xi, the vertex corresponding to wi (in the polytope) will be removed
by the addition of the plane xi. Obviously, there is some vertex of the tetrahedron
(that corresponds to wi) would also be removed by the addition of xi to T (V ). In
a constant number of queries, this vertex can be determined. Now, let us go back
to the Delaunay triangulations. This vertex corresponds to some Delaunay disk of
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T (V ) killed by xi. By doing a walk through T (V ), we can find ti in O(|Si|) time.
This implies that

HV
i ≤ Hi +O(|Si|+ 1).

Taking expectations over I and summing,

∑

i

HV
i ≤

∑

i

E[Hi] +O(E[
∑

i

|Si|] + n) ≤
∑

i

E[Hi] +O(n).

As discussed above, Theorem 5.3.1 now follows by combining Lemmas 5.3.2, 5.3.3,
and 5.3.6.

5.4 The time-space tradeoff

We show how to remove the assumption that we have prior knowledge of the Di’s (to
build the search trees Γi) and prove the time-space tradeoff given in Theorem 5.2.1.
These techniques are identical to those used in Section 5.1.2. For the sake of clarity,
we give a detailed explanation for this setting. Let ε > 0 be any constant. The first
O(logn) rounds of the learning phase are used as before to construct the Delaunay
triangulation T (V ). We first build a standard search structure Γ over the triangles
of T (V ). Given a point x, we can find the triangle of T (V ) that contains x in
O(logn) time.

The learning phase goes on for O(nε logn) rounds. The main trick is to observe
that (up to constant factors), the only probabilities that are relevant are those that
are > n−ε. In each round, for each xi, we record the triangle of T (V ) that xi falls
into. At the end of O(nε log n) rounds, we take the set Ri of triangles such that
for t ∈ Ri, xi was in t for at least Ω(log n) rounds. We remind the reader that
p(t, i) is the probability that xi lies in triangle t. For every triangle in Ri, we have
an estimate of the probability p̂(t, i) (obtained by simply taking the total number
of times that xi lay in t, divided by the total number of rounds). By a standard
Chernoff bound argument, for all t ∈ Ri, p̂(t, i) = Θ(p(t, i)). Furthermore, for any
triangle t, if p(t, i) = Ω(n−ε), then t ∈ Ri.

For each xi, we build the approximate search structure Γi. Consider the follow-
ing probability distribution p̄i over the triangles of T (V ): if t ∈ Ri, set p̄(t, i) :=
p̂(t, i)/Ni, where Ni :=

∑
t∈Ri

p̂(t, i), and otherwise p̄(t, i) := 0. Using the construc-
tion of [19], we can build the optimal planar point location structure Γi according
to the distribution p̄i. The limiting phase uses these structures to find ti for every
xi: given xi, we use Γi to search for it. If the search does not terminate in logn
steps or Γi fails to find ti (since ti /∈ Ri), then we use the standard search structure,
Γ, to find ti. Therefore, we are guaranteed to find ti in O(logn) time. Without
loss of generality, we can assume that each Γi deals with only nε triangles (and
therefore, a planar subdivision of size nε). By the bounds given in [19], each Γi can
be constructed with size nε in nε log n time. The total space is bounded by n1+ε

and the time required to build them is at most n1+ε log n.
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Now we just repeat the argument given in Section 5.1.2. Instead of doing it
through words, we write down the expressions (for some variety). Let s(t, i) denote
the time to search for xi given that xi ∈ t. By the properties of Γi, and noting that
Ni ≤ 1,

∑

t∈Ri

p̄(t, i)s(t, i) =
∑

t∈Ri

p̄(t, i) log(1/p̄(t, i))

= N−1
i

∑

t∈Ri

p̂(t, i) log(Ni/p̂(t, i))

= N−1
i

[ ∑

t∈Ri

p̂(t, i) logNi −
∑

t∈Ri

p̂(t, i) log p̂(t, i)
]

≤ −N−1
i

∑

t∈Ri

p̂(t, i) log p̂(t, i)

= O
(
N−1

i (−
∑

t∈Ri

p(t, i) log p(t, i) + 1)
)

We now bound the expected search time for xi.

∑

t

p(t, i)s(t, i) =
∑

t∈Ri

p(t, i)s(t, i) +
∑

t/∈Ri

p(t, i)s(t, i)

= O(
∑

t∈Ri

p̂(t, i)s(t, i) +
∑

t/∈Ri

p(t, i) log n)

= O
(
Ni

∑

t∈Ri

p̄(t, i)s(t, i) +
∑

t/∈Ri

p(t, i) log n
)

Noting that for t /∈ Ri, p(t, i) = O(n−ε) and therefore log p(t, i) ≤ −ε logn + O(1),
and so

∑

t

p(t, i)s(t, i) = O
(
(−

∑

t∈Ri

p(t, i) log p(t, i) + 1) +
∑

t/∈Ri

p(t, i)ε−1(− log p(t, i) + 1)
)

= O
(
ε−1(−

∑

t

p(t, i) log p(t, i) + 1)
)

= O
(
ε−1(HV

i + 1)
)

The total expected search time is O(ε−1(
∑

iH
V
i + n)). By the analysis of Sec-

tion 5.2.1 and Theorem 5.3.1, we have that the expected running time in the limiting
phase is O(ε−1(H(D) + n)). This completes the proof of Theorem 5.2.1.
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Chapter 6

Further directions

In this thesis, we proprosed the models of distributed property reconstruction and
self-improving algorithms, and investigated certains instances of problems in these
models. It is natural that the reconstruction results should raise the question of what
other properties can be reconstructed. Similarly, we can ask about other problems
that can be studied in the self-improving model. In this chapter, we shall discuss
some specific questions that are more immediately inspired by our results. Some of
these questions are of independent interest, and do not pertain to our models.

6.1 Monotonicity reconstruction

We studied the monotonicity reconstruction of functions of the form f : [1, n]d → R,
and designed a data structure of intervals useful for sublinear time computation. It
appears that this might be useful for sublinear time estimation algorithms, say, to
estimate the distance to monotonicity. Such algorithms are known [5, 68], but it is
possible that some of our ideas can get better approximation factors.

Our filter’s running time and error blow-up is exponential in d. Is there some
way we can get any of these to be polynomial in d or is there some lower bound?
It seems that completely different techniques would be required. Related to this is
monotonicity reconstruction on the boolean hypercube : the functions are of the
form f : {0, 1}d → R. Can we get distributed filters (whose time is sublinear in
the domain size 2d, not necessarily polynomial in d)? A more ambitious aim would
be to attempt to design a filter for monotonicity on any partial order1. We are
allowed to preprocess the partial order (given as a DAG) in polynomial time to
build any necessary data structures - this would allow us, for instance, to explicitly
get all intervals - but the function would be presented in the same oracle fashion. It
would be interesting if we can get some error blow-up that depends solely on some
parameter of the partial order.

1Think of the partial order as represented by a DAG. We would probably want to allow running
times that are polynomial in degrees of the elements.
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6.2 Convexity reconstruction

By far the most intriguing question to come out of this work deals with planar sep-
arators. We are given a planar graph (with n vertices) as a straight line embedding
represented as a DCEL. In other words, we have access to the real coordinates of
the vertices, have the edges incident to a vertex in circular order, and can traverse
the boundary edges of any face. Can we find a O(

√
n)-sized vertex separator in o(n)

time? We showed that this is possible if the enbedding has constant aspect ratio.
Not all planar graphs even have such an embedding. This question seems to be very
difficult and will require radically different ideas. It seems rather unlikely that the
standard toolkit of computational geometric methods will help us.

6.3 Expander reconstruction

One of the main direction of future research is improvement of the conductance
bound of G′ to Ω(φ2) (instead of Ω(φ2/ log n)). For this, we need to have definitions
of weak/strong that distinguish vertices on the basis of very small probability differ-
ences (much smaller than we currently do). These differences can be algorithmically
tested, but to ensure that not too many edges are added to get G′, we would need
much stronger results about walks in noisy expanders.

It seems highly likely that the algorithmic procedures we use here could be used
for efficient graph partitioning algorithms [13–15]. The partitions would be decided
by performing random walks from vertices, and might lead to easier proofs of earlier
results. We may also be able to generate sublinear routines which can implicitly
represent such a partition: answering queries such as whether two vertices are in the
same graph of the partition or not. Improved conductance bounds for reconstruction
may lead to better graph partitioning algorithms.

6.4 Self-improving algorithms

A natural problem to attack is that of a self-improving algorithm for computing the
convex hull of n points in the Euclidean plane. Again, let us assume that each input
point is generated independently. Even with this restriction, we can get a large
variety of distributions (with a wide range of entropies). As the other problems that
we have seen, there is an information-theoretic lower bound of Ω(n log n), and our
lower bounding and information theoretic techniques (for self-improving algorithms)
would certainly work here. What makes this problem different - and difficult - is
the issue of output sensitivity. The output of a convex hull algorithm is a ordered
list of the points on the hull and for every other point, a certificate that it is not
on the hull. Different parts of the input are treated in a different way, and this can
create many dependencies between the points. This complicates the construction of
a self-improving algorithm, as we would have to exploit these dependencies to get
an optimal algorithm.
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A more interesting problem would be dealing with Voronoi diagrams in 3D.
Here, the size of the output can be anything from linear to quadratic. There are
low entropy distributions that generate low complexity outputs, and it would be
very interesting to design a self-improving algorithm that can exploit that. Such
an algorithm may even have some practical impact. This would require a major
extension to our present set of techniques, but it is possible that our current overall
approach (an “average” output constructed by the learning phase, using which every
output is generated incrementally) will work.

To move away from the independent distributions we use, one could also con-
sider time-varying distributions or Markov models. Of course, a purely adversarial
model might easily defeat self-improvement: it would observe how the improvement
proceeds and render it ineffective by tailoring distributions changing over time.
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