Performance Bounds for Peer-Assisted Live Streaming

Shao Liu*, Rui Zhang-Shen*, Wenijie Jiang®, Jennifer Rexford?, Mung Chiang*

*Department of Electrical Engineering, and TDepartment of Computer Science
Princeton University
{shaoliu, rz, wenijiej, jrex, chiangm}@princeton.edu

ABSTRACT

Peer-assisted streaming is a promising way for servicegeovto
offer high-quality IPTV to consumers at reasonable costpdar-
assisted streaming, the peers exchange video chunks vwéthren
other, and receive additional data from the central seiwveeaded.
In this paper, we analyze how to provision resources fortite@asn-
ing system, in terms of the server capacity, the video guaitd
the depth of the distribution trees that deliver the contéé de-
rive the performance bounds for minimum server load, marimu
streaming rate, and minimum tree depth under different peer
lection constraints. Furthermore, we show that our peréorce
bounds are actually tight, by presenting algorithms forstarct-
ing trees that achieve our bounds.

Categories and Subject Descriptors
C.4 [Performance of Systemf [Performance attributes]

General Terms
Algorithms, Design, Performance

Keywords

peer-to-peer, video, streaming, tree construction, IPTV

1. INTRODUCTION

The rapid growth in residential broadband capacity is eéngbl
the delivery of high-quality video over the Internet. Serbased
video delivery can provide performance guarantees, buseheer
infrastructure is expensive and may not scale well. Pepety
(P2P) technology, already widely used for file-sharing ejagions,
has the potential to reduce server and network load by allpwi
consumers to download live video content from each otheR][1,
3, 4]. However, existing P2P streaming applications suffem
low-quality video, periodic hiccups, and high delay [2, Blaking
it difficult for service providers to leverage the technoglatirectly
in commercial offerings.

Permission to make digital or hard copies of all or part of thvork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

In this paper, we argue that service providers can deploges-
assistedstreaming architecture to offer high-quality video at area
sonable cost. Fortunately, in carrier-based streamingcesy, the
provider has greater control over the peers, which may ruteoih
icated equipment like set-top boxes [5]. This substaptiatiuces
the churn introduced by peers joining and leaving the systam
fact, the provider may have the peers continue to distribgteeam
after users stop watching the video. In addition, the prewichn
influence, or even control, how the peers are organized iisto d
tribution trees for delivering the content. When the peersadt
have enough bandwidth to distribute all of the data, the idesv
can have the server transmit more than one copy of the sti@am,
needed. This allows the provider to ensure that all peersicam-
load the content at the target streaming rate. We belietestith a
hybrid, peer-assisted streaming architecture combireebéht fea-
tures of server-based and peer-based solutions.

In an emerging field like peer-assisted streaming, we nekxyto
the theoretical foundations that can drive the design débtasys-
tems in the future. In this paper, we derive performance dsamd
present optimal tree-construction algorithms that serpioviders
can use to provision scalable, peer-assisted streaminigsgr Our
analytical models focus on three main metrics:

e Server capacity: To reduce cost, the service provider wants
to minimize the upload rate of the server, while still ensgri
that all peers can receive the live stream at the target rate.

e Streaming rate: To offer high video quality, the service
provider wants the system to deliver video content at a high
rate, subject to the capacity of the server and the peers.

e Tree depth: To improve robustness and minimize latency,
the service provider needs distribution trees that limé th
number of intermediate peers between server and consumer.

We optimize these three metrics as a function of the number of
peers and their upload capacities, subject to differergtcamts on
how peers connect to each other. In particular, we studyffeets
of restrictions on the number of downstream neighbors a peer ca
serve or the outgoing degree of a pedp limit the state that each
peer must store and maintain, which is especially imporarihe
system grows large. Our contributions in this paper areftia:-

Exploring a rich design space:We model practical constraints
on the outgoing degrees of peers. We explore three typesnef co
straints on this problem, as illustrated by the rows in Tdbl&Ve
first explore the two extreme design points where a peer can co
municate with any neighbor, or only one neighbor. Then, wdeho
arbitrary constraints on the outgoing degrees.

Tight bounds on performance metrics: We derive the optimal
values for these metrics, and provide tree-constructigordhms



Min. server load (smin) | Max. streaming rate (rmay) | Min. tree depth (Dmin)
Unconstrained peer selection (Sec. 3 N VvV 16, 7] NN
Single downstream peer (Sec. 4) ViV NV NV
Multiple downstream peers (Sec. 5) NV VYV Vv

Table 1: Summary of results (“\/” indicates upper and lower bounds, and “/,/” indicates an exact optimal value).

Data rate of the streaming video.
Server capacity.

Actual server load.

Total number of users in the streaming system.
Index set of all the users,i.€1,2,--- ,N}
Uplink capacity of user.

Useri’s aggregate uploading rate.
Useri's aggregate downloading rate.
Streaming rate from uséto userj.
Streaming rate from the server to user
Total number of trees in a multi-tree.

):  Rate of substream delivered by tlee

D:  Setof leaf users in trele

Set of non-leaf users in trée

Fanout or outgoing degree of usen treel.
Depth of tred.

D = max D) is the depth of the multi-tree.
Maximum fanout of a tree.

Maximum fanout of a multi-tree.

rexesCLznnn

3 Tms

zz9Q

Table 2: Main notation used in this paper.

that achieve the optimal values, for minimum server loadxima
mum streaming rate, and minimum tree depth, as illustrayettido
columns in Table 1. Our bounds are tight, except for the ehgh
ing case of minimizing tree depth under arbitrary constsaam the
outgoing degree of each peer.

The remainder of the paper is organized as follows. Section 2

presents our model and notation. Sections 3, 4, and 5 présent
bounds and algorithms for the three rows of Table 1, resgeyti
Section 6 presents related work, and Section 7 concludés awit
discussion of future research directions. Without expégplana-
tion, the proofs of all theorems are given in the main textjevne
proofs of all lemmas are postponed to the Appendix.

2. PEER-ASSISTED STREAMING MODEL

In this section, we present our model of peer-assistedrstrea
ing, including the underlying assumptions and the notatgam-
marized in Table 2).

2.1 Assumptions

In this paper, we analyze a peer-assisted live streaminiicapp
tion managed by a service provider. Therefore we make tha/fol
ing assumptions in our analysis:

e Uplink bandwidth is the only bottleneck, because the back-
bone network is well-provisioned and the residential users
have asymmetric access bandwidths. In addition, if the
downlinks were the bottleneck, the users would not be able
to receive the entire video.

e \We assume that the server can upload to as many users as
needed, with no constraint on the number of simultaneous
connections. In practice, the server may be implemented on
a collection of machines that distribute the video content t
different subsets of the users.

e \We do not consider the location of the peers or the topology
of the network, though a real system should take these issues
into account to reduce congestion and delay.

When these assumptions hold, most bounds we derive in ther pa
are tight. In a more general setting, our bounds still holdrbay

not be tight; that is, our models still provide a lower boumd f
server load and tree depth, and an upper bound on the aclaievab
streaming rate.

2.2 Constraints on Distributing the Stream

We consider a server that generates a video stream of eaté
N users who want to watch it. Throughout the paper we use user,
peer, and node interchangeably. We treat the data streamidasdl
itis continuous and can be infinitely divided irgabstreamso any
precision without loss of video quality or any overhead.

Let Sdenote the server capacity asthe actual server load. De-
note the uplink capacity of useby U;, the upload rate of uséby
u;, and the download rate of useby d;, fori =1,2,--- ,N. When
convenient, we usel” to represent the set of users. For simplicity
of presentation, we assume that the uses are indexed augaodi
their uplink capacities, i.elJ; > Uy > --- > Uy.

Let x;j be the rate at which uséruploads to usej. For con-
venience defing;j = 0 for all i. Lets be the rate at which usér
downloads from the server. We then have the following:

N
s = legs @
i=
N
Ui = 2X|J§U|f0r|:l,N (2)
=1
N
di = S+2X]‘i,f0ri:l,"',N (3)
=1

Since users never download any data more than once, we have
d=r (4)

e Peer churn can be ignored because provider-controlled set-Useri should not send back anything it receives from useso we
top boxes can be always on in the timescale of our problem. also have

. . . i < di —Xii 5

e Each user receives each bit of the video stream only once. Xij = G X ®)
Any repetitive downloading would make the system ineffi-
cient.

One key feature of a P2P system is the conservation of flosvs, i.
the total upload rate equals to the total download rate. Quintp



Equations (1)-(4), we have

SR PR LR

The above equations and inequalities aeeessaryconditions
for the system to support a stream of rat@and they will be used
throughout the paper.

(6)

2.3 Distribution Trees for Stream Delivery

For sufficientconditions we can specify how each substream is
distributed among all the users. If we trace the forwardihanoin-
finitesimal substream, the delivery paths should form arwe&ed
at the server and consisting of all the users, with each ygeraa-
ing in the tree exactly once. We call thisabstream tregor simply
atree Other substreams may traverse different trees. In eaeh tre
a peer receives the substream from a sipgleentand uploads the
substream to zero or moahildren

Suppose there atesubstream trees, and treis responsible for
delivering a substream of ragd). This means each edge in tree
represents a flow of ragé!). The superposition of these substream
trees form anulti-tree In order for the multi-tree to support a video
stream of rate, we need

@)

Let rni(') andm(s') be thefanouts or theoutgoing degreeswhich

are the numbers of children, of useaind the server, respectively,
in treel. Denote byF () the set of non-leaf users in treeandE (")
the set of leaf users in tréeThen we have
| .
Uy = ZI:ieF(”Imi( )y<|)7 Vi= ]_7... 7N (8)

s = shamy0.

Let D() be thedepthof treel, or the maximum number of hops
in treel from the server to the users, and 2= max D(") be the
maximum depth of all the trees, or thaulti-tree depth ThenD is

the maximum number of hops a substream has to traverse to reac

all users. A higheb means a larger number of hops, which poten-
tially increases the end-to-end delay from the originalrsei{the
server) to a receiver. Furthermore, a particular peer stqeving
a substream when any of the ancestor nodes fail; thus a IBrger
(i.e., more ancestors per peer) also negatively affectabestness
of the content delivery tree structure. So we would Iixas small
as possible.

Let M be thesubstream tree degree boyrar the maximum al-

lowed number of children a user has in any substream tree, and

let M; be themulti-tree degree bounddr the maximum allowed
number of distinct children a user has in the multi-trisereflects
the complexity in constructing the substream trees; whijere-
flects the total number of downstream peers a user has to suve
clearly we would likeM andM; small. But doing so may increase
the tree deptlD, so there is a tradeoff between system complexity
(M andM) and performancel). Note that for the same valukl
gives a stronger constraint, becalde< aimpliesM < a.

3. UNCONSTRAINED PEER SELECTION

In this section, we study the simplest case where there igmib |

on the number of children each peer can have. This meansy a use

OO O O (&) O
2 3 N 1 1 N-—1
Tree 1 Tree 2 Tree N
S

Figure 1: The content distribution multi-tree to minimize t he
server load in Theorem 1. Case 1 uses tree 1 t¢, and case 2
uses tree 1 to\N + 1. For both cases, the multi-tree depth is 2.

1 N
I'max(S) = min (S N <S+_;Ui>> .

We now answer the other two questions in the first row of Ta-
ble 1. The following theorem states the minimum server logad a
well as the minimum multi-tree depth needed, when supppiin
streaming rate:

9)

Theorem 1. Let syin(r) denote the minimum server load that can
support a stream of rate r, then

Smin(r) = max (n Nr— iui> ,

and the minimum server load can be achieved by a multi-trée wi
depth D= 2.

(10

Proof. Our proof technique is inspired by [6]. We first show that
Equation (10) is a lower bound, and then show it is achievaple
trees of depth 2.

The server has to supply the original streamssor. From (6)
we have

N N

s=Nr— Zlui > Nr— Ziui.
i= i=

Therefore

N
s> max(r,Nr— Z\Ui> .
i=

To show that the bound is achievable we consider two casds, an
construct a multi-tree of depth 2 for each case. Case 1 is when
the rater is small enough to be supported by the peers’ upload
capacity and the server does not need to inject extra baituwiid
the system, i.es=r; Case 2 is when the rate is high enough that
the server must inject extra bandwidth, is= Nr—yN U > r.

Case 1:;r > Nr—3yN  U;, or

re L

<= an

12U
We divide the stream of rateinto N substreams, with thieth

substream having rat: U r. The server sends substrearto

can forward a substream it receives to any number of peers. Th useri, who distributes it to aII the othéd — 1 users. The multi-tree

maximum supported rate in this case has been studied in:[6, 7]

implementation is shown in Figure 1 and it uses trees 1 thrdlg



Now we check that the uplink capacity constraints are satisfi
The server uploads each substream only once, so its upltadra
s=r. The upload rate of useiis

Ui N

< ——— S U=V
= N i ] 1>
Yi=1Yj jZl

Ui
N 1),
Y=Y

where the inequality is due to (11).
Case 2:;r <Nr—3N U;, or

1 N
r>mi;U|.

We divide the stream of rateinto N + 1 substreams, with the
i-th substream having ratdy /(N — 1) for i = 1,2,--- ,N and the
(N+1)-th stream having rate— ZiNlei /(N—1). The server sends
substream to useri, fori =1,2,---,N, who distributes it to all
otherN — 1 users. In addition, the server sends substréldm
1) to all users. The multi-tree implementation is demonstkate
Figure 1 and it uses trees 1 throu@d+ 1).

Now we check that the uplink capacity constraints are satisfi
For useri, the upload bandwidth is

u=U/(N=1)-(N-1)=U;.

U =

r-(N—1)

The server sends each of the fikssubstreams once and sends the
last substreariNl times. So
Ui

Ny N N
S= N(r— =Nr— Y U;.
a1 TN TN
In both cases each substream traverses at most two h@ps-so
2. |

Naturally, a system with unconstrained peer selection augp
the highest streaming rate, and given a rate, it requirefothest
server load and the lowest multi-tree depth. Thereforepiiéra 1
provides a benchmark for the cases in the rest of this papate N
that D = 2 is the minimum multi-tree depth that can utilize peer
uplink bandwidth, since iD = 1, peers only download from the
server and do not upload to each other.

4. SINGLE DOWNSTREAM PEER

Section 3 studied unconstrained peer selection,Me= N — 1.
In a real system, we want to limit the number of peers becalse

can be large. A node should be allowed to upload to only a small

number of peers to limit the amount of states it has to stotk an

Figure 2: The optimal logical topology for single downloadng
peer constraint.

in order to achieve the minimum server load, we need to maemi
each user’s uploading rate. Since each user can uploadyt@oael

peer, the maximum upload rate of uses
Ui :=min(r,U;). (12)

Therefore, similar to the proof in Theorem 1, the lower botord
Smin under theM = 1 constraint is:

Smin(r) > max(r,Nr'iUi> = max(r, 'i(r Ui)+> . (13)

wherea™ := max(0, a).
This bound is in fact achievable so we have the theorem:

Theorem 2. When a user can upload to at most one peer in each
substream tree, to support a streaming rate r, the minimuwese

load is
Smin(r) = max(r, i(r uo*) :

In particular, if r > U;, the M= 1 constraint does not affect the
minimum server load.

(14)

Proof. We show that the bound is achievable by considering two

maintain! So this section studies the other extreme case of single cases.

peer selection, i.eM =1 or My = 1.

Case 1.r <Uyn-_1. We havesyin(r) =r, which is achievable by a

The constrainM = 1 means that a user can upload to one peer single tree in a chain topologerver—1—2— ... = N-1—N

in each substream tree, but in the multi-tree (superposifahe
substream trees) can upload to many peers. The condtfaiatl

with rater.
Case 2.1 > Un_1. Suppose lies betweerlJy_1 andUy, i.e.,

means that a user can upload to only one peer in the multi-tree Ux_1 > > U (if k= 1 then we have > U,). ThenUj =r, Vi <k,

So,M; = 1 is a stronger constraint. Luckily, for minimum server
load (Section 4.1) and maximum streaming rate (Section thg)

andU; = U;, Vi > k. This means that thiel = 1 constraint reduces
the maximum upload rate for peers 1kte 1 (if k > 1), but not for

two constraints have the same optimal value. But for minimum peerskto N, and the lower bound fegmin is max(r, N, (r —U)).

tree depth, they give different answers (Section 4.3Moe 1 and
Section 4.4 foM; = 1).

4.1 Minimum Server Load
We first determine the minimum server load required to suppor

a streaming rate. Similar to the analysis in the unconstrained case,

1For example, in BitTorrent [8], a node uploads to at most five
peers simultaneously.

We show that this bound is achievable by a multi-tree alborit
with the ring topology shown in Figure 2. In this ring, we call
nodei — 1 thepredecessoof nodei, andi + 1 thesuccessonf i.2
Each node uploads only to its successor, and downloads tom i
predecessor, and if necessary, the server as well. Nodewvnload
rate isd; =r, Vi =1,2, ---  N. For the download/upload rates, we

2For the compactness of presentation,iletl represenN, when
i=1;and leti + 1 represent 1 when= N.



The Bottleneck Removal Algorithm
@ ¥ =y =minru),s? =r—u_y, Vi
(2) forl=0toL— 1do
®) k) = arg mrn{uI D >0 q > 0}
()] Case (I): mu{u s,“) uf') >0 q ) > 0} = ')
(5) Lety() =
(6) Letp® bek< ) s closest ancestor, @) = k),
s.t. s<') > 0. Construct a tree branch as
S — p( ) e k(l) — e — q(l), where
g = p® — 1 oru% =0.

(7) If gV £ p) — 1, letk® = q) 41, repeat (6).

(8) Assign the constructed tréa streaming rate of!).
9 Case (II): m|r{u 73 N si ) > 0} = §<

(10) Letyl) =g\,

(11) Letp!) bek(®’s furthest descendant, pf') = k(')

s.t. u% = 0. Construct a tree branch as

S~>k<|)~>k(|)+l~>u~—> p(|>

(12) If p £ k) — 1, letk® = p®) 41, repeat (11).
(13) Assign the constructed tréa streaming rate of!).
(14) fori=1toN do
(15) ul Y = —y0if (i)i 4+ 1) is in treel.

<'+1> ="~y if (i) isin treel.
(16) end for
(15) end for

Table 3: The Bottleneck Removal algorithm for the construc-
tion of a multi-tree to achieve the lower bound on the minimum
server load.

have
U-1 = X—1i=r<Ui_rands =0,Vi=2.--k(if k> 1),
U-1 = Xi,j”i:Ui,l andS:riui l:Vi:k+17"'7N7
Un if Z. K(r=up)>r,
Uy = XN1= _
§ N { S =) it S r-U) <,
S1 = I—UN.

There are two cases foi because ifzi’\':k(r —Uj) >r, thens >
r and all the peers frork to N should upload at their capacities

in order to minimize the server load, and thug = Uy, while if

ziN:k(r —Uj) <r, then the server load is bounded by the streaming

rater, and thus pee need not upload at capacity.
Now all peers have the download rateand the server load is

N N
S= _Zs = max(nZ((r —Ui)) ,

which is the lower bound ognin. So we only need to design a
multi-tree that achieves this rate allocation. Figure Gsiitates an
example of constructing a multi-tree for a streaming systéth

N = 6 users, by applying the Bottleneck Removal algorithm de-

scribed in detail below.

The Bottleneck Removal Multi-tree Construction Algorithm:
Consider the multi-tree construction algorithm in Table 8.
each iteration we construct one tree that consumesgatteneck
link capacity on the ring or the spoke. The residual capaiithat
edge becomes zero and will be omitted in the following iiere.
The algorithm terminates after at mdsiterations and produces at

1=6

Figure 3: An example to illustrate the construction of a mult-
tree using the Bottleneck Removal algorithm. When = 1, the
bottleneck is (s,3) and case Il applies k= 3, p=2). We build
a tree branch ass— 3 — ... — 2, and the residual capacities
of edges on the branch are reduced by; = 2. When| = 3, the
bottleneck is (5,6) and case | appliesk=5,p=5,q=6). We
build a tree branch from sto 5 and get stuck at6. We forward
to the next userl, and repeat the same process, which results
in another tree branch s— 1 — 2 — 3 — 4. Note that in each
iteration, all users will be covered in the spanning tree roted
ats.



mostN substream trees. The residual capacities on the ring and theln particular, if k* = 1, then the M= 1 constraint does not affect

spoke are initialized to the rates in Figure 2. In each itenaive

pick an edge with the minimum residual capacity. Uﬁ% denote
the residual bandwidth on eddei + 1) after thel-th iteration and

s,“) denote the residual bandwidth of edgerveri) after thel-th

iteration. For convenience, we defiui@) = ands1<0) =S5.
Consider the following two cases: (1) If the bottleneck edgen
the ring, we search counter-clockwise for the first user @y to
whom the server’s residual bandwidth is non-zero. We butiea
branch starting fronsto p(l) and stop at a user (saf/)) where we

cannot expand anymore. We repeat the same process fronxthe ne

userq) + 1, till all the users are spanned. (II) If the bottleneck
edge is on the spoke, we build a branch of the tree startimg fhe

the maximum supported rate.

Note thatk* is well defined ifS> Uy, because (18) holds for
k= N. The indexk* is the dividing point between peers with up-
link capacities smaller than or equalrt@ax and peers with uplink

capacities larger thamnax. If Ug_1 > r > Uy, then
1 N1 N
N(S+i;Ui) = N(S+ kr+i: +1Ui)7

so we have = g(k). Now we give the detailed proof.

Proof. Case 1 is when the maximum upload rates of all nodes are
affected by the single peer restriction. Case 2 is when notteeo

spoke until we cannot expand anymore. We move on from where mayimum upload rates are affected by the single peer réstric
we get stuck to the next user and repeat the same process. Afte case 3 is when some maximum upload rates are affected while

building a tree, the residual capacities on the ring andatris are
deducted by the streaming rate of the tree.

In the ring topology (Figure 2), and the multi-tree we counsted
above, each user has at most one child, therefore satistiigng
M = 1 constraint. The correctness of our multi-tree constoucti
is shown by the following lemma:

Lemma 1. The rate allocation in the ring topology, as illustrated
in Figure 2, can be achieved by applying the Bottleneck Ramov
algorithm to construct a multi-tree within N iterations.

From the proof in the Appendix, the Bottleneck Removal algo-
rithm runs in polynomial time. This lemma shows that the lowe
bound ofsyin in (13) is achievable, proving Theorem 2. |

Remark: Theorem 2 gives the minimum server load under the
M = 1 constraint. In either the chain or the ring topology which
achieves the minimum server load, the multi-tree maximumodia

is also 1. Since under the strondér = 1 constraint, the minimum
server load should be greater than or equal to that undev thel
constraint, this implies that whev; = 1, the minimum server load

is also given by Equation (14).

4.2 Maximum Streaming Rate

others are not. We combine cases 2 and 3 at the end.

Case 1:if S< Uy, i.e., if the server uplink capacity is smaller
than the smallest peer uplink capacity, then the streanateyis
limited by server uplink capacity, and we haygix= S. Thisrmax
is obviously achievable, as a simple chain topology+(1 — 2 —

- — N) works.

Case 2:if Sis very large, such that a rate> U; can be sup-
ported, therJ; = U;,Vi € .4/, and thus thé/l = 1 constraint does
not reduce the maximum upload rate of each user. Therefae, w
can achieve the same maximum supported rate as in the uncon-
strained case (Equation (9)). The necessary conditiom fotJ,
is

N
Z(Ul—Ui) andS>Uq, (19)

N
min(S, %(szlui)) >U; & S>

which means that the rate= U1 can be supported.

Case 3:if Uy < S< max(Uy, 3N (U; —Uj)), thenUy can be
supported whildJ; cannot, and thus we hawg; > rmax > Un.
Consider a given rate € (Uy,U1), suppose lies betweerlJy_;
andUy, i.e.,Ug_1 >r >U. Then,U; =r, Vi < k andU; = U,

Vi > k. This means that th®1 = 1 constraint reduces the upload
rate for peers 1 t&— 1, but not for peer& to N. From (15), we

Finding the maximum supported rate is in some sense the dualhave

of finding the minimum server load. Similar to minimizing the
server load, to achieve the maximum streaming rate, theypdiek
bandwidth should be utilized as much as possible. Unddvitkel
constraint, the upper bound for a supported streaming riate
1 N
"< min(S (S+ 3 U1). (15)
i=
where the maximum upload rate of usés U; given in (12).

The bound is achievable but is a function ofr, so the expres-
sion forr is not straightforward. We have the following theorem:

Theorem 3. When a user can upload to at most one peer in each
substream tree, for a given server upload capacity S, thermanr
supported streaming rate is

| s if S<Up,
Fmax(S) = { min(S,g(k*)) if S> Uy, (16)
where
S+ Ui
ok = 2T @)
and K is the minimum k such that
N
S> Y (Uk—U;) and S> Uy. (18)

k—1 N

r <min(S, %(S+ _Zr +'Z<Ui)) =r<min(SgKk)). (20)
Sincer > Uy, we have miiS g(k)) > Ux, which means

N
S> Uy andg(k) > Uy = S> Z((kaui).
i=

So ifk satisfies (18), mi(S, g(k)) gives an upper bound for Now
we look for the tightest such upper bound, which happens to be
reached ik = k*.

We have the following property fay(k):

Lemma 2. Let gk) be defined as in (17), then for anykN,

g(k) > U = g(k) <g(k+1), (21)

g(k) <Ux=g(k) > g(k+1). (22)

From Lemma 2, ik* is the minimunk such that (18) holds, then
Uy —1 > max> Uk+, and the tightest bound aris

Fmax < Min(S,g(k")). (23)

Under case 3U; >r andk* > 1. However, if we remove the
U; > r condition, and allowsto be sufficiently large such thit =



1, then (18) reduces to (19), and thus we can think of case 2 as a This gives a lower bound oB for any multi-tree depth. The

special case of case 3 whkh= 1.
The above analysis gives an upper boundrfgyx. We already
mentioned that a simple chain topology achieves the uppendo

for case 1. For case 2 and 3, it is easy to see that the upped boun

in (23) can be achieved by the same ring topology as illuestrat
Figure 2, where = min(S g(k*)), and this ring topology can be
derived by the same Bottleneck Removal multi-tree constmc
algorithm. a

Remark: Similar to the minimum server load problem, the multi-
tree construction to achieve the maximum supported ratighsre
a chain or a ring topology and the multi-tree fanout for easéru
is 1, so we havé/ly = 1. Therefore, the maximum supported rate
under a strongevl; = 1 constraint is also given by Equation (16).

4.3 Minimum Tree Depth for m=1

In this subsection, we find the minimum multi-tree deptiin
that achieves the minimum server loagj, under the constraint
M = 1. We first give a lower bound fdPnin, and then show that
the lower bound is achievable.

Suppose a multi-tree hdssubstream trees, and the server up-
loads toH() peers in substream trde which has rate/(!), | =
1,2,---,L. We say there ard () branchesn this tree. After receiv-
ing the substream from the server, thés& peers further upload
to the other peers. Since each peer has at most one child,ateer
H®" leaf nodes and — H()) non-leaf nodes in trek Recall that
the set of leaf nodes B(!) and the set of non-leaf nodesks).

The depth of tred, denoted byD("), is lower bounded by
[N/H ("7, since there exists a branch containing at léaistH ()]
nodes, and in this branch the nodes form a chain. This lowandbo
is tight, since evenly distributing all nodes amongH& branches
achieves it.

The depth of the multi-tree, denoted By is lower bounded as
in the following equation:

_ 0 NIJ_|_N
D= mlaxD > mlax{H“)-‘ = {mim H('>-‘ , (24)

and by evenly distributing nodes among branches in any tez,
bound is also tight. Note that for simplicity of notationrahghout
the paper, magxor min represents the maximization or minimiza-
tion over all substream treéds=1,2,--- ,L in a given multi-tree.
From (24), in order to minimiz®, we need to minimize the largest
DO, or equivalently, maximize mijm ().

We first give an upper bound on mid(!) and thus a lower bound
on D. Suppose we construct a set of substream trees to support
with minimum server loadmin, we have

= )
r = Y,
%
L
Smin = ZH<) ()
=1
So
L
sm,n>m|nH z mlnH
=1
and
mlnH Lsﬂ'“j

Therefore we have the followmg lower bound on multi-trepttie

S {min:\lH“)w = {LQJ '

(25)

bound is in fact achievable, so we have the following theorem

Theorem 4. For a given streaming rate r, under the M 1 con-
straint, the minimum depth among all multi-trees that achgethe
minimum server loadygn, is
N
(=] |

Proof. From (25), we havéd > Dpyin, whereDpin is defined in
(26). We now prove thdD = Dpyin is achievable. Recall thain =
max(r, N ; (r —U;)*). We consider two cases.

Case 1: smin < 2r. There is a substream tree with only one
branch, sdDmin = N. The tree depth oN can be achieved with
the ring topology in Figure 2.

Case 2:smin > 2r. It is sufficient to construct a multi-tree such
that the streamlng rates supported bymin and in each substream
treel =1,2,--- ,L,HO > | Smin |,

Consider treé¢ with H(") branches. Thél —H () non-leaf nodes
upload to peers at raté"), and theH!) leaf nodes do not upload.
Since each branch is a chain, once the leaf nodes are fixawbhe
leaf nodes can be evenly distributed among the branchesaso th
the depth of tre¢ is [%1. This indicates that constructing a sub-

stream tree wittH() branches is equivalent to selecting") leaf
nodes and subtracting) from the otheN — H() nodes’ capaci-
ties.

Since the server load is larger tharfrom Section 4.1 we must
have that peerruploads at; = min(r,U;). For a given rate, letk
be the smallest index such thdt < r, i.e.,

Ui>Up> -

Do — [ (26)

>Ug1>2r>Ug>--->Uy.

Note that we must havdy < r; otherwise we would havenin =
max(r, ZiN:1(r —Uj)™) =r, contradictingsmin > 2r. Then the nodes

-, k—1 upload at rate and the nodek,k+1,--- ,N upload
at rates less than So only the nodek k+1,--- /N can be leaf
nodes in substream trees and we only need to consider them whe
constructing the trees. Therefore without loss of gertgralie as-
sumer > U;.

Now we need an algorithm to construct the trees. Let

Hy = Lsman sman

Ji=N—-|—
r

ThenJ is the maximum number of non-leaf nodes whose uplink

capacities will be used in a tree. We reduce the uplink c@ypaci

of these nodes and the remaining is called residual capaEity

idea is to equalize the residual capacities of the nodesasartthe

end they can all be consumed. We start with a particular node i

the middle and make more and more adjacent nodes have the same

residual capacity. Since the group grows like a snowballcale

this the Snowball Algorithm.

@7)

The Snowball Algorithm for Tree Construction:

We first introduce some notations on multi-tree constructio
Suppose we construct the multi-tree step by step, and biytislig
abusing notation, we udeto index the steps. In each step, there
may be one, or multiple substream trees constructed, bhinwit
one step, the branch number in any substream tree is the dame,
noted byH (). We usey(!) to denote the supported rate in stepse

Ui<') to denote the residual capacity for pegr=1,2,--- ,N after

the I-th step; used), s, andr() to denote the total supported
rate, the residual server load, and the remaining strearaiiegto
support, respectively, after theh step. Initially, forl = 0, we de-

fine 50 =0, Ui(o) =Uj,i=12--,N, s9 = gyin, andr© =



Then we have the following equations:

50— 0-D 1y

= )y,

(0 -1 )

o0 {ui('” ifi e E0),

' U oy e FO,
Yt < min(%,ui(l),i:1,2,-~-,N).

After L steps in a successful multi-tree construction (by sucugssf
we mean that the streaming ratés supported by the minimum
server load), we have the final stage, at wrséh = r(t) = 0, and
u=ovi=12- N

With the above notations at hand, we introduce the following
algorithm on the multi-tree construction: at step 1, we tniode 1
to J, i.e., nodes] + 1 to N are leaf nodes, such thlag(l) = U.ﬁ)l'
Here, by “trim” we mean “reduce the residual uplink capadify
the node”. This is easily done as we canyét=Uj —U;, 1. At
step 2, we construct two trees with the same rate, one triglssnb
to J and the other trims node 1 fo- 1 andJ + 1, and the trimming
stops when one of the two following cases occurs: either

2 2 2
UJ<—)1 - UJ< = UJ(+)17
or
2 (2 (2
UJ< = UJ+1 = UJ+2'

The first case occurs if
UJ(E)l - UJ(l) < Ué?l - U.ﬁ)Z ;

and the second case occurs otherwise. In both cases, &fpe?, st
including theJ-th node, there are at least 3 nodes that have the
same residual capacity. We use the tamowballto represent the
set of nodes whose residual capacities are the same as ttet of
J-th node. Let similar trimming continue in latter steps: soge
before thd-th step, the snowball contaims; nodes, and there are
mp nodes in front of the snowball and their residual capacéies
larger than that of the snowball. Singeh node is in the snowball,
m + My > J. In thel-th step,m; substream trees with the same
rate are constructed, where each tree timedes. Them, nodes
in front of the snowball are trimmed in each tree, while eagtien
inside the snowball is trimmed ih— my < my trees. This way, the
nodes in front of the snowball are trimmed faster than theeaaad-
side the snowball, and the nodes after the snowball areinotied
at all. Thel-th step stops if the node just before or just after the
snowball is absorbed into the snowball.

Two examples of this algorithm are given in Figure 4. A featur
of the Snowball algorithm is that the order of the residuakcities
of all nodes at any stage is the same as the order of the drigina
capacities, i.e.,

VU0 5 Ul

After a sufficient number of steps, s&y steps, the Snowball
algorithm stops at one of the following: either

U Uy,
or
UJ<,K+)1:UJ<,K+)1: :U,E,K) = 0 for someJ’ < J.

In the first case, the snowball finally contains all the nodes} in
the second case, before the snowball contains all the natidise

Example LN =5r =11 s=34H; =3,J=2,q=0.

step() | UV Jul Tul Tul) [ul [ 60 [+ ]
0 10 |5 @3 |2 1 0 11 | 34
1 8 3 3) 2 1 2 9 28
2 6 2 2 2) 1 4 7 22
3 3 1 1 1 1) 7 4 13
AR IR B AL
5 © |o (o |o |0 |3 [5 |3
6 (] 0 0 0 0) 11 |0 0
Example 2N =5,r=11s=30,H; =2,J=3,9=8.
step() | UV Jul Jul Tul) [ul [0 [0 ]sD
0 10 |9 3 2 |1 0 11 | 30
1 9 9 2 2) 1 1 10 | 28
2 7 6 1 1 1) 3 8 24
3 4 3 © 0 0) 6 5 18
4 1 0 o 0 0) 9 2 9
5 0 0 © 0 0) 10 |1 5
6 0 0 o 0 0) 11 |0 0
Figure 4: Two examples for the Snowball algorithm. In the

tables, (-) indicates the snowball. In example 1, the snowball fi-
nally includes all nodes, and the multi-tree construction$ suc-
cessful: it achieves the minimum server loadmyin = 34, and its
minimum branch number is H; = 3. In example 2, all nodes
have zero residual capacity before the snowball includes lal
nodes, and the multi-tree construction is successful: it dgeves
the minimum server load syin = 30, and its minimum branch
numberisH; = 2.

nodes in the snowball have zero residual capacity. Sincé-the
node is in the snowball, in the second case, dhly J nodes have
positive residual capacities.

After the snowball algorithm stops, in both cases, we catiéur
construct trees with at leal; branches, i.e., with at modtnodes
trimmed, and we can prove that we can achieve both the minimum
server load and thimi, = H1 property for both cases. That result
is summarized in the following lemma:

Lemma 3. Using the Snowball algorithm, we can construct a
multi-tree such that the minimum server load is achieved, the
branch number is at least{Hn any substream tree.

From the proof in the Appendix, the algorithm runs in polyno-
mial time. Lemma 3 completes the proof of Theorem 4. |

We have found the lower bound @i, for M = 1. If we let the
server upload rate be bigger thgrn, then following similar steps,
we can show that an equation similar to (26) holds:

il

Equation (28) gives a tradeoff betwe®m,in, ands, or the delay
and the server load. This means in real systems, by incig#izin
server capacity, we can achieve a smaller tree depth andex low
delay.

Dmin = " (28)

4.4 Minimum Tree Depth for m; =1

We now study the minimum tree depth under tMe= 1 con-
straint. We show that the best strategy to reduce tree dejtéru
theM; = 1 constraint is to divide the original ring (see Figure 2pint
multiple rings while maintaining the minimum server loadnc



G1 G2 G3 G1 G2 G3

8 7

6 5

4 3 4 3

2 2

1 1

B1 B2 B3 B1 B2 B3
B1=7 ' |B2I=5 ' |B3J=3 B1=7 ' |B2|=5 ' |B3|=3

Figure 5: An example to show the waterfilling strategy. Here,
H=3, B =7By=5,|B3 =3 A={1,2--- ,k—1}, and the
height of each bin represents the number of elements in the
bin. One-by-one, the elements oA are put into the bin with
the least element (waterfilling). If|A] < 6, as in the left figure,
then the three bins are not flattened, andnax(|Gp|,h=1,2,3) =
|B1]. If |A| > 6, a in the right figure, then the three bins are not
flattened, andmax(|Gn|,h=1,2,3) = [N/H].

the tree depth of a ring is the number of nodes in this ring, iby d
viding the N nodes into multiple rings, the multi-tree depth is the
maximum ring size. And to achieve a minimum tree depth, welnee
to minimize the maximum ring size.

Before we give the minimum value of maximum ring size, we
firstintroduce further notation and terminology. Any sulide .4
is an index set, and we denote the number of its elemefR|byVe
sayP is isolatedif no node inP uploads to or downloads from any
nodes outsid®. If the nodes inP form a ring topology, then the
depth ofP is |P|. For an integeH < |P|, we call a set of index
sets{Py,P,,--- ,P4} adivision or anH-division of P, if all B,
i=12---,H, are mutually exclusive and their union equéls

We define the two set8 and B: A contains the nodes whose
capacities are at least and B contains the rest. Suppoge=
{1,2,--- ,k—1} andB = {k,k+1,--- ,N}, then|A| =k—1 and
|B| =N —k-+1. Consider arH-division of .4 into {G1, G, ---,
Gn }, and defineA, = Gy N A and By = G, N B, then {A,,h =
1,2,--- ,H} is anH-division of Aand{B,,h=1,2,--- /H} is an
H-division of B. If the H setsG,, Gy, ---, Gy are isolated, i.e., no
cross set uploading/downloading, then we d&h,Gy,---,GH }
anisolated H-divisiorof .#". We call an isolated-division of 4/
to beefficient if the minimum server load is not affected by mak-
ing G1,Gy, - - ,Gy isolated. If the nodes in ea€}, connect to be a
ring, by efficiently dividing.#” into G1, Gy, - - - , Gy, the multi-tree
depth is reduced froMl to max|Gp|,h=1,2,--- ,H).

The condition for an isolated division to be efficient is givia
the following lemma:

Lemma 4. The necessary and sufficient condition for an isolated
H-division to be efficient is

%(r—ui)zn Yhel2,--- H. (29)
i€ h

Note that for an efficientl-division, there are only requirements
onBy,h=12--- H, and no requirements ok,,h=1,2,--- 'H.
This means that once we dividianto H bins such that (29) is satis-
fied, we can arbitrarily put the nodesArinto theH bins. Given an
efficient H-division of B, the best strategy of putting nodes into
the bins is thewaterfilling strategy, illustrated in Figure 5, which
minimizes max|Gp|,h=1,2,--- ,H). From the waterfilling strat-
egy, for any fixed efficient division d into {B,,h=1,2,--- ,H},
without loss of generality, suppo&a has the most elements, i.e.,

|B1| = max, |By|, then the minimum multi-tree depth is

DW:{ [N/HT it |Al> SH 5(Ba| — [Bnl),
max(|By|,h=1,2,--- ,H) otherwise

(30)
where the subscript stands for waterfilling. The first case corre-
sponds to the scenario that tHebins are filled to be flat, and the
second corresponds to the scenario that the bins are nenfatso
the highest original bin gives the largest height of thediléns.

The problem of finding the minimurd,, is strongly-NP hard,
because the first case, i.e., whéi > zﬁ;z(\Bﬂ — |Bnl), is
strongly-NP hard. In the first case, minimizifyy, is equivalent
to maximizing the number of binsl, such that in each biih,
Yies,(r —Ui) > r. This is the classic bin covering problem, or
the dual bin packing problem [9, 10, 11], which is known to be
strongly-NP hard [12]. There are polynomial time approxiora
algorithms [13, 14, 15].

Suppose we can find mib, then we get a upper bound Biyp.
Since the set of multi-trees under thte = 1 constraint is a subset
of that under theM = 1 constraint, from (26), we know that the
[FATH lower boundDmin. Then, we have the following theorem:

Theorem 5. For a given streaming rate r, under the;M 1 con-
straint, the minimum depth among all multi-trees that achithe
minimum server loadygn satisfies the following bounds:

, 31
=] o

where the minimum of Pis over all efficient divisions.

{l} < Dynin < MinDy,

Lemma 4 is the condition for achieving minimum server load.
If the server uploads at a rate higher ths,, then the condition
in Lemma 4 can be relaxed, and not all divisions need to yatisf
(29). This way we may be able to have more divisions and thezef
reduce the tree depth. This is a tradeoff between serverdodd
delay.

5. MULTIPLE DOWNLOADING PEERS

We have studied the two extreme cases in Sections 3 and 4,
where the peer selection has the most and least freedongcresp
tively. In this section, we study the general case.

5.1 Homogeneous Users: Maximum Stream-
ing Rate and Minimum Server Upload

We start with a homogeneous users scenario, where U, =
---=UN = U. Perhaps surprisingly, when all the peers have the
same uplink capacity, the peer number constraint does raoitgeh
the minimum server load and the maximum supported rate.

Theorem 6. When user uplink capacities are homogeneous, the
minimum server load and maximum supported rate are the same a
in the unconstrained case, independent of M gr M

Proof. The unconstrained peer selection case gives performance
bounds for constrained peer selection. We show that thasedso
are achievable in the homogeneous uplink case even withdisé m
strict peer selection constrainé, = 1. Therefore the bounds must
be achievable for alM andM;, because the multi-tree fdfd; = 1
is also a valid multi-tree for gener andM; values.

When peers have the same uplink capacity, Theorem 2 reduces
to

Smin(r) = max(t,N(r —U)), (32)



and Theorem 3 reduces to
Fmax(S) = min(S ). (33)

These values fawl; = 1 is the same as the values for unconstrained
peer selection. a

S+NU

5.2 Homogeneous Users: Minimum Tree

Depth

We have seen in Section 4 that the biggest effect of restgcti
peer selection is the increase in tree depth. We now studiyebe
depth for general £ M < N — 1 and homogeneous uplinks. Some-
times the exact value of the minimum tree depth cannot begixe
alytically, and we give upper and lower bounds that are vioyec
to each other.

The server has no limit on the number of connections, but ia use
can upload to at mos¥l peers, so a substream tree is a number
of M-ary trees with the roots connected to the server. In order to
minimize the tree depth, we need to divide the users into ag/ma
groups as possible where each group form$/aary tree without
increasing the server load. We give upper and lower boundkeon
maximum number of groupstimax and Hmin, and the maximum
number of peers in a group is bounded by

N
Nmin := "%-‘ )

=
Hmin ’

Since all the users are identical, we can build differensgeglam
trees by rotating the users within each group. So the swwstre
trees all have the same depth, which is also the multi-tr@¢hde
The following lemma gives the tree depth:

(34)
and

Nmax:= " (35)

Lemma 5. If a group of n homogeneous users form an M-ary tree
with the root connected to the server, then the minimum tegéhd
is given by

n

fnM):= { Mogw (M — 1)n+1)]

When different substream trees are formed by rotating theesus
in the M-ary tree, then the minimum multi-tree fanouyt has the
following upper bound:

minM; < M+ (f(n,M) —2)(M — 1),

ifM=1,
iftM > 1.

We have the following theorem for the minimum tree depth with
identical users:

Theorem 7. Suppose one user has at most M children in any sub-
stream tree, and that all users have the same uplink capékity
Then, the minimum depth that achieves the minimum serveiioa

1. IfN <2, then Dpin=N.
NU

2. If N> 2and r< y=, then Dnin = f(N,M), and
minM; <M+ (f(N,M)-2)(M —-1).

3. IfN>2andr> {4

5, then
f(Nmim M) <Dmin< f(Nmax7 M)7
and

minM; < M + (f (Nmaxx M) —2)(M — 1),

H_H N N ]

max'  min’ “min’ " max

H_H N N ]

vs. Ulr, N=100 JH N vs. Ulr, N=1000
max min min max

—H —H
max me

— —H
min

—]
min

N
m

900 .

- —-H
min

800

T}
min

N
max

700

600
50— - - - - ————
400
300
200 -

100

Figure 6: The values ofHmax, Hmin, Nmin @nd Nmax versusU /r
for N=100and N = 300. We can see thatNmin and Nmax are
close to each other which means the bounds in Theorem 7 are
tight.

where Nin and Nnax are defined in (34) and (35), and

e = [8(52)]
o = |

Proof. We prove this theorem under the three different cases. In
the first two cases we cannot divide tNenodes into groups; in
case 3 we can.

Case 1:If N=1, thenDmjn = 1. If N = 2, thenDmjn = 2. For
bOth, Dmm =N.

Case 2:WhenN > 2 andr < NU/(N —2), we have

Smin = max(r,N(r—U)) < 2r.

So there exists at least one substream tree in which theragmve
loads to only one user, i.e., there is only one branch; otiservif

the server uploads every substream at least twice, we wavé h
s> 2r and there is a contradiction. From Lemma 5 the minimum
depth isf(N,M).

Case 3:We first check the lower bound. N(r —U) >r, then
there is a substream that the server transmits to at fibgt—
U)/r] users. This means that there is a substream that the server
transmits to at mostimax users. Therefore at least one user who
receives the substream from the server is responsible &singait
(possibly through multiple hops) to at ledst,i, — 1 other users.
From Lemma 5, we havBmin > f (Nmin, M).

We then look at the upper bound. We have

{H:MJ (r—u)> [ﬁ] (r—u)>r.

Therefore we can divide the users inthin groups without in-
creasing the server load. From Lemma 5, we h&ygn <
f (Nmax M). O

Theorem 7 gives an upper bound and a lower bound, rather than
the exact expression, dDnn for case 3. We check numerically
whether the bounds are tight and Figure 6 shows the result. Fo
N = 100 andN = 300, we varyU /r from 0 to 1. The plots show
that the bounds are very tightlnin and Nmax are close to each
other, and they grow closer for larghc This meansf (Nmin, M)
and f (Nmax M) are close to each other.



m

Tnax VS 8 N=9, U=[U1,8,7,6,54,3,2,2] Mo VS M. N=9, =10, U=[U1,8,7,6,54,3,2,2]

—+—U1=10

— % -U1=20

U1=40

0 U180
—7—U1=160

max

Fo— kS — ¥ - — % — % —

= —M=3U1=40
— = - Unbounded,U1=40|
/] M=3U1=10
/ Unbounded,U1=10|

Figure 7: The maximum supported rate as functions of server
load (left figure) and degree bound (right figure). In both fig-
ures, we haveN = 9 users, fix the upload bandwidths for users 2
to 9, and vary user 1's bandwidth. The last two curves overlap
in both plots.

In Section 4, we already saw the tradeoff between server load

and minimum tree depth fovl = 1 andM = 1. Theorem 7 further
shows the tradeoff betwedvh and the minimum tree depth.

5.3 Heterogeneous Users

We have considered single downloading peer and heterogeneo
users case in Section 4.1. Similar to (12) and (13), for gener
M > 1, the maximum upload rate of uses

Ui(M) := min(Mr,U;), (36)

and the lower bound f@min(r,M) underM > 1 degree bound is:

max(nNr—iUi(M))

max(r,Nr%imin(Mr,Ui)> . (37

S"nin("v M) Z

It is shown in [16] that this bound is in fact tight.
Similar to Theorem 3 in Section 4.2, given the minimum server
load, we have the following result on maximum supported: rate

max(S M) = { rSnin(Sg(k*,M)) :I gi % (38)
where
andk* is the minimumk such that
Uk < Mg(k,M) and Uy <MS. (40)

Given the minimum server load, similar to Theorem 4, we can
also show that, for a given streaming ratender the degree bound
M > 1, the minimum depth among all trees that achieve the mini-
mum server loadmin(r,M) is

f(vaM) S Dmin S f(N7M)7 (41)

whereN’ := . The proofs of the maximum streaming

_ N
Lsmin(“M)J

bounds are plotted in Figure 7. The figure on the left is theimax
mum streaming rate as a function of server capacity, undferdi
ent tree out-degree bounds and user uplink capacities. plbiis
shows that when user uplink capacities are close, the tree ou
degree bound has little effect. The bound has effect when the
user uplink capacities differ significantly. This is beaatise con-
straint on peer selection causes some high user uplink itgpabe
under-utilized. The figure on the right is the maximum striggm
rate as a function of tree out-degree bound, for differeat uplink
capacities. We observe that in each case, there is a vaMelaft if

the degree bound is increased beyond this value, there igindg
maximum supported streaming rate. This is because whergknou
peers download from high capacity users to fully utilizeithelink
capacities, allowing more connections does not help theamrmanr
streaming rate. In addition, when the maximum streaming isat
limited by the server capacity, increasing user uplink cépaor

the degree bound cannot help.

6. RELATED WORK

The concept of peer-assisted live streaming has receivetdoé |
attention in recent years. The application scenarios declPTV
[18, 19, 20, 21, 22], video-on-demand [23, 24, 5, 25], anceid
conferencing [26]. Our effort focuses on the analysis afdascale
IPTV systems. Peer-assisted IPTV systems can be tree-f&&ed
28, 7], where the tree structure is constructed and maedacen-
trally and explicitly, mesh-based [29, 30], where each petects
partners to trade packets like BitTorrent and the systera doeex-
plicitly construct and maintain a tree structure, or treesmhybrid-
based [31]. For a comparison of tree and mesh, see [32]; for an
overview of challenges and approaches in current large-®2P
streaming, see [2].

While there is much work on system design and measurement
studies of a peer-to-peer streaming system, few papersandtie-
oretical analysis and fundamental limitations of peeisasd live
streaming system. In [6, 7], the maximum supported rate-with
out degree bound is studied; [6] further develops a stoichfstd
model to consider peer churn; and [26] extends the uncanstta
performance study to video conferencing scenario. In thfzep
we first bring peer selection constraint or outgoing degraend
into the framework, and derive the optimal performance uniife
ferent peer selection constraints by first giving the pentamce
bounds and then constructing multi-trees to achieve thedmu
Note that although the bounds are achieved by tree-based alg
rithms, they also apply to mesh-based algorithms. Thezefbese
bounds not only are optimal values for tree-based algosthmt
also can server as a benchmark to compare mesh-basedratgorit

7. CONCLUSION AND FUTURE WORK

In this paper, we have studied three performance metrica: mi
imum server load, maximum supported rate, and minimum tree
depth, under three cases: unconstrained peer selectigfe gieer
selection, and constrained peer selection. We derive lsoond
these metrics and prove the bounds are tight. The analydiseon
performance bounds also suggest the tradeoffs betweeddptie,
server load, and degree bound.

There are several directions to extend this work. First, are c
sider a single streaming rate in this paper, and we can extend

rate and the bounds on the minimum tree depth are available indiscussion to multi-layer streams, where users with difiedown-

[17].

link capacities receive different number of layers of theean.

Some numerical examples on the maximum supported rate asSecond, we consider a single session, and we can extend tie mul

functions of server load, user uplink bandwidths, and degre

session conferential scenario. Finally, we can study maréhe



tradeoffs between tree depth, server load and degree bdked,
exploring the 3-D tradeoff region.

8.

We thank Jiayue He, Professor Gary Chan, and Dr. David John-

ACKNOWLEDGMENT

son for their useful comments.

9.
[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Y.-C. Tu, J. Sun, M. Hefeeda, and S. Prabhakar, “An
analytical study of peer-to-peer media streaming systems,
ACM Trans. Multimedia Comput. Commun. Appbl. 1,

no. 4, pp. 354-376, 2005.

X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A
Measurement Study of a Large-Scale P2P IPTV System,”
IEEE Transactions on Multimedi2007.

T. Silverston and O. Fourmaux, “Measuring P2P IPTV
Systems,” irProceedings of the 17th International workshop
on Network and Operating Systems Support for Digital
Audio & Videqg 2007.

P. Rodriguez, S.-M. Tan, and C. Gkantsidis, “On the
Feasibility of Commercial, Legal P2P Content Distributfon
ACM SIGCOMM Computer Communication Revigal. 36,
no. 1, pp. 75-78, 2006.

K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann,

D. Towsley, and M. Valleo, “Push-to-Peer Video-on-Demand
system: Design and EvaluatiodBEE Journal on Selected
Areas in Communications, special issue on Advances in
Peer-to-Peer Streaming Systere07.

R. Kumar, Y. Liu, and K. Ross, “Stochastic Fluid Theory fo
P2P Streaming Systems,” infocom 2007 (Anchorage,
Alaska), 2007.

J. Li, P. A. Chou, and C. Zhang, “Mutualcast: An efficient
mechanism for one-to-many content distribution, AGM
SIGCOMM ASIA Workshq2005.

B. Cohen, “Incentives Build Robustness in BitTorrerm,”
First Workshop on the Economics of Peer-to-Peer Systems,
2003.

S. Assmann, D. Johnson, D. Kleitman, and J. Leung, “On a
Dual Version of the One-Dimensional Bin Packing
Problem,”Journal of Algorithmsvol. 5, pp. 502-525, 1984.
S. Assmann, “Problems in Discrete Applied Mathemadltics
in PhD Thesis(Massachusetts Institute of Technology,
Cambridge, MA), 1983.

J. Csirik and J. Frenk, “A dual version of bin packinggch.
Rep. 9029-a, Erasmus University of Rotterdam -
Econometric Institute, 1990.

M. R. Garey and D. S. Johnson, ““Strong” NP-Completanes
Results: Motivation, Examples, and Implication¥,’ACM
vol. 25, no. 3, pp. 499-508, 1978.

J. Csirik, J. B. G. Frenk, M. Labbé, and S. Zhang, “Two
Simple Algorithms for Bin Covering,Acta Cybern.vol. 14,
no. 1, pp. 13-25, 1999.

J. Csirik and V. Totik, “Online Algorithms for a Dual Vion
of Bin Packing,’Discrete Appl. Math.vol. 21, no. 2,

pp. 163-167, 1988.

J. Csirik and G. J. Woeginger, “On-line Packing and
Covering Problems,” ilbevelopments from a June 1996
seminar on Online algorithmgLondon, UK), pp. 147-177,
Springer-Verlag, 1998.

S. Liu, S. Sengupta, M. Chiang, J. Li, and P. A. Chou,

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

“Achieving streaming capacity in P2P.” Microsoft Research
Technical Report, April 2008.

S. Liu, M. Chiang, S. Sengupta, J. Li, and P. A. Chou,
“Streaming capacity for p2p with degree bound,’Annual
Allerton Conference on Communication, Control, and
Computing September 2008.

G. Dan, V. Fodor, and I. Chatzidrossos, “On the Perforcea
of Multiple-Tree-Based Peer-to-Peer Live StreamingEE
INFOCOM, pp. 2556-2560, May 2007.

X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “Insith
into PPLive: A Measurement Study of a Large-Scale P2P
IPTV System,” inProc. of IPTV Workshop, International
World Wide Web Conferenc2006.

S. Ali, A. Mathur, and H. Zhang, “Measurement of
commercial peer-to-peer live video streaming,” in
Proceedings of the Workshop in Recent Advances in
Peer-to-Peer Streaming (WRAIRS3D06.

T. Small, B. Liang, and B. Li, “Scaling laws and tradeififi
peer-to-peer live multimedia streaming,”MIULTIMEDIA
'06: Proceedings of the 14th annual ACM international
conference on MultimedjgNew York, NY, USA),

pp. 539-548, ACM, 2006.

T. Locher, R. Meier, S. Schmid, and R. Wattenhofer,
“Push-to-Pull Peer-to-Peer Live Streaming, 2hst
International Symposium on Distributed Computing (DISC)
September 2007.

C. Huang, J. Li, and K. Ross, “Peer-Assisted VoD: Making
Internet Video Distribution Cheap.” IPTPS’'07, Redmond,
2007.

C. Huang, J. Li, and K. W. Ross, “Can Internet
Video-on-Demand be Profitable?,” ACM SIGCOMM

(New York, NY, USA), pp. 133-144, ACM, 2007.

T. Piotrowski, S. Banerjee, S. Bhatnagar, S. Ganguig, a
R. Izmailov, “Peer-to-Peer Streaming of Stored Media: The
Indirect Approach,'SIGMETRICS Perform. Eval. Rev.

vol. 34, no. 1, pp. 371-372, 2006.

M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou,
“Utility maximization in peer-to-peer systems,” ACM
Sigmetrics2008.

V. N. Padmanabhan, H. J. Wang, P. A. Chou, and

K. Sripanidkulchai, “Distributing streaming media cortten
using cooperative networking,” IACM NOSSDAV(Miami
Beach, FL), May 2002.

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,

A. Rowstron, and A. Singh, “Splitstream: High-bandwidth
content distribution in a cooperative environment, AGM
SOSP’03(Lake Bolton, New York), October 2003.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum,
“DONet/CoolStreaming: A data-driven overlay network for
live media streaming,” ilEEE INFOCOM (Miami, FL),
March 2005.

M. Wang and B. Li, “R2: Random push with random
network coding in live peer-to-peer streamintdgEE

Journal on Selected Areas in Communications, Special Issue
on Advances in Peer-to-Peer Streaming Systenis25,

pp. 1655-1666, December 2007.

F. Wang, Y. Xiong, and J. Liu, “mTreebone: A Hybrid
Tree/Mesh Overlay for Application-Layer Live Video
Multicast,” inthe 27th International Conference on
Distributed Computing Systems table of contep@07.

N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiplesr



A comparative study of live P2P streaming approaches,” in
IEEE Infocom (Anchorage, AK), pp. 1424-1432, May 2007.

10. APPENDIX

In the appendix, we prove all the lemmas in the paper.

10.1 Proof of Lemma 1

We first give the following result.

Lemma 6. The Bottleneck Removal algorithm preserves the fol-
lowing invariant after each iteration:

§

g =V vi=12- N, V=012,

Proof. We prove the lemma by induction. Whén= 0, ui<|) +
51<|+)1 =r, as indicated by the streaming scheme

Suppose the claim holds fbe=t, e.g., u +s . When
| =t+1, the change of residual capacmes occurs only on those

edges which are on the trée. Consider a usetr, either (i,i +
t+1) _

1) €T, or (si+1) € . Asa result, eithen! u? —y or
S1t++11 —SE,)H) yt. By induction, we haveq (14 +s1t+1 ot _
Vi = C(t+1)_ 0

From Lemma 6, we have the following corollary:

Corollary 1. During each iteration of the Bottleneck Removal al-

gorithm, there exists k such that eithéPLbecomes Zero, orﬁ%l
becomes zero.

Proof. Given the wayk is chosen in step (3) of the Bottleneck Re-
moval algorithm (Table 3), we know thétis the starting point of
the bottleneck edge, whose residual capacity will be redit@weero

in step (14). a

We also need the following lemma:

Lemma 7. The Bottleneck Removal algorithm constructs a tree
which spans all N users in each iteration.

Proof. The essence of the proof is to show that step (6) and (11) in
the algorithm actually builds a tree branch which sustaistseam-
ing ratey(!) given in step (5).
We first show step (6) is correct. Consider any ysenetween
p andk on the pathp — --- — p’ — --- — k. The choice ofp

indicatess!!) — 0. According to Lemma e,u(F'yll +sg) —=ch >o.
0]

So u(;,ll > 0. Indeed,ug,{l > u,’. This justifies that the tree

branch can sustain a streaming rgfé. Step (7) guarantees that
the tree spans all users.

The justification of step (11) is similar, and we omit the groo
here. |

With Corollary 1 and Lemma 7, we finally can prove Lemma 1.

Proof. By Lemma 7, we have shown that the Bottleneck Removal
algorithm can correctly construct a spanning tree whictesns the
desired streaming rate as indicated by step (4). It remaishaw
that the algorithm terminates after a finite number of ifers, e.qg.,
L<N.

To see this, note that by Corollary 1, we know in each iteratio
there exists at least one numbesuch that eitheuf(') becomes

zero, orsk becomes zero. There akenumber of users on the
ring, so the total number of iterations cannot excékedAfter at

mostN iterations, all the residual capacities become zero, aad th
streaming scheme is realized by a multi-tree consisting gfN
trees. However, the maximum tree depth can be as larbe as]

10.2 Proof of Lemma 2

Proof. We prove Equation (21). From the definitiongtk) in (17),
we have

N N qUi+s
(N—k+ 1)Uy < ui+s+uksukgw.
iy N—k
=K1
Then,
S Ui+S SN Ui+SHUk
N—-k+1 N—-k+1
N1Ui+S
Z| k+1UI+S+Z kﬂk ZiN:k+1Ui+S
- N—k+1 N—-k

Following similar steps, we can prove (22) also.

10.3 Proof of Lemma 3

Proof. Suppose the Snowball algorithm stops aftersteps. We
already know that, after the Snowball algorithm stops, wesle-
ther (Case 1) all the nodes have been absorbed into the sihowba
ie.,

U]<_L1) — UZ(Ll) — =U <|—1)

N

or (Case 2) all the nodes in the snowball have zero remairang c
pacity, i.e.,

(L) _ L) _
Un=Ya=-
We will consider these two cases separately. Defipe= |s/r|,
then we can write

-=U") = 0 for some’ < J.

s=Hjr+q, (42)

whereq < r, and we know thal = N — Hj.
In Case 1, after stefp, the stream rate that is already supported
is

sl N, Ui—Nu _ Nr—s—Nu
J J ’

~ Nr—Hir—q—Nu Nu+q

J N J

Therefore, the
server load are

remaining stream rate to support and thduaisi

r(La) Nu+q ,
J
Nu+ H
sb) = Hir+q—Hy(r— 3 9—q+ Tl(Nquq).
After that, we can construdd substream trees, such that each tree

trims J nodes with rateu/J, and each node is trimmelitimes.
Then after thesbl substream trees, at the end of step=L1 + N,

we have used up all users’ uplink capacity, and the remairite
to support and the residual server load are

[ _ Nuta uld g
J N 3
H
sk = q+Tl(Nu+q)—NH1g
S L PN (Y
= Qg+ Jq_NJ_NI’ .



Obviously, the stream ratecan be supported in this case, as the
server has just enough remaining capacity to upload to dikathe
remaining rate. Therefore, the Snowball algorithm is sssfté for
Case 1.

In Case 2, after th&; steps, from (42) and the propersy=

ziNzl(r —U), the total supported rate is
ro (L
5L SN U -5 u
J

_ Nr—(Hir+aq)— sL,ut
J

_ st Vg

= r— 7\]

Therefore, the remaining stream rate to support and thdualsi
server load are

Ly (L1)
r(Ll) r— z y ) M , (43)
L1 N (L1)
st = Hir+q-H 5y = L2l Tt 5 9, .44)
=

Note that if the second case occurs, nodes D'tare always

trimmed, and thus(t2) > Ul("l).
Now we have the following lemma:

Lemma 8. Suppose after L steps, the remaining rate to supg)ort
the residual peer capacities, and the residual server loacr &

U<L1) i=12---,N,and g, respectively. If
L)
U]<_L1) S r(Ll) = ziilu‘i] ' +q (45)

then the residual bandwidth (server and peer) can supp@téh
maining rate with a multi-tree algorithm where in each trélee
branch number is at leastH

Proof. First, the condition in (45) is necessary, since otherwise,
U; < ris not fully utilized and the server load cannot be its mini-
mum value.

Second, we show this condition is also sufficient, i.e., veven
(45) is satisfied, there exists an algorithm to suppontith spin
after the trimd-whenever-possible strategy stops after steps.
We construct the)’ trees in the following way: in thg-th tree,
j=1,2---,7, nodesi to j are non-leaf nodes and their residual

capacities are trimmed, and nodes 1 to N are leaf nodes. The
stream rate of thg-th node isUj(') —U]-@l, and as a resulf, uses

up its capacity after thg-th tree. This way, one substream tree uses
up one node’s capacity and after tifetrees, the capacities of all
nodes are used up, and in this process, the total serverdqaited

is

USIN=3)+U) U (N=T +1)

+ot (U —ufMy(N=-1)

J J
N1 - Sub—uOn_ S ud
( ) iZQ i 1 i; i

If the condition in (45) is satisfied, then we have

’j(.iui(l) +q)_iwn
2
_ N- JJZU
- N J iu +q)+q=st),

g <

where the last equality comes from (44). Therefore, theesdoad
required to use up all users’ capacities does not exceedritjie o
nal residual server load. This indicates that our usershkpbads
are maximized, and thus the algorithm is efficient in termsif-
imizing server load. It is also easy to see that the streaer rat
supported by the minimum server logg. |

From Lemma 8, we know that the Snowball algorithm is success-
ful if the second case is reached. Therefore, we have coatplbe
proof of Lemma 3. a

10.4 Proof of Lemma 4

Proof. The proof is straightforward: Denote Isf};,, the minimum
rate the server needs to upload to node€gjph=1,2 --- |H. Then
from Theorem 2, we have

Shin = max(r,; (r=up),

and the minimum server load $in= SH_; S
If (29) is satisfied, then

Smin = igB(f ~Uj) = ii(f —-Up)",

and thus the minimum server upload is not affected by thatedl
H-division.

In the other direction, i§min is not affected, thesmin= S ic(r —
Ui), and we need the condition in (29). |

10.5 Proof of Lemmab

Proof. First, if M = 1, then the nodes form a tandem and the depth
isN.

Second, iM > 1, then the maximum number of nodeglitevels
is1+M+---4+M9~1 = (M9 —1)/(M —1). The minimum depth is
the smallestl such than < (MY —1)/(M — 1). Therefore we have
D > [logy (M — 1)n+1)] = f(n,M).

We next show thaD = f(n,M) is achievable. The case fit=1
is trivial, and we only consider thigl > 1 case here. Consider the
following algorithm: VI € {1,2,--- ,n}, substreani is such that
the server sends only to pekerand the substream rate y&) =
y=min(U/(n—1),r/n). For substream 1, the tree is a depth-first
traversal of all peers from 1 to, as illustrated in Figure 8. For
substream tree 2, all the peers perform a left shift, i.eer pakes
the position of peefi — 1) in the first tree, where
ifi>1,
ifi=1.

-9 ={ "

For the remaining substream trees, the left-shift strategyinues

to apply, i.e., in tre¢, each peertakes the position of pe¢r— 1)+

in treel — 1. So each node takes each position once inMary

tree if all then trees are considered. Therefore the total upload rate
of a user in all the substream trees is the same as the totadipl



N /\ P

0
¢
1
l
v |

3 7 1\ 20 24 29 33 37
SN A I /NI N
456 891012131417 18 1921 22 23 2526 27 30 31 32 34 3538 39 4(

Figure 8: The optimal strategy under M peer constraint. This
is an example forM = 3, n=40.

rate of all users in a single substream tree. USe- (n— 1)y =
min(U, (n—1)r/n), for alli.

If r <nU/(n—1), theny =r/n, and thesen substreams are
enough to support the streaming rateThe server’s upload rate
iss=nr/n=r = syjp and for the peersyy =r(n—1)/n<U. If
r >nU/(n- 1), then for each pedr u; = U, and the(n+ 1)-th
substream of ratg =r —nU/(n— 1) is needed, which the server
sends to everybody. Then each peer has a download rate

d=n Y +r v =r
' h-1 n—1 "~
and the server has a upload rate
U U
s=n(r—-n—-)+n——-=n(r—u).
(r=n——3)+n-——3 =n(r-U)

Therefore, a streaming rate otan be supported with a multi-tree
depth off(n,M). We haveDmn = f(n,M) in case 2.

Finally, for the depth-first tree and left-shift algorithome peer
hasM children in each substream, and in the superposition of all
the N or N+ 1 substreams, one peer has at nidst (f(n,M) —
2)(M — 1) children. The reason is that, whenever the node is in
depthd, its children are the same, no matter in which substream
trees. In thg f(n,M) — 1)-th level, a node has at mast children.

For the above f(n,M) — 2) levels, in each level, one peer has at
most(M — 1) children not yet considered. Thus combining all the
superpositions, one node has at mbk#- (f(n,M) —2)(M — 1)
children. |



