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ABSTRACT
Peer-assisted streaming is a promising way for service providers to
offer high-quality IPTV to consumers at reasonable cost. Inpeer-
assisted streaming, the peers exchange video chunks with one an-
other, and receive additional data from the central server as needed.
In this paper, we analyze how to provision resources for the stream-
ing system, in terms of the server capacity, the video quality, and
the depth of the distribution trees that deliver the content. We de-
rive the performance bounds for minimum server load, maximum
streaming rate, and minimum tree depth under different peerse-
lection constraints. Furthermore, we show that our performance
bounds are actually tight, by presenting algorithms for construct-
ing trees that achieve our bounds.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Performance attributes]

General Terms
Algorithms, Design, Performance

Keywords
peer-to-peer, video, streaming, tree construction, IPTV

1. INTRODUCTION
The rapid growth in residential broadband capacity is enabling

the delivery of high-quality video over the Internet. Server-based
video delivery can provide performance guarantees, but theserver
infrastructure is expensive and may not scale well. Peer-to-peer
(P2P) technology, already widely used for file-sharing applications,
has the potential to reduce server and network load by allowing
consumers to download live video content from each other [1,2,
3, 4]. However, existing P2P streaming applications sufferfrom
low-quality video, periodic hiccups, and high delay [2, 3],making
it difficult for service providers to leverage the technology directly
in commercial offerings.
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In this paper, we argue that service providers can deploy apeer-
assistedstreaming architecture to offer high-quality video at a rea-
sonable cost. Fortunately, in carrier-based streaming services, the
provider has greater control over the peers, which may run onded-
icated equipment like set-top boxes [5]. This substantially reduces
the churn introduced by peers joining and leaving the system; in
fact, the provider may have the peers continue to distributea stream
after users stop watching the video. In addition, the provider can
influence, or even control, how the peers are organized into dis-
tribution trees for delivering the content. When the peers do not
have enough bandwidth to distribute all of the data, the provider
can have the server transmit more than one copy of the stream,as
needed. This allows the provider to ensure that all peers candown-
load the content at the target streaming rate. We believe that such a
hybrid, peer-assisted streaming architecture combines the best fea-
tures of server-based and peer-based solutions.

In an emerging field like peer-assisted streaming, we need tolay
the theoretical foundations that can drive the design of scalable sys-
tems in the future. In this paper, we derive performance bounds and
present optimal tree-construction algorithms that service providers
can use to provision scalable, peer-assisted streaming services. Our
analytical models focus on three main metrics:

• Server capacity: To reduce cost, the service provider wants
to minimize the upload rate of the server, while still ensuring
that all peers can receive the live stream at the target rate.

• Streaming rate: To offer high video quality, the service
provider wants the system to deliver video content at a high
rate, subject to the capacity of the server and the peers.

• Tree depth: To improve robustness and minimize latency,
the service provider needs distribution trees that limit the
number of intermediate peers between server and consumer.

We optimize these three metrics as a function of the number of
peers and their upload capacities, subject to different constraints on
how peers connect to each other. In particular, we study the effects
of restrictions on the number of downstream neighbors a peer can
serve, or the outgoing degree of a peer, to limit the state that each
peer must store and maintain, which is especially importantas the
system grows large. Our contributions in this paper are two-fold:

Exploring a rich design space:We model practical constraints
on the outgoing degrees of peers. We explore three types of con-
straints on this problem, as illustrated by the rows in Table1. We
first explore the two extreme design points where a peer can com-
municate with any neighbor, or only one neighbor. Then, we model
arbitrary constraints on the outgoing degrees.

Tight bounds on performance metrics:We derive the optimal
values for these metrics, and provide tree-construction algorithms



Min. server load (smin) Max. streaming rate (rmax) Min. tree depth (Dmin)
Unconstrained peer selection (Sec. 3)

√√ √√
[6, 7]

√√

Single downstream peer (Sec. 4)
√√ √√ √√

Multiple downstream peers (Sec. 5)
√√ √√ √

Table 1: Summary of results (“
√

” indicates upper and lower bounds, and “
√√

” indicates an exact optimal value).

r: Data rate of the streaming video.
S: Server capacity.
s: Actual server load.
N: Total number of users in the streaming system.
N : Index set of all the users,i.e.,{1,2, · · · ,N}
Ui : Uplink capacity of useri.
ui : Useri’s aggregate uploading rate.
di : Useri’s aggregate downloading rate.
xi j : Streaming rate from useri to user j .
si : Streaming rate from the server to useri.
L: Total number of trees in a multi-tree.
y(l): Rate of substream delivered by treel .
E(l): Set of leaf users in treel .
F(l): Set of non-leaf users in treel .

m(l)
i : Fanout or outgoing degree of useri in treel .

D(l): Depth of treel .
D: D = maxl D(l) is the depth of the multi-tree.
M: Maximum fanout of a tree.
Mt : Maximum fanout of a multi-tree.

Table 2: Main notation used in this paper.

that achieve the optimal values, for minimum server load, maxi-
mum streaming rate, and minimum tree depth, as illustrated by the
columns in Table 1. Our bounds are tight, except for the challeng-
ing case of minimizing tree depth under arbitrary constraints on the
outgoing degree of each peer.

The remainder of the paper is organized as follows. Section 2
presents our model and notation. Sections 3, 4, and 5 presentthe
bounds and algorithms for the three rows of Table 1, respectively.
Section 6 presents related work, and Section 7 concludes with a
discussion of future research directions. Without explicit explana-
tion, the proofs of all theorems are given in the main text, while the
proofs of all lemmas are postponed to the Appendix.

2. PEER-ASSISTED STREAMING MODEL
In this section, we present our model of peer-assisted stream-

ing, including the underlying assumptions and the notation(sum-
marized in Table 2).

2.1 Assumptions
In this paper, we analyze a peer-assisted live streaming applica-

tion managed by a service provider. Therefore we make the follow-
ing assumptions in our analysis:

• Peer churn can be ignored because provider-controlled set-
top boxes can be always on in the timescale of our problem.

• Each user receives each bit of the video stream only once.
Any repetitive downloading would make the system ineffi-
cient.

• Uplink bandwidth is the only bottleneck, because the back-
bone network is well-provisioned and the residential users
have asymmetric access bandwidths. In addition, if the
downlinks were the bottleneck, the users would not be able
to receive the entire video.

• We assume that the server can upload to as many users as
needed, with no constraint on the number of simultaneous
connections. In practice, the server may be implemented on
a collection of machines that distribute the video content to
different subsets of the users.

• We do not consider the location of the peers or the topology
of the network, though a real system should take these issues
into account to reduce congestion and delay.

When these assumptions hold, most bounds we derive in this paper
are tight. In a more general setting, our bounds still hold but may
not be tight; that is, our models still provide a lower bound for
server load and tree depth, and an upper bound on the achievable
streaming rate.

2.2 Constraints on Distributing the Stream
We consider a server that generates a video stream of rater and

N users who want to watch it. Throughout the paper we use user,
peer, and node interchangeably. We treat the data stream as fluid so
it is continuous and can be infinitely divided intosubstreamsto any
precision without loss of video quality or any overhead.

Let Sdenote the server capacity ands the actual server load. De-
note the uplink capacity of useri by Ui , the upload rate of useri by
ui , and the download rate of useri by di , for i = 1,2, · · · ,N. When
convenient, we useN to represent the set of users. For simplicity
of presentation, we assume that the uses are indexed according to
their uplink capacities, i.e.,U1 ≥U2 ≥ ·· · ≥UN.

Let xi j be the rate at which useri uploads to userj . For con-
venience definexii = 0 for all i. Let si be the rate at which useri
downloads from the server. We then have the following:

s =
N

∑
i=1

si ≤ S (1)

ui =
N

∑
j=1

xi j ≤Ui , for i = 1, · · · ,N (2)

di = si +
N

∑
j=1

x ji , for i = 1, · · · ,N (3)

Since users never download any data more than once, we have

di = r. (4)

Useri should not send back anything it receives from userj , so we
also have

xi j ≤ di −x ji (5)

One key feature of a P2P system is the conservation of flows, i.e.,
the total upload rate equals to the total download rate. Combining



Equations (1)-(4), we have

s+
N

∑
i=1

ui =
N

∑
i=1

si +
N

∑
i=1

N

∑
j=1

xi j =
N

∑
i=1

di = Nr (6)

The above equations and inequalities arenecessaryconditions
for the system to support a stream of rater, and they will be used
throughout the paper.

2.3 Distribution Trees for Stream Delivery
For sufficientconditions we can specify how each substream is

distributed among all the users. If we trace the forwarding of an in-
finitesimal substream, the delivery paths should form a treerooted
at the server and consisting of all the users, with each user appear-
ing in the tree exactly once. We call this asubstream tree, or simply
a tree. Other substreams may traverse different trees. In each tree,
a peer receives the substream from a singleparentand uploads the
substream to zero or morechildren.

Suppose there areL substream trees, and treel is responsible for
delivering a substream of ratey(l). This means each edge in treel
represents a flow of ratey(l). The superposition of these substream
trees form amulti-tree. In order for the multi-tree to support a video
stream of rater, we need

L

∑
l=1

y(l) = r. (7)

Let m(l)
i andm(l)

s be thefanouts, or theoutgoing degrees, which
are the numbers of children, of useri and the server, respectively,
in treel . Denote byF(l) the set of non-leaf users in treel , andE(l)

the set of leaf users in treel . Then we have

ui = ∑l :i∈F(l) m(l)
i y(l) , ∀i = 1, · · · ,N

s = ∑L
l=1 m(l)

s y(l) .
(8)

Let D(l) be thedepthof treel , or the maximum number of hops
in tree l from the server to the users, and letD = maxl D(l) be the
maximum depth of all the trees, or themulti-tree depth. ThenD is
the maximum number of hops a substream has to traverse to reach
all users. A higherD means a larger number of hops, which poten-
tially increases the end-to-end delay from the original source (the
server) to a receiver. Furthermore, a particular peer stopsreceiving
a substream when any of the ancestor nodes fail; thus a largerD
(i.e., more ancestors per peer) also negatively affect the robustness
of the content delivery tree structure. So we would likeD as small
as possible.

Let M be thesubstream tree degree bound, or the maximum al-
lowed number of children a user has in any substream tree, and
let Mt be themulti-tree degree bound, or the maximum allowed
number of distinct children a user has in the multi-tree.M reflects
the complexity in constructing the substream trees; whileMt re-
flects the total number of downstream peers a user has to serve. So
clearly we would likeM andMt small. But doing so may increase
the tree depthD, so there is a tradeoff between system complexity
(M andMt ) and performance (D). Note that for the same value,Mt
gives a stronger constraint, becauseMt ≤ a impliesM ≤ a.

3. UNCONSTRAINED PEER SELECTION
In this section, we study the simplest case where there is no limit

on the number of children each peer can have. This means, a user
can forward a substream it receives to any number of peers. The
maximum supported rate in this case has been studied in [6, 7]:

1 2 N
Tree N+1

S

2 3 N 1 13 2N N−1

S

1 2 N

S S

Tree 1 Tree 2 Tree N

Figure 1: The content distribution multi-tree to minimize t he
server load in Theorem 1. Case 1 uses tree 1 toN, and case 2
uses tree 1 toN+1. For both cases, the multi-tree depth is 2.

rmax(S) = min

(

S,
1
N

(

S+
N

∑
i=1

Ui

))

. (9)

We now answer the other two questions in the first row of Ta-
ble 1. The following theorem states the minimum server load as
well as the minimum multi-tree depth needed, when supporting a
streaming rater:

Theorem 1. Let smin(r) denote the minimum server load that can
support a stream of rate r, then

smin(r) = max

(

r,Nr−
N

∑
i=1

Ui

)

, (10)

and the minimum server load can be achieved by a multi-tree with
depth D= 2.

Proof. Our proof technique is inspired by [6]. We first show that
Equation (10) is a lower bound, and then show it is achievableby
trees of depth 2.

The server has to supply the original stream, sos≥ r. From (6)
we have

s= Nr−
N

∑
i=1

ui ≥ Nr−
N

∑
i=1

Ui .

Therefore

s≥ max

(

r,Nr−
N

∑
i=1

Ui

)

.

To show that the bound is achievable we consider two cases, and
construct a multi-tree of depth 2 for each case. Case 1 is when
the rater is small enough to be supported by the peers’ upload
capacity and the server does not need to inject extra bandwidth into
the system, i.e.,s= r; Case 2 is when the rate is high enough that
the server must inject extra bandwidth, i.e.,s= Nr−∑N

i=1Ui > r.
Case 1:r ≥ Nr−∑N

i=1Ui , or

r ≤ 1
N−1

N

∑
i=1

Ui . (11)

We divide the stream of rater into N substreams, with thei-th
substream having rate Ui

∑N
j=1U j

r. The server sends substreami to

useri, who distributes it to all the otherN−1 users. The multi-tree
implementation is shown in Figure 1 and it uses trees 1 through N.



Now we check that the uplink capacity constraints are satisfied.
The server uploads each substream only once, so its upload rate is
s= r. The upload rate of useri is

ui =
Ui

∑N
j=1U j

r · (N−1) ≤ Ui

∑N
j=1U j

·
N

∑
j=1

U j = Ui ,

where the inequality is due to (11).
Case 2:r < Nr−∑N

i=1Ui , or

r >
1

N−1

N

∑
i=1

Ui .

We divide the stream of rater into N + 1 substreams, with the
i-th substream having rateUi/(N− 1) for i = 1,2, · · · ,N and the
(N+1)-th stream having rater−∑N

i=1Ui/(N−1). The server sends
substreami to useri, for i = 1,2, · · · ,N, who distributes it to all
other N− 1 users. In addition, the server sends substream(N +
1) to all users. The multi-tree implementation is demonstrated in
Figure 1 and it uses trees 1 through(N+1).

Now we check that the uplink capacity constraints are satisfied.
For useri, the upload bandwidth is

ui = Ui/(N−1) · (N−1) = Ui .

The server sends each of the firstN substreams once and sends the
last substreamN times. So

s=
N

∑
i=1

Ui

N−1
+N

(

r −
N

∑
i=1

Ui

N−1

)

= Nr−
N

∑
i=1

Ui .

In both cases each substream traverses at most two hops soD =
2.

Naturally, a system with unconstrained peer selection supports
the highest streaming rate, and given a rate, it requires thelowest
server load and the lowest multi-tree depth. Therefore, Theorem 1
provides a benchmark for the cases in the rest of this paper. Note
that D = 2 is the minimum multi-tree depth that can utilize peer
uplink bandwidth, since ifD = 1, peers only download from the
server and do not upload to each other.

4. SINGLE DOWNSTREAM PEER
Section 3 studied unconstrained peer selection, i.e.,M = N−1.

In a real system, we want to limit the number of peers becauseN
can be large. A node should be allowed to upload to only a small
number of peers to limit the amount of states it has to store and
maintain.1 So this section studies the other extreme case of single
peer selection, i.e.,M = 1 or Mt = 1.

The constraintM = 1 means that a user can upload to one peer
in each substream tree, but in the multi-tree (superposition of the
substream trees) can upload to many peers. The constraintMt = 1
means that a user can upload to only one peer in the multi-tree.
So, Mt = 1 is a stronger constraint. Luckily, for minimum server
load (Section 4.1) and maximum streaming rate (Section 4.2), the
two constraints have the same optimal value. But for minimum
tree depth, they give different answers (Section 4.3 forM = 1 and
Section 4.4 forMt = 1).

4.1 Minimum Server Load
We first determine the minimum server load required to support

a streaming rater. Similar to the analysis in the unconstrained case,

1For example, in BitTorrent [8], a node uploads to at most five
peers simultaneously.
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Figure 2: The optimal logical topology for single downloading
peer constraint.

in order to achieve the minimum server load, we need to maximize
each user’s uploading rate. Since each user can upload to only one
peer, the maximum upload rate of useri is

Ûi := min(r,Ui) . (12)

Therefore, similar to the proof in Theorem 1, the lower boundfor
smin under theM = 1 constraint is:

smin(r) ≥ max

(

r,Nr−
N

∑
i=1

Ûi

)

= max

(

r,
N

∑
i=1

(r −Ui)
+

)

, (13)

wherea+ := max(0,a).
This bound is in fact achievable so we have the theorem:

Theorem 2. When a user can upload to at most one peer in each
substream tree, to support a streaming rate r, the minimum server
load is

smin(r) = max

(

r,
N

∑
i=1

(r −Ui)
+

)

. (14)

In particular, if r ≥ U1, the M= 1 constraint does not affect the
minimum server load.

Proof. We show that the bound is achievable by considering two
cases.

Case 1:r ≤UN−1. We havesmin(r) = r, which is achievable by a
single tree in a chain topologyserver→ 1→ 2→···→N−1→N
with rater.

Case 2: r > UN−1. Supposer lies betweenUk−1 andUk, i.e.,
Uk−1 > r ≥Uk (if k = 1 then we haver ≥U1). Then,Ûi = r, ∀i < k,
andÛi = Ui , ∀i ≥ k. This means that theM = 1 constraint reduces
the maximum upload rate for peers 1 tok−1 (if k > 1), but not for
peersk to N, and the lower bound forsmin is max

(

r,∑N
i=k(r −Ui)

)

.
We show that this bound is achievable by a multi-tree algorithm

with the ring topology shown in Figure 2. In this ring, we call
nodei −1 thepredecessorof nodei, andi +1 thesuccessorof i.2

Each node uploads only to its successor, and downloads from its
predecessor, and if necessary, the server as well. Nodei’s download
rate isdi = r, ∀i = 1,2, · · · ,N. For the download/upload rates, we

2For the compactness of presentation, leti −1 representN, when
i = 1; and leti +1 represent 1 wheni = N.



The Bottleneck Removal Algorithm

(1) u(0)
i = ui = min(r,Ui ), s(0)

i = r −ui−1, ∀i
(2) for l = 0 toL−1 do

(3) k(l) = argmin{u(l)
i ,s(l)i : u(l)

i > 0,s(l)i > 0}
(4) Case (I): min{u(l)

i ,s(l)i : u(l)
i > 0,s(l)i > 0} = u(l)

k

(5) Lety(l) = u(l)
k .

(6) Let p(l) bek(l)’s closest ancestor, orp(l) = k(l),

s.t.s(l)
p(l) > 0. Construct a tree branch as

s→ p(l) → ··· → k(l) → ··· → q(l), where

q(l) = p(l) −1 or u(l)
q(l) = 0.

(7) If q(l) 6= p(l) −1, letk(l) = q(l) +1, repeat (6).
(8) Assign the constructed treel a streaming rate ofy(l).

(9) Case (II): min{u(l)
i ,s(l)i : u(l)

i > 0,s(l)i > 0} = s(l)k

(10) Lety(l) = s(l)k .
(11) Let p(l) bek(l)’s furthest descendant, orp(l) = k(l),

s.t.u(l)
p(l) = 0. Construct a tree branch as

s→ k(l) → k(l) +1→ ··· → p(l).
(12) If p(l) 6= k(l) −1, letk(l) = p(l) +1, repeat (11).
(13) Assign the constructed treel a streaming rate ofy(l).
(14) for i = 1 toN do

(15) u(l+1)
i = u(l)

i −y(l), if (i, i +1) is in treel .

s(l+1)
i = s(l)i −y(l), if (s, i) is in treel .

(16) end for
(15) end for

Table 3: The Bottleneck Removal algorithm for the construc-
tion of a multi-tree to achieve the lower bound on the minimum
server load.

have

ui−1 = xi−1,i = r ≤Ui−1 andsi = 0,∀i = 2, · · ·k (if k > 1),

ui−1 = xi−1,i = Ui−1 andsi = r −Ui−1,∀i = k+1, · · · ,N ,

uN = xN,1 =

{

UN if ∑N
i=k(r −Ui) > r ,

∑N−1
i=k (r −Ui) if ∑N

i=k(r −Ui) ≤ r ,

s1 = r −uN .

There are two cases foruN because if∑N
i=k(r −Ui) > r, thens >

r and all the peers fromk to N should upload at their capacities
in order to minimize the server load, and thusuN = UN, while if
∑N

i=k(r −Ui) ≤ r, then the server load is bounded by the streaming
rater, and thus peerN need not upload at capacity.

Now all peers have the download rater, and the server load is

s=
N

∑
i=1

si = max

(

r,
N

∑
i=k

(r −Ui)

)

,

which is the lower bound onsmin. So we only need to design a
multi-tree that achieves this rate allocation. Figure 3 illustrates an
example of constructing a multi-tree for a streaming systemwith
N = 6 users, by applying the Bottleneck Removal algorithm de-
scribed in detail below.

The Bottleneck Removal Multi-tree Construction Algorithm:
Consider the multi-tree construction algorithm in Table 3.In

each iteration we construct one tree that consumes thebottleneck
link capacity on the ring or the spoke. The residual capacityof that
edge becomes zero and will be omitted in the following iterations.
The algorithm terminates after at mostN iterations and produces at
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Figure 3: An example to illustrate the construction of a multi-
tree using the Bottleneck Removal algorithm. Whenl = 1, the
bottleneck is (s,3) and case II applies (k = 3, p = 2). We build
a tree branch ass→ 3 → . . . → 2, and the residual capacities
of edges on the branch are reduced byy1 = 2. When l = 3, the
bottleneck is (5,6) and case I applies (k = 5, p = 5,q = 6). We
build a tree branch from s to 5 and get stuck at6. We forward
to the next user1, and repeat the same process, which results
in another tree branch s→ 1 → 2 → 3 → 4. Note that in each
iteration, all users will be covered in the spanning tree rooted
at s.



mostN substream trees. The residual capacities on the ring and the
spoke are initialized to the rates in Figure 2. In each iteration we

pick an edge with the minimum residual capacity. Letu(l)
i denote

the residual bandwidth on edge(i, i +1) after thel -th iteration and

s(l)i denote the residual bandwidth of edge(server, i) after thel -th

iteration. For convenience, we defineu(0)
i = ui ands(0)

i = si .
Consider the following two cases: (I) If the bottleneck edgeis on

the ring, we search counter-clockwise for the first user (sayp(l)) to
whom the server’s residual bandwidth is non-zero. We build atree
branch starting froms to p(l) and stop at a user (sayq(l)) where we
cannot expand anymore. We repeat the same process from the next
userq(l) + 1, till all the users are spanned. (II) If the bottleneck
edge is on the spoke, we build a branch of the tree starting from the
spoke until we cannot expand anymore. We move on from where
we get stuck to the next user and repeat the same process. After
building a tree, the residual capacities on the ring and the radius are
deducted by the streaming rate of the tree.

In the ring topology (Figure 2), and the multi-tree we constructed
above, each user has at most one child, therefore satisfyingthe
M = 1 constraint. The correctness of our multi-tree construction
is shown by the following lemma:

Lemma 1. The rate allocation in the ring topology, as illustrated
in Figure 2, can be achieved by applying the Bottleneck Removal
algorithm to construct a multi-tree within N iterations.

From the proof in the Appendix, the Bottleneck Removal algo-
rithm runs in polynomial time. This lemma shows that the lower
bound ofsmin in (13) is achievable, proving Theorem 2.

Remark: Theorem 2 gives the minimum server load under the
M = 1 constraint. In either the chain or the ring topology which
achieves the minimum server load, the multi-tree maximum fanout
is also 1. Since under the strongerMt = 1 constraint, the minimum
server load should be greater than or equal to that under theM = 1
constraint, this implies that whenMt = 1, the minimum server load
is also given by Equation (14).

4.2 Maximum Streaming Rate
Finding the maximum supported rate is in some sense the dual

of finding the minimum server load. Similar to minimizing the
server load, to achieve the maximum streaming rate, the peeruplink
bandwidth should be utilized as much as possible. Under theM = 1
constraint, the upper bound for a supported streaming rater is

r ≤ min(S,
1
N

(S+
N

∑
i=1

Ûi)) , (15)

where the maximum upload rate of useri is Ûi given in (12).
The bound is achievable butÛi is a function ofr, so the expres-

sion forr is not straightforward. We have the following theorem:

Theorem 3. When a user can upload to at most one peer in each
substream tree, for a given server upload capacity S, the maximum
supported streaming rate is

rmax(S) =

{

S if S≤UN ,
min(S,g(k∗)) if S> UN ,

(16)

where

g(k) :=
S+∑N

i=kUi

N−k+1
. (17)

and k∗ is the minimum k such that

S≥
N

∑
i=k

(Uk−Ui) and S≥Uk . (18)

In particular, if k∗ = 1, then the M= 1 constraint does not affect
the maximum supported rate.

Note thatk∗ is well defined ifS> UN, because (18) holds for
k = N. The indexk∗ is the dividing point between peers with up-
link capacities smaller than or equal tormax and peers with uplink
capacities larger thanrmax. If Uk−1 > r ≥Uk, then

1
N

(S+
N

∑
i=1

Ûi) =
1
N

(S+kr +
N

∑
i=k+1

Ûi) ,

so we haver = g(k). Now we give the detailed proof.

Proof. Case 1 is when the maximum upload rates of all nodes are
affected by the single peer restriction. Case 2 is when none of the
maximum upload rates are affected by the single peer restriction.
Case 3 is when some maximum upload rates are affected while
others are not. We combine cases 2 and 3 at the end.

Case 1: if S≤ UN, i.e., if the server uplink capacity is smaller
than the smallest peer uplink capacity, then the streaming rate is
limited by server uplink capacity, and we havermax= S. This rmax
is obviously achievable, as a simple chain topology (s→ 1→ 2→
··· → N) works.

Case 2: if S is very large, such that a rater ≥ U1 can be sup-
ported, thenÛi = Ui ,∀i ∈ N , and thus theM = 1 constraint does
not reduce the maximum upload rate of each user. Therefore, we
can achieve the same maximum supported rate as in the uncon-
strained case (Equation (9)). The necessary condition forr ≥ U1
is

min(S,
1
N

(S+
N

∑
i=1

Ui))≥U1 ⇔S≥
N

∑
i=1

(U1−Ui) andS≥U1 , (19)

which means that the rater = U1 can be supported.
Case 3: if UN < S< max(U1,∑N

i=1(U1 −Ui)), thenUN can be
supported whileU1 cannot, and thus we haveU1 > rmax > UN.
Consider a given rater ∈ (UN,U1), supposer lies betweenUk−1
andUk, i.e., Uk−1 > r ≥ Uk. Then,Ûi = r, ∀i < k andÛi = Ui ,
∀i ≥ k. This means that theM = 1 constraint reduces the upload
rate for peers 1 tok−1, but not for peersk to N. From (15), we
have

r ≤ min(S,
1
N

(S+
k−1

∑
i=1

r +
N

∑
i=k

Ui)) ⇒ r ≤ min(S,g(k)) . (20)

Sincer ≥Uk, we have min(S,g(k)) ≥Uk, which means

S≥Uk andg(k) ≥Uk ⇒ S≥
N

∑
i=k

(Uk−Ui) .

So if k satisfies (18), min(S,g(k)) gives an upper bound forr. Now
we look for the tightest such upper bound, which happens to be
reached ifk = k∗.

We have the following property forg(k):

Lemma 2. Let g(k) be defined as in (17), then for any k< N,

g(k) ≥Uk ⇒ g(k) ≤ g(k+1) , (21)

g(k) ≤Uk ⇒ g(k) ≥ g(k+1) . (22)

From Lemma 2, ifk∗ is the minimumk such that (18) holds, then
Uk∗−1 > rmax≥Uk∗ , and the tightest bound onr is

rmax≤ min(S,g(k∗)) . (23)

Under case 3,U1 > r andk∗ > 1. However, if we remove the
U1 > r condition, and allowSto be sufficiently large such thatk∗ =



1, then (18) reduces to (19), and thus we can think of case 2 as a
special case of case 3 whenk∗ = 1.

The above analysis gives an upper bound forrmax. We already
mentioned that a simple chain topology achieves the upper bound
for case 1. For case 2 and 3, it is easy to see that the upper bound
in (23) can be achieved by the same ring topology as illustrated in
Figure 2, wherer = min(S,g(k∗)), and this ring topology can be
derived by the same Bottleneck Removal multi-tree construction
algorithm.

Remark: Similar to the minimum server load problem, the multi-
tree construction to achieve the maximum supported rate is either
a chain or a ring topology and the multi-tree fanout for each user
is 1, so we haveMt = 1. Therefore, the maximum supported rate
under a strongerMt = 1 constraint is also given by Equation (16).

4.3 Minimum Tree Depth for M = 1

In this subsection, we find the minimum multi-tree depthDmin
that achieves the minimum server loadsmin under the constraint
M = 1. We first give a lower bound forDmin, and then show that
the lower bound is achievable.

Suppose a multi-tree hasL substream trees, and the server up-
loads toH(l) peers in substream treel , which has ratey(l), l =
1,2, · · · ,L. We say there areH(l) branchesin this tree. After receiv-
ing the substream from the server, theseH(l) peers further upload
to the other peers. Since each peer has at most one child, there are
H(l) leaf nodes andN−H(l) non-leaf nodes in treel . Recall that
the set of leaf nodes isE(l) and the set of non-leaf nodes isF(l).

The depth of treel , denoted byD(l), is lower bounded by
⌈N/H(l)⌉, since there exists a branch containing at least⌈N/H(l)⌉
nodes, and in this branch the nodes form a chain. This lower bound
is tight, since evenly distributing all nodes among theH(l) branches
achieves it.

The depth of the multi-tree, denoted byD, is lower bounded as
in the following equation:

D = max
l

D(l) ≥ max
l

⌈

N

H(l)

⌉

=

⌈

N

minl H(l)

⌉

, (24)

and by evenly distributing nodes among branches in any tree,this
bound is also tight. Note that for simplicity of notation, throughout
the paper, maxl or minl represents the maximization or minimiza-
tion over all substream treesl = 1,2, · · · ,L in a given multi-tree.
From (24), in order to minimizeD, we need to minimize the largest
D(l), or equivalently, maximize minl H(l).

We first give an upper bound on minl H(l) and thus a lower bound
on D. Suppose we construct a set of substream trees to supportr
with minimum server loadsmin, we have

r =
L

∑
l=1

y(l) ,

smin =
L

∑
l=1

H(l)y(l) .

So

smin ≥ min
l

H(l)
L

∑
l=1

y(l) = min
l

H(l)r ,

and

min
l

H(l) ≤ ⌊smin

r
⌋ .

Therefore we have the following lower bound on multi-tree depth:

D ≥
⌈

N

minl H(l)

⌉

≥
⌈

N
⌊ smin

r ⌋

⌉

. (25)

This gives a lower bound onD for any multi-tree depth. The
bound is in fact achievable, so we have the following theorem:

Theorem 4. For a given streaming rate r, under the M= 1 con-
straint, the minimum depth among all multi-trees that achieves the
minimum server load smin is

Dmin =

⌈

N
⌊ smin

r ⌋

⌉

. (26)

Proof. From (25), we haveD ≥ Dmin, whereDmin is defined in
(26). We now prove thatD = Dmin is achievable. Recall thatsmin =
max(r,∑N

i=1(r −Ui)
+). We consider two cases.

Case 1: smin < 2r. There is a substream tree with only one
branch, soDmin = N. The tree depth ofN can be achieved with
the ring topology in Figure 2.

Case 2:smin ≥ 2r. It is sufficient to construct a multi-tree such
that the streaming rater is supported bysmin and in each substream
treel = 1,2, · · · ,L, H(l) ≥ ⌊ smin

r ⌋.
Consider treel with H(l) branches. TheN−H(l) non-leaf nodes

upload to peers at ratey(l), and theH(l) leaf nodes do not upload.
Since each branch is a chain, once the leaf nodes are fixed, thenon-
leaf nodes can be evenly distributed among the branches so that
the depth of treel is ⌈ N

H (l) ⌉. This indicates that constructing a sub-

stream tree withH(l) branches is equivalent to selectingH(l) leaf
nodes and subtractingy(l) from the otherN−H(l) nodes’ capaci-
ties.

Since the server load is larger thanr, from Section 4.1 we must
have that peeri uploads atÛi = min(r,Ui). For a given rater, let k
be the smallest index such thatUk < r, i.e.,

U1 ≥U2 ≥ ·· · ≥Uk−1 ≥ r > Uk ≥ ·· · ≥UN .

Note that we must haveUN < r; otherwise we would havesmin =
max(r,∑N

i=1(r−Ui)
+) = r, contradictingsmin≥ 2r. Then the nodes

1, 2, · · · ,k−1 upload at rater and the nodesk,k+1, · · · ,N upload
at rates less thanr. So only the nodesk,k+ 1, · · · ,N can be leaf
nodes in substream trees and we only need to consider them when
constructing the trees. Therefore without loss of generality, we as-
sumer > U1.

Now we need an algorithm to construct the trees. Let

H1 := ⌊smin

r
⌋, J := N−⌊smin

r
⌋ . (27)

ThenJ is the maximum number of non-leaf nodes whose uplink
capacities will be used in a tree. We reduce the uplink capacity
of these nodes and the remaining is called residual capacity. The
idea is to equalize the residual capacities of the nodes so that in the
end they can all be consumed. We start with a particular node in
the middle and make more and more adjacent nodes have the same
residual capacity. Since the group grows like a snowball, wecall
this the Snowball Algorithm.

The Snowball Algorithm for Tree Construction:
We first introduce some notations on multi-tree construction.

Suppose we construct the multi-tree step by step, and by slightly
abusing notation, we usel to index the steps. In each step, there
may be one, or multiple substream trees constructed, but within
one step, the branch number in any substream tree is the same,de-
noted byH(l). We usey(l) to denote the supported rate in stepl ; use

U (l)
i to denote the residual capacity for peeri, i = 1,2, · · · ,N after

the l -th step; useδ (l), s(l), and r(l) to denote the total supported
rate, the residual server load, and the remaining streamingrate to
support, respectively, after thel -th step. Initially, forl = 0, we de-

fine δ (0) = 0, U (0)
i = Ui , i = 1,2, · · · ,N, s(0) = smin, andr(0) = r.



Then we have the following equations:

δ (l) = δ (l−1) +y(l) ,

s(l) = s(l−1) −y(l)H(l) ,

r(l) = r(l−1) −y(l) ,

U (l)
i =

{

U (l−1)
i if i ∈ E(l) ,

U (l−1)
i −y(l) if i ∈ F(l) ,

y(l+1) ≤ min(
s

H(l)
,U (l)

i , i = 1,2, · · · ,N) .

After L steps in a successful multi-tree construction (by successful,
we mean that the streaming rater is supported by the minimum
server load), we have the final stage, at whichs(L) = r(L) = 0, and

U (l)
i = 0, ∀i = 1,2, · · · ,N.
With the above notations at hand, we introduce the following

algorithm on the multi-tree construction: at step 1, we trimnode 1

to J, i.e., nodesJ + 1 to N are leaf nodes, such thatU (1)
J = U (1)

J+1.
Here, by “trim” we mean “reduce the residual uplink capacityof
the node”. This is easily done as we can sety(1) = UJ −UJ+1. At
step 2, we construct two trees with the same rate, one trims nodes 1
to J and the other trims node 1 toJ−1 andJ+1, and the trimming
stops when one of the two following cases occurs: either

U (2)
J−1 = U (2)

J = U (2)
J+1 ,

or

U (2)
J = U (2)

J+1 = U (2)
J+2 .

The first case occurs if

U (1)
J−1−U (1)

J ≤U (1)
J+1−U (1)

J+2 ,

and the second case occurs otherwise. In both cases, after step 2,
including theJ-th node, there are at least 3 nodes that have the
same residual capacity. We use the termsnowballto represent the
set of nodes whose residual capacities are the same as that ofthe
J-th node. Let similar trimming continue in latter steps: suppose
before thel -th step, the snowball containsm1 nodes, and there are
m2 nodes in front of the snowball and their residual capacitiesare
larger than that of the snowball. SinceJ-th node is in the snowball,
m1 + m2 ≥ J. In the l -th step,m1 substream trees with the same
rate are constructed, where each tree trimsJ nodes. Them2 nodes
in front of the snowball are trimmed in each tree, while each node
inside the snowball is trimmed inJ−m2 < m1 trees. This way, the
nodes in front of the snowball are trimmed faster than the nodes in-
side the snowball, and the nodes after the snowball are not trimmed
at all. Thel -th step stops if the node just before or just after the
snowball is absorbed into the snowball.

Two examples of this algorithm are given in Figure 4. A feature
of the Snowball algorithm is that the order of the residual capacities
of all nodes at any stage is the same as the order of the original
capacities, i.e.,

U (l)
1 ≥U (l)

2 ≥ ·· · ≥U (l)
N .

After a sufficient number of steps, sayK steps, the Snowball
algorithm stops at one of the following: either

U (K)
1 = U (K)

2 = · · · = U (K)
N = u,

or

U (K)
J′+1 = U (K)

J′+1 = · · · = U (K)
N = 0 for someJ′ < J .

In the first case, the snowball finally contains all the nodes;and in
the second case, before the snowball contains all the nodes,all the

Example 1:N = 5, r = 11,s= 34,H1 = 3,J = 2,q = 0.

Step(l) U (l)
1 U (l)

2 U (l)
3 U (l)

4 U (l)
5 δ (l) r(l) s(l)

0 10 5 (3) 2 1 0 11 34
1 8 (3 3) 2 1 2 9 28
2 6 (2 2 2) 1 4 7 22
3 3 (1 1 1 1) 7 4 13
4 ( 1

3
1
3

1
3

1
3

1
3) 29

3
4
3 5

5 (0 0 0 0 0) 21
2

1
2

5
2

6 (0 0 0 0 0) 11 0 0

Example 2:N = 5, r = 11,s= 30,H1 = 2,J = 3,q = 8.

Step(l) U (l)
1 U (l)

2 U (l)
3 U (l)

4 U (l)
5 δ (l) r(l) s(l)

0 10 9 3 (2) 1 0 11 30
1 9 9 (2 2) 1 1 10 28
2 7 6 (1 1 1) 3 8 24
3 4 3 (0 0 0) 6 5 18
4 1 0 (0 0 0) 9 2 9
5 0 0 (0 0 0) 10 1 5
6 0 0 (0 0 0) 11 0 0

Figure 4: Two examples for the Snowball algorithm. In the
tables,(·) indicates the snowball. In example 1, the snowball fi-
nally includes all nodes, and the multi-tree construction is suc-
cessful: it achieves the minimum server loadsmin = 34, and its
minimum branch number is H1 = 3. In example 2, all nodes
have zero residual capacity before the snowball includes all
nodes, and the multi-tree construction is successful: it achieves
the minimum server load smin = 30, and its minimum branch
number is H1 = 2.

nodes in the snowball have zero residual capacity. Since theJ-th
node is in the snowball, in the second case, onlyJ′ < J nodes have
positive residual capacities.

After the snowball algorithm stops, in both cases, we can further
construct trees with at leastH1 branches, i.e., with at mostJ nodes
trimmed, and we can prove that we can achieve both the minimum
server load and theHmin = H1 property for both cases. That result
is summarized in the following lemma:

Lemma 3. Using the Snowball algorithm, we can construct a
multi-tree such that the minimum server load is achieved, and the
branch number is at least H1 in any substream tree.

From the proof in the Appendix, the algorithm runs in polyno-
mial time. Lemma 3 completes the proof of Theorem 4.

We have found the lower bound onDmin for M = 1. If we let the
server upload rate be bigger thansmin, then following similar steps,
we can show that an equation similar to (26) holds:

Dmin =

⌈

N
⌊ s

r ⌋

⌉

. (28)

Equation (28) gives a tradeoff betweenDmin and s, or the delay
and the server load. This means in real systems, by increasing the
server capacity, we can achieve a smaller tree depth and a lower
delay.

4.4 Minimum Tree Depth for Mt = 1

We now study the minimum tree depth under theMt = 1 con-
straint. We show that the best strategy to reduce tree depth under
theMt = 1 constraint is to divide the original ring (see Figure 2) into
multiple rings while maintaining the minimum server load. Since
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Figure 5: An example to show the waterfilling strategy. Here,
H = 3, |B1| = 7, |B2| = 5, |B3| = 3, A = {1,2, · · · ,k−1}, and the
height of each bin represents the number of elements in the
bin. One-by-one, the elements ofA are put into the bin with
the least element (waterfilling). If |A| < 6, as in the left figure,
then the three bins are not flattened, andmax(|Gh|,h= 1,2,3) =
|B1|. If |A| ≥ 6, a in the right figure, then the three bins are not
flattened, andmax(|Gh|,h = 1,2,3) = ⌈N/H⌉.

the tree depth of a ring is the number of nodes in this ring, by di-
viding theN nodes into multiple rings, the multi-tree depth is the
maximum ring size. And to achieve a minimum tree depth, we need
to minimize the maximum ring size.

Before we give the minimum value of maximum ring size, we
first introduce further notation and terminology. Any subset P⊂N

is an index set, and we denote the number of its element by|P|. We
sayP is isolatedif no node inP uploads to or downloads from any
nodes outsideP. If the nodes inP form a ring topology, then the
depth ofP is |P|. For an integerH ≤ |P|, we call a set of index
sets{P1,P2, · · · ,PH} a division, or anH-division, of P, if all Pi,
i = 1,2, · · · ,H, are mutually exclusive and their union equalsP.

We define the two setsA and B: A contains the nodes whose
capacities are at leastr, and B contains the rest. SupposeA =
{1,2, · · · ,k− 1} and B = {k,k + 1, · · · ,N}, then |A| = k− 1 and
|B| = N− k+ 1. Consider anH-division of N into {G1, G2, · · · ,
GH}, and defineAh = Gh ∩ A and Bh = Gh ∩ B, then {Ah,h =
1,2, · · · ,H} is anH-division of A and{Bh,h = 1,2, · · · ,H} is an
H-division of B. If the H setsG1, G2, · · · , GH are isolated, i.e., no
cross set uploading/downloading, then we call{G1,G2, · · · ,GH}
an isolated H-divisionof N . We call an isolatedH-division ofN
to beefficient, if the minimum server load is not affected by mak-
ing G1,G2, · · · ,GH isolated. If the nodes in eachGh connect to be a
ring, by efficiently dividingN into G1,G2, · · · ,GH , the multi-tree
depth is reduced fromN to max(|Gh|, h = 1,2, · · · ,H).

The condition for an isolated division to be efficient is given in
the following lemma:

Lemma 4. The necessary and sufficient condition for an isolated
H-division to be efficient is

∑
i∈Bh

(r −Ui) ≥ r, ∀h∈ 1,2, · · · ,H . (29)

Note that for an efficientH-division, there are only requirements
on Bh,h = 1,2, · · · ,H, and no requirements onAh,h = 1,2, · · · ,H.
This means that once we divideB into H bins such that (29) is satis-
fied, we can arbitrarily put the nodes inA into theH bins. Given an
efficientH-division of B, the best strategy of puttingA nodes into
the bins is thewaterfilling strategy, illustrated in Figure 5, which
minimizes max(|Gh|,h = 1,2, · · · ,H). From the waterfilling strat-
egy, for any fixed efficient division ofB into {Bh,h = 1,2, · · · ,H},
without loss of generality, supposeB1 has the most elements, i.e.,

|B1| = maxh |Bh|, then the minimum multi-tree depth is

Dw =

{

⌈N/H⌉ if |A| ≥ ∑H
h=2(|B1|− |Bh|) ,

max(|Bh|,h = 1,2, · · · ,H) otherwise,
(30)

where the subscriptw stands for waterfilling. The first case corre-
sponds to the scenario that theH bins are filled to be flat, and the
second corresponds to the scenario that the bins are not flattened so
the highest original bin gives the largest height of the filled bins.

The problem of finding the minimumDw is strongly-NP hard,
because the first case, i.e., when|A| ≥ ∑H

h=2(|B1| − |Bh|), is
strongly-NP hard. In the first case, minimizingDw is equivalent
to maximizing the number of binsH, such that in each binh,
∑i∈Bh

(r −Ui) ≥ r. This is the classic bin covering problem, or
the dual bin packing problem [9, 10, 11], which is known to be
strongly-NP hard [12]. There are polynomial time approximation
algorithms [13, 14, 15].

Suppose we can find minDw, then we get a upper bound onDmin.
Since the set of multi-trees under theMt = 1 constraint is a subset
of that under theM = 1 constraint, from (26), we know that the
⌈ N
⌊ smin

r ⌋⌉ lower boundsDmin. Then, we have the following theorem:

Theorem 5. For a given streaming rate r, under the Mt = 1 con-
straint, the minimum depth among all multi-trees that achieve the
minimum server load smin satisfies the following bounds:

⌈

N
⌊ smin

r

⌋

⌉

≤ Dmin ≤ minDw , (31)

where the minimum of Dw is over all efficient divisions.

Lemma 4 is the condition for achieving minimum server load.
If the server uploads at a rate higher thansmin, then the condition
in Lemma 4 can be relaxed, and not all divisions need to satisfy
(29). This way we may be able to have more divisions and therefore
reduce the tree depth. This is a tradeoff between server loadand
delay.

5. MULTIPLE DOWNLOADING PEERS
We have studied the two extreme cases in Sections 3 and 4,

where the peer selection has the most and least freedom, respec-
tively. In this section, we study the general case.

5.1 Homogeneous Users: Maximum Stream-
ing Rate and Minimum Server Upload

We start with a homogeneous users scenario, whereU1 = U2 =
· · · = UN = U . Perhaps surprisingly, when all the peers have the
same uplink capacity, the peer number constraint does not change
the minimum server load and the maximum supported rate.

Theorem 6. When user uplink capacities are homogeneous, the
minimum server load and maximum supported rate are the same as
in the unconstrained case, independent of M or Mt .

Proof. The unconstrained peer selection case gives performance
bounds for constrained peer selection. We show that these bounds
are achievable in the homogeneous uplink case even with the most
strict peer selection constraint:Mt = 1. Therefore the bounds must
be achievable for allM andMt , because the multi-tree forMt = 1
is also a valid multi-tree for generalM andMt values.

When peers have the same uplink capacity, Theorem 2 reduces
to

smin(r) = max(r,N(r −U)) , (32)



and Theorem 3 reduces to

rmax(S) = min(S,
S+NU

N
) . (33)

These values forMt = 1 is the same as the values for unconstrained
peer selection.

5.2 Homogeneous Users: Minimum Tree
Depth

We have seen in Section 4 that the biggest effect of restricting
peer selection is the increase in tree depth. We now study thetree
depth for general 1≤ M ≤ N−1 and homogeneous uplinks. Some-
times the exact value of the minimum tree depth cannot be given an-
alytically, and we give upper and lower bounds that are very close
to each other.

The server has no limit on the number of connections, but a user
can upload to at mostM peers, so a substream tree is a number
of M-ary trees with the roots connected to the server. In order to
minimize the tree depth, we need to divide the users into as many
groups as possible where each group forms anM-ary tree without
increasing the server load. We give upper and lower bounds onthe
maximum number of groups:Hmax andHmin, and the maximum
number of peers in a group is bounded by

Nmin :=

⌈

N
Hmax

⌉

, (34)

and

Nmax :=

⌈

N
Hmin

⌉

. (35)

Since all the users are identical, we can build different substream
trees by rotating the users within each group. So the substream
trees all have the same depth, which is also the multi-tree depth.
The following lemma gives the tree depth:

Lemma 5. If a group of n homogeneous users form an M-ary tree
with the root connected to the server, then the minimum tree depth
is given by

f (n,M) :=

{

n if M = 1,
⌈logM((M−1)n+1)⌉ if M > 1.

When different substream trees are formed by rotating the users
in the M-ary tree, then the minimum multi-tree fanout Mt has the
following upper bound:

minMt ≤ M +( f (n,M)−2)(M −1) ,

We have the following theorem for the minimum tree depth with
identical users:

Theorem 7. Suppose one user has at most M children in any sub-
stream tree, and that all users have the same uplink capacityU.
Then, the minimum depth that achieves the minimum server load is

1. If N ≤ 2, then Dmin = N.

2. If N > 2 and r< NU
N−2, then Dmin = f (N,M), and

minMt ≤ M +( f (N,M)−2)(M −1) .

3. If N > 2 and r≥ NU
N−2, then

f (Nmin,M) ≤ Dmin ≤ f (Nmax,M) ,

and

minMt ≤ M +( f (Nmax,M)−2)(M −1) ,
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Figure 6: The values ofHmax,Hmin,Nmin and Nmax versusU/r
for N = 100 and N = 300. We can see thatNmin and Nmax are
close to each other which means the bounds in Theorem 7 are
tight.

where Nmin and Nmax are defined in (34) and (35), and

Hmax =

⌊

N

(

r −U
r

)⌋

,

Hmin =

⌊

N
⌈ r

r−U

⌉

⌋

.

Proof. We prove this theorem under the three different cases. In
the first two cases we cannot divide theN nodes into groups; in
case 3 we can.

Case 1: If N = 1, thenDmin = 1. If N = 2, thenDmin = 2. For
both,Dmin = N.

Case 2:WhenN > 2 andr < NU/(N−2), we have

smin = max(r,N(r −U)) < 2r .

So there exists at least one substream tree in which the server up-
loads to only one user, i.e., there is only one branch; otherwise, if
the server uploads every substream at least twice, we would have
s≥ 2r and there is a contradiction. From Lemma 5 the minimum
depth isf (N,M).

Case 3:We first check the lower bound. IfN(r −U) ≥ r, then
there is a substream that the server transmits to at most⌊N(r −
U)/r⌋ users. This means that there is a substream that the server
transmits to at mostHmax users. Therefore at least one user who
receives the substream from the server is responsible for passing it
(possibly through multiple hops) to at leastNmin− 1 other users.
From Lemma 5, we haveDmin ≥ f (Nmin,M).

We then look at the upper bound. We have
⌊

N
Hmin

⌋

(r −U) ≥
⌈

r
r −U

⌉

(r −U) ≥ r .

Therefore we can divide the users intoHmin groups without in-
creasing the server load. From Lemma 5, we haveDmin ≤
f (Nmax,M).

Theorem 7 gives an upper bound and a lower bound, rather than
the exact expression, onDmin for case 3. We check numerically
whether the bounds are tight and Figure 6 shows the result. For
N = 100 andN = 300, we varyU/r from 0 to 1. The plots show
that the bounds are very tight:Nmin and Nmax are close to each
other, and they grow closer for largerN. This meansf (Nmin,M)
and f (Nmax,M) are close to each other.
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Figure 7: The maximum supported rate as functions of server
load (left figure) and degree bound (right figure). In both fig-
ures, we haveN = 9 users, fix the upload bandwidths for users 2
to 9, and vary user 1’s bandwidth. The last two curves overlap
in both plots.

In Section 4, we already saw the tradeoff between server load
and minimum tree depth forM = 1 andM̂ = 1. Theorem 7 further
shows the tradeoff betweenM and the minimum tree depth.

5.3 Heterogeneous Users
We have considered single downloading peer and heterogeneous

users case in Section 4.1. Similar to (12) and (13), for general
M > 1, the maximum upload rate of useri is

Ûi(M) := min(Mr,Ui ) , (36)

and the lower bound forsmin(r,M) underM > 1 degree bound is:

smin(r,M) ≥ max

(

r,Nr−
N

∑
i=1

Ûi(M)

)

= max

(

r,Nr−
N

∑
i=1

min(Mr,Ui )

)

. (37)

It is shown in [16] that this bound is in fact tight.
Similar to Theorem 3 in Section 4.2, given the minimum server

load, we have the following result on maximum supported rate:

rmax(S,M) =

{

S if S≤ UN
M ,

min(S,g(k∗,M)) if S> UN
M ,

(38)

where

g(k,M) :=

{

S+∑N
i=kUi

N−Mk+M if k < N
M +1,

∞ otherwise,
(39)

andk∗ is the minimumk such that

Uk ≤ Mg(k,M) and Uk ≤ MS. (40)

Given the minimum server load, similar to Theorem 4, we can
also show that, for a given streaming rater, under the degree bound
M > 1, the minimum depth among all trees that achieve the mini-
mum server loadsmin(r,M) is

f (N′,M) ≤ Dmin ≤ f (N,M) , (41)

whereN′ :=

⌈

N
⌊ smin(r,M)

r ⌋

⌉

. The proofs of the maximum streaming

rate and the bounds on the minimum tree depth are available in
[17].

Some numerical examples on the maximum supported rate as
functions of server load, user uplink bandwidths, and degree

bounds are plotted in Figure 7. The figure on the left is the maxi-
mum streaming rate as a function of server capacity, under differ-
ent tree out-degree bounds and user uplink capacities. Thisplot
shows that when user uplink capacities are close, the tree out-
degree bound has little effect. The bound has effect when the
user uplink capacities differ significantly. This is because the con-
straint on peer selection causes some high user uplink capacity to be
under-utilized. The figure on the right is the maximum streaming
rate as a function of tree out-degree bound, for different user uplink
capacities. We observe that in each case, there is a value ofM that if
the degree bound is increased beyond this value, there is no gain in
maximum supported streaming rate. This is because when enough
peers download from high capacity users to fully utilize their uplink
capacities, allowing more connections does not help the maximum
streaming rate. In addition, when the maximum streaming rate is
limited by the server capacity, increasing user uplink capacity or
the degree bound cannot help.

6. RELATED WORK
The concept of peer-assisted live streaming has received a lot of

attention in recent years. The application scenarios include IPTV
[18, 19, 20, 21, 22], video-on-demand [23, 24, 5, 25], and video
conferencing [26]. Our effort focuses on the analysis of large-scale
IPTV systems. Peer-assisted IPTV systems can be tree-based[27,
28, 7], where the tree structure is constructed and maintained cen-
trally and explicitly, mesh-based [29, 30], where each peerselects
partners to trade packets like BitTorrent and the system does not ex-
plicitly construct and maintain a tree structure, or tree-mesh hybrid-
based [31]. For a comparison of tree and mesh, see [32]; for an
overview of challenges and approaches in current large-scale P2P
streaming, see [2].

While there is much work on system design and measurement
studies of a peer-to-peer streaming system, few papers workon the-
oretical analysis and fundamental limitations of peer-assisted live
streaming system. In [6, 7], the maximum supported rate with-
out degree bound is studied; [6] further develops a stochastic fluid
model to consider peer churn; and [26] extends the unconstrained
performance study to video conferencing scenario. In this paper,
we first bring peer selection constraint or outgoing degree bound
into the framework, and derive the optimal performance under dif-
ferent peer selection constraints by first giving the performance
bounds and then constructing multi-trees to achieve the bounds.
Note that although the bounds are achieved by tree-based algo-
rithms, they also apply to mesh-based algorithms. Therefore, these
bounds not only are optimal values for tree-based algorithms, but
also can server as a benchmark to compare mesh-based algorithms.

7. CONCLUSION AND FUTURE WORK
In this paper, we have studied three performance metrics: min-

imum server load, maximum supported rate, and minimum tree
depth, under three cases: unconstrained peer selection, single peer
selection, and constrained peer selection. We derive bounds on
these metrics and prove the bounds are tight. The analysis onthe
performance bounds also suggest the tradeoffs between treedepth,
server load, and degree bound.

There are several directions to extend this work. First, we con-
sider a single streaming rate in this paper, and we can extendthe
discussion to multi-layer streams, where users with different down-
link capacities receive different number of layers of the stream.
Second, we consider a single session, and we can extend to multi-
session conferential scenario. Finally, we can study more on the



tradeoffs between tree depth, server load and degree bound,like
exploring the 3-D tradeoff region.
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10. APPENDIX
In the appendix, we prove all the lemmas in the paper.

10.1 Proof of Lemma 1
We first give the following result.

Lemma 6. The Bottleneck Removal algorithm preserves the fol-
lowing invariant after each iteration:

u(l)
i +s(l)i+1 = c(l), ∀i = 1,2, · · · ,N, ∀l = 0,1,2, · · ·

Proof. We prove the lemma by induction. Whenl = 0, u(l)
i +

s(l)i+1 = r, as indicated by the streaming scheme.

Suppose the claim holds forl = t, e.g.,u(t)
i +s(t)i+1 = c(t). When

l = t + 1, the change of residual capacities occurs only on those
edges which are on the treeTt . Consider a useri, either (i, i +

1) ∈ Tt , or (s, i + 1) ∈ Tt . As a result, eitheru(t+1)
i = u(t)

i − yt or

s(t+1)
i+1 = s(t)

(i+1)
−yt . By induction, we haveu(t+1)

i +s(t+1)
i+1 = c(t) −

yt = c(t+1).

From Lemma 6, we have the following corollary:

Corollary 1. During each iteration of the Bottleneck Removal al-

gorithm, there exists k such that either u(l)
k becomes zero, or s(l)

k+1
becomes zero.

Proof. Given the wayk is chosen in step (3) of the Bottleneck Re-
moval algorithm (Table 3), we know thatk is the starting point of
the bottleneck edge, whose residual capacity will be reduced to zero
in step (14).

We also need the following lemma:

Lemma 7. The Bottleneck Removal algorithm constructs a tree
which spans all N users in each iteration.

Proof. The essence of the proof is to show that step (6) and (11) in
the algorithm actually builds a tree branch which sustains astream-
ing ratey(l) given in step (5).

We first show step (6) is correct. Consider any userp′ between
p and k on the pathp → ··· → p′ → ··· → k. The choice ofp

indicatess(l)p′ = 0. According to Lemma 6,u(l)
p′−1 +s(l)p′ = c(l) > 0.

So u(l)
p′−1 > 0. Indeed,u(l)

p′−1 > u(l)
k . This justifies that the tree

branch can sustain a streaming ratey(l). Step (7) guarantees that
the tree spans all users.

The justification of step (11) is similar, and we omit the proof
here.

With Corollary 1 and Lemma 7, we finally can prove Lemma 1.

Proof. By Lemma 7, we have shown that the Bottleneck Removal
algorithm can correctly construct a spanning tree which sustains the
desired streaming rate as indicated by step (4). It remains to show
that the algorithm terminates after a finite number of iterations, e.g.,
L ≤ N.

To see this, note that by Corollary 1, we know in each iteration,

there exists at least one numberk such that eitheru(l)
k becomes

zero, ors(l)k+1 becomes zero. There areN number of users on the
ring, so the total number of iterations cannot exceedN. After at

mostN iterations, all the residual capacities become zero, and the
streaming scheme is realized by a multi-tree consisting ofL ≤ N
trees. However, the maximum tree depth can be as large asN.

10.2 Proof of Lemma 2

Proof. We prove Equation (21). From the definition ofg(k) in (17),
we have

(N−k+1)Uk ≤
N

∑
i=k+1

Ui +S+Uk ⇒Uk ≤
∑N

i=k+1Ui +S

N−k
.

Then,

∑N
i=kUi +S

N−k+1
=

∑N
i=k+1Ui +S+Uk

N−k+1

≤ ∑N
i=k+1Ui +S+

∑N
i=k+1Ui+S

N−k

N−k+1
=

∑N
i=k+1Ui +S

N−k
.

Following similar steps, we can prove (22) also.

10.3 Proof of Lemma 3

Proof. Suppose the Snowball algorithm stops afterL1 steps. We
already know that, after the Snowball algorithm stops, we have ei-
ther (Case 1) all the nodes have been absorbed into the snowball,
i.e.,

U (L1)
1 = U (L1)

2 = · · · = U (L1)
N = u,

or (Case 2) all the nodes in the snowball have zero remaining ca-
pacity, i.e.,

U (L1)
J′+1 = U (L1)

J′+1 = · · · = U (L1)
N = 0 for someJ′ < J .

We will consider these two cases separately. DefineH1 := ⌊s/r⌋,
then we can write

s= H1r +q, (42)

whereq < r, and we know thatJ = N−H1.
In Case 1, after stepL1, the stream rate that is already supported

is

δ (L1) =
∑N

i=1Ui −Nu

J
=

Nr−s−Nu
J

,

=
Nr−H1r −q−Nu

J
= r − Nu+q

J
.

Therefore, the remaining stream rate to support and the residual
server load are

r(L1) =
Nu+q

J
,

s(L1) = H1r +q−H1(r −
Nu+q

J
) = q+

H1

J
(Nu+q) .

After that, we can constructN substream trees, such that each tree
trims J nodes with rateu/J, and each node is trimmedJ times.
Then after theseN substream trees, at the end of stepL2 = L1 +N,
we have used up all users’ uplink capacity, and the remainingrate
to support and the residual server load are

r(L2) =
Nu+q

J
− u/J

N
=

q
J

,

s(L2) = q+
H1

J
(Nu+q)−NH1

u
J

= q+
H1

J
q = N

q
J

= Nr(L2) .



Obviously, the stream rater can be supported in this case, as the
server has just enough remaining capacity to upload to all nodes the
remaining rate. Therefore, the Snowball algorithm is successful for
Case 1.

In Case 2, after theL1 steps, from (42) and the propertys =
∑N

i=1(r −Ui), the total supported rate is

δ (L1) =
∑N

i=1Ui −∑J′
i=1U (L1)

i

J

=
Nr− (H1r +q)−∑J′

i=1U (L1)
i

J

= r − ∑J′
i=1U (L1)

i +q

J
.

Therefore, the remaining stream rate to support and the residual
server load are

r(L1) = r −
L1

∑
l=1

y(l) =
∑J′

i=1U (L1)
i +q

J
, (43)

s(L1) = H1r +q−H1

L1

∑
l=1

y(l) = q+
∑J′

i=1U (L1)
i +q

J
H1 .(44)

Note that if the second case occurs, nodes 1 toJ′ are always

trimmed, and thusr(L1) ≥U (L1)
1 .

Now we have the following lemma:

Lemma 8. Suppose after L1 steps, the remaining rate to support,
the residual peer capacities, and the residual server load are r(L1),

U (L1)
i , i = 1,2, · · · ,N, and s(L1), respectively. If

U (L1)
1 ≤ r(L1) =

∑J′
i=1U (L1)

i +q

J
, (45)

then the residual bandwidth (server and peer) can support the re-
maining rate with a multi-tree algorithm where in each tree,the
branch number is at least H1.

Proof. First, the condition in (45) is necessary, since otherwise,
U1 < r is not fully utilized and the server load cannot be its mini-
mum value.

Second, we show this condition is also sufficient, i.e., whenever
(45) is satisfied, there exists an algorithm to supportr with smin
after the trim-J-whenever-possible strategy stops afterL1 steps.
We construct theJ′ trees in the following way: in thej-th tree,
j = 1,2, · · · ,J′, nodesi to j are non-leaf nodes and their residual
capacities are trimmed, and nodesj + 1 to N are leaf nodes. The

stream rate of thej-th node isU (l)
j −U (l)

j+1, and as a result,j uses
up its capacity after thej-th tree. This way, one substream tree uses
up one node’s capacity and after theJ′ trees, the capacities of all
nodes are used up, and in this process, the total server load required
is

s′ = U (l)
J′ (N−J′)+(U (l)

J′−1−U (l)
J′ )(N−J′ +1)

+ · · ·+(U (l)
1 −U (l)

2 )(N−1)

= U (l)
1 (N−1)−

J′

∑
i=2

U (l)
i = U (l)

1 N−
J′

∑
i=1

U (l)
i .

If the condition in (45) is satisfied, then we have

s′ ≤ N
J

(
J′

∑
i=1

U (l)
i +q)−

J′

∑
i=1

U (l)
i

=
N−J

J

J′

∑
i=1

U (l)
i +

N
J

q

=
N−J

J
(

J′

∑
i=1

U (l)
i +q)+q = s(L1) ,

where the last equality comes from (44). Therefore, the server load
required to use up all users’ capacities does not exceed the origi-
nal residual server load. This indicates that our users’ uplink loads
are maximized, and thus the algorithm is efficient in terms ofmin-
imizing server load. It is also easy to see that the stream rate r is
supported by the minimum server loadsmin.

From Lemma 8, we know that the Snowball algorithm is success-
ful if the second case is reached. Therefore, we have completed the
proof of Lemma 3.

10.4 Proof of Lemma 4

Proof. The proof is straightforward: Denote bysh
min the minimum

rate the server needs to upload to nodes inGh, h= 1,2, · · · ,H. Then
from Theorem 2, we have

sh
min = max(r, ∑

i∈Bh

(r −Ui )) ,

and the minimum server load issmin = ∑H
h=1 sh

min.
If (29) is satisfied, then

smin = ∑
i∈B

(r −Ui) =
N

∑
i=1

(r −Ui)
+ ,

and thus the minimum server upload is not affected by the isolated
H-division.

In the other direction, ifsmin is not affected, thensmin = ∑i∈B(r−
Ui), and we need the condition in (29).

10.5 Proof of Lemma 5

Proof. First, if M = 1, then the nodes form a tandem and the depth
is N.

Second, ifM > 1, then the maximum number of nodes ind levels
is 1+M + · · ·+Md−1 = (Md−1)/(M−1). The minimum depth is
the smallestd such thatn≤ (Md −1)/(M−1). Therefore we have
D ≥ ⌈logM((M−1)n+1)⌉ = f (n,M).

We next show thatD = f (n,M) is achievable. The case forM = 1
is trivial, and we only consider theM > 1 case here. Consider the
following algorithm: ∀l ∈ {1,2, · · · ,n}, substreaml is such that
the server sends only to peerl , and the substream rate isy(l) =
y = min(U/(n−1), r/n). For substream 1, the tree is a depth-first
traversal of all peers from 1 ton, as illustrated in Figure 8. For
substream tree 2, all the peers perform a left shift, i.e., peer i takes
the position of peer(i−1)+ in the first tree, where

(i−1)+ =

{

i−1 if i > 1,
n if i = 1.

For the remaining substream trees, the left-shift strategycontinues
to apply, i.e., in treel , each peeri takes the position of peer(i−1)+
in tree l −1. So each node takes each position once in theM-ary
tree if all then trees are considered. Therefore the total upload rate
of a user in all the substream trees is the same as the total upload
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Figure 8: The optimal strategy under M peer constraint. This
is an example forM = 3, n = 40.

rate of all users in a single substream tree. Soui = (n− 1)y =
min(U,(n−1)r/n), for all i.

If r ≤ nU/(n− 1), then y = r/n, and thesen substreams are
enough to support the streaming rater. The server’s upload rate
is s= nr/n = r = smin and for the peers,ui = r(n−1)/n ≤ U . If
r > nU/(n− 1), then for each peeri, ui = U , and the(n+ 1)-th
substream of ratey = r −nU/(n−1) is needed, which the server
sends to everybody. Then each peer has a download rate

di = n
U

n−1
+ r − nU

n−1
= r,

and the server has a upload rate

s= n(r −n
U

n−1
)+n

U
n−1

= n(r −U).

Therefore, a streaming rate ofr can be supported with a multi-tree
depth of f (n,M). We haveDmin = f (n,M) in case 2.

Finally, for the depth-first tree and left-shift algorithm,one peer
hasM children in each substream, and in the superposition of all
the N or N + 1 substreams, one peer has at mostM +( f (n,M)−
2)(M − 1) children. The reason is that, whenever the node is in
depthd, its children are the same, no matter in which substream
trees. In the( f (n,M)−1)-th level, a node has at mostM children.
For the above( f (n,M)−2) levels, in each level, one peer has at
most(M−1) children not yet considered. Thus combining all the
superpositions, one node has at mostM + ( f (n,M)− 2)(M − 1)
children.


