
Cabernet: Connectivity Architecture for Better Network
Services

Yaping Zhu∗ Rui Zhang-Shen∗ Sampath Rangarajan† Jennifer Rexford∗

∗Princeton University †NEC Labs America

ABSTRACT
Deploying and managing distributed network services is ex-
ceptionally challenging, even for existing providers that have
a large installed base of equipment. On one hand, a network
provider can offer services over its own network, albeit with
a relatively small geographic footprint. On the other hand,
despite having servers at many locations, a service provider
must rely on an underlying network that provides only best-
effort packet delivery. In this paper, we propose Cabernet
(Connectivity Architecture for Better Network Services), a
three-layer network architecture that lowers the barrier for
deploying wide-area services. We introduce the connectivity
layer, which uses virtual links purchased from infrastructure
providers to run virtual networks with the necessary geo-
graphic footprint, reliability and performance for the service
providers. As an example, we present a cost-effective way
to support IPTV delivery through wide-area IP multicast that
runs on top of a reliable virtual network.

1. INTRODUCTION
Deploying and running wide-area network services is im-

mensely challenging. Service providers typically must de-
ploy servers in various geographic locations and purchase
bandwidth from different network providers. If the service
becomes successful, the service providers must rapidly grow
their infrastructure to keep pace with demand. Moreover,
since best-effort packet delivery is not sufficient for many
real-time services, service providers must design their own
application-layer mechanisms to adapt to network perfor-
mance and reliability problems. Network providers, like
large ISPs, can avoid these problems by offering services
over their own dedicated network infrastructure [1, 2]. How-
ever, network providers have a limited geographic footprint,
restricting the services to customers in their own domain.

In this paper, we present Cabernet (Connectivity Archi-
tecture for Better Network Services), a three-layer network
architecture that lowers the barrier to deploying new wide-
area services. The core of this architecture is the connectivity
layer that enables service deployment in two main ways:

• Large geographic footprint: A connectivity provider
constructs a wide-area virtual network, spanning equip-

Service 1

Virtual Network

ISP A

Service 1 Service 2 Service 3

ISP B ISP C

Service Layer

Connectivity Layer

Infrastructure Layer

Figure 1: Hourglass Model of the Layered Architecture

ment owned and managed by multiple infrastructure
providers. This obviates the need for individual service
providers to form their own business relationships with
infrastructure providers. By carrying a large amount
of traffic on behalf of many service providers, a con-
nectivity provider can negotiate lower prices and make
more efficient use of the underlying resources.

• End-to-end control: With complete control over its
virtual network, a connectivity provider can run pro-
tocols and mechanisms that offer end-to-end perfor-
mance and reliability tailored to a particular class of
services (e.g., VoIP, gaming, and IPTV). Each service
provider can then deploy end-to-end services on its
own virtual network, constructed using the connectiv-
ity provider’s nodes and links.

Figure 1 illustrates the relationships between the different
layers in the Cabernet architecture, where the connectivity
provider’s virtual network forms the “narrow waist.” While
the figure illustrates a single connectivity provider, multiple
virtual networks operated by different connectivity providers
could run independently of each other.

The Cabernet architecture simplifies service deployment
by offering a simple abstraction for service providers. Each
service provider has the illusion of a dedicated, wide-area
virtual network that can easily expand as the service grows,
which substantially lowers the barrier to deploying new ser-
vices. The service provider can run “intradomain” protocols
over its virtual network, without regard for the many under-
lying infrastructure networks. The service provider’s virtual
network is not affected by underlying performance and reli-
ability problems, as those are handled by the lower layers.



Although quite different than today’s architecture, Caber-
net’s model of hosting virtual networks is a logical extension
to the existing model of hosting servers in data centers; in
Cabernet, not only computing resources, but also the whole
virtual network, are made available to service providers.

Realizing Cabernet introduces many challenges: How do
the connectivity providers build virtual networks, and what
do they need from the infrastructure providers? What is the
functionality required at the infrastructure routers or servers
to realize Cabernet with high performance? How can net-
work services run on this layered architecture? The rest of
the paper discusses how these challenges are addressed in
Cabernet design. We start with an overview of the connec-
tivity layer in Section 2, followed by the design of infrastruc-
ture node in Section 3 to implement the layered architecture.
Then, we use IPTV as a case study to illustrate how Caber-
net facilitates network service deployment in Section 4. We
discuss related work in Section 5 and conclude in Section 6.

2. THE CONNECTIVITY LAYER
In this section, we present the design of the connectivity

layer, beginning with an overview of its functionality. We
next describe how the connectivity layer constructs a vir-
tual network (from virtual nodes and links obtained from in-
frastructure providers). Then we discuss how the connectiv-
ity layer can provide end-to-end performance and reliability
(tailored to the needs of the service layer).

2.1 Overview of Connectivity Providers
The main responsibility of the connectivity layer is to build

virtual networks that span multiple infrastructure providers,
so that a service provider can lease the exact virtual network
it needs from a single connectivity provider, and have com-
plete visibility and control within this virtual network. Thus,
the connectivity layer significantly lowers the barrier of en-
try for service providers, as they do not need to interact with
multiple infrastructure providers. Many service providers
may have similar performance requirements, so a single con-
nectivity provider can run a single virtual network with cer-
tain performance guarantee, and lease “slices” of this net-
work to different service providers. This is more efficient
than each service provider managing its own (smaller) net-
work to achieve the desired performance. In addition, a ser-
vice provider can easily have end-to-end control in the vir-
tual network, even if the network’s footprint spans multiple
infrastructure providers.

A connectivity provider may obtain a large number of
nodes and a rich mesh of links from infrastructure providers,
and may use only a subset of them to provide a virtual net-
work to a service provider. Figure 2 shows an example. In
a virtual network (VN) customized for its needs, a service
provider can run its own routing protocol among the nodes,
and populate the forwarding tables accordingly to control
traffic flow. Even though Figure 2 shows only one virtual
network, a connectivity provider can support many virtual

P

A

M
Q

P

A

M
Q

N

B

Service VN

Connectivity VN

Figure 2: The infrastructure providers (ovals), the con-
nectivity virtual network, and a service virtual network

networks, presumably one for each service provider. To dif-
ferentiate the virtual networks in different layers, we call the
virtual network that a connectivity provider operates a con-
nectivity VN, and the virtual network that a service provider
operates a service VN.

A service provider may request that its virtual network
have certain reliability and performance guarantees. For ex-
ample, a service provider carrying Voice-over-IP (VoIP) and
gaming traffic may prefer a network with low latency and
low loss; a service provider that carries large files may re-
quest paths with high throughput. A connectivity provider
can obtain links requested by the service providers with the
desired properties directly from the infrastructure providers,
but sometimes it may not be possible or economical to do
so. Alternatively, the connectivity provider can set up tun-
nels and backup paths or use multipath routing to “create”
virtual links with the required properties.

2.2 Virtual Links From Infrastructure Layer
The connectivity layer builds a virtual network from the

virtual links and nodes it obtains from the infrastructure layer.
The virtual links can be within one infrastructure provider,
or span multiple of them, and may or may not come with
certain performance guarantees. The connectivity layer can
monitor these links’ performance to enforce accountability.

Virtual links from one domain. A single infrastructure
provider can provide a virtual link in several ways. 1) A
virtual link can be an optical circuit, realized by wavelength-
division or time-division multiplexing. Such virtual links are
limited by the optical fiber footprint. 2) The widely used
Multi-Protocol Label Switching (MPLS) can provide virtual
links (tunnels) between two nodes that are not directly con-
nected. 3) IP-in-IP encapsulation provides tunnels with best-
effort service. The first two methods can provide links with
protection and recovery mechanisms [3], as well as quality
of service (QoS) and bandwidth guarantees [4, 5].

Virtual links across domains. Virtual links can be pro-
vided across multiple infrastructure networks through col-
laboration of infrastructure providers. One option is to sig-
nal MPLS paths across multiple domains [6], and online

2



path computation can find paths to meet certain bandwidth,
latency, cost, or QoS constraints. Alternatively, neighbor-
ing infrastructure providers can negotiate to establish virtual
links that span their networks, and coordinate to switch the
virtual links to alternate paths in response to failures and
congestion [7].

Accountability. Accountability is established between the
infrastructure layer and the connectivity layer on whether
the virtual nodes and virtual links meet their performance
requirements. For a virtual link spanning two infrastruc-
ture providers, both of the providers are accountable and re-
sponsible for the link’s performance. To prevent the infras-
tructure provider from having persistent performance degra-
dation on the virtual links, the connectivity layer can use
probes and deploy path-quality monitoring protocols [8, 9]
to monitor whether the loss rate and delay of the virtual links
exceed their thresholds. This way, even if the performance
is allowed to degrade due to occasional network failures or
congestion, the infrastructure provider will be held responsi-
ble if the overall performance of the virtual links does not
meet expectations. Note that since the connectivity layer
only needs to verify the long-term performance of the in-
frastructure layer, it does not need to collect measurements
data and react in real time. Thus the overhead is much less
than real-time performance monitoring.

Besides the recovery mechanism and QoS support of the
virtual links, the connectivity layer may choose to receive
more support from the infrastructure layer. For example, in-
stead of simply monitoring performance on the virtual links
in the connectivity VN, the connectivity layer can subscribe
to the infrastructure layer to receive notification about changes
in network conditions (such as routing failure or network
congestions) [10]. Multiple connectivity VNs can also share
the same monitoring infrastructure at the infrastructure layer,
which helps improve the efficiency of monitoring.

2.3 Customized Service Virtual Networks
With the resources it obtained from the infrastructure providers,

a connectivity provider can build customized virtual networks
for the service providers. The connectivity layer can offer
service VNs with protection and recovery mechanism on the
virtual links. It can also offer virtual networks with cus-
tomized routing to select paths with QoS constraints, using
reactive routing protocols in spirit to RON [11, 12]. Services
may require special transmission of packets at the connectiv-
ity layer, such as multi-paths delivery, packet scheduling, or
transmitting duplicate packets. The connectivity layer can
also help service providers to perform load balancing and
traffic engineering in their service VN.

The connectivity provider has a range of options to pro-
vide service virtual networks with performance guarantees:
in one extreme, it can obtain virtual links with the desired
performance from the infrastructure providers, and just stitch
them together; in the other extreme, it may obtain virtual
links with no performance guarantees, and run its own pro-

Service VN
Data Plane

Service VN
Control Plane

A1 M1 Q1

Control Plane
Connectivity VN

P1 P2 P3

Infrastructure VN
Control Plane

X1 Y1 Z1

Connectivity VN
Data Plane

Infrastructure VN
Data Plane

Control
Planes

Data 
Planes

Infrastructure Node P

P4 P5 P6
A2 B1 Q2

P7 P8 P9

Figure 3: Systems Architecture of Infrastructure Node P

tocols to create virtual links with the desired performance.
Links from the infrastructure providers with performance
guarantees are likely more expensive, while running its own
protocols to provide such guarantees incurs management over-
head. Depending on the situation, the connectivity provider
can strike a balance between the two, and operate some-
where between the two extremes.

3. INFRASTRUCTURE NODE DESIGN
The infrastructure layer consists of networks operated by

individual infrastructure providers, and its basic functional-
ity is to host connectivity virtual networks over its physical
nodes and links. The infrastructure layer is responsible for
hosting the control-plane software, populating the routing
table to the forwarding plane, and providing virtual links to
direct packets between virtual nodes.

In this section, we focus on the node architecture of the
infrastructure layer. We first describe how to instantiate vir-
tual networks at different layers on the infrastructure nodes.
Then, we present the run-time support for the control planes
and data planes.

3.1 Instantiating Virtual Networks
A connectivity or service virtual network is composed of

a network topology, a control plane to compute routes, and a
data plane to forward packets. They can be implemented in-
side an infrastructure node by virtualization techniques [13,
14, 15]. The control plane is a process running inside a
virtual machine. Inside the virtual machine, interfaces are
configured as ends of virtual links according to the topol-
ogy. Figure 3 shows the architecture of infrastructure node
P from Figure 2. Three virtual machines are running in par-
allel for the service VN, the connectivity VN, and the in-
frastructure network respectively. The infrastructure layer
establishes virtual links on behalf of the connectivity layer,
and associates them to the interfaces that the connectivity
layer sees. For instance, in Figure 3, node P connects to
three virtual links in the connectivity VN: P4-A2, P5-B1

and P6-Q2. Thus, the infrastructure layer allocates three in-
terfaces, P4 to P6, in the virtual machine of connectivity
VN, and associates them to the interfaces of A2, B1, and
Q2, on the other end of the virtual links in the connectiv-

3



ity layer. Similarly, the connectivity layer establishes vir-
tual links on behalf of the service layer, and associates them
to the interfaces that the service layer sees. In the virtual
machine of the infrastructure network, interfaces P7 to P9

are associated with the physical interfaces on node P , which
are directly connected to the neighboring physical interfaces
X1, Y 1, and Z1, on nodes not shown in Figure 2.

Note that the virtual links in the service VN may not map
directly to the virtual links in the connectivity VN. For exam-
ple, the virtual link P -M in the service VN may map to the
virtual links P -Q-M as the primary path and P -A-M as the
backup path in the connectivity VN. Moreover, not all infras-
tructure nodes contain all of the three layers. For instance,
in Figure 2, the nodes in the infrastructure providers that do
not host connectivity layer nodes are omitted, and nodes B

and N only host the infrastructure layer and the connectivity
layer, and are not visible to the service VN. Thus, the infras-
tructure provider does not need all the capabilities on every
node inside its network, but only on a subset that it uses to
host the connectivity VNs and service VNs.

The infrastructure layer is responsible for resource alloca-
tion and admission control of the connectivity VN. Similar-
ily, the connectivity layer is responsible for resource alloca-
tion and admission control of the service VN. For example, a
connectivity provider which hosts two service VNs may own
60% of the CPU on the infrastructure node. The connectiv-
ity provider may decide to give 40% of its share of the CPU
to each service VN. In this case, both service VNs get 24%
of the total CPU on that infrastructure node. Traffic shaper
and queueing mechanisms may be employed by the infras-
tructure provider to achieve the desired bandwidth allocation
among the many connectivity VNs and service VNs.

3.2 Run-time Support for Virtual Nodes
Inside the virtual machines of different layers, the corre-

sponding provider can run any control-plane protocols. For
example, a infrastructure provider can run routing protocols
like OSPF and BGP, and a connectivity provider can run a
reactive routing protocol to build a reliable virtual network.
The virtual machines provide isolated address space and re-
sources for each control-plane process. Routing tables com-
puted by the control planes are populated in run time at the
corresponding data plane, as illustrated by the vertical ar-
rows in Figure 3.

Figure 3 illustrates how the data planes of different layers
are connected in an infrastructure node. Data packets may
have to pass through multiple data-plane stages, one for each
layer that exists in the node. Packets are passed between the
layers through encapsulation and decapsulation. When the
node receives a packet, the packet is decapsulated and de-
multiplexed to the top layer VN that the packet belongs to.
Then in order to find the interface where the packet should
leave the node, the node performs lookup from the top layer
down, encapsulating the packet along the way. Thus, the
data plane in the infrastructure node should provide hierar-

chical forwarding tables and packet lookup, as well as packet
encapsulation and decapsulation. Note that during the dif-
ferent stages of packet processing, the data packets can be
stored in memory, and only packet header and control sig-
nals need to be passed between the data plane elements.

4. CASE STUDY: IPTV DELIVERY
In this section, we use IPTV as a case study to illustrate

the effectiveness of building network services based on the
Cabernet architecture. We present the idea of running wide-
area IP multicast over a reliable virtual network to have ef-
ficient IPTV data delivery, and describe the control and data
planes running at different layers in Cabernet. We then com-
pare our design with existing IPTV deployment.

4.1 Multicast over Reliable Virtual Network
Wide-area deployment of IPTV service is especially chal-

lenging: multimedia distribution, especially broadcast TV
distribution, is characterized by high bandwidth requirement
and tight latency and loss constraints, even under failure con-
ditions. Therefore, network design for IPTV service must
meet the challenges of both reliability and good quality of
service. In terms of reliability, the challenge is to mini-
mize disruption after failure, including miminizing routing
convergence time and minimizing the churn in the multicast
distribution tree. As for quality of service, the challenge is
to adapt to changes in network conditions such as conges-
tion, and select routes to meet certain latency, loss rate, and
bandwidth requirements.

In Cabernet, we can provide a reliable wide-area virtual
network at the connectivity layer, so that service providers
can simply run IP multicast to distribute content in its own
service VN. This design makes the job of the service provider
simple. Upon failures in the infrastructure, links are rerouted
in the connectivity layer or below, transparent to the ser-
vice layer. The connectivity layer can dynamically adjust
to changes in network conditions (such as failures and con-
gestion) to ensure the QoS of the virtual links in the service
layer. Thus, a service provider can simply build a multicast
tree in its VN, and expect no churns and good QoS.

A service provider can run any multicast protocol (e.g.,
PIM) with complete control over its service VN, which re-
sembles a single network domain. Routes are computed to
map multicast group addresses to interfaces in the service
VN. The connectivity layer has various options to build a
reliable service VN, as discussed in Section 2.3.

Next, we describe how the data planes run in different
layers in Cabernet. As illustrated in Figure 3, data pack-
ets go through three stages in the data plane during lookup:
first, the multicast group address is mapped to one or mul-
tiple nexthop interfaces in the service VN and packets are
duplicated and encapsulated correspondingly; the service-
layer interface is then mapped to a nexthop interface at the
connectivity layer and packets are encapsulated correspond-
ingly; finally, the connectivity-layer interface is mapped to a

4



physical interface in the infrastructure layer and packets are
sent to the nexthop router.

The connectivity layer is responsible for handling failures
and congestion in the infrastructure layer. For example, sup-
pose in Figure 2, the performance of the connectivity-layer
virtual link P -Q degrades due to congestion. The connectivity-
layer node P detects this, and since the link is shared by two
service-layer virtual links P -Q and P -M , node P decides
to reroute link P -M through node A. The connectivity-
layer control plane updates the outgoing interface of link
P -M , and data packets will be routed accordingly. After
the change, the congestion on connectivity-layer link P -Q
is alleviated, and both service-layer links P -Q and P -M tra-
verse non-congested paths. This change is transparent to the
service layer, and no actions are required from the service
layer.

Although the three layers in Cabernet can operate inde-
pendently, in practice, cross-layer optimization can improve
the efficiency of utilizing network resource. For instance,
multicast in the service or connectivity layer may result in
multiple copies of the same packet traversing a physical link,
because multiple virtual links go through the same physical
link. To reduce bandwidth consumption, an infrastructure
provider can run multicast protocols within its own domain,
and provide that as a feature to the connectivity layer. Pro-
viding additional supports like this is a way for infrastructure
providers to compete with each other. Similarly, a connec-
tivity provider can run multicast in a service virtual network
on behalf of the service provider, and connectivity providers
can compete with each other based on the services they pro-
vide.

4.2 Comparison to Today’s IPTV Deployments
We now compare our design to existing IPTV deploy-

ments by network providers and service providers respec-
tively.

Network providers have deployed private networks to of-
fer cable-TV-like services [1, 2]. A common key design
element of these networks is the use of a single IP multi-
cast tree within a single network domain, which is efficient
in terms of bandwidth usage. For some failure scenarios,
especially single link failures, reliability can be achieved
by reroute through pre-computed backup paths. However,
building the private network infrastructure can be expensive,
and the service is still limited to the footprint of a single ISP.
Failure scenarios which are not computed in advance can
cause churns in the multicast tree and cause congestion. In
comparison, Cabernet can provide a large geographical foot-
print spanning multiple infrastructure providers, and achieve
reliability and good quality of service transparent to the ser-
vice virtual network.

Service providers have used their existing Content Distri-
bution Network infrastructure to provide live-streaming ser-
vices for their customers [16]. Service providers typically
deploy servers widely, and obtain bandwidth and connec-

tivity from multiple ISPs. Since only best-effort packet de-
livery is available in today’s IP networks, application-layer
mechanisms for circumventing network performance and re-
liability problems are used. There are at least three problems
with this approach: 1) It is inefficient to monitor perfor-
mance degradation from the application layer, due to limited
visibility into the networks. 2) The service providers have
to deploy a large number of servers in different geographi-
cal locations, in order to reroute through disjoint paths after
failures, which is infeasible for small service providers. 3)
Since IP multicast in wide-area networks is largely unavail-
able, application-layer multicast is commonly used, causing
inefficient use of network and server resources. In contrast,
in the Cabernet architecture, the connectivity layer has com-
plete visibility and control over its own virtual network, and
therefore can build service virtual networks that meet the re-
liability and performance requirements. In addition, multi-
cast can be provided by the lower layers to the service layer.
Thus, Cabernet lowers the barrier of entry for small service
providers.

Many Peer-to-Peer (P2P) systems [17, 18] have been used
for live streaming. P2P has the advantage of obtaining in-
herent scalability and geographical footprint from the partic-
ipating peers. But P2P suffers from poor performance [19],
because it relies on the best-effort routing in IP networks, it
is limited by the peers’ low uplink capacities, and the unpre-
dictable peer dynamics causes peer churns. In comparison,
Cabernet can provide high-quality IPTV service with great
reliability.

5. RELATED WORK
Several proposals have argued that the current Internet

is at an impasse, because new architectures cannot be de-
ployed, or even adequately evaluated. The architectural “plu-
ralists” [20, 21, 22, 23] use virtualization as a tool to in-
troduce multiple (possibly competing) designs. Along these
lines, Cabernet is most similar to the CABO architecture [23],
which consists of infrastructure providers (who manage the
physical infrastructure) and service providers (who deploy
network protocols and offer end-to-end services). We take
this argument one step further by advocating a middle layer
that (i) forms business relationships with the infrastructure
and service providers and (ii) runs customized protocols and
mechanisms to offer service providers virtual networks with
the necessary performance and reliability. The three-layer
architecture in Cabernet can also be viewed as an incarna-
tion of the virtual layers and meta-protocol abstractions pre-
sented in the Recursive Network Architecture [24].

Cabernet also relates to PlanetLab [25], a global experi-
mental platform that pools resources from different research
institutions to support experimental research on distributed
systems. Like Cabernet, PlanetLab has a separation between
infrastructure (i.e., servers and upstream connectivity pro-
vided by the participating institutions) and service providers
(i.e., the many “slices” that run on top of PlanetLab), as well

5



as a middle layer (i.e., the PlanetLab management software)
that forms relationships with both parties. Yet, Cabernet
takes this approach further by having a middle layer that (i)
constructs and runs a virtual network, including virtual links
and packet-forwarding logic, and (ii) presents a separate vir-
tual network to each service provider.

Cabernet is similar to “routing as a service” (ROSE) [26],
which offers flexible routing control by having third-party
providers compute end-to-end routes on behalf of their cus-
tomers. In comparison, the connectivity layer in Cabernet
not only computes routes on behalf of customers, but also (i)
constructs and runs its own virtual network spanning mul-
tiple infrastructure providers and (ii) hosts virtual networks
on behalf of multiple service providers. In contrast to ROSE,
both the connectivity providers and the service providers
have both control-plane and data-plane logic running directly
on the network elements.

6. CONCLUSION
In summary, Cabernet presents a virtual network abstrac-

tion for the deployment of new network services. For fu-
ture work, we are exploring more network services, and how
Cabernet can effectively support their wide-area deployment.
Example services of interest include VoIP, online gaming,
and security [27].

Currently, Cabernet only supports IPv4 packet forwarding
in its data planes. Network service may need dedicated hard-
ware support for enabling different addressing schemes and
special packet modification, since it is expensive to imple-
ment all these functions in software. We are exploring ways
for the infrastructure node to provide configurable and pro-
grammable hardware [14, 28], leaving the flexibility for the
connectivity layer to implement more customized functions
for services.

7. REFERENCES
[1] R. Doverspike, G. Li, K. Oikonomou, K. K. Ramakrishnan,

and D. Wang, “IP backbone design for multimedia
distribution: Architecture and performance,” in Proc. IEEE
INFOCOM, 2007.

[2] D. Wang, G. Li, and R. Doverspike, “IGP weight setting in
multimedia IP networks,” in Proc. IEEE INFOCOM, 2007.

[3] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network
Recovery: Protection and Restoration of Optical,
SONET-SDH, and MPLS. Morgan Kaufmann, 2004.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,
“Resource ReSerVation Protocol (RSVP).” RFC 2205,
September 1997.

[5] W. Liu, H. Karaoglu, A. Gupta, M. Yuksel, and K. Kar,
“Edge-to-edge bailout forward contracts for single-domain
internet services,” in Proc. International Workshop on
Quality of Service, 2008.

[6] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path Computation
Element (PCE)-Based Architecture.” RFC 4655, August
2006.

[7] R. Mahajan, D. Wetherall, and T. Anderson,
“Negotiation-based routing between neighboring ISPs,” in
Proc. Networked Systems Design and Implementation, 2005.

[8] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford,
“Path-quality monitoring in the presence of adversaries,” in
Proc. ACM SIGMETRICS, 2008.

[9] I. Avramopoulos and J. Rexford, “Stealth Probing: Efficient
Data-Plane Security for IP Routing,” in Proc. USENIX
Annual Technical Conference, 2006.

[10] Y. Zhu, J. Rexford, A. Bavier, and N. Feamster, “UFO: A
resilient layered routing architecture,” Tech. Rep.
TR-780-07, Princeton University, June 2007.

[11] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proc. Symposium on
Operating System Principles, 2001.

[12] “Sureroute.” http://www.akamai.com/dl/
feature sheets/fs edgesuite sureroute.pdf.

[13] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford, “In VINI veritas: Realistic and controlled
network experimentation,” in Proc. ACM SIGCOMM,
September 2006.

[14] J. S. Turner, “A proposed architecture for the GENI
backbone platform,” in Proc. Architectures for Networking
and Communications Systems, 2006.

[15] “Juniper Networks: Intelligent Logical Router Service.”
http://www.juniper.net/solutions/literature/
white papers/200097.pdf.

[16] L. Kontothanassis., R. Sitaraman, J. Wein, D. Hong,
R. Kleinberg., B. Mancuso, D. Shaw, and D. Stodolsky, “A
transport layer for live streaming in a content delivery
network,” Proceedings of the IEEE, vol. 92, no. 9,
pp. 1408–1419, 2004.

[17] PPLive. http://www.pplive.com.
[18] PPStream. http://www.ppstream.com.
[19] W.-P. Yiu., X. Jin, and S.-H. Chan, “Challenges and

approaches in large-scale P2P media streaming,” IEEE
Multimedia, vol. 14, no. 2, pp. 50–59, 2007.

[20] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A
blueprint for introducing disruptive technology into the
Internet,” in Proc. HotNets, 2002.

[21] T. Anderson, L. Peterson, S. Shenker, and J. Turner,
“Overcoming the Internet impasse through virtualization,”
IEEE Computer Magazine, vol. 38, pp. 34–41, April 2005.

[22] J. Turner and D. Taylor, “Diversifying the Internet,” in Proc.
IEEE GLOBECOM, 2005.

[23] N. Feamster, L. Gao, and J. Rexford, “How to lease the
Internet in your spare time,” ACM Computer Communication
Review, January 2006.

[24] J. Touch and V. Pingali, “The RNA Mataprotocol,” in IEEE
ICCCN (Future Internet Architectures and Protocols track),
2008.

[25] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir,
“Experiences building PlanetLab,” in Proc. Operating
System Design and Implementation, 2006.

[26] K. Lakshminarayanan, I. Stoica, and S. Shenker, “Routing as
a service,” Tech. Rep. CSD-04-1327, University of
California, Berkeley, January 2004.

[27] A. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure
Overlay Services,” in Proc. ACM SIGCOMM, 2002.

[28] J. Turner and et al, “Supercharging PlanetLab: High
performance, multi-application, overlay network platform,”
in Proc. ACM SIGCOMM, 2007.

6


