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Abstract

Recently, the microprocessor industry has moved toward multi-core or chip multipro-

cessor (CMP) designs as a means of utilizing the increasing transistor counts in the face

of physical and micro-architectural limitations. Despite this move, CMPs do not directly

improve the performance of single-threaded codes, a characteristic of most applications. In

effect, the move to CMPs has shifted even more the task of improving performance from

the hardware to the software.

Since developing parallel applications has long been recognized as significantly harder

than developing sequential ones, it is very desirable to have automatic tools to extract

thread-level parallelism (TLP) from sequential applications. Unfortunately, automatic par-

allelization has only been successful in the restricted domains of scientific and data-parallel

applications, which usually have regular array-based memory accesses and little control

flow. In order to support parallelization of general-purpose applications, computer archi-

tects have proposed CMPs with light-weight, fine-grained (scalar) communication mech-

anisms. Despite such support, most existing multi-threading compilation techniques have

generally demonstrated little effectiveness in extracting parallelism from non-scientific ap-

plications. The main reason for this is that such techniques are mostly restricted to ex-

tracting parallelism within local, straight-line regions of code. As observed in several limit

studies, local regions of code contain limited parallelism, and control dependence analysis

and multiple control units are necessary to extract most of the parallelism opportunities.

This thesis describes a general compiler framework for Global Multi-Threaded (GMT)

instruction scheduling, i.e. to simultaneously schedule instructions from a global region of

code to extract TLP for multi-threaded architectures. Our compiler framework is based

on a Program Dependence Graph (PDG) representation, efficient graph partitioning algo-

rithms, and novel multi-threaded code generation algorithms. Central to this framework

are our multi-threaded code generation algorithms, which produce efficient code for arbi-

trary partitions of the PDG into threads. Based on this framework, three thread-partitioning
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strategies for GMT instructions scheduling are proposed. The first one, called GREMIO,

extends list-scheduling to target multi-threaded architectures and to operate on global code

regions. The second technique, called Decoupled Software Pipelining (DSWP), extracts

pipelined TLP from arbitrary loop nests. We also propose Parallel-Stage DSWP, an exten-

sion of DSWP that allows multiple threads to concurrently execute the same stage of the

pipeline. These techniques are implemented in the VELOCITY compiler and evaluated on

an accurate CMP simulator built on top of validated Itanium 2 core models. The experi-

ments show that our techniques balance applicability and scalability differently, with each

technique resulting in the best speedup in different scenarios. Overall, the results demon-

strate the effectiveness of the proposed compilation techniques, with significant speedups

on a number of real benchmark applications written in C.
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Chapter 1

Introduction

Since their invention, computers have been used for an increasing number of applications.

Today, these uses range from embedded applications (e.g. car and aircraft control, voice

processing in cell phones) to desktop applications (e.g. Internet browsing, gaming) to su-

percomputer applications (e.g. weather forecast, seismic simulation). This wide adoption

of computers is a result of both their constant cost reduction and their continuous increase

in performance. This work focuses on improving the performance of applications on mod-

ern computers.

For the vast majority of the applications, performance improvements have mainly been

a result of two factors. First, and most importantly, processors have become faster due

to improvements in the process technology. The clock rate of processors has improved

from 5 KHz in the 1940s (ENIAC [111]) to 3 GHz in 2000s (Pentium 4 [45]). The second

factor for increase in performance is the constant improvement in the processors’ micro-

architecture (e.g. caches and branch prediction) and accompanying compiler technology.

Together, the effect of micro-architectural and compilation improvements is estimated to

account for 40% increase in performance per year [10]. Besides these two main factors,

in limited application domains that require extraordinary computing power and contain

abundant parallelism (e.g. physical simulations), supercomputers consisting of multiple

processors have been used to provide extra performance.
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This long-lasting scenario for improving performance is now changing. Recently, the

microprocessor industry has reached hard physical limits, including heat dissipation and

power consumption, that are preventing faster clock rates. Furthermore, more aggressive

micro-architectural techniques adversely affect these physical issues, both by requiring

more complex, power-hungry hardware components and by adding logic to the critical

path to execute instructions. Moreover, micro-architectural techniques generally provide

diminishing returns. Therefore, neither clock rate nor micro-architectural techniques are

contributing to significantly improve performance anymore. As a result, the performance

of most applications is not increasing at the same pace it used to for several decades. Fig-

ure 1.1 illustrates this effect on three generations of the SPEC CPU Integer benchmark

suite [99]. Each point in this graph represents a different machine. For each month in the

x-axis, the best performance among the machines reported during this month is plotted.

The different benchmark suites were normalized using common processors reported. The

two different trend lines are linear regressions. The steepest line was computed using the

processors released before 2004, and it represents the past performance trend. The other

line was computed for processors released starting in 2004, and it represents the current

performance trend.

The current reduction in the performance trend is a result of the aforementioned lim-

itations in both clock frequency and micro-architecture. Since these were the two main

sources of increase in performance, improving performance now lies on parallelism, which

was the third and far less important source of performance for decades.

The good news is that parallelism is becoming cheaper. With Moore’s Law’s con-

tinuous increase in transistor count per chip [63], multi-core processors have become the

norm. Multi-threaded and/or multi-core processors are found today even in desktops, lap-

tops, and cell phones. These parallel machines are available in most systems, even if the

users/applications do not fully utilize them. Furthermore, compared to traditional sym-

metric multi-processor (SMP) systems, the tightly integrated nature of single-chip multi-

2



S
P

E
C

C
P

U
In

te
g
er

P
er

fo
rm

a
n
ce

(l
o
g
a
ri

th
m

ic
sc

a
le

)

1994 1996 1998 2000 2002 2004 2006 2008
Year

CPU 1992
CPU 1995
CPU 2000

Figure 1.1: Performance trend of SPEC Integer benchmark suite on various machines re-

leased over time. Different versions of the benchmark suite were normalized using common

machines. Source data from SPEC [99].

processors brings the potential to exploit parallelism at finer granularities.

Despite the recent widespread availability of parallel machines, most existing applica-

tions do not benefit from this computation power. This fact is due to two main reasons:

the lack of applications written in parallel languages, and the restricted applicability of

automatic parallelization techniques.

Parallel applications can be obtained by having the programmer write applications in

parallel programming languages. Nevertheless, most applications are still written in se-

quential languages for the ease of programming. In parallel programming paradigms, the

programmer needs to reason about concurrency, communication costs, data locality and

to worry about new problems caused by a large number of possible interleavings of mul-

tiple executing threads. Common concurrency bugs include data races, deadlocks, and

livelocks. The great interest in tools to help detect these errors [20, 25, 27, 61, 94] is a

testament to their commonality, difficulty, and cost. Given the higher costs of develop-

ment and maintenance of parallel programs, from a software engineering perspective, it is

definitely preferable to utilize sequential programming models.
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Even if written in sequential paradigms, applications can potentially be translated into

parallel codes. This can be achieved with the assistance of automatic tools, especially

compilers. Unfortunately, however, automatic parallelization has only been successful in

restricted application domains, mostly where data parallelism is abundant. In particular,

automatic parallelization has been effective for scientific and media applications. For more

general application domains, these techniques have not been able to extract useful paral-

lelism. Particularly, the presence of irregular memory accesses (as in linked data struc-

tures) and intensive and arbitrary control flow render inapplicable most of the compiler

parallelization techniques proposed over the last several decades.

In the next two sections, we briefly introduce some of the previous work on extracting

TLP at both coarse and fine granularities. This overview helps understand the limitations

of these techniques, thus putting in context and motivating our work. We then introduce

our approach for TLP extraction and summarize the contributions of this thesis.

1.1 Coarse-Grained Thread-Level Parallelism

The great majority of the automatic parallelization techniques have focused on extracting

coarse-grained parallelism at the loop level. These techniques typically exploit parallelism

among different iterations of a loop whose iterations are all independent. Such loops are

known as DOALL loops [2, 115]. The challenges in exploiting DOALL parallelism come

from two complementary alternatives: (a) analyzing a loop nest to prove that its iterations

are independent; and (b) transforming a non-DOALL loop nest into an equivalent DOALL

one. Many techniques have been proposed to address both alternatives, including the GCD

and Omega tests, polyhedral methods, loop skewing, and loop distribution [2, 115]. Com-

piler frameworks based on these techniques can generally find reasonable amounts of par-

allelism in regular scientific applications. In this application domain, programs typically

contain counted loops, very little control flow, and regular array-based memory accesses.
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However, outside the scientific computation domain, these techniques are rarely applica-

ble. The reasons for this are mainly the large amount of irregular pointer-based memory

accesses, uncounted loops, and control flow. These characteristics typically create inter-

iteration (or loop-carried) dependences that are very hard, if not impossible, to eliminate.

In the presence of loop-carried dependences, one notable loop-parallelization tech-

nique has been proposed, called DOACROSS [22, 78]. With DOACROSS, loop itera-

tions are executed in multiple processors in a round-robin fashion. To respect loop-carried

dependences, synchronization primitives are inserted in the code, such that instructions

in one iteration wait for their dependent instructions in the previous iterations to com-

plete. Despite some success, the benefits of DOACROSS are generally limited by two

factors. First, the number and position of loop-carried dependences lead to synchroniza-

tions in the code that limit the amount of parallelism. Second, by dividing the loop itera-

tions among the processors in a round-robin fashion, DOACROSS inserts the synchroniza-

tions in the critical path to execute the loop. In other words, the cost of synchronization

is paid between every pair of consecutive iterations, essentially multiplying the synchro-

nization cost by the number of iterations of the loop. Together, these two issues gener-

ally negate the benefits of DOACROSS. However, DOACROSS has found applicability

when combined with speculation, in techniques generally known as thread-level specula-

tion (TLS) [9, 47, 98, 101, 106, 120]. Unfortunately, even with the support of speculation,

the amount of parallelism obtained by these techniques has been limited, hardly justifying

the complex hardware support necessary to keep the overhead of these techniques tolerable.

1.2 Fine-Grained Thread-Level Parallelism

Given the difficulty of finding coarse-grained parallelism in most applications, a few re-

searchers have investigated the possibility of extracting fine-grained thread-level paral-

lelism. The potential of exploiting parallelism at finer granularities is enabled by multi-core

5



processors. Compared to traditional symmetric multi-processors (SMPs), there are two key

differences that enable fine-grained parallelism in multi-core processors. First, there is the

possibility of communicating directly between the cores, without having to go off-chip.

This can provide a much higher communication bandwidth. Second, there is the possibility

to integrate specialized hardware mechanisms into the chip, so as to lower the inter-core

communication overheads. In this section, we give an overview of such communication

mechanisms, as well as the proposed compilation techniques to exploit them.

A notable example of on-chip inter-core communication mechanism is the scalar oper-

and network in the RAW processor [104, 110]. This mechanism consists of a programmable

mesh inter-connect among the cores. Associated with each core, there is a routing co-

processor. To the software, the scalar operand network can essentially be abstracted as a

set of hardware queues for scalar inter-core communication. Each core communicates with

the other ones through its router. The accesses to the communication queues are encoded

as reads and writes to specialized registers. For this reason, RAW’s hardware queues are

called register-mapped queues.

The key component of RAW’s C compiler (RAWCC) is its instruction scheduler [59,

60]. For such spacial architecture, it is necessary to schedule instructions in both time

and space (cores). Furthermore, the scheduler must also generate the necessary commu-

nications to satisfy inter-core dependences. The space-time scheduling approach used in

the RAWCC compiler works as follows. For each basic block in the program, the basic

block orchestrator partitions the instructions among the cores, using a space-aware varia-

tion of list scheduling [35]. Later, communications are generated to implement inter-core

dependences. The basic block orchestrator processes each basic block independently: the

assignment of instructions to cores in one basic block does not affect the assignment for

other basic blocks. The coordination of the control flow among the cores is implemented

using asynchronous branching. In this approach, the core containing the branch that ter-
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minates the basic block broadcasts the direction of the branch to all other cores through

the hardware queues. Upon receiving the branch direction, the other cores mimic the same

branching behavior. With this technique, all cores essentially follow a control-flow graph

that is isomorphic to the original one, and each core executes a subset of the original pro-

gram’s instructions. As such, this approach basically utilizes multiple cores/threads to

exploit instruction-level parallelism inside each basic block. For this reason, we call this

a local multi-threaded (LMT) instruction scheduling technique. The results reported for

this technique show that it hardly matches the parallelism obtained by an aggressive out-

of-order processor [59].

Inter-core hardware queues have also been employed in decoupled access-execute pro-

cessors [97]. In these processors, one core is dedicated to performing memory accesses,

while another core executes the remaining instructions. The idea behind these processors is

to try to decouple the execution of the non-memory-related instructions from the memory

accesses, hopefully hiding the memory latencies. To implement the dependences between

these two sets of instructions, two classes of scalar hardware queues are used. One class

of queues is used to communicate scalar operands that either feed or result from mem-

ory instructions. The other is a branching queue, which is used to send the branch results

from the execute core to the access core, so that the latter can follow the same execution

path as the former. This compilation technique is classified as LMT instruction scheduling,

since it essentially exploits parallelism inside basic blocks, with both threads executing all

basic blocks in the program [88]. Experimental evaluations of decoupled access-execute

architectures showed very little benefits, sometimes resulting in slowdowns because of the

communication overhead and cyclic dependences between the threads [88].

Another hardware mechanism to implement inter-core scalar communication is the

synchronization array [85]. In this mechanism, the processor’s instruction set architec-

ture (ISA) is extended with two new instructions, produce and consume, which re-
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spectively send and receive a scalar value through a given hardware queue. In [85], this

hardware mechanism was used to support the parallelization of loops that traverse recur-

sive/linked data structures. These loops were manually partitioned into two threads, one

executing the data structure traversal, and the other executing the loop body. Similar to the

decoupled-access-execute work, the idea was to hide the memory access latencies, which

can be quite expensive in traversals of linked data structures due to the lack of locality. Un-

like decoupled access-execute, however, reasonable speedups for selected pointer-intensive

benchmarks were obtained in [85]. The key to their success was that, by creating a unidirec-

tional flow of dependences between the threads, truly decoupled execution was achieved.

This thread partitioning scheme, which produces pipelined multi-threading, was coined De-

coupled Software Pipelining (DSWP). In this thesis, we propose general code partitioning

and code generation algorithms that are able to extract an arbitrary number of threads from

general loop regions (not only recursive data structure traversals) that exploit pipelined

multi-threading. In fact, the techniques proposed in this thesis are even more general, not

being limited to pipelined multi-threading.

Several alternatives to the synchronization array mechanisms were investigated with

the goal of reducing the hardware costs for pipelined multi-threading [84]. As an interest-

ing design point, we observed that the communication queues can be implemented through

shared memory, for a small performance penalty. This not only reduces the hardware costs,

but it also facilitates virtualization. To obtain good performance through shared mem-

ory, however, two hardware changes are still necessary. First, blocking produce and

consume instructions are usually needed to avoid the costs of implementing synchroniza-

tion in software. Second, it is necessary to change the cache coherence protocol to perform

forwarding of cache lines used to implement the queues. By having a cache line forwarded

from the producer core when it becomes full, stalls to access the queues in the consumer

core are eliminated.
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1.3 Parallelism: Limits and Limitations

The previous sections described the main efforts on automatically exploiting parallelism.

Despite the lack of success of automatic parallelization techniques, several limit studies

have shown that even applications known as hard-to-parallelize have large amounts of par-

allelism [56, 108]. However, these limit studies are generally performed by execution-trace

analysis, and they give very little insight on how to extract such parallelism.

So, the interesting question that arises is: what prevents such parallelism from being

achieved by the hardware and/or the compiler? This is prevented by several limitations

both in the hardware and in the compilers. We first describe the limitations of the hard-

ware. Even with aggressive out-of-order execution, branch prediction, and large instruction

windows, the processors still have fundamental limitations. In particular, processors only

see the stream of dynamic instructions that actually execute. As a result, they are unable

to detect merge points in a program’s control-flow graph and to understand true control de-

pendences. This results in hardware techniques being overly conservative in case of branch

mispredictions, squashing even instructions that are not dependent on the branch. This

fundamentally prevents a processor from extracting multiple threads of execution from a

single program thread.

There are also several limitations that prevent compilers from automatically extracting

parallelism, as we pointed out in [77]. Most importantly, parallelism is not very regular,

rarely matching the DOALL and DOACROSS patterns that are implemented in many par-

allelizing compilers, such as the Intel Compiler [46], IBM’s XL compiler [43], SUIF [38],

and Parascope [18]. Compilers focusing on fine-grained TLP, such as RAWCC [59, 60],

have tried to address this issue by looking at more irregular parallelism. However, these

techniques have their own limitations. By fully replicating the control flow in all threads,

they only exploit local parallelism. As such, local multi-threading instruction scheduling

techniques essentially have the same limitations as the hardware: the inability to exploit

parallelism across independent control regions to truly benefit from multiple threads of ex-
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ecution. As pointed out by Lam et al. [56], it is key to overcome these two limitations

in order to extract reasonable amounts of parallelism. This brings another obstacle identi-

fied in [77] that traditionally inhibits parallelizing compilers: the scope of parallelization.

To find most parallelization opportunities, it is generally necessary to look for parallelism

across large regions of code, possibly inside an entire procedure or even across the whole

program. Another parallelization obstacle is analyzing memory dependences. Statically

determining precise memory aliasing is, in fact, a fundamental limitation [57, 80]. One

way to get around this limitation is to rely on speculation. With speculation, certain de-

pendences can be ignored, as long as run-time mechanisms to detect and recover from

mis-speculations are available.

More recently, another fundamental limitation of automatic parallelization was identi-

fied in [10]. This work demonstrated that significantly more parallelism can be unlocked

by changing a program’s output by another, equivalently good output. However, benefiting

from these opportunities clearly requires the programmer’s intervention in order to convey

the cases where this is valid. To enable these opportunities, simple source-code annotations

were proposed in [10]. These annotations were shown to work very well in combination

with the techniques proposed in this thesis.

1.4 Our Approach

The goal of this work is to design techniques to overcome the main aforementioned limi-

tations of previous automatic parallelization techniques, so as to uncover some of the po-

tential suggested by various limit studies. The general approach proposed in this work

exploits fine-grained thread-level parallelism. To achieve so, this work generalizes instruc-

tion scheduling techniques to target multi-threaded architectures. Since most applications

contain lots of control flow, a key goal in this work was to design techniques that look for

parallelism in large code regions, beyond extended basic blocks1 and inner loops. These

1An extended basic block (EBB) is a sequence of instructions with a single entry (the first instruction) and

potentially multiple exits.
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techniques typically operate at outer loops or entire procedures, thus being classified as

GMT instruction scheduling [72].

To represent the program region being scheduled, we use a variation of the Program

Dependence Graph (PDG) [29]. The PDG is an elegant representation that has some im-

portant properties. First, it encodes all the program dependences that need to be preserved

to keep the program’s semantics [40, 91]. Second, the PDG can be built for low-level code,

even at the assembly level. This property is important for the extraction of fine-grained

parallelism, which is better performed in a compiler’s back-end.

The approach for GMT instruction scheduling proposed in this thesis is very general.

One of its key properties is the separation of concerns into thread partitioning and code

generation, as illustrated in Figure 1.2. These two components are interfaced through a par-

titioned PDG representation. This design allows a thread partitioning algorithm to operate

on an abstract, dependence-centric representation, the PDG, in order to find parallelism.

By partitioning the PDG nodes among different blocks (threads), a partitioner exposes

thread-level parallelism. Such approach enables different thread partitioning algorithms to

be easily integrated into the same framework. From the partitioned PDG, multi-threaded

code is generated. The multi-threaded code consists of the original instructions in the code,

plus communication and synchronization instructions inserted to enforce all inter-thread

dependences.

The framework proposed in this thesis preserves the order among all instructions as-

signed to the same thread. This design simplifies not only the interface between thread

partitioning and code generation, but also the code generation algorithms described in this

work. We rely on traditional single-threaded instruction scheduling to obtain a better or-

dering of the instructions in each thread, by taking into account the details of the target

cores. However, this creates a phase-ordering problem because the extraction of paral-

lelism is tackled independently in two different phases of the compilation. This prob-

lem is aggravated because single-threaded instruction schedulers are typically unaware of
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Figure 1.2: Framework for global multi-threaded instruction scheduling.

inter-thread communication and thread-level parallelism. However, this problem can be

mitigated by making the single-threaded instruction scheduler aware of inter-thread com-

munication primitives, by giving special scheduling priorities to these primitives.

The techniques proposed in this thesis are non-speculative, and they require no special

hardware support. Nevertheless, given the granularity of the parallelism typically found

in applications, simple hardware mechanisms to reduce the overheads of inter-thread com-

munication and synchronization can be very beneficial. Examples of such hardware mech-

anisms include synchronization arrays [84, 85] and scalar operand networks [104]. As

mentioned in Section 1.2, these mechanisms have been previously proposed to support

other fine-grained TLP approaches.

1.5 Contributions

In summary, the main contributions of this thesis are:

1. The design and implementation of a general framework to perform global instruction

scheduling for multi-threaded architectures [72, 74, 76]. This framework separates

concerns into thread partitioning and code generation, thus providing great flexibil-

ity that enables various global scheduling algorithms to be easily implemented. This

framework has been implemented both in the IMPACT [96] and in the VELOC-

ITY [105] compilers, and it has been used to support a few research efforts on GMT

instruction scheduling [10, 72, 73, 74, 76, 77, 81, 82, 83, 109].
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2. Algorithms to generate efficient multi-threaded code for arbitrary code partitions [73,

74]. The proposed multi-threaded code generation (MTCG) algorithm allows an ar-

bitrary partition of PDG nodes to threads, and it produces code that does not replicate

the entire control-flow graph for all produced threads. This is key to truly exploit par-

allelism across different control regions. In order to implement inter-thread depen-

dences, the MTCG algorithm inserts communication and synchronization primitives.

While the basic MTCG algorithm [74] is somewhat naı̈ve in how it inserts communi-

cation primitives in the code, we also propose more advanced algorithms to obtain a

better placement of these primitives. This communication optimization framework,

called COCO [73], is based on novel thread-aware data-flow analyses and graph min-

cut algorithms, and it simultaneously optimizes all types of inter-thread dependences

(control, register, and memory).

3. Algorithms to partition instructions into threads in order to expose thread-level paral-

lelism. Based on the proposed compiler framework for GMT instruction scheduling,

this thesis describes partitioning algorithms that extend single-threaded instruction

scheduling techniques to generate TLP. More specifically, these thread-partitioning

techniques are:

(a) A list-scheduling-based partitioner, called GREMIO [72].

(b) A Decoupled Software Pipelining (DSWP) thread partitioner [74, 76, 77].

(c) An extension of DSWP that enables parallel stages in the pipeline, called Parallel-

Stage Decoupled Software Pipelining (PS-DSWP) [77, 81]. (This technique is

the result of a collaboration with Easwaran Raman.)

4. Correctness proofs of the proposed algorithms. Given the design of our framework,

the correctness of the generated code only depends on the code generation algorithms

(MTCG and COCO).
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5. Implementations and experimental evaluations of all the proposed techniques, which

were implemented in the VELOCITY compiler [105].

1.6 Overview

This dissertation is organized as illustrated in Figure 1.2, and it is divided in two parts.

In Part I, which consists of Chapters 2 through 4, we describe the program representation

and multi-threaded code generation algorithms. More specifically, Chapter 2 describes the

variation of the program dependence graph we use. In Chapter 3, we describe the basic

multi-threaded code generation (MTCG) algorithm, and we present the COCO communi-

cation optimizations in Chapter 4. In Part II, consisting of Chapters 5 through 7, we present

the thread-partitioning techniques. Chapter 5 describes the list-scheduling-based parti-

tioner (GREMIO). The Decoupled Software Pipelining (DSWP) partitioner is described

in Chapter 6, while the Parallel-Stage DSWP extension is presented in Chapter 7. Chapter

8 presents the conclusions of this work and provides directions for future research on global

multi-threaded instruction scheduling and code optimizations in general.
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Program Representation and

Multi-Threaded Code Generation
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This part describes the program representation and general multi-threaded code gener-

ation algorithms. In Chapter 2, we describe the central program representation that we use

in this work. This intermediate representation is a variation of the program dependence

graph (PDG), and it can be built for arbitrary code, even at the machine level. The PDG

representation serves as the interface between the thread partitioning techniques described

in Part II and the code generation algorithms described in this part.

In Chapter 3, we describe our general multi-threaded code generation (MTCG) algo-

rithm. This algorithm produces efficient and correct multi-threaded code for an arbitrary

partition of the PDG nodes into threads. A key property of MTCG is that it does not repli-

cate the control flow entirely in all threads. This property is key to enable truly thread-level

parallelism. To the best of our knowledge, the MTCG algorithm is the first method to sat-

isfy this property and to support arbitrary control flow and thread partitions. Furthermore,

our MTCG algorithm is elegant and simple to implement.

The basic MTCG algorithm described in Chapter 3 uses a simple strategy to deter-

mine the program points where inter-thread communications are inserted. In Chapter 4,

we describe a general framework, called COCO, to improve the placement of inter-thread

communications. COCO improves the performance of the resulting code both by reducing

the number of inter-thread communications and by eliminating synchronization points that

prevent parallelism.
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Chapter 2

Dependence Graphs

Dependence graphs are a traditional form of representing dependences among statements

or instructions in a program. In this chapter, we introduce various forms of dependence

graphs proposed in the literature and describe the variation used in this work.

2.1 Data Dependence Graphs

Data dependence graphs are a basic representation of dependences among instructions or

statements of a program. In data dependence graphs, each vertex represents an instruction

(or statement) in the program, and directed arcs specify data dependences between in-

structions. At a low-level representation, data dependence arcs can take two forms: either

(virtual) register1 data dependences or memory data dependences. Furthermore, data de-

pendences can be of three kinds, depending on whether the involved instructions read from

or write to the data location: flow dependence, which goes from a write to a read; anti-

dependence, which goes from a read to a write; and output dependence, which goes from

a write to another write [54]. Register data dependences can be efficiently and precisely

computed through data-flow analysis. For memory data dependences, compilers typically

1In this dissertation, we assume a low-level IR with virtual registers, which may correspond to either

temporaries emitted by the compiler or to program variables that can be promoted to physical registers [19].

We generally omit the word virtual in the text.
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rely on the results of static memory analyses to determine loads and stores that may access

the same memory locations. Although computationally much more complicated, practi-

cal existing pointer analysis can typically disambiguate a large number of non-conflicting

memory accesses even for type-unsafe languages like C (e.g. [15, 36, 70]). Inter-procedural

pointer analyses typically compute a summary of the memory accesses per function. With

such information, complete memory data dependences can be computed not only between

loads and stores, but also involving function calls.

Many memory analysis techniques have also been proposed for regular, array-based

memory references [2, 115]. These analyses require a high-level intermediate representa-

tion, with explicit array accesses. With these techniques, it is possible to refine dependence

arcs involving array accesses in loop nests with dependence distance vectors. Although

these techniques are very important for array-based, scientific applications (typically writ-

ten in FORTRAN), they are not so applicable to more irregular applications (typically writ-

ten in C). For this reason, we do not use such memory analyses in most of this work.

Data dependence graphs are generally employed in scheduling and parallelization tech-

niques allowing only very primitive or no forms of control flow. Such uses include in-

struction scheduling of basic blocks or inner loops with a straight-line body [65], and the

vectorization and parallelization of simple inner loops [2].

2.2 Control Dependence Graphs

For techniques that operate beyond straight-line code (basic block) boundaries, the notion

of control dependences becomes relevant. An instruction (or statement) X controls an

instruction Y if, depending on the direction taken at X , Y must execute along one path

and may not execute along another path. Similar to data dependences, control dependences

among the statements or instructions of a program can be represented as arcs in a directed

graph.
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Different notions of control dependence exist. For structured programs, the syntax-

based notion of control dependences is applicable [54]. At this level, a statement is control

dependent on its closest enclosing control construct. Although very natural and easy to

compute, this definition of control dependence is not applicable to unstructured programs

(containing gotos, breaks, and continues) or even to structured programs after going

through traditional compiler optimizations [1, 4, 17, 65].

Ferrante et al. [29] generalized the notion of control dependence to arbitrary control-

flow graphs.2 Their graph-based definition, which is based on the post-dominance rela-

tion [65], enables control dependences to be computed for low-level program representa-

tions. For this reason and some of its key properties, we use Ferrante et al.’s definition of

control dependence in this work.

Definition 1 (Control Dependence (Ferrante et al. [29])). Let G be a CFG, and X and Y

two nodes in G. Y is control dependent on X iff:

1. there exists a directed path P from X to Y with any Z in P (excluding X and Y )

post-dominated by Y ; and

2. X is not strictly post-dominated by Y .

Cytron et al. [23] proposed an efficient algorithm to compute control dependences ac-

cording to this definition.

To deal with the possibility of calling a function that may not return (e.g. because it

may call exit in C), some extra control dependences are necessary. To properly compute

control dependences in this case, auxiliary control-flow arcs are drawn from the instructions

calling such possibly non-returning functions to the program’s END node.3 With these arcs

inserted, control dependences are computed normally using standard algorithms [23, 29].

2In fact, Ferrante et al. [29] defninition is restricted to control-flow graphs where all nodes can reach the

END node.
3Auxiliary control-flow arcs can also be used to model other non-explicit control transfers, such as excep-

tions.
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In the resulting control dependences, some instructions will now be dependent on these

function-call instructions. We name these dependences call-exit control dependences.

2.3 Program Dependence Graphs

Dependence graphs including both data and control dependences are generally called Pro-

gram Dependence Graphs (PDGs) [29, 54]. Compilers widely use PDGs as an intermediate

representation due to several important properties. In particular, using syntax-based control

dependences, Horwitz et al. [40] proved the Equivalence Theorem. According to this theo-

rem, two programs with the same PDG are equivalent. Later, Sarkar [91] proved a similar

result for PDGs using control dependences according to Definition 1.

Traditionally, PDGs contain two kinds of nodes [29]: regular nodes, representing state-

ments/instructions, and region nodes, representing a control-equivalent region of the pro-

gram. In this work, however, we opted to have only regular nodes. Control dependence

arcs are drawn directly from branch instructions to the dependent instructions. As will be

clear in the following chapters, this allows a more homogeneous treatment of the PDG,

since all its node represent actual instructions in the program.

As an example, consider the C code in Figure 2.1(a), with corresponding low-level

representation in Figure 2.1(b). Figures 2.1(c)-(e) illustrate the corresponding CFG, post-

dominance tree, and PDG. In Figure 2.1(e), solid arcs represent data dependences, which

are all register dependences in this example, and dotted arcs represent control dependences.

Register dependence arcs are labeled with the register involved in the dependence, while

control arcs are labeled with the branch direction that causes the dependent instruction to

execute.

In the PDG used in most of this work, only true (flow) register dependences are in-

cluded. Since there is no ambiguity in register accesses, renaming can generally be used

to eliminate output and anti-dependences. As described in Chapter 3, our algorithms take

into account these dependences only when they are necessary.
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s1 = 0;

s2 = 0;

for(p=head; p != NULL;

p = p->next){

s1 += p->value;

}

for(i=0; a[i] != 0; i++){

s2 += a[i];

}

printf("%d\n", s1*s1/s2);

(a) Example code in C

(A) B1: move r1 = 0 ;; s1 in r1

(B) move r2 = 0 ;; s2 in r2

(C) load r3 = [head] ;; p in r3

(D) B2: branch r3 == 0, B4

(E) B3: load r4 = [r3] ;; load p->value

(F) add r1 = r1, r4

(G) load r3 = [r3+4] ;; load p->next

(H) jump B2

(I) B4: move r5 = @a ;; &a[i] in r5

(J) B5: load r6 = [r5] ;; load a[i]

(K) branch r6 == 0, B7

(L) B6: add r2 = r2, r6

(M) add r5 = r5, 4

(N) jump B5

(O) B7: mult r7 = r1, r1

(P) div r8 = r7, r2

(b) Low-level IR

START

END

B1

B2

B3 B4

B5

B6 B7

(c) CFG

START

END

B7

B1

B2

B3

B4

B5

B6

(d) post-dom. tree

data dependence

control dependence
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Figure 2.1: Example code in: (a) C, (b) low-level IR, (c) CFG, (d) post-dominance tree,

and (e) PDG.
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Chapter 3

Multi-Threaded Code Generation

As discussed in Section 1.4, one of the key enablers of GMT instruction scheduling is the

ability to generate efficient code for a given code partition. In this chapter, we describe our

general multi-threaded code generation algorithm, called MTCG [74].

There are several requirements for a code generator to support GMT instruction schedul-

ing. First, in order to handle global code regions, it is desirable to use a PDG representation.

As discussed in Chapter 2, respecting the dependences in a PDG guarantees the preserva-

tion of the program’s semantics. Another requirement of a general multi-threaded code

generator is the ability to handle arbitrary code partitions. By code partition, we mean an

assignment of instructions to threads.1 Handling arbitrary code partitions is important to

support different thread partitioning algorithms, and it is central to provide the separation

of concerns into partitioning and code generation mentioned in Section 1.4. A third re-

quirement of a multi-threaded code generation algorithm is to be able to produce efficient

code. To achieve this, it is particularly important to avoid replicating the control flow as

much as possible, which is the main drawback of LMT scheduling techniques (Section 1.2).

The MTCG algorithm proposed in this work was designed to meet all the above require-

ments. In Section 3.1, we describe the MTCG algorithm. Section 3.2 presents the proof of

correctness of the algorithm.

1A code partition does not specify the order among the instructions in each thread.
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3.1 MTCG Algorithm

This subsection describes the MTCG algorithm [74], whose pseudo-code is illustrated as

Algorithm 1. This algorithm takes as input a program dependence graph (PDG) for the code

region being scheduled and a given partition (P) of its nodes (instructions) into threads.

Furthermore, for simplicity, we assume here that a control-flow graph (CFG) representation

of the original code region is also given.2 As output, this algorithm produces, for each of the

resulting threads, a new CFG containing its corresponding instructions and the necessary

communication instructions.

The thread model assumed here is that the program executes sequentially until it reaches

a region that has been scheduled on multiple threads. Upon reaching such parallelized re-

gion, auxiliary threads are spawned, and each of them will execute one of the CFGs pro-

duced by MTCG. In this model, auxiliary threads do not spawn more threads. The main

thread (which may also execute one of the new CFGs) then waits for completion of all

the auxiliary threads. Once all auxiliary threads terminate, sequential execution resumes.

This thread model is known as fork-join. In practice, the cost of spawning and terminating

threads can actually be reduced by creating the threads only once, at the start of the pro-

gram. The threads then execute a loop that continuously waits on the address of the code

to be executed and invokes the corresponding code, until they are signaled to terminate.

In this model, the work is statically assigned to threads. This is in contrast to dynamic

scheduling [90].

Before going into the details in Algorithm 1, let us introduce the notation used. Ti

denotes a block (thread) in P , and CFGi denotes its corresponding control-flow graph.

For a given instruction I , bb(I) is the basic block containing I in the (original) CFG, and

point j(I) is the point in CFGj corresponding to the location of I in CFG.

2There are well-known algorithms to construct a CFG from a PDG derived from a sequential program [28,

100].
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Algorithm 1 MTCG

Require: CFG, PDG, P = {T1, . . . , Tn}
1: for each Ti ∈ P do // 1. create CFGi’s basic blocks

2: VCFGi
← create relevant basic blocks(CFG, PDG, Ti)

3: end for

4: for each instruction I ∈ VPDG do // 2. put instruction in its thread’s CFG

5: let i | I ∈ Ti

6: add after (CFGi, point i(I), I)

7: end for

8: COMM ← ∅
9: for each arc (I → J) ∈ PDG [incl. transitive control dependences] do // 3. insert communication

10: let Ti, Tj be such that I ∈ Ti and J ∈ Tj

11: if (Ti = Tj) ∨ ((I, Tj) ∈ COMM ) then

12: continue

13: end if

14: COMM ← COMM ∪ {(I, Tj)}
15: q ← get free queue()
16: if dependence type(I → J) = Register then // register dependences

17: rk ← dependent register(I → J)
18: add after (CFGi, I , “produce [q] = rk”)

19: add after (CFGj , I , “consume rk = [q]”)

20: else if dependence type(I → J) = Memory then // memory dependences

21: add after (CFGi, I , “produce.rel [q]”)

22: add after (CFGj , I , “consume.acq [q]”)

23: else // control dependences

24: rk ← register operand(I)
25: add before(CFGi, I , “produce [q] = rk”)

26: add before(CFGj , I , “consume rk = [q]”)

27: add after (CFGj , I , duplicate(I))
28: end if

29: end for

30: for each Ti ∈ P do

31: for each live-in register r in Ti do // initial communication

32: q ← get free queue()
33: add last(START , “produce [q] = r”)

34: add last(START i, “consume r = [q]”)

35: end for

36: for each live-out register r defined in Ti reaching END do // final communication

37: q ← get free queue()
38: add last(END i, “produce [q] = r”)

39: add last(END , “consume r = [q]”)

40: end for

41: q ← get free queue()
42: add last(END i, “produce.rel [q]”)

43: add last(END , “consume.acq [q]”)

44: end for

45: for each Ti ∈ P do // 4. create CFGi’s arcs

46: for each branch instruction I ∈ Ti do

47: redirect target(I , closest relevant postdomi(target(I )))
48: end for

49: for each B ∈ VCFGi
do

50: CRS← closest relevant postdomi(succ(orig bb(B)))
51: add last(B, “jump CRS”)

52: end for

53: end for
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while (list != NULL) {

for (node = list->head; node != NULL;

node = node->next) {

total += node->cost;

}

list = list->next;

}
(a) Example code in C

BB1

r1 is live
r10 is live

BB2

p1 = r1 == 0

br p1, BB7

BB3

BB4

r2 = M[r1+20]

r1 = M[r1+10]
jump BB2

A:
B:

C:

D:p2 = r2==0
E:

BB5

r10 = r10 + r3
r3 = M[r2+30]F:

G:
r2 = M[r2]H:
jump BB4I:

J:
K:

BB6

BB7

r10 is live

br p2, BB6

(b) Original CFG

data dependence

control dependence

A

B

 p1  F

 F

J

 F

C

 F

 F

E

 F

 r1

 r1

 r1

 r2

H

 r2

F

 r2

p2 F

 F

 F

 F

G

 F

 r2

 r2

 r2

 r3

 r10

... = r10

 r10

r10 = ...

 r10

r1 = ...

 r1

 r1

D

(c) Partitioned PDG

PRODUCE [2] = r2

PRODUCE [0] = r10

PRODUCE [1] = p1

CONSUME r10 = [3]

BB7’

BB2’

BB1’

BB3’

BB6’

p1 = r1 == 0A:

br p1, BB7’B:

r2 = M[r1+20]C:

r1 = M[r1+10]J:

jump BB2’K:

(d) CFG1 (main thread)

   CONSUME r10 = [0]

CONSUME r2 = [2]

CONSUME p1 = [1]

PRODUCE [3] = r10

BB1’’

BB3’’

BB4’’

BB5’’

p2 = r2==0

br p2, BB2’’

D:

E:

r2 = M[r2]

r10 = r10 + r3

r3 = M[r2+30]

jump BB4’’

F:

G:

H:

BB2’’

BB7’’

br p1, BB7’’B’:

(e) CFG2 (auxiliary thread)

Figure 3.1: Example of the MTCG algorithm. (a) C source code; (b) original low-level

code; (c) partitioned PDG; and (d)-(e) resulting multi-threaded code.
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In essence, the MTCG algorithm has four main steps. Each of the following subsections

describes one of these steps. As we describe these steps, we illustrate them on the example

in Figure 3.1. Figure 3.1(a) contains the source code in C, and Figure 3.1(b) contains the

corresponding code in a low-level IR. We illustrate how MTCG generates code for the

partitioned PDG in Figure 3.1(c), where the nodes in the shaded rectangle are assigned to

one thread, and the remaining instructions to another. In the PDG, data dependence arcs are

annotated with the corresponding register holding the value, while control dependence arcs

are labeled with the corresponding branch condition. In this example, there are no memory

dependences. Special nodes are included in the top (bottom) of the graph to represent live-

in (live-out) registers. The resulting code for the two threads is illustrated in Figures 3.1(d)

and (e). In this example, the main thread also executes the code for one of the generated

threads (CFG1).

3.1.1 Creating New CFGs’ Basic Blocks

MTCG creates a new CFG (CFGi) for each thread Ti. Each CFGi contains a basic block

for each relevant basic block to Ti in the original CFG. The notion of relevant basic block is

defined below. In its last step, described in Section 3.1.4, MTCG adds the arcs connecting

the basic blocks in each CFGi. These arcs are inserted in a way that guarantees the equiv-

alence between the condition of execution of each new basic block and its corresponding

block in the original CFG (see proof in Section 3.2).

Definition 2 (Relevant Basic Block). A basic block B is relevant to a thread Ti if B contains

either:

1. an instruction scheduled to Ti; or

2. an instruction on which any of Ti’s instructions depends (i.e. a source of a depen-

dence with an instruction in Ti as the target); or

3. a branch instruction that controls a relevant basic block to Ti.
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The reason for including basic blocks containing instructions in Ti is obvious, as they

will hold these instructions in the generated code. The reason for adding the basic blocks

containing instructions on which Ti’s instructions depend is related to where communica-

tion instructions are inserted by MTCG, as described shortly. The third rule in Definition 2

is recursive, and it is necessary to implement the correct condition of execution of the basic

blocks. This rule is related to how inter-thread control dependences are implemented by

MTCG, as described Section 3.1.3.

Consider the example in Figure 3.1. For thread T1 = {A, B, C, J}, besides the start

block BB1 and the end block BB7, the only relevant basic blocks are BB2, BB3, and BB6.

All these blocks are relevant to T1 by rule 1 in Definition 2, since there is no incoming

dependence into this thread. For thread T2 = {D, E, F, G, H}, besides the start and end

blocks, several other basic blocks are relevant for different reasons. BB4 and BB5 contain

instructions in T2, and therefore are relevant by rule 1. Because of the dependences from T1

to T2, with source instructions B and C (Figure 3.1(c)), the basic blocks that contain these

instructions (BB2 and BB3) are relevant to T2 by rule 2. Again, no basic block is relevant

due to rule 3 in this case.

3.1.2 Moving Instructions to New CFGs

The second step of MTCG (lines 4 to 7) is to insert the instructions in Ti into their corre-

sponding basic blocks in CFGi. MTCG inserts the instructions in the same relative order

as in the original code, so that intra-thread dependences are naturally respected.

Figures 3.1(d) and (e) illustrate the instructions inserted in their threads, in the basic

blocks corresponding to the instructions’ original basic blocks.

3.1.3 Inserting Inter-Thread Communication

The third step of the algorithm (lines 8 to 44) is to insert communication primitives to im-

plement each inter-thread dependence. We represent communication primitives by produce
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and consume instructions [84]. The produce and consume instructions are inserted in

pairs, so that, statically, each produce feeds one consume, and each consume is fed

by one produce. For each inter-thread dependence, a separate communication queue is

used. Although a single queue is sufficient, multiple queues are used to maximize the free-

dom of subsequent single-threaded scheduling. Furthermore, a queue-allocation technique

can later reduce the number of queues necessary, analogously to register allocation.

Depending on where the communication primitives are inserted with respect to the

parallel region, they can be of three types: intra-region (i.e. inside the parallelized region),

initial, or final communications. We first describe the insertion of the most interesting ones,

the intra-region communications, followed by the initial and final communications.

Intra-Region Communications

In order to preserve the conditions under which each dependence occurs, MTCG adopts

the following strategy.

Property 1 (Basic Communication Placement). Each intra-region dependence is commu-

nicated at the program point of its source instruction.

This strategy is simple to implement, and it also simplifies the proof of correctness

of the algorithm (Section 3.2). However, this strategy can result in a suboptimal number

of inter-thread communications. Better algorithms to place communication primitives are

described in Chapter 4.

In Algorithm 1, add before(CFGi, I, instr) inserts instr in CFGi at the point right

before instruction I’s position in the original CFG, and add after works analogously. The

add last(B, I) function inserts instruction I as the last instruction in basic block B.

The actual communication instructions inserted depend on the type of the dependence,

as illustrated in Algorithm 1:

• Register Dependences: These are implemented by communicating the register in

question.
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• Memory Dependences: For these, purely synchronization primitives are inserted to

enforce that their relative order of execution is preserved. This is dependent on the

target processor’s memory consistency model. In this work, we assume Itanium 2’s

memory consistency model. In Algorithm 1, synchronization primitives are repre-

sented by produce.rel and consume.acq instructions, which implement the

release and acquire semantics in the memory system.3

• Control Dependences: In the source thread, before the branch is executed, its register

operands are sent. In the target thread, consume instructions are inserted to get the

corresponding register values, and then an equivalent branch instruction is inserted to

mimic the same control behavior. For simplicity, Algorithm 1 assumes that branches

have a single register operand.

The call-exit control dependences discussed in Section 2.2 require a different code

generation strategy, which is not illustrated in Algorithm 1. For these control depen-

dences, a consume instruction from a special queue is inserted in the target thread

at the point corresponding to the call-site. We name the value consumed from this

special queue the terminate value. After the consume of this terminate value, a

branch is inserted to check this value and to jump to terminating code if the value

is true. In the source thread, a produce false into this special queue is inserted

after the function call. This signals the target thread to continue execution in case

the function returns normally. Additionally, in the source thread, a produce true is

inserted in a handler installed to executed upon program termination. This causes the

target thread to terminate as well.

In the example from Figure 3.1, there are two inter-thread, intra-region dependences.

First, instruction C in T1 writes into register r2 that is used by instructions D, F , and H

3In other words, produce.rel is guaranteed to execute only after all previous memory instructions

commit. Analogously, consume.acq is guaranteed to commit before all successive memory instructions

are executed.
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in T2. This register data dependence is communicated through queue 2. The produce

and consume instructions are inserted right after the points corresponding to instruction

C in BB3. The other inter-thread dependence is a control dependence from branch B in

T1, which controls instructions in T2. This dependence is satisfied through queue 1. In T1,

the register operand (p1) is sent immediately before instruction B. In T2, the value of p1 is

consumed and a copy of branch B (B′) is executed.

As mentioned in line 9 of Algorithm 1, the MTCG algorithm also needs to communicate

transitive control dependences in the PDG in order to implement the relevant blocks for a

thread. This is related to rule 3 in Definition 2. The reason for this is control dependences’

implementation, which consumes the branch operands and duplicates the branch in the tar-

get thread. In order to enforce the correct conditions of execution of these instructions in

the target thread (i.e. to create the relevant basic blocks to contain these instructions), it is

necessary to communicate the branches controlling the blocks where these instructions are

inserted. This reasoning follows recursively, thus resulting in the necessity of communicat-

ing the transitive control dependences.

Initial Communications

Communication primitives may need to be inserted for register values that are live at the

entry of the parallelized region, similarly to OpenMP’s firstpriviate [71]. More

specifically, if a register definition from outside the parallelized region reaches a use in an

instruction assigned to thread Ti, then the value of this register has to be communicated

from the main thread to Ti.
4 These communication primitives are inserted at the START

basic block in CFG and at its corresponding STARTi basic block in CFGi. This step is

illustrated in lines 31-35 in Algorithm 1.

In the example from Figure 3.1, the main thread executes the code for T1, so no initial

communication is necessary for T1. For T2, instruction G uses the value of r10 defined

4The exception is in case Ti is run on the main thread.
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outside the parallelized region, and therefore this register needs to be communicated. This

dependence is communicated through queue 0, and the produce and consume instruc-

tions are inserted in BB1, the START basic block.

Since auxiliary threads are spawned at the entry of the parallelized region5, no initial

communication for memory and control dependences are necessary. In other words, auxil-

iary threads are only spawned when the execution reaches the parallelized region, and any

memory instruction before this region will have already executed.

Final Communications

At the end of the parallelized region, the auxiliary threads may have to communicate back

to the main thread, which is similar to OpenMP’s lastprivate [71]. Final communica-

tions may be necessary not only for register values, but also for memory. We discuss these

two cases below.

For every register r defined by an instruction assigned to thread Ti, r needs to be sent

to the main thread if two conditions hold. First, r must be live at the end of the parallelized

region (END). Second, a definition of r in Ti must reach END . Lines 36-40 in Algorithm 1

handle this case.

In Figure 3.1, it is necessary to communicate the value of register r10 from T2 to the

main thread at the end of the parallelized region. This communication uses queue 3, and

the produce and consume instructions are inserted in the END blocks (corresponding

to BB7).

A problem arises in case multiple threads have definitions of r that reach the exit of the

parallelized region. Depending on the flow of control, a different thread will have the cor-

rect/latest value of r, which needs to be communicated back to the main thread. To address

this problem, two solutions are possible. One alternative is to associate a time-stamp for r

in each thread, so that it is possible to tell which thread wrote r last. In this scheme, at the

5At least conceptually; see discussion earlier in Section 3.1.
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end of the parallelized region, all possible writers of r communicate both their value of r

and the corresponding time-stamp to the main thread. The main thread can then compare

the time-stamps to determine which value of r is the latest. The time-stamps can be com-

puted based on a combination of topological order and loop iterations [52]. An alternate

solution is to enforce that a single thread always has the latest value of r. This can be

enforced in two ways. First, the possible partitions of the PDG can be restricted to require

that all instructions writing into r must be assigned to the same thread. Unfortunately, this

restricts the valid partitions, breaking both the generality of the code generation algorithm

and the separation of concerns between thread partitioning and code generation. A better

alternative is to include in the PDG output dependences among instructions defining the

same live-out register r. Effectively, these dependences will be communicated inside the

parallelized region, similarly to true register dependences. These register output depen-

dences need not be inserted among every pair of instructions defining a register r. Instead,

one of these instructions (say, I) can be chosen, so that the thread containing I will hold

the latest value of r. Register output dependences can then be inserted from every other

instruction writing into r to instruction I . This way, a final communication of r is necessary

only from the thread containing I to the main thread.

At the exit of the parallelized region, synchronizations may also be necessary to enforce

memory dependences (lines 41-43 in Algorithm 1). Specifically, for every auxiliary thread

that contains a memory instruction, it is necessary to insert a synchronization from it to the

main thread upon the exit of the parallelized region. This synchronization prevents the main

thread from executing conflicting memory instructions that may exist in the code following

the parallelized region. Analyses can be performed to determine if such synchronization is

unnecessary, or to move it as late as possible in the code.
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3.1.4 Creating New CFGs’ Arcs

The last step of the MTCG algorithm (lines 45-53) is to create the correct control flow in

the new CFGs. To achieve this, it is necessary both to adjust the branch targets and to

insert jumps in these CFGs. Because not all the basic blocks in the original CFG have

a corresponding block in each new CFG, finding the correct branch/jump targets is non-

trivial. The key property we want to guarantee is that each basic block in a new CFG must

have the same condition of execution of its corresponding basic block in the original CFG.

In other words, the control dependences among the basic blocks in a new CFG must mimic

the control dependences among their corresponding basic blocks in the original CFG.

Since control dependences are defined based on the post-dominance relation among

basic blocks (Definition 1), it suffices to preserve the post-dominance relation among basic

blocks. Therefore, for a new CFG, CFGi, the branch/jump targets are set to the closest

post-dominator basic block B of the original target/successor in the original CFG such that

B is relevant to CFGi. Notice that such post-dominator basic block always exists as every

vertex is post-dominated by END , which is relevant to every new CFG.

Demonstrating that the control dependences among the new basic blocks match the

control dependences among their corresponding blocks in the original CFG is central in the

correctness proof of the MTCG algorithm. Section 3.2 presents the formal proofs.

For simplicity, the MTCG algorithm inserts unconditional jumps at the end of every

new basic block. Many of these jumps, however, can be later optimized by standard code

layout optimizations [65].

Figures 3.1(d)-(e) illustrate the resulting code, with the control-flow arcs inserted by

MTCG. Determining most of the control-flow arcs is trivial in this example. An interesting

case occurs in CFG1 for the outgoing arc of BB3’. In the original CFG (Figure 3.1(b)),

control flows from BB3 to BB4. However, BB4 is not relevant to T1. Therefore, the output

arc from BB3’ goes to the closest post-dominator of BB4 relevant to T2, which is BB6’.

Another interesting case happens for branch E in T2. In the original code, the branch target
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of E is BB6. However, BB6 is not relevant to CFG2. Therefore, branch E is redirected to

BB6’s closest post-dominator relevant to T2, which is BB2”.

The code in Figures 3.1(d)-(e) has been subject to code layout optimizations. For ex-

ample, no jump is necessary at the end of BB3’ if we place BB6’ immediately after BB3’

in the generated code.

3.2 Correctness of the MTCG Algorithm

In this section, we prove the correctness of the MTCG algorithm. This is achieved by

demonstrating that the code produced by MTCG preserves the semantics of the original

code, for any given thread partitioning. The key step of this proof is showing that the

MTCG algorithm preserves all the data and control dependences of the original program.

In order to prove this result, we first demonstrate several useful lemmas.

In the following, we denote by Y pdom X and Y pdom i X the relations that Y post-

dominates X in CFG (the original CFG) and CFGi, respectively. Additionally, we denote

Y pdom X the fact that Y does not post-dominate X . For simplicity of notation, we denote

the corresponding basic blocks in all CFGs by the same name. The referred CFG is made

clear by the context.

The lemma below shows that every path pi in CFGi is a subsequence of a path p in

CFG.

Lemma 1. Let B0, Bk ∈ VCFGi
. Then there is a path pi = (B0, . . . , Bk) in CFGi iff there

is a path p = (B0, . . . , Bk) in CFG such that pi is the subsequence of p restricted to VCFGi
.

Proof. By induction on |pi|, the length of pi.

Base: |pi| = 0. Then pi = p = (B0).

Inductive step: By induction, our assumption holds for the sub-path (B0, . . . , Bk−1), so

we need to show that the property also holds when we add Bk to the path.
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⇒ Consider the arc (Bk−1 → Bk) ∈ ECFGi
. By construction of CFGi’s arcs (lines

45-53 in Algorithm 1), there is a successor S of Bk−1 in CFG such that Bk pdom S. Thus

there is a path Bk−1 → S  Bk in CFG.

⇐ Conversely, let Bk be the first vertex in VCFGi
to appear in a path in CFG starting at

a successor S of Bk−1. In addition, let p′ be such that p = (B0, . . . , Bk−1,

p′

︷ ︸︸ ︷

S, . . . , Bk, . . . ).

We need to show that (Bk−1 → Bk) ∈ ECFGi
, and thus pi = (B0, . . . , Bk−1, Bk) is a path

in CFGi. We argue that Bk is the closest post-dominator of S in CFG that is relevant to

CFGi. First, notice that Bk pdom S. Otherwise, there would exist another vertex T ∈

VCFGi
before Bk in p′ such that Bk would be control dependent on T . But then T would be

relevant to CFGi, which contradicts the choice of Bk as the first vertex in p′ to be relevant

to CFGi. Now assume that there is another post-dominator U ∈ VCFGi
of S in p′. This

also contradicts the fact that Bk is the first vertex in p′ to be relevant to CFGi. Therefore,

Bk is the closest post-dominator of S in CFG that is relevant to CFGi, and thus the arc

(Bk−1 → Bk) is added to CFGi by the MTCG algorithm.

The following lemma shows that the post-dominance relation in CFGi is the same as in

CFG restricted to the basic blocks relevant to Ti.

Lemma 2. Given two basic blocks X and Y in CFGi, Y pdom i X iff Y pdom X .

Proof. We first show that Y pdom i X =⇒ Y pdom X . For contradiction, assume that Y

pdom i X and Y pdom X . Then there is a path p : X  END in CFG that avoids Y . By

Lemma 1, there is a corresponding path pi : X  END in CFGi which does not contain

Y, a contradiction.

We now show that Y pdom X =⇒ Y pdom i X . For contradiction, assume Y pdom

X and Y pdom i X . Then there must exist a path pi : X  END in CFGi that avoids

Y . By Lemma 1, there is a corresponding path p : X  END in CFG that avoids Y, a

contradiction.
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The following lemma follows directly from the definition of relevant basic blocks (Def-

inition 2).

Lemma 3. If CFGi contains block Y , it also contains every block X on which Y is control

dependent.

Proof. This follows immediately from rule 3 in Definition 2.

Theorem 1. Let Y ∈ VCFGi
, Y is control dependent on X in CFGi iff Y is control depen-

dent on X in CFG.

Proof. First, by Lemma 3, VCFGi
contains every X on which Y is control dependent in

CFG. We analyze each condition in the control dependence definition (Definition 1) indi-

vidually. Lemma 2 says that the post-dominance relation between X and Y is the same in

CFGi and CFG. Therefore, condition 2 of Definition 1 holds for CFGi iff it holds for CFG.

In addition, Lemma 1 and Lemma 2 together guarantee that condition 1 of Definition 1 is

true for CFGi iff it is true for CFG, completing the proof.

Lemma 4. The code generated by the MTCG algorithm preserves all data dependences.

Proof. The control dependence between the basic blocks is preserved by Theorem 1. Given

that the instructions are inserted in the basic blocks corresponding to their original basic

blocks, their condition of execution is preserved. Intra-thread dependences are naturally

satisfied by the MTCG algorithm. In addition, inter-thread register dependences are sat-

isfied by communicating the value of the related register, and memory dependences are

respected by sending a synchronization token. In both cases, the communications are in-

serted at points corresponding to the location of source instruction, therefore preserving the

condition under which the dependence occurs.

Theorem 2. The code generated by the MTCG algorithm preserves all dependences in the

PDG.
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Proof. Theorem 1 shows that the basic blocks in the MT code preserve their control de-

pendences. Lemma 4 shows that all data dependences are preserved. Finally, inter-thread

control dependences are satisfied by communicating their register arguments and dupli-

cating the branch instruction at the CFG containing the target of the control dependence.

This ensures that branch instructions are inserted in the code to reconstruct the appropriate

control flow.

From Theorem 2, the correctness of the MTCG algorithm then follows immediately.

Theorem 3 (Correctness of MTCG Algorithm). The MTCG algorithm preserves the se-

mantics of the original code.

Proof. From Theorem 2, all PDG dependences are preserved. Therefore, using the Equiv-

alence Theorem [91], the semantics of the original program is preserved.

Theorem 3 establishes the correctness of the MTCG algorithm, for any thread partition.

As discussed before, this is the key enabler for our general GMT instruction scheduling

framework.

3.3 Significance

Program Dependence Graphs (PDGs) [29, 54] are a very elegant representation of pro-

grams. PDGs represent all the dependences in a program in a unified way, allowing a more

homogeneous treatment of data and control dependences. Due to these characteristics,

PDGs have been widely used for program analyses, program slicing, loop parallelizations,

and global instruction scheduling. Although the idea of PDGs was born for high-level, syn-

tactical program representations [54], the work of Ferrante et al. [29] extended PDGs for

low-level representations based on control-flow graphs (CFGs). This extension has enabled

the use of PDGs for low-level, back-end code optimizations, including global instruction

scheduling [8, 112, 113].
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High-level parallelizing compilers use PDGs for loop distribution [49] and for parti-

tioning programs to exploit DOALL parallelism [90]. Ferrante et al. [28] showed how to

generate sequential code back from a PDG. However, to the best of our knowledge, our

MTCG algorithm is the first general technique to produce multi-threaded code from a low-

level PDG, with arbitrary control flow and thread partitions, and without replicating the

whole CFG in each thread.

The work that comes closest to our goal of generating multi-threaded code for arbi-

trary low-level PDGs was proposed by Newburn et al. [66, 68]. Although operating at a

low-level representation, this work reconstructs the program’s control hierarchy. To do so,

they extend the notion of region nodes in Ferrante et al. [29]’s PDG, with region nodes

for different control structures (e.g. conditionals, DOALL loops, non-DOALL loops). Due

to the possibility of arbitrary control flow in low-level, highly optimized code, Newburn’s

PDG defines region nodes for multi-predecessor control regions, irreducible loops, among

other specialized region nodes. The code generation from this extended PDG is performed

hierarchically, treating each type of region node especially. There are several drawbacks

of this approach compared to our homogeneous treatment of control dependences in the

MTCG algorithm. First, Newburn’s code generation is much more complicated because

of the various special cases that need to be handled. This also makes it harder to demon-

strate and verify the correctness of their code generation algorithm. Furthermore, their code

generation operates hierarchically on the control structure of the PDG, which prevents the

exploitation of some types of parallelism. For example, their code generation allows either

DOALL parallelism, or intra-iteration parallelism only, in which case the threads synchro-

nize at the end of every loop iteration [67, 68]. Thus, their algorithm cannot produce code

that exploits pipeline parallelism, such as code produced by the DSWP technique described

in Chapters 6 and 7. Therefore, although operating on a low-level representation, New-

burn’s code generation has essentially the same limitations of structural approaches that

use a syntax-based PDG. On the other hand, the MTCG algorithm proposed in this chapter
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is a simple, general algorithm for generating multi-threaded code for PDGs with arbitrary

control flow and thread partitions. The simplicity of our algorithm lies in its homogeneous

treatment of dependences, especially by handling all control dependences in a similar way.

Although elegant, the MTCG algorithm has two drawbacks. The first is that its simple

communication-placement strategy may be suboptimal. Chapter 4 studies better strategies

to place communication in the generated code. The second drawback is that, as described

in this chapter, the MTCG algorithm does not allow the exploitation of iteration-level par-

allelism. Chapter 7 describes how to extend the MTCG algorithm to enable the exploitation

of this type of parallelism as well.

39



Chapter 4

Inter-Thread Communication

Optimizations

Although very general, the MTCG algorithm (presented in Chapter 3) may generate exces-

sive inter-thread communications. In this chapter, we present more elaborate algorithms to

better place communication primitives.

This chapter describes the COmpiler Communication Optimization (COCO) frame-

work [73]. COCO optimizes the placement of communication required to implement the

three kinds of inter-thread dependences: register, control, and memory dependences. Since

communication instructions are overhead inserted in the code, reducing the number of these

instructions can improve performance. Furthermore, communication instructions represent

synchronization points in the program. Therefore, improving their placement can also im-

prove the parallelism among the generated threads.

Property 1 in Chapter 3 described a simple strategy for placing communication instruc-

tions, which is to place them at the program point corresponding to the source instruction

of the dependence. The simplicity of this strategy lies in that each dependence is commu-
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nicated whenever its source instruction executes. For example, for a register dependence,

at the program point right after the register’s definition (the source of the dependence),

it is guaranteed that the value communicated is the latest value assigned to that register.

This may not be true, for instance, if the value of the register is instead communicated

immediately before it is used, since definitions in different threads may reach a single use.

Nevertheless, the simplicity of placing communication according to Property 1 comes

at a cost: it may result in excessive communication. To illustrate that, consider the example

in Figure 4.1. Figure 4.1(a) shows the original code in a CFG, and Figure 4.1(b) contains

the corresponding PDG. Assume a partition into 2 threads: T1 = {A, B, C, D, E, G} and

T2 = {F}. Figures 4.1(c)-(d) show the code generated by MTCG for each thread. Thread

1 (T1) has instructions in all basic blocks, and thus they are all relevant to it. For thread

2, B3 is relevant because it holds instruction F assigned to this thread, and B1 and B2

are relevant because they contain instructions on which F depends. As can be seen in the

PDG, there are 3 inter-thread dependences in this case: two register dependences (A→ F )

and (E → F ) involving r1, and a transitive control dependence (D → F ). This transitive

control dependence exists because D controls E, which is the source of an inter-thread

register dependence. In Figures 4.1(c)-(d), there is a pair of produce and consume

instructions for each inter-thread dependence, inserted according to Algorithm 1.

In the example in Figure 4.1, the set of communication instructions inserted by MTCG

is not optimal. It would be more efficient to simply communicate r1 at the beginning of

blocks B3’ and B3”, for two reasons. First, this would avoid communicating r1 twice on the

path (B1, B2, B3). Second, this would make it unnecessary to have branch D′′ in thread 2,

thus saving the communication of r2 as well. In the remaining of this chapter, we describe

the algorithms used by COCO to efficiently perform these register-communication and

control-flow optimizations in general, as well as to optimize the memory synchronizations

inserted by the basic MTCG algorithm.
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Figure 4.1: Simple example of the MTCG algorithm.

4.1 Problem Formulation

As motivated by the example in Figure 4.1, the goal of COCO is to reduce the number of

dynamic communication and synchronization instructions executed in the generated MT
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code. Unfortunately, as with many program analysis and optimization problems, this prob-

lem is undecidable in general, since it is undecidable to statically determine which paths

will be dynamically executed. To illustrate this difficulty, consider the example in Fig-

ure 4.2. In this example, both definitions of r1 are assigned to one thread, while the use of

r1 is assigned to another thread (the thread boundaries are shown by dashed lines in Fig-

ure 4.2). Thus the value of r1 needs to be communicated from one thread to another. For

simplicity, assume that blocks B1, B3, and B5 are relevant to both threads. Depending on

the dynamic execution frequency of arcs A, B, and C, different places to communicate r1

result in the minimum amount of communication. For example, with freq(A) = 1, freq(B)

= 5, and freq(C) = 10, the optimal solution is to communicate r1 at B1 and B3. This results

in 6 dynamic communications. Now consider freq(A) = 1, freq(B) = 10, freq(C) = 5. In this

case, the optimal solution is to communicate r1 at B5, which results in 5 dynamic commu-

nications. As this example illustrates, there is no static placement of communication that

guarantees the minimum number of dynamic communications for every execution.

Given the necessity of knowing profile weights to optimally place communications,

COCO uses a profile-based approach, in which an estimate on the execution count of each

CFG edge is available. These estimates can be obtained through standard profiling tech-

niques (e.g. [7]) or through static analyses, which have been demonstrated to be also very

accurate [116]. Given the profile weights, the problem can be formulated as to minimize the

communication assuming each CFG edge’s execution frequency as indicated by its weight.

Before formulating the communication optimization problems and describing the algo-

rithms, we introduce several definitions and properties that are necessary. First, in Defini-

tion 3 below, we define the notion of relevant branches to a thread. This definition parallels

the notion of relevant basic blocks described earlier in Definition 2 in Section 3.1.1. How-

ever, Definition 3 is more general in that it enables the placement of communication at

points other than the point of a dependence’s source instruction.
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     B1     

 r1 = ...

     B2     

 A

     B3     

 r1 = ... 

     B4     

     B5     

 ... = r1 + ...

C

     B6     

     B7     

B

Figure 4.2: Example CFG illustrating the impossibility of statically placing communica-

tions optimally.

Definition 3 (Relevant Branches). A branch instruction B is relevant to thread T if either:

1. B is assigned to T in the partition; or

2. B controls the insertion point of an incoming dependence into an instruction as-

signed to T ; or

3. B controls another branch B′ relevant to T .

The intuition is that relevant branches are those that thread T will contain, either be-

cause they were assigned to this thread or because they are needed to implement the correct

condition under which an incoming dependence into T must happen.

Based on the notion of relevant branches for a given thread, we define its relevant points

in the program.
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Definition 4 (Relevant Points). A program point p in the original CFG is relevant to thread

T iff all branches on which p is control dependent are relevant branches to T .

In other words, the relevant points for thread T are those that depend only on T ’s

relevant branches. This means that the condition of execution of these points can be im-

plemented without adding new branches to T . In Definition 4, we require all branches

controlling p to be relevant to T in order to enforce the correct condition of execution of p

through all CFG paths.

The communication instructions generated by MTCG obey an important property to

enable the TLP intended by the thread partitioner:

Property 2. All inter-thread communications in the generated MT code correspond to de-

pendence arcs in the PDG, including transitive control dependence arcs.

This property guarantees that only dependences represented in the PDG will be com-

municated. This is important because, as illustrated in Figure 1.2, the partitioner is based

on the PDG. If Property 2 was not respected, then MTCG could hurt the parallelism in-

tended by the partitioner. For example, the DSWP partitioner (described in Chapter 6)

assigns instructions to threads so as to form a pipeline of threads, with unidirectional de-

pendences among them. However, if Property 2 is not respected, a dependence cycle among

the threads can be created.

In the MTCG algorithm, since communication is always inserted at the point corre-

sponding to the source of the dependence, all inter-thread transitive control dependences

need to be implemented [74]. In other words, each of these dependences will require its

branch operands to be communicated and the branch to be duplicated in the target thread.

With COCO, however, a better placement of data communications can reduce the transi-

tive control dependences that need to be implemented. For this reason, besides Property 2,

COCO also respects the following property to limit the transitive control dependences that

need to be implemented:
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Property 3. The communication instructions to satisfy a dependence from thread Ts to

thread Tt must be inserted at relevant points to Ts.

Essentially, this property prevents branches from becoming relevant to thread Ts merely

for implementing a dependence emanating from Ts. In other words, no new branches must

be added to Ts in order to implement a dependence from it to Tt. However, additional

branches may be made relevant to the target thread Tt in order to implement one of its

input dependences.

Besides Properties 2 and 3, the placement of register communications must also respect

the Safety property for correctness:

Property 4 (Safety). A register dependence from Ts to Tt involving (virtual) register r must

be communicated at safe points, where Ts has the latest value of r.

This property is necessary for correctness because communicating r at an unsafe point

would, in some control paths, overwrite r in Tt with a stale value. In other words, a de-

pendence from a definition of r not in Ts to a use of r in Tt would not be respected, thus

changing the program’s semantics. Notice that MTCG’s placement of communication is

safe, since the registers are communicated immediately after they are defined.

The set of registers that are safe to communicate from thread Ts to any other thread

at each program point can be precisely computed using the data-flow equations (4.1) and

(4.2) below. In these equations, DEFTs
and USETs

denote the set of registers defined and

used by instruction n if it is assigned to Ts, and DEF means the set of registers defined by

n regardless of which thread contains n.

SAFEout(n) = DEFTs
(n) ∪ USETs

(n) ∪

(SAFEin(n)− DEF(n)) (4.1)

SAFEin(n) =
⋂

p∈Pred(n)

SAFEout(p) (4.2)
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The intuition behind these equations is that Ts is guaranteed to have the latest value of a

register r right after Ts either defines or uses r. Furthermore, the value of r in Ts becomes

stale after another thread defines r. Finally, the data-flow analysis to compute safety is a

forward analysis, and the SAFEin sets are initially empty.

This safety data-flow analysis is said to be thread-aware because, although operating

on a single CFG, it takes the partition of instructions among the threads into account. An

equivalent analysis could operate on multiple CFGs (one per thread) simultaneously, given

the correspondence between the basic blocks in all CFGs.

Having defined Properties 2, 3, and 4, the communication-placement optimization prob-

lem can be defined as follows. Given a thread partition and the original CFG with profile

weights, find insertion points in the CFG to place the necessary communications such that:

(a) Properties 2, 3, and 4 are satisfied; and (b) the total profile weight of all communication

insertion points is minimized.

Given this problem formulation, the next subsection focuses on optimizing the com-

munication between a pair of threads. Based on this pairwise optimization, the general

algorithm to handle any number of threads is described in Section 4.3.

4.2 Optimizing a Pair of Threads

We first describe how COCO optimizes register communications in Section 4.2.1. Then

Section 4.2.2 shows how to extend COCO to also minimize control flow. Finally, Sec-

tion 4.2.3 demonstrates how COCO optimizes memory synchronizations as well.

4.2.1 Optimizing Register Communication

We now formulate the problem of optimizing register communications from a source thread

Ts to a target thread Tt. Since the communication of each register requires its own set of

instructions, it is possible to optimize the communication of each register independently.

So let r denote the register whose communication is to be optimized.
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The register communication optimization problem can be precisely modeled as a min-

cut problem in directed graphs, by constructing a graph Gf = (Vf , Af ) derived from the

CFG as described shortly. The intuition behind the construction of Gf is that a cut in this

graph will correspond to communicating r at the program points corresponding to the arcs

in this cut.

The set of vertices in Vf contains the original code instructions where r is live with re-

spect to Tt. That means the live range of r considering only the uses of r in the instructions

assigned to Tt. This can be computed using a thread-aware data-flow analysis very similar

to the standard liveness analysis. In addition, Vf also contains one vertex corresponding to

the entry of each basic block where r is live with respect to Tt. The need for these vertices

will become clear shortly. Finally, there are two special nodes: a source node S, and a target

(or sink) node T . The arcs in Af are of two kinds. Normal arcs represent possible flows of

control in the program, corresponding to the arcs in the CFG constructed at the granularity

of instructions. These arcs have a cost equal to the profile weight of their corresponding

CFG arcs. In addition, there are also special arcs from S to every definition of r in Ts, and

from every use of r in Tt to T . The costs of the special arcs are set to infinity to prevent

them from participating in a minimum cut. This is necessary because special arcs do not

correspond to program points, and thus cannot have communication instructions placed on

them.

As an example, consider the code in Figure 4.1(a) with the partition Ts = {A, B, C, D,

E,G} and Tt = {F}. Figure 4.1(e) illustrates the graph Gf for register r1. The source

and sink nodes are represented by a triangle and an inverted triangle, respectively. Node

B3entry corresponds to the beginning of block B3, the only block that has r1 live at its

entry.

When drawing special arcs to the target node T in Gf , besides the uses of r in instruc-

tions assigned to Tt, uses of r in relevant branches to Tt are also considered as uses in Tt.

The reason for this is that, as mentioned earlier, relevant branches to a thread need to be
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included in it to properly implement its control flow. In effect, treating branches as belong-

ing to all threads to which they are relevant allows the communication of branches’ register

operands to be optimized along with register data communications. This can result in better

communication of branch operands compared to MTCG’s strategy of implementing control

dependences, which is to always communicating branch operands immediately before the

branches (lines 24-27 in Algorithm 1).

Notice that, in order to satisfy the dependences involving r from Ts to Tt, communica-

tion instructions for r can be inserted at any subset of Af that disconnects T from S. In

other words, any cut in Gf corresponds to a valid placement of communication instructions,

namely communicating r at each arc in this cut. This guarantees that r will be communi-

cated from Ts to Tt along every path from a definition of r in Ts to a use of r in Tt. In

particular, the original MTCG algorithm always uses the cut containing the outgoing arcs

in Gf of the instructions defining r in Ts. This corresponds to the cut containing (A→ B)

and (E → B3entry) in Figure 4.1(e). Since S only has arcs to nodes corresponding to Ts’s

instructions defining r, this is clearly a cut in Gf .

By the construction of Gf , for a given cut C in Gf , the number of dynamic communi-

cations of r that will be executed corresponds to the cost of the arcs in C. Therefore, the

problem of finding the minimum number of dynamic communications reduces to finding a

minimum cut in Gf . In Figure 4.1(e), arc (B3entry → F ) alone forms a min-cut, with a cost

of 10. This example also illustrates the role of the nodes in Gf corresponding to basic block

entries, which is to allow the placement of communications before the first instruction in a

basic block (B3 in this case).

In fact, the formulation described so far is still incomplete, because it allows any normal

arc in Gf to be cut. However, there are arcs that must not participate in a cut because

communicating r at those points violates one of Properties 2, 3 or 4. To prevent such arcs

from participating in a cut, their costs are set to infinity. As long as there exists a cut with

finite cost, these arcs (and also the special arcs involving S and T ) are guaranteed not to be
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in a min-cut. Fortunately, a finite-cost cut always exists: the cut that the MTCG algorithm

picks. That is true because the points right after the definitions of r in Ts are both safe (i.e.

Ts has the latest value of r there) and relevant to Ts (since they have the same condition of

execution of the definitions of r in Ts).

B1

A:  r1 = 0

B2

B:  r1 = r1 + ...

C:  branch r1 < ...

 1

 9

B3

D:  r2 = 1

 1

B4

E:  r2 = r2 * r1

F:  branch r2 < ...

 1

 9

B5

      ...     

 1
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(c) Gf for r1

Figure 4.3: An example with loops.

To illustrate a more drastic case where the MTCG algorithm generates inefficient code,

consider the example in Figure 4.3. The partition in this case is Ts = {A, B, C} and

Tt = {D, E, F}. The only inter-thread dependence is the register dependence (B → E).

The MTCG algorithm communicates r1 right after instruction B, inside the first loop. For

this reason, a transitive control dependence (C → E), not illustrated in Figure 4.3(b),

also needs to be communicated. As a result, thread Tt will contain the first loop as well.

In effect, Tt will consume the value of r1 each time B is executed, even though only

50



the last value assigned to r1 is used by instruction E. Figure 4.3(c) shows the graph Gf

constructed for r1. Notice that Gf does not contain nodes before B, including the arc

(C → B2entry), since r1 is not live with respect to Tt at these points. Applying the register

communication optimization, r1 can be communicated in either of the arcs with cost 1 in

Figure 4.3(c). Any of these cuts essentially corresponds to communicating r1 at block B3.

This drastically reduces the number of times r1 is communicated from the total number of

B2’s loop iterations, 10, down to 1. Furthermore, as a side effect, this completely removes

the first loop from thread Tt, making it unnecessary to implement the transitive control

dependence (C → E).

Fortunately, there are efficient algorithms to compute a min-cut in direct graphs. In

fact, due to its duality to maximum flow [31], min-cut can be solved by efficient and prac-

tical max-flow algorithms based on preflow-push, with worst-case time complexity O(n3),

where n is the number of vertices [21]. For our problem, given that Gf is limited to a

register’s live-range, even algorithms with worse time complexity run fast enough so as to

not increase compilation time significantly, as observed in our experiments.

4.2.2 Reducing Control Flow

As illustrated in the example from Figure 4.3, the placement of data communication can

also reduce the control flow in the target thread. In some cases, as in Figure 4.3, this comes

for free simply by optimizing the data communications. However, there are cases where

there are multiple cuts with the minimum cost, but some of them require more inter-thread

control dependences to be implemented than others. Extra control flow in the target thread

Tt is necessary whenever communication is placed at points currently not relevant to Tt.

This forces these branches to be added to the set of relevant branches for Tt, so that they

will need to be implemented in Tt.

In order to avoid branches unnecessarily becoming relevant to Tt, the costs of the arcs

in Gf can be adjusted as follows. The idea is to penalize arcs that, if cut, will require
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additional branches to become relevant to Tt. Thus, we add to each arc A in Gf the profile

weight of each currently irrelevant branch to Tt that will become relevant if communication

is placed on A. The reasoning is that these branches would not be necessary otherwise, so

we add the number of dynamic branches that would be executed to the cost of A. To

illustrate this, consider the example in Figure 4.4(a), with Ts = {A, B, C, D, E, G} and

Tt = {F, H, I, J, K}. The corresponding PDG is shown in Figure 4.4(d). Consider the

communication of r1 from Ts to Tt. This communication is only allowed to be placed

in basic blocks B3, B4, and B6, since, from B7 on, it is not safe due to the definition

of r1 in instruction F in Tt. The two alternatives then are to communicate r1 either in

B6 or in B3 and B4. Looking at the profile weights, both alternatives look equally good.

However, communicating at B3 and B4 makes the branch instruction B relevant to Tt,

while communicating at B6 does not. Figure 4.4(b) illustrates the graph Gf for r1 with the

costs adjusted to account for control flow costs. Assume branch B is currently not relevant

to Tt. The arcs (C → D), (D → B6entry), and (E → B6entry) are control dependent on B,

and thus have the profile weight of B, 8, added to their costs. With these penalties added,

the min-cut in Gf is either arc (B6entry → G) or arc (G → B7entry) in Figure 4.4(b).

Both these cuts correspond to placing the communication of r1 in block B6, thus avoiding

adding branch B to Tt’s set of relevant branches.

Notice that, after adding these penalties to account for control flow, the problem is not

precisely modeled anymore. For instance, multiple arcs including a penalty for one branch

will include the cost of this branch, and thus a cut including two or more of these arcs will

be over-penalized. However, since the arcs’ costs are used to choose a cut, the information

about which arcs will participate in the solution cut is unknown a priori to make the control-

flow penalties more precise. Alternative approaches to address this limitation in modeling

control flow are possible, but we are unaware of any that is efficient and that guarantees

optimality.
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Figure 4.4: An example including memory dependences.
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4.2.3 Optimizing Memory Synchronizations

This section describes how synchronization instructions, used to respect inter-thread mem-

ory dependences, can also be accurately modeled in terms of graph min-cut.

Although memory dependences are also implemented through queues and produce

and consume instructions (Section 3.1.3), they differ from register dependences in several

aspects. First, for memory dependences, no actual operand is sent through the queues, and

only the synchronization matters. As a result, multiple memory dependence arcs involving

unrelated memory locations can share the same synchronization instructions. This changes

a fundamental characteristic of the optimization problem, as described shortly. Another

difference compared to register communication is that, for memory, the produce and

consume instructions must have the proper release and acquire semantics in the memory

subsystem. That is, the produce.rel must ensure that previous memory-related in-

structions have committed and, analogously, the consume.acq must commit before suc-

cessive memory-related instructions execute. Compared to the produce and consume

instructions for register communication, the memory versions restrict reordering of instruc-

tions in the microarchitecture. This difference is also the reason why register communica-

tion instructions cannot be used to satisfy memory dependences.

As mentioned above, the fact that memory dependence arcs involving disjoint sets of

memory locations can share synchronization instructions makes the problem different from

the register communication one. The reason for this derives from the fact that, while the

single-source, single-sink min-cut problem can be efficiently solved in polynomial time,

min-cut is NP-hard for multiple source-sink pairs (also called commodities), where the

goal is to disconnect each source from its corresponding sink [32]. For registers, the prob-

lem could be precisely modeled using a single source-sink pair by applying the standard

trick of creating special source and sink nodes and connecting them to the rest of the graph

appropriately. This was possible because, for a register r, it was necessary to disconnect ev-

ery definition of r in Ts from every use in Tt. For memory, however, a similar trick does not
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lead to an optimal solution. Finding the optimal solution for memory requires optimizing

all memory dependences from Ts to Tt simultaneously, since they all can be implemented

by the same synchronization instructions. Nevertheless, it is not necessary for all sources

of memory dependences in Ts to be disconnected from all targets of these dependences in

Tt, since dependences can refer to disjoint sets of memory locations. A memory instruction

in Ts needs only to be disconnected from its dependent memory instructions in Tt. To accu-

rately model this optimization problem, it is necessary to use a graph min-cut with multiple

source-sink pairs.

Notice that, although this difference requires using sub-optimal algorithms for memory

optimization in practice, the possibility of sharing synchronization instructions makes the

potential optimization impact larger for memory than for registers. In fact, this is confirmed

in the experiments in Section 4.4.2.

We now describe how to construct the graph Gf to optimize memory dependences from

thread Ts to thread Tt. Although the register optimization could be restricted to the region

corresponding to the register’s live-range, this is not always possible for memory due to

weak memory updates and the impossibility of eliminating all false dependences through

renaming. For this reason, the nodes in Gf for memory may need to correspond to the entire

region being parallelized. Akin to what was described for registers, Gf here includes nodes

corresponding to basic block entries. As explained above, to precisely model the memory

optimization problem, it is necessary to use multiple source-sink pairs in Gf . Specifically,

for each memory dependence arc from Ts to Tt in the PDG, a source-sink pair is created

for its source and target instructions.

The costs on Gf ’s arcs for memory are the same as for registers, with two differences.

First, there is no notion of safety for memory synchronization. In other words, since no

operand is communicated for memory dependences, no arc is prohibited from participating

in the cut because it is not safe to synchronize at that point. The second difference is that,

since the source (sink) nodes here correspond to real instructions in the program, their
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outgoing (incoming) arcs are allowed to participate in the cut and thus do not have their

costs set to infinity. Similar to what is used for register dependences, arcs dependent on

irrelevant branches to either Ts or Tt have their costs set specially.

As an example, consider the placement of memory synchronization for the code in

Figure 4.4. There are two cross-thread memory dependences from Ts to Tt: (D → K)

involving variable y, and (G → J) involving variable x. Figure 4.4(c) illustrates the Gf

graph constructed as described, with the two source-sink pairs distinguished by different

shades. The arcs from node H all the way down to B9entry have infinite cost because they

are control dependent on branch H , which is not relevant to Ts. The min-cut solution in the

example is to cut the arc (G→ B7entry), with a cost of 8.

Given the NP-hardness of the min-cut problem with multiple source-sink pairs, the

following heuristic solution is used in this work. The optimal single-source-sink algorithm

is successively applied to each source-sink pair. When an arc is cut to disconnect a pair, it is

removed from the graph so that this can help disconnecting subsequent pairs. As illustrated

in our experiments, this simple heuristic performs well in practice.

4.3 Optimizing Multiple Threads

We now turn to optimizing the communication for multiple threads. COCO tackles this

more general problem by relying on the pairwise algorithms described above.

Algorithm 2 presents the pseudo-code for COCO. As input, COCO takes the original

CFG and PDG for the region being parallelized, as well as the partition into threads speci-

fied by the partitioner. As output, this algorithm returns the set of inter-thread dependences

annotated with the points in the program where the communication instructions should be

inserted. These annotations can be directly used to place communications in a slightly

modified version of the MTCG algorithm presented in Algorithm 1.
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Algorithm 2 COCO

Require: CFG, PDG, P
1: GT ← Build Thread Graph(PDG, P)

2: relevantBr ← Init Relevant Branches(GT , P)

3: deps ← ∅
4: repeat

5: oldDeps ← deps

6: deps ← ∅
7: for each arc (Ts → Tt) ∈ GT [in topological order] do

8: stDeps ← ∅
9: for each register r to be communicated from Ts to Tt do

10: Gf ← Build Flow Graph for Register(r, Ts, Tt, relevantBr )

11: commArcs ←Min Cut(Gf )

12: stDeps ← stDeps ∪ {(r, Ts, Tt, commArcs)}
13: end for

14: Gf ← Build Flow Graph for Memory(Ts, Tt, relevantBr )

15: commArcs ←Min MultiCut(Gf )

16: stDeps ← stDeps ∪ {(MEM , Ts, Tt, commArcs)}
17: Update Relevant Branches(relevantBr [Tt ], stDeps)

18: deps ← deps ∪ stDeps

19: end for

20: until oldDeps = deps

21: return deps

The first step in COCO (line 1) is to build a thread graph GT , representing the depen-

dences between threads. For each thread, there is a node in GT . There is an arc (Ts → Tt)

in GT if and only if there is a PDG dependence arc (including transitive control arcs) from

an instruction in thread Ts to an instruction in another thread Tt. COCO successively opti-

mizes the communications between each pair of threads connected by an arc in GT .

The algorithm iteratively computes a set of inter-thread dependences (deps) annotated

with their corresponding communication insertion points. Besides that, the algorithm main-

tains the set of relevant branches to each thread, computed according to Definition 3. At

the beginning (line 2 in the algorithm), the sets of relevant branches are initialized fol-

lowing rules 1 and 3 in Definition 3. Later, as the insertion points for communication are

computed, these sets grow using rules 2 and 3 in this definition. Although not illustrated

in Algorithm 2, the set of relevant points to each thread, derived from the set of relevant

branches according to Definition 4, is also maintained.
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The algorithm iterates until the set of dependences with insertion points converges

(repeat-until in lines 4-20). Iteration is necessary in general because, to satisfy the input

dependences of a thread Ti, other branches may become relevant to it. However, changing

the set of Ti’s relevant branches can affect the best placement for Ti’s output dependences.

That is because, to satisfy Property 3, no communication is allowed on irrelevant points

for the source thread. Iteration can, however, be avoided in the special case when GT is

acyclic, by computing the placement for a thread’s input dependences before for its output

dependences.

The for loop in lines 7-19 computes the placement of communication for each pair of

threads connected by an arc in the thread graph. As mentioned previously, following a

(quasi-)topological order of GT ’s arcs here reduces the number of iterations of the repeat-

until loop. For each arc (Ts → Tt) in GT , the placement of communication is computed as

described in Sections 4.2.1 through 4.2.3 above. That is, each register is optimized sepa-

rately, and all memory dependences are optimized simultaneously. In each case, optimizing

the communication placement involves creating a flow graph with costs on arcs, and then

computing a min-cut in this graph. A tuple indicating the register involved in the depen-

dence (or memory), its source and target threads, along with the communication insertion

points computed, is then inserted in the set of dependences. Finally, on line 17, the set of

relevant branches for the target thread is augmented to account for new branches that just

became relevant to satisfy some dependences.

Algorithm 2 is guaranteed to converge because the sets of relevant branches are only

allowed to grow, and the number of branches in the region is obviously finite.

Similar to code generated by the original MTCG algorithm, the code produced using

COCO is also guaranteed to be deadlock-free. In both cases, this can be proved using

the fact that pairs of produce and consume instructions are inserted at corresponding

points in the original code. In fact, slightly more care is necessary with COCO because

many communications may be chosen to be inserted at the same program point. For exam-
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ple, COCO may choose the same program point both to communicate a value from a thread

T1 and T2, and to communicate a value from T2 to T1. In this case, if the communication in-

structions are inserted arbitrarily, both consumes may be inserted before the produces,

resulting in a deadlock. Two simple solutions can be used to avoid this problem. The first

one is to impose an arbitrary total order among the dependences, and to enforce that, for

all instructions to be inserted at a given program point, the communication instructions are

inserted according to the order of the dependences they implement. An alternative solution

is to put, for all instructions to be inserted at the same program point, all the produces

before all the consumes.

4.4 Experimental Evaluation

In this section, we describe our experimental setup and evaluate COCO. Our experimental

setup includes the compiler infrastructure in which COCO was implemented, the target

architecture, and the benchmark programs used. Based on these, we then present results

that demonstrate COCO’s effectiveness in reducing the communication instructions and

improving performance of the applications.

4.4.1 Experimental Methodology

This section describes the general methodology used in the experiments, not only for

COCO, but throughout this thesis. In the following, we describe the compiler in which

our techniques were implemented, the simulator model utilized, as well as the benchmarks

used for evaluation.

Compiler Infrastructure

The compilation techniques proposed in this work have been implemented both in the IM-

PACT compiler [96], from the University of Illinois, and in the VELOCITY compiler de-
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veloped in our group [105]. For consistency, all the evaluations presented in this thesis use

code produced by the VELOCITY compiler.

VELOCITY is a multi-threading research compiler. Currently, VELOCITY has an

Itanium 2 [44] back-end, and it uses the front-end of the IMPACT compiler [96] to ob-

tain a low-level intermediate representation (IR), called L-code. IMPACT’s L-code IR

is then translated into the equally low-level VELOCITY’s X-code. Traditional machine-

independent code optimizations are performed in VELOCITY, as well as some Itanium-

2-specific optimizations. The GMT scheduling techniques in VELOCITY are performed

after traditional optimizations, before the code is translated to Itanium 2’s assembly, where

Itanium-2-specific optimizations are performed, followed by register allocation and the fi-

nal single-threaded instruction scheduling pass.

The PDG used by our GMT instruction scheduling framework is built from VELOC-

ITY’s low-level IR. Control and register data dependences are computed using VELOC-

ITY’s data-flow analysis framework. For memory dependences, we use the results of a

context-sensitive, flow-insensitive pointer analysis performed in IMPACT [70]. The re-

sults of this analysis are annotated in the L-code and translated into VELOCITY’s X-code.

These memory aliasing annotations may be overly conservative due to both limitations in

IMPACT’s pointer analysis and the conservative propagation during code optimizations in

VELOCITY [36]. Overly conservative memory annotations result in unnecessary synchro-

nizations to be inserted by our MT code generation algorithms.

For each parallelized region, the compiler creates news functions containing the code

to be executed by each of the auxiliary threads. Before entering a parallelized region, the

main thread sends to each auxiliary thread the address of the corresponding auxiliary func-

tion on a specific queue (a master queue). Then each auxiliary thread, which is blocked on

a consume operation on its master queue, wakes up and simply calls the function whose

address it receives. Upon termination of a parallelized region, the corresponding auxiliary

function returns to the master auxiliary function, which loops back to the consume in-
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struction. The auxiliary threads then block again on their master queues, waiting for the

next request from the main thread. The auxiliary threads terminate upon receiving through

their master queues a special value, which consists of a NULL function pointer.

Hardware Model

To evaluate the performance of the code generated by VELOCITY, we used a cycle-accurate

CMP model comprising a parameterized number of Itanium 2 cores. The core models are

validated, with IPC and constituent error components accurate to within 6% of real hard-

ware for measured benchmarks [79]. In our model, the cores are connected by the synchro-

nization array communication mechanism proposed by Rangan et al. [85] and discussed in

Section 1.2. In Figure 4.1, we provide details about the simulator model, which was built

using the Liberty Simulation Environment [107].

Core Functional Units: 6 issue, 6 ALU, 4 memory, 2 FP, 3 branch

L1I Cache: 1 cycle, 16 KB, 4-way, 64B lines

L1D Cache: 1 cycle, 16 KB, 4-way, 64B lines, write-through

L2 Cache: 5,7,9 cycles, 256KB, 8-way, 128B lines, write-back

Maximum Outstanding Loads: 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, write-back

Main Memory Latency: 141 cycles

Coherence Snoop-based, write-invalidate protocol

L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction

bus with round robin arbitration

Table 4.1: Machine details.

The synchronization array (SA) in the model works as a set of low-overhead queues.

In our base model, there is a total of 256 queues, each with 32 elements. Each of these

elements can hold a single scalar value, which can be either an integer or a floating-point

number. Our MT code generation algorithms guarantee the correctness of the produced

code for any queue size greater than zero. The SA has a 1-cycle access latency, and it has

four request ports that are shared between the two cores. The Itanium 2 ISA was extended

with produce and consume instructions for inter-thread communication, and the GNU

Assembler was extended accordingly. These instructions use the M pipeline, which is
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also used by memory instructions. This imposes the limit that only 4 of these instructions

(minus any other memory instructions) can be issued per cycle on each core, since the

Itanium 2 can issue only four M-type instructions in a given cycle. While the consume

instructions can access the SA speculatively, the produce instructions write to the SA

only on commit. As long as the SA queue is not empty, a consume and its dependent

instructions can execute in back-to-back cycles.

The highly-detailed nature of the validated Itanium 2 model prevented whole-program

simulation. Instead, detailed simulations were restricted to the parallelized region in each

benchmark. We fast-forwarded through the remaining sections of the program while keep-

ing the caches and branch predictors warm. The high accuracy of our simulation model

comes at the cost of simulation time. This makes whole-program simulations impracti-

cal. For this reason, we use the sample-based simulation methodology developed by Ran-

gan [82]. The complexity of our Itanium 2 core model also makes it impractical to build

CMP models with many cores. The larger the number of cores, the larger are both the

simulator binary and the simulation time.

Benchmark Programs

For our experiments, we used the set of benchmarks that VELOCITY is currently able to

parallelize using the techniques proposed in this thesis. These techniques were applied

to the applications from the MediaBench [58], SPEC-CPU [99], and Pointer-Intensive [6]

benchmark suites that currently go through our tool-chain. To reduce simulation time, the

parallelization and simulations were restricted to important functions in these benchmarks,

generally corresponding to at least 25% of the benchmark execution. In Figure 4.2, we

list the selected application functions along with their corresponding benchmark execution

percentages.
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Benchmark Description Selected Function Exec. %

adpcmdec speech decompression adpcm decoder 100

adpcmenc speech compression adpcm coder 100

ks Kernighan-Lin graph partitioning FindMaxGpAndSwap 100

mpeg2enc video encoder dist1 58

otter theorem prover for first-order logic find lightest geo child 15

177.mesa 3-D graphics library general textured triangle 32

179.art image recognition using neural networks match 49

181.mcf combinatorial optimization refresh potential 32

183.equake seismic wave propagation simulation smvp 63

188.ammp computational chemistry mm fv update nonbon 79

300.twolf transistor placement and routing new dbox a 30

435.gromacs molecular dynamics simulation inl1130 75

456.hmmer hidden Markov model P7 Viterbi 85

458.sjeng chess program std eval 26

Table 4.2: Selected benchmark functions.

4.4.2 Experimental Results

This section presents an evaluation of the COCO framework. In particular, we illustrate

the effectiveness of COCO in reducing the communication instructions and improving per-

formance, compared to the basic MTCG algorithm. We evaluate COCO in scenarios that

use two thread-partitioning techniques presented in the subsequent chapters: GREMIO

(Chapter 5) and DSWP (Chapter 6). The specifics of these techniques are mostly irrelevant

here, and they are just used to demonstrate the improvements of using COCO over the sim-

ple communication strategy described in Chapter 3. To demonstrate COCO’s relevance in

the face of different hardware support, the experiments for GREMIO use communication

queues with a single element, instead of the 32-element default.

VELOCITY has profile-weight information annotated on its IR, which was used for the

costs on the Gf graphs for min-cut. The profiles were collected on smaller, train input sets,

while the results presented here were run on larger reference inputs.
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Figure 4.5: Breakdown of dynamic instructions in code generated by the basic MTCG

algorithm (without COCO), for (a) GREMIO and (b) DSWP.

Results for Two Threads

Because of the large number of dependences in general-purpose applications, the overhead

of communication instructions can be quite significant in code generated by GMT instruc-

tion scheduling techniques. To illustrate this, Figure 4.5 shows the dynamic percentages

of communication instructions compared to the original instructions in the program (the

computation) for various benchmarks parallelized by GREMIO and DSWP using the ba-

sic MTCG communication placement. As illustrated, the communication instructions can

account for up to one fourth of the total instructions. COCO’s goal is to eliminate some

of these communication instructions. This can improve performance not only by reducing

the number of executed instructions, but also by eliminating synchronization points, thus

enabling more TLP.

In Figure 4.6, we show the percentages of dynamic communication instructions that

are eliminated when COCO is applied, relative to the codes using the original MTCG algo-

rithm’s communication strategy. The average reduction of the dynamic communication in-

structions was 34.4% for GREMIO, and 23.8% for DSWP. The largest reduction occurred

for ks with GREMIO (73.7%), where an inner-loop whose only purpose was to consume a

live-out could be completely removed from a thread, similar to the example in Figure 4.3.
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Figure 4.6: Reduction in the dynamic communication / synchronization instructions by

applying COCO, compared to the basic MTCG algorithm.
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Figure 4.7: Speedup of using COCO over code generated by the basic MTCG algorithm.

In only one small case, adpcmenc with GREMIO, COCO had no opportunity to reduce

communication. COCO never resulted in an increase in the number of dynamic commu-

nication instructions. Only two applications, 177.mesa and 435.gromacs with GREMIO,

had inter-thread memory dependences. For both of these, COCO was able to remove more

than 99% of the dynamic memory synchronizations. This confirms the great potential to

eliminate memory synchronizations mentioned in Section 4.2.3.

COCO had a smaller impact on codes partitioned by DSWP, in part, because no inter-

thread memory dependences can happen in this case. That is because the PDG employed

in this work uses the results of a points-to static analysis [70]. And, since the instruc-

tions are inside a loop, any memory dependence is essentially bi-directional, thus forcing

these instructions to be assigned to the same thread in order to form a pipeline [74]. With
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more powerful, loop-aware memory disambiguation techniques to eliminate false memory

dependences, such as shape analysis or array-dependence analysis, DSWP can result in

inter-thread memory dependences and thus benefit more from COCO.

Another reason for COCO’s larger improvements for GREMIO, compared to DSWP,

was the smaller queue sizes used in GREMIO’s experiments. In some cases, a larger queue

can compensate for inefficient communication placements. This happens, for example,

if communications are unnecessarily placed inside loops. From another perspective, this

means that COCO can alleviate the demand for more complex communication mechanisms.

In Figure 4.7, we present the speedups for the benchmarks parallelized with GREMIO

and DSWP over their versions using the simple communication placement strategy. In

general, the speedups correlate with the reduction of dynamic communication instructions

shown in Figure 4.6. The average speedup for GREMIO improves by 13.2%, while the av-

erage improvement is 2.2% for DSWP. The maximum speedup is for ks with GREMIO, for

which COCO provided a 40.2% speedup. In this benchmark, although the communication

instructions were only a small percentage, they created critical synchronization points that

hindered a lot of parallelism. For mpeg2enc, COCO optimized the register communication

in various hammocks, also significantly reducing the control flow in the generated threads.

In general, COCO improves performance not only by reducing the number of dynamically

executed instructions, but also by increasing TLP through the removal of memory synchro-

nizations and control dependences. For memory synchronizations, the reason is that the

consume.acq instructions must wait for their corresponding synchronization token to

arrive. For control dependences, the reason is that Itanium 2 uses a stall-on-use strategy,

and control dependences are implemented as replicated branches that actually use their

register operands. Removing register dependences has less effect because an outstanding

consume instruction does not stall the pipeline until its consumed register is actually used.

In a couple of cases, COCO, despite reducing the communication instructions, de-

graded performance slightly. The reason for this was a bad interaction with the later single-
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threaded instruction scheduler, which plays an important role for Itanium 2. To reduce the

number of communication instructions executed, COCO sometimes moves these instruc-

tions from program points where free scheduling slots are available to points that increase

the schedule height. We envision two alternatives to avoid this problem. One is to add,

in the graph used for min-cut, penalties to arcs so as to take scheduling restrictions into

account. Another alternative is to change the priority of the produce and consume

instructions in the single-threaded scheduler.

Results for More than Two Threads

In this section, we present the speedups resulting from COCO for the DSWP thread par-

titioning when targeting 4 and 6 threads. Figure 4.8 shows the results. These results only

include the benchmarks for which the DSWP thread partitioner produced the requested

number of threads. For 4 threads, the geometric-mean speedup is 1.6%, with a maximum

of 3.9% for 458.sjeng. For 6 threads, the geometric-mean speedup is 4.4% speedup, with

a maximum of 15.9% for 188.ammp. Notice that there is no correlation between the 2-

thread, 4-thread, and 6-thread results for individual benchmarks. The reason for this is that

the opportunities for COCO are completely dependent on the chosen partition. Once the

partition changes for a benchmark, even for the same number of threads, it essentially be-

comes a completely different scenario for COCO. In Figure 4.8, we notice that the average

speedup increases with the number of threads. This trend is expected because, as the num-

ber of threads increase, the ratio of the communication instructions over the computation

instructions tends to increase. And, the higher the communication overhead, the larger the

potential for COCO.

Compilation Time

Our current implementation of COCO uses Edmonds-Karp’s min-cut algorithm [21], which

has a worst-case time complexity of O(n×m2), where n and m are the number of vertices
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Figure 4.8: Speedup of using COCO over code generated by the basic MTCG algorithm

for DSWP with (a) 4 threads, and (b) 6 threads.

and arcs in the graph, respectively. Since for CFGs m is usually Θ(n), this worst-case

complexity approximates O(n3) in practice. In our experiments, this algorithm performed

well enough not to significantly increase VELOCITY’s compilation time. For production

compilers, faster min-cut algorithms can be employed if necessary.

4.5 Related Work

This section compares and contrasts our communication optimizations to related work in

the literature. Global instruction scheduling for multi-threaded architecture is a relatively

new research topic. In this chapter, we evaluated the COCO framework for two GMT in-

struction scheduling techniques, DSWP [74] and GREMIO [72], both based on the MTCG

algorithm. Although not evaluated in this work, COCO should also benefit a recently pro-

posed technique that combines speculation with DSWP [109], which also uses MTCG.

Local MT instruction (LMT) scheduling techniques differ from the GMT in that they

duplicate most of the program’s CFG for each thread, thus mostly exploiting instruction-

level parallelism within basic blocks. Similar to GMT, LMT techniques also need to insert

communication instructions in order to satisfy inter-thread dependences. The Space-Time

scheduling [59] LMT technique uses several simple invariants to make sure each thread

gets the latest value of a variable before using it. First, each variable is assigned to a home
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node, which is intended to contain the latest value assigned to this variable. Second, each

thread/node that writes to that variable communicates the new value to the home node

right after the new value is computed. Finally, at the beginning of each basic block that

uses a variable in a thread other than its home, a communication of this variable from its

home node is inserted. This strategy is somewhat similar to the one used in the original

MTCG algorithm, and other LMT techniques use similar approaches [60, 88]. Given their

similarity to the original MTCG algorithm’s strategy, they could also benefit from COCO

to reduce the communication instructions inserted in the code.

For clustered single-threaded architectures, the scheduler also needs to insert commu-

nication instructions to move values from one register bank to another [11, 69, 118]. How-

ever, the fact that dependent instructions are executed in different threads makes the genera-

tion and optimization of communication more challenging for multi-threaded architectures.

The technique of [11] also uses graph partitioning algorithms.

Another piece of related work is the compiler communication optimization proposed for

Thread-Level Speculation (TLS) by Zhai et al. [119]. There are several differences between

the communication optimizations for TLS and GMT scheduling. First, each thread in TLS

operates on a different loop-iteration, and therefore there are clear notions of order and of

which thread has the latest value of a variable. Second, the communication between the

threads is always uni-directional for TLS. Third, each thread only receives values from one

upstream thread and sends values to one downstream thread. All these differences make the

problem for TLS significantly simpler, and Zhai et al. [119] propose a technique based on

partial redundancy elimination (PRE) [53, 64] to minimize the communication. For GMT

scheduling, we demonstrated that the optimization problem is statically undecidable, and

proposed a profiling-based technique which uses graph min-cut algorithms. Furthermore,

to deal with the possibility of arbitrary inter-thread communication patterns, we developed

a notion of safety (Property 4), and proposed a thread-aware data-flow analysis to compute

it.
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Communication optimizations are also important for compiling data-parallel applica-

tions for distributed-memory machines [3, 12, 48, 50]. The main differences from the

problem there and the one studied in this paper are the following. First, there is an enor-

mous discrepancy in the parallelism available in the applications, and how the parallelism is

expressed by the programmer. This allows message-passing compilers to concentrate on a

more regular style of parallelism, SPMD (single program multiple data), where all proces-

sors execute the same code. The irregular structure and fine granularity of the parallelism

available in general-purpose applications require GMT scheduling to exploit more general

forms of parallelism. Furthermore, the main communication optimization for message-

passing systems is communication combination, where multiple messages are combined

in a larger message to amortize overhead. Since GMT scheduling uses a scalar commu-

nication mechanism, these optimizations are not applicable in this context. In spirit, the

optimizations proposed in this paper are closer to redundancy optimizations for distributed-

memory systems. However, the techniques for data-parallel codes are very different, being

strongly based on loops and array accesses and frequently unable to handle arbitrary con-

trol flow [48]. Another optimization proposed for message-passing systems is pipelining,

where the message is sent earlier than where it is consumed, in order to hide commu-

nication latency. This is somewhat accomplished in our techniques by a combination of

choosing the earliest min-cut placement (i.e. closest to the source), and the stall-on-use

implementation of the consume instruction.

4.6 Significance

This chapter presented the COCO framework, which consists of advanced algorithms to op-

timize the placement of communication instructions. By improving the MTCG algorithm

from Chapter 3, COCO can reduce the communication overhead and improve the perfor-

mance of every technique based on our global multi-threaded scheduling framework. The

70



experiments in this chapter demonstrated that COCO can unlock large amounts of paral-

lelism in some cases, particularly when it eliminates key synchronization points and control

flow. Nevertheless, in many cases COCO resulted in small speedups when compared to the

basic MTCG algorithm from Chapter 3. This indicates that the communication-placement

strategy described in Chapter 3, despite its simplicity, generally produces well-performing

code.
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Part II

Thread-Partitioning Techniques
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Based on our global multi-threaded instruction scheduling framework, this part de-

scribes three thread-partitioning techniques. Chapter 5 describes a thread partition based

on list scheduling, called GREMIO. Based on the PDG representation, GREMIO gener-

alizes list scheduling to operate on arbitrary, potentially cyclic code regions. Moreover,

GREMIO is aware of multiple levels of resources, which is useful to balance thread-level

and instruction-level parallelism.

In Chapter 6, we describe the Decoupled Software Pipelining (DSWP) thread partition-

ing. DSWP partitions the PDG nodes among threads with the goal of exploiting pipelined

parallelism. In some sense, DSWP generalizes software pipelining [13] to exploit thread-

level parallelism. Based on our global multi-threaded instruction scheduling framework,

DSWP enables pipelined parallelism to be exploited from loop nests with arbitrary control

flow. This overcomes a huge limitation of traditional software pipelining.

Despite its wide applicability, DSWP lacks performance scalability beyond a few threads.

In Chapter 7, we describe an extension of DSWP that uses parallel stages in the pipeline to

obtain better scalability.
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Chapter 5

Global List-Scheduling-Based

Thread Partitioning

This chapter describes a thread partitioning technique called GREMIO1 (Global REgion

Multi-threaded Instruction Orchestrator) [72]. GREMIO is based on list scheduling [35],

which is a well-know scheduling technique applied in many areas. In compilers, list

scheduling is noticeably used in single-threaded instruction scheduling [65].

GREMIO uses the PDG as an intermediate representation for scheduling decisions.

Using the PDG to guide scheduling decisions is attractive because it makes explicit the

communications that will be incurred. In other words, scheduling two dependent instruc-

tions to different threads will require an inter-thread communication. A problem that arises

from using a PDG for scheduling decisions is the presence of cycles. The PDG for an ar-

bitrary code region can have cycles due to loops in the CFG and loop-carried dependences.

Scheduling cyclic graphs is more complicated than scheduling acyclic graphs. This is be-

cause the goal of a scheduler is to minimize the critical (i.e. longest) path through the graph.

Although scheduling of acyclic graphs in the presence of resource constraints is NP-hard,

at least finding the critical path in such graphs can be solved in linear time, through a

topological sort. For cyclic graphs, however, even finding the longest path is NP-hard [32].

1In Portuguese, grêmio means club. The Grêmio Foot-Ball Porto-Alegrense, usually known simply as

Grêmio, is one of the best soccer teams in Brazil.
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5.1 GREMIO Algorithm

This section describes the GREMIO algorithm to choose a thread partition based on the

PDG. Throughout this section, we illustrate the steps of GREMIO in the example in Fig-

ure 5.1. This is the same example from Section 2.3, which is replicated here for conve-

nience. Figure 5.1(a) shows the C source code, and Figure 5.1(b) contains the correspond-

ing low-level code. The CFG and PDG for this code are illustrated in Figures 5.1(c) and

(d), respectively. As we will demonstrate in detail, for this example, GREMIO partitions

the code into two threads as depicted by the vertical dashed line in Figure 5.1(d). This

partition corresponds to scheduling each loop of Figure 5.1(a) into a separate thread.

Given the inherent difficulty of the global scheduling problem for cyclic code regions,

GREMIO uses a simplifying approach that reduces this problem to an acyclic scheduling

problem, for which well-known heuristics based on list scheduling exist [65]. In order to

reduce the cyclic scheduling problem to an acyclic one, GREMIO uses two simplifications

to the problem. First, when scheduling a given code region, each of its inner loops is

coalesced to a single node, with an aggregated latency that assumes its average number

of iterations (based on profiling or static estimates). Secondly, if the code region being

scheduled is itself a loop, all its loop-carried dependences are disregarded. To deal with the

possibility of irreducible code, a loop hierarchy that includes irreducible loops is used [39].

It is important to note that these simplifying assumptions are used for partitioning decisions

only; for code generation, GREMIO relies on the MTCG algorithm (Chapter 3), which

takes all dependences into account to generate correct code.

To distinguish from a full PDG, we call the dependence graph for a region with its

inner loops coalesced and its loop-carried dependences ignored a Hierarchical Program

Dependence Graph (HPDG). In a HPDG, the nodes represent either a single instruction,

called a simple node, or a coalesced inner loop, called a loop node. To account for the

possibility of irreducible code, a loop hierarchy that includes irreducible loops is used [39].

Figure 5.2(a) illustrates the HPDG corresponding to the PDG from Figure 5.1(d). The
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s1 = 0;

s2 = 0;

for(p=head; p != NULL;

p = p->next){

s1 += p->value;

}

for(i=0; a[i] != 0; i++){

s2 += a[i];

}

printf("%d\n", s1*s1/s2);

(a) Example code in C

(A) B1: move r1 = 0 ;; s1 in r1

(B) move r2 = 0 ;; s2 in r2

(C) load r3 = [head] ;; p in r3

(D) B2: branch r3 == 0, B4

(E) B3: load r4 = [r3] ;; p->value

(F) add r1 = r1, r4

(G) load r3 = [r3+4] ;; p->next

(H) jump B2

(I) B4: move r5 = @a ;; &a[i] in r5

(J) B5: load r6 = [r5] ;; load a[i]

(K) branch r6 == 0, B7

(L) B6: add r2 = r2, r6

(M) add r5 = r5, 4

(N) jump B5

(O) B7: mult r7 = r1, r1

(P) div r8 = r7, r2

(b) Low-level IR

START

END

B1

B2

B3 B4

B5

B6 B7

(c) CFG

data dependence

control dependence

A

F

r1
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r1B
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E

G
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r3
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r3I

J

r5

M

r5

K

r6

r6

r2

r5

C

r7

F

F

F

F

FF

F

r3

r1

r2 r5

F

(d) PDG

Figure 5.1: Example code in: (a) C, (b) low-level IR, (c) CFG, and (d) PDG.

nodes are labeled by their corresponding nodes in the PDG, followed by their estimated

execution latency. There are only two loop nodes in this example: DEFG and JKLM .

Another complication intrinsic to MT scheduling is that the generated threads need

to communicate to satisfy dependences, and so it is necessary to take the communication

overhead into account while making scheduling decisions.2 For instance, even though two

2This complication also arises in single-threaded instruction scheduling for architectures with partitioned
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A: 1
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r1

O: 1

r1 B: 1
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(a) HPDG
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(b) Clustered HPDG
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cons r7
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(c) Virtual Schedule

Figure 5.2: Operation of GREMIO on the example from Figure 5.1.

instructions can be executed in parallel on different threads, this may not be profitable due

to the overhead to communicate their operands. To address this problem, GREMIO uses

a clustering pre-scheduling pass on the HPDG, which takes into account the inter-thread

communication overhead. The goal of this pass is to cluster together HPDG nodes that

are likely to not benefit from schedules that assign them to different threads. Section 5.1.1

explains the clustering algorithm used by GREMIO, and Section 5.1.2 describes its parti-

tioning heuristic.

5.1.1 Clustering Algorithm

There exist a variety of clustering algorithms in the parallel computing literature. These

algorithms are used for task scheduling, being applicable to arbitrary directed acyclic

register files.
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graphs (DAGs). Therefore, because we reduced the original cyclic scheduling problem

(on a PDG) to an acyclic problem (on a HPDG), we can rely on previous research on

DAG-clustering algorithms.

We chose to use the Dominant Sequence Clustering (DSC) algorithm [117], which has

been shown to be very effective and efficient. Efficiency is important here because, given

the fine granularity of the nodes in a HPDG, their number can be very large (on the order

of thousands).

DSC, like other clustering algorithms, groups nodes in clusters so that nodes in the

same cluster are unlikely to benefit from executing in parallel. Therefore, all nodes in the

same cluster should be scheduled on the same processor (thread here). DSC also assumes

that each cluster will be executed on a different processor. Later, the scheduling pass can

assign multiple clusters on the same thread to cope with a smaller number of processors.

Briefly, DSC operates as follows. In the beginning, each node is assigned to its own

cluster. The critical path passing through each node of the graph is then computed, consid-

ering both the execution latencies of nodes and the communication latencies. The commu-

nication latency is assumed to be zero if and only if the nodes are in the same cluster. DSC

then processes each node at a time, following a topological order prioritized by the nodes’

critical path lengths. At each step, the benefit of merging the node being processed with

each of its predecessors is analyzed. The advantage of merging a node with another cluster

is that the communication latency from nodes in that cluster will be saved. The downside

of merging is that the nodes assigned to the same cluster are assumed to execute sequen-

tially, in the order they are added to the cluster. Therefore, the delayed execution after a

merge may outweigh the benefits of the saved communication. The node being processed

is then merged with its predecessors’ cluster that reduces this node’s critical path the most.

If all such merges increase the critical path, this node is left alone in its own cluster. For

our running example, Figure 5.2(b) illustrates the clusters resulting from DSC assuming a

2-cycle communication latency.
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5.1.2 Global Multi-Threaded List Scheduling

After the clustering pass on the HPDG, the actual scheduling decisions are made. Here

again, because of the reduction to an acyclic scheduling problem, we can rely on well-

known acyclic scheduling algorithms. In particular, GREMIO uses a form of list scheduling

with resource constraints, with some adaptations to better deal with our problem. This

section describes list scheduling and the enhancements used by GREMIO.

The basic list scheduling algorithm assigns priorities to nodes and schedules each node

following a prioritized topological order. Typically, the priority of a node is computed as

the longest path from it to a leaf node. A node is scheduled at the earliest time that satisfies

its input dependences and that conforms to the currently available resources.

GREMIO uses a variation of list scheduling to partition the HPDG into threads. Even

though the HPDG is acyclic, control flow still poses additional complications to GMT list

scheduling that do not exist in local list scheduling. When scheduling a basic block, lo-

cal schedulers have the guarantee that all instructions will either execute or not. In other

words, all instructions being scheduled are control equivalent. Therefore, as long as the

dependences are satisfied and resources are available, the instructions can safely be issued

simultaneously. The presence of arbitrary control flow complicates the matters for GMT

scheduling. First, control flow causes many dependences not to occur during the execution.

Second, not all instructions being scheduled are control equivalent. For example, the fact

that an instruction X executes may not be related to the execution of another instruction Y,

or may even imply that Y will not execute. To deal with the different possibilities, we in-

troduce three different control relations among instructions, which are used in GREMIO’s

list scheduling.

Definition 5 (Control Relations). Given two HPDG nodes X and Y , we call them:

1. Control Equivalent, if both X and Y are simple nodes with the same input control

dependences.
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2. Mutually Control Exclusive, if the execution of X implies that Y does not execute,

and vice-versa.

3. Control Conflicting, otherwise.

To illustrate these relations, consider the HPDG from Figure 5.2(a). In this example,

A, B, C, I , O, and P are all control equivalent. Nodes DEFG and JKLM are control

conflicting with every other node. No pair of nodes is mutually control exclusive in this

example.

Although GREMIO uses list scheduling simply to decide the partition and relies on

the MTCG algorithm to generate code, GREMIO still builds a schedule of HPDG nodes

to cycles. This schedule is not realistic in that it includes all the nodes in a HPDG, even

though some of them are mutually control exclusive. For this reason, we call it a virtual

schedule, and we say the nodes are scheduled on virtual cycles in the virtual schedule.

For traditional, single-threaded instruction scheduling, the resources correspond to the

processor’s functional units. To simplify the discussion, although GREMIO can be applied

in general, we assume a CMP with each core single-threaded. In this scenario, there are

two levels of resources: the target processor contains multiple cores, and each core has a

set of functional units. Instead of simply assuming the total number of functional units in

all cores, considering these two levels of resources is important for many reasons. First, it

enables us to consider the communication overhead to satisfy dependences between instruc-

tions scheduled on different cores. Furthermore, it allows us to benefit from key opportu-

nities available in multi-threaded scheduling: the simultaneous issue of control-conflicting

instructions. Because each core has its own control unit, control-conflicting instructions

can be issued in different cores in the same cycle.

Thread-level scheduling decisions are made when scheduling the first node in a clus-

ter. At this point, the best thread is chosen for that particular cluster, given what has al-

ready been scheduled. When scheduling the remaining nodes of a cluster, GREMIO simply

schedules them on the thread previously chosen for this cluster.
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The choice of the best thread to schedule a particular cluster to takes into account a

number of factors. Broadly speaking, these factors try to find a good balance between two

conflicting goals: maximizing the parallelism, and minimizing the inter-thread communi-

cation. For each thread, the total overhead of assigning the current cluster to it is computed.

This total overhead is the sum of the following components:

1. Communication Overhead: this is the total number of cycles that will be necessary to

satisfy dependences between this cluster and instructions in clusters already sched-

uled on different threads. This accounts for both overhead inside the cores (extra

produce and consume instructions) and communication delay.

2. Conflict Overhead: this is the estimated number of cycles by which the execution of

this cluster will be delayed when executing in this thread, considering the current load

of unfinished instructions in clusters already assigned to this thread. This considers

the both resource conflicts in terms of functional units, as well as control conflicts

among instructions.

Once GREMIO chooses the thread to schedule a HPDG node to, it is necessary to

estimate the virtual cycle in which that node can be issued in this core. The purpose of

assigning nodes to virtual cycles within a thread is to guide the scheduling of the remaining

nodes.

In order to find the virtual cycle in which a node can be issued in the chosen thread, it

is necessary to consider two restrictions. First, it is necessary to make sure that the node’s

input dependences will be satisfied at the chosen cycle. For inter-thread dependences, it is

necessary to account for the communication latency and corresponding consume instruc-

tions overhead. Second, the chosen cycle must be such that there are available resources in

the chosen core, given the other nodes already scheduled on it. However, not all the nodes

already scheduled on this thread should be considered. Resources used by nodes that are

mutually control exclusive to this one are considered available since these nodes will never
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be issued simultaneously. On the other hand, the resource utilization of control equivalent

nodes must be taken into account. Finally, the node cannot be issued in the same cycle

as any previously scheduled node that has a control conflict with it. This is because each

core has a single control unit, but control-conflicting nodes have unrelated conditions of

execution. Notice that for target cores supporting predicated execution, however, this is

not necessarily valid: two instructions with different execution conditions may be issued

in parallel. But even for cores with predication support, loop nodes cannot be issued with

anything else.

We now show how GREMIO’s list scheduling algorithm works on our running exam-

ple. For illustration purposes, we use as target a dual-core processor that can issue two

instructions per cycle in each core (see Figure 5.2(c)). The list scheduling algorithm pro-

cesses the nodes in the clustered HPDG (Figure 5.2(b)) in topological order. The nodes

with highest priority (i.e. longest path to a leaf) are B and I . B is scheduled first, and

it is arbitrarily assigned to core 1’s first slot. Next, node I is considered and, because it

belongs to the same cluster as B, the core of choice is 1. Because there is an available

resource (issue slot) in core 1 at cycle 0, and the fact that B and I are control equivalent,

I is scheduled on core 1’s issue slot 1. At this point, either nodes A, C, or JKLM may

be scheduled. Even though JKLM has the highest priority, its input dependences are not

satisfied in the cycle being scheduled, cycle 0. Therefore, JKLM is not a candidate node

in the current cycle. So node A is scheduled next, and the overheads described above are

computed for scheduling A in each thread. Even though thread 1 (at core 1) has lower com-

munication overhead (zero), it has higher conflict overheads. Therefore, core 0 is chosen

for node A. The algorithm then proceeds, and the remaining scheduling decisions are all

cluster-based. Figure 5.2(c) illustrates the final schedule built and the partitioning of the

instructions among the threads.
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5.1.3 Handling Loop Nests

Although GREMIO’s scheduling algorithm follows the clusters formed a priori, an excep-

tion is made when handling inner loops. The motivation to do so is that inner loops may fall

on the region’s critical path, and they may also benefit from execution on multiple threads.

GREMIO handles inner loops as follows. For now, assume that it has an estimate for

the latency to execute one invocation of an inner loop Lj using a number of threads i from

1 up to the number N of threads on the target processor. Let latencyLj
(i), 1 ≤ i ≤ N ,

denote these latencies. Considering Lj’s control conflicts, the algorithm computes the cycle

in which each thread will finish executing Lj’s control-conflicting nodes already scheduled

on it. From that, the earliest cycle in which a given number of threads i will be available

for Lj can be computed, being denoted by cycle availableLj
(i), 1 ≤ i ≤ N . With that,

the algorithm chooses the number of threads k on which to schedule this loop node such

that cycle availableLj
(k) + latencyLj

(k) is minimized. Intuitively, this will find the best

balance between the wait to have more threads available and the benefit from executing the

loop node on more threads. If more than k threads are available at cycle availableLj
(k)

(i.e., in case multiple threads become available at this cycle), then the algorithm picks the k

threads among them with which the loop node has more affinity. The affinity is computed

as the number of dependences between this loop node and nodes already scheduled on each

thread.

The question that remains now is: how are the latencyLj
(i) values for each child loop

Lj in the HPDG computed? Intuitively, this is a recursive question, since the same al-

gorithm can be applied to the child loop Lj , targeting i threads, in order to compute

latencyLj
(i). This naturally leads to a recursive solution. Even better, dynamic program-

ming can efficiently solve this problem in polynomial time. However, since this constrained

scheduling problem is NP-hard, this dynamic programming approach may not be optimal

because the list scheduling algorithm applied to each node is not guaranteed to be optimal.
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More specifically, GREMIO’s dynamic programming solution works as follows. First,

it computes the loop hierarchy for the region to be scheduled. This can be viewed as a loop

tree, where the root represents the whole region (which need not be a loop). We call such

tree a HPDG tree. Figure 5.3 illustrates the HPDG tree for the example from Figure 5.1.

The algorithm then proceeds bottom-up on the HPDG tree and, for each tree node Lj (either

a loop or the whole region), it applies the GMT list scheduling algorithm to compute the

latency to execute one iteration of that loop, with a number of threads i varying from 1 to

N . The latency returned by the list scheduling algorithm is then multiplied by the average

number of iterations per invocation of this loop, resulting in the latencyLj
(i) values to be

used for this loop node when scheduling its parent. In the end, the algorithm chooses the

best schedule for the whole region by picking the number of threads k for the HPDG tree’s

root, R, such that latencyR(k) is minimized. The corresponding partitioning of instructions

onto threads can be obtained by keeping and propagating the partition partitionLj
(i) of

instructions corresponding to the value of latencyLj
(i).

Root

DEFG JKLM A B C I O P

D E F G J K L M

Figure 5.3: HPDG tree for the PDG in Figure 5.1.

5.1.4 Putting It All Together

After the partition into threads is chosen, the MTCG algorithm is applied. Figures 5.4(a)-

(b) illustrate the generated code for the two threads corresponding to the global schedule

depicted in Figure 5.2(c). As can be verified, each of the resulting threads contains only

its relevant basic blocks, the instructions scheduled to it, the instructions inserted to satisfy

the inter-thread dependences, and jumps inserted to connect the CFG. In this example,
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there is a single pair of produce and consume instructions, corresponding to the only

cross-thread dependence in Figure 5.1(d).

By analyzing the resulting code in Figures 5.4(a)-(b), it is clear that the resulting threads

are able to concurrently execute instructions in different basic blocks of the original code,

effectively following different control-flow paths. The potential of exploiting such paral-

lelization opportunities is unique to a global multi-threaded scheduling, and constitutes its

key advantage over local multi-threaded scheduling approaches.

START’

END’

B1’

A:  move r1 = 0

C:  load r3 = [head]

      jump B2’

B2’

D:  branch r3 == 0, B7’

      jump B3’

B3’

E:  load r4 = [r3]

F:  add r1 = r1, r4

G:  load r3 = [r3+4]

      jump B2’

B7’

O:  mult r7 = r1, r1

      produce [1] = r7

      jump END’

(a) Code for thread 1

START"

END"

B1"

B:  move r2 = 0

      jump B4"

B4"

I:  move r5 = @a

     jump B5"

B5"

J:   load r6 = [r5]

K:  branch r6 == 0, B7"

      jump B6"

B6"

L:  add r2 = r2, r6

M:  add r5 = r5, 4

      jump B5"

B7"

     consume r7 = [1]

P:  div r8 = r7, r2

     jump END"

(b) Code for thread 2

Figure 5.4: Resulting multi-threaded code.

5.1.5 Complexity Analysis

This subsection analyzes the complexity of GREMIO’s partitioning algorithms. We first

analyze the complexity of partitioning a single region with its inner loops coalesced, and
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then analyze the complexity of the hierarchical algorithm to handle loop nests. For the

whole region’s PDG, we denote n its number of nodes and e its number of arcs. By t we

denote the target number of threads. Finally, we denote l the number of nodes in the HPDG

tree, which is the number of loops in the region plus 1, and ni and ei the number of nodes

and arcs in the HPDG for loop Li, 0 ≤ i ≤ l (i = 0 for the whole region).

For a given loop Li, the complexity of the DSC is O(ei + log(ni)) [117]. GREMIO’s

list scheduling, with checks for conflicts with currently scheduled nodes, has a complexity

upper bound of O(n2
i ).

In the dynamic programming algorithm, each node in the HPDG tree is processed ex-

actly once. For each node, the clustering algorithm is applied once, and the list scheduling

is applied t times, for each possible number of threads. Since the complexity of the clus-

tering and list scheduling algorithms are more than linear, the worst case for the whole

region’s running time is when there are no loops. In this case, there is a single node in

the HPDG tree (l = 1), and n0 = n and e0 = e. Therefore, the total complexity for the

whole region is O(e× log(n) + t× n2). This low complexity enables this algorithm to be

effectively applied in practice to regions with up to several thousands of instructions.

5.2 Experimental Evaluation

This section presents an experimental evaluation of GREMIO, which was implemented

as part of our GMT instruction scheduling framework in the VELOCITY compiler. The

experimental methodology used here is the same described in Section 4.4.1. The results

presented in this section include the selected benchmark functions from Table 4.2 for which

GREMIO partitioned the code and estimated a speedup of at least 10%.

Figure 5.5 presents the speedups for the parallelized benchmark functions. For each

benchmark, the two bars illustrate the speedup on the selected function, as well as the

corresponding speedup for the whole application. The overall speedup per function is

34.6% on average, with a maximum of 69.5% for ks.
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Figure 5.5: Speedup of dual-thread GREMIO over single-threaded.

Benchmark Type of Parallelism

adpcmdec CMT

adpcmenc PMT

ks PMT

mpeg2enc CMT

177.mesa CMT

179.art CMT

300.twolf PMT

435.gromacs CMT

458.sjeng PMT

Table 5.1: Type of parallelism extracted by GREMIO.

An interesting aspect of the parallelizations generated by GREMIO is the pattern of

communication among the threads. We use the terminology introduced in [82], which

classifies the parallelization patterns in three categories. If the threads are totally in-

dependent, except for initial and final communications, it is called Independent Multi-

Threading (IMT). The typical example of IMT is DOALL parallelization. If the communi-

cation among the threads is unidirectional, then it is called Pipelined Multi-Threading (PMT).

Finally, if the there is cyclic communication among the threads, then it is called Cyclic

Multi-Threading (CMT). GREMIO is not restricted to a specific kind of parallelism. Never-

theless, GREMIO’s hierarchical list-scheduling was designed to exploit parallelism within

loop iterations. This may result in either of the types of parallelism described above. Ta-

ble 5.1 shows the type of parallelism extracted by GREMIO for each benchmark. GREMIO

produced CMT for five benchmarks, and PMT for the other four.
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5.2.1 Comparison to Local Multi-Threaded Scheduling

In order to verify the amount of parallelism obtained by GREMIO that can be extracted by

LMT techniques, the multi-threaded execution traces were analyzed and the cycles clas-

sified in two categories. The first one corresponds to cycles in which both threads are

executing instructions that belong to the same extended basic block (EBB)3 in the original

code. This is parallelism that can be extracted by LMT instruction scheduling techniques

such as [59, 60, 88]. The remaining cycles correspond to the portion of the execution in

which GMT instruction scheduling is necessary in order to expose the parallelism. Fig-

ure 5.6 illustrates the execution breakdown for the benchmarks parallelized by GREMIO.

These results illustrate that, for the majority of these benchmarks, less than 2% of the

parallelism obtained by GREMIO can be achieved by LMT techniques. The function in

the SPEC-CPU 2006 FP 435.gromacs benchmark, which contains two nested loops with

no other control flow, is the only one in which a good fraction (47%) of the parallelism

extracted by GREMIO is within extended basic blocks.
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Figure 5.6: Percentage of execution on corresponding extended basic blocks.

3An extended basic block (EBB) is a sequence of instructions with a single entry (the first instruction) and

potentially multiple exits.
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5.2.2 Sensitivity to Communication Latency

In order to assess the effect of communication latency for code generated by GREMIO, we

conducted experiments with the inter-core communication latency increased from 2 cycles

in our base model to 10 cycles. Figure 5.7 contains the results. The average speedup from

GREMIO dropped about 6%. Not surprisingly, the codes that are affected the most contain

CMT-style parallelism (adpcmdec and mpeg2enc). However, not all benchmarks with CMT

were slowed down by this increase in communication latency. In general, the CMT loops

with small bodies are affected the most, since the communication latency represents a larger

fraction of the loop body’s execution.
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Figure 5.7: Speedup over single-threaded for different communication latencies.

5.2.3 Sensitivity to Queue Size

We also conducted experiments to measure how sensitive the parallelized codes are to

the size of the communication queues. Figure 5.8 shows the resulting speedups on our

base model, with 32-element queues, and with the size of the queues set to 1 element.

The experiments show that most of the codes are not affected. In particular, for loops

parallelized as CMT, one thread is never more than one loop iteration ahead of the other.

As a result, single-entry queues are enough to obtain the maximum speedup in these cases.

This means that a cheaper inter-core communication mechanism, with simple blocking
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Figure 5.8: Speedup over single-threaded for different size of queues.

registers, is enough to get the most parallelism out of CMT loops. Longer queues can be

more beneficial in other scenarios, as described in Chapter 6.

5.3 Related Work

There is a broad range of related work on instruction scheduling. Most of the related work,

however, is more restricted than GREMIO in one or two aspects, which are discussed

below.

First, many techniques perform scheduling for single-threaded architectures. Of course,

this characteristic is highly dependent on the target architecture. Single-threaded schedul-

ing is commonly used for a wide range of single-threaded architectures, from simple RISC-

like processors to very complex ones such as VLIW/EPIC [8, 16, 30, 42, 55, 113] and clus-

tered architectures [26, 69]. Besides scheduling the original program’s instructions (the

computation), multi-threaded schedulers must also generate communication instructions to

satisfy inter-thread dependences. For clustered single-threaded architectures [26, 69], the

scheduler also needs to insert communication instructions to move values from one regis-

ter file to another. However, the fact that dependent instructions are executed in different

threads makes the generation of communication more challenging for multi-threaded ar-

chitectures.
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Second, previously proposed multi-threaded instruction scheduling techniques have

been restricted to local multi-threaded (LMT) scheduling, as discussed in Section 1.2.

These techniques include the approaches proposed in the context of the RAW micropro-

cessor [59, 60], and in the context of decoupled access/execute architectures [88]. Our

approach enables truly thread-level parallelism, among control-unrelated instructions, by

simultaneously scheduling a global code region.

Table 5.2 summarizes how various existing scheduling techniques are classified ac-

cording to these two orthogonal dimensions: single-threaded versus multi-threaded, and

regarding the scope of scheduling. Horizontally, the more a techniques is to the right, the

more general is its handling of control flow. The techniques in bold are the ones proposed

in this thesis.

Num. of Scope

Threads Basic Block Trace Loop Procedure

Single List Sched. [65] Trace [16, 26, 30] SWP GSTIS [8]

Superblock [42] [55, 69] ILP [112]

Multiple Space-time [59]

Convergent [60] DSWP GREMIO

DAE Sched. [88] PS-DSWP

Table 5.2: Instruction scheduling space.

Although operating at a different granularity, our work shares some similarities with

task scheduling for parallel computers. Sarkar [90, 93] describes general algorithms to

partition and schedule functional parallel programs on multiprocessors. In particular, the

idea of using a clustering pre-pass used here was inspired by Sarkar’s work. However, our

problem differs from his on a number of aspects, including the granularity of tasks and

the abundance of parallelism in the source programs. Furthermore, our algorithms differ

from his in many ways. For example we use list scheduling with a virtual schedule, which is

very useful for the granularity of the parallelism we exploit, and our dynamic programming

approach allows GREMIO to handle larger regions of code. Finally, our MTCG algorithm

is key to enable parallelization at the instruction granularity, by allowing multiple “tasks”

to be assigned to a single thread.
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5.4 Significance

This chapter described GREMIO, an extension of list-scheduling to simultaneously sched-

ule instructions from a global region of code onto multiple threads. GREMIO uses two

simplifying assumptions to reduce the cyclic PDG scheduling problem into an acyclic one.

GREMIO schedules the instructions in the PDG hierarchically, using a dynamic program-

ming technique. At each level, GREMIO employs a clustering pre-pass and a thread-aware

list-scheduling targeting all possible number of threads.

Overall, the results obtained by GREMIO showed significant speedups for hard-to-

parallelize benchmarks. Although only evaluated on two threads here, for some bench-

marks, we have seen opportunities to obtain scalable results. As in any instruction schedul-

ing technique, the opportunities for GREMIO can be increased by performing more aggres-

sive loop unrolling and function inlining. However, these auxiliary techniques typically

become prohibitive after some point due to increased code size. In Chapter 7, we describe

an approach to get scalability without incurring excessive code growth.
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Chapter 6

Decoupled Software Pipelining

Thread Partitioning

In this chapter, we describe a thread partitioning that extends the idea of software pipelin-

ing (SWP) [13, 55, 65, 86, 87]. Software pipelining is a single-threaded instruction schedul-

ing technique applicable to loop regions. A key property of software pipelining is that it

allows the concurrent execution of instructions from different loop iterations. This con-

trasts with more restrictive techniques that schedule instructions of a loop by applying list

scheduling to its loop body. Although our list-scheduling-based partitioner presented in

Chapter 5 may achieve parallelism across loop iterations, it was not designed with such

purpose. The thread partitioner described in this chapter aims at obtaining pipeline paral-

lelism.

There are two key advantages of exploiting pipeline parallelism as TLP instead of ILP.

First, with ILP, the presence of variable latencies, particularly in memory accesses, creates

a well-know scheduling trade-off [96, 114]. Scheduling the use of the loaded value too

close to the load itself may result in a stall in case of a cache miss, while scheduling the use

too far can be suboptimal in case of a cache hit. With TLP, this problem can be avoided by

scheduling the variable-latency instruction in a separate thread from its use [85]. Second,
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expressing pipeline parallelism as ILP has limitations due to control flow. This problem can

be mitigated by aggressively applying if-conversion and relying on hardware support for

predicated execution [5, 62]. However, this does not solve the problem for loop nests, which

cannot be “if-converted”. For this reason, all practical ILP software pipeline techniques are

restricted to inner loops only. With TLP, the ability to execute completely unrelated control

regions in different threads eliminates this problem.
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Figure 6.1: A simple example comparing Software Pipelining (SWP) and Decoupled Soft-

ware Pipelining (DSWP).

This chapter describes the Decoupled Software Pipelining (DSWP) thread partitioning

proposed in Ottoni et al. [74]. Based on the general GMT instruction scheduling frame-

work we proposed, DSWP is a thread partitioner that focuses at extracting pipelined multi-

threading (PMT) from arbitrary loop regions. Figure 6.1 contrasts DSWP with traditional

SWP. The main difference lies on the fact that, to express parallelism, SWP uses ILP re-

sources while DSWP uses TLP resources. For every loop to which SWP is applied, DSWP

can be applied to express an equivalent parallelization in the form of TLP. This is achieved

by assigning each group of instructions belonging to the same loop iteration in the loop ker-

nel to its own thread (see Figure 6.1). Furthermore, by exploiting TLP, DSWP can express

additional parallelizations because it does not require all instructions to be control equiv-

alent. DSWP and SWP can also play complementary roles in the following way. DSWP
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can be applied first to extract TLP, thus producing a set of loops. Each of these loops is

then a candidate for SWP, which can extract additional parallelism. This combination of

DSWP and SWP can be especially beneficial when there are fewer processors/cores than

the number of threads that DSWP can exploit.

In order to extract PMT, DSWP partitions the PDG nodes into threads such that, in-

side the parallelized region, the dependences flow in a single direction. In other words,

there is no cyclic dependence among the threads inside the parallelized region. This uni-

directional communication property may only be violated outside the parallelized region,

because of the initial and final communications (Section 3.1.3). The unidirectional flow

of communication created by DSWP has the key property of making this technique toler-

ant to communication latencies. This brings two advantages. The first is to make DSWP

beneficial even in the face of larger communication latencies, which are likely to increase

as the number of cores in a single chip grows. Second, this allows the partitioning al-

gorithm to mostly ignore the communication latency while making partitioning decisions.

Given the difficulty of the thread partitioning problem (discussed in Section 6.2), having

one less parameter to worry about while making partitioning decisions simplifies the prob-

lem. However, focusing solely on PMT can lead to missed parallelization opportunities.

We discuss this when we compare DSWP to GREMIO in Section 6.3.2.

In order to qualitatively compare DSWP to previously proposed loop-parallelization

techniques, it is helpful to plot timelines illustrating how the code is executed by each

technique. Here we compare DSWP with DOALL [2, 115], DOACROSS [22, 78], and

DOPIPE [24, 78]. DOALL parallelization is only applicable to loops with no loop-carried

dependence. In this scenario, each processor can execute a subset of the loop iterations, and

all processors execute concurrently with no need for synchronization. This is illustrated in

Figure 6.2(a), which contains a loop with two statements (C and X). The numbers in each

node represent the iteration number, and the arcs depict dependences. For loops with re-

currences, a popular parallelization technique is DOACROSS. In DOACROSS, the loop
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Figure 6.2: Execution timelines for DOALL, DSWP, DOPIPE, and DOACROSS.

iterations execute in a round-robin fashion among the processors, with synchronizations

inserted in the code in order to respect loop-carried dependences. Figure 6.2(c) illustrates

the execution of a simple loop with two statements, where the first one (L) is a recurrence.

For loops containing recurrences and that execute a significant number of iterations, the

critical path of execution will always contain loop-carried dependences. Since all loop-

carried dependences are inter-thread dependences with DOACROSS, the inter-processor

communication latency is inserted multiple times (once per iteration) in the critical path of

execution. DSWP, akin to DOPIPE, takes a different approach, in which all loop-carried de-

pendences are kept thread-local. Figure 6.2(b) illustrates the execution timeline for DSWP

and DOPIPE, for the same loop illustrated for DOACROSS. DSWP and DOPIPE cre-
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ate unidirectional communication among the processors. This results in the communica-

tion cost being inserted in the critical path of execution only once per loop invocation,

as opposed to once per loop iteration in DOACROSS. This makes DSWP and DOPIPE

significantly more tolerant to inter-processor communication latencies than DOACROSS.

Compared to DOPIPE, DSWP is superior because it is applicable to codes with irregular

control flow and memory dependences. DOPIPE is restricted to counted loops with no

other control flow and regular, array-based memory accesses [24].

Although having the same name as the approach proposed by Rangan et al. [82, 85],

our Decoupled Software Pipelining is a much more general technique. More specifically,

our technique eliminates the following limitations in [85]. First, their approach is limited to

loops that traverse recursive data structures (RDS), and it consists in simply separating the

RDS traversal from the remainder of the loop. As such, their approach can only extract two

threads of execution, and it may result in greatly imbalanced threads. Furthermore, in [85],

the benchmarks were manually parallelized, and no general algorithmic technique was pro-

posed. Our DSWP is a much more general, fully automatic technique, which overcomes

all these limitations by using the partitioning algorithms described in this chapter and our

general GMT instruction scheduling framework. In fact, the evaluation in [82] uses the

general and automatic DSWP technique proposed in this thesis.

In Section 6.1, we describe the general DSWP algorithm, whereas its key subproblem

is studied in Section 6.2. An experimental evaluation of DSWP is presented in Section 6.3.

6.1 DSWP Algorithm

This section describes our DSWP algorithm and illustrates it on the code example of Fig-

ure 6.3(a), which is the same example used in Chapter 3. This code example traverses a

list of lists of integers and computes the sum of all the integer values. After performing

DSWP on the outer loop in Figure 6.3(a), it is transformed into two threads shown in Fig-
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ures 6.3(d)-(e). In this example, the code in Figure 6.3(d) is executed as part of the main

thread of the program, the one which includes the un-optimized sequential portions of the

code.

There are several important properties of the transformed code to be observed. First,

the set of original instructions is partitioned between the two threads with one instruction

in both (B as B and B′). Also notice that DSWP, being based on our GMT scheduling

framework, does not replicate the control-flow graph completely, but only the parts that

are relevant to each thread. In order to respect dependences, produce and consume

instructions are inserted as necessary. For example, instruction C writes a value into r2

that is then used by instructions D, F , and H in the other thread. Queue 2 is used to

communicate this value as indicated in the square brackets. Note that, within the loop, the

dependences only go in one direction, from the thread 1 to thread 2. This acyclic nature,

along with the queue communication structures, provides the decoupling effect during the

execution of the loop body. Outside the loop, this property need not be maintained; the

main thread produces loop live-in values for the other thread and consumes loop live-out

values after consumer loop termination.

Algorithm 3 shows the pseudo-code for the DSWP algorithm. It takes as input a loop L

in an intermediate representation, and modifies it as a side-effect. The following paragraphs

describe each step of the DSWP algorithm.

Algorithm 3 DSWP

Require: Loop L

1: PDG ← build PDG(L)
2: SCCs ← find strongly connected components(PDG)
3: if |SCCs| = 1 then

4: return

5: end if

6: DAGSCC ← coalesce SCCs(PDG ,SCCs)
7: P ← thread partitioning algorithm(DAGSCC ,L)
8: if |P| = 1 then

9: return

10: end if

11: MTCG(L,PDG ,P)
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Figure 6.3: DSWP example.
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The first step in the DSWP algorithm is to build the PDG for loop L, as described in

Chapter 2. Figure 6.3(b) illustrates the PDG for the loop in Figure 6.3(a). Data dependence

arcs are annotated with the corresponding register holding the value, while control depen-

dence arcs are labeled with their corresponding branch conditions. In this example, there

are no memory dependences. Special nodes are included in the top (bottom) of the graph

to represent loop live-in (live-out) registers.

The second step in the algorithm is to ensure an acyclic partition by finding the PDG’s

strongly connected components (SCCs) and creating the directed acyclic graph of them,

the DAGSCC [103]. The SCCs correspond to instructions collectively participating in a

dependence cycle, the loop recurrences. As such, DSWP requires all instructions in the

same SCC to remain in the same thread. Lines 3-5 in Algorithm 3 stop the transformation

if the PDG has a single SCC, since such a graph is not partitionable into multiple threads by

DSWP. The next step of the DSWP algorithm is to coalesce each SCC in PDG to a single

node, obtaining the DAGSCC . Figure 6.3(b) shows the SCCs delimited by rectangles, and

Figure 6.3(c) shows the corresponding DAGSCC .

After the DAGSCC is built, the actual thread partition is chosen. In order to enforce

the unidirectional flow of communication among the threads, not every partition of the

DAGSCC is valid. The following definition precisely characterizes the set of valid partitions

for DSWP.

Definition 6 (Valid DSWP Partition). A valid partition P of the DAGSCC is a sequence

T1, T2, . . . , Tn of sets of DAGSCC ’s vertices (i.e. Tis are sets of SCCs) satisfying the follow-

ing conditions:

1. 1 ≤ n ≤ t, where t is the number of threads that the target processor can execute

simultaneously.

2. Each vertex in DAGSCC belongs to exactly one Ti ∈ P .

3. For each arc (u→ v) in DAGSCC , with u ∈ Ti and v ∈ Tj , we have i ≤ j.
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A valid partition guarantees that all members of each Ti ∈ P can be assigned to a

thread such that the communications inserted by the MTCG algorithm are unidirectional.

Condition (3) in Definition 6 guarantees that each arc in the dependence graph G either

flows forward from a thread Ti to a thread Tj , where j > i, or it is internal to one thread. In

other words, this condition guarantees an order among the elements of P that permits the

resulting threads to form a pipeline.

The DSWP Thread-Partitioning Problem (TPP) is the problem of choosing a valid par-

tition that minimizes the total execution time of the resulting code. This optimization prob-

lem is at the heart of the DSWP algorithm. Section 6.2 demonstrates that this problem is

NP-hard and describes a practical heuristic algorithm to solve it.

After a partition is chosen, the DSWP algorithm estimates whether or not it will be prof-

itable by considering the cost of the communication instructions that need to be inserted.

The thread partitioning algorithm may indicate that no partition is desirable by returning

a singleton partition. In such cases, Algorithm 3 simply terminates in line 9. Otherwise,

it continues by invoking the MTCG algorithm (described in Chapter 3) to generate multi-

threaded code according to partition P . The code in Figures 6.3(d)-(e) corresponds to the

partition represented by different shades in Figures 6.3(b)-(c).

6.2 DSWP Thread-Partitioning Problem

A key component of the DSWP algorithm presented in Section 6.1 is what we call the

thread-partitioning problem (TPP). Informally, given a loop L, TPP consists of partitioning

the SCCs in L’s PDG among pipeline stages so as to obtain the maximum performance

improvement. In this section, we formally describe TPP. In addition, we prove that TPP

is NP-hard for the most common class of MT processors, namely those with scalar cores.

Finally, we present the heuristic we use to solve TPP in practice.
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6.2.1 Problem Formulation and Complexity

The goal of TPP is to split a loop into a sequence of loops, each one to be assigned to a

different thread running on a different processor core, so that the total execution time is

minimized. The input to TPP is a loop L to be partitioned, the corresponding DAGSCC , the

number t of threads that can execute simultaneously, as well as the information about the

target processor that is necessary to compute a partition’s cost. The output of TPP is a valid

partition (as per Definition 6) of DAGSCC , i.e. a sequence of blocks T1, T2, . . . , Tn (n ≤ t)

corresponding to the new threads.

For a loop L, we denote exec cycles(L) the number of cycles that it takes to execute L

on a given processor. exec time(L) accounts for the execution time of instructions in L, as

well as communication instructions that the chosen partition requires. For a large enough

number of iterations of the original loop L,1 the initial fill time can be amortized so that the

execution time of the threaded version of the code is dominated by the execution time of

the slowest loop. This situation is analogous to a processor pipeline, whose execution cycle

is dominated by its longest stage, and in both cases the optimal scenario occurs when the

imbalance between the stages (or loops) is minimum. The following definition formalizes

this idea.

Definition 7 (DSWP Thread-Partitioning Problem (TPP)). Given a loop L, its correspond-

ing DAGSCC , the maximum number t of threads that can be executed simultaneously, and

the processors’ characteristics necessary to compute exec time, choose a partition P =

(T1, T2, . . . , Tn) of the SCCs in DAGSCC such that:

1. P is a valid partitioning (according to Definition 6); and

2. max{exec time(Ti) | 1 ≤ i ≤ n} is minimized.

(We assume that exec time(Ti) includes the time for the necessary intra-region com-

munication instructions.)

1We avoid applying DSWP to loops with small trip counts due to the costs of initialization and finalization.
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In Definition 7, the characteristics of the specific target processor necessary to com-

pute exec time are informally described, and they are dependent on the target architecture.

However, because most MT processors are built from simple, scalar cores, it is particularly

important if one could find an efficient algorithm to solve TPP for this class of proces-

sors. Unfortunately, as the following theorem shows, this problem is NP-hard for this

class of processors, and therefore it is unlikely that such efficient algorithm exists. We as-

sume that instruction instr in a scalar processor has a known latency, lat(instr), and the

exec time(l) of a loop l is the sum of the latencies of the instructions in l. Therefore, a MT

processor with scalar cores can be described by its set of instructions I and the function

lat : I → N.

Theorem 4. TPP is NP-hard for MT processors with scalar cores.

Proof. We prove this by a reduction from the bin packing problem, which is known to be

NP-complete [32]. The input to bin packing is a sequence of numbers S, a number of bins

b, and the capacity c of each bin. The problem is to decide if there exists an assignment of

the numbers in S to the b bins such that the sum of the numbers in each bin is at most c.

A reduction from an instance of bin packing with input S, b and c, to an instance of

TPP with input L, DAGSCC , t, I and lat can be obtained as follows. For each number

sk ∈ S, we add an instruction instrk to I with lat(instrk) = sk, and also add instrk

to L. In addition, we make all instructions in L independent, so that its DAGSCC will

contain one vertex for each instruction and no edges. Finally, we choose t = b. It is fairly

straightforward to verify that the bin packing instance has a solution if and only if the TPP

instance has a partitioning with cost at most c.

6.2.2 Load-Balance Heuristic

Given the inherent difficulty of the TPP, we propose a simple heuristic algorithm to solve

this problem efficiently in practice. This heuristic, called Load-Balance Heuristic (LBH),
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tries to equally divide among the threads the estimated total number of cycles C to execute

the input loop. The value of C is computed by summing up the number of cycles that each

instruction takes to execute. For variable-latency instructions, we estimate the expected

(average) number of cycles. In addition, the number of cycles of each instruction is mul-

tiplied by the profile weight of the basic block containing it. The algorithm computes the

corresponding expected number of cycles, load(s), for each node s in DAGSCC as well.

Having computed C and load for each SCC, the goal of the LBH is to assign DAGSCC ’s

vertices to the threads T1, . . . , Tt so that, for each thread Ti, the sum of the expected cycles

taken by the SCCs assigned to it is as close to C/t as possible. As a secondary metric, LBH

tries to minimize the number of communication instructions that the resulting partition will

require.

The algorithm chooses the SCCs to put in each thread at a time, from T1 to Tt. It keeps

a set of current candidate nodes, which are the SCCs whose all predecessors have already

been assigned to a thread (including nodes with no predecessors in DAGSCC ). At each step,

a new candidate is chosen for the thread Ti being constructed, or the algorithm decides to

stop adding nodes to Ti and to start building Ti+1. The candidate c chosen at each step is

the one with the highest load(c) such that, when added to Ti, the load of Ti will not exceed

C/t (in fact, C and t are updated accordingly after finishing the creation of each thread).

In case of ties, we choose the node with the largest balance |in edges(c)| − |out edges(c)|

in DAGSCC , as an attempt to reduce the number of synchronizations2. After choosing a

candidate to put in a thread, the set of candidates is updated accordingly, and the process is

repeated. The algorithm terminates when t−1 threads have been created, and the remaining

nodes are assigned to the last thread.

Finally, to take the cost of communication into account, the resulting load assigned to

each SCC is increased by the expected number of cycles corresponding to the communica-

tions required by the chosen partition. In case the readjusted load for a SCC exceeds C, the

2In our DAGSCC we have multiple edges between two SCCs u and v, one per instruction in u on which

some node in v depends.
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partition is not applied to the code.

This heuristic was designed specifically for resource-bound cores, such as simple RISC

cores. However, as the experimental results show, it is also very effective for less restricted

MT processors with VLIW cores.

6.3 Experimental Evaluation

In this section, we experimentally evaluate the DSWP thread partitioning. The results

reported here use an implementation of DSWP in the VELOCITY compiler. The experi-

mental methodology used here is the same described in Section 4.4.1.

6.3.1 Dual-Thread Results

Figure 6.4 presents the results for DSWP targeting two threads. Among the benchmarks

described in Section 4.4.1, Figure 6.4 shows the ones for which DSWP obtained a dual-

thread partition, using the load-balance heuristic from Section 6.2.2. The overall function

speedup in Figure 6.4 is 27.9%. The maximum speedup is 143.7% for 435.gromacs. This

benchmark has a large memory footprint, and therefore it effectively benefited from the

doubled L2 cache capacity (the cores have private L2).
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Figure 6.4: Speedups for dual-thread DSWP over single-threaded execution.
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6.3.2 Comparison to GREMIO

Figure 6.5 compares the function speedups achieved by GREMIO and DSWP, for the

benchmarks from Table 4.2 that were parallelized by at least one of these techniques. On

average, DSWP achieves 20.9% speedup, compared to 22.9% for GREMIO. As can be

seen, each of GREMIO and DSWP outperforms the other on several benchmarks. As men-

tioned above, due to caching effects, DSWP results in 2.44× speedup for 435.gromacs. A

similar behavior was not observed with GREMIO because it unluckily kept the instructions

responsible for most L2 misses in the same thread. Figure 6.5 also shows a bar for each

benchmark indicating the speedup of the best performing version. This is the performance

a compiler combining only these two MT techniques can ideally obtain with two threads.

This best-of speedup averages 36.9%.
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Figure 6.5: Speedups for dual-thread GREMIO and DSWP over single-threaded execution.

By the nature of DSWP, the parallelism it extracts is pipelined multi-threading (PMT).

GREMIO, as discussed in Section 5.2, is not restricted to a specific kind of parallelism. In

our experiments, GREMIO produced CMT for five benchmarks, and PMT for the other four

(Table 5.1). As can be noticed, CMT is applicable in cases where DSWP is not (mpeg2enc

and 179.art). In other cases, DSWP outperforms the CMT extracted by GREMIO
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(adpcmdec, 177.mesa and 435.gromacs). In the cases GREMIO extracted PMT, it is bet-

ter than the PMT extracted by DSWP using the load-balance heuristic described in [74] in

some cases (ks, 300.twolf, and 458.sjeng). This shows potential for studying better parti-

tioning algorithms for DSWP.

6.3.3 Sensitivity to Communication Latency

Figure 6.6 shows the effect of increasing the communication latency of our base model

from 2 cycles to 10 cycles. The average speedup drops only 0.2%. As mentioned earlier,

this tolerance to communication latency is a key property of PMT. In fact, in Ottoni et

al. [74], we conducted more experiments and observed the same latency-tolerance even for

communication latencies of 100 cycles. The communication overhead that affects DSWP

is only the extra instructions that execute inside the cores.
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Figure 6.6: Speedups for dual-thread DSWP over single-threaded execution, with different

communication latencies.

6.3.4 Sensitivity to Queue Size

We also conducted experiments with reduced queue sizes. In these experiments, the size of

each queue in the model was reduced from 32 down to a single element. Figure 6.7 illus-

trates the results. Most benchmarks are affected, and the average speedup drops about 6%.
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The reason for this is that larger communication queues enable better decoupling among

the threads. The better decoupling hides variability in the threads across different loop it-

erations, which is more important for benchmarks with lots of control flow and irregular

memory accesses (e.g. ks and 181.mcf).
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Figure 6.7: Speedups for dual-thread DSWP over single-threaded execution, with different

queue sizes.

6.3.5 Scalability

This section analyzes the scalability of DSWP when targeting more than 2 threads. Fig-

ure 6.8 shows the speedups obtained by DSWP for 2, 4, and 6 threads. The average

speedups are 27.1% for 2 threads, 33.9% for 4 threads, and 42.2% for 6 threads. These

results show some performance scalability. However, the performance of DSWP is not

very scalable in general. The main reason for this is that the performance of DSWP is lim-

ited by the slowest SCC in the PDG. After this SCC is isolated in its own pipeline stage,

although the other stages can be further partitioned, this will not result in any performance

improvement. Another reason for the lack of scalability of DSWP is the overhead of com-

munication instructions. As the number of threads increase, the amount of communication

that is necessary also tends to increase.
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Figure 6.8: Speedups for DSWP over single-threaded execution.

6.4 Related Work

As discussed earlier in the beginning of this chapter, the DSWP partitioning technique pre-

sented here was inspired by the work of Rangan et al. [82, 85]. Nevertheless, our DSWP

is a significantly more general. The technique in [85] is only applicable to loops traversing

recursive data structures, and it consists of putting the traversal code in a separate thread

to hide cache misses. On the other hand, our technique focuses on the recurrences in the

code, and it tries to balance the load among the threads while keeping the recurrences

thread-local. As such, our DSWP is applicable to general loops (not only traversals of

recursive data structures), and can generate multiple threads of execution. Furthermore,

by utilizing our framework based on the PDG and the code-generation algorithms we pro-

posed, our DSWP is a general compilation technique that can handle irregular dependences

and arbitrary control flow.

From a different perspective, the DSWP presented in this chapter shares similarities

with loop distribution (or loop fission) [2, 115]. Loop distribution consists of partitioning

a loop into a sequence of loops, and it is generally used to expose DOALL loops and to

improve memory locality. Compared to DSWP, the main difference is that the loops gener-
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ated by DSWP are executed concurrently, while the loops obtained by loop distribution run

one after the other. This difference is also the source of a limitation of loop distribution,

which is generally restricted to counted loops, or loops for which an upper bound on the

number of iterations can be statically determined. The reason for this is the necessity to al-

locate storage to communicate values produced by one thread and used by another. DSWP,

on the other hand, can be applied to loops with arbitrary number of iterations, precisely

because the loops execute concurrently. The threads will naturally block if the communi-

cation queues become full, thus avoiding to have to pre-allocate an unbounded amount of

intermediate storage.

A different approach to parallelize loops with recurrences is DOACROSS [22, 78].

With DOACROSS, loop iterations are executed in multiple processors in a round-robin

fashion. To respect loop-carried dependences, synchronization primitives are inserted in

the code, such that instructions in one iteration wait for their dependent instructions in the

previous iterations to complete. Despite some success, the benefits of DOACROSS are gen-

erally limited by two factors. First, the number and position of loop-carried dependences

lead to synchronizations in the code that limit the amount of parallelism. Second, by execut-

ing loop iterations in a round-robin fashion among the processors, DOACROSS inserts the

synchronizations in the critical path to execute the loop. In other words, the synchroniza-

tion cost is paid between every pair of consecutive iterations, essentially multiplying this

cost by the number of iterations of the loop. Together, these two issues generally negate the

benefits of DOACROSS. DSWP avoids these two main problems of DOACROSS. First,

DSWP isolates large, problematic recurrences in separate threads, which reduces the la-

tency to complete the critical dependence cycles of the loop. To some extent, this benefit

can be obtained by techniques that combine scheduling with DOACROSS [14]. Second,

DSWP avoids the problem of inserting the communication latency on the critical path to

execute the loop. This is achieved by creating a unidirectional flow of the dependences

among the threads.
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Despite its limitations, DOACROSS has found applicability when combined with spec-

ulation, in techniques generally known as Thread-Level Speculation (TLS) [9, 47, 98, 101,

106, 120]. Unfortunately, even in this scenario, the amounts of parallelism obtained have

been limited, hardly justifying the complex hardware support required for speculation. Fur-

thermore, recent research has shown that, by adding speculation support to DSWP [109],

much larger performance gains can be obtained [10].

A much less popular parallelization technique is called DOPIPE [24, 78]. Similar to

DSWP, DOPIPE partitions a loop into a sequence of loops to be executed concurrently.

Davies [24] even describes the combination of DOPIPE with DOALL, which is very sim-

ilar to the Parallel-Stage DSWP described in Chapter 7. The advantages of DSWP over

DOPIPE lie in the generality and applicability of the technique. DOPIPE is restricted to

structured programs and counted loops. DSWP, by relying on our general MTCG algo-

rithm, is able to handle arbitrary control flow.

6.5 Significance

This chapter presented the Decoupled Software Pipelining (DSWP) thread partitioning.

DSWP generalizes the idea of single-threaded software pipelining, which exploits ILP

across loop iterations, to exploit TLP. The DSWP technique proposed in this chapter ex-

ploits pipeline parallelism from loop nests with arbitrary control flow. In this work, we

demonstrated that the problem of finding the best partition for DSWP is NP-hard, and we

described a simple heuristic that tries to balance the load among the threads. The exper-

imental results demonstrated, for selected benchmarks, an average speedup of 27% on 2

threads and 42% on 6 threads. In Chapter 7, we describe an extension of DSWP that in-

creases its scalability.
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Chapter 7

Parallel-Stage Decoupled Software

Pipelining Thread Partitioning

The work presented in this chapter is the fruit of a strong collaboration with Easwaran

Raman, based on ideas introduced in [77] and fully developed in [81]. More specifically,

this chapter focuses on the author’s main contributions, which are related to the extension

to the MTCG algorithm (Section 7.3) to support parallel stages. The experimental results

presented here use a partitioning heuristic proposed by Easwaran Raman, which is briefly

described in Section 7.2.

In Chapter 6, we presented the Decoupled Software Pipelining (DSWP) thread parti-

tioning. Although widely applicable, the results in Section 6.3.5 demonstrate that DSWP

does not scale well with the number of threads. In this chapter, we describe an exten-

sion of DSWP, called Parallel-Stage DSWP, that trades applicability for increased scalabil-

ity [77, 81].

Before describing PS-DSWP, it is important to understand the main limiting factor of

DSWP. Since DSWP treats strongly connected components (SCCs) in the PDG as atomic

blocks for partitioning, the latency of the slowest SCC is a lower bound on the latency that
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DSWP can achieve for a loop. In other words, DSWP reaches its maximum performance

when the slowest stage of the pipeline is exactly the largest SCC.

Our key observation is that, although SCCs cannot be split among multiple threads to

form a strict pipeline, under some conditions, a pipeline stage can be executed by multiple

threads concurrently. In particular, if the bottleneck stage can run concurrently on multi-

ple threads, it is possible to achieve performance beyond the limit of basic DSWP. This

chapter investigates and exploits opportunities for parallel stages in the pipeline, i.e. stages

executed in parallel by multiple threads.

The question that arises is: when can we make a stage parallel, especially if it contains

a non-trivial SCC? Naturally, SCCs represent recurrences, or dependence cycles, so at first

it may seem that those must be executed sequentially. Our key insight is that, although a

non-trivial SCC must include loop-carried dependences, this SCC can be safely executed

by multiple threads if none of its loop-carried dependences are carried by the outer loop to

which DSWP is being applied. In other words, a large SCC may exist because of depen-

dences carried only by an inner loop. In this case, although each invocation of the inner

loop must be executed by a single thread, different invocations of this inner loop can be

concurrently executed in separate threads. Another example of a large SCC that may be

assigned to a parallel stage is in case of function calls. If multiple calls to a function may

execute concurrently, then the call instructions to this function will constitute trivial but

heavy-weight SCCs. In some cases, this problem can be mitigated by function inlining.

However, inlining may not be practical because of code size. Furthermore, executing this

SCC in a parallel thread provides better scalability than doing inlining and subdividing it

in multiple stages.

As an example, consider the code in Figure 7.1, which is the same example from Chap-

ters 3 and 6. This code traverses a list of lists, implemented as a linked data structure, and

adds up the cost fields of all the elements. Figure 7.2(a) shows this example in low-level

code, and its corresponding PDG and DAGSCC are illustrated in Figures 7.2(b)-(c). The
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arcs for intra-iteration dependences with respect to the outer loop are represented by solid

lines; dependences carried by the outer loop are represented by dashed lines. Data depen-

dence arcs are annotated with the corresponding register holding the value, while control

dependence arcs have no label. Since there are five SCCs in Figure 7.2(c), DSWP can ex-

tract up to five threads for this example. However, due to imbalance among the SCCs, it is

unprofitable to use five threads in this case. In fact, assuming the lists traversed in the inner

loop contain at least a few elements, the SCC DEH will be the bottleneck. However, its

two loop-carried dependences, E → D and H → D, are carried only by the inner loop.

Therefore, this SCC can be assigned to a parallel stage.

while (list != NULL) {

for (node = list->head; node != NULL;

node = node->next) {

total += node->cost;

}

list = list->next;

}

Figure 7.1: Motivating example.

Similar to DSWP, PS-DSWP can benefit from any analysis or transformation that proves

the absence of or eliminates loop-carried dependences. For both DSWP and PS-DSWP,

these analyses and transformations can break SCCs, thus exposing more parallelization op-

portunities. In the case of PS-DSWP, these can also expose larger pieces of code that can be

assigned to a parallel stage. In addition, for PS-DSWP, it is important to differentiate which

loops carry each dependence. There are several analyses and transformations in the liter-

ature that can be applied to disprove or eliminate loop-carried dependences, thus greatly

improving the applicability of PS-DSWP. We discuss some of these techniques in the next

section. After that, we discuss thread partitioning for PS-DSWP, present the extensions to

the MTCG algorithm to support parallel stages, and provide an experimental evaluation.
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Figure 7.2: (a) Low-level code, (b) PDG, and (c) DAGSCC for the example in Figure 7.1.

7.1 Breaking Loop-Carried Dependences

Many memory analysis techniques have been proposed to disprove false memory depen-

dences. For regular array-based codes, a variety of complex analyses have been proposed

to find DOALL loops, including the GCD and the Omega tests [2, 115]. Although these

techniques are rarely sufficient to find truly DOALL loops beyond scientific applications,

they can eliminate some dependences and thus expose larger parallel stages for PS-DSWP.

Programs using pointer-based, recursive data structures are generally much harder to

analyze. Nevertheless, several existing techniques can prove the absence of loop-carried

dependences in these scenarios. Notably, memory-shape analyses [34, 37, 89] can be used

for this purpose. By proving that a data structure is acyclic, shape analyses can be used

to determine that different iterations of a loop traversing such data structure can execute in
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parallel. Complementally, the navigator analysis proposed by Ghiya et al. [33] can prove

that a traversal loop follows an acyclic path even if the data structure is cyclic.

In several cases, even though true loop-carried dependences exist, transformations can

be applied to eliminate these dependences. The classic examples are reductions, such as

sum reduction [2]. Reduction transformations benefit from the commutative and associative

properties of operations to allow them to execute in a different order. For example, a

sequence of additions can be performed in any order and the result is the same. To be

part of a reduction, a variable must have no use inside the loop other than in the reduction

instructions. An example of sum reduction is operation G in Figure 7.2 (denoted in gray in

Figure 7.2(c)). Even though this instruction has a loop-carried self dependence cycle, it can

be assigned to a parallel stage. In the parallelized code, each thread executing this stage will

have its own local copy of the reduction variable, and the values of all these variables will

be added together at the end. Other types of reductions include multiplication, minimum,

maximum, and complex minimum and maximum (with other associated values) [2].

Other common sources of memory dependences are calls to memory-management rou-

tines, such as malloc and free in C. Typically, the calls to these functions are conserva-

tively executed sequentially. However, under some circumstances, these dependences can

be eliminated. To do so, it is necessary to analyze the code to determine that the addresses

and the order of the allocated memory chunks do not affect the program’s semantics. Under

this common circumstances, the calls to memory-management functions can be replaced

by calls to corresponding thread-safe versions, if available.

7.2 PS-DSWP Partitioning

For PS-DSWP, the thread-partitioning problem is extended with one more dimension. Be-

sides partitioning the nodes of the DAGSCC among the pipeline stages, a replication factor

must be chosen for each stage. For a particular stage Si, its replication factor f(Si) corre-
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sponds to the number of threads that will execute Si. Therefore, if a stage Si has f(Si) > 1,

then Si is a parallel stage. Otherwise, f(Si) = 1 and Si is a sequential stage. Being s the

the number of stages in the pipeline and t the target number of threads, the replication fac-

tors must satisfy:
∑s

i=1 f(Si) ≤ t. This guarantees that the number of threads needed is at

most the number of target threads.

As mentioned earlier, not every SCC is assignable to a parallel stage. In order to de-

termine whether a set of SCCs can be assigned to a parallel stage, SCCs are classified into

two categories. If a SCC has no dependence carried by the outer loop (i.e., the one being

parallelized), then it is classified as a doall SCC. Furthermore, for a given SCC, if all its de-

pendences carried by the outer loop correspond to reductions (as described in Section 7.1),

then this SCC is doall. Otherwise, the SCC contains dependences carried by the outer loop

that are not subject to reduction transformations, and the SCC is sequential. In the exam-

ple in Figure 7.2(c), the only sequential SCC is ABJ (denoted in black). SCC G, despite

having a dependence carried by the outer loop, is a sum reduction.

Based on the definitions above, a pipeline stage Si may be made parallel if two con-

ditions are satisfied. First, all Si’s SCCs must be doall. Second, all the arcs in the PDG’s

subgraph induced by the instructions in Si must not be carried by the outer loop. Together,

these two conditions ensure that a parallel stage has no dependence carried by the outer

loop, except for reduction-related dependences.

Similar to DSWP, the primary goal of a PS-DSWP partitioner should be to balance

the load among the threads. In the presence of parallel stages, this means to minimize

MAX s
i=1(exec time(Si)/f(Si)), where exec time(Si) is the execution time for stage Si.

Clearly, this problem is at least as hard as the DSWP partitioning problem, which was

demonstrated to be NP-hard in Section 6.2.

To solve this problem in practice, Raman et al. [81] proposes a simple heuristic, which

focuses on catching cases where a single, large parallel stage is possible. This heuristic

starts with each SCC in its own stage, and then greedily merges parallel stages as long
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as the resulting stage is also parallel and no cycle among the stages is formed. When it

is no longer possible to merge parallel stages, the parallel stage with the largest weight

is selected as the only final parallel stage. All the other stages are merged, still ensuring

the unidirectional communication between stages, and made sequential stages. For non-

DOALL loops, this can result in three configurations: (1) a sequential stage followed by

a parallel stage; or (2) a parallel stage followed by a sequential stage; or (3) a sequential

stage, followed by a parallel stage, followed by another sequential stage. The replication

factor f for the final parallel stage is then selected as the target number of threads minus

the number of sequential stages. As we show in Section 7.4, this simple heuristic is able to

find good partitions for a few benchmarks. However, there are several drawbacks with this

heuristic, such as not balancing the load among the threads and allowing a single parallel

stage. Studying better partitioning algorithms for PS-DSWP is left as future work and, in

fact, it is the subject of ongoing research.

7.3 Code Generation

In order to support parallel stages in the pipeline, it is necessary to extend the MTCG

algorithm in several ways. This section describes these extensions, as we proposed in [81].

In general, these extensions can be applied as a post-pass to the MTCG algorithm, which

need not be aware of parallel stages.

A very naı̈ve code generation strategy to support parallel stages is to initially apply loop

unrolling. This way, multiple copies of corresponding code could be assigned to different

stages, therefore obtaining the effect of parallel stages. However, this approach does not

scale well because of code growth. We avoid this problem with a slightly more elaborate

code generation scheme, which allows all the threads executing the same stage to share the

same code.

The key to avoid code replication is to be able to access the communication queues

using indexed addressing mode. In this mode, a queue is specified by a constant offset
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plus the value contained in a register. By simply changing the value of this register for

different loop iterations, the communications between sequential and parallel stages can be

coordinated in a simple manner. Indexed addressing mode is trivial to implement in case

of software queues. And, even for hardware queues, which typically only allow immediate

addressing to queues [85, 104], this requires just a slight hardware change. The trickiest

part is to avoid having to encode a register value in the special produce and consume

instructions, which may require more bits to encode than what is available. However, we

can work around this problem by adding one architectural register to contain a base queue

value, which is added to the immediate queue number encoded in the instructions. We call

this register the queue-base register. The only other addition is a special instruction to set

the value of these queue-base register. We call this instruction queue.set.

The next subsections describe the transformations that need to be performed after the

MTCG algorithm is applied. Notice that these are independent from the communication

placement strategy employed by MTCG, thus naturally allowing COCO to be used in con-

junction with parallel stages.

7.3.1 Communication Insertion

This section explains how to adjust the communication instructions inserted by the MTCG

algorithm to deal with the presence of parallel stages.

Loop Communications

Inside the parallelized loop, it is necessary to adjust the communication instructions to

enable proper communication between sequential and parallel stages. As mentioned above,

one of the goals is to have all threads executing a parallel stage share the same code.

One possible scheme is for all threads to share the same communication queues, with

parallel threads dynamically pulling work out of the queues as they finish their previous

iterations. This scheme has the advantage of dynamically balancing the load among the
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parallel threads, and it is somewhat similar to the OpenMP workqueuing or taskqueuing

model [95, 102]. However, since PS-DSWP can generate multiple parallel threads com-

municating to a single downstream sequential thread, some complications arise with this

scheme. First, this scheme requires a more complex design for communication queues,

where multiple producers can write to the same queue. Second, with the scalar communi-

cation queues that we have been assuming so far, not all values are read at the same time.

Due to timing issues, this brings the possibility of different threads consuming the values

for the same loop iteration, which can result in incorrect execution. Therefore, to guar-

antee correctness, a mechanism to enforce that each parallel thread consumes all values

corresponding to the same loop iteration is necessary. Third, this dynamic work allocation

scheme brings complications because the parallel threads may need to communicate in the

same order with both an upstream and a downstream sequential threads. In other words, the

order in which the threads executing a parallel stage consume values from their upstream

sequential stage may have to match the order in which they produce values to their down-

stream sequential thread. More precisely, this is necessary when the sequential threads also

communicate directly. This can, however, be avoided by forcing all values from the up-

stream sequential stage be communicated to the downstream sequential stage through the

intermediate parallel stage. Nevertheless, this requires adapting the MTCG algorithm to

enforce a pattern of strictly linear pipeline communication.

To avoid the issues of dynamic work assignment mentioned above, we opted for a

simpler scheme, in which iterations are statically assigned to threads executing a parallel

stage. In this approach, each thread executing the parallel stage both consumes from and

produces to a unique set of queues. Since all threads for a parallel stage execute the same

code, uniqueness can be achieved by setting the base-queue register with a different value

upon creation of the auxiliary threads. The value of the base-queue register should be

chosen so that the sets of queues used by the parallel threads do not overlap. For the

threads executing sequential stages, the value of the base-queue register is adjusted every
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iteration of the outer loop, so that they communicate with the parallel threads in a round-

robin fashion.

Initial Communications

As described in Section 3.1.3, the MTCG algorithm inserts communication primitives be-

fore the region’s entry for dependences from instructions before the parallelized region

to instructions inside this region. In PS-DSWP, if the target of the dependence is part of

a parallel thread, special handling is necessary. There are two cases. First, if this is a

loop-invariant register dependence, then this dependence must be communicated to every

parallel thread before entering the region. Second, if this is a loop-variant register depen-

dence, then it is necessary to move the communication instructions inside the loop region.

The reason is that, in this case, the register involved in the dependence may be redefined in

some loop iterations. Nevertheless, as per the MTCG algorithm, the new value assigned to

the register will only be communicated to the parallel thread executing that particular loop

iteration. The other parallel threads would still have the stale value of the register. Since

the communication of this new register value may be nested inside a deep control region,

we simply communicate the value of such register at the loop header. In effect, this will

communicate the latest value of conditionally defined registers to the parallel threads in

every loop iteration. A similar problem may occur due to conditionally exercised memory

dependences from a sequential to a parallel stage. The MTCG algorithm will only enforce

a memory synchronization between the sequential thread and the parallel thread executing

that particular iteration. Nevertheless, this synchronization needs to be enforced to every

parallel stage, which is also achieved by adding a synchronization at the loop header.

Final Communications

In the MTCG algorithm, all registers written inside the parallelized region and live at the

exit of the region need to be communicated back to the main thread. As discussed in
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Section 3.1.3, a problem arises if multiple threads may contain the latest value of a given

register. A similar problem may occur if a register is conditionally assigned inside a parallel

stage. The same solutions discussed in Section 3.1.3 are applicable here. Nevertheless, to

enable larger parallel stages, the time-stamp solution is definitely preferable for PS-DSWP.

Reductions

For reduction SCCs assigned to parallel stages, the corresponding reduction transformation

is applied. These transformations are similar to standard reduction transformations applied

to DOALL loops [2]. More precisely, each thread keeps its local copy of the reduced value,

which is initialized to the neutral value for that reduction operator (e.g. zero for sum). At

the exit of the loop, all the parallel threads communicate their local reduction values to the

main thread, which then applies the reduction operation to obtain the correct final value.

7.3.2 Loop Termination

The last code generation problem that arises from parallel stages is loop termination. In

the basic DSWP, loop termination is naturally handled due to the control dependences

corresponding to the loop exits. More specifically, once a loop exit is taken in the first

thread, the corresponding control dependence is communicated to every other thread, thus

causing them to terminate the loop as well. However, this scheme does not work directly in

the presence of parallel stages. With PS-DSWP, once a loop exit is taken, only the parallel

thread executing the last loop iteration will terminate.

Our solution is to add one special communication to terminate the execution of threads

executing a parallel stage. At the header of the loop, the parallel-stage threads consume a

continue token, and exit the loop if this is false. At the header of the first-stage thread,

true is passed as the continue token to the parallel thread that will execute the current

iteration, thus enabling it to continue. At the loop exit, the first-stage thread sends false

as the continue token to every thread executing the parallel stage, thus causing them all to
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leave the loop through the exit created at the header. The parallel-stage thread executing

the last iteration, which will take the normal loop exit created by MTCG, must consume

the continue token once it terminates the loop.

In order to enable a parallel first stage, loop termination is handled differently. To have

a parallel first stage, it is necessary to have a counted loop. In this case, instead of having

a sequential first-thread that sends continue tokens to the parallel-stage threads, all threads

know upfront how many iterations they have to execute. This information actually makes

loop termination for counted loops straightforward to implement [2, 81].

7.4 Experimental Evaluation

In this section, we present an evaluation of the PS-DSWP technique. The experimental

methodology is the same described in Section 4.4.1, except for the additional base-queue

register and queue.set instruction discussed in Section 7.3.

Despite the importance of array-dependence and memory-shape analysis for PS-DSWP

mentioned in Section 7.1, the VELOCITY compiler currently lacks these techniques. To

compensate for that, we used an alternative approach for the benchmarks evaluated in this

section. The approach was to use an in-house, loop-aware memory profiler to detect overly

conservative memory dependences based solely on the available pointer analysis. Such

dependences were then manually inspected for the feasibility of eliminating them through

static array-dependence and shape analysis. The dependences determined to be feasible to

eliminate through such analyses were then left out of the PDG.

7.4.1 PS-DSWP Results

Among the benchmarks described in Section 4.4.1, the simple partitioning heuristic de-

scribed in Section 7.2 obtained a parallel stage for five benchmarks.1 For these five bench-

1The compiler only parallelized loops if the estimated speedup was at least 50% over sequential execution.
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marks, Figure 7.3 presents their speedups using up to 6 threads, over the single-threaded ex-

ecution. PS-DSWP obtains speedups of up to 155% (for 458.sjeng), and a overall speedup

of 113% among these five loops. Figure 7.3(b) describes the scheme of pipeline stages

generated by PS-DSWP. In this table, p means a parallel stage and s means a sequential

stage. For example, for ks, there is a first sequential stage followed by a parallel stage.

0

20

40

60

80

100

120

140

160

%
L

o
o
p

S
p
ee

d
u
p

ks
ot

te
r

30
0.

tw
ol

f

45
6.

hm
m

er

45
8.

sj
en

g

G
eo

M
ea

n

3T

4T

5T

6T

(a)

Benchmark Pipeline stages

ks s→ p

otter s→ p→ s

300.twolf s→ p

456.hmmer p→ s

458.sjeng s→ p

(b)

Figure 7.3: (a) Speedups for PS-DSWP over single-threaded execution. (b) Resulting

pipeline stages (sequential or parallel).

7.4.2 Comparison to DSWP

In this section, we compare the results of PS-DSWP with the basic DSWP. This compari-

son includes all the benchmarks described in Section 4.4.1 that were parallelized by at least

one of these two techniques. For the benchmarks that had loop-carried dependences manu-

ally removed for PS-DSWP, the same version of the benchmark without such dependences

was used for DSWP in this evaluation.2

Figure 7.4 shows the results for these benchmarks using up to 6 threads. As expected,

DSWP is applicable to many more benchmarks than PS-DSWP. On the other hand, when

applicable, PS-DSWP generally results in significantly better performance. The only ex-

ception is 300.twolf, for which both techniques are applicable and DSWP results in better

2This explains the differences between speedups for DSWP reported here and in Chapter 6.
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performance. The main reason for this is that the loop in 300.twolf, although invoked many

times, iterates just a few times per invocation. In this scenario, the parallel stages are not

fully utilized.

240

0

20

40

60

80

100

120

140

160
%

L
o

o
p

S
p

ee
d

u
p

ad
pc

m
de

c

ad
pc

m
en

c ks
ot

te
r

17
7.

m
es

a

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

30
0.

tw
ol

f

43
5.

gr
om

ac
s

45
6.

hm
m

er

45
8.

sj
en

g

G
eo

M
ea

n

DSWP

PS-DSWP

Figure 7.4: Speedups for PS-DSWP and DSWP using up to 6 threads, over single-threaded

execution.

7.5 Significance

This chapter presented an extension of the DSWP technique (Chapter 6) that enables the

presence of parallel stages in the pipeline. This new technique is called Parallel-Stage

DSWP (PS-DSWP). Compared to DSWP, PS-DSWP trades applicability for increased scal-

ability. PS-DSWP is generally beneficial in quasi-DOALL loops, which, despite having

some recurrences, contain a large portion that can benefit from iteration-level parallelism.3

Akin to DSWP, PS-DSWP shares similarities with loop distribution. Like loop distri-

bution, PS-DSWP is beneficial when a large portion of the original loop contains iteration-

level parallelism. Like DSWP, PS-DSWP offers more benefits than loop distribution by

executing all loops concurrently. This also increases the applicability of DSWP and PS-

DSWP over loop distribution, by enabling the parallelization of uncounted loops. Further-

3We call iteration-level parallelism what is typically called loop-level parallelism in the literature [2]. We

adopt this terminology to avoid confusion with pipeline parallelism, which is also extracted at the loop level.
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more, by relying on our MTCG algorithm, DSWP and PS-DSWP are able to handle loops

with arbitrary control flow.

PS-DSWP is also very similar to the combination of DOALL and DOPIPE [24]. The

main advantage of PS-DSWP comes again from its ability to handle applications with ir-

regular memory accesses and control flow. The technique proposed by Davies [24] is only

applicable to very structured programs, with counted loops, and it only creates parallel

stages for DOALL inner loops.
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Chapter 8

Conclusions and Future Directions

The shift in the microprocessor industry towards multi-threaded and multi-core architec-

tures has brought the necessity of exploiting thread-level parallelism (TLP) to mainstream

computing. Given the extra burden and complications that parallel programming imposes

to the programmer, it is desirable to create tools to automatically extract TLP as much as

possible. This is particularly important for fine-grained TLP enabled by modern multi-

threaded architectures.

Previous research in compilation techniques attacked the problem of extracting paral-

lelism in mainly two different granularities. At the high-level, loop-parallelization tech-

niques have focused at extracting coarse-grained parallelism from regular, mostly scientific

applications. At the low-level, instruction scheduling techniques have focused at exploiting

fine-grained, instruction-level parallelism for a single processor. This thesis bridges the gap

between these two fronts.

8.1 Summary

The central idea in this thesis is to extend low-level instruction scheduling techniques to

exploit fine-grained thread-level parallelism. A key advantage brought by multi-threaded

architectures is the possibility of concurrently executing different, unrelated control re-
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gions. To truly exploit this potential, it is imperative to have a large scope for scheduling.

Typically, instruction scheduling techniques are applied to each basic block or trace inde-

pendently. However, this can only exploit local parallelism among instructions with very

related or equivalent conditions of execution.

One of the main contributions of this thesis was to propose a general compilation frame-

work that enables global instruction scheduling for multi-threaded architectures. By global

we mean an arbitrary intra-procedural scope. This framework is based on a program de-

pendence graph (PDG) intermediate representation, and it provides a powerful separation

of concerns into thread partitioning and code generation.

A key component of our framework is the multi-threaded code generation (MTCG)

algorithm described in Chapter 3. This algorithm takes an arbitrary thread partition of

the PDG and generates efficient multi-threaded code. In particular, the code generated

by the MTCG algorithm does not replicate the entire control flow in all threads, a huge

limitation of previous work on multi-threaded instruction scheduling. Instead, the MTCG

algorithm only replicates the control-flow regions that are relevant to each thread, given its

subset of the PDG nodes. This is an important property for generating truly multi-threaded

code. To the best of our knowledge, the MTCG algorithm is the first method to satisfy

this property and to support arbitrary control flow and thread partitions. Furthermore, our

MTCG algorithm is elegant and simple to implement. The key to this simplicity is MTCG’s

uniform handling of dependences, particularly of control dependences.

This thesis also investigated two different approaches to placing communication in-

structions in the MTCG algorithm. The first approach uses a very simple property, which is

to communicate an inter-thread dependence at the point corresponding to its source instruc-

tion. The second approach, called COCO and described in Chapter 4, is significantly more

elaborate. COCO employs thread-aware data-flow analysis to determine all the safe points

to communicate each dependence, and then uses graph min-cut algorithms to choose com-

munication points that reduce the frequency of communications. Our experiments showed
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that, although the simple communication placement method proposed generally does a

good job, COCO’s improvement can be quite substantial in some cases.

For thread partitioning, this thesis investigated three different approaches. The GREMIO

technique, described in Chapter 5, extends traditional list scheduling to operate globally and

to be aware of different levels of resources (functional units in a core, and multiple cores in

a processor). GREMIO schedules instructions based on the control relations among them,

which determine whether or not they can be issued simultaneously in the same core/thread.

GREMIO operates hierarchically based on the loop tree, using a dynamic programming

approach.

Another thread partition technique proposed in this thesis, called Decoupled Software

Pipelining (DSWP) and described in Chapter 6, extends the idea of software pipelining to

schedule instructions of an arbitrary loop region. DSWP partitions the nodes of the PDG

into multiple stages of a pipeline. The pipeline is formed by enforcing a unidirectional flow

of dependences among the stages (threads). To obtain maximum efficiency, the goal of a

DSWP partitioner is to balance the load among the threads, while minimizing inter-thread

communication.

The final thread partitioner described in this thesis is an extension of DSWP that allows

multiple threads to execute the same pipeline stage in parallel. This extension is called

Parallel-Stage Decoupled Software Pipelining (PS-DSWP), and it was described in Chap-

ter 7. In essence, PS-DSWP combines the pipeline parallelism of DSWP with iteration-

level (or DOALL) parallelism to improve scalability.

All the techniques proposed in this thesis were implemented in the VELOCITY com-

piler, and evaluated on a cycle-accurate multi-core model based on Itanium 2 cores. This

multi-core model has a scalar communication hardware support, which provides low intra-

core overhead for inter-thread communication and synchronization. Our experiments eval-

uated the three thread partitioners describe in this thesis. These techniques were able to

extract significant parallelism for a set of applications that are very hard to parallelize, es-
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pecially with non-speculative techniques like ours. These results are very encouraging,

and they demonstrate the power of our techniques to extract thread-level parallelism from

sequential general-purpose applications to benefit from modern microprocessors.

8.2 Conclusions

Overall, this thesis proposed a new way of looking at and exploiting thread-level paral-

lelism. Modern multi-threaded and multi-core processors are typically regarded as a curse

because of the difficulty of utilizing them to improve the performance of a single applica-

tion. Contradicting this general belief, this work demonstrated that the ability to concur-

rently execute multiple threads actually enables novel opportunities to exploit parallelism.

In particular, our work demonstrated that traditional instruction scheduling techniques can

be extended to extract parallelism in the form of thread-level parallelism that cannot be

practically exploited as instruction-level parallelism. This insight motivated the techniques

developed in this work and enabled the automatic parallelization of notoriously sequential

programs. Furthermore, followup work on combining speculation and other enhancements

(described in Section 8.3) with the techniques developed in this thesis have demonstrated

even higher applicability and scalability [10, 109]. Altogether, the resulting approach pro-

vides a viable alternative to attain performance our of modern, highly parallel micropro-

cessors.

8.3 Future Directions

This thesis provides the groundwork for global multi-threaded instruction scheduling re-

search. As such, it opens new avenues to be explored with the goal of improving perfor-

mance on modern multi-threaded and multi-core processors. In the following, we summa-

rize some of these opportunities for future research in this area, several of which are already

being pursued in our group.
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• Novel Thread Partitioning Algorithms

The thread partitioning algorithms proposed in this thesis are a first step in obtaining

parallelism. They were inspired by instruction-level parallelism schedulers, and de-

signed to have an efficient execution time. They, by no means, extract the maximum

amount of parallelism. In fact, as our experiments illustrated, for different bench-

marks, a different partitioning algorithm resulted in the best performance. These

results motivate more research in this area, not only by integrating the partitioners

proposed here in one capable of achieving the best among them, but also in propos-

ing more elaborate, completely new algorithms.

• Extensions to the Multi-Threaded Code Generation Algorithm

Despite its generality, there are several ways in which the MTCG algorithm can be

extended. Chapter 4 presented algorithms to improve the inter-thread communica-

tion. However, these algorithms are not optimal either, and therefore there may be

room for improvement in this area.

A limitation of the MTCG algorithm described here is that each PDG node can only

be assigned to a single block in the partition. Only necessary branches are replicated

in multiple threads, which is required to implement the flow of control. There is po-

tential to improve the generated code by duplicating other instructions as well. For

example, when we have a simple instruction, say the load of an immediate value into

a register, which feeds two uses, MTCG will generate an inter-thread communication

if the uses are in different threads. However, by assigning the load-immediate instruc-

tion to both threads containing the uses, no communication is necessary. Although

the possibility of assigning a node to multiple threads can be enabled by applying

node splitting upfront in the PDG, a more general solution is to allow a thread parti-

tion to assign the same instruction to multiple threads. In this case, a communication

is only required if the thread containing the use does not have a copy of the definition
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feeding it as well. This ability to assign a single instruction to multiple threads cre-

ates an interesting tradeoff between recomputing or communicating a value, which

can be explored to improve parallelism. Of course, not every instruction is amenable

to being replicated in multiple threads, e.g. calls to I/O libraries. Such restrictions

must be enforced in the thread partition.

Another possible extension to the MTCG algorithm is specific to DSWP. The exper-

iments in [82] demonstrate that a strictly linear pipeline can alleviate the necessity

for larger communication queues for DSWP. The MTCG algorithm can be extended

to enforce this communication pattern for DSWP, by ensuring that a dependence be-

tween two non-consecutive stages is always communicated through the intervening

stages.

Another restriction in our compiler framework is that it assumes the initial program

is sequential. To support parallel programs, the PDG representation, which is central

in our work, should be extended to encode the semantics of parallel programs. One

possibility is to use the Parallel Program Graph (PPG) representation [92]. Moreover,

to obtain better parallelism, the thread partitioning and MTCG algorithms need also

be made aware of the semantics of parallel programs.

For simplicity, the MTCG algorithm utilizes a different communication queue for

each inter-thread dependence. Clearly, this is not optimal and may require a large

number of communication queues. Analogous to register allocation, a queue-alloca-

tion technique may be devised to reuse communication queues.

• Optimization of Multi-Threaded Code

In our compiler, we are able to apply many single-threaded optimizations to each

of the generated threads. However, some optimizations are not safe, because they

do not understand the semantics of the multi-threaded code. For example, register

promotion may incorrectly promote a variable from memory to a register even though
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it may be accessed by another thread. Such optimizations must be made thread-aware

in order to be applicable to multi-threaded code.

In addition to enabling single-thread optimizations to properly operate on code gen-

erated by the MTCG algorithm, there is also room to apply novel inter-thread opti-

mizations. The example mentioned above, where a constant value is communicated

from one thread to another, could be solved by applying inter-thread constant propa-

gation. Similarly, other traditional code optimizations can be applied to improve the

multi-threaded code. To enable inter-thread analysis and optimizations in general,

many of the compiler fundamentals need to be revisited and extended. One step in

this direction was done by Sarkar [92], based on the Parallel Program Graph (PPG),

but a lot more work is necessary in this area.

• Inter-Procedural Extensions

The framework described in this thesis is applicable to an arbitrary intra-procedural

region. In this scenario, function calls are treated as atomic nodes in the PDG: they

can only be assigned to one thread (or one stage in case of PS-DSWP). Of course, this

restricts the possible thread partitions, which can result not only in imbalance among

the threads but also in the impossibility of isolating instructions inside the called

function that participate in a problematic dependence chain. In this work, function

inlining was used to mitigate these problems. A more general solution is to ex-

tend our framework to operate inter-procedurally, potentially with a whole-program

scope. There are several challenges to enable this extension. First, the PDG repre-

sentation needs to be extended to model inter-procedural code regions. For this, we

can rely on the System Dependence Graph (SDG) representation [41], which essen-

tially has the same properties of the PDG. A SDG is constructed by building the

PDG for each procedure and connecting the call-sites to the called functions. Special

data-dependence arcs are inserted to represent parameter passing, and special control
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dependence arcs, called call arcs, are added to connect the call-site with the callee

procedure’s entry [41]. Using the SDG representation, the MTCG algorithm works

mostly unchanged. In particular, any thread that is assigned an instruction inside a

called function will have the call-sites of that function as relevant (by Definitions 2

and 3) because of the call arcs. Therefore, call-sites will naturally be replicated for

each thread as needed by the MTCG algorithm. Small changes to the MTCG algo-

rithm are necessary both to rename the new procedures resulting from partitioning

instructions in one procedure among multiple threads and to specialize the new pro-

cedures and their call-sites to only have the necessary parameters.

Another problem that arises from partitioning procedures among multiple threads is

related to stack-allocated variables. Since the code accessing these variables may

now be split into multiple procedures executed on different threads, these variables

should be promoted to the heap. Furthermore, the allocation and deallocation of this

heap area must be placed in points in the code that guarantee that they will happen,

respectively, before and after all accesses to these variables. This may require extra

synchronizations to be added to the code.

We notice that there are some drawbacks in naively utilizing the SDG. The main

problem is the lack of context sensitivity, which may create dependence chains among

independent instructions. As with any context-insensitive analysis, dependence chains

from one call-site will appear to reach uses following another call-site to the same

procedure. This problem does not happen with the intra-procedural approach be-

cause the call-sites are atomic and represented by different nodes in the PDG. To

avoid this problem with the inter-procedural extension, we can use frameworks for

inter-procedural analysis with some level of context-sensitivity (e.g. [105]) and du-

plicate problematic procedures with multiple call-sites. This approach also enables a

procedure to have its instructions partitioned differently among the threads for differ-

ent call-sites. Another problem that may arise from operating with a whole-program

134



scope is the size of the SDG and the scalability of the algorithms used. For really

large applications, two alternatives are to seek a good tradeoff between treating pro-

cedure calls as atomic or not, and to explore a hierarchical approach.

• Use of Better Memory Disambiguation Techniques

A major source of conservativeness in our framework, and compiler optimizations in

general, is the inaccuracy of memory disambiguation techniques. In this work, we

use the results of a flow-insensitive, context-sensitive pointer analysis implemented

in the IMPACT compiler [70]. The results of this analysis are propagated into VE-

LOCITY’s IR. In addition to imprecisions inherent to this specific pointer analy-

sis [70], our framework also suffers from the fact that many optimizations are done

in VELOCITY before we apply GMT instruction scheduling. As we demonstrated

in [36], the propagation of pointer-aliasing information throughout code optimiza-

tions deteriorates the quality of this information even further.

To improve the accuracy of memory disambiguation, other techniques from the lit-

erature, such as memory-shape analysis [33, 34, 37] and advanced array-dependence

analyses [2], could be employed. Furthermore, there may be room to improve mem-

ory disambiguation analysis by benefiting from specific properties of our paralleliza-

tion techniques.

• Speculative Extensions

Another avenue for research is the combination of speculation with the techniques

devised in this thesis. We have done initial work in this area with the Speculative

DSWP extension [75, 109], and there is room for adding speculation to the other

techniques as well. The benefit of speculation is that it frees the compiler from being

overly conservative in many cases. Given the difficulties of memory disambiguation,

speculation can be particularly useful for memory dependences. Furthermore, it can

also help in case of infrequently executed control paths. With speculation, the com-
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piler can parallelize the code optimistically and, in case of mis-speculation, only a

performance penalty is paid and correctness is not affected. The major downside of

speculation is that it generally requires very complex and expensive hardware designs

to obtain good performance.

• Run-time Extensions

The evaluation presented in this work utilized a static compiler. Akin to other code

optimizations, there is potential to improve the parallelism resulting from our tech-

niques by applying them at run-time. In general, run-time optimizations can benefit

from dynamic information that is not available to a static compiler. For instance,

run-time information can be used to determine whether or not the threads are well

balanced, and to repartition the threads to obtain a better balance if necessary. Fur-

thermore, for speculative extensions, run-time information can be used to determine

dependences that either are infrequent or do not manifest at run-time. This informa-

tion can be used to obtain a better thread partition and to reduce the mis-speculation

rates.

• Improvements to Other Code Optimizations

Finally, we believe that some ideas in the COCO framework may be applicable to

other code optimization problems. Akin to many code optimizations, the problem of

finding the best placement for communication is undecidable and input-dependent.

Nevertheless, there is a notion of optimality in presence of profiling information.

Many compiler optimizations, however, do not use profiling information to achieve

a better solution. Instead, they rely on simplistic estimates only. For example, loop-

invariant code motion generally assumes that a loop iterates many times per invoca-

tion and that all the code inside the loop is executed, therefore moving code outside

the loop is beneficial. Similarly, partial redundancy elimination techniques [17, 51,

53, 64] are only “computationally optimal” under a “safety” assumption that is un-
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necessary for most computations. Specifically, the safety property aims at avoiding

triggering exceptions in cases where the original program would not. For compu-

tations that cannot trigger exceptions, this condition can be violated to reduce the

number of computations even further. In this case, the idea introduced in the Chap-

ter 4, of using graph min-cut to minimize communications, can be used to minimize

the number of computations based on profile weights.

8.4 A Final Word

The techniques proposed in this thesis provided the groundwork for research on global

multi-threaded instruction scheduling. A recent study of the potential of these techniques,

when combined with some of the extensions mentioned in Section 8.3, has demonstrated an

enormous potential for our approach [10]. Specifically, this study showed that extensions

of the compilation techniques proposed in this thesis, using the PS-DSWP partitioner, can

achieve scalable parallelism for most of the applications in the SPEC CPU 2000 Integer

benchmark suite. To achieve these results, it is necessary to extend our framework to

operate inter-procedurally and to aggressively use profiling, speculation, and some simple

user annotations to eliminate dependences. Although the results reported in [10] did not

use compiler-generated code, many of the necessary extensions are being integrated in the

VELOCITY compiler, which is currently able to obtain parallelizations similar to those

in [10] for several applications. These initial results provide significant evidence of the

enormous power and viability of our approach to extract useful parallelism from sequential

general-purpose programs to benefit from modern, highly parallel processors.
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