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Abstract

The computer has long been considered an extremely attractive tool for creating,

manipulating, and analyzing sound. Its precision, possibilities for new timbres, and

potential for fantastical automation make it a compelling platform for expression

and experimentation - but only to the extent that we are able to express to the

computer what to do, and how to do it. To this end, the programming language

has perhaps served as the most general, and yet most precise and intimate interface

between humans and computers. Furthermore, “domain-specific” languages can

bring additional expressiveness, conciseness, and perhaps even different ways of

thinking to their users.

This thesis argues for the philosophy, design, and development of ChucK, a

general-purpose programming language tailored for computer music. The goal is to

create a language that is expressive and easy to write and read with respect to time

and parallelism, and to provide a platform for precise audio synthesis/analysis and

rapid experimentation in computer music. In particular, ChucK provides a syntax

for representing information flow, a new time-based concurrent programming model

that allows programmers to flexibly and precisely control the flow of time in code (we

call this “strongly-timed”), and facilities to develop programs on-the-fly - as they

run. A ChucKian approach to live coding as a new musical performance paradigm is

also described. In turn, this motivates the Audicle, a specialized graphical environ-

ment designed to facilitate on-the-fly programming, to visualize and monitor ChucK

programs in real-time, and to provide a platform for building highly customizable

user interfaces.

In addition to presenting the ChucK programming language, a history of music

and programming is provided (Chapter 2), and the various aspects of the ChucK
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language are evaluated in the context of computer music research, performance,

and pedagogy (Chapter 6). As part of an extensive case study, the thesis discusses

ChucK as a primary teaching and development tool in the Princeton Laptop Or-

chestra (PLOrk), which continues to be a powerful platform for deploying ChucK

1) to teach topics ranging from programming to sound synthesis to music com-

position, and 2) for crafting new instruments, compositions, and performances for

computer-mediated ensembles. Additional applications are also described, includ-

ing classrooms, live coding arenas, compositions and performances, user studies,

and integrations of ChucK into other software systems.

The contributions of this work include the following. 1) A time-based pro-

gramming mechanism (both language and underlying implementation) for ultra-

precise audio synthesis, naturally extensible to real-time audio analysis. 2) A non-

preemptive, time/event-based concurrent programming model that provides fun-

damental flexibility and readability without incurring many of the difficulties of

programming concurrency. 3) A ChucKian approach to writing code and design-

ing audio programs on-the-fly. This rapid prototyping mentality has potentially

wide ramifications in the way we think about coding audio, in designing/testing

software (particular for real-time audio), as well as new paradigms and practices

in computer-mediated live performance. 4) The Audicle as a new type of audio

programming environment that combines live development with visualizations. 5)

Extended case studies of using, teaching, composing, and performing with ChucK,

most prominently in the Laptop Orchestra. These show the power of teaching pro-

gramming via music, and vice versa - and how these two disciplines can reinforce

each other.
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Figure 1.1: Some ChucKian things.

Chapter 1

Introduction and Motivation

“The old computing is about what computers can do. The new computing is about

what people can do.” - Ben Shneiderman

1.1 Problem Statement

The computer has long been considered an extremely attractive tool for creating

and manipulating sound [54, 93]. Its precision, possibilities for new timbres, and

potential for fantastical automation make it a compelling platform for experimenting

with and making music - but only to the extent that we can actually tell a computer

what to do, and how to do it.

1
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A program is a sequence of instructions for a computer. A programming lan-

guage is a collection of syntactic and semantic rules for specifying these instructions,

and eventually for providing the translation from human-written programs to the

corresponding instructions computers carry out. In the history of computing, many

interfaces have been designed to instruct computers, but none have been as fun-

damental (or perhaps as enduring) as programming languages. Unlike most other

classes of human-computer interfaces, programming languages don’t directly per-

form any specific “end-use” task (such as word processing or video editing), but

instead allow us to build software that might perform almost any custom function.

The programming language acts as a mediator between human intention and the

corresponding bits and instructions that make sense to a computer. It is the most

general and yet the most intimate and precise tool for instructing computers.

Programs exist on many levels, ranging from assembler code (extremely low

level) to high-level scripting languages that often embody more human-readable

structures, such as those resembling spoken languages or graphical representation

of familiar objects. Domain-specific languages retain general programmability while

providing additional abstractions tailored to the domain (e.g., sound synthesis).

Yet, even within the domain of audio programming, there is a staggeringly vast

range of tasks that one may wish to perform (or investigate), ranging from methods

for sound synthesis, physical modeling of real-time world artifacts and spaces (e.g.,

musical instruments, environmental sounds), analysis and information retrieval of

sound and music, to mapping and crafting of new controllers and interfaces (both

software and physical) for music, algorithmic/generative processes for automated

or semi-automatic composition and accompaniment, real-time music performance,

to many others. Moreover, within each of these areas, there lies unbounded varia-
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tion in programming approaches, styles, and demands on the tools (e.g., ability to

create/run real-time programs).

Furthermore, audio programming, in both computational acoustics research and

in music composition and performance, is necessarily an experimental and empir-

ical process; it requires rapid experimentation, verification/rejection/workshoping

of ideas and approaches, and takes the forms of both short-term and sustained pro-

totyping. It can greatly benefit from the ability to modify, or even create, parts of

the software system “on-the-fly” – as it runs. We believe that rapid prototyping,

in and of itself, is a uniquely useful approach to programming audio, with its own

benefits (and different ways of thinking about problems).

Faced with such a wide gamut of possibilities and demands, how do we go

about thinking about and designing a general programming tool to address these

aspects of expressive programmability, rapid prototyping, readability? This is the

problem statement, and this dissertation addresses its various facets in terms of

a new programming language, called ChucK, and chronicles its design, ideas, and

applications.

In addition to our desire to address the problems stated above, we are also

motivated in providing new tools for computer science, computer music pedagogy,

and for exploring with new musical paradigms. We believe an audio-centric language

such as ChucK should be useful to both novices learning about the domain, as

well as to experts wishing to effectively craft software that is expressive, readable

(to themselves and to others), and that supports clear, concise, and maintainable

representations of sonic ideas and algorithms.
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1.2 “A New Way of Thinking about Audio Pro-

gramming”

The great computer scientist Alan Perlis once said that “a programming language

that doesn’t change the way you think is not worth learning.” Indeed, we are mo-

tivated in the design of ChucK to investigate new ways of thinking about pro-

gramming sound and music, particularly by looking at it from a human-centric

perspective (e.g., as opposed to a machine-centric one). As we posited above, a

programming language is a highly general and yet highly intimate human-computer

interaction (HCI) device.

PL == HCI Device
Figure 1.2: A conjecture.

If that is the case, then perhaps we can think of the task of programming lan-

guage design as HCI design – loosely speaking. We say “loosely” because while

the process embodies the high level principle of designing for humans, we do not

necessarily employ any specific theory from the field of human-computer interac-

tion. Sometimes it is the holistic sum of the features, feel, or even “vibe” that can

make a programming system appealing, inviting, and ultimately useful. So, much of

the design process also tends to be holistic in the above sense, which in retrospect

for ChucK, remains to be the right decision (we believe). Through this process,

we have produced several interesting paradigms and principles that are potentially

useful for audio programming, and constructed a practical language that employs

these ideas. In addition, the entirety of the programming language and its runtime
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system present a new way of thinking about developing software for sound synthe-

sis, analysis, composition, live performance, and pedagogy. For example, chapter 4

(On-the-fly Programming) discusses another “equivalence” in the context of writing

code live for musical performance and experimentation (see Figure 1.3).

Code == Musical instrument

Figure 1.3: Another conjecture.

1.3 The ChucKian approach

A central tenet of the ChucKian solution to audio programming is to expose pro-

grammability/control over time (at vastly different granularities) in cooperation

with a time-based concurrent programming model. This gives rise to our notion of

a “strongly-timed” audio programming language – one in which the programming

has intimate, precise, and modular control over time as it relates to digital audio

[95, 96, 99].

In more concrete terms, this entails making time itself both computable and

directly controllable, at any granularity. Programmers specify the exact “pattern”

with which computation is performed in time by embedded explicit timing infor-

mation within the code. Based on this semantic, the language’s runtime system

ensures properties of determinism and precision between the program and time.

Furthermore, programmers can specify concurrent code modules, each of which in-

dependently controlling their own computations over time but can also be synchro-

nized to other modules via time and other mechanisms (e.g., events and condition

variables).
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In short, the design of ChucK strives to “hide the mundane aspects of pro-

gramming, and expose true control”. Additionally, ChucK provides an approach

for on-the-fly programming, where the programmer is enabled and encouraged to

develop/test/prototype programs on-the-fly. This style of development has led to

applications in prototyping, teaching, and live musical performance where the au-

dience observes the “live code” as musical gestures.

In turn, on-the-fly programming and our interests in exploring ChucK’s peda-

gogical potentials has led to investigations of empowering the programmer, as well

as the observers (students, colleagues, audience) through visualization of real-time

audio programs and the act of on-the-fly programming. This motivates the Audi-

cle as an integrated development platform that also serves as a real-time program

monitor providing feedback to the ChucK programmer [98].

Putting these elements together, this thesis addresses ideas and investigations

at the intersection of computer science and music, of technology and art, and of

computing and the humans that interact with it.

1.4 Roadmap

In the rest of this document, we explore the history of programming languages for

sound/music (Chapter 2). We chronicle the design of ChucK, an audio programming

language, and introduce a new way of thinking about music programming, as well

as present some of its ramifications (Chapter 3). We discuss the practice of “on-the-

fly programming”, a new way of rapidly prototyping for experimentation and for

live musical performance (Chapter 4). The Audicle, a graphical programming envi-

ronment for visualizing ChucK in real-time and for aiding on-the-fly programming,
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is presented in Chapter 5. We then look at the various applications of ChucK in

practical contexts, including in performance ensembles such as the Princeton Lap-

top Orchestra, in classrooms teaching computer science side-by-side with music and

sound synthesis/analysis, and in several other arenas (Chapter 6). The conclusion

addresses contributions and potential future directions.



Chapter 2

A History of Music and

Programming

2.1 Early Eras: Before Computers

The idea of using general-purpose programming computational automata to make

music can be traced back to as early as 1843. Ada Lovelace, while working with

Charles Babbage, wrote about the applications of the theoretical Analytical Engine,

the successor to Babbage’s famous Difference Engine. The original Difference En-

gine was chiefly a “calculating machine” whereas the Analytic Engine (which was

never built) was to contain mechanisms for decision and looping, both fundamental

to true programmability. Lady Lovelace rightly viewed the Analytical Engine as

a general-purpose computer, suited for “developping [sic] and tabulating any func-

tion whatever... the engine [is] the material expression of any indefinite function

of any degree of generality and complexity.” She further predicted the following:

“Supposing, for instance, that the fundamental relations of pitched sounds in the

8
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science of harmony and of musical composition were susceptible of such expression

and adaptations, the engine might compose elaborate and scientific pieces of music

of any degree of complexity or extent.”

Lady Lovelace’s prediction was made more than a hundred years before the first

computer-generated sound. But semi-programmable music-making machines ap-

peared in various forms before the realization of a practical computer. For example,

the player piano, popularized in the early 20th century, is an augmented piano that

“plays itself” according to rolls of paper (called piano rolls) with perforations rep-

resenting the patterns to be played. These interchangeable piano rolls can be seen

as simple programs that explicitly specify musical scores.

As electronic music evolved, analog synthesizers gained popularity (around the

1960s). They supported interconnecting and interchangeable sound processing mod-

ules. There is a level of programmability involved, and this block-based paradigm

influenced later design of digital synthesis systems. For the rest of this chapter,

however, we are going to focus on programming as specifying computations to make

sound and music.

As we step into to the digital age, we divide our discussion into three overlap-

ping eras of programming and programming systems for music. They loosely follow

a chronological order, but more importantly each age embodies common themes

in how programmers and composers interact with the computer to make sound.

Furthermore, we should keep a few overall trends in mind. One crucial trend in

this context is that as computers increased in computational power and storage,

programming languages tended to become increasingly high-level, abstracting more

details of the underlying system. This, as we shall see, greatly impacted the evolu-

tion of how we program music.
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2.2 The Computer Age (Part I): Early Languages

and Rise of MUSIC-N

Our first era of computer-based music programming systems paralleled the age of

mainframes (the first generations of “modern” computers in use from 1950 to the late

1970s) and the beginning of personal workstations (mid 1970s). The mainframes

were gigantic, often taking up rooms or even entire floors. Early models had no

monitors or screens, programs had to be submitted via punch cards, and the results

delivered as printouts. Computing resources were severely constrained. It was

difficult even to gain access to a mainframe - they were not commodity items and

were centralized and available mostly at academic and research institutions (in 1957

the hourly cost to access a mainframe was $200!). Furthermore, the computational

speed of these early computers were many orders of magnitude (factors of millions

or more) slower than today’s machines and were greatly limited in memory (e.g. 192

kilobytes in 1957 compared to gigabytes today) [55, 15]. However, the mainframes

were the pioneering computers and the people who used them made the most of

their comparatively meager resources. Programs were carefully designed and tuned

to yield the highest efficiency.

Sound generation on these machines became a practical reality with the advent

of the first digital-to-analog converters (or DAC’s), which converted digital audio

samples (essentially sequences of numbers) that were generated via computation,

to time-varying analog voltages, which can be amplified to drive loudspeakers or be

recorded to persistent media (e.g. magnetic tape).
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Figure 2.1: The IBM 360, released in 1965, with human operators.

2.2.1 MUSIC I (and II, III, ...)

The earliest programming environment for sound synthesis, called MUSIC, appeared

in 1957 [54]. It was not quite a full programming language as we might think of

today, but more of an “acoustic compiler”, developed by Max Mathews at AT&T

Bell Laboratories. Not only were MUSIC (or MUSIC I, as it was later referred to)

and its early descendants the first music programming languages widely adopted

by researchers and composers, they also introduced several key concepts and ideas

which still directly influence languages and systems today.

MUSIC I and its direct descendants (typically referred to as MUSIC-N lan-

guages), at their core, provided a model for specifying sound synthesis modules,
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their connections, and time-varying control. This model eventually gave rise, in

MUSIC III, to the concept of unit generators, or UGen’s for short. UGen’s are

atomic, often predefined, building blocks for generating or processing audio signals.

In addition to audio input and/or output, a UGen may support a number of control

inputs that control parameters associated with the UGen.

An example of a UGen is an oscillator, which outputs a periodic waveform (e.g.

a sinusoid) at a particular fundamental frequency. Such an oscillator might include

control inputs that dictate the frequency and phase of the signal being generated.

Other examples of UGens include filters, gain amplifiers, and envelope generators.

The latter, when triggered, produce amplitude contours over time. If we multiply

the output of a sine wave oscillator with that of an envelope generator, we can pro-

duce a third audio signal: a sine wave with time-varying amplitude. In connecting

these unit generators in an ordered manner, we create a so-called instrument or

patch (the term comes from analog synthesizers that may be configured by connect-

ing components using patch cables), which determines the audible qualities (e.g.

timbre) of a sound. In MUSIC-N parlance, a collection of instruments is an or-

chestra. In order to use the orchestra to create music, a programmer could craft a

different type of input that contained time-stamped note sequences or control signal

changes, called a score. The relationship: the orchestra determines how sounds are

generated, whereas the score dictates (to the orchestra) what to play and when.

These two ideas - the unit generator, and the notion of an orchestra vs. a score as

programs - have been highly influential to the design of music programming systems

and, in turn, to how computer music is programmed today (but we get ahead of

ourselves).

In those early days, the programming languages themselves were implemented as
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low-level assembly instructions (essentially human-readable machine code), which

effectively coupled a language to the particular hardware platform it was imple-

mented on. As new generations of machines (invariably each with a different set

of assembly instructions) were introduced, new languages or at least new imple-

mentations had to be created for each architecture. After creating MUSIC I, Max

Mathews soon created MUSIC II (for the IBM 740), MUSIC III in 1959 (for the

IBM 7094), and MUSIC IV (also for the 7094, but recoded in a new assembly

language). Bell Labs shared its source code with computer music researchers at

Princeton University - which at the time also housed a 7094 - and many of the

additions to MUSIC IV were later released by Godfrey Winham and Hubert Howe

as MUSIC IV-B.

Around the same time, John Chowning, then a graduate student at Stanford

University, traveled to Bell Labs to meet Max Mathews, who gave Chowning a copy

of MUSIC IV. Copy in this instance meant a box containing about 3000 punch cards,

along with a note saying “Good luck!”. John Chowning and colleagues were able to

get MUSIC IV running on a computer that shared the same storage with a second

computer that performed the digital-to-analog conversion. In doing so, they created

one of the world’s earliest integrated computer music systems. Several years later,

Chowning (who had graduated by then and join the faculty at Stanford), Andrew

Moore, and their colleagues completed a rewrite of MUSIC IV, called MUSIC 10

(named after the PDP-10 computer on which it ran), as well as a program called

SCORE (which generated note lists for MUSIC 10).

It is worthwhile to pause here and reflect how composers had to work with com-

puters during this period. The composer / programmer would design their software

(usually away from the computer), create punch cards specifying the instructions,
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and submit them as jobs during scheduled mainframe access time (also referred to

as batch-processing) - sometimes traveling far to reach the computing facility. The

process was extremely time-consuming. A minute of audio might take several hours

or more to compute, and turn-around times of several weeks were not uncommon.

Furthermore, there was no way to know ahead of time whether the result would

sound anything like what was intended. After a job was complete, the generated

audio would be stored on computer tape and then be digital-to-analog converted,

usually by another computer. Only then could the composer actually hear the

result. It would typically take many such iterations to complete a piece of music.

In 1968, MUSIC V broke the mold by being the first computer music program-

ming system to be implemented in FORTRAN, a high-level general-purpose pro-

gramming language (often considered the first). This meant MUSIC V could be

ported to any computer system that ran FORTRAN, which greatly helped both

its widespread use in the computer music community and its further development.

While MUSIC V was the last and most mature of the Max Mathews / Bell Labs

synthesis languages of the era, it endures as possibly the single most influential com-

puter music language. Direct descendants include MUSIC 360 (for the IBM 360)

and MUSIC 11 (for the PDP-11) by Barry Vercoe and colleagues at MIT [90], and

later cmusic by F. Richard Moore. These and other systems added much syntactic

and logical flexibility, but at heart remained true to the principles of MUSIC-N

languages: connection of unit generators, and the separate treatment of sound syn-

thesis (orchestra) and musical organization (score). Less obviously, MUSIC V also

provided the model for many later computer music programming languages and

environments.
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2.2.2 The CARL System (or “UNIX for Music”)

The 1970s and 80s witnessed sweeping revolutions to the world of computing. The

C programming language, one of the most popular in use, was developed in 1972.

The 70s was also a decade of maturation for the modern operating system, which

includes time-sharing of central resources (e.g. CPU time and memory) by multiple

users, the factoring of runtime functionalities between a privileged kernel mode

vs. a more protected user mode, as well as clear process boundaries that protect

applications from each other. From the ashes of the titanic Multics operating system

project arose the simpler and more practical UNIX, with support for multi-tasking of

programs, multi-user, inter-process communication, and a sizable collection of small

programs that can be invoked and interconnected from a command line prompt.

Eventually implemented in the C language, UNIX can be ported with relative ease

to any new hardware platform for which there is a C compiler.

Building on the ideas championed by UNIX, F. Richard Moore, Gareth Loy,

and others at the Computer Audio Research Laboratory (CARL) at University of

California at San Diego developed and distributed an open-source, portable system

for signal processing and music synthesis, called the CARL System [52, 63]. Unlike

previous computer music systems, CARL was not a single piece of software, but

a collection of small, command line programs that could send data to each other.

The “distributed” approach was modeled after UNIX and its collection of inter-

connectible programs, primarily for text-processing. As in UNIX, a CARL process

(a running instance of a program) can send its output to another process via the

pipe (|), except instead of text, CARL processes send and receive audio data (as

sequences of floating point samples, called floatsam). For example, the command:

> wave -waveform sine -frequency 440Hz | spect
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invokes the wave program, and generates a sine wave at 440Hz, which is then

“piped” (|) to the spect program, a spectrum analyzer. In addition to audio data,

CARL programs could send side-channel information, which allowed potentially

global parameters (such as sample rate) to propagate through the system. Complex

tasks could be scripted as sequences of commands. The CARL System was imple-

mented in the C programming language, which ensured a large degree of portability

between generations of hardware. Additionally, the CARL framework was straight-

forward to extend - one could implement a C program that adhered to the CARL

application programming interface (or API) in terms of data input/output. The

resulting program could then be added to the collection and be available for imme-

diate use.

In a sense, CARL approached the idea of digital music synthesis from a divide-

and-conquer perspective. Instead of a monolithic program, it provided a flat hier-

archy of small software tools. The system attracted a wide range of composers and

computer music researchers who used CARL to write music and contributed to its

development. Gareth Loy implemented packages for FFT (Fast Fourier Transform)

analysis, reverberation, spatialization, and a music programming language named

Player. Richard Moore contributed the cmusic programming language. Mark Dol-

son contributed programs for phase vocoding, pitch detection, sample-rate conver-

sion, and more. Julius O. Smith developed a package for filter design and a general

filter program. Over time, the CARL Software Distribution consisted of over one

hundred programs. While the system was modular and flexible for many audio

tasks, the architecture was not intended for real-time use. Perhaps mainly for this

reason, the CARL System is no longer widely used in its entirety. However, thanks

to the portability of C and to the fact CARL was open source, much of the im-
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plementation has made its way into countless other digital audio environments and

classrooms.

2.2.3 Cmix, CLM, Csound

Around the same time, the popularity and portability of C gave rise to another

unique programming system: Paul Lansky’s Cmix [67, 46]. Cmix wasn’t directly

descended from MUSIC-N languages; in fact it’s not a programming language, but

a C library of useful signal processing and sound manipulation routines, unified by

a well-defined API. Lansky authored the initial implementation in the mid-1980s to

flexibly mix sound files (hence the name Cmix) at arbitrary points. It was partly

intended to alleviate the inflexibility and large turnaround time for synthesis via

batch processing. Over time, many more signal processing directives and macros

were added. With Cmix, programmers could incorporate sound processing function-

alities into their own C programs for sound synthesis. Additionally, a score could

be specified in the Cmix scoring language, called MINC (which stands for “MINC

Is Not C!”). MINC’s syntax resembled that of C and proved to be one of the most

powerful scoring tools of the era, due to its support for control structures (such as

loops). Cmix is still distributed and widely used today, primarily in the form of

RTCmix (the RT stands for real-time), an extension developed by Brad Garton and

David Topper [32].

Common Lisp Music (or CLM) is a sound synthesis language written by Bill

Schottstaedt at Stanford University in the late 1980s [75]. CLM descends from

the MUSIC-N family and employs a Lisp-based syntax for defining the instruments

and score and provides a collection of functions that create and manipulate sound.

Due to the naturally recursive nature of LisP (which stands for List Processing),
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many hierarchical musical structures turned out to be straightforward to represent

using code. A more recent (and very powerful) LisP-based programming language

is Nyquist [24], authored by Roger Dannenberg. (Nyquist is discussed below; both

CLM and Nyquist are freely available)

Today, the most widely used direct descendent of MUSIC-N is Csound, originally

authored by Barry Vercoe and colleagues at MIT Media Labs in the late 1980s [89, 7,

91]. It supports unit generators as opcodes, objects that generate or process audio.

It embraces the instrument vs. score paradigm: the instruments are defined in

orchestra (.orc) files, while the score in .sco files. Furthermore, Csound supports the

notion of separate audio and control rates. The audio rate (synonymous with sample

rate) refers to the rate at which audio samples are processed through the system. On

the other hand, control rate dictates how frequently control signals are calculated

and propagated through the system. In other words, audio rate (abbreviated as ar

in Csound) is associated with sound, whereas control rate (abbreviated as kr) deals

with signals that control sound (i.e. changing the center frequency of a resonant

filter or the frequency of an oscillator). The audio rate is typically higher (for

instance 44100 Hz for CD quality audio) than the control rate, which usually is

adjusted to be lower by at least an order of magnitude. The chief reason for this

separation is computational efficiency. Audio must be computed sample-for-sample

at the desired sample rate. However, for a great majority of synthesis tasks, it

makes little perceptual difference if control is asserted at a lower rate, say on the

order of 2000Hz. This notion of audio rate vs. control rate is widely adopted across

nearly all synthesis systems.

This first era of computer music programming pioneered how composers could

interact with the digital computer to specify and generate music. Its mode of work-
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ing was associated with the difficulties of early mainframes: offline programming,

submitting batch jobs, waiting for audio to generate, and transferring to persis-

tent media for playback or preservation. It paralleled developments in computers

as well as general-purpose programming languages. We examined the earliest mu-

sic languages in the MUSIC-N family as well as some direct descendants. It is

worth noting that several of the languages discussed in this section have since been

augmented with real-time capabilities. In addition to RTCMix, Csound now also

supports real-time audio.

2.3 The Computer Age (Part II): Real-time Sys-

tems and New Approaches

This second era of computer programming for music partially overlaps with the first.

The chief difference is that the mode of interaction moved from offline programming

and batch processing to real-time sound synthesis systems, often controlled by ex-

ternal musical controllers. By the early 1980s, computers have become fast enough

and small enough to allow workstation desktops to outperform the older, gargantuan

mainframes. As personal computers began to proliferate, so did new programming

tools and applications for music generation.

2.3.1 Graphical Music Programming: Max/MSP + Pure

Data

We now arrive at one of the most popular computer music programming environ-

ment to this day: Max and later Max/MSP [68]. Miller S. Puckett implemented
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the first version of Max (when it was called Patcher) at IRCAM in Paris in the

mid-1980s as a programming environment for making interactive computer music.

At this stage, the program did not generate or process audio samples; its primary

purpose was to provide a graphical representation for routing and manipulating sig-

nals for controlling external sound synthesis workstations in real-time. Eventually,

Max evolved at IRCAM to take advantage of DSP hardware on NeXT computers

(as Max/FTS, FTS stands for “faster than sound”), and was later released in 1990

as a commercial product by Opcode Systems as Max/Opcode. In 1996, Puckette

released a completely redesigned and open source environment called Pure Data

(PD) [69]. At the time, Pure Data processed audio data whereas Max was pri-

marily designed for control (MIDI). PD’s audio signal processing capabilities then

made their way into Max as a major add-on called MSP (MSP either stands for

Max Signal Processing or for Miller S. Puckett), authored by Dave Zicarelli. Cycling

’74, Zicarelli’s Company, distributes the current commercial version of Max/MSP.

Meanwhile, IRCAM currently maintains jMax [27] as freely available and new im-

plementation of the original Max software.

The modern-day Max/MSP supports a graphical patching environment and a

collection containing thousands of objects, ranging from signal generators, to filters,

to operators, and user interface elements. Using the Max import API, third party

developers can implement external objects as extensions to the environment. De-

spite its graphical approach, Max descends from MUSIC-V (in fact Max is named

after the father of MUSIC-N, Max Mathews) and embodies a similarly modular

approach to sound synthesis. A simple Max/MSP example is shown in Figure 2.2.

Max offers two modes of operation. In edit mode, a user can create objects,

represented by on-screen boxes containing the object type as well as any initial
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arguments. An important distinction is made between objects that generate or pro-

cess audio and control rate objects (the presence of a ~ at the end of the object

name implies audio rate). The user can then interconnect objects by creating con-

nections from the outlets of certain objects to the inlets of others. Depending on

its type, an object may support a number of inlets, each of which is well-defined

in its interpretation of the incoming signal. Max also provides dozens of additional

widgets, including message boxes, sliders, graphs, knobs, buttons, sequencers, and

meters. Events can be manually generated by a bang widget. All of these widgets

can be connected to and from other objects. When Max is in run mode, the patch

topology is fixed and cannot be modified, but the various on-screen widgets can be

manipulated interactively. This highlights a wonderful duality: a Max patch is at

once a program and (potentially) a graphical user interface.

Max/MSP has been an extremely popular programming environment for real-

time synthesis, particularly for building interactive performance systems. Con-

trollers both commodity (MIDI devices) and custom as well as sensors (such as

motion tracking) can be mapped to sound synthesis parameters using Max/MSP.

The visual aspect of the environment lends itself well to monitoring and fine-tuning

patches. Max/MSP can be used to render sequences or scores, though due to the

lack of detailed timing constructs (the graphical paradigm is better at representing

what than when), this can be less straightforward.

2.3.2 Programming Libraries for Sound Synthesis

So far, we have discussed mostly standalone programming environments, each of

which provides a specialized language syntax and semantics. In contrast to such

languages or environments, a library provides a set of specialized functionalities for
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Figure 2.2: A simple Max/MSP patch which synthesizes the vowel ahh.

an existing, possibly more general-purpose language. For example, the Synthesis

Toolkit (STK) [20] is a collection of building blocks for real-time sound synthesis

and physical modeling, for the C++ programming language. STK was authored and

released by Perry Cook in the early 1990’s, with later contributions by Bill Butnam

and Gary Scavone. JSyn [11], released around the same time, is a collection of real-

time sound synthesis objects for the Java programming language. In each case, the

library provides an API, with which a programmer can write synthesis programs

in the host language (e.g. C++ and Java). For example, STK provides an object

definition called Mandolin, which is a physical model for a plucked string instrument.
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It defines the data types which internally comprise such an object, as well as publicly

accessible functionalities that can be invoked to control the Mandolin’s parameters

in real-time (e.g. frequency, pluck position, instrument body size, etc.). Using

this definition, the programmer can create instances of Mandolin, control their

characteristics via code, and generate audio from the Mandolin instances in real-

time. While the host languages are not specifically designed for sound, these libraries

allow the programmer to take advantage of language features and existing libraries

(of which there is a huge variety for C++ and Java). This also allows integration

with C++ and Java applications that desire real-time sound synthesis.

2.3.3 Nyquist

Nyquist is an interactive programming language based on Lisp for sound synthesis

and music composition [24, 23, 83], and is a culmination of ideas explored in ear-

lier systems such as Arctic [26] and Canon [22]. While adopting familiar elements

of audio programming found in earlier MUSIC-N languages, Nyquist (along with

SuperCollider, discussed below) is among the first music composition and sound

synthesis languages to remove the distinction between the “orchestra” (sound syn-

thesis) and the “score” (musical events): both can be implemented in the same

framework. This tighter integration allows both synthesis and musical entities to

be specified using a shared “mindset”, favoring the high customizability of code

over the ease and simplicity of data (e.g., note lists).

In Nyquist, the composer specifies sound, transformations, and music by com-

bining expressions, leveraging both audio building blocks as well as the full array

of features in the general purpose Lisp language and environment. Additionally,

Nyquist supports a wide array of advanced ideas. These include “behavioral ab-
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straction”, which allows programmers to specify appropriate underlying behaviors

in different contexts while maintaining a unified high-level interface. Nyquist also

supports the ability to work in both quantitative and perceptual attack times, as

well as an advanced abstract time-warping of compound events [23]. At a more

basic level, Nyquist offers temporal operators such as sim (for simultaneous signals

and events) and seq (for sequential evaluation).

While Nyquist is not a real-time programming environment (it is interactive), it

provides a powerful and intrinsically different way of thinking about programming

audio and composing music. Nyquist is in wide use today, including as the primary

plug-in programming engine in the open source audio editor Audacity [57].

2.3.4 SuperCollider

SuperCollider is a text-based audio synthesis language and environment [58, 59].

It is highly powerful as a programming language, and the implementation of the

synthesis engine is highly optimized. It combines many of the previous ideas in com-

puter music language design while making some fundamental changes and additions.

SuperCollider, like languages before it, supports the notion of unit generators for

signal processing (audio and control). However, like Nyquist, there is no longer a

distinction between the orchestra and score. Furthermore, the language, which in

part resembles the Smalltalk and C programming languages, is object-oriented and

provides a wide array of expressive programming constructs for sound synthesis

and user interface programming. This makes SuperCollider suitable not only for

implementing synthesis programs, but also for building large interactive systems for

sound synthesis, algorithmic composition, and for audio research.
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At the time of this writing, there have been three major version changes in Super-

Collider. The third and latest (often abbreviated SC3) makes an explicit distinction

between the language (front-end) and synthesis engine (back-end). These loosely

coupled components communicate via OpenSoundControl (OSC), a standard for

sending control messages for sound over the network. One immediate impact of this

new architecture is that programmers can essentially use any front-end language, as

long as it conforms to the protocol required by the synthesis server (called scsynth

in SuperCollider).

Figure 2.3: SuperCollider programming environment in action.
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2.3.5 Graphical vs. Text-based

It is worthwhile to pause here and reflect on the differences between the graphical

programming environments of Max/MSP and PD vs. the text-based languages and

libraries such as Csound, SuperCollider, STK, and Nyquist (as well as ChucK).

The visual representation presents the dataflow directly, in a what-you-see-is-what-

you-get sort of way. Text-based systems lack this representation and understanding

of the syntax and semantics is required to make sense of the programs. However,

many tasks, such as specifying complex logical behavior, are more easily expressed

in text-based code.

Ultimately it’s important to keep in mind that most synthesis and musical tasks

can be implemented in any of these languages. This is the idea of universality:

two constructs (or languages) can be considered equivalent if we can emulate the

behavior of one using the other, and vice versa. However, certain types of tasks may

be more easily specified in a particular language than in others. This brings us back

to the idea of the programming language as a tool, and perhaps more importantly,

as a way of thinking. In general, a tool is useful if it does at least one thing better

than any other tool (for example, a hammer or a screwdriver). Computer music

programming languages are by necessity more general, but differing paradigms (and

syntaxes) lend themselves to different tasks (and no single environment “does it

best” in every aspect: it’s important to choose the right tools for the tasks at hand).

In the end, it’s also a matter of personal preference - some like the directness of

graphical languages whereas others prefer the feel and expressiveness of text-based

code. It’s often a combination of choosing the right tool for the task and finding

what the programmer is comfortable working in.
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2.3.6 Additional Music Programming Languages

Formula, short for Forth Music Language, is a programming for computing control

signals to synthesizers based on concurrent processes operating in a unified environ-

ment that can be scheduled at runtime [3]. Variously processes can be specified to

compute pitch sequences as well as control for parameters such as volume, duration,

and articulation. Unlike the languages discussed above, Formula computes control

signals and does not directly generate or synthesize audio.

Haskore is a set of modules in the Haskell programming language created for

expressing musical structures in a high-level declarative style of functional program-

ming. Like Formula, it is more of a language for describing music (in Haskore’s case,

mostly Western music), not sound [38]. An advantage of Haskell (and by extension,

Haskore) is that objects in the language simultaneously represent abstract (musical)

ideas as well as their concrete representation, leading to provable property which

can be reasoned about, a result of the programming system.

Formes provides an object-oriented, hierarchical event-based approach to dealing

with time [16] and is based on the Lisp programming language. It was not designed

to compute audio directly but rather time-oriented control information for the Chant

synthesis system.

2.4 The Computer Age (Part III): New Language

Explorations

With the growth of low-cost, high performance computers, the real-time and in-

teractive music programming paradigms are more alive than ever and expanding

with the continued invention and refinement of new interfaces for musical expres-
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sion. Alongside the continuing trend of explosive growth in computing power is

the desire to find new ways to leverage programming for real-time interaction. If

the second era of programming and music evolved from computer becoming com-

modities, then this third era is the result of programming itself becoming pervasive.

With the ubiquity of hardware and the explosion of new high-level general-purpose

programming tools (and people willing to use them), more composers and musicians

are crafting not only software to create music, but also new software to create newer

and more custom software for music.

As part of this new age of exploration, a recent movement has been taking shape.

This is the rise of dynamic languages and consequently of using the act of program-

ming itself as a musical instrument. This, in a way, can be seen as a subsidiary

of real-time interaction, but with respect to programming music, this idea is fun-

damentally powerful. For the first time in history, we have commodity computing

machines that can generate sound and music in real-time (and in abundance) from

our program specifications. One of the areas investigated in our third age of pro-

gramming and music is the possibilities of changing the program itself in real-time

as it’s running. Given the infinite expressiveness of programming languages, might

we not leverage code to create music on-the-fly?

The idea of run-time modification of programs to make music (interchangeably

called live coding, on-the-fly programming, interactive programming) is not an en-

tirely new one. As early as the beginning of the 80s, researchers such as Ron Kuivila

and groups like the Hub have experimented with runtime modifiable music systems.

The Hierarchical Music Scoring Language (HMSL) is a Forth-based language, au-

thored by Larry Polansky, Phil Burk, and others in the 1980s, whose stack-based

syntax encourages runtime programming [12]. These are the forerunners of live cod-
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ing. The fast computers of today enable an additional key component: real-time

sound synthesis.

2.4.1 Custom Music Programming Software

An incredibly vibrant and wonderful aspect of the era is the proliferation of cus-

tom, “home-brew” sound programming software. The explosion of new high-level,

general-purpose, programming platforms has enabled and encouraged programmers

and composers to build systems very much tailored to their liking. Alex McLean

performs via live coding using the high-level scripting language Perl [60], while de-

velopers such as Andrew Sorensen and Andrew Brown have recently explored live

coding environments based on Scheme [10]. Similar frameworks have been devel-

oped in Python, various dialects of Lisp, Forth, Ruby, and others. Some systems

make sound while others visualize it. Many systems send network message (in

OpenSoundControl) to synthesis engines such as SuperCollider Server, PD, Max,

and ChucK. In this way, musicians and composers can leverage the expressiveness of

the front-end language to make music while gaining the functionalities of synthesis

languages. Many descriptions of systems and ideas can be found through TOPLAP

(which usually stands for Transnational Organisation for the Proliferation of Live

Audio Programming), a collective of programmers, composers, and performers ex-

ploring live programming to create music [82].

This third era is promising because it enables and encourages new compositional

and performance possibilities not only to professional musicians, researchers, and

academics, but also to anyone willing to learn and explore programming and music.

Indeed, the homebrew aesthetic has encouraged personal empowerment and artis-

tic independence from established traditions and trends. Also, the new dynamic
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environments for programming are changing how we approach more traditional

computer music composition by providing more rapid experimentation and more

immediate feedback. This era is young but growing rapidly and the possibilities are

truly fascinating. Where will it take programming and music in the future?

2.5 Synchronous Reactive Systems

In addition to the realm of audio and music programming, it is worthwhile to

provide context for this work with respect to synchronous languages for reactive

systems. A reactive system maintains an ongoing interaction with its environment,

rather than (or in addition to) producing a final value upon termination [35, 34].

Typical examples include air traffic control systems, control kernels for mechan-

ical devices such as wristwatches, trains, and even nuclear power plants. These

systems must react to their environment at the environment’s speed. They differ

from transformational systems, which emphasize data computation instead of the

ongoing interaction between systems and their environments; and from interactive

systems, which influence and react to their environments at their own rate (e.g.,

web browsers).

In synchronous languages for reactive systems, a synchrony hypothesis states

that computations happen infinitely fast, allowing events to be considered atomic

and truly synchronous. This affords a type of logical determinism that is an essen-

tial aspect of a reactive system (which should produce the same output at the same

points in time, given the same input), and reconciles determinism with the modular-

ity and expressiveness of concurrency. Such determinism can lead to programs that

are significantly easier to specify, debug, and analyze compared to non-deterministic
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ones, for example those written in more “classical” concurrent languages [36, 1].

Several programming languages have embodied this synchrony hypothesis. Es-

terel [6] is a textual imperative language, suitable for specifying small control-

intensive tasks (such as many finite state machines and cases where it’s beneficial to

emit signals through a system with zero logical delay). In Esterel, the notion of time

is replaced by that of order, and an Esterel program describes reactions to events

that are deterministically and totally ordered in a sequence of logical instants. Two

events happening at the same logical instant are said to be occurring simultane-

ously (otherwise, they occur in sequence). Communication in Esterel is carried out

exclusively via signals, which can be broadcast with zero delay (i.e., visible to other

parts of the system at the same logical instant). Esterel provides a deterministic

method to model concurrent low-level control processes and is commonly used in

various control systems and embedded devices, being amenable to be implemented

in software as well as in hardware.

Other synchronous languages include LUSTRE [13], a declarative dataflow lan-

guage for reactive systems, and SIGNAL [33]. All of these, including Esterel, are

designed for specifying and/or describing low-level reactive systems. As such, they

are not “complete” languages - the programs they specify are meant to be integrated

into more complex host systems implemented via other means.

2.5.1 ChucK and Synchronous Languages

While it wasn’t necessarily designed as such, ChucK possesses aspects of syn-

chronous languages for reactive systems. Computation is assumed to happen in-

finitely fast with respect to logical ChucKian time, which can only be advanced as

explicitly requested and allowed by the program. Compared to the existing syn-
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chronous languages for reactive systems, ChucK most closely resembles Esterel -

they are both imperative and, each in their own ways, enforce the synchrony hy-

pothesis. Yet, there are some important differences.

Esterel and other synchronous languages are designed for specifying minimal

reactive kernels often for integration into more complex host systems. ChucK, on

the other hand, is meant to provide a unifying solution for specifying and developing

an entire system, including a deterministic kernel of control as well as constructs to

build complex components and algorithms. It combines high-level, general purpose,

audio-centric programmability with the intrinsically low-level benefits offered by the

synchrony hypothesis. Additionally, ChucK is highly dynamic, allowing on-the-fly

creation of high-level objects and processes.

Existing synchronous languages emphasize reaction, whereas ChucK’s design

goals and programming style are intended to be reactive as well as proactive and

interactive. The ChucK programming model offers events and signal (which are re-

active), as well as the ability to specify concurrent processes that move themselves

through logical time, to both control and to define the system. This encourages

a fundamentally different, proactive mentality when programming. Additionally,

ChucK presents a highly visible and centralized view of logical time (via the now

keyword) that reconciles logical time with real-time. This mechanism deterministi-

cally couples and interleaves user computation with audio computation, providing

a continuous notion of time mapped explicitly to the audio stream (see Chapter 3

for discussions, examples, and analysis).

Finally, Esterel is meant to facilitate verification to ensure that the synchrony

hypothesis can be reasonably approximated in a practical real-time (often mission-

critical) system. ChucK leverages the determinism for program specification, de-
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bugging, and analysis, but is less concerned with absolute real-time performance,

and more with the determinism bridging code, audio computations, and the ongoing

output. For example, even when a ChucK audio synthesis program cannot keep up

in real-time on a particular machine, the computed audio samples are still guaran-

teed to be accurate and interruption-free (e.g., if written to file, and in the absence

of asynchronous input). In other words, ChucK can either assume the computer to

be infinitely fast, or alternately relax the real-time constraint while maintaining out-

put integrity. In this latter sense, ChucK can also be used in more transformational

manners.

In this context, ChucK presents a synchronous language that simultaneously

embodies elements of reactive, transformational, and interactive systems. Moreover,

it embodies a different way of thinking about writing synchronous code that is

inextricably related to time and audio. In the upcoming chapters, we shall explore

the these and other mechanisms and properties of ChucK.

2.6 Future Directions

What does the future hold for programming and music? As Lady Ada Lovelace fore-

saw the computing machine as a programming tool for creating precise, arbitrarily

complex, and “scientific” music, what might we imagine about the ways music will

be made decades and beyond from now?

Several themes and trends pervade the development of programming languages

and systems for music. The movement towards increasingly more real-time, dy-

namic, and networked programming of sound and music continues; it has been

taking place in parallel with the proliferation and geometric growth of commodity
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computing resources until recent times. New trends are emerging. At the time of

this writing (between 2006 and 2008), the focus in the design of commodity machines

is shifting to distributed, multi-core processing units. We may soon have machines

with hundreds (or many more) cores as part of a single computer. How might these

potentially massive parallel architectures impact the way we think about and pro-

gram software (in everything from commercial data-processing to sound synthesis to

musical performance)? What new programming paradigms will have to be invented

to take advantage of these and other new computing technology such as quantum

computers, and (for now) theoretical computing machines? An equally essential

question: how can we better make use of the machines we have?

Finally, let’s think back to Ada Lovelace’s question from the beginning of this

chapter, and ponder the following: “Supposing, for instance, that the engine were

susceptible of such expression and adaptations, might not the human compose elab-

orate and scientific pieces of music of any degree of complexity or extent?”

It’s always the right time to imagine what new possibilities await us.
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ChucK

3.1 Language Design

The chapter presents the design of the ChucK programming language, its primary

features, and its instantiation in the form of the language specification. In these con-

texts of the design, this chapter then addresses the implementation of the language,

as well as some useful properties it offers.

3.1.1 Two Observations

As we formulate the problem statement, we observe two important commonalities

that pervade the gamut of audio programming. The first is that time is intimately

connected with sound and central to how sound and music programs are created

and reasoned about. This may seem like an obvious point - as sound and music

are intrinsically time-based. Yet we also feel that control over time in programming

languages is often under-represented (or sometimes over-abstracted). Low level

languages like C/C++ and Java have no inherent notion of time and allow for

35
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data types to be built to represent time, which can be cumbersome to implement

and use. High level computer music languages tend to abstract time too much,

often embodying a more declarative style and connect things in a way that assumes

quasi-parallel modules, (e.g., similar to analog synthesizers) while hiding much of the

internal scheduling. Timing is also typically broken up into two or more distinct,

internally maintained rates (e.g., audio rate and control rate, the latter is often

arbitrarily determined for the programmer). The main problem with these existing

types of programming model is that the programmer knows what, but does not

always know when.

The second observation is two-fold: 1) sound and music are often the simultane-

ity of many parallel processes and thus a programming language for music/sound

can fundamentally benefit from a concurrent programming model that easily and

flexibly captures parallel processes and their interactions. 2) The ability to program

parallellism must be both intimately connected to time, and yet it must be provided

in such way that it operates independently of time. In other words, this function-

ality must be “orthogonal” to time to provide the maximal degree of freedom and

expressiveness.

From these two observations, the ChucKian insight is to expose programmabil-

ity/control over time (at various granularities) in cooperation with a time-based

concurrent programming model. In particular, this entails making time itself both

computable and directly controllable at any granularity. Programmers specify the

algorithm, logic, or pattern according to which computation is performed in time,

by embedded explicit timing information within the code. Based on this framework,

the language’s runtime system ensures properties of determinism and precision be-

tween the program and time. Furthermore, programmers can specify concurrent
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code modules, each of which can independently control their own computations

over time and can also be synchronized to other modules via time and other mech-

anisms (e.g., events).

3.1.2 Design Goals

Based on the observations in the proceeding section, a set of core language design

goals can be summarized as follows:

• Flexibility: allow the programmer to naturally express ideas in code, and to

flexibly create, edit, and maintain audio programs.

• Time: allow the programmer to program the passage of time, and to control

and reason about time with precision and across a wide range of temporal

granularities.

• Concurrency: allow the programmer to write parallel modules that share

both data and time, and that can be precisely synchronized; provide a deter-

ministic concurrent programming model for audio, minimizing the hassle and

complexity of (preemptive) concurrent programming by taking advantage of

time and events in the language.

• Readability: provide/maintain a strong correspondence between code struc-

ture and timing.

• A do-it-yourself language: combine the expressiveness of lower-level lan-

guages and the ease of high-level computer music languages. Support high-

level musical concepts, precise low-level timing, and the creation of “white-

box” unit generators, all directly in the language.
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• Rapid prototyping: allow programs to be created and edited as they run,

for rapid experimentation, pedagogy, and live performance.

• Pedagogy: make audio programming more accessible; an observation is that

many people are willing to (learn to) program in order to make music, present-

ing an opportunity to teach programming more effectively (possibly to people

who would otherwise never learn to program). Conversely, the clarity and

logic of a programming language can help teach computer music concepts.

flexibility

readability performance

Figure 3.1: Relative emphasis between three design goals.

In terms of the focal points of the design (Figure 3.1), top priority is given

to flexibility and readability. While performance (in the sense of computational

throughput) is a highly important consideration, it is not our top priority. We

design the language to provide maximal control for the programmer, and tailor the

system performance around the design.
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3.2 Core Language Features

With the design goals outlined above, we present four key ideas that form the

foundation of ChucK. The goal is to design a “natural” audio programming language

(1) to concurrently and accurately represent complex audio synthesis, (2) to enable

fine-grain, flexible control over time, (3) to provide the capability to operate on

multiple, dynamic and simultaneous control rates, and (4) to make possible an

on-the-fly style of programming. The central ideas are as follows.

• A unifying, massively overloaded operator.

• A precise timing model that unifies high-level and low-level timing and is

straightforward to write as well as reason about from code.

• A precise concurrent programming model that supports arbitrarily fine gran-

ularity, as well as multiple, simultaneous, and dynamic rates of control.

• A programming paradigm and run-time environment that allow on-the-fly pro-

gramming, enabling dynamically modifiable programs for performance and ex-

perimentation.

3.2.1 ChucK Operator (=>)

ChucK is a strongly-typed, imperative programming language. Its syntax and se-

mantics are governed by a statically-compilable, run-time modifiable type system.

The heart of ChucK’s language syntax is based around the ChucK operator

(written as =>). This left-to-right operator, originates from the slang term “to

chuck”, meaning to throw an entity into or at another entity. The language uses

this notion to help express sequential operations and data flow. => (and related

operators) form the “syntactic glue” that binds ChucK code elements together.
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=> is a massively overloaded operator, where the behavior of => depends on

the context - in particular, what is being chucked and what is chucked to (see

Figure 3.2). In this code fragment, we omit the declaration of the foo variable. But

assuming we declared foo as a unit generator (an audio signal processing element),

then the behavior of => in this context would be to connect the output of foo into

the input of dac (another unit generator).

// connecting 'foo' to 'dac'
foo => dac;

Figure 3.2: A statement using the ChucK operator, here connecting the output of
foo to dac (both are assumed to be unit generators).

A slightly more complex example can be seen in Figure 3.3. This code fragment

constructs a simple synthesis instrument using a series of Unit Generators (their

declarations are omitted for the moment): a white noise generator, a filter of some

type, and the audio output. Notice that the single line captures the flow of the

signals from left to right - the same order as ChucK programmers would read and

type.

// connect 'noise' to 'filter' to 'dac'
noise => filter => dac;

Figure 3.3: A statement that uses the ChucK operator to connect three audio
elements together.

A ChucK statement can be composed of any appropriate types of objects (in-

cluding instances of user-defined types), unit generators, operations, values, and

variables. The semantic of the statement depends on the types of the objects, and

the overloading of the ChucK operator on those types.
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In addition to performing connections of Unit Generators, the ChucK operator

can be employed in a variety of contexts, including time advancement (see sections

on time and concurrency below), function invocation, assignment, and more. For

example, Figure 3.4 demonstrates two different syntaxes to achieving the same

nested function calls, both valid in ChucK. Note the “un-nesting” effect of using

=> can lead to more linear and streamlined representations. In this case, the

programmer might think of values passing through a sequence of transformations –

from left to right.

// nested function calls
Math.fabs( Math.min( a, b ) );

// same function calls via =>
( a, b ) => Math.min => Math.fabs;

Figure 3.4: Two different syntaxes for invoking the same nested function calls.

Furthermore, there is a greater family of “ChucK operators”, ranging from +=>

(plus chuck), %=> (modulo chuck), =< (unchuck), to the more recent =ˆ (up-

chuck), introduced as part of the ChucK Unit Analyzer framework [101].

3.2.2 ChucKian Time

A key part of the solution in ChucK is to make time itself computable, and also to

allow a program to be “self-aware” in the sense that it always knows its position

in time, and can control its own progress over time. Furthermore, many program

components can share a central notion of logical ChucKian time, making it possible

to synchronize parallel code solely and naturally based on time as well as to precisely

express and reason about the temporal behavior of a program. This gives rise to our

notion of a strongly-timed audio programming language – one in which programs
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has intimate, precise, and modular control over their own timing. With respect to

synthesis and analysis, an immediate ramification is that control can be asserted at

any unit generator at any time and at any rate. In order to make this happen:

• ChucK provides time and dur as native types in the language (for time and

duration).

• The language allows well-defined arithmetic on time and duration (Table 3.1)

• The model provides a deterministic and total mapping of code to time to audio

synthesis. It is natural to reason about and specify timing from anywhere in

a program.

• The language provides now, a special keyword (of type time) that holds the

current ChucK time. It has a flexible granularity can be orders of magnitude

finer than sample-rate, and provides a way to talk about time in an immediate,

deterministic, and well-defined sense.

• ChucK offers a globally consistent means to advance time from anywhere in

the program flow: by duration (D +=> now;) or by absolute time (T =>

now;)

Table 3.1 shows the resulting types of performing various arithmetic on time

and dur types, and whether the operations are commutable by type.

As an example, consider the following program (Figure 3.5), which creates a

patch consisting a sine wave generator, and changes its frequency of oscillation

randomly every 100 millisecond.

In reading this (or any ChucK) code, it is often helpful follow the code se-

quential and through the various control structures (e.g., for/while loops, if/else

statements), and noting the points at which ChucKian time is advanced. For ex-

ample, line 02 instantiates a SinOsc (sine wave generator) called foo, and connects
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type op type result type commute

dur + dur → dur X
dur - dur → dur

dur * float → dur X
dur / float → dur

dur / dur → float

time + dur → time X
time - dur → time

time - time → dur

Table 3.1: Arithmetic operations on time, dur, and float types, and the resulting
types.

#01 // synthesis patch
#02 SinOsc foo => dac;
#03
#04 // infinite time loop
#05 while( true )
#06 {
#07    // randomly choose a frequency
#08    Std.rand2f( 30, 1000 ) => foo.freq;
#09    // advance time
#10    100::ms => now;
#11 }

Figure 3.5: A ChucK program to generate a sine wave, changing its frequency of
oscillation every 100 milliseconds.

it to the dac (abstraction for audio output). The program flow enters the while

loop on line 05, randomly chooses a frequency between 30 and 1000 Hz for the sine

wave (line 08). The program advances time by 100 milliseconds on line 10, before

returning to check the loop conditional again on line 05. It is important at this

point to understand what really happens on line 10. By chucking the duration

100::ms to the special ChucKian time variable now, the program flow pauses and

returns control to the ChucK virtual machine and synthesis engine, which generates

audio corresponding to 100 milliseconds (precisely, to the nearest sample), before
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returning control back to our program. In this sense, advancing time in ChucK is

similar to a sleep call found in many languages. The difference is that here the

language synchronously guarantees precision in logical time (which can be mapped

to the nearest audio sample), allowing one to specify complex timing process across

the system. Furthermore, the same method of reading the code can be applied to

more complex ChucK programs, to reason about the timing in a straightforward

way.

The code above describes one of two ways to “advance time” in ChucK. In the

first method (chuck-to-now) the programmer can allow time to advance by explicitly

chucking a duration value or a time value to now, as shown above. This allows for

a natural programming approach that embeds the timing control directly in the

language, giving the programmer the ability to perform computations at arbitrary

points in time, and to “move forward” in ChucK time in a precise manner. The

second method to advance time in ChucK is by waiting on one or more event(s).

An event could represent synchronous software triggers, as well as asynchronous

message over MIDI, OpenSoundControl [104], and HID input devices. User code

execution will resume when the synchronization condition is fulfilled; while the

event is waited upon, the virtual machine is free to schedule audio synthesis and

other synchronous computations. Wait-on-event is similar in spirit to chuck-to-now,

except events have no pre-computed time of arrival.

It is essential to point out that the logical ChucKian time stands still until

explicitly instructed to do so by one of the above statements to move forward in time.

This allows an arbitrary amount of computation to be specified at any single point

in time, and makes the synchrony assumption that computation happens infinitely

fast. By combining this abstraction with the mapping of ChucK time to the audio
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sample stream, ChucK’s timing mechanisms provides a way for programmers to

reason about about time in their audio code in a truly precise and deterministic

way.

Another important point to note is that all synthesis systems, at some level, have

to be sample-synchronous (samples precisely synchronized with time) – or else DSP

just doesn’t happen. The question to ask here is: at what level does the language

expose the ability to control timing? In ChucK, precise control over time is designed

to be available at all levels to the programmer, in a synchronous manner.

In summary, the timing mechanism moves the primary control over time from

inside opaque unit generators to the code directly. The result is that the compu-

tation is explicitly tied to time. The programmer not only knows what is to be

computed, but also precisely when, relative to ChucK time. This global control

over time enables programs to specify arbitrarily complex timing, allowing a pro-

grammer / composer to “sculpt” a sound or passage into perfection by operating

on it at any temporal granularity.

We are not the first to address this issue of enabling low-level timing in a high-

level audio programming language. Music V, HMSL, and Nyquist have all embodied

some form of sample-synchronous programming model. More recently, Chronic

[8, 9], with its temporal type constructors, was designed to make arbitrary sub-

control rate timing programmable for synthesis. While the mechanisms of Chronic

are very different from ChucK’s, one aim is the same: to free programmers from

having to implement “black-box” unit generators (in a lower-level language, such as

C/C++) when a new lower-level feature is desired. In a sense, Chronic “zooms out”

and deals time in a global, non-real-time way. On the other hand, ChucK “zooms

in” and operates at a specific point in time, in an highly immediate manner.
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Thus far, we have discussed programming ChucK using one path of execution,

controlling it through time. However, time alone is not enough, since audio and

music are the simultaneity of potentially many parallel processes. We also desire

concurrency in order to expressively capture parallelism. ChucK is a concurrent

programming language, and allows multiple independent paths of computation to

be executed in parallel. The flexibility and power of the timing mechanism is greatly

extended by ChucKs concurrency model, which allows multiple, precisely timed

paths of computation.

3.2.3 Concurrency Based on Shreds

The ChucK programming language natively enables the chuckist to write code that

operates either in series or in parallel via ChucK’s concurrency model. It is also this

mechanism that provides fine-grain, multiple, and simultaneous control rates. To

this end, ChucK introduces a primitive called shreds. A shred, much like a thread,

is an independent, lightweight process, which operates concurrently and can share

data with other shreds. However, unlike traditional threads, whose execution is

interleaved in a non-deterministic manner by a preemptive scheduler, a shred is

a deterministic piece of computation that has sample-accurate control over audio

timing, and is naturally synchronized with all other shreds via the same timing

mechanism.

ChucK shreds are programmed in much the same spirit that traditional threads

are, with the exception of several key differences:

• A ChucK shred cannot be preempted by another. This not only enables a

single shred to be locally deterministic, but also an entire set of shreds to be

globally deterministic in their timing and order of execution.
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• A ChucK shred must voluntarily relinquish the processor for other shreds to

run (In this they are like non-preemptive threads). But it does not do so with

a yield()-like function found in many concurrent systems. Shreds, by design,

directly use ChucK’s timing mechanism: when a shred advances time or waits

for an event, it is, in effect, shreduled by the shreduler (which interacts with

the audio engine), and relinquishes the processor. This is powerful in that

it can naturally synchronize shreds to each other by time, without using any

traditional synchronization primitives.

• ChucK shreds are implemented completely as user-level primitives. The entire

virtual machine runs in user-space. User-level parallelism has significant per-

formance benefits over kernel threads [4], allowing “even fine-grain processes

to achieve good performance if the cost of creation and managing parallelism

is low.” Indeed, ChucK shreds are lightweight - each only contains minimal

state. The cost of context switching between ChucK shreds is also low since

no kernel interaction is required. Furthermore, a user-level shreduler is more

readily modifiable.

An advantage of the shred approach is that the programmer has complete control

over timing and the interaction of shreds. By leveraging concurrency infused with

the deterministic timing mechanism, we gain the benefit of concurrent programming

without many of its hassles (e.g., deadlock, race conditions, etc.). We also gain

the performance advantages from user-level parallelism. Furthermore, real-time

scheduling optimizations [21] can be readily implemented by the shreduler without

any kernel modifications. One potential drawback is that a single shred could hang

the ChucK virtual machine (along with all other active shreds), if it fails to relinquish

the processor. However, there are ways to alleviate this drawback. For example, any



CHAPTER 3. CHUCK 48

hanging shreds can easily by identified by the ChucK Virtual Machine (it would be

currently running shred), and the ChucK timing semantic makes it straightforward

for the programmer to locate and correct such issues. For example, on-the-fly

programming allows for hanging shreds to be removed and corrected during run-time

without stopping or restarting the system.

Multi-shredded programs, while no more computationally powerful than single-

shredded programs (it should be possible to implement one in terms of the other),

can make the task of managing concurrency and timing much easier (and more

enjoyable), just as threads make concurrent programming manageable, and poten-

tially increase throughput. In this sense, shreds are more powerful programming

constructs. We argue that the flexibility of shreds to empower the programmer

to do deterministic, precisely timed, concurrent audio programming significantly

outweighs the potential drawbacks.

In a high level sense, the idea of concurrency in ChucK is similar to the idea of

mixing independent “tracks” of audio samples in CMix [46] (and other languages).

Lansky’s original idea was to provide a programming environment where the com-

poser can deal with and perfect individual parts independently [67]. ChucK extends

this idea by allowing full programmability for each shred.

Aside from asynchronous input events (e.g., incoming HID, MIDI, OSC mes-

sages), a ChucK program is completely deterministic in nature - there is no pre-

emptive background processing, nor any implicit scheduling. The order that shreds

and the virtual machine subsystem executes are completely determined by the tim-

ing and synchronization specified in the shreds. This makes it easy to reason about

the global sequence of operations and timing in ChucK. The concurrency model

also enables multiple shreds to run at arbitrary control rates.
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This yields a programming model in which multiple concurrent shreds syn-

chronously construct and control a global unit generator network over time. The

shreduler uses the timing information to serialize the shreds and the audio compu-

tation in a globally synchronous manner. It is completely deterministic (real-time

input aside) and the synthesized audio is guaranteed to be correct, even when real-

time isn’t feasible.

3.2.4 Synthesis and Analysis

In tandem with audio synthesis, ChucK also provides the means to specify and

perform precisely-timed and concurrent audio analysis. This both leverages the

synthesis framework and extend it with a set of syntactic operators and semantics

specifically tailored for analysis [101]. At this time of this writing, we’ve only begun

to explore the possibilities. (See Unit Analyzers in the Language Specification

section, as well as the Future Work section in the Conclusions chapter).

3.3 Language Specification

The section describes salient language specifications of ChucK, and provides an

example-based view of programming in ChucK.

3.3.1 Types, Values, Variables

ChucK is a strongly-typed language, in which types are resolved at compile-time.

However, it is not quite statically-typed, because the compiler/type system is a part

of the ChucK virtual machine, and is a runtime component. The type system helps

to impose precision and clarity in the code, and naturally lends to organization of
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complex programs. At the same time, it is also dynamic in that changes to the type

system can take place in a well-defined manner at runtime. This dynamic aspect

also helps to form the basis for on-the-fly programming.

As in other strongly-typed programming languages, we can think of a type as

associated behaviors of data. (For example, an int is a type that means integer,

and adding two integers is defined to produce a third integer representing the sum.)

Classes and objects allow us to extend the type system with our own custom types,

but we won’t cover them here. We mainly focus on primitive types here, and leave

the discussion of more complex types for classes and objects to the full language

specification [92].

Primitive Types

Primitive types are simple datatypes (with no additional data attributes). By con-

trast, Objects are not primitive types. Primitive types are passed by value, and

cannot be extended. The primitive types in ChucK are:

• int : integer (signed)

• float : floating point value (by default double-precision)

• time : ChucKian time

• dur : ChucKian duration

• void : (no type)

• complex : complex number in rectangular form (see below)

• polar : complex number in polar form (see below)

All other types are derived from Object, either as part of the ChucK standard

library, or as new custom classes.
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Reference Types

Reference types are those that inherit from the Object class. Some default reference

types include:

• Object : base type that all classes inherit from (directly or indirectly)

• (array) : N-dimensional ordered set of data

• Event : fundamental, extendable, synchronization mechanism

• UGen : extendable unit generator base class

• UAna : extendable unit analyzer base class (inherits UGen)

ChucK supports the ability extend the type system with additional classes, and

via polymorphic inheritance.

Complex Types

Two special primitive types are available to to represent complex data, such as

the output of an FFT: complex and polar. A complex number of the form a + bi

can be declared, where the #(...) syntax explicitly denotes a complex number in

rectangular form, and can be used in arithmetic calculations. The (floating point)

real and imaginary parts of a complex number can be accessed with the .re and

.im components of a complex number. (Figure 3.6).

#(5,-1.5) => complex cmp; // 5 - 1.5i
#(2,3) + #(5,6) + cmp => complex sum; // 12 + 7.5i

#(2.0,3.5) => complex cmp;
cmp.re => float x; // x is 2.0
cmp.im => float y; // y is 3.5

Figure 3.6: complex values, real/imaginary components.
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The polar type offers an equivalent, alternative representation of complex num-

bers in terms of a magnitude and phase value. The magnitude and phase values

can be accessed via .mag and .phase. (Figure 3.7)

%(2,.5*pi) => polar pol; // polar
pol.mag => float m; // m is 2
pol.phase => float p; // p is .5*pi

Figure 3.7: polar values, magnitude/phase components.

Polar and complex representations can be cast to each other and used in arith-

metic operations. (Figure 3.8).

// polar
%(2,.5*pi) => polar pol;
// complex
#(3,4) => complex cmp;
// casting
pol $ complex + #(10,3) + cmp => complex cmp2;
// casting
cmp $ polar + %(10,.25*pi) - pol => polar pol2;

Figure 3.8: Some operations on complex and polar types in ChucK.

3.3.2 Arrays

Arrays are used to hold N-dimensional, ordered sets of data (of the same base type).

Some notes on ChucK arrays can be found below.

• arrays can be indexed by integer (0-indexed).

• any array can also be used as an associative map, indexed by strings.

• it is important to note that the integer-indexed portion and the associative

portion of an array are stored in separate namespaces.
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• arrays are objects (see objects and classes), and will behave similarly under

reference assignment and other operations common to objects.

3.3.3 Operators

In addition to the ChucK operator (=>), ChucK offers standard operators for arith-

metic, binary, and logical operations, there exists a family of extended ChucK op-

erators, including the upchuck (=ˆ, see Unit Analyzers), the unchuck (=<), and a

variety of operate-and-assign operators (e.g., +=> for incrementing a variable by

an amount with assignment).

3.3.4 Control Structures

ChucK employs many standard control structures found in procedural programming

languages, including if, else, for, while, and introducing additional control struc-

tures such as until (the semantic opposite of while), and repeat, which evaluates

the control expression as an integer only once and repeats the body that number of

times.

3.3.5 Manipulating Time

Notions of time and concurrency are central to understanding and working with

ChucK. The main points of time in ChucK are summarized below.

• time and duration are native types in the language.

• the now keyword holds the current logical ChucK time.

• time is advanced (and can only be advanced) by explicitly manipulating now.
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In ChucK. time represents an absolute point in time (from the beginning of

ChucK time), and dur represents a duration (with the same logical units as time).

See Figure 3.9 for some basic examples.

// duration of one second
1::second => dur foo;

// a point in time (duration 'foo' after 'now')
now + foo => time later;

Figure 3.9: Examples of basic operations on time and dur.

Durations can be used to construct new durations, which themselves can be used

to inductively construct yet other durations. For example, see Figure 3.10.

// .5 second is a quarter
.5::second => dur quarter;

// 4 quarters is whole
4::quarter => dur whole;

Figure 3.10: Example of constructing the notions of a quarter and a whole with
durations.

By default, ChucK provides these preset duration values:

• samp : duration of 1 sample in ChucK time

• ms : 1 millisecond

• second : 1 second

• minute : 1 minute

• hour : 1 hour

• day : 1 day

• week : 1 week
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These can be used to represent a wide range of durations and temporal granu-

larities. See Figure 3.11 for some examples of using durations.

// the duration of half a sample
.5::samp => dur foo;

// 20 weeks
20::week => dur waithere;

// use in combination
2::minute + 30::second => dur bar;

// same value as above
2.5::minute => dur bar2;

Figure 3.11: Some examples of using the dur type.

Advancing Time

Advancing time allows other shreds (processes) to run and allows audio to be com-

puted in a controlled manner. There are three ways of advancing time in ChucK:

• chucking (+=>, or with the more common shorthand, =>) a duration to now:

this will advance time by that duration. (the duration must be nonnegative)

• chucking (=>) a time to now: this will advance time to that point. (note that

the desired time must be later than or equal to the current time)

• chucking (=>) an event to now: time will advance until the event is triggered.

(also see the section Programming with Events)

See Figure 3.12 for examples of advancing time by chucking duration values to

now.

A time chucked to now will have ChucK wait until the appointed time. In the

logical, synchronous sense, ChucK should never miss an appointment. Again, the
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// advance time by 1 second
1::second => now;

// advance time by 100 millisecond
100::ms => now;

// advance time by 1 samp (duration of a sample)
1::samp => now;

// advance time by less than 1 samp
.024::samp => now;

Figure 3.12: Some examples of advancing time with durations in ChucK.

destination time chucked to now must be greater than or equal to now, otherwise

an exception is thrown. Figure 3.13 shows an example of time and duration in

action.

// compute value that represents "5 seconds after now"
now + 5::second => time later;

// while we are not at later yet...
while( now < later )
{
    // print out value of now
    <<< now >>>;

    // advance time by 1 second
    1::second => now;
}

Figure 3.13: A short program demonstrating time and dur types.

Figure 3.14 shows another simple example; note how one might follow the code

from top to bottom and through the control structures, much like how control flows

as the computer executes the code.

Furthermore, there are no restrictions (other than underlying floating point pre-

cision) on how much time is advanced. So it is possible to advance time, say, by



CHAPTER 3. CHUCK 57

// our patch: sine oscillator to dac
SinOsc s => dac;

// infinite time loop
while( true )
{
    // randomly choose frequency from 30 to 1000
    Std.rand2f( 30, 1000 ) => s.freq;

    // advance time by 100 millisecond
    100::ms => now;
}

Figure 3.14: A sound generating program that randomizes frequencies every 100
milliseconds.

a microsecond, a samp, 2 hours, or 10 years. The system will behave accordingly

and deterministically. This mechanism allows time to be controlled at any desired

rate, according to any programmable pattern. With respect to audio programming,

it is possible to control any unit generator (or unit analyzer) at any rate, even

sub-sample rate.

Alternately, time can be advanced by chucking an event to now, the difference

being that with events, the programmer does not specify the duration to wait ahead

of time, but rather allows the ChucK virtual machine to move forward in time, while

waiting for a particular type of event to occur. See the Event subsection below for

more details.

3.3.6 Functions

Functions in ChucK are similar to those found in other procedural programming

languages, such as Java, C, and C++, and will not be discussed here. Again, note

that => can be used to un-nest function calls (refer back to Figure 3.4 to see an

example). For more details see the full current language specification [92].
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3.3.7 Concurrency, Processes, and Shreds

ChucK is able to run many processes concurrently (the process behave as if they

are running in parallel). As mentioned above, a ChucKian process is called a shred.

To spork a shred means creating and adding a new process to the virtual machine.

Shreds may be sporked from a variety of places, and may themselves spork new

shreds.

ChucK supports synchronous, non-preemptive concurrency. Any number of pro-

grams/shreds can be automatically shreduled and synchronized using the programmer-

specified timing directives (e.g., chucking a duration to now). The concurrency is

sample-synchronous, meaning that inter-process audio timing is guaranteed to be

precise to the sample. Note that any given shred does not necessarily need to

know about other shreds - it only has to deal with time locally. The virtual ma-

chine ensures that computations happen correctly across the system. Like timing,

concurrency is deterministic in ChucK.

Sporking Shreds

The simplest way to to run shreds concurrently is to specify them on the command

line, running any number of chuck programs in sample-synchronous concurrency:

%> chuck foo.ck bar.ck boo.ck

New ChucK shreds can also be sporked from within ChucK programs. To spork

a shred from code, use the spork ˜ operator, which has the following properties:

• the spork keyword dynamically sporks shred from within a function call.

• this operation is synchronous, the new shred is shreduled to execute immedi-

ately in logical time, starting at the sporked function.
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• the parent shred continues to execute, until time is advanced or until it explic-

itly yields.

• when a parent shred exits, all child shreds also exit.

• sporking a function returns a reference to the new shred.

Figure 3.15 shows an example that defines a function, and then sporks a new

shred to start executing at the defined function. A slightly more involved example

can be found in Figure 3.16.

// define function go()
fun void go()
{
    // (code goes here)
}

// spork a new shred to start running from go()
spork ~ go();

// spork another, store reference to new shred
spork ~ go() => Shred @ offspring;

// ... more code

Figure 3.15: Defining a function, then sporking that function on a new shred.

The ’me’ keyword

The me keyword (of type Shred) refers to the current shred. Basic functions

common to all shreds include yield(), exit(), and id().

For example, it is sometimes useful to suspend the current shred without ad-

vancing time, and run others shreds shreduled at the current time. me.yield()

achieves exactly that. This is often useful for allowing a newly sporked shred to
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// define function
fun void foo( string s )
{
    // infinite time loop
    while( true )
    {
        // print s
        <<< s >>>;
        // advance time
        500::ms => now;
    }
}
   
// spork shred, passing in "you" as argument
spork ~ foo( "you" );
// advance time by 250 ms
250::ms => now;
// spork another shred
spork ~ foo( "me" );

// infinite time loop - to keep child shreds around
while( true ) 1::second => now;

Figure 3.16: Defining a function, sporking two copies of it on new shreds..

have chance to run without advancing time (Figure 3.17). The programmer can get

a shred’s ID number via id() (Figure 3.18).

It may also be useful to exit the current shred. This can be done by invoking

me.exit(). For example if a MIDI device fails to open, the programmer might exit

the current shred (Figure 3.19).

Machine.add( string path ) takes the path to a ChucK program and sporks

it. Unlike spork ˜, there is no parent-child relationship between the shred that calls

the function and the new shred that is added. This is useful for dynamically run-

ning stored programs. Similarly, one can remove shreds from the virtual machine.

(Figure 3.20)

Shreds sporked in the same file can share the same global variables. They can
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// spork shred
spork ~ go();

// suspend the current shred...
// (give other shreds a chance to run at 'now')
me.yield();

Figure 3.17: Example showing the yield() function, which relinquishes the VM
without advancing time.

// print out the shred id
<<< me.id(); >>>;

Figure 3.18: Prints out the current shred’s id.

use time and events to synchronize to each other. Shreds sporked from different files

can share data (including events). This can be done through a public class with

public static variables and functions.

ChucK supports passing arbitrary data from the command line into ChucK

programs using optional command line arguments. An argument is specified by

appending a colon character (:) to the name of the ChucK program to receive that

argument, followed by the argument list. Multiple arguments can be specified, each

separated by the colon character. Furthermore, each ChucK program can have its

own set of arguments. Command line arguments can also be used when using on-

the-fly programming facilities of ChucK. Machine.add() and Machine.replace()

accept command line arguments in a similar fashion (Figure 3.21).

To access command line arguments within a ChucK program, one can invoke

the me.args() and me.arg() functions from the shred to determine the size and

the contents of the argument list(Figure 3.22).
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// make a MidiIn object
MidiIn min;

// try to open device 0
if( !min.open( 0 ) )
{
    // print error message
    <<< "can't open MIDI device..." >>>;
    // exit the current shred
    me.exit();
}

Figure 3.19: Attempts to open a MIDI device, and exits if the operation fails.

// add
Machine.add( "foo.ck" ) => int id;

// remove shred with id
Machine.remove( id );

// add
Machine.add( "boo.ck" ) => id;

// replace shred with "bar.ck"
Machine.replace( id, "bar.ck" );

Figure 3.20: Operations using static members of the Machine class.

// run foo; pass "1" and "bar" as command line arguments
Machine.add( "foo.ck:1:bar" ) => int id;

// replace shred with "bar.ck"
// pass "2" and "boo" as command line arguments
Machine.replace( id, "bar.ck:2:boo" );

Figure 3.21: Passing arguments to shreds via Machine.

// print out all arguments
for( int i; i < me.args(); i++ )
    <<< me.arg( i ) >>>;

Figure 3.22: Loops through shred arguments and prints each.
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3.3.8 Programming with Events

ChucK events are derived from the native Event class within the ChucK language.

One can instantiate or otherwise obtain an event, and chuck (=>) that event to

now to synchronize on it. At this point, the event places the current shred on the

event’s waiting list and suspends the shred (letting time advance from that shred’s

point of view). When the event is triggered, one or more of the shreds on its waiting

list is shreduled to run immediately. This trigger may originate from another ChucK

shred, or from activities taking place outside the Virtual Machine (e.g., from MIDI,

OSC, or HID). A simple example is shown in Figure 3.23.

// instantiate an Event
Event e;

// ... (other code possibly)

// wait on the event (to be trigger from elsewhere)
e => now;

// after the event is triggered, print message
<<< "I just woke up" >>>;

Figure 3.23: Code snippet to wait on an Event, and printing a debug message.

Events can be triggered in one of two ways, depending on the desired behavior.

signal() releases the first shred in that event’s queue and shredules it to run at the

current time, respecting the order in which shreds were added to the queue. By

contrast, broadcast() releases and shredules all shreds queued on the event, in the

order they were added, and at the same instant in ChucK time.

The released shreds are shreduled to run immediately, subject to other shreds

also shreduled to run at the same time. Furthermore, the shred that called signal()

or broadcast() will continue to run until it advances time itself, or yields the virtual
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machine without advancing time. For a program that demonstrates signal() and

broadcast(), see Figure 3.24.

MIDI Events

ChucK contains built-in MIDI classes to allow for interaction with MIDI based

software or devices. MidiIn is a subclass of Event, and as such can be chucked to

now for synchronization. Upon the arrival of incoming MIDI messages, the MidiIn

instance wakes up the waiting shred and uses a MidiMsg object to return the data.

OSC Events

In addition to MIDI, ChucK provides OpenSoundControl (OSC) communication

classes as well [104] (Figure 3.26). The OscRecv class listens for incoming OSC

packets on the specified port. Each instance of OscRecv can create OscEvent

objects using its event() method to listen for packets at any valid OSC address

pattern. An OscEvent object can then be chucked to now to wait for new messages

to arrive, after which the nextMsg() and getFloat/String/Int() methods can

be used to fetch message data.

In addition to MIDI and OSC, ChucK also supports HID’s (e.g., human interface

devices, such as computer keyboards, mice, and game controllers). The semantics

of HID’s are also event-based and analogous to that of MIDI and OSC, and will not

be discussed further here.

Lastly, events, like most other classes, can be subclassed to add functionality;

see Figure 3.27 for an example of this.
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// declare event
Event e;

// function for shred
fun void eventshred( Event event, string msg )
{
    // infinite loop
    while ( true )
    {
        // wait on event
        event => now;
        // print
        <<< msg >>>;
    }
}

// create shreds
spork ~ eventshred ( e, "fee" );
spork ~ eventshred ( e, "fi" );
spork ~ eventshred ( e, "fo" );
spork ~ eventshred ( e, "fum" );

// infinite time loop
while ( true )
{
    // either signal or broadcast
    if( maybe )
    { 
        <<< "signaling..." >>>;
        e.signal();
    }
    else
    { 
        <<< "broadcasting..." >>>;
        e.broadcast();
    }

    // advance time
    0.5::second => now;
}

Figure 3.24: An example that sporks four shreds, and invokes them via signal()
and broadcast().
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// instantiate MIDI related objects
MidiIn min;
MidiMsg msg;

// open midi receiver, exit on fail
if ( !min.open(0) ) me.exit(); 

// loop
while( true )
{
    // wait on midi event
    min => now;

    // receive midimsg(s)
    while( min.recv( msg ) )
    {
        // print content
        <<< msg.data1, msg.data2, msg.data3 >>>;
    }
}

Figure 3.25: A program to open a MIDI device, wait on incoming messages, and
print them.

3.3.9 Unit Generators

Unit generators (UGen’s) are function generators that output signals that can be

used as audio or control signals. In ChucK, where there is no fixed control rate,

any unit generator may be controlled at any rate. Using the timing mechanism, one

can program one’s own control rate, and can dynamically vary the rate over time.

Moreover, ChucK’s concurrent programming model make it possible to specify many

different parallel controls rates, each at its desired granularity. Some additional

properties of ChucK unit generators are listed below.

• All ChucK unit generators are objects.

• All ChucK unit generators inherit from the UGen class.
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// patch
SinOsc foo => dac;

// create our OSC receiver
OscRecv recv;
// port 6449
6449 => recv.port;
// start listening (launch thread)
recv.listen();

fun void rateShred()
{ 
    // create an address in the receiver 
    // and store it in a new variable
    recv.event("/synth/control/freq, f") @=> OscEvent freqEvent; 

    // loop
    while ( true )
    { 
        // wait for events to arrive
        freqEvent => now; 

        // grab the next message from the queue
        while( freqEvent.nextMsg() != 0 )
        { 
            // getFloat fetches the expected float
            // as indicated in the type string "f"
            freqEvent.getFloat() => foo.freq;
        }
    }       
}

Figure 3.26: A OpenSoundControl receiver.
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// extended event
class TheEvent extends Event
{
    int value;
}

// the event
TheEvent e;

// handler
fun int hi( TheEvent event )
{
    while( true )
    {
        // wait on event
        event => now;
        // get the data
        <<< e.value >>>;
    }
}

// spork 4 copies
spork ~ hi( e );
spork ~ hi( e );
spork ~ hi( e );
spork ~ hi( e );

// infinite time loop
while( true )
{
    // set data
    Math.rand2( 0, 5 ) => e.value;
    // signal one waiting shred
    e.signal();
    // advance time
    1::second => now;
}

Figure 3.27: Defining and using a Event subclass.
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• The operation foo => bar, where foo and bar are UGen’s, connects the

output of foo to the input of bar.

• Unit generators are controlled by invoking their member functions over time.

• gain() (of type float): sets/gets the gain of the UGen’s output.

• last() (of type float): get the last sample computed by the UGen. if UGen has

more than one channel, the average of all components channels are returned.

• channels() (of type int): get the number of channels in the UGen.

• chan() (of type UGen): return reference to a channel by its integer index (or

null if no such channel is available).

• op() (of type int): specify sample-by-sample operation on at the UGen (the

result is used as the actual input into the UGen itself). Values are: 0 : stop -

always output 0; 1 : normal operation, sum inputs (UGen’s) sample-by-sample

(default); 2 : normal operation, subtract inputs starting from the earliest

connected; 3 : normal operation, multiply all inputs; 4 : normal operation,

divide inputs starting from the earlist connected -1 : passthru - all inputs to

the ugen are summed and passed directly to output.

• Three default, global unit generator instances are provided. They are adc,

dac, and blackhole.

In addition to chaining UGen’s together in a feedforward manner, it is also

possible to introduce feedback in the network. (Figure 3.28; also see the native

Karplus-strong plucked string model example later in this chapter)

UGen’s and UAnae may be dynamically connected in this fashion into an audio

synthesis/analysis network. It is essential to note that the above only connects

the unit generators/analyzers, but does not actually compute audio, unless time is
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advanced. It is also possible to dynamically disconnect unit generators, using the

UnChucK operator (=< or !=>). (Figure 3.29)

// connect adc to delay to dac; (feedforward)
adc => Delay delay => dac;

// delay to gain back to itself (feedback)
delay => Gain g => delay;

Figure 3.28: Setting up a unit generator network with feedback.

// connect SinOsc to dac
SinOsc foo => dac;

// let time pass for 1 second
1::second => now;

// disconnect 'foo' from the 'dac'
foo =< dac;

// let time pass for another second (silence)
1::second => now;

// connect again
foo => dac;

// ...

Figure 3.29: Dynamically connecting/disconnecting unit generators.

In ChucK, parameters of unit generators may be controlled and altered at any

point in time and at any rate (even sub-sample rate). To set the a value for a

parameter of a unit generator a value of the proper type should be ChucKed to

the corresponding control function. To read the current value of certain parameters

(not all parameters can be read), we may call an overloaded function of the same

name. Figure 3.30 demonstrates setting/getting control values. Additionally, one

can chain assignments together when assigning a single value to multiple targets.
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Note that the parentheses are only needed when the read function is on the very

left (i.e., the beginning of a chained chuck statement).

// SinOsc to dac
SinOsc foo => dac;
// TriOsc to dac
TriOsc bar => dac;

// set frequency of foo and then bar
500 => foo.freq => bar.freq;

// set one freq to the other
foo.freq() => bar.freq;
// the above is same as:
bar.freq( foo.freq() );

Figure 3.30: Asserting/reading control values.

ChucK supports stereo (default) as well as multi-channel audio. dac and adc are

potentially multi-channel UGen’s. By default, chucking two UGen’s containing the

same number of channels (e.g., both stereo or both mono) automatically matches

the output channels with the input channels (e.g., left to left, right to right for

stereo). Multichannel UGen’s mix their output channels when connecting to mono

UGen’s. Mono UGen’s split their output channels when connecting to multi-channel

UGen’s. Stereo UGen’s contain the parameters left and right, which allow access

to the individual channels. It is also possible to address channels by index.

At the time of this writing, ChucK provides around 80 Unit Generators, includ-

ing oscillators, noise generator, filters, envelopes, delays, as well as a majority of

the Synthesis Toolkit (STK) [20]. One idea with ChucK is that due to the flexible

timing mechanism, there is a reduced need for writing low-level UGen’s or plug-ins

in another language (e.g., C++), as such modules can directly specified in ChucK.
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3.3.10 Unit Analyzers

Unit Analyzers (UAna, singular; UAnae, plural) are analyis building blocks, simi-

lar in concept to unit generators. They perform analysis functions on audio signals

and/or metadata input, and produce analysis results as output. Unit analyzers

can be linked to each other as well as to unit generators to form analysis/synthesis

networks. Like unit generators, several unit analyzers may run concurrently, each

dynamically controlled at different rates. Data passed between UAnae is not nec-

essarily audio samples, and the relationship of UAna computation to time is fun-

damentally different than that of UGen’s (e.g., UAnae might compute on blocks of

samples, or on metadata, and on demand). Thus, the connections between UAnae

have a different meaning from the connections between UGen’s formed with the

ChucK operator (=>). This difference is reflected in the choice of a new connection

operator, the upChucK operator (=ˆ). Another key difference between UGen’s and

UAnae is that UAnae perform analysis (only) on demand, via the upchuck() func-

tion (discussed below). Some additional properties of ChucK unit analyzers are as

follows:

• All ChucK unit analyzers extend from unit generators.

• The operation foo =ˆ bar, where foo and bar are UAnae, connects foo to

bar.

• Unit analyzer parameters and behaviors are controlled by calling / chucking

to member functions over time, like unit generators.

• Analysis results are stored in objects called UAnaBlob’s. The UAnaBlob

contains a time-stamp indicating when it was last computed, and may store an

array of floats and/or complex values. Each UAna specifies what information

is present in the UAnaBlob it produces.
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• All unit analyzers have the function upchuck(), which when called issues a

cascade of analysis computations for the unit analyzer and any upstream unit

analyzers on which its analysis depends. In the example of foo =ˆ bar,

bar.upchuck() will result in foo performing its analysis (possibly recursively

requesting analysis results from unit analyzers further upstream), then in bar

using foo’s analysis results in its computation. upchuck() returns the analysis

results inside a UAnaBlob.

• Unit analyzers are specially integrated into the virtual machine such that each

unit analyzer performs its analysis on demand via upchuck(). Combined

with timing and concurrency, the programmer has the power to control the

analysis process at any point in time and at any desired rate.

3.4 System Design and Implementation

In order to support the features and behaviors of the ChucK language, a variety

of system design decisions have been made, and are described in this section. The

ChucK system includes a dedicated lexer, parser, typing checker/type system, and

virtual machine employing a user-level shreduler that shredules the shreds. We

address the salient components of the system, and outline the central shreduling

algorithms.

3.4.1 Architecture

ChucK programs are type-checked, emitted into ChucK shreds containing byte-

code, and then interpreted in the virtual machine. The shreduler serializes the

order of execution between various shreds and the audio engine. Under this model,
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Figure 3.31: ChucK run-time architecture.

shreds can dynamically connect, disconnect, and share unit generators in a global

network. Additionally, shreds can perform computations and change the state of

any unit generator/analyzers at any point in time. Audio is synthesized from the

global unit generator graph a sample at a time by “sucking” samples starting from

dedicated UGen “sinks”, such as dac. Time as specified in the shreds is mapped by

the system to the audio synthesis stream. When a shred advances time, it can be

interpreted as the shred shreduling itself to be woken up at some future sample. In

this sense, the passage of time is data-driven, and this guarantees that the timing in

the shreds is bound to the audio output and not to any other clocks. Furthermore,

it guarantees that the final synthesis/analysis result is “correct”, reproducible, and

sample-faithful regardless of whether the system is running in real-time or not.

Additional processes interface with I/O devices (as necessary) and the runtime

compiler. A server listens for incoming network messages. Various parts of the VM
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can optionally collect real-time statistics to be visualized externally in environments

such as the Audicle (see Chapter on Audicle).

3.4.2 Compilation

lexer parser

type-
checker emitter

tokens

parse
tree

parse
tree 2

code shreds
(byte-code)

to VM

Figure 3.32: Phases in the ChucK compiler.

Compilation of a ChucK program follows the standard phases of lexical analysis,

syntax parsing, type checking, and emission into instructions (Figure 3.32). As

previously stated, ChucK is imperative and strongly-typed. Programs are emitted

into ChucK virtual machine instructions, either as part of a new shred, or as globally

available routines. The compiler runs in the same process as the virtual machine,

and can compile and run new programs on-demand. By default, all operations,

including instruction emission, take place in main memory. This has the advantage

of avoiding intermediate steps of writing instructions to disk, and also many costly

load-time memory translations which would be necessary if the compiler and VM

were to run in separate memory address spaces. The disadvantage of this in real-

time is that the compilation must be relatively fast, which precludes the possibility

of many advanced compiler optimizations.
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Figure 3.33: A ChucK shred and primary components.

3.4.3 ChucK Virtual Machine + Shreduler

After compilation, a ChucK shred is passed directly to the virtual machine, where

it is shreduled to start execution immediately. Each shred has several compo-

nents (Figure 3.33): (1) bytecode instructions emitted from the source code, (2) an

operand stack for local and temporary calculations (functionally similar to hard-

ware registers), (3) a memory stack to store local variables at various scopes, i.e.,

across function calls, (4) references to children shreds (shreds spawned by the cur-

rent shred) and a parent shred, if any, and (5) a shred-local view of now - which

can be a fractional sample away from the system-wide now; this is used to maintain

sub-sample timing.

The state of a shred is completely characterized by the content of its stacks and

their respective pointers. It is therefore possible to suspend a shred between two

instructions. Under normal circumstances, however, a shred is suspended only after

instructions that advance time. Shreds can spork and remove other shreds.
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The shreduler serializes the synchronous execution of shreds with that of the

audio engine, while maintaining the system-wide value of the keyword now. The

unit of now is mapped to the number of samples in the final synthesis that have

elapsed since the beginning of the program.
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Figure 3.34: Single-shredded shreduling algorithm.

For a single shred, the shreduling algorithm is illustrated in Figure 3.34. A shred

is initially shreduled to execute immediately - further shreduling beyond this point

is left to the shred. The shreduler checks to see if the shred is shreduled to wake

up at or before the current time (now). If so, the shred resumes execution in the

interpreter until it schedules itself for some future time T. At this point, the shred is

suspended and the wake-up time is set to T. Otherwise, if the shred is not scheduled

to wake up at now, then the shreduler calls the audio engine, which traverses the

global unit generator graph and computes the next sample. The shreduler then

advances the value of now by the duration of 1 sample, and checks the wake-up
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time again. It continues to operate in this fashion, interleaving shred execution and

audio computation in a completely synchronous manner.

Two points should be noted here. It is possible that a shred misbehaves and

never advances time or, in the real-time case, performs enough computation to

delay audio. The Halting Problem [87, 78] informs us that the VM cannot hope

to detect this reliably. However, it is possible for the user to identify this situation

and manually remove a shred from the interpreter. Secondly, the above algorithm

is geared towards causal, immediate mode operations in which time can only be

advanced towards the future. It is conceivable that this same model can be extended

so that shreds can also move backwards in time; this is not discussed in this work.

More
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Figure 3.35: Multi-shredded shreduling algorithm, with messaging

For multiple shreds, the mechanism behaves in a similar manner, except the

shreduler has a waiting list of shreds, sorted by requested wake-up time. A more

comprehensive concurrent shreduling algorithm is shown in Figure 3.35. Before the
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system-wide now is advanced to the next sample, all shreds waiting to run at or

before the current time are allowed to execute.

Also, it is possible for a shred to advance time by any amount, even durations

less than that of a sample. To support this, each shred keeps track of a shred-local

now, which is close to the value of the system-wide now, but with some fractional

sample difference. This allows a shred to shredule itself at practically any increment.

This value is compared against the system-wide now when determining when to

wake up a shred. So it is possible for a shred to run any number of times before the

system-wide now is advanced to the next sample.

3.4.4 Audio Computation

Unit generators (and more recently, unit analyzers) are created, connected, discon-

nected, and controlled from code. However, the actual computation of the audio

takes place separately in the audio engine. When the shreduler decides that it is

appropriate to compute the next sample and advance time, the audio engine is in-

voked. The global unit generator graph is traversed in depth-first order, starting

from one of several well-known sinks, such as dac. Each unit generator connected

to the dac is asked to compute and return the next sample (which may involve first

recursively requesting the output of upstream UGen’s). The system marks visited

nodes so that each unit generator is computed exactly once for every time step. The

output value of of each ugen is stored and can be recalled, enabling feedback cycles

in the graph. Cyclic recursion is terminated by respecting the marks denoting a

node having been visited at the current time, and using the cached output value at

previously visited nodes. Additionally, this will result in a single sample delay at



CHAPTER 3. CHUCK 80

some point in the cycle - if the graph remains unchanged, the delay happens in the

same manner at every time step.

Another well-known sink is the blackhole, which sucks samples like dac, but

does not play them. blackhole is useful for driving standalone unit generators,

as well as analysis networks that require no audio output. For instance, one can

connect the dac to other unit generators, such as FileOut for recording the dac to

file. These unit generators need to be driven by a sample-rate sink but should not

be played. blackhole fulfills this purpose.

3.5 Properties

Now that we have described the design goals, the features of the language, as well

as its implementation, we now discuss some potentially useful properties of the

language.

3.5.1 Time and Programming

The ChucK programmer always codes in suspended animation. This property guar-

antees that time in ChucK does not change unless the programmer explicitly ad-

vances it. The value of now can remain constant for an arbitrarily long block

of code, which has the programmatic benefits of (1) guaranteeing a deterministic

timing structure to use and reason about the system and (2) giving a simple and

natural mechanism of complete timing control to the programmer. The determin-

istic nature of timing in ChucK also ensures that the program will flow identically

across different executions and machines, free from the underlying hardware timing

(processor, memory, bus) and non-deterministic scheduling delays in the operat-
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ing system kernel scheduler. As a consequence, the programmer is responsible for

“keeping up with time” (i.e., specifying when to “step out” of suspended animation

and advance time).

Another potentially useful property afforded by the ChucK timing mechanism

is that statements that appear in code before the time advancement are guaranteed

to evaluate beforehand, and those that appear after the time advancement will

evaluate only after the timing or synchronization operation is fulfilled. It is essential

to note that blocks of code between operations that advance time are truly atomic;

statements in each block are considered to take place at the same logical instant.

This semantic can lead to programs that are significantly easier to specify, debug,

and reason about. Furthermore, like the ChucK operator, this approach can further

encourage a strong sense of order in the program.

Additionally, the timing mechanism allows feedback loops with single-sample

delay, enabling clear representation of signal processing networks, such as the classic

Karplus-Strong plucked string physical model [40] (Figure 3.36). Additionally, it is

straightforward to implement various extensions of the model [39, 81] as well as a

number of other physical models directly in the language – and hear / test them on

the spot, making the system an ideal teaching tool for these topics.

3.5.2 Dynamic, Precise Control Rate

The manner with which a shred advances its way through time can be naturally

interpreted as the control rate in ChucK. Since the amount of time to advance at

each point is determined by the programmer, the control rate can be (1) as rapid

(e.g., same or faster than sample rate) and variable (e.g., milliseconds, minutes, days,

or even weeks) as the application desires, and (2) dynamically varying with time
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// feedforward
Noise imp => OneZero lowpass => dac;
// feedback
lowpass => Delay delay => lowpass;

// our radius
.99999 => float R;
// our delay order
500 => float L;
// set delay
L::samp => delay.delay;
// set dissipation factor
Math.pow( R, L ) => delay.gain;
// place zero
-1 => lowpass.zero;

// fire excitation
1 => imp.gain;
// for one delay round trip
L::samp => now;
// cease fire
0 => imp.gain;

// advance time
(Math.log(.0001) / Math.log(R))::samp => now;

Figure 3.36: Constructing a classic Karplus and Strong plucked string model.

(since the programmer can compute or lookup the value of each time advancement).

Additionally, the power of this dynamic, arbitrary control rate is greatly extended

by ChucK’s concurrency model, which allows multiple independent control flows to

coexist in parallel.

In (Figure 3.37) is a program that moves through time, polling the value of an

envelope follower. Note in this code, the programmer has complete control over the

poll rate, and can dynamically throttle it at will.

It is possible in ChucK to calculate each sample completely from within the lan-

guage (though low-level built-in and add-in ChucK modules may be more suitable
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// patch
adc => Gain g => OnePole p => blackhole;
// square the input
adc => g;
// multiply
3 => g.op;

// set filter pole position
0.99 => p.pole;

// infinite time loop
while( true )
{
    // test
    if( p.last() > 0.01 )
    {
        // detected
        <<< "BANG!!" >>>;
        // wait a bit
        80::ms => now;
    }

    // advance time, also poll rate
    20::ms => now;
}

Figure 3.37: An envelope follower (and simple onset detector), based on a leaky
integrator. (author: Perry Cook)

for such low-level tasks). All external events, such as MIDI, input devices, and other

asynchronous events, are internally handled at a coarser granularity proportional to

a tunable latency (e.g., I/O buffer size). Program logic can be specified at any gran-

ularity relative to the audio. Thus, the same ChucK timing mechanism can be used

to build low-level instruments, as well as high-level compositional elements. The

practice of enabling the programmer to operate on an arbitrarily fine granularity is

partly derived from the Synthesis Tool Kit (STK) [20], which exposes a manageable

programming interface for efficient single sample operations, with additional levels
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of internal buffering. ChucK builds on this notion to support sample-level compu-

tations as well as computations at arbitrarily large intervals, and among concurrent

processes.

3.5.3 Synchronous Concurrent Control

Computer audio/music is most often the simultaneity of many parallel sequences

of operations, potentially taking place at potentially many distinct rates. Shreds

naturally separate each set of independent tasks into concurrent entities running at

their own control rates. For example, there might be many different streams of audio

samples being generated at multiple control rates; MIDI and OSC messages might

arrive periodically (e.g., on the order of milliseconds) from a variety of sources,

which control parameters in the synthesis. Concurrently, packets may arrive over

the network, while an array of mice and joysticks send control data. At the same

time, higher-level musical processes may be computing at yet another concurrent

time-scale. In ChucK, it is possible and straightforward to design, specify, and

incrementally develop such a system, via shreds and time.

In ChucK, timing and synchronization are duals: explicit timing generates im-

plicit synchronization and explicit synchronization generates implicit timing. Ad-

vancing time is an implicit and precise synchronization mechanism for shreds, while

explicitly synchronizing on events allows time to advance in the meanwhile.

An extremely important property here is that while shreds are interleaved in

time and therefore appear to be concurrent, code executes without preemption;

thus every sequence of statements (up to time advance or yields) behaves as a

critical section or atomic transaction. The programmer is not required to designate

explicit critical sections with any synchronization in the code.
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// synthesis patch
Impulse i => TwoZero t => TwoZero t2 => OnePole p;
// formant filters
p => TwoPole f1 => gain g => JCRev r => dac;
p => TwoPole f2 => g;
p => TwoPole f3 => g;

// ... (omitted: initialization code) ...

spork ~ ramp_stuff(); // interpolate pitch and formants
spork ~ do_impulse(); // voice source

while( true ) // main shred
{
    // set next formant targets
    Std.rand2f( 230.0, 660.0 ) => target_f1freq;
    Std.rand2f( 800.0, 2300.0 ) => target_f2freq;
    Std.rand2f( 1700.0, 3000.0 ) => target_f3freq;
    
    // random walk the scale
    32 + scale[randWalk()] => Std.mtof => freq;
    // set target period
    1.0 / freq  => target_period;
    
    // wait until next note
    Std.rand2f( 0.2, 0.9 )::second => now;
}

// for shred: generate pitched source, with vibrato
fun void do_impulse()
{
    while( true )
    {
        // fire impulse!
        masterGain => i.next;
        modphase + period => modphase;
        // advance time (modulated to achieve vibrato)
        (period + 0.0001*Math.sin(2*pi*modphase*6.0))::second => now;
    }
}

// for shred: to perform interpolation for various parameters
fun void ramp_stuff()
{
    0.10 => float slew;
    while( true )
    {
        (target_period - period) * slew + period => period;
        (target_f1freq - f1freq) * slew + f1freq => f1freq => f1.freq;
        (target_f2freq - f2freq) * slew + f2freq => f2freq => f2.freq;
        (target_f3freq - f3freq) * slew + f3freq => f3freq => f3.freq;
        0.010 :: second => now;
    }
}

Figure 3.38: A concurrent program framework for singing synthesis, naturally bal-
ancing source generation, musical parameters, and interpolation in three shreds.
(author: Perry Cook)
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ChucK imposes no boundaries on the timing structure of a program - it does not

make any decision about control rate or timing but instead integrates this decision

into the language semantics (which the programmer can easily control). This enables

the programmer to create and simultaneously execute any number of shreds - each

potentially running at a different control rate. As example, Figure 3.38 shows

the code framework for a singing synthesizer where the tasks of musical control

(setting vowels, fundamental pitch), source generation (impulse train, modulated

for vibrato), and interpolation (smoothly ramp to parameter targets at arbitrary

granularity) are represented as three concurrent shreds. This example, while simple,

demonstrates the flexibility of shreds and the potential to build and experiment with

more complex systems (e.g., complex singing synthesis models such as SPASM [18]).

3.6 Where to go from here

In this chapter, we presented the design, specification, implementation, and prop-

erties of the ChucK programming language. Based on these ideas, we next explore

two ramifications of ChucK, On-the-fly Programming and the Audicle.



Chapter 4

On-the-fly Programming

4.1 Motivation

Due to their fundamental expressive power, programming languages and systems

play a pivotal role in the composition, performance, and experimentation of com-

puter audio and electro-acoustic music. Until recently, the design and writing of

computer music programs have been limited to off-line development and prepara-

tion, leaving only the finished program to “go live”. Thus, the gamut of runtime

possibilities is prescribed by the functionalities that are programmed ahead of time.

By contrast, an on-the-fly programmable system provides the ability to write, mod-

ify, compile, and execute new/existing code, and to then integrate it into a running

program with precise timing and synchronization. The goal of on-the-fly program-

ming (or live coding) is to enable programmers/performers/composers to actively

modify the logic and structure of their programs during runtime without having to

stop, code, and restart – for the purpose of rapid experimentation, pedagogy, and

even live performance. For example, performers could add/change modules in their
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synthesis or composition programs, or modify mappings to their controllers during

a live performance. Similarly, composers can experiment with their programs on-

line, modifying synthesis/analysis components, shaping or perfecting a sound, or

changing compositional elements, while being able to hear the result immediately.

Performers have used runtime programmable elements during live performance

and rehearsal. Examples go back as far as to Jim Horton, Tim Perkis, and John

Bischoff of The League of Automatic Composers, who tweaked live electronics with

microcomputers (KIMs) during performance, George Lewis in creating Voyager [51],

the network group The Hub, who used languages like FORTH to modify their sys-

tems online, to more recent laptop computer musicians who compose and perform

via various on-the-fly tools, including command-line, shell scripts, and homemade

software systems [17]. The latter include Alex McLeans’s feedback.pl, Dave Grif-

fith’s Fluxus, JITLIB for SuperCollider, libraries/systems for Python, Ruby, and

others [105] (Figure 4.1), as well as many others that can be found as part of

TOPLAP [82]. As mentioned in Chapter 2 (A History of Music and Programming),

the barriers to entry (social, economical, as well as psychological) have been dras-

tically reduced in recent years, perhaps a sign that computers have become truly

pervasive to the point where they act as nature extensions of our everyday lives. In

the context of music, the computer is a platform for creation and live performance

- no longer just as an end, but also as a self-definable means to achieving musical

results.

The features of the programming tool inevitably shape both the approaches by

which tasks are implemented as well as the end product. By bringing the power

and expressiveness of the programming language into the runtime setting, an on-

the-fly programming system has the potential to fundamentally enhance the real-
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Figure 4.1: An article about live coding, published in Zeitwissen in 2006.

time interaction between the performer/composer and the systems they create and

control. Code becomes a real-time, expressive instrument [97]. We believe that such

a potential is worth exploring. In this section, we define on-the-fly programming

and provide a formal programming model based on ChucK, leveraging its properties

of timing and concurrency, as well as the ChucK virtual machine. In addition, we

discuss an open on-the-fly programming aesthetic.
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4.2 Challenges

In order to bring the power and general expressiveness of programming languages

into an on-the-fly programming setting, we have identified several fundamental chal-

lenges that must be addressed:

• Modularity – code sections should be modular so the programmer can reason

about them or modify them independently. Furthermore, the augmented code

must work together in the same address space and namespace.

• Timing – there must be a strong consistency and notion of time between the

existing and new parts of the program. On-the-fly code segments need to start

and stop with precision.

• Conciseness, expressiveness, and manageability – given the substantial

time constraints of live coding, we ask: how can ideas be realized concisely

and expressively in code? How do we reason about time and data flow easily?

• Flexibility – how flexible is the system? Does it allow programmers to take

advantage of the expressive power of programming languages in a real-time

setting?

4.3 A ChucKian Approach

In this section, we describe the ChucKian on-the-fly programming model. We do so

in terms of external and internal semantic. We reason about properties in the model.

We show that just as concurrency in ChucK is a natural extension of the timing

mechanism, we can leverage the timing mechanism and concurrency to address the

challenges of on-the-fly programming.
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4.3.1 External Interface

The on-the-fly programming model, at a high-level, can be described in the following

way. A ChucK virtual machine begins execution, computing audio (as necessary),

keeping time, and waiting for incoming shreds. A ChucK shred can be on-the-

fly assimilated into the virtual machine, sharing the program address space and

global timing mechanism, and is said to be active. Similarly, an active shred can

be dissimilated, or removed from the virtual machine, or it can be suspended or be

replaced by another shred. This interface is designed to be simple, and delegates

the actual timing and synchronization logic to the code within the shred, leaving

this flexibility (and responsibility) to the programmer.

The high level commands to the external interface are listed below. They can be

invoked on the command line, in ChucK programs (as functions calls to the machine

and compiler objects), over the network, via customized graphical interfaces, or by

other appropriate means.

• Execute – begins a new instance of the virtual machine in a new address space.

Typically, this operation is used at the beginning of the session. Multiple

instances of the virtual machine can coexist. The shreduler begins to keep

track of time.

• Add – type-checks and compiles a new shred (from a ChucK source file, a string

containing ChucK code, or a pre-compiled shred). If there are no compilation

errors, the shred is allocated and sporked in the virtual machine with an unique

ID. A new virtual stack is allocated, and the shred is shreduled immediately

to execute from the beginning. When add fails due to compilation errors, the

virtual machine continues to run as before while the programmer can attempt

to debug, correct, and re-add the code.
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• Remove – removes a shred by ID or name from the virtual machine. The

shred and its child objects are finalized and reclaimed.

• Replace – invokes a remove operation followed by an add – the two compo-

nents happen instantaneously in ChucK time.

• Status – queries the status of the virtual machine for the following types of in-

formation: (1) a list of active/suspended shred ID’s, source/filename, duration

since assimilation (spork time), and (2) information on virtual machine state:

currently executing shred, shreduler timeline, and other statistics by various

parts of the system.

For example, Figures 4.2 and 4.3 show code that adds, replaces, and removes

two shreds using separate methods.

# start VM with “infinite time-loop” 
shell%> + `while(true) 1::second => now;` 
# add foo.ck 
shell%> + foo.ck 
# replace shred 0 with bar.ck 
shell%> = 0 bar.ck 
# remove all shreds 
shell%> --remove.all 

Figure 4.2: “external” ChucK shell commands for adding/replacing code.

// add shred from file "foo.ck" 
Machine.add( "foo.ck" ) @=> Shred @ foo;
// advance time by 500 milliseconds 
500::ms => now; 
// replace foo with "bar.ck" 
Machine.replace( foo, "bar.ck" ) @=> Shred @ bar;
// advance time by 2 seconds 
2::second => now;
// remove bar 
Machine.remove( bar ); 

Figure 4.3: “internal” ChucK shell commands for adding/replacing code.
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The code-runs-code feature is powerful because it allows a program to self-

manage shreds on-the-fly with sample-synchronous precision. Users can also as-

similate shreds that themselves add (potentially many) additional shreds, each with

precise timing. Because the compiler and the virtual machine run in the same pro-

cess, much of the intermediate processing can be eliminated. Finally, the ability

to evaluate strings as code at runtime opens the possibility for self-generating on-

the-fly programs with fast compilation-to-runtime response. The status feedback is

helpful for quickly surveying the state of the system and is particularly useful in

an on-the-fly setting because it can identify hanging or non-cooperative shreds. For

example, if the system runs a shred containing an infinite loop that fails to advance

time, it will cause the virtual machine to hang indefinitely. However, the on-the-fly

programmer can identify and remove misbehaving shreds from the virtual machine

manually, resulting in reduced interruption to the performance or session. While

this recovery mechanism is far from perfect, it can be much more advantageous than

killing the system and restarting. Additionally, it can help the composer/performer

tweak the system by identifying shreds that are taking too much CPU time and

optimize them individually. This high-level framework uses concurrent shreds as

modules and provides a means of managing them. This has led to new interfaces

for expressive audio coding, in the Audicle and miniAudicle (discussed in Chapter

5, Audicle). (In performance situations, sheer “redundancy” can also help, for ex-

ample in the form of coding with a partner, or even simply running several instances

of ChucK on multi-core machines!)
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4.3.2 Internal Semantics

The approach described in this subsection deals with the problem of precise timing

between on-the-fly modules. The goal is to provide a consistent and accurate mech-

anism for shreds to synchronize with each other. In our model, the semantics are

natural extensions of the ChucK timing mechanism. By querying and manipulating

time using the special variable now, the programmer can determine the current

time, and specify how the code should respond. By the properties of ChucK timing

and concurrency: (1) now always holds the current ChucK time, (2) changing the

value of now advances time in ChucK and has the side effect of blocking the current

shred (allowing audio and other shreds to compute) until now holds the value that

was assigned to it, (3) if t is of type time, t => now advances time until t equals

now, (4) if d is of type dur (a duration), d +=> now advances time by d. We

illustrate this below with some common code segments that synchronize to time

(Figures 4.4 to 4.7).

// let time pass
now + 10::second => time later; 
later => now;

// (or alternately)
10::second +=> now; 

Figure 4.4: Two methods to “synch” with a later time.

// synch/advance to time t
t => now;

Figure 4.5: “Synching” to some absolute time.

The simple timing building blocks allow programmers to precisely specify many

more timing and synchronization behaviors. These statements can be placed and
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// period to synchronize to
120::ms => dur T;
// advance time by remainder
T – (now % T) +=> now;

Figure 4.6: Define a period; synchronize to next period boundary.

// advance time by remainder, plus offset
T – (now % T) + D +=> now;

Figure 4.7: Synchronize to period boundary, plus offset.

combined at arbitrary points in the code. For example, to initialize time-based

synchronizations in a piece of code, directives may be placed near the beginning of

a shred to synchronize to time before moving on.

4.4 An On-the-fly Aesthetic

Our on-the-fly aesthetic is one where the process of programming (both action

and thought) is conveyed to the observer/listener. In the classroom, on-the-fly

programming can be a powerful vehicle for showing how to construct a particular

algorithm step by step, while maintaining both a visual and sonic (and hopefully

also mental) footprint throughout the entire process. Students can immediately hear

how modifying parts of an algorithm can affect the result. In terms of performance,

it addresses two important issues in computer music performance. First, it can be

argued that many technical and aesthetic intentions are often difficult to discern

in performance. The on-the-fly programming aesthetic helps address this concern

(when desired), for it provides a way for the audience to perceive both the intention

and the result. A single performer configuration can be seen in Figures 4.8 and

4.9. A two-performer schematic and realization can be seen in Figures 4.10 and
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4.11. In the experience of the author, the two person configuration is much more

enjoyable and fun, for it not only alleviates the stress of coding under pressure by

naturally load balancing between the players (as one performer “riffs”, the other

might begin coding the next section), but also provides much more opportunity for

musical interplay (especially since the instrument itself is, by definition, adaptable).

In the extreme case, live coding of this kind has been carried out on an orchestral

scale, with 15 to 20 live coders contributing to a single sonic and musical entity

(this is discussed in Chapter 6, Applications).

The second problem that the on-the-fly aesthetic addresses is the issue of vir-

tuosity in computer music. On-the-fly programming provides a platform where the

performer is able to render various types of mastery and creativity that can be im-

mediately appreciated, or at least perceived. While typing speed alone may or may

not inspire, the general expressive power of programming languages opens unlimited

possibilities for clever approaches and beautiful design. The timing semantics make

ChucK code straightforward to follow, allowing the audience to more quickly and

easily appreciate the design and construction of on-the-fly programs.

While this framework has many desirable properties, it is still unpolished and

unwieldy in many respects, partly because writing (and thinking about) code in-

herently takes time. Future work may look into programming tools that better

understand the deep structure of the program being written and facilitates writing

and debugging on-the-fly. Also, it would be interesting to investigate reducing mod-

ular granularity, allowing finer sections of code to be runtime modified. In the next

chapter, we present a graphical on-the-fly environment designed to both facilitate

and visualize the on-the-fly programming process.
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On-the-fly 
Performer

Code 
Projection

Figure 4.8: An on-the-fly programmer/performer and code projection.

Figure 4.9: An on-the-fly programmer/performer and code projection (close-up).
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  while( 1 ) 
      1::second +=> now;
  ---
  chuck vm %> sporking shred 'foo'

chuck vm status:
---

shred 'foo' : active : 3m5s 
shred 'bar' : suspended : 10m20s

computer

projection

speaker

projector

Figure 4.10: A schematic for a double-projection, on-the-fly duet.

http://chuck.cs.princeton.edu/

Figure 4.11: A On-the-fly Programming collage, prepared for Art Gallery perfor-
mance at SIGGRAPH 2006.



Chapter 5

The Audicle

5.1 Introduction

Software environments play a pivotal role in the creation and performance of com-

puter music, not only in terms of providing means of working with sound, but also in

encouraging ways of thinking about ideas might be realized. Development environ-

ments provide the setting to design/implement audio and music algorithms, whereas

runtime environments realize and render these algorithms into sound (and images),

and allow performers to interact with the system. In this chapter, we present a

new type of audio programming environment that integrates the programmability

of the development environment with the immediate feedback of the runtime en-

vironment. The result, called the Audicle, is an integration of a “smart” editor,

compiler, virtual machine, and debugger – all running in the same address space,

sharing data, and working together at runtime. We believe these types of augmen-

tation have the potential to fundamentally enhance the way we write, visualize, and

interact with audio programs. This chapter discusses the main components of the
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Audicle, and show that it not only provides a useful class of programming tools for

real-time composition and performances, but also motivates a new type of on-the-fly

programming aesthetic – one of visualizing the audio programming process.

5.1.1 Motivation

A simple but important question to ask here is: why investigate the program-

ming environment? We believe that the programming language and environment

fundamentally influence how we think about and write programs. ChucK, as a pro-

gramming language, provided different ways of reasoning about time, data-flow, and

concurrency. The Audicle is designed to enhance and complement these features,

to make some of them more accessible and perhaps more enjoyable to use for sound

and music.

Debugger

Editor

Compiler

VM

Figure 5.1: Completing the loop. The Audicle strives to bridge runtime interactions
with development-time elements.

The Audicle differs from traditional environments in the following ways. Con-

ceptually, it brings the editor and compiler into the runtime environment, in an

effort to support a greater level of interactivity in the programming process (Figure

5.1). Secondly, it is tightly coupled with a programming language – in this case,
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ChucK. This coupling leverages and enhances the ChucK properties of precise tim-

ing and concurrency. This is different from systems like Max and Pure Data, where

the environment essentially is the language. The Audicle aims to complement the

language and to enhance the ability to rapidly develop and visualize programs both

offline and on-the-fly. Thirdly, the Audicle embodies the aesthetic and mentality

of visualizing the programming process and the state of the runtime system. The

various goals and considerations in the design are as follows.

• Context-sensitivity. The environment should allow code to be clearly en-

tered and represented. Also, it should have some knowledge of the structure

and revision history of the program as well as runtime information (such as

program statistics) – and use this information to aid the programmer to more

easily write code.

• On-the-fly Programming. On-the-fly programming is the practice of cod-

ing at runtime – while the program is running. The Audicle aims to complete

the development/runtime loop by bringing the editor and compiler to the vir-

tual machine, and vice versa. By making components accessible to each other,

new interfaces and paradigms for runtime audio programming may avail them-

selves to the programmer.

• Different Views. Having different views of the same program can be use-

ful to writing and fine-tuning code. The Audicle should allow a program

to be viewed and manipulated in many ways: as concurrent code, syntac-

tic/semantic representations, or in terms of timing and synchronizations. Ad-

ditionally, the Audicle is a visualization of the process of on-the-fly program-

ming; this has potential to a useful performance and educational tool.
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• Minimalist Design. The Audicle provides a minimal interface, and relies on

the underlying interactions of the language and the multiple viewing models

to achieve a great deal of expressiveness and power, while trying not to impose

any particular programming style.

5.1.2 Related Environments

An environment, in the context of this investigation, is defined as a comprehensive

software setting in which programming and/or runtime control is carried out or fa-

cilitated. Many environments have been developed for programming, performance,

and composition. We examine some, as well as several related environments not

specifically intended for audio and music.

Development environments provide a setting to write and edit programs, and

often include a compiler and debugger. Examples include graphical environments

such as Max/MSP [68] and Pure Data (Pd) [69], integrated development environ-

ments (IDEs) for text-based languages such as Java and C/C++, Nyquist [24], and

SuperCollider [58], and software frameworks such as Ptolemy [49]. These environ-

ments allow code, flow graphs, and other programming constructs to be entered,

compiled, and run.

Runtime environments, on the other hand, provide an engine and a related set

of interface elements for manipulating parameters at runtime (and often in real-

time). Examples include the performance mode of Max/MSP, as well as Real-Time

CSOUND [91], and Aura [25]. These environments compute audio in real-time,

taking in data from input devices and UI elements, and may also display graphical

or video feedback.
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On-the-fly environments possess elements of both programming and runtime

systems, offering the capability to modify the structure and logic of the executing

program itself. Several existing environments possess varying degrees of on-the-

fly capabilities. Max and Pd give programmers ability to change aspects of their

patches at runtime. The SuperCollider environment allows for synthesis patches

to be sent and added to a server in real-time, as well as engage in live coding

via libraries like JITLIB [17]. Another interesting system for runtime graphical

and virtual-reality programming is Alice [66], which allows users to create a vir-

tual world, and to add and modify behaviors on-the-fly using a high-level scripting

language (Python in this case). This rapid-prototyping graphical environment is no-

table for having no hard distinction between development and runtime. Similarly,

MATLAB [56], while not intended as a real-time programming tool, has a com-

mand line that directly uses statements from the language and embodies a similar

immediately-run aesthetic.

5.2 Audicle Design

The Audicle is a graphical, on-the-fly audio programming environment based on

the semantics of ChucK’s strongly-timed programming model and on-the-fly pro-

gramming. These features are strengthened visualization in the Audicle. Thus, the

graphical nature of the Audicle is given much consideration in the design; it is to be

visually meaningful, and open to customization. The idea is to provide a set of tools

and visualizations that can be combined into more complex configurations and us-

ages. Much of the information is conveyed by 3D shapes, which can be viewed from

virtually any viewpoint or distance, and rendered exclusively using 3D graphics.
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The Audicle makes no distinction between development and runtime: all com-

ponents are fully accessible at runtime. This integration is based on the ChucK

compiler and virtual machine – augmented with a smart editor and interfaces for

viewing concurrency, timing, and system state. As in ChucK, data-flow and time

are fundamentally decoupled. Also, the Audicle’s architecture adopts a decoupled

simulation model for virtual reality [77]. In this model, the simulation can operate

at an arbitrary rate independent of the graphics rendering-rate, leading to smoother

graphics and more flexibility in the simulation algorithms. In the Audicle, audio

synthesis, graphics, and simulation are loosely-coupled, with the highest priority

given to audio computations and the virtual machine.

5.3 Faces of the Audicle

Out of the desire to provide a simple, “graspable” virtual environment and interface,

the various facets of the Audicle are mapped and displayed on the faces of a virtual

cube, called the Audicube (though it’s still unclear whether this was a good idea).

This 3D object with different faces can be seen as Audicle’s way of representing

related material from different perspectives. At any time, the user can interact

with one face, and has the ability to move to other faces by using hotkeys, graphical

interface, and Audicle shell commands. There is a command-line console (Figure

5.2) that can be invoked to appear over the currently active face, allowing on-the-fly

programming and other commands to be executed.
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current face1
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audicle %> face editor;
audicle %> 2::second => dur later;
audicle %> until( now > later ) {
               machine.spork( trigger );
               100::ms +=> now; }
audicle %> _

1

 05:23:004now

Figure 5.2: The Audicle Console. The cube interface (left) can be used to graphi-
cally navigate the AudiCube. The command line prompt on the right accept text
commands.

5.3.1 The ShrEditor

The first face of the Audicle, the ShrEditor, is a place for the programmer to write,

organize, and listen to ChucK programs (Figure 5.3). One can open and modify

existing ChucK programs or create new ones. Code can be sporked by clicking the

green “S” circle at the top of the buffer. The code runs immediately, allowing the

result to be heard. Error messages are displayed in pop-up boxes.

Once a shred is sporked, a numbered circle will appear on the right side of the

buffer window. This is a visual representation of a running version of the shred (the

number is the shred’s ID). Different versions appear under revision tabs, keeping a

history that the programmer can browse and recall (Figure 5.4). When a program

is modified, the ShrEditor will automatically track it. The programmer can also

drag a version to split it from from the initial buffer (Figure 5.5), and view it in its

own window.

When many buffer windows are open, it may be difficult to locate a particular

buffer of code (Figure 5.6). To facilitate this, the ShrEditor allows users to “drag and

throw” buffers, and literally forage through a cluttered environment (this doesn’t

necessarily help the clutter, but can help find a piece of code with less mouse

movements, plus the interaction is potentially cool to look at, especially for live
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coding audiences). Additionally, the “throwing” of windows can be can seen as a

“physical” analogy to “chucking”.

Figure 5.3: The ShrEditor: a version-tracking on-the-fly editing interface.

Figure 5.4: “Grapes” represent running shreds, grouped by revision.
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Figure 5.5: One can drag revisions to split text buffers.

Figure 5.6: Many on-the-fly coding buffers.

5.3.2 VM-Space

The VM-Space is a useful face for quickly viewing the audio synthesized by ChucK

programs (Figure 5.7). The visualization is based on the sndpeek visualization
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software [61]. Stereo/multichannel audio is mixed to mono before being visualized.

The blue line on top renders the time-domain waveform. The green lines below make

up a waterfall plot of the short-time fourier transform (STFT). This information

is useful for debugging sound synthesis algorithms, allowing the programmer to

observe the sound, coupled with two of its visual representation.

By clicking on the yellow sphere to the right side of the window, one can change

the type of the transform window (e.g., hann, hamming, blackmann-harris, or rect-

angular). Clicking on the red sphere displays the current window. By clicking and

dragging anywhere within the Audicle window, one can view the STFT waterfall

plot from different angles.

Figure 5.7: VMSpace: Audicle face to visualize real-time audio and spectra.
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5.3.3 Shredder

The third face of the Audicle, the Shredder, gives a visual representation of the

shreds currently running in the ChucK Virtual Machine, as well as a summary of

statistics about shreds, updated in real-time.

Each shred is visualized as a separate colored sphere. The spheres rotate on

their own, at an angular velocity proportional to the number of virtual machine

instructions executed per second. By clicking and dragging anywhere within the

Audicle window, you can change your view of the spheres. When shreds are active

in the virtual machine, their corresponding spheres move in the plane of shredular

existence. Once a shred finishes (or is removed from the VM), it leaves and floats

away into the distance (Figure 5.8).

By clicking on the green sphere in the bottom right of the Audicle window, the

programmer can view a textual list of shreds (both active and finished), as well

as real-time statistics about each shred (Figures 5.9 and 5.10). They include the

following information.

• the identification number assigned to the shred by the virtual machine.

• whether a shred is currently waiting or running. (Since the model in ChucK

is to compute between advancing time, it can be extremely rare to “catch”

a shred in a running state – unless it’s failing to advance time. This can be

useful for identifying hanging shreds)

• where the code came from (e.g., from buffer, file, or network).

• number of VM bytecode instructions executed.

• number of times the shred has advanced time, also called activations.

• a ratio of executed VM instructions to activations.

• dynamically computed average control rates.
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Figure 5.8: The Shredder: visualizing active and deactivated shreds (the latter
ascending towards viewer.

Figure 5.9: The Shredder: an Audicle face to visualize and monitor shreds.
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Figure 5.10: The Shredder: a top-down view.

5.3.4 Time and Timing

The Time ’n’ Timing (or TnT) face of the Audicle visualizes the real-time temporal

interactions of active shreds (Figure 5.11). Each row corresponds to a shred, and

each vertical spike represents when a shred “wakes up”, or is activated, to compute.

Using this face, it’s possible to gain an understanding of the relative timing of

shreds, without necessarily having to look at the code.

5.3.5 Tabula Rasa

The original design of the Audicle included the Tabula Rasa face. Conceptually,

this face was intended to be a “blank slate” for rendering custom real-time graphics,

as specified in ChucK code. As of this writing, this face is currently unimplemented.
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Figure 5.11: Time ’n’ Timing (TNT): Audicle face to visualize relative timing be-
tween shreds.

5.4 Audicle Implementation

The Audicle’s implementation consists of a graphical rendering engine, an I/O and

networking system, a minimal windowing system, and internal logic with interface

into the ChucK virtual machine. The implementation is in C/C++, with some

high-level components written in ChucK. All components run in the same address

space.

The graphics-rendering engine of the Audicle (implemented in the OpenGL API)

runs on Mac OS X, Linux, and Windows. Using 3-D graphics with real-time audio

synthesis is feasible and can be highly beneficial. With even modest graphics hard-

ware support, the vast majority of the rendering can take place on the GPU (graph-

ics processing unit), leaving the vast majority of CPU cycles for audio-related tasks.

Using custom-built, minimal user interface elements, we can handle user-interface
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events more efficiently than the windowing sub-system, and with potentially bet-

ter responsiveness. Because the rendering-rate stays relatively constant (at 30+

frame/second), the CPU usage stays constant and is less subject to large bursts due

to user interface processing. Also, 3D graphics is flexible. It can emulate 2D when

needed, and also provides significant viewing freedom.

5.5 miniAudicle

While the Audicle presents several useful visualizations and interactions, it can be

somewhat difficult to use for writing code in longer sessions. This motivated the

miniAudicle [74], an GUI-oriented, integrated environment for developing programs

using ChucK (Figure 5.12). miniAudicle features a text editor, an embedded virtual

machine, a virtual machine monitor, a stdin/stderr monitor for displaying log and

error messages from the virtual machine, a ChucK shell, and support for on-the-fly

programming commands like add, remove and replace. miniAudicle also supports

creation and usage of typical graphical user interface widgets directly from ChucK

code, for modifying program behavior and parameters at runtime. Currently, the

miniAudicle uses the Cocoa API in the Mac OS X operating system, and WxWidgets

under Windows and Linux, to render its graphical user interface.

5.6 Discussion

The Audicle is intended to be at once a development environment, a runtime en-

vironment, a visualizer, and a out-of-the-box on-the-fly programming performance

platform. (Andrew Appel once noted that it is “program monitoring as performance

art”.)
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Figure 5.12: miniAudicle: a lightweight integrated development environment for
ChucK and on-the-fly programming.

On-the-fly programming opens the potential for interesting interactions and vi-

sualizations in the audio programming process. Through the different faces in the

Audicube, the programmer, composer, and performer can develop code in a version-

tracking editor, and simultaneously visualize its behavior in terms of concurrency,

timing, and runtime interactions with the rest of the system.

The integrated, on-the-fly environment of the Audicle helps to complete the

development-runtime loop. The expressive power of coding is made available for

runtime manipulation. In turn, on-the-fly information from runtime aids the devel-

opment process, refining the powers of both. We gain the advantages of immediate

feedback in an ever-modifiable continuum.
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Additionally, the Audicle encourages the rapid prototyping mentality where con-

tinuous exploration and experimentation are valued. The Audicle further motivates

the notion of runtime programmability as a form of performance, where code is used

to expressively control audio synthesis/analysis and the process is conveyed to the

audience. It also provides a platform where a degree of virtuosity can evolve. Due

to its visual nature and immediate feedback, the Audicle can also be a useful com-

positional environment, where the composer can incrementally work on concurrent

parts of a program piece. Similarly, it could function as an educational tool for

teaching synthesis, audio programming, and multimedia. Potentially, the Audicle

is the beginning of a new class of environments for developing programs on-the-fly,

as well as for visualizing the audio programming process.

We look forward to experimenting with new interfaces for on-the-fly editing and

code control, and new types of visualizations. Also, future work might investigate

the technical and aesthetic aspects of collaborations between remotely connected

Audiclae (plural form of Audicle), as well as new on-the-fly programming systems

and environments (see Future Works in the Conclusion chapter).



Chapter 6

Applications and Evaluations

The ChucK programming language has found a variety of applications in composi-

tion, performance, sound design, research, and pedagogy – and continues to explore

new areas of use. This chapter describes a number of endeavors to which ChucK

has been applied, and evaluates the impact and effectiveness in those cases.

To provide a context for some of these applications, and for those that are curi-

ous, we first trace the evolution of the ChucK language and its various milestones in

development and use. Section 2 discusses using ChucK as a teaching tool, particu-

larly in the Princeton Laptop Orchestra, Stanford University, and other institutions.

Section 3 examines ChucK as a software tool for composition and real-time perfor-

mance, focusing on works in on-the-fly programming, sound design, building and

testing interactive systems, and again in the context of the laptop orchestra. Some

pieces created using ChucK are described. Feedback from the community and from

students are presented. Finally, Section 4 discusses additional applications.

116
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6.1 Evolution of ChucK

The ChucK programming language has evolved rapidly since its inception in 2002

(Figure 6.1). It was first presented at the 2003 International Computer Music

Conference in Singapore [95]; the first ChucK live coding performance occurred

shortly thereafter. ChucK source code (version 1.1, codename Frankenstein) was

released under the General Public License (GPL) in Summer of 2004. In the same

year, on-the-fly programming using ChucK and the Audicle were also introduced

[97, 98].

2005 (Figure 6.2) saw a redesign of the language which supported arrays, object-

oriented programming, events, as well as support for Open Sound Control [104],

controller-mapping [102], and human-interface devices (HID). ChucK/Audicle were

being presented in various venues (Vancouver, Barcelona, Rome, Beijing) and the

development team had grown to more than a dozen programmers, testers, and doc-

umenters. In the fall of 2005, Princeton Laptop Orchestra (PLOrk) kicked off,

founded by Dan Trueman and Perry Cook, and developed and instructed by True-

man, Cook, Scott Smallwood, and the author. This provided a intense platform for

ChucK pedagogy, development, and deployment in compositions and performances.

The years spanning 2006 and 2008 (Figure 6.3 and 6.4) witnessed an intensified

usage of ChucK both at Princeton University, Stanford University (where the author

started on the faculty of the Center for Computer Research for Music and Acoustics

(CCRMA) in 2007, while continuing to write this document), and in the community

at-large.

New features continued to make their way into the language, and new experi-

ments were carried out, including building graphical interfaces in the Audicle cou-

pled to ChucK code for dealing with topics such as sound synthesis, audio DSP
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[19, 80, 65], networking [102], and the integration of ChucK into audio analy-

sis/synthesis frameworks, notably TAPESTREA [62]. Live performances took place

at different scales and venues, ranging from solo and duo performances to orchestras

consisting of 15 to 20 laptops.

6.2 Teaching ChucK

Many opportunities have been taken to make use of and assess ChucK as a pedagog-

ical tool for sound synthesis/analysis, physical modeling, programming, computer-

mediated instrument design, and live performance. As the timelines (Figures 6.1,

6.2, 6.3, 6.4) document, ChucK has been presented to different types of audiences –

in conference presentations, workshops, demonstrative performances, and courses.

By far, however, our most intense and first-hand user study and experience with

teaching ChucK first came with the Princeton Laptop Orchestra (PLOrk) [103], and

subsequently at CCRMA and in the Stanford Laptop Orchestra [94]. The results

suggest that ChucK is highly effective in teaching both audio/music and program-

ming to experienced and novice programmers alike.

This section documents the experiences of teaching ChucK at Princeton and

other institutions, and evaluates the results. We begin with ChucK in the Prince-

ton Laptop Orchestra and then move to other settings. We examine and evaluate

the laptop orchestra classroom and its approaches for teaching, especially in the con-

text of ChucK. In doing so, we describe an integrated, naturally interdisciplinary

teaching/learning environment for computer science, music, and performance. In

such an environment, the learning and internalization of technical knowledge hap-

pens symbiotically with the acquisition of aesthetic and artistic awareness; there
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Fall 2002
Initial design

Spring 2003
Prototype 

implementation

May 2003
Ge's generals 

exam: "ChucK" September 2003
ChucK presented at 

ICMC 2003 in Singapore
November 2003

Perry and Ge debut as 
ChucK Double Projection 

Duet at LITSK 2003 in 
Princeton

Spring 2004
TOPLAP was 

formed

Spring 2004
Audicle design, 
implementation 

beganJune 2004
On-the-fly Programming 

presented, On-the-fly 
Counterpoint performed at 
NIME 2004 in Hamamatsu, 

Japan.

June 2004
chuck-1.0 (frankenstein) 
released on MacOS X, 

Linux, and Win32

Fall 2004
Synthesis Toolkit 
(STK) ported to 

ChucK

October 2004
ChucK presented at ACM 
Multimedia 2004 in New 

York City;

October 2004
ChucK Double Projection 
premiered at FFMup in 

Princeton

November 2004
ChucK mailing lists 
membership: 100

November 2004
Audicle presented at 
ICMC 2004 in Miami

November 2004
Audicle faces: ShrEditor, 

VM-space, Shredder, 
Time/Timing

September 2004
Phil and Ge 

presented ChucK at 
Share in NYC

to 2005

Figure 6.1: Timeline: evolution of ChucK, 2002-2004.
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February 2005
ChucK presentation and 

workshop at Transmediale 
2005 in Berlin; 10-person 

TOPLAP live coding 
performance at Club Maria 

(various systems)

May 2005
ChucK workshop at NIME 

2005 in Vancouver, Canada; 
ChucK Controller Mapping 

Techniques presented 
(Ge, Perry, Ananya, 

Ajay, Adam)

August 2005
ChucK redesign;

chuck-1.2 (dracula) released, 
supporting arrays, classes, 

events, OSC, and additional 
new language features

September 2005
Princeton Laptop Orchestra 

(PLOrk) kicked off! 
Semester one, teaching ChucK to 
15 undergraduate freshpersons

September 2005
Designing ChucK and  
Co-Audicle presented 

at ICMC 2005 in 
Barcelona, Spain

September 2005
"Nick Collins vs. Ge 
Wang" Live Coding 
Bout at Off-ICMC in 

Barcelona
October 2005

new Audicle face: 
Elcidua the Dancing 

Dude

October 2005
ChucK/Audicle 

presented at University 
of Rome, Italy

October 2005
ChucK/Audicle presented 
and performed at Central 
Conservatory of China / 

MusicAcoustica 2005 and 
Beijing University

November 2005
Perry + Ge Double 

Projection Duet at FFMup, 
VOMID controller premiers

December 2005
ChucK gained HID support; 

ChucK manual released

Christmas 2005
Audicle (prototype) and 

miniAudicle (OS X) initial 
release

to 2006

to 2004

Figure 6.2: Timeline: evolution of ChucK, 2005.
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January 2006
Princeton Laptop Orchestra 

Debut Concert; 7 pieces 
employed ChucK, including On 

the Floor and  Non-Specific 
Gamelan Taiko Fusion

January 2006
new Audicle face: 

Non-Specific Groove

February 2006
Princeton Laptop 

Orchestra 
Semester 2 beganSpring 2006

ChucK integrated into 
Tapestrea; initial 

pieces: Zoo and Loom

February 2006
ChucK/Audicle 

presented at dorkbot-
nyc

February 2006
ChucK add multi-channel 

audio support, 
broadening possibilities, 

including for PLOrk

April 2006
Princeton Laptop 

Orchestra Premiered at 
Richardson Auditorium in 

Princeton

April 2006
Graham Coleman 

presented ChucK at 
dorkbot-atlanta

April 2006
Perry and Ge Double 

Projection Duet 
performed at Penn 

State University, Cross 
Currents Festival

April 2006
Week-long ChucK 

workshop + seminar + 
performance at the School 

of the Art Institute of 
Chicago; ChucK presented 

at dorkbot-chicago

May 2006
Princeton Laptop 

Orchestra Concert: "PLOrk 
in the Round", new ChucK 

pieces: Like a Breeze 
Brings..., Clix, and ChucK 

ChucK Rocket

May 2006
new Audicle faces: Skot 
Machine, ChucK ChucK 

Rocket!!!

May 2006
Princeton Laptop 

Orchestra Performs at 
Dartmouth College

June 2006
ChucK mailing lists 
membership: 350

August 2006
Perry + Ge performs 

"On-the-fly Counterpoint" 
at SIGGRAPH 2006 Art 

Gallery in Boston

to 2005

...

Figure 6.3: Timeline: evolution of ChucK, 2006.
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Fall 2006
Perry and Ge directed 

Princeton graduate seminar 
on "Composing for Laptop 
Orchestra".  ChucK heavily 

used as teaching tool

Fall 2006
Ge also taught DSP course at 

Dartmouth Electro-acoustic 
Music Program.  Weekly 

commute

October 2006
PLOrk Debuts in NYC at the Ear to 

the Earth Festival.  New 
environment-oriented works, ChucK 
pieces included Take it for Granite, 

Cirrus Pattern, and Crystalis

November 2006
ChucK workshop, Loom 
premiers at ICMC 2006 

in New Orleans

November 2006
Rebecca and Ge 

developed and premiered 
PLOrk Beat Science

November 2006
PLOrktastic Chamber 

Music premiers in 
Princeton at ffmup

January 2007
Rebecca and Ge developed 
SMELT, a toolkit for building 

new instruments from the 
physical laptop

January 2007
PLOrk Winter 

Concert, 10 works 
used ChucK February 2007

4th PLOrk semester 
began, with guest 

director Luke Dubois

2006 continued

to be continued...

April 2007
Rebecca and Ge developed 
the Unit Analyzer (UAna) for 

combining audio analysis 
and synthesis in ChucKMay 2007

PLOrk Spring Concert, 
performance of TBA, premier 

of orchestral live coding
Fall 2007

Ge started on the faculty at 
Stanford University/CCRMA; 

continuing to work on this 
document...Spring 2008

Stanford Laptop Orchestra 
was founded.

Figure 6.4: Timeline: evolution of ChucK, 2006-2008.
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is only one explicit goal: learn to make compelling computer-mediated music to-

gether in an academic setting; all other learning happens “along the way” or “by

accident”. We believe this is an exciting new environment where the learning of

interdisciplinary knowledge is not only natural, but also inevitable (and fun).

6.2.1 Princeton Laptop Orchestra

In fall of 2005, PLOrk commenced in its inaugural semester, instructed by Dan

Trueman, Perry Cook, Scott Smallwood, and the author [86, 85, 79, 103]. This

first-of-its-kind ensemble and course consisted of 15 independent laptop/six-channel

speaker array stations programmed and operated by 15 undergraduates freshmen,

to whom we taught Max/MSP and ChucK. The students entered the class with no

prior programming experience. However, over the following 4 months, we covered

topics ranging from sound synthesis/design to programming to controller mapping

and live computer-mediated performances. The students took very well to ChucK

from the beginning, and while we did not formally cover advanced topics (such

as object-oriented programming), all the students internalized the language to the

point they can comfortably focus on creating compositions and performances.

For example, an early assignment (3rd week) asked the students to build a

generative drum machine using ChucK, employing the time control and concur-

rency mechanisms in the language, and perform it using on-the-fly programming.

We were extremely pleased to discover the students delivered quality works that

demonstrated both technical comprehension and creative zeal. Subsequent assign-

ments, including trio/duo performances, creating a soundscape, met with similar

enthusiasm and success. Descriptions of some representative ChucK assignments

are reproduced in the next section.
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Figure 6.5: PLOrk class in session.

Much of the success was undoubtedly due to the sheer creative will and energy

of the students (they all were fantastic), at the same time it also demonstrated that

ChucK can be a viable teaching tool. Below is an encouraging quote (reproduced

from the README to the drum machine assignment) from Anna, a student in the

first PLOrk class (and a talented cellist):

“... However, when everything worked the way it was supposed to,

when my spontaneous arrangement of computer lingo transformed into

a musical composition, it was a truly amazing experience. The ability to

control duration and pitch with loops, integers, and frequency notation

sent me on a serious power trip.”
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Pillow and Mat

6-channel 
Hemispherical 

Speaker

Laptop 
and Rack

PLOrkers
(at ease)

Figure 6.6: PLOrk setup (individual stations).

It wasn’t all smooth sailing, of course, a multitude of bugs/features were dis-

covered, and a lot of on-the-fly fixing took place. But no one got discouraged, and

we introduced a lot of features and bug fixes (and new bugs) as a result. Also, we

taught topics using Max/MSP at the same time, which turned out to be pedagog-

ically fruitful, since it exposed two drastically different paradigms. This was also

practically because Max and ChucK tended to crash in different places, and having

several options for the task-at-hand is usually good.

6.2.2 Assignments

In this subsection, we document some representative project specifications based on

ChucK, assigned to students in the laptop orchestra.
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Figure 6.7: PLOrk setup (minus humans).

Play with ChucK!

In this first assignment, the goal was to ease everyone into the language and envi-

ronment and to provide a creative space in which to experiment. The assignment

read thus:

1. Run the examples given (don’t hesitate to post/email questions).

2. Open up a few programs (try using TextEdit on OS X, or WordPad on Win-

dows) and get a general idea of the code. Try modifying some of the param-

eters, save the file (perhaps under a different name), and run it with ChucK.

Does the result sound simlilar to what you expected?
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3. Create two ChucK programs (of arbitrary length), either using one of the

examples as a model or starting from scratch; One program should generate

sound(s) or music that is “rhythmic”. the other program should generate

sound(s) or music that has little or no “rhythm”. you define what “rhythmic”

means. We will play these programs together in class.

4. Turn in the programs with a short README file that explains the two pro-

grams you have created and any interesting experience or problems you en-

countered in their making.

PLOrkers
(in position)

Perry
(at ease)

Figure 6.8: PLOrk in action.
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Drum Machine

This second assignment turned out to be successful in allowing the participants to

understand the main ideas of the language (time and concurrency) while operating

within a familiar and creative framework.

1. Create a drum machine using multiple shreds - play them using on-the-fly

commands

(a) Experiment with playing the OTF examples using on-the-flly program-

ming commands (+, -, =, –, etc).

(b) Find drum samples (or samples of other percussive sounds); each sample

should only be a single strike (and not a loop); you may need to edit

Figure 6.9: The Stanford Laptop Orchestra classroom in motion.
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them (e.g., using Audacity or another sound editor); this need not take a

long time, but do pay attention to individual and collective quality and

feel of the sounds, as that will make a big difference in the final result.

(c) Put these files in a folder (your chuck programs will refer to these files).

(d) If possible, credit the source of the samples in your README.

(e) Make a shred for each drum sound (feel free to base them on the exam-

ples).

(f) Choose a tempo that all shreds should agree on (.5::second => T;).

(g) Synchronize to this period at top of each file (T - (now % T) =>

now;). In certain cases, it might make sense to control more than one

drum sound in a shred (like if two sounds always go together). In gen-

eral, however, you should split up the drum machine so that you can

independently control each component.

(h) (optional) Add additional parts (drone, melody, bassline, etc) if you like,

but that is not required - focus on getting the percussive parts done first.

(i) Practice playing the drum machine you created using on-the-flly pro-

gramming commands (+, -, =, –, etc).

(j) Have fun!

2. Write a short README text file that describes what you did and any inter-

esting problems or challenges you encountered.

Soundscape

• Create/compose an ambient soundscape using ChucK (this will further aug-

ment your arsenal of sounds for your final projects). The soundscape should
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be coherent and consistent within some environment/idea/framework of your

choosing, for example:

• Cities of Earth 2049

• The Deep Ocean

• Violent industrialization

• Post-apocalypse landscape

• Charlie and The Chocolate/Hoagie Factory

• (invent your own)

• Guidelines:

– incorporate at least 10 different components

• can be mixture of synthesized or recorded sounds

• can be long or short in duration (a mixture is often good)

• soundfiles: use only short soundfiles (shorter than 5 seconds)

• layer the soundscape in separate chuck programs

• use OTF to control the content and the texture of the world you

create

– try to identify places in your programs where functions might be helpful

(and use them)

– score/script a 4-10 minute composition using these sounds (in text/graph/timeline

or whatever else)

– in your README, describe the unified environment/idea behind your

soundscape

• Optional:
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• interlocking rhythms

• harmonic and melodic ideas

• controllable via MIDI

15 laptops,
90 independently 

addressable 
speakers

Wireless LAN Conducting Area 
(optional)

Figure 6.10: PLOrk setup, onstage at Taplin Auditorium, Princeton.

Trio and Duo Performance

Twice in that first semester of the laptop orchestra, the students formed trio and

duo ensembles to create and perform a computer-mediated work. The first occas-

sion was in class, the second took place in the PLOrk Debut Concert in January

2006, in Taplin Auditorium in Princeton University. A great variety of software and

hardware devices were employed, ranging from sensors (FSR’s, floor tiles, accelerom-

eters, light sensors), WACOM tablets [53], MIDI-based keyboards and drumpads,
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to software for sound synthesis, controller mapping, live audio processing of voice

and acoustic instruments, on-the-fly programming, and networking via OSC. It was

intense but immensely rewarding, as things tended to work to good effect.

6.2.3 Results and Evaluation

The following results and observations were concluded from teaching ChucK in

PLOrk:

• All students became avid and skillful ChucK programmers. As mentioned

before, advanced topics such as object-oriented programming and networking

were not included in the early ChucK/PLOrk curriculum, though several stu-

dents learned about them for various projects. Several students still actively

use ChucK. At the time of this writing (2008), some of the initial students

are now Juniors and graduating Seniors, still using ChucK. One John Fontein

is completing his 6th semester in PLOrk, writing his senior thesis in Music

using ChucK.

• The language turned out to be straightforward to learn, and can be highly

effective in teaching programming concepts as well as sound synthesis. In

fact, the two reinforced each other. Perhaps having a immediately perceiv-

able audio/musical feedback while programming allowed the student to more

easily focus the task as hand, instead of simply programming for learning

programming’s sake.

• No prior programming experience was required. Nearly all students came into

the class without such experience and all become adept at programming.
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• ChucK’s time and concurrency model was natural to understand. Explicit

manipulation of time in the language for generating sound proved to be a

strong and useful mechanism that provided a crucial understanding of the

relationship between time and sound in programming.

• The non-preemptive concurrent programming model was highly amenable to

expressing parallelism without having to worry about traditional difficulties

of preemptive concurrency – race conditions, deadlock, and nondeterminism.

Coupled with the timing mechanism, it made the topic of concurrency man-

ageable to teach and learn in an introductory course.

• Finally, we were able to teach the language without sacrificing flexibility or

programming concepts. We covered the basics of procedural programming

plus ChucK timing, concurrency, and sound synthesis.

Additionally, we found the following presentation order of topics to be reasonable

and effective:

• types, variables, values

• operators

• control structures

• importance of time in audio programming

• functions

• concurrency

• event-driven programming

• (advanced topics) object-oriented programming

• (advanced topics) networking
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Additional Feedback

Here are some additional quotes reproduced from README files turned in with

assignments.

“It was so exciting to figure out how to control the exact rhythm

produced by the shred, and I started working out rhythmic patterns

on scrap paper in the form of music notation and then transferring it

mathematically to the shred composition itself.

I really like the on-the-fly command system as well. It may have

driven my roommate crazy, but I was definitely jamming the whole way

through. The only real problem with this assignment was knowing when

to stop and get on with the rest of my work. This is so much better

than memorizing French verbs.” — Anna

“This project was extremely fun. I did not use delay statements;

instead I used IF statements with each measure being 16 beats. This

way I could choose which sounds to play at what times and it is much

easier. I decided to use bongos, because they sound wicked. I put

together some rhythms, played them together, found out that they were

not synchronized, decided that it sound way better that way, and so

on and so forth. There weren’t any troubles at all creating these files.

There are 11 in total.” — Bryan

6.2.4 Additional Courses

During the time of this writing (2006-2008), several institutions have adopted ChucK

into their teaching curriculum, including Princeton University (in Computer Science
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Figure 6.11: Teaching in the Stanford Laptop Orchestra.

and Music), California Institute of the Arts, George Institute of Technology, McGill

University, University of Victoria, UC Santa Barbara, and others. At Stanford

University, several full courses have used ChucK as the primary software plat-

form, including “Fundamentals of Computer-Generated Sound”, “Compositional

Algorithms”, and “Composing, Coding, and Performance with Laptop Orchestra”

(Figure 6.11).
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6.3 ChucK in Performance and Research

6.3.1 Performance in Laptop Orchestra

Below are some pieces composed, implemented, and performed in ChucK, including

some interfaces built using the Audicle and ChucK.

On-the-fly Counterpoint “This piece (Figures 6.12, 6.13) is a study of the tech-

nical and aesthetic aspects of on-the-fly audio programming for live performance.

The performers (Perry and Ge) use the ChucK language, which supports real-time,

sample-synchronous, concurrent audio programming, and a highly on-the-fly style

of programming, in which the composer / performer / programmer augments and

modifies multiple programs while they are running, without stopping or restarting.

On-the-fly Counterpoint begins with a blank ChucK program. As part of the

performance, we project the entire process on the screen for the audience to see and

follow. We construct the counterpoint piece-by-piece in real-time, using the facets

of concurrent audio programming and on-the-fly programming in ChucK. Contra-

puntal simultaneities can be separated and compartmentalized into autonomous,

concurrent entities. We can program and reason about each entity independently,

as well as interact with other entities and with the program as a whole. This is

part of our ongoing investigation into using code as an interactive and expressive

musical instrument.”

Non-Specific Gamelan Taiko Fusion Composer: Perry Cook and Ge Wang;

conductor: Perry Cook. This piece is an experiment in human controlled, but ma-

chine synchronized (Figure 6.14) percussion ensemble performance. Various percus-

sive sounds are temporally positioned by PLOrk members, and the piece gradually
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  while( 1 ) 
      1::second +=> now;
  ---
  chuck vm %> sporking shred 'foo'

chuck vm status:
---

shred 'foo' : active : 3m5s 
shred 'bar' : suspended : 10m20s

computer

projection

speaker

projector

duo schematic

onstage

Figure 6.12: A on-the-fly programming schematic.

transitions from tuned bell timbres to drums as the texture and density grows. The

interface consists of a networked step sequencer implemented in the Audicle with

ChucK as the audio engine (Figures 6.15, 6.16, 6.17).

CliX Composer and conductor: Ge Wang. In this piece, human operators type

to make sounds, while their machines synthesize, synchronize, and spatialize the

audio. Every key on the computer keyboard (upper/lower-case letters, numbers,

symbols) is mapped to a distinct pitch (using the key’s ASCII representation) and
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Figure 6.13: The score for On-the-fly Counterpoint.
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mothership

clients

wireless 
access point

mothership tightly 
synchronizes hosts:
centralized timing

human assert musical 
control at each client; 
decentralized input

OSC messages over 
high-performance LAN

Figure 6.14: Network configuration (partial ensemble).

Interface

Conductor

Figure 6.15: Non-Specific Gamelan Takio Fusion performed in PLOrk.

when pressed, emits a clicking sound that is synchronized in time to a common

pulse. A (human) conductor coordinates frequency range, texture, movement, and

timing (Figure 6.18).
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now

palette

Figure 6.16: Non-Specific Groove: a network-synchronized colorful step sequencer
implemented in the Audicle. The green highlight moves across the squares in real-
time, as coordinated by the ensemble’s master machine. Each color is associated
with a different sound. All sound synthesis and networking are written in ChucK.

On the Floor Composer: Scott Smallwood. “You will notice when you walk into

a casino that the machines are all tuned to the same key: a c-major chord. This

chord floats around the space, in and out of every crevice, constantly arppeggiating,

humming, droning, twittering echoing, sometimes incorporating snippets of melody.

This happy drone soothes the nervous customers as they slowly drop their money

into the machines. They create a sea of c-major, each and every one of them,

pressing buttons on the machines, credit after credit, all day and all night.” The

virtual gambling interface was implemented in the Audicle (Figure 6.19).

a breeze brings... Composer: Scott Smallwood. “This prelude came about as a

result of several mornings of hacking in ChucK. As I listened to the wind chimes
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time
goto next line

goto next line

Figure 6.17: A possible sequence of suggested colors (texture) and density constitute
the score, which the conductor visually conveys to the ensemble.

Figure 6.18: CliX in performance: the orchestra surrounds the audience (below)
from around the balcony at Chancellor Green Library; conductor guides the direc-
tion of the performance.
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Figure 6.19: A interface for On The Floor, built in the Audicle, sound synthesis in
ChucK.

outside my door, I began to realize that they were influencing the intuitive process

of my experimentations. Before long I had created some algorithmic instruments

that sounded rather nice together. This piece grows slowly out of the acoustic

soundscape of the space, and then slowly subsides back into it, like a very slow

breeze.”

ChucK ChucK Rocket! Composers: Scott Smallwood and Ge Wang (additional

graphics and animation programming by Ananya Misra). This game piece is a study

that reflects our interest in creating games scenarios in which the sounds produced

are part of an interactive sound composition. In this game, based on Chu Chu

Rocket, mice are released onto a large grid. Each player has a piece of this grid,

and is able to cause the running mice to change direction by placing arrows in their
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path, and they are also able to place objects in their path, which make sound when

the mice run over them. Thus, a player can create a kind of instrument with their

piece of the grid, trapping groups of mice into loops that contain sound objects of

their choosing. They can also send mice to and receive mice from their neighbors

through network portals, thus the mice are shared throughout the entire group. The

interface was implemented in the Audicle, with ChucK as the audio engine (Figures

6.20 and 6.21).

Mouse
Sound object

Teleport to 
adjacent machine

Arrow

Figure 6.20: ChucK ChucK Rocket: game board as seen by one of the players.

Take it for Granite Composer: Perry Cook. “This sonic landscape was mined

from recordings of stone sculptor Jonathan Shor’s working of a large piece of granite.

Perry recorded him drilling, placing shims, tapping the shims, and the wonderful

sound of millions of years of energy being released as the stones split. The PLOrk

players manipulate these sounds via a ChucK program that allows them to change
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Figure 6.21: ChucK ChucK Rocket: from another viewpoint.

proporties of the sounds. Eventually, a rhythmic pattern emerges (the striking)

wherein the individual laptop orchestra players control both texture and synchro-

nization.”

Crystalis Composer: Ge Wang. This is a sonic rumination of crystal caves in

the clouds, where the only sounds are those of the wind and the resonances of the

crystals. It uses two simple instruments called the crystalis (based the Banded

Waveguide synthesis technique [29]) and wind-o-lin. These instruments make use of

the laptop keyboard (which controls pitch and resonance) and the trackpad (which

the players “bow” in various patterns to generate sound). See instrument instruc-

tions (Figure 6.22).

TBA Composer: Ge Wang. On-the-fly programming, or live coding, is the prac-

tice of writing code in real-time to create music. This piece is our first attempt at

large-scale, group live coding (15 humans/laptops) to create a single sound world.

Players, divided into squadrons, follow instructions from a conducting live coder,

who issues directives both in the form of code fragments (in the ChucK language)
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The Crystalis & Wind-o-lin
A laptop crystal bowing aparatus + "wind" instrument by Ge Wang
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G
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Pitch

Resonance (wind only)

Register
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Keyboard Control

Trackpad / Mouse

put energy into one of four systems
(by direction and at the pitch specified by

the keyboard controls above)

N

circling circling
(N times)

spiral
(outward)

spiral
(inward)

oscillate figure 8

press and hold up to 
4 (depending on number
of output audio channels) 
pitches from above, then
initiate 'bowing' pattern.

general instructions

Figure 6.22: Crystalis: keyboard and trackpad mappings.
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Figure 6.23: TBA: orchestral live coding.

and sentence fragments (in the English language). In keeping with the crucial live

coding tenet of revealing the process to the audience, the conducting machine will

be projected 1) for all to observe and 2) as a means of instructing the ensemble.

Players begin with a simple code template (in the miniAudicle environment),

which they modify over the course of the performance to create and sculpt sound.

Operations include code modifications, adding code (+) to be rendered into sound,

or replacing existing code (=) with updates. “Rally points” are set throughout the

template to coordinate group coding bombardments. The piece alternates between

detailed code changes and sections in which players are encouraged to improvise.

In on-the-fly programming, the code is the instrument; and it is played via the act

of programming. Also, we never really know what’s going to happen next (expect

glorious disasters). Until it is performed, the piece remains TBA to all, including

the players (Figure 6.23).

PLOrk Beat Science Composers: Rebecca Fiebrink and Ge Wang. PLOrk Beat

Science (PBS) is an electro-acoustic structured improvisation for 1 flute, 2 humans,

5 laptops, 5 pressure-sensitive finger drum pads, and 30 audio channels distributed

among 5 hemispherical speakers. PBS was first created and performed in 2006 as a

Princeton Laptop Orchestra (PLOrk) chamber piece, by Rebecca Fiebrink and Ge
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Figure 6.24: PLOrk Beat Science: Rebecca Fiebrink and Ge Wang.

Wang. Drawing from our work with PLOrk and taking inspiration (and 2/3 of our

name) from Tabla Beat Science, PLOrk Beat Science reflects our interest in explor-

ing new hybrid performances involving live acoustic instruments (flute, processed)

in electronic chamber music settings (via laptops and hemispherical speakers, which

radiate sound outwards from each localized instrument), creating crazy interactive

beat machines, crafting new performance software and expressive controller map-

pings, and simply making music together (Figure 6.24, 6.25, 6.26).

Joy of Chant Composers: Rebecca Fiebrink, Ge Wang, and Perry Cook. A choir

of simple (but glorious) singing synthesis models is controlled in real-time by players

wielding joysticks and playing the laptop keyboard.
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6-channel 
hemispherical 

speaker

"score"

TriggerFinger 
controllers

machines are 
tightly 

synchronized via 
closed network

1 flute, 2 humans, 
5 laptops, and 30 
audio channels

PLOrk Beat Science

Figure 6.25: PLOrk Beat Science: 1 flute, 2 humans, 5 laptops, 5 TriggerFingers,
30 audio channels.

stage front
(audience also can be situated 

around the setup)

all equipment shown will be provided by performer

7' to 9'

power requirement: one 120V AC outlet with extension cord

hemispherical 
speaker

plork station:
rack and laptop

subwoofer

performers' mat

mic/stand 
for flute

PLOrk Beat Science (stage plan)
Rebecca Fiebrink and Ge Wang

Figure 6.26: PLOrk Beat Science: floor plan.
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6.3.2 S.M.E.L.T.

The Small Musically Expressive Laptop Toolkit (S.M.E.L.T.) is an open-source

toolkit to facilitate rapid development of and experimentation with expressive musi-

cal interfaces built on the laptop’s native physical input capabilities (e.g., keyboard,

mouse, sudden motion sensor, microphone) [31]. It’s implemented in ChucK, and

is based on work with the Princeton Laptop Orchestra.

The code is freely available (http://smelt.cs.princeton.edu/), and has served as

the starting point for a large number of projects involving physical interaction,

instrument building, and sound mapping. It also serves as a useful resource for

teaching in laptop orchestras.

6.3.3 ChucK for TAPESTREA

TAPESTREA (or taps) is a unified framework for interactively analyzing, trans-

forming and synthesizing complex sounds [62] - being developed at Princeton Uni-

versity, led by Ananya Misra. Given one or more recordings, it provides well-defined

means to: 1) identify points of interest in the sound and extract them into reusable

template, 2) transform sound components independently of the background and/or

other events, 3) continually resynthesize the background texture in a perceptually

convincing manner, 4) controllably place event templates over backgrounds, using

a novel graphical user interface and/or scripts written in the ChucK language, and

5) leverage similarity based retrieval to locate other interesting sound components.

Taps provides a new way to completely transform a sound scene, dynamically gen-

erate soundscapes of unlimited length, and compose and design sound by combining

elements from different recordings.
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Currently, taps provides a TAPESTREA-specific API for ChucK, in addition to

making the full language available to the user. In this case, ChucK presents the

ability to describe temporally precise and concurrent control over the transformation

and synthesis. For example, TAPESTREA uses Spectral Modeling Synthesis [76]

to model deterministic components of a sound, and then allows the user to then

control parameters such as frequency warping, time stretching, and event density

to greatly transform the sound templates. Using ChucK, one can script, to a highly

precise degree, how these parameters might vary over time. The API couples these

parameter values to graphical user interface elements (e.g., sliders), allowing code to

control multiple elements accurately and concurrently, and in tandem with human

interaction, making it amenable for experimentation, composition, teaching, and

perhaps even live performance.

6.4 Additional and Potential Applications

Here we wrap up by describing some ongoing as well as planned applications using

ChucK. Potential future directions for the ChucK programming language itself are

discussed in the Conclusions chapter.

Writing “White-box” Unit Generators/Analyzers. Since the ChucK pro-

grammer is able to talk about time in a globally consistent and arbitrarily fine level,

it is possible to construct unit generators and analyzers directly in ChucK. This

greatly reduces the need to go outside the language when implementing, refining,

and expanding low-level functionality. This may be especially beneficial for working

with algorithms that are well-known in general, but have a large degree of low-level

variability (these include Linear Predictive Coding [64], granular synthesis [71], For-
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mat Wave Functions (FOF’s) [73], and other classes of audio algorithms [72, 19]).

The determinism and precision provided by ChucK can also benefit research in new

algorithms, both in terms being able to express arbitrarily complex and low-level

timing, and by provide a rapid-protoptyping environment for experimentation (re-

call our goal to “hide the mundane, expose true control”). Furthermore, writing

unit generators “in-language” can yield new unit modules that are immediately

ready for “open-source” distribution and exchange.

Musical Robots and Affective Computing. ChucK is currently being used

for research in musically intelligent musical robots as well as in the related area of

affective computing [41, 43, 42], where machines endeavor to discern emotion and

musical meaning associated via various sensory modalities (e.g., audio, vision, mo-

tion tracking). Figure 6.27 shows Ajay Kapur playing the e-sitar with Mahadevibot,

a musical drumming robot.

Figure 6.27: Mahadevibot: musical robotic, playing with a human performer; vari-
ous software components implemented in ChucK.
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Networked Performance is concerned with the technological, aesthetic, and

musical aspects of distributive, live, and high-quality audio over networks [14, 45, 44]

(Figure 6.28). This is a growing area of research and it would be interesting to

explore ChucK as an additional tool for implementing both underlying systems for

networked audio, as well as to build “client-side” networked musical instruments.

Figure 6.28: Networked Audio Performances: Gigapop Ritual (2003, left) between
McGill University and Princeton University; right: performance between CCRMA
and Banff with a distributed St. Lawrence String Quartet using JackTrip. Both
systems used C/C++ based software, though networked audio may be a potential
application of ChucK in the future.

Audio Mosaicing can be described as the concatenation of segment of sounds,

whereby the segments are choosing by some metric (e.g., distance in feature space)

in relation to a input sound stream. This can interpreted as a data-driven granular

synthesis. The MoSievius project [47] explores using ChucK as the sonic engine,

both for feature extraction and low-level synthesis.

Feature-based Synthesis (FBS) is a promising technique in development for

sonic modeling, representation, compression, as well as an evaluation tool for a

variety of Music Information Retrieval tasks [37]. Given a set of feature values
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and a choice of synthesis algorithm, FBS seeks to find parameters for the synthesis

algorithm to manifest those feature values, through various learning and searching

subsystems. The currently implementation of FBS exists as a C++ library. It’d

be interesting to explore the usage of ChucK to aid in rapid prototyping of various

parts of the system, and perhaps to implement new components.

Transmission and Archival of Audio Algorithms. Since ChucK has no de-

pendencies on system timing, audio synthesis is guaranteed to be computed in a

deterministic way. A consistent and precise notion of time combined with explicit

readability allow ChucK to precisely specify synthesis algorithms, for education and

for archiving.
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Conclusion

7.1 Contributions

The contributions of this work include the following.

• A time-based programming mechanism for synchronous, ultra-precise

audio synthesis and real-time audio analysis. ChucK’s timing mecha-

nism unifies time across an immense range of granularities, using the same

model to drive ultra-precise DSP-level processes, as well as interactive con-

trol interactions, to higher level sonic and musical structures, to still higher

processes dealing with timing at the order of days, weeks, and even years.

• A non-preemptive, time/event-based concurrent programming model

provides fundamental flexibility and readability without incurring many of the

difficulties of programming parallelism. This allows expressive representation

and specification of parallelism, and is amenable for teaching concurrency in

introductory computer music/programming courses, and is effective for use by

expert programmers.

154
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• A ChucKian approach to writing coding and designing audio pro-

grams on-the-fly. This rapid prototyping mentality has wide ramifications

in the way we think about coding audio, in designing/testing software (partic-

ular for real-time audio), as well as new paradigms and practices in computer-

mediated live performance.

• Extended case studies of using, teaching, composing, and performing

with ChucK. These show the power of teaching programming via music, and

vice versa - and how these two disciplines can reinforce each other, making

learning fun and perhaps “by-accident” (and thus nearly inevitable). These

ideas are deeply embodied in the instantiation of the Princeton and Stanford

Laptop Orchestras.

Overall, a contribution is the “holistic” sum of a set of ideas, approaches, and a

programming language platform to serve a diverse user community.

7.1.1 The Meaning of “Strongly-timed”

A strongly-timed programming language, as we’ve defined it, is one in which there

is a well-defined separation of synchronous logical time from real-time. Via this sep-

aration, one can more easily specify, debug, and reason about the programs written

in the language, allowing programs to be designed and specified without having to

worry about external factors, such as machine speed, portability and timing behav-

ior across different systems. Furthermore, this mechanism can be used to specify

powerful deterministic concurrency. Due to this model, ChucK appears to be unique

in supporting tightly interleaved control and audio computation, allowing the pro-

grammer to move rather smoothly from the domain of digital signal processing at

the sample level to the more gestural levels of control.
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7.2 Future Work

In this penultimate section, we explore and discuss some potential future direc-

tions for the ChucK programming language, environment, and intrinsic applica-

tions. Some of these are already underway at the time of this writing. All of these

await new research and (we believe) hold good potentials for continuing to provide

new ways of thinking about audio, music, and programming.

7.2.1 Exploring Analysis, Rapid Prototyping, Learning

At the time of this writing, we’ve established only a small part of the groundwork

for specifying audio analysis in ChucK, and are continuing to investigate new pos-

sibilities. Recent years have seen a proliferation of general tools and frameworks

to perform audio analysis, particularly in the area of Music Information Retrieval

(MIR). Commonly used tools specialized for MIR include MARSYAS [88], CLAM

[2], SndObj [48], MATLAB/Octave [56], M2K [28], and jAudio [16] / jMIR [17].

These tools support feature extraction from audio files, and classification and learn-

ing from these features.

These are primarily libraries and frameworks; as such, they offer programmabil-

ity at a different level than languages such as ChucK. As far as we can tell, there

is no high-level language specialized for analysis tasks, much less one focused on

support for integrated real-time analysis and synthesis. Therefore, we feel that a

ChucK-oriented programming model can be potentially interesting in its own right,

and may serve as a complimentary tool to existing systems.

Rapid prototyping tools have an established role in MIR. M2K, for example,

has been developed for this purpose. It provides a graphical patching environment
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for feature extractors, classifiers, and other modules. Dataflow and functionality in

M2K itineraries are determined by connections between built-in and user-created ob-

jects, implemented in Java. MARSYAS also provides support for rapid prototyping,

via Python and MARSYAS Scripting Language [3]. Our approach differs from these

in that we hope to enable rapid experimentation from a single, unified high-level

programming platform with low-level control, further reducing turnaround time and

itself enabling (and perhaps even suggesting) new algorithms and applications.

The motivations behind creating such a language framework include enabling

more people to experiment with, prototype, and create new MIR algorithms and

systems. Using this combined analysis/synthesis framework, programmers should

be able to rapidly prototype and implement analysis and synthesis tasks – and even

do so on-the-fly. Like the synthesis framework, the analysis/synthesis code should

represent the underlying algorithms and dataflow precisely and clearly. Overall, we

hope to present language solution that meets these criteria and that can be equally

suitable for audio research (e.g., synthesis, spectral processing, feature extraction,

machine learning, music information retrieval), pedagogy, composition, and musical

performance.

A vast array of potential current and future work remains to be explored, includ-

ing new language syntax and semantics for specifying audio analysis, language and

library support for performing feature extraction as well as state-of-the-art machine

learning algorithms, to things we can’t yet predict. Some overarching goals include

1) providing an expressive MIR rapid prototyping workbench for use in research and

teaching, and 2) exploring the tight coupling of MIR, synthesis, live performance.

In keeping with the philosophical motivations of this thesis, we hope to encourage

different ways to think about programming for analysis and synthesis.
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7.2.2 Worlds for Collaborative Social Audio Programming

Another exciting future area of research might be to investigate the social aspects

of collaborative social audio programming. It seems natural to leverage the strongly-

timed, concurrent aspects of ChucK, combined with on-the-fly programming, and

the unique social interaction of computer-simulated worlds. The idea is to create

a collaborative, massively multi-user interaction space based around the ChucK

language (possibly extending the Audicle into a collaborative Co-Audicle).

Figure 7.1: Future work: a denizen in the envisioned collaborative social audio
programming virtual world.

On-the-fly programming views code as an expressive musical instrument and the

act of programming as performance. This research direction, combined with today’s

fast networks and existing research in audio over networks [14, 44, 5], provides a

unique opportunity to empower many composers, audio researchers, instructors,

students, and musicians to interact in a common audio programming virtual world

(Figures 7.1 and 7.2). In such a realm, the exchange of ideas can take place via

code, graphics, text, live audio, and perhaps much more. We believe this has the

potential to enhance and transform how we make music as a group, conduct audio

research, and carry out computer music pedagogy. (Also, it might be a great deal

of fun.)
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Figure 7.2: Future work: many entities collaboratively live coding in same virtual
space.

7.2.3 Planned Language Features

Optimization

As noted in Chapter 3, priority is given to try to maximize flexibility and readability

first of all, and designing for high performance and throughput only when it doesn’t

conflict with the former (subscribing to the rule of thumb suggested to the author by

his college CS professor Owen Astrachan: “Make it work, make it right, make it fast,

and make it small – in that order”). Truly, the rapid advancements in computing

power have afforded this tradeoff, and in many ways, we are still trying to make parts

of the language work (and hoping to get some things right in the process). At the

same time, we have been investigating various potential optimizations that would

offer significant higher throughput without sacrificing the flexibility and precision

of the language.

One such potential optimization is adaptive block processing of audio samples.

Currently, the sample-at-a-time audio synthesis network provides immense control

over time and granularity, but incurs large performance overheads from repeated

function calls as well as being difficult in taking advantage of vectorization and pro-
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cessor pipelining. One potential solution to this issue to implement adaptive block

processing, whereby the synthesis/analysis engine works closely with the ChucK

shreduler and perform audio computations in block sizes that are appropriate with

the current time-based shreduling. Two issues will need to be addressed in such

an architecture. One is detecting cycles in the audio network,as the UGen’s in the

cycle may still need to compute one sample at the time for feedback (though pres-

ence of delay elements may relax this requirement). The second issue is to define

a “maximum block size” to allow existing “best effort” asynchronous input to be

processed (e.g., MIDI, HID, and OSC).

Taking advantage of Multi-core Processors

At the time of this writing (2006-2008), a focus in computer architecture design is

that of shifting from increasing clock speed on a single CPU to multiple symmet-

rical cores, moving to single machines with hundreds or perhaps many more cores.

The current architecture of ChucK places all audio and language computations on

the same kernel thread, managing the shred-based user-level concurrency entirely

in the ChucK virtual machine, making it difficult to take advantage of many cores.

This is an issue that applies to most current computer music programming systems

(as well as many software systems in general), and likely new underlying archi-

tectures (or even end-programmer syntax and semantics) will need to address this

issue in ChucK. One perspective on the problem is that currently the computing

community at large hasn’t yet produced an agreed-upon, generalized lower-level pro-

gramming paradigm/language (e.g., at the C/C++ level) that can flexibly specify

synchronous, multi-core friendly programs. At the ChucK system level, interesting

questions likely lie at the intersection of concurrent low-level implementation and
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the semantics of the ChucK language. In any case, this remains an open issue that

has great ramifications on the future of computing and programming for music, in

ChucK and more broadly.

Graphics

Another area well worth investigating is graphics programming integrated with au-

dio in ChucK. To be able to specify real-time graphics, image, and even video

processing in the same strongly-timed framework for audio can potentially lead

to great possibilities. This combined approach has long been demonstrated to be

compelling [50, 70]. The current plan is to both investigate more tightly-coupled

communications between ChucK and graphical programming environments such as

Processing, as well as providing “in-language” support and API for sound-coupled

graphics.

7.2.4 Laptop Orchestras

Since the beginning, ChucK (for better or for worse) has served as a primary software

platform for teaching, programming, instrument building, and live performance in

the Princeton Laptop Orchestra and later in the Stanford Laptop Orchestra (Figure

7.3). As researchers in the emerging medium of the laptop orchestra, we hope

to continue investigating its musical, sonic, and pedagogically potential and help

others who are interested in doing the same. In Dan Trueman’s dissertation [84], he

postulated the notion of making electronic chamber music, directly prognosticating

and leading to the instantiation of the laptop orchestra. It is the hope of the author

of this thesis, and other laptop orchestra progenitors, that the laptop orchestra will

proliferate as a sustained artistic medium, providing an established (and yet open)
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platform for music-making. We look forward to intensely investigating how ChucK

might be better used in these contexts, possibly combined with aforementioned

ideas such as collaborative social programming and audio over networks. At the

same time, may ChucK continue to be one of many potential tools in the software

palette of the laptop orchestra.

Stanford Laptop Orchestra

Princeton Laptop Orchestra

Figure 7.3: Laptop Orchestras: PLOrk, SLOrk – and hopefully beyond!

7.2.5 ChucK and the Mobile Phone

In recent years, the mobile phone has firmly established itself as the single piece of

technology that transcends nearly every cultural, social, and economical barrier [30].

It’s perhaps paradoxical that the modern mobile phone are simply smaller computers

in every sense, and yet it presents a fundamentally different set of interactive, sonic,
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social, and technological parameters. It would be incredibly exciting to continue to

explore its possibilities. In early 2008, the first mobile phone orchestra (that we are

aware of), MoPhO, was founded at Stanford University’s CCRMA [100], though not

yet using ChucK on the phones. The next steps might be to investigate ChucK as

well as audio programming in general on and for mobile platforms. Like the laptop

orchestra, this is still nascent (even more so), and holds great potential to transform

music-making.

7.3 Concluding Remarks

In this thesis, we presented the ChucK programming language, its ideas, design

goals, language specifications, implementation, and the various paradigms and ways

of thinking associated with the language. Additionally, we examined several core

applications of the language, and evaluated ChucK as a programming tool as well

as a pedagogical vehicle. While much has been investigated, perhaps even more

remains to be discovered and explored. It is the hope of the author, the ChucK

development team, and the ChucK community at large, that this investigation con-

tinues, remembering that while technology is central to what we do, it is what we

do with technology that truly matters.

Thank you for reading.

--> ^--
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