
Rationality and Traffic Attraction:
Incentives for Honest Path Announcements in BGP

(Full version from August 5, 2008)

Sharon Goldberg
∗

Princeton University
Shai Halevi
IBM Research

Aaron D. Jaggard
†

Rutgers University
Vijay Ramachandran

‡

Colgate University
Rebecca N. Wright

§

Rutgers University

ABSTRACT
We study situations in which autonomous systems (ASes)
may have incentives to send BGP announcements differing
from the AS-level paths that packets traverse in the data
plane. Prior work on this issue assumed that ASes seek only
to obtain the best possible outgoing path for their traffic.
In reality, other factors can influence a rational AS’s be-
havior. Here we consider a more natural model, in which
an AS is also interested in attracting incoming traffic (e.g.,
because other ASes pay it to carry their traffic). We ask
what combinations of BGP enhancements and restrictions
on routing policies can ensure that ASes have no incentive
to lie about their data-plane paths. We find that proto-
cols like Secure BGP alone are insufficient, and we need to
add very strict (and quite unrealistic) restrictions on routing
policies to prove “no incentive to lie.” Our game-theoretic
analysis illustrates the high cost of ensuring that the ASes
honestly announce data-plane paths in their BGP path an-
nouncements.

1. INTRODUCTION
Interdomain routing on the Internet consists of a control

plane, where Autonomous Systems (ASes) discover and es-

∗Partially supported by NSF award CNS–0627526. Work
done in part while at IBM Research.
†Partially supported by NSF awards CNS–0753492 and
DMS–0239996 and by ONR award N00014–05–10818. Work
done in part while at Tulane University.
‡Partially supported by NSF awards CNS–0753061 and
CNS–0524139. Work done in part while at the Stevens In-
stitute of Technology.
§Partially supported by NSF awards CNS–0751674 and
CNS–0753061.

c© ACM, 2008. This is an authors’ extended version of the work
whose definitive conference version [19] was published in ACM SIG-
COMM’08 (Aug. 17–22, 2008). It is available by permission of ACM
for your personal use. Not for redistribution.

This extended version is available as Princeton University Department of
Computer Science Technical Report TR–823–08.

tablish paths, and a data plane, where they actually for-
ward packets along these paths. The control-plane protocol
used in the Internet today is the Border Gateway Protocol
(BGP) [37]. BGP is a path-vector protocol in which ASes
discover paths through the Internet via announcements from
neighboring ASes. In BGP, each AS has routing policies
that may depend arbitrarily on commercial, performance,
or other considerations. These policies guide the AS’s be-
havior as it learns paths from its neighbors, chooses which (if
any) neighbor it will forward traffic to in the data plane, and
announces path information to its neighbors. The design of
BGP seems to encourage ASes to rely on path announcement
as an accurate indication for the paths that data-plane traffic
follows. However, BGP does not include any mechanism to
enforce that these announcements match actual forwarding
paths in the data plane.

Traditional work on securing interdomain routing (e.g.,
Secure BGP (S-BGP) [27] and the like [6,21,42]) has focused
on the control plane, with the loosely-stated goal of ensuring
“correct operation of BGP” [27]. However, addressing the
control plane in isolation ignores the important issue of how
packets are actually forwarded in the data plane. Here, we
explicitly focus on the security goal of ensuring that the
paths announced in the control plane match the AS-level
forwarding paths that are used in the data plane; this has
been implicit in many previous works (on securing BGP [21,
27, 42] and incentives and BGP [9–13, 30, 35]). This way,
an AS can rely on BGP messages, e.g., to choose a high-
performance AS path for its traffic or to avoid ASes that it
perceives to be unreliable or adversarial [3, 24,36].

This goal has recently received some attention by works
[1, 31, 38, 43] that suggest auxiliary enforcement protocols
that operate in the data plane. However, because such solu-
tions typically incur a high overhead (see Section 1.1), here
we consider solutions that operate in the control plane alone.
Furthermore, most works on BGP security assume ASes can
be arbitrarily malicious. Here, we instead follow a different
line of research where ASes are modeled as rational, i.e., act
in a self-interested manner. In our work, we define this to
mean that ASes both (1) try to obtain the best possible out-
going path for their traffic, while (2) also attracting incoming
traffic (see Section 1.3). We look for conditions under which
rational ASes have no incentive to lie about about their for-
warding paths in their BGP path announcements. We find

that protocols like S-BGP [27] are generally not sufficient to
prove that ASes have no incentive to lie about forwarding
paths; we also require unrealistically strong assumptions on
the routing policies of every AS in the network. Our results
emphasize the high cost of ensuring that control- and data-
plane paths match, even if we assume that ASes are rational
(self-interested), rather than arbitrarily malicious.1

In the rest of this section, we motivate our approach, dis-
cuss related work, outline our results and discuss their im-
plications. The model we use is defined in Sections 2–3, and
our results are detailed in Sections 4–6. Related work is dis-
cussed further in Section 7. Proofs and additional discussion
can be found in the appendices.

1.1 Matching the control and data planes.
One way to enforce honest path announcements in BGP is

to deploy AS-path measurement and enforcement protocols
that run in the data plane. However, determining AS-level
paths in the data plane is a nontrivial task even in the ab-
sence of adversarial behavior (e.g., [32] discusses the diffi-
culty of determining AS-level paths from traceroute data).
When dealing with ASes that may have incentives to an-
nounce misleading paths in the control plane, we need AS-
path enforcement protocols that cannot be “gamed” (e.g.,
by ASes that send measurement packets over the path ad-
vertised in the control plane, while sending regular traffic
over a different path). Thus, data-plane enforcement pro-
tocols [1, 31, 34, 43] must ensure that measurement packets
are indistinguishable from regular traffic, resulting in high
overheads that are usually proportional to the amount of
traffic sent in the data plane. Also, while secure end-to-
end data-plane protocols can robustly monitor performance
and reachability, e.g., [2, 20], these protocols do not trace
the identities of the ASes on a data-plane path; securely
tracing AS paths requires participation of every AS on the
path [1, 31,34,43].

Alternatively, one could hope to ensure that control- and
data-plane paths match by ubiquitously deploying S-BGP [27]
and the like [6]. This provides a property called path verifi-
cation [30], which ensures that no AS can announce a path
to its neighbors unless that path was announced to it by
one of its neighbors. While path verification defends against
announcement of paths that do not exist in the Internet
topology [27], it does not, by itself, ensure that control- and
data-plane paths match. For example, an AS a with two dif-
ferent paths announced by two different neighbors can easily
lie in its path announcements—announcing one path in the
control plane, while sending traffic over the other path in
the data plane.

While it is tempting to argue that ASes are unlikely to
lie about their forwarding paths because they either fear
getting caught or creating routing loops, this argument fails
in many situations. The hierarchy in the Internet topology
itself often prevents routing loops from forming, e.g., if the
lie is told to a stub AS, or see also [4]. (We analyze the effect
of lies on forwarding loops in Appendix A.) Furthermore,
empirical results indicate that catching lies can be difficult,

1We do not consider situations when the control and data
plane do not match due to malfunction or misconfiguration;
we consider this irrational behavior. We also do not consider
control- and data-plane mismatches caused by path aggre-
gation [32], since typically only last hop of the (data-plane)
AS-path is omitted from the BGP path announcement.

because even tracing AS-level paths that packets traverse in
the data plane is prone to error [32]. Finally, to minimize the
likelihood of getting caught, an AS could lie only when it has
a good idea about where its announcements will propagate.

1.2 The game-theoretic approach.
In this work we explore the extent to which we can use

only control-plane mechanisms, in conjunction with assump-
tions on AS policies, to motivate ASes to honestly announce
data-plane paths in their BGP messages. Our exploration
is carried out within the context of distributed algorithmic
mechanism design [10, 33], which is rooted in game theory.
This paradigm asserts that ASes are rational players that
participate in interdomain routing because they derive util-
ity from establishing paths and forwarding packets; ASes
will do whatever they can to maximize their own utility.
The task of mechanism design is to ensure that the incen-
tives of rational players are aligned with accomplishing the
task at hand, so players have no incentive to deviate from
the prescribed behavior.

The paradigm of algorithmic mechanism design in the con-
text of routing was first suggested by Nisan and Ronen [33].
Feigenbaum et al. [10] brought distributed algorithmic mech-
anism design to the study of incentives in routing and shifted
the focus to interdomain routing and BGP in particular.
Rather than a centralized mechanism that sets up paths,
the model in [10] postulates that paths are set up in a dis-
tributed fashion by the economically interested ASes them-
selves. The model was further developed in a sequence of
works [7, 9–13, 30, 35]. Our model builds upon the work of
Levin, Schapira, and Zohar [30], who brought a fully for-
mal game-theoretic and distributed-computational model to
this line of research (Section 2 and Appendix B). When
the prescribed behavior includes the requirement that ASes
honestly announcing forwarding paths to their neighbors (as
is the case in all prior work), and when every AS follows
this behavior, then the control plane and the data plane will
match. In this sense, all work within this paradigm implic-
itly addressed matching the control and data planes. In this
work, we highlight this matching (which is strictly weaker
than the goal in prior work) as a stand-alone security prop-
erty that should be addressed on its own.

1.3 Modeling utility with traffic attraction.
Recent work of Levin et al. [30] shows that if ASes are ra-

tional, then path verification (e.g., S-BGP) is sufficient for
honest path announcements, even when ASes have arbitrary
routing policies. This encouraging result improved on ear-
lier work [9–13] that explored restricted classes of routing
policies. For example, Feigenbaum et al. [11, 13] found that
it is sufficient to require policy consistency, a generalization
of shortest-path routing and next-hop policy that requires
that the preferences of neighboring ASes regarding differ-
ent paths always agree. However, these results [9–13,30,35]
were obtained under the assumption that the utility an AS
derives from interdomain routing is entirely determined by
the outgoing path that traffic takes to the destination. In re-
ality, however, the utility of an AS is likely to be influenced
by many other factors. For example, the utility of a com-
mercial ISP may increase when it carries more traffic from
its customers [25], or a nefarious AS might want to attract
traffic so it can eavesdrop, degrade performance, or tamper
with packets [3, 24,36].

Model of AS utility
Increase volume Attract customer traffic Generic traffic

Control-plane of incoming traffic via direct link attraction
verification No traffic attraction (Section 4) (Section 6) (Section 5)

None No known restrictions suffice
Policy consistency Next-hop policy Policy consistency

Loop Consistent export [11,13] All-or-nothing export Gao-Rexford conditions Next-hop policy
Policy consistency Next-hop at attractees All-or-nothing export

Path Arbitrary [30] Consistent export Consistent export

Table 1: For each utility model and type of control-plane verification, the additional restrictions that ensure
that ASes in a network with no dispute wheel have no incentive to dishonestly announce paths.

Here, we use a more realistic utility model (see Section 2.3),
focusing in particular on the effect of traffic attraction, where
the utility of one AS increases when it transits incoming
traffic from another AS. We consider three models of traf-
fic attraction. In our first model, traffic-volume attractions,
utility depends only the origin of the incoming traffic, but
not on the path that it takes. This captures the notion
that an AS may be interested in increasing the volume of
its incoming traffic or that a nefarious AS might want to
attract traffic from a victim AS, in order to, say, perform
traffic analysis. Our second model, generic attractions, en-
compasses all forms of traffic attraction; the utility of an AS
may depend on the path incoming traffic takes. Our third
model, customer attractions, is more restrictive. This model
assumes that utility increases only if an AS attracts traffic
from a neighboring customer AS that routes on the direct
link between them; this models the fact that service con-
tracts in the Internet are typically made between pairs of
neighboring ASes [25] (Section 3.3).

1.4 Overview of our results.
In this work, we want to argue that under some set of

conditions, any utility that an AS can obtain by lying in
BGP announcements could also be obtained with honest an-
nouncements. Unfortunately, we find that conditions from
previous work do not suffice when we consider traffic at-
traction: neither path verification [30] nor policy consis-
tency [11,13] alone is sufficient. (See Figures 2, 3, and 5 for
examples.) These disappointing results motivate our search
for new combinations of conditions (on control-plane verifi-
cation, routing policy and export rules) that ensure that ASes
have an incentive to honestly announce paths.

In addition to path verification (e.g., S-BGP), we introduce
a weaker form of control-plane verification called loop veri-
fication (Section 5.3), which roughly captures the setting in
which an AS is caught and punished if it falsely announces
a routing loop. Loop verification can be thought of as a
formalization of “the fear of getting caught,” and it may be
easier to deploy than path verification.

In addition to policy consistency, we also consider the more
restrictive next-hop policy, which roughly requires ASes to
select paths to a destination based only on the immediate
neighbor that advertises the path (Section 3.2). We also
consider the Gao-Rexford conditions [15] (Section 3.3). These
conditions, which are believed to reflect the economic land-
scape of the Internet [25], assume routing policies are re-
stricted by business relationships between neighboring ASes,
i.e., by customer-provider relationships (the customer pays
the provider for service) and peer-to-peer relationships (peer
ASes transit each other’s traffic for free).

Finally, we consider several classes of export rules (Sec-

tion 3.4) that dictate whether or not an AS announces paths
to its neighbors. An all-or-nothing export rule requires that,
for each neighbor, an AS either announces every path or no
paths. We also consider a more realistic consistent export
rule [11] that roughly requires that ASes’ export rules agree
with their routing policies.

For many combinations of the conditions discussed above,
we can still find examples in which ASes have an incentive
to lie about their data-plane paths. However, for some com-
binations we obtain positive results, as sketched in Table 1.
(These results all assume a network condition called “no dis-
pute wheel” [22]; see Section 3.1.) Furthermore, our results
are “tight”, in that for every combination of the considered
conditions, either one of our positive results applies or one of
our negative examples does (as summarized in Tables 2–4).

Our positive results show that, for every network satisfy-
ing some combination of conditions, any utility an AS gains
by lying can equivalently be obtained if that AS had instead
honestly announced paths to only an subset of its neighbors
and announced no paths to all other neighbors. That is,
we show the existence of an export rule for which each AS
obtains its optimal utility. As in previous work [11, 13, 30],
our positive results for traffic-volume attractions (Section 4)
and customer attractions (Section 6.2) also explicitly define
an optimal export rule. Our positive result for generic at-
tractions (Section 5.4) shows that an optimal export exists,
but does not explicitly state what it is (Section 5.5). We
discuss the notions used for our positive results further in
Appendix B.

1.5 Implications of our results.
Our results suggest that even with control-plane enforce-

ment mechanisms, ASes may have incentive to lie in their
BGP announcements, unless very strong restrictions are im-
posed on their policies. As sketched in Table 1, from the
set of conditions we considered, we always need every AS in
the network to obey (1) unrealistic restrictions on its prefer-
ences (such as next-hop policy) and (2) explicit restrictions
on export rules. Most of our results also require (3) full
deployment of either path or loop verification. Thus, our re-
sults point to a negative answer to the question that we set
out to investigate—practically speaking, it is unlikely that
we could use only control-plane mechanisms to remove the
incentives for ASes to announce false paths in BGP.

This suggests a choice. We can either employ expensive
data-plane path enforcement techniques [1,31,34,43] when it
is absolutely necessary to ensure that packets are forwarded
on AS-level paths that match an AS’s routing policies, or
dismiss this idea altogether and instead content ourselves
with some weaker set of goals for interdomain routing. It is
certainly possible to formulate weaker but meaningful secu-

abRd
ad
abQdabQd

Attract a
bQd b

a

R

bQd
bRd

Q
b

dd

Figure 1: AS graph with traffic attraction.

rity goals and show that certain control-plane mechanisms
or data-plane protocols meet these goals. However, doing
this invites the question: if we are not interested in ensuring
that AS paths announced in BGP are really used in the data
plane, then why use a path-vector protocol at all?

2. MODELING INCENTIVES AND BGP
We now present the formal model in support of our results

in Sections 4–6. The model builds on the literature [10, 22,
30] and extends prior work by explicitly considering traffic
attraction. (We also make more explicit distinctions be-
tween control- and data-plane actions.)

2.1 The AS graph.
An interdomain-routing system is modeled as a labeled,

undirected graph called an AS graph (see Figure 1). For sim-
plicity, each AS is modeled as a single node, and edges rep-
resent direct (physical) communication links between ASes.
Adjacent nodes are called neighbors. We denote nodes by
lowercase letters, typically a, b, c, d, m, and n. We fol-
low [22] and assume the AS-graph topology does not change
during execution of the protocol.

Because, in practice, BGP computes paths to each desti-
nation separately, we follow the literature [22] and assume
that there is a unique destination node d to which all other
nodes attempt to establish a path. (Thus, like most previ-
ous work, we ignore the issue of route aggregation [32].) We
denote paths by uppercase letters, typically P , Q, and R.

2.2 The interdomain-routing game.
We extend the model of Levin et al. [30] that describes

interdomain routing as an infinite-round game in which the
nodes of the AS graph are the strategic players. In each
round, one node in the graph processes the most recent
path announcements (if any) from its neighbors and then
performs two actions: (1) it decides on an outgoing link
(if any) to use in the data plane; and (2) decides on paths
(if any) to announce to its neighbors.2 Note that, just as
in [30], nodes have the opportunity to announce their true
data-plane path choice, but they are not forced to do so.
The order in which nodes act is called the schedule.

We assume that path announcements sent between neigh-
bors on direct links cannot be tampered with (by a node not
on the direct link). This can be enforced via the BGP TTL
Security Hack [17] or via a pairwise security association be-
tween nodes using the TCP MD5 security options [23]. We
further assume that each node has the opportunity to act
infinitely often—i.e., the schedule is fair.

2A node can also decide not to route on any link in the data
plane, or not to announce anything to its neighbors.

Game outcome and stability. The state of a node n
at some round in the game consists of a data-plane compo-
nent (the outgoing link most recently chosen by n) and a
control-plane component (the announcements most recently
sent by n). This state is transient if it occurs only finitely
many times (and it is persistent otherwise). There could be
many possible sequences of states; the sequence depends on
both the schedule and the actions of nodes while playing the
game. When we ask whether or not there is an incentive to
lie, we are interested in the more precise question: Is there
a fair schedule in which a node may have an incentive, in
some round, to announce a route in the control plane that
is not its data-plane choice?

The global state at some round is the collection of all
node states at that round. The global outcome of a game
is a global state that does not contain any transient node
states.We note that there could be more than one such global
state; in particular, a persistent control-plane oscillation
among nodes is a sequence that infinitely transitions among
non-transient node states, even for a fixed schedule. Our re-
sults in this work hold regardless of which of these is taken
to be the global outcome.

If the state of a node is constant after some round then
this state is locally stable. A global outcome is globally stable
if all node states in it are locally stable. (This definition of
stability is compatible with the original definition in [22].)
We typically denote global outcomes by T or M . We may
use “outcome” informally to mean the control-plane or data-
plane component of the outcome when the component is
clear from the context.

2.3 Utility, valuation, and attraction.
A strategy is a procedure used by a node to determine its

actions in the game. In principle, a node can make decisions
in any way that it wants, but here we assume that nodes
are rational. In particular, each node b has a utility function
ub(·) mapping outcomes to integers (or −∞); b tries to act
to obtain an outcome T that maximizes ub(T).

We assume that every node b in the graph has a utility
function of the form

ub(T) = vb(T) + αb(T) (1)

where vb(T) is the valuation function that depends only on
the simple data-plane path from b to d in T , and αb(T) is
the attraction function that depends only on the simple data-
plane paths from other nodes to b in T . (We write the utility
function as a sum of the valuation and attraction functions;
in fact, our results require only that utility increases mono-
tonically with both valuation and attraction.) The compo-
nents of utility in this work depend on the data-plane compo-
nent of outcome alone, because the control-plane component
may not correspond to actual traffic flow in the network.

The valuation function vb(·) is the same as was consid-
ered in previous work on incentives and BGP [7,9–13,30,35].
It is meant to capture the intrinsic value of each outgoing
path (e.g., as related to the cost of sending traffic on this
path, its reliability, the presence of undesirable ASes on it,
etc.). We assume that nodes dislike disconnection, so that
if node b has no data-plane path to the destination in out-
come T , then vb(T) = −∞. (The implications of this are
discussed further in Section 2.7.)

The attraction function αb(T) is the new component of
utility that we add in this work. Because we are interested in

situations where nodes may want to attract traffic (and not
deflect it), our most general form of the attraction function
only requires that αb(·) does not increase when edges leading
to b are removed from the data-plane outcome. Formally,
for an outcome T and node b, let T (b) be the set of edges
along simple paths from other nodes to b in the data-plane
component of T (e.g., if T ’s data-plane links form a routing
tree, then T (b) is the subtree rooted at b). We assume that
for every two outcomes T and T ′ and every node b, if T ′(b) ⊆
T (b), then αb(T ′) ≤ αb(T). This general condition covers
many forms of traffic attraction; e.g., attraction can depend
on which links are traversed by incoming traffic at a node,
and not just the nodes from which that traffic originates.

We also consider two specific forms of traffic attraction.
First, traffic-volume attraction requires that αb(T) depends
only the origin of the incoming traffic, but not on the path
that it takes. More formally, if T (b) and T ′(b) include the
same nodes then αb(T) = αb(T ′). This also captures the
idea of nefarious ASes who want to attract traffic for eaves-
dropping on or tampering with traffic (but see also Sec-
tion 2.7).

Another specific form of attraction is customer attraction,
in which the AS graph is assumed to have underlying busi-
ness relationships, and αb(T) depends only on customer
nodes a that route through b on the direct a-b link be-
tween them. We further discuss this form of attraction and
customer-provider relationships in Section 3.3.

We say that there is an attraction relationship between
a and b if the attractor b increases its utility when the at-
tractee a routes traffic through it (e.g., as in Figure 1). In
Figure 1, we depict the utility function of each node next to
that node: say that the attraction function of b is such that
it earns 100 points of utility when it attracts traffic from a,
and that the valuation function of b is such that it earns 10
points of utility when using the path bQd and only 1 point
of utility when using the path bRd. Then, following Equa-
tion 1, the use of data-plane path abRd earns b 101 points
of utility.

2.4 BGP-compliant strategies.
Recall that we are interested in ensuring that the inter-

domain-routing control and data planes match. When all
nodes follow the rules prescribed by the BGP RFC [37] in
their execution of the protocol, this is achieved. We call a
strategy that obeys these rules a BGP-compliant strategy,
as formalized below.

Definition 2.1. A BGP-compliant strategy for node n
depends on two functions: A ranking function rn(·) mapping
each path to an integer or −∞; and, an export rule en(·)
that maps each path P to the set of neighbors to which n is
willing to announce the path P . A path P is admitted at n
if rn(P) > −∞. Paths that include routing loops or that do
not reach the destination are not admitted at any node. We
require that, for any two paths P and Q admitted at n that
begin with different next hops, it holds that rn(P) 6= rn(Q).
(Note that rn(·) and en(·) act only on path announcements,
rather than game outcomes (e.g., data-plane paths).)

The strategy of node n is BGP-compliant, with rn(·) and
en(·) as defined above, if n does the following in each round
in which it participates. Node n first chooses the path P
such that (a) P has highest rank of all the most recently
announced paths received from neighbors, and (b) the first
node a of P is the neighbor that announced P to n. Then,

n performs the following two actions: (1) n chooses the out-
going link to a in the data plane; and (2) n announces the
path nP to all neighbors in en(P).

This definition explicitly assumes that the all traffic to
the destination is routed over a single next-hop. (We do not
address here the question of modeling multipath routing.)
Also, we assume that, if n does not receive any announce-
ments with an admitted path, then n does not route on
any outgoing link or announce any paths to its neighbors.
(Notice that we model ingress filtering using the concept of
admitted paths and egress filtering using the concept of an
export rule.)

Control-plane announcements from a node executing a
BGP-compliant strategy match its next-hop choices in the
data-plane. Thus, if all nodes in the network use BGP-
compliant strategies, then the control and data planes will
match. (We may informally call a node executing a BGP-
compliant strategy a BGP-compliant node, or sometimes an
honest node.) In the positive results from previous work [11,
13,30] included in Table 1, the prescribed strategies are ex-
amples of BGP-compliant strategies in the sense of Defini-
tion 2.1. Thus, those results also achieved agreement be-
tween the control and data planes, but contrary to the cur-
rent work, they do not consider traffic attraction.

We stress that Definition 2.1 gives BGP-compliant nodes
the leeway to choose their ranking and export functions in
any way they want, in order to try to achieve a utility-
maximizing outcome in the game. In the next subsection,
we discuss the relationship between utility and the ranking
and export functions in a way that encompasses earlier work
(without traffic attraction) and the results in this work (with
traffic attraction).

2.5 From utility to ranking and export.
To map between our model and real-world implementa-

tion of BGP [37], we can think of the actions of the game
described in Definition 2.1 (i.e., (1) selection of next-hop,
and (2) announcements to neighbors) as being executed by
nodes, in practice, through setting parameters in the ranking
and export functions. In previous work [13,30], the ranking
function was set equal to the valuation function (we denote
this as rn(·) ≡ vn(·))3: the larger the valuation of a path, the
higher its rank. This follows from the fact that in previous
work, the the utility of an AS was defined to be its valua-
tion function,4 and thus the directly determined the ranking
function. However, the direct translation from valuation to
ranking does not always hold in our setting of traffic at-
traction: announcing an outgoing path with low valuation
could be preferred because it brings incoming traffic from
attractees. For example, in Figure 1, node b’s valuation
function ranks path bQd over path bRd; but, b has higher
utility when it claims that it routes on bRd because it then
attracts traffic from node a.

Although this direct translation does not always hold, we
do assume that BGP-compliant ASes are able to “compile”
their utility functions (which depend on both valuation and
attraction as in Equation 1) into ranking and export func-

3This is a slight abuse of notation, because r is formally de-
fined on paths and v on outcomes. We ignore this formality
from now on.
4Some previous work [9–12,35] allowed utilities that depend
on monetary transfers, which we do not consider here.

tions that then consistently determine their actions in the
game, i.e., their behavior during the BGP protocol. This
compilation might be viewed as transforming utilities into
functions that act on path announcements by, e.g., setting
BGP local preference. We think of the compilation process
as being done “once and for all,” and we analyze the network
with respect to fixed ranking and export functions. We note
that this is not entirely realistic: the “compilation” can, in
principle, model an ongoing process in which an AS reacts to
changes in network conditions, contractual agreements, new
information that ASes learn about each other, etc., to better
attempt to maximize its utility. However, the time scale for
compilation is usually much longer than the time scale for
BGP itself (say, hours versus seconds); so, a once-and-for-all
modeling may still be reasonable. (See also Section 7.)

There are many conceivable ways of compiling the utility
into ranking and export rules. In many cases, it makes sense
to use the simple compilation rb(·) ≡ vb(·) by default, and to
use a different compilation only when this is advantageous
in terms of traffic attraction; e.g., if there is a service-level
agreement that obliges b to carry a’s traffic via path bRd
in return for monetary compensation α, then b might de-
cide to set rb(bRd) = vb(bRd) + α. In general, we mostly
sidestep the question of how to compile the utility into rank-
ing and export policy. However, our counterexamples work
for any ranking function“reasonably compiled”from the util-
ity function, and our positive results all hold for the setting
rb(·) ≡ vb(·).

2.6 Incentives to lie.
Because nodes are rational (i.e., acting to maximize their

utility in the global outcome), they may have an incentive to
follow a strategy that is not BGP-compliant. As discussed
in Section 1.1, although an AS knows the outgoing link on
which it forwards traffic (and the next AS at the end of that
link), it may not know the AS-path that the traffic takes
further downstream. For example, in Figure 1, node b could
deviate from BGP-compliance by announcing the path bRd
in order to attract traffic from node a, while actually sending
traffic over the path bQd; as a result the control and data
planes would not match, unbeknownst to a.

Hence, in this work, as in [11, 13, 30, 35], we address the
following high-level question: Are there sufficient conditions
on the network that ensure that all nodes are honest (i.e.,
use BGP-compliant strategies)? The earlier work studied
this question using the game-theoretic notion of “incentive
compatibility.” In contrast to some uses of this notion in
earlier work (e.g., Thm. 3.2 in [30]), our positive results give
nodes some additional flexibility in choosing their strategies,
as long as these strategies are BGP-compliant. (We discuss
this difference in some detail in Appendix B.)

Ideally, we would like conditions that ensure that nodes
have no incentive to be dishonest, no matter what the other
nodes do. Unfortunately, it is extremely difficult to find such
conditions; see [11,13,30,35]. Instead, we look for conditions
that ensure that a node has no incentive to be dishonest if it
knows that everyone else is honest. That is, we try to ensure
that no node has an incentive to unilaterally deviate from
using BGP-compliant strategies.

We discuss our technical formalizations after each of our
positive results (Theorems 4.1, 5.1, and 6.1).

2.7 Additional remarks.
Modeling nefarious ASes. Our modeling assumes that
vb(T) = −∞ implies ub(T) = −∞, so that nodes cannot
derive any utility from outcomes in which they cannot reach
the destination. Our negative examples do not depend on
this assumption, but our positive results do. This means
that our positive results do not hold if a manipulating node
wants to attract traffic for nefarious purposes, like tamper-
ing or eavesdropping, when it does not have a path to the
destination.

Single outgoing link. While we assume that all BGP-
compliant ASes choose a single outgoing link for all their
traffic, a misbehaving node m might send its outgoing traffic
on more than one outgoing link. In this case, we assume that
if m uses more than one path to d in T , then the valuation
vm(T) is at most as high as the most valuable simple m-to-d
path in the outcome T . This assumption was implicitly used
in prior work, and it ensures that even for a manipulator m
“the optimal strategy” is to send its outgoing traffic over a
single link. This is because the valuation of the path cannot
decrease if it uses only the “best outgoing link” instead of
using a few of them, and the attraction function does not
depend on the outgoing links that m uses.

Utility and outcomes. In this work we defined the
utility function to depend on the data-plane component of
outcome alone, because the control-plane component may
not correspond to actual traffic flow in the network. How-
ever, this also means that an AS may be unaware of its
actual utility (i.e., when its data-plane forwarding path dif-
fers from the control-plane path). An alternative approach
would be to define the attraction function on the data-plane
outcome and the valuation component on the control-plane
outcome.

We note, however, that because in this work we consider
only unilateral deviations (i.e., the all nodes are honest ex-
cept for a single manipulator), our results in this work hold
just the same under this alternative approach. Since we
suppose only one node can potentially deviate from honest
behaviour, we are assured that the data-plane forwarding
path of manipulator matches its control-plane path (since
all the nodes on the manipulator’s outgoing path must be
honest), and so the manipulator utility can depend on either
the control-plane or data-plane outcome.

3. DEFINITIONS: POLICY AND EXPORT

3.1 No dispute wheel.
Griffin, Shepherd, and Wilfong [22] described a global con-

dition on the routing policies in the AS graph, called “no
dispute wheel,” that ensures that BGP always converges to
a unique stable outcome. Roughly, a dispute wheel is a set
of nodes, each of which prefers to route through the oth-
ers rather than directly to the destination. More formally,
there is a dispute wheel in the valuations if there exist nodes
n1, . . . , nt such that, for each node ni, there exists a simple
path Qi from ni to the destination d and a simple path Ri

from ni to ni+1 for which vni(RiQi+1) > vni(Qi).
5 (The

index i is taken modulo t.) A dispute-wheel in the rank-
ing functions (for BGP-compliant nodes) is defined similarly
5For readability, we somewhat abuse notation and use vn(P)
to mean n’s valuation of any outcome T in which its traffic
uses the data-plane path P .

with rni replacing vni . Following the literature [13, 30], we
always consider networks with no dispute wheels in the val-
uations. The result of [22] in our terminology states that, if
all nodes use BGP-compliant strategies with rn(·) ≡ vn(·)
and there is no dispute wheel in the valuations, then the
game’s outcome is unique and globally stable.

3.2 Policy consistency and next-hop policy.
Node a is policy consistent [11,13] in valuations with one

of its neighbors b if, whenever b prefers some path bPd over
bRd (and neither path goes through a), then a prefers abPd
over abRd. Formally, for any two simple paths abPd and
abRd, if vb(bPd) ≥ vb(bRd), then va(abPd) ≥ va(abRd). We
say that policy consistency holds for the problem instance
if every node is policy consistent with each of its neighbors.
(Policy consistency is a generalization of next-hop routing
and shortest-path routing; see [11,13].)

Next-hop policy requires that a node only care about the
neighbor through which its traffic is routed and nothing else.
This class of routing policies is more restrictive than policy
consistency (e.g., node c in Figure 3 is policy consistent but
does not use next-hop policy with node m). Formally, a uses
next-hop policy with b if for every two simple paths abPd
and abRd it holds that va(abPd) = va(abRd). Notice that
if a uses next-hop policy with b then it must either admit
all simple paths through b or (ingress) filter all of them (cf.,
discussion in [8, 39]).

Similar definitions apply also to the ranking functions.

3.3 Gao-Rexford & customer attractions.
Gao and Rexford [15] described a set of conditions that

are induced by business relationships between ASes [25]. In
Gao-Rexford networks there are two kinds of edges: customer-
provider edges (where typically the customer pays the pro-
vider for connectivity) and peer-to-peer edges (where two
nodes agree to transit each other’s traffic for free). A Gao-
Rexford network obeys the following three conditions (GR1–
GR3):

GR1. Topology. There are no customer-provider cycles
in the AS graph, i.e., no node is its own indirect customer.

GR2. Export. A node b only exports to node a paths
through node c if at least one of nodes a and c are customers
of node b.

GR3. Preferences. Nodes prefer outgoing paths where
the next hop is a customer over outgoing paths where the
next hop is a peer or a provider, and prefer peer links over
provider links.6

GR3 always applies to the valuation functions of each node
in a Gao-Rexford network, and can also apply to the ranking
functions.

We also model customer attractions within the Gao-Rexford
setting. Namely, we consider a fourth condition (AT4) that
models the fact that service contracts in the Internet are
made between pairs of neighboring nodes, where a customer
pays its provider when it sends traffic over their shared
link [25]. AT4 restricts the set of traffic attraction rela-
tionships that we allow in the AS graph, and thus does not

6The original version [15] of the Gao-Rexford conditions
does not require nodes to prefer peer links over provider
links. To make our results as general as possible, we use
this weaker version of GR3 in all our theorems, while our
counterexamples do satisfy the stronger version of GR3.

model settings where, e.g., an AS wants to attract traffic
from ASes that are a few hops away.

AT4. Attractions. A node b may only have attraction
relationships with its own customers. Furthermore, b only
increases its utility if its attractee-customer a sends traffic
over the direct a-b link.

When we draw Gao-Rexford networks, we represent a
customer-provider relationship by a directed edge from cus-
tomer to provider, and a peer-to-peer relationship by an
undirected edge. We represent an AT4 attraction relation-
ship with a bold arrow from attractee to attractor (e.g., see
Figure 2).

3.4 Export rules.
Our results about BGP-compliant strategies that achieve

matching control and data planes in the setting of traffic
attraction involve several types of export rules. The export-
all rule (used, e.g., in Thm. 3.2 of [30]) requires that a node
exports all its admitted paths to all its neighbors. An all-
or-nothing rule for a node n means that, for each neighbor a
of n, either n exports all admitted paths to a or none at all.
The consistent export rule [11] means that, if n exports to a
neighbor a some path R, then it must also export every other
path that is ranked at least as high as R; i.e., if rn(Q) ≥
rn(R) and n exports R to a, then n must also export Q to
a. Finally, in Gao-Rexford networks, the export rules used
by BGP-compliant nodes satisfy GR2.

The export-all rule implies the all-or-nothing export rule,
which in turn implies the consistent export rule. We empha-
size that both the export-all and the all-or-nothing rules are
often incompatible with the Gao-Rexford export condition
GR2. As one example, the export-all rule may require an
AS to export a path through one of its peers or providers to
another one of its peers or providers, a violation of GR2.

3.5 Dispute wheels in Gao-Rexford networks.
As we discussed in Section 3.1, in this work we always con-

sider AS-graphs with no dispute wheel in the valuation func-
tions, even if they obey the Gao-Rexford conditions. Since in
our model, export policy is part of the strategy from which
nodes may deviate, we do not rely on GR2 to exclude paths
from the valuation functions that may have caused dispute
wheels; the valuation functions are only subject to GR1 and
GR3. This is in contrast to other works on BGP conver-
gence, e.g., [14, 15], which relied on GR2 to remove dispute
wheels, because they assumed that every node honestly fol-
lows the GR2 export rule. More generally, in the setting
where nodes may deviate from (prescribed) BGP-compliant
strategies in order to better their own utility, we cannot say
that the Gao-Rexford conditions imply that the BGP pro-
tocol converges, as in [14,15]. For example, it is possible to
show a network in which a node unilaterally deviates from
GR2 and thus causes the BGP protocol to oscillate forever.
We discuss this further in Section 6.5.

4. RESULTS: VOLUME ATTRACTIONS
We start with some results for traffic-volume attractions,

as defined in Section 2.3. We stress that this is a rather re-
stricted form of traffic attraction, as it excludes the possibil-
ity of the utility depending on the path along which incoming
traffic arrives. We begin with a series of counterexamples,
demonstrating that even for this very restricted form of traf-
fic attraction, ensuring that nodes have no incentive to lie

Verification? Policy Export Incentive to Lie? Result
? No restriction ? Yes Inconsistent Policy

None / Loop Consistent ? Yes Nonexistent Path
Path / Loop Next-hop Inconsistent Yes Inconsistent Export

Path Consistent Consistent No Theorem 4.1
? Next-hop All-or-nothing No Theorem 4.1

Table 2: Summary of our results for traffic-volume attractions. We also require no dispute wheel.

m

Attract c
m1d
md m

Attract c
m1d
md

c1
cmd
cd
cm1d

1d c1
cmd
cd
cm1d

1d

d d

Attract c
m1d

Attract c
m1d

Customer Provider

m

1
cmd
cd

m1d
md m

1
cmd
cd

m1d
md

c
d

cd
cm1d

c

1
d

cd
cm1d

Figure 2: Inconsistent Policy

is far from easy. (Most of our counterexamples are Gao-
Rexford networks that obey GR1–GR3 and sometimes also
AT4 from Section 3.3.) We then present a positive result
(Section 4.3), showing two sets of conditions, each of which
suffices to ensure that a node honestly announces paths. The
results from this section are summarized in Table 2.

4.1 Path verification is not enough.
Path Verification is the focus of most traditional work
on securing BGP [6]; roughly, it ensures that nodes can-
not announce paths that are not in the network. More for-
mally, path verification is a control-plane mechanism that
ensures that every node a only announces a path abP to
its neighbors if its neighbor b announced the path bP to a.
Path verification can be guaranteed when S-BGP [27] or
IRV [21] is fully deployed in the network. (We note, how-
ever, that soBGP [42] does not provide path verification;
soBGP only provides information about AS-graph topology,
and not about path announcements.)

For the setting of no traffic attraction, a recent result of
Levin et al. [30] shows that, in a network with path ver-
ification and no dispute wheel, no node has an incentive
to unilaterally deviate from a BGP-compliant strategy with
rn(·) ≡ vn(·) and an export-all rule. They also show (in [29])
that the same is true in Gao-Rexford networks, but with an
export rule that exports all paths except those that would
violate GR2. However, we show that when there are traffic-
volume attractions, a node can have an incentive to make a
dishonest announcement, even when the network has path
verification:

Figure 2: Inconsistent Policy demonstrates that a
policy inconsistency between a manipulator m and its cus-
tomer c can give m an incentive to dishonestly announce its
forwarding path in order to attract traffic from c. On the
left we show the outcome T that results when each node n
uses a BGP-compliant strategy with rn(·) ≡ vn(·) , export-
ing all paths except those that would violate GR2. On the
right, we show the manipulated outcome M , in which only
a single manipulator node m does not use a BGP-compliant
strategy. Here, m has an incentive to announce the path md
to node c, while actually using path m1d, in order to attract
c’s traffic. Notice that this announcement can be made even
with path verification, because node 1 announced 1d to m.
In the outcome M , node m gains not only a traffic-volume
attraction (because c routes through m in M but not in T),

Attract c Attract c

cm
md
m1d cmd

cd
d

“md”
cm

md
m1d

1d 1
d

cm1d 1d 1
d

cmd
cd
cm1d

x x

No export to m No export to m

Notice that here m announces a false path, md, in order to increase its
traffic volume (ie. To get c to route through m).
The network uses policy consistency and consistent export but not next
hop policy or path verification.

Figure 3: Nonexistent Path

but also an AT4 attraction (because c is a customer that
routes on the direct c-m link in M). (Note that Incon-
sistent Policy is a Gao-Rexford network with no dispute
wheel that obeys AT4.)

We remark that the situation in Inconsistent Policy
could arise quite naturally in practice. As an example, while
c is a customer of both m and d, the service contracts of c
with m and d are such that usage-based billing on the m-c
link is lower than billing on the d-c link. Then, c could prefer
a path through m over the direct path to d as long as this
path only increases AS-path length by a single hop. On the
other hand, m could prefer to send traffic via 1 because 1 is,
say, geographically closer to m than d.

4.2 Policy consistency alone is not enough.
Notice that, in Inconsistent Policy, node c is not policy

consistent with node m (Section 3.2). It is natural to ask
if requiring policy consistency is sufficient to ensure that
there is no incentive to lie. Indeed, for the setting of no
traffic attraction, Feigenbaum et al. [11,13] proved that in a
network with policy consistency and no dispute wheel, then
no node has an incentive to unilaterally deviate from a BGP-
compliant strategy with rn(·) ≡ vn(·) and consistent export.
Perhaps surprisingly, it turns out that policy consistency is
not sufficient to ensure that nodes have no incentive to lie
when we consider traffic-volume attractions:

Figure 3: Nonexistent Path demonstrates that, even in
a policy consistent network, a manipulator m can have an
incentive to announce a nonexistent path in order to attract
traffic from its customer c. The outcome T , shown on the
left, results when each node uses a BGP-compliant strat-
egy with rn(·) ≡ vn(·) , where node d’s export rule obeys
consistent export but exports nothing to node m, and all
other nodes export all paths allowed by GR2 (which implies
consistent export). On the right, we show the manipulated
outcome M , where only the manipulator m deviates from
the BGP-compliant strategies described above. Here, the
manipulator m has an incentive to announce to node c a
false path “md” that is not available to m (because d does
not export this path to m) in order to attract c’s traffic.
Again, node m gains both a traffic-volume attraction and
an AT4 attraction in M that it could not have obtained by
using a BGP-compliant strategy. (Note that Nonexistent
Path is a policy-consistent Gao-Rexford network with no
dispute wheel that obeys AT4.)

Notice that c has the same preferences in both Nonexis-
tent Path and Inconsistent Policy. However, in Nonex-
istent Path, c is policy consistent with m; both prefer the
nonexistent shorter path through md over the longer path
through m1d.

4.3 But adding path verification or next-hop
policy is enough!

In Nonexistent Path, the manipulator m announces a
path “md” was that was not announced to it by d (which
would not be possible if the network had path verification),
and that announcement matters because node c does not use
a next-hop policy with m. It turns out that requiring either
path verification (on top of policy consistency) or next-hop
policies is sufficient to ensure honesty in any network with
only traffic-volume attraction functions. In these settings,
if each node sets its ranking equal to its valuation and hon-
estly exports all paths to all neighbors, then no node has an
incentive to unilaterally deviate from this behavior.

Theorem 4.1. Consider an AS graph with no dispute wheel
in the valuations. Suppose that all nodes, except a single
manipulator node m, use BGP-compliant strategies and set
their ranking equal to their valuations (rn(·) ≡ vn(·) for ev-
ery node n). Suppose further that m has a traffic-volume
attraction function, and that at least one of the following
two conditions hold:

a. The valuations function of all nodes are next-hop and
the export functions of all the nodes but m obey all-or-
nothing export; or

b. The valuations function of all nodes are policy consis-
tent, the export functions of all the nodes but m obey
consistent export, and the network has path verifica-
tion.

Then there is a BGP-compliant strategy for m that sets
rm(·) ≡ vm(·) and obeys all-or-nothing export (and there-
fore also consistent export), such that this strategy is optimal
(utility-maximizing) for m. In particular, using the export-
all rule is one such optimal strategy.

Notice that Theorem 4.1 not only establishes the existence
of an optimal consistent export rule for m, but also asserts
that export-all is one such optimal rule. Hence it actually
establishes a single strategy from which no node has an in-
centive to deviate. (This notion of a single strategy is the
same notion used in prior works including [11, 13, 30, 35].
In the mechanism-design literature, this is called incentive-
compatibility in ex-post Nash equilibrium; see [35] and Ap-
pendix B.) We also comment that in a setting with path
verification, the result is slightly stronger since it only re-
quires that honest nodes use consistent export. (We do not
know if consistent export suffices for the next-hop result.)
The proof of Theorem 4.1 is presented in Appendix D, and
makes heavy use of the result of Feigenbaum et al. [11, 13].

4.4 Our results need consistent export.
Theorems 4.1 required a consistent export rule. We now

show that we cannot drop this requirement, by presenting a
counterexample that obeys all the conditions in Theorem 4.1
(policy consistency, next-hop policy, path verification) ex-
cept consistent export, where node m still has an incentive

NEW INCONSISTENT EXPORT
This is a network where m has a traffic volume attraction (for c)
Network has path verification, and next hop policy
All node use all-export except from n, who violates both same-next-hop
export and consistent export.

k d f hi i i l im takes advantage of this to attract c via manipulation
.

nmd (no export to c) nmd (no export to c)
n

m

nm1d
md

m1d

n

m

nm1d
md

m1d

c1
cn*d

c1
cn*d

d

cn d
cd

d

cn d
cd

Figure 4: Inconsistent Export

to lie about its forwarding path in order to gain a traffic-
volume attraction:

Figure 4: Inconsistent Export demonstrates that m
can have an incentive to lie about its forwarding path in
order to attract traffic from its customer c, by taking ad-
vantage of the fact that some other node (n) does not use
consistent export. Suppose that all nodes except for n use
export-all rule (which implies consistent export). Now sup-
pose that node n uses an inconsistent export rule; it exports
the path nm1d to node c, but not the more preferred path
nmd. On the left we show the outcome T that results when
all nodes use a BGP-compliant strategy with rn(·) ≡ vn(·)
and the export rules described above. In T , nodes m and n
use the path nmd, but because n does not export this path
to c, c routes directly to d. The manipulated outcome M
is shown on the right, where only node m deviates from the
BGP-compliant strategies described above. By announcing
the false path “m1d”, m manages to attract traffic from c,
since now n is willing to export the path “nm1d” to node
c. Notice that this false path can be announced even if the
network has path verification, since node 1 announced “1d”
to m. (Note that Inconsistent Export is a Gao-Rexford
network that does not obey AT4, where there is no dispute
wheel and all nodes use next-hop policy.)

The reader might object to the fact that in Inconsistent
Export, node c prefers the long path cnm1d over the short
path cd. We note that this counterexample holds even we
lengthen the cd path (say by replacing the c-d link by a
path through four additional nodes). On the other hand,
we agree that the inconsistent export rule used by node n is
somewhat bizarre. Indeed, we believe that it is reasonable to
require consistent export in a network that is already policy
consistent.

5. RESULTS: GENERIC ATTRACTIONS
We now consider our most general notion of traffic attrac-

tion, in which the utility that nodes derive from attracting
traffic can depend arbitrarily on the path that incoming traf-
fic takes (see Section 2.3). For this general case, we show in
Section 5.4 that nodes have no incentive to lie when all nodes
use next-hop policy and all-or-nothing export and the net-
work has path verification. (In fact, we show that a weaker
enforcement mechanism called loop verification is also suf-
ficient; see Section 5.3.) These conditions are extremely
strong, but we show via a sequence of counterexamples that
we cannot drop any one of these conditions without allowing
an incentive to lie. The theorems and counterexamples in
this section are summarized in Table 3.

Verification? Policy Export Incentive to Lie? Result
None ? ? Yes False Loop
? Consistent ? Yes Bowtie
? Next-Hop Consistent Yes Grandma

Path / Loop Next-Hop All-or-Nothing No Theorem 5.1

Table 3: Summary of our results for generic attractions. We also require no dispute wheel.

nm*dn

cn*d“md”

nm*dn

cn*d
cm

cn*d
cm*d

md
cm

cn*d
cm*dAttract c

Attract n
md

Attract c
Attract n

md
dd

New Bowtie and False loop. I changed them (May 26) so that n and c can obey GR3

Attract c
Attract n

Attract c
Attract n

p g (y) y
and also have no dispute wheel. Now m has volume attraction with n

m
n

Attract n
md
m1d

1 *d
m

Attract n
md
m1d

1 *dn1 nm*d n1 nm*d

c
cnmd
cm*d
cnm1d

d c
cnmd
cm*d
cnm1d

d

Figure 5: Bowtie

5.1 Policy consistency & path verification is
not enough.

In networks with only traffic-volume attraction, we were
able to show that adding path verification to a policy-consistent
AS graph is sufficient to ensure that nodes have no incentive
to lie (Section 4.3). Unfortunately, this is not the case when
we consider more general attraction relationships:

Figure 5: Bowtie demonstrates that, even in a a network
that is policy consistent and has path verification, a manip-
ulator m can have an incentive to lie about its forwarding
path in order attract traffic from a customer c on the direct
m-c link. Suppose node m has an attraction function such
that (1) m has an AT4 attraction relationship with its cus-
tomer c, and (2) m has a traffic-volume attraction with its
provider n. The outcome T that results when every node
uses a BGP-compliant strategy with rn(·) ≡ vn(·) and ex-
ports all paths allowed by GR2, is shown on the left. The
manipulated outcome M is shown on the right, where only
node m deviates from the BGP-compliant strategy we de-
scribed above.

Here, m has an incentive to dishonestly announce the path
“m1d” to all of its neighbors in order to attract traffic from
the attractee c on the direct c-m link. Node m can make this
announcement, even with path verification, because node 1
announced the path 1d to m. Moreover, there is no BGP-
compliant strategy for m that allows it to attract traffic from
both c and n while maintaining its preferred data-plane for-
warding path md. (Note that Bowtie is a policy-consistent,
Gao-Rexford network with path verification that does not
obey AT4 and has no dispute wheel in the valuations.)

We remark that even though c’s traffic is routed via m
in both T and M (i.e., m does not gain a traffic-volume
attraction), the manipulation in Bowtie is quite reasonable
in practice. For example, m might prefer the outcome in M
over the outcome in T for load-balancing purposes, because
incoming traffic from c and n is spread over two links in
M . As another example, m might prefer the outcome M
because it has a usage-based billing contract with c on the
m-c link, whereas node m is not able to bill its provider n
for carrying c’s traffic (which occurs in outcome T).

5.2 Next-hop policy alone is not enough.
From Bowtie, we learn that policy consistency is not suf-

ficient to ensure honest announcements (even when using

nm*dn

cn*d“md”

nm*dnd
cn*d

cm
cn*d
cm*d

md
cm

cn*d
cm*dAttract c

Attract n
md

Attract c
Attract n

md
d

New False loop (May 27) so that n and c can obey GR3 and also have no dispute p (y) y p
wheel. Now m has volume attraction with n. This is the same as yesterday’s false
loop except now there is an extra link from n to d.

cn*d
cm*d

ccn*d
cm*d

c

mnnm*d
nd

“mcd” Attract c
mdmnnm*d

nd
Attract c
md

dd

Figure 6: False Loop

path verification). So we throw up our hands and ask if
it suffices to require that every node uses next-hop policy.
With next-hop policy, it is tempting to conclude that lying
about an outgoing path will not help an attractor convince
an attractee to ‘change its mind’ and route through it in
a manipulated outcome. (Notice that the manipulations in
Inconsistent Policy, Nonexistent Path and Bowtie
were of this form.) Furthermore, next-hop policy is suffi-
cient when considering only traffic-volume attractions (Sec-
tion 4.3).

Quite surprisingly, this intuition fails. We now present
our most important counterexample, which shows that if the
network does not have path verification, then even requiring
next-hop policy is not sufficient:

Figure 6: False Loop demonstrates that, even in a net-
work where all nodes use next-hop policies, a manipulator
m can gain traffic from its customer c by falsely announcing
a path through c to m’s other neighbors. Suppose that m
announces no paths to neighbor n and all paths to every-
one else, and that all other nodes export all paths allowed
by GR2. On the left is the outcome T , where each node
compiles rn(·) ≡ vn(·) and uses the BGP-compliant strat-
egy with the export rules described above. The manipulated
outcome M is on the right, where only m deviates from the
BGP-compliant strategy above. In M , the manipulator m
has an incentive to announce a false outgoing path “mcd”
to n in order to attract traffic from its attractee c (on the
direct c-m link). Notice that the outcome M results when-
ever there is no control-plane verification mechanism such
as path verification, since the ‘false loop’ “nmcd” will either
cause node n not to announce any path to node c, or instead
cause node c to ignore the announcement. Also, m has no
BGP-compliant strategy that allows it to gain an AT4 at-
traction from c, since c would have sent his traffic on the c-n
link if m had either (a) honestly announced some path to
n, or (b) announced no path to n (as in outcome T). (Note
that False Loop is a Gao-Rexford network with no dis-
pute wheel that obeys AT4, in which all nodes use next-hop
policies.)

5.3 Introducing loop verification.
To deal with the manipulation in False Loop, we intro-

duce loop verification, a new control-plane mechanism that
deals with detecting and preventing “false loops.”

BGP allows two different approaches for detecting and
preventing routing loops. One is sender-side loop detection,

where a node a will not announce path aRd to node b if
b happens to be on the path R. The other is receiver-side
loop detection where a will announce the path aRd to b, so
that b will detect the loop and discard that announcement.
Receiver-side loop detection has the advantage of allowing
a node b to hear announcements that falsely include a path
that b did not announce. Notice that for b to detect a “false
loop,” b need only perform a local check to see if the path it
receives matches the one that b actually announced. (This
local check is less onerous than the one that is required for
path verification, which requires participation from all ASes
on the path.)

Loop verification encourages ASes to avoid lying in BGP
announcements because they should fear getting caught. We
define loop verification as the use of receiver-side loop de-
tection by all nodes in a network, with the additional re-
quirement that when node b receives an announcement of a
path P = QbRd, such that b did not announce the path bRd
to its neighbors, then b “raises an alarm.” Then, the first
node who announced a path that includes bRd will be pun-
ished with utility reduced to −∞. This punishment process
models the idea that b can catch and shame the node that
announced the false loop, e.g., via the NANOG list.

The properties of loop verification are strictly weaker than
those of path verification. Namely, if a network has path
verification, then no node will raise an alarm in loop verifi-
cation. This follows from the fact no node can announce a
path that includes bRd unless b announces the path bRd.

5.4 Next-hop policies & loop verification
is enough!

Now that we defined loop verification, we are ready to
present the main result of this section. If we add loop ver-
ification to a next-hop network with no dispute wheel, we
can eliminate the manipulation performed by m in False
Loop. We also require all nodes to use an all-or-nothing
export rule. The following holds even if the network does
not obey the Gao-Rexford conditions:

Theorem 5.1. Consider an AS graph where the valuation
functions are next-hop and contain no dispute wheel. Sup-
pose that all nodes, except a single manipulator node m, use
BGP-compliant strategies where they set their ranking equal
to their valuations (rn(·) ≡ vn(·) for every node n), and obey
all-or-nothing export. Suppose further that the network uses
either loop verification or path verification. Then there ex-
ists a BGP compliant strategy for m that uses rm(·) ≡ vm(·)
and obeys all-or-nothing export, which obtains the best pos-
sible stable outcome in terms of the utility function of m.

On an intuitive level, Theorem 5.1 proves that any gains
a manipulator gets from lying can be obtained by using a
clever export rule.7 That is, Theorem 5.1 shows the existence
of an optimal all-or-nothing export rule for the manipula-
tor; however, this optimal export rule for m depends on the
export rules chosen by the other nodes in the network. Fur-
thermore, unlike prior work or the result from Section 4, this
result does not explicitly describe this optimal export rule.

The proof of Theorem 5.1 is quite technically involved, so
we present it in Appendix E. Roughly, the proof amounts
7We remark that this result only rules out the possibility
of obtaining a better stable outcome by lying, it does not
rule out the possibility of m gaining utility by inducing a
non-stable outcome. See Section 2.2.

nm*dn
Attract c

nm*dn
Attract c

cm
cn*d

*d

mdcmmd

cn*d
d cm*dd cm*d

Figure 7: Access Denied.

to showing that when all nodes use next-hop policy with
their neighbors, the only strategically useful lie available to
the manipulator is to announce a false loop. Then, we show
that if the network has loop verification, some node detects
the false loop and punishes the manipulator for its lie; since
the utility of the manipulator drops down to −∞ when it
gets caught, it no longer has an incentive to announce a false
loop, and the theorem follows.

5.5 Export-all is not always optimal.
Theorem 5.1 unfortunately does not explicitly describe

the optimal export rule for the manipulator. We now show
that the export-all rule (which was shown to be optimal in
e.g., Theorem 4.1 and [30]) is not necessarily optimal in this
setting:

Figure 7: Access Denied demonstrates that m can at-
tract traffic from its customer c over the direct m-c link by
denying export to some of m’s other neighbors. Here, the
network has path and loop verification, next-hop policies at
every node, and m is interested in attracting traffic only
from c (but not from n) in an AT4 attraction. Suppose that
all nodes, including m, honestly announce paths. On the left
we present the outcome when every node, including m, uses
export-all. On the right, we illustrate the outcome when m
uses a different all-or-nothing export rule: in particular, m
announces all paths (honestly) to c, and no paths to n. As
a result, m attracts traffic from c on the direct c-m link. If
m had announced paths to n, then c would not have sent its
traffic on the c-m link, as in the outcome on the left. Thus,
we see that the export-all rule is not optimal for m. (Note
that Access Denied is a network that obeys GR1, GR3,
and AT4, and has no dispute wheel.)

We pause here to observe that in the outcome on the right,
n has no path to the destination if node c only exports the
paths allowed by GR2. We discuss this issue in Section 6.4.

5.6 Theorem 5.1 needs all-or-nothing export.
The requirement that all nodes use an all-or-nothing ex-

port policy in Theorem 5.1 is extremely strong, especially
because most networks that obey the Gao-Rexford condi-
tions (in particular GR2) violate this export rule. We now
present our most devastating (and complicated) counterex-
ample that shows Theorem 5.1 does not hold with a more
realistic export rule like consistent export:

Figure 8: Grandma demonstrates that a manipulator m
can have an incentive to lie in order to attract traffic from
a customer c if some other node a does not use an all-or-
nothing export policy. Furthermore, Grandma shows that
this is possible even when all nodes use path verification and
next-hop policies.

In Grandma, m has an AT4 attraction relationship with
its customer c, a traffic-volume attraction relationship with
its provider b, and no other attractions. Suppose now that

This is your grandma!!
Even in GR with next-hop- and consistent- export and next-hop
valuations without AT4 we still have a manipulation (here specificallyvaluations, without AT4 we still have a manipulation (here specifically
we use the fact that m wants to attract its provider b)

am*d
b*d

am*d
b*d

a c1

ab*d
a1*d (no export to c)

a c1

ab*d
a1*d (no export to c)

x
bm*d
ba*d

b
1d ca*d

cm*d

bm*d
ba*d

b
1d

m
a1
d” ca*d

cm*d

m Attract c, b
md

m Attract c, b
md

“m

d

mc*d
ma*d

d

mc*d
ma*d

Figure 8: Grandma.

all nodes export all paths allowed by GR2; thus, a does not
export paths through its peer 1 to its peer c. While a uses a
consistent export rule (since a filters only its lowest ranked
path through 1), a does not use all-or-nothing export rule.
On the left is the outcome T that results when all nodes act
honestly, i.e., use BGP-compliant strategies with rn(·) ≡
vn(·) and the export rules above. The manipulated outcome
M is shown on the right, where only the manipulator m
deviates from the BGP-compliant strategies above.

In M , the manipulator m dishonestly announces the path
“ma1d” while actually routing on md. To arrive at the out-
come M on the right, node m sits quietly until node a ex-
ports “a1d” to it. Then m announces “ma1d” to all nodes,
while routing on md in the data plane. Node a cannot route
through m (because it thinks that m routes through it); so, a
continues to route on a1d. Next, because a does not export
paths through 1 to its peer node c, node c has no choice
but to route through node m. Meanwhile, m’s machina-
tions have no effect on b, who routes through m regardless.
Notice that loop or path verification would not help, since
node a is indeed routing along “a1d”. Furthermore, m man-
ages to retain in M its traffic-volume attraction with b and
gain an AT4 attraction with customer c. Also, m has no
BGP-compliant strategy that obtains as large a utility as it
obtains from M . (Note that Grandma a Gao-Rexford net-
work with no dispute wheel that does not obey AT4, where
all nodes use next-hop policy with all their neighbors.)

5.7 The need for ubiquitous participation.
Bowtie and Grandma highlight another important point;

namely, that even if one node follows the conditions speci-
fied in our theorems, e.g., next-hop policy, it is still possible
for that node to learn a false path, if some other node in
the network fails to follow the specified conditions. For ex-
ample, in Bowtie (Figure 5), even though attractee node
n uses next-hop policy, n still learns a false path because
node c does not. Thus, we emphasize that all the theorems
in this paper only hold if every node in the network follows
the specified set of conditions.

6. RESULTS: CUSTOMER ATTRACTIONS
IN GAO-REXFORD NETWORKS

We now focus on Gao-Rexford networks (see Section 3.3).
In Section 5, we used Grandma (Figure 8) to show that
Theorem 5.1 does not hold with consistent export in place
of the unrealistic all-or-nothing export rule (which is usually
not compatible with GR2). Fortunately, Grandma did not
obey the AT4 attraction condition. Thus, we now weaken
the assumption of all-or-nothing export by focusing on the

We call this orion (newOrion) now. Figure for the
proceedings versionp g

nccn*d
cm*d

nad nccn*d
*d nad

Attract c

cm*d

amd Att t

nccm*d

amd

m

Attract c
m1d

md

a ad
am1d

m

Attract c
m1d

md

a a d
ad
am1d

1 1

d d
Figure 9: Orion.

AT4 setting, in which an attractor can increase its utility
only if a customer routes on the direct link between them.
It turns out that AT4 also allows us to weaken the next-
hop-policy restrictions required in Theorem 5.1. Our results
are summarized in Table 4, which also shows how dropping
any one of the conditions in our positive result (Section 6.2)
may create an incentive to lie.

6.1 It’s not sufficient to restrict policy at
attractees only.

The requirement in Theorem 5.1 that every node in the
network uses a next-hop policy with all of its neighbors is
very strong indeed. Ideally, we would have preferred to re-
quire only attractees to use next-hop policy with their at-
tractors. Unfortunately, even requiring every attractee to
use next-hop policy with all its neighbors need not remove
the incentive to lie:

Figure 9: In Orion only the attractee (node c) uses next-
hop policy with all its neighbors (nodes m,n). (Every other
node uses next-hop policy with its peers and providers, but
not necessarily with its customers.) Notice that node a is
not policy consistent with its customer m: node m prefers
path m1d to path md (say, because it is cheaper to route
directly to 1), while node a prefers the path amd to the path
am1d (say, because it prefers shorter paths).

On the left is the outcome T that results when each node
uses a BGP-compliant strategy with rn(·) ≡ vn(·) , export-
ing all paths allowed by GR2. The manipulated outcome
M is shown on the right, where the manipulator m deviates
from this BGP-compliant strategy. In the manipulated out-
come M , m dishonestly announces the outgoing path “md”
to all of its neighbors so that node a decides to route through
m on the amd path. However, node n does not admit the
path amd and thus is left with no path to the destination d.
The attractee c has no choice but to route through m, in-
creasing m’s utility. Observe that m has no BGP-compliant
strategy that obtains as large a utility as it obtains from M .
(Orion is a Gao-Rexford network with no dispute wheel
that obeys AT4.)

Notice that n uses a “forbidden-set policy” [9], in which
it prefers using no path at all over using a path through m.
Such preferences could arise in practice if node n does not
trust node m to carry its traffic (say, because it perceives
node m to be adversarial).

6.2 Policy consistency everywhere with
next-hop policy at attractees is enough!

Earlier, we saw that, even in the Gao-Rexford setting with
AT4, dropping either path or loop verification may create
an incentive to lie (as in False Loop in Figure 6). Further-

AT4 Verification Policy Next-hop policy Export Incentive Result
Consistency to Lie?

No ? ? ? Consistent Yes Grandma
Yes None ? ? ? Yes False Loop
Yes ? None All nodes with peers & providers ? Yes Orion
Yes None / Loop All nodes None ? Yes Nonexistent Path

Yes Loop / Path All nodes Attractees with peers & providers Consistent No Theorem 6.1

Table 4: Summary of our results for Gao-Rexford networks (obeying GR1-GR3) with no dispute wheel.

more, from Orion above, we learn that policy restrictions
only on attractees can leave an incentive to lie. The manip-
ulation in Orion is possible because node a is not policy
consistent with node m; we now show that requiring policy
consistency, along with other conditions satisfied by Orion,
is enough to ensure no incentive to lie.

Theorem 6.1. Consider a policy-consistent, Gao-Rexford
network that obeys AT4, in which there is no dispute wheel
in the valuations and all attractees use next-hop policies with
their providers and peers. Suppose that all nodes, except a
single manipulator node m, uses a BGP-compliant strategy
with rn(·) ≡ vn(·) and a consistent export rule that satis-
fies GR2. Suppose further that the network has path or loop
verification.

Then there exists a BGP-compliant strategy for m with
rm(·) ≡ vm(·) and a consistent export rule obeying GR2
that obtains the best possible stable outcome in terms of the
utility function of m. In particular, exporting all paths to
customers and no paths to providers and peers is one such
optimal strategy.

The proof, in Appendix F, consists of a series of technical
arguments that use the Gao-Rexford conditions (GR1-GR3)
and AT4 to show that if m can increase its utility in the ma-
nipulated outcome, then the network must have a customer-
provider loop.

6.3 Our result needs next-hop at attractees.
We note that we cannot drop the requirement in Theo-

rem 6.1 that all attractees use next-hop policy with all their
peers and providers. To see why, recall that a manipulation
is possible in Nonexistent Path (Figure 3), which satis-
fies all the conditions of Theorem 6.1 (loop verification, pol-
icy consistency at all nodes, Gao-Rexford, AT4, no dispute
wheel, consistent export) except that the attractee node c
does not use next hop policy with its provider m. How-
ever, the manipulation in Nonexistent Path would not be
possible with path verification (instead of loop verification).
Thus, in this work we have not ruled out the possibility that
we can drop the requirement for attractees to use next-hop
policy if we replace loop verification with path verification.

6.4 It’s best to export only to your customers.
Observe that Theorem 6.1 not only shows the existence

of an optimal export rule for the manipulator, but also ex-
plicitly describes one such export rule. It therefore provides
a specific strategy from which no node has an incentive to
unilaterally deviate.8 However, this strategy requires that m
never announces any paths to its peers and providers. While
this export rule obeys consistent export and GR2, a net-

8However, as in Theorem 5.1, we add the disclaimer that
this result only applies to stable manipulated outcomes.

Attract c
Attract a
md

Attract c
Attract a
md

m
a

m1d

1 an*d
am*d

m
a

m1d

1 an*d
nm*d

d
n nc*d

nad d
n nc*d

nad

c cn*d
cm*d

d

c cn*d
cm*d

d
x

cm d cm d

Disputed Path – necessity of no DW
1) As in the GR theorem, there is policy consistency here everywhere, and all attractees (a, c) use next-hop1) As in the GR theorem, there is policy consistency here everywhere, and all attractees (a, c) use next hop

policy with providers and peers. There is also path and loop verification. Every node honest node obeys
GR2 and consistent export. Also all nodes obey GR1. Notice however that node n (that is not an
attractee) does not permit the route nam1d (ie. Say it doesn’t like paths through 1).

2) However there is a dispute wheel between c and n!2) However there is a dispute wheel between c and n!
3) In all trees,c will announce no path to n, it’s provider, because this would violate GR2.

Figure 10: Disputed Path.

work in which every node uses this “export-nothing-to-non-
customers” rule would be a very sorry network indeed: Peer
paths would not exist, and nodes would never transit traffic
from their providers, even if that traffic is destined for their
customers!

Unfortunately, there are cases in which the optimal ex-
port rule for the manipulator is to “export nothing to non-
customers.” For example, consider Access Denied in Fig-
ure 7 and observe that m’s optimal strategy is to announce
no paths to n (which means that when c’s export rule obeys
GR2, node n has no path to the destination). Furthermore,
this network obeys the strongest conditions considered in
this work (next-hop policy at all nodes and path verifica-
tion). Hence, within the conditions considered here, we can-
not hope to get a result where m’s optimal export policy nec-
essarily allows it to announce paths to peers and providers.

This suggests that AT4 may not be a reasonable model for
attraction relationships; e.g., a node could improve its utility
by attracting traffic from a provider or peer if it delivers this
traffic to a customer. Finding a more appropriate model for
attraction relationships in Gao-Rexford networks remains
open for future research.

6.5 Our result needs no dispute wheel.
Notice that in addition to obeying the Gao-Rexford condi-

tions, Theorem 6.1 also requires that the valuation functions
have no dispute wheel. As we discussed in Section 3.3, this
means that in addition to obeying GR1 and GR3, the valu-
ation functions must contain no dispute wheel even without
excluding paths that are removed by the GR2 export rule.
This is a very strong requirement indeed, since GR2 often
excludes paths from the network that would have created
dispute wheels. Ideally, we would like to drop this require-
ment from Theorem 6.1. Unfortunately, this is not possible:

Figure 10: Disputed Path demonstrates that, if a net-
work has a dispute wheel, a manipulator m can have an
incentive to falsely announce paths in order to attract traf-
fic from a customer c. Furthermore, Disputed Path shows
that this is possible even if there is path verification, all
nodes are policy consistent, and every attractee (nodes c, a)
use next-hop policy with all their neighbors (nodes m,n).

On the left is the outcome T that results when each node
uses a BGP-compliant strategy with rn(·) ≡ vn(·) and ex-
ports all paths that do not violate the GR2 export condition.
The manipulated outcome M is shown on the right, where
only node m deviates from this strategy. In the manipulated
outcome M , m announces a false outgoing path “m1d” to all
of its neighbors. This is possible even with path verification
since 1 announced the path 1d to m. Notice that while node
n is policy consistent with all his neighbors, he does not
admit the path nm1d. Furthermore, since c obeys GR2, he
does not export any paths to n. As a result, n is left with no
path to the destination, and c routes through his attractor
m instead. However, the other attractee node a continues
to route through m even when m announces this false path.
Furthermore, m has no optimal export rule for which he
can achieve the same utility that obtained in M . (Note that
Dispute Path is a Gao-Rexford network where all nodes
are policy consistent, every attractee use next-hop policy
with all neighbors, and there is path verification. Disputed
Path has a dispute wheel between nodes c, n; n prefers paths
through its customer c over paths through its provider a, but
c prefers paths through its provider n over paths through its
provider m.)

One way to get rid of the requirement for no dispute wheel
is to change our interpretation of the Gao-Rexford condi-
tions. Namely, we could assume instead that paths that are
usually excluded by the GR2 export rule are also not ad-
mitted by the valuation function of all nodes. This means
that paths that violate GR2 are filtered on ingress, (rather
that filtered on egress, as per Section 3.3). This approach
is discussed in [30]. (However, we emphasize here that The-
orem 6.1 does not hold under this alternate interpretation
of the Gao-Rexford conditions.) While this interpretation
may lead to better positive results, it may be unrealistic; for
instance, in Disputed Path, node c has no reason to an-
nounce the path cnm1d to node n, since both m and n are
providers of c and c only stands to lose money by transiting
traffic from one provider to another. Thus, its seems reason-
able to expect c to refuse to export this path. Meanwhile,
n has no reason not to admit the path ncm1d, since this
path is through his customer c. Furthermore, in practice,
business relationships between ASes are often kept private.
Thus, it is not clear how n would learn that node m is c’s
provider, and therefore that node n should not admit the
path ncm1d.

7. RELATED WORK
We discussed some related work in Sections 1–2. Further

discussion is below. Griffin, Shepherd, and Wilfong [22] de-
veloped a formal model of BGP which assumes ASes choose
paths based on an arbitrary preference function that ranks
outgoing paths. They used this model to initiate a study
of sufficient conditions to ensure that BGP converges to a
unique outcome (Section 3.1). This study was continued by
many subsequent works; most relevant here are the results of
Gao and Rexford [15] who considered constraints that arise
due to business relationships between ASes (Section 3.3),
and those of Feamster, Johari, and Balakrishnan [8] who
studied the effect of filtering (Section 3.4).

In contrast to the works on convergence, the game theo-
retic studies of BGP [7,9–13,30,35], discussed in Section 1.2
and throughout this paper, looked for mechanisms that in-

duce incentives to comply with the protocol (which, in par-
ticular, means that ASes would have no incentive to lie).
These works interpret the preference function in Griffin et
al. [22] as a measure of utility for each AS, and model ASes
as rational agents who act selfishly to maximize utility. This
is equivalent to assuming that utility is uniquely determined
by outgoing paths. To our knowledge, our work is the first to
model the effect of incoming traffic on the incentive to lie in
BGP announcements. Earlier versions of our work appeared
as [18] and [26].

Recently, the literature on BGP convergence has begun
to model the effect of incoming traffic on BGP dynamics.
These works [16, 40, 41] focus on the context of traffic en-
gineering, and assume that ASes honestly announce paths;
they do not consider ASes that lie. Gao, Dovrolis and Ze-
gura [16] and Wang et al. [40] study algorithms for traffic
attraction and deflection using AS-path prepending. (Our
work does not model prepending.) Wang et al. [41] study
oscillations that can occur if the BGP decision process de-
pends on incoming traffic as well as outgoing paths. In con-
trast, our work allows utility to depend on incoming traf-
fic (Section 2.3) but assumes that the BGP dynamics are
based on ranking functions (Section 2.2) that depend only
on outgoing paths. The ranking functions are derived from
a “compilation” of the utility function (Section 2.5). Thus,
in some sense, Wang et al. study the oscillations that can re-
sult as ASes continuously adjust their compilation. Indeed,
Figure 2 of [41] shows conditions under which Inconsistent
Policy in (our) Figure 2 could experience such oscillations.

8. CONCLUSIONS
In this work, we considered control-plane mechanisms that

provide incentives for rational ASes to announce their true
data-plane paths in BGP messages. We find that condi-
tions previously shown to be sufficient for honesty no longer
suffice if we assume that ASes can benefit by attracting
incoming traffic from other ASes. We demonstrated that,
within the control-plane mechanisms we considered here, en-
suring honesty in the face of traffic attraction requires very
strong restrictions on routing policy (at the very least, pol-
icy consistency everywhere, and sometimes also next-hop
policy at certain ASes), as well as control-plane verification
(loop-verification or path-verification protocols like Secure
BGP [27]). Thus, our results suggest that in practice, it will
be difficult to achieve honesty without resorting to expensive
data-plane protocols that verify and enforce AS-level paths.
By highlighting the difficulty of matching the control and
data planes, even under the assumption that ASes are ratio-
nal (and not arbitrarily malicious), our results can also help
inform decisions about whether security protocols should be
deployed in the control plane, in the data plane, or in both.

Acknowledgments
We thank Jennifer Rexford, Michael Schapira and Joan Fei-
genbaum for discussions and valuable feedback that has greatly
improved this work. We also thank Boaz Barak, Matthew
Caesar, Andreas Haeberlen, Martin Suchara, Gordon Wil-
fong, and the anonymous SIGCOMM’08 reviewers for useful
comments.

9. REFERENCES
[1] K. Argyraki, P. Maniatis, O. Irzak, A. Subramanian,

and S. Shenker. Loss and Delay Accountability for the
Internet. In Proc. IEEE ICNP, pp. 194–205, Oct. 2007.

[2] I. Avramopoulos and J. Rexford. Stealth Probing:
Data-Plane Security for IP Routing. In Proc.
USENIX, Jun. 2006.

[3] H. Ballani, P. Francis, and X. Zhang. A Study of
Prefix Hijacking and Interception in the Internet. In
Proc. ACM SIGCOMM, pp. 265–276, Aug. 2007.

[4] S. Balon and G. Leduc. Can Forwarding Loops Appear
When Activating iBGP Multipath Load Sharing? In
Proc. AINTEC, LNCS 4866, pp. 213–225, Nov. 2007.

[5] S. Bradner. Key words for use in RFCs to Indicate
Requirement Levels. RFC 2119, Mar. 1997.

[6] K. Butler, T. Farley, P. McDaniel, and J. Rexford. A
Survey of BGP Security Issues and Solutions.
Technical report, AT&T Labs–Research, 2005.

[7] R. R. Dakdouk, S. Salihoglu, H. Wang, H. Xie, and
Y. R. Yang. Interdomain Routing as Social Choice. In
Proc. Incentive-Based Comp. (IBC), Jul. 2006.

[8] N. Feamster, R. Johari, and H. Balakrishnan.
Implications of Autonomy for the Expressiveness of
Policy Routing. IEEE/ACM Trans. Network.
15(6):1266–1279, Dec. 2007.

[9] J. Feigenbaum, D. R. Karger, V. Mirrokni, and
R. Sami. Subjective-Cost Policy Routing. Theoretical
Comp. Sci. 378(2):175–189, Jun. 2007.

[10] J. Feigenbaum, C. Papadimitriou, R. Sami, and
S. Shenker. A BGP-Based Mechanism for Lowest-Cost
Routing. Distributed Computing 18(1):61–72, Jul.
2005.

[11] J. Feigenbaum, V. Ramachandran, and M. Schapira.
Incentive-Compatible Interdomain Routing. In Proc.
ACM Conf. Elec. Commerce (EC), pp. 130–139, Jun.
2006.

[12] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism
Design for Policy Routing. Distributed Computing
18(4):293–305, Mar. 2006.

[13] J. Feigenbaum, M. Schapira, and S. Shenker.
Distributed Algorithmic Mechanism Design. Chap. 14
(pp. 363–384) in Algorithmic Game Theory, N. Nisan,

T. Roughgarden, É. Tardos, and V. Vazirani, eds.
Cambridge UP, Sep. 2007.

[14] L. Gao, T. G. Griffin, and J. Rexford. Inherently Safe
Backup Routing with BGP. In Proc. IEEE
INFOCOM, vol. 1, pp. 22-26, Apr. 2001.

[15] L. Gao and J. Rexford. Stable Internet Routing
without Global Coordination. IEEE/ACM Trans.
Network. 9(6):681–692, Dec. 2001.

[16] R. Gao, C. Dovrolis, and E. Zegura. Interdomain
Ingress Traffic Engineering through Optimized
AS-Path Prepending. In Proc. IFIP Networking, May
2005.

[17] V. Gill, J. Heasley, and D. Meyer. The Generalized
TTL Security Mechanism (GTSM). RFC 3682, Feb.
2004.

[18] S. Goldberg and S. Halevi. Rational ASes and Traffic
Attraction: Incentives for Honestly Announcing Paths
in BGP. Technical Report TR–813–08, Princeton
Univ. Dept. of Comp. Sci., Feb. 2008.

[19] S. Goldberg, S. Halevi, A. D. Jaggard,
V. Ramachandran, and R. N. Wright. Rationality and
Traffic Attraction: Incentives for Honest Path
Announcements in BGP. In Proc. ACM
SIGCOMM’08, Aug. 2008.

[20] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and
J. Rexford. Path Quality Monitoring in the Presence
of Adversaries. In Proc. ACM SIGMETRICS, Jun.
2008.

[21] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis,
P. McDaniel, and A. Rubin. Working Around BGP:
An Incremental Approach to Improving Security and
Accuracy of Interdomain Routing. In Proc. NDSS,
Feb. 2003.

[22] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The
Stable Paths Problem and Interdomain Routing.
IEEE/ACM Trans. Network. 10(2):232–243, Apr.
2002.

[23] A. Heffernan. Protection of BGP Sessions via the TCP
MD5 Signature Option. RFC 2385, Aug. 1998.

[24] K. J. Houle and G. M. Weaver. Trends in Denial of
Service Attack Technology. Technical Report, CERT
Coordination Center, Oct. 2001.

[25] G. Huston. Interconnection, Peering, and Settlements.
In Proc. Internet Glob. Summit (INET), Jun. 1999.

[26] A. D. Jaggard, V. Ramachandran, and R. N. Wright.
Towards a Realistic Model of Incentives in
Interdomain Routing: Decoupling Forwarding from
Signaling. Technical Report 2008–02, DIMACS,
Rutgers Univ., Apr. 2008.

[27] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway
Protocol (S-BGP). J. Selected Areas in
Communications 18(4):582–592, Apr. 2000.

[28] R. Lavi and N. Nisan, Online Ascending Auctions for
Gradually Expiring Items, In Proc. of 16th
ACM-SIAM Symp. on Discrete Algorithms, SODA
2005, pages 1146–1155. SIAM, 2005.

[29] H. Levin, M. Schapira, and A. Zohar. The Strategic
Justification for BGP. Technical Report, Hebrew
Univ. of Jerusalem, 2006.

[30] H. Levin, M. Schapira, and A. Zohar. Interdomain
Routing and Games. In Proc. ACM STOC, May 2008.

[31] X. Liu, X. Yang, D. Wetherall, and T. Anderson.
Efficient and Secure Source Authentication with
Packet Passports. In Proc. USENIX Wkshp. Steps to
Reducing Unwanted Traffic on the Internet (SRUTI),
Jul. 2006.

[32] Z. Mao, J. Rexford, J.Wang, and R. H. Katz. Towards
an Accurate AS-Level Traceroure Tool. In Proc. ACM
SIGCOMM, pp. 365–378, Aug. 2003.

[33] N. Nisan and A. Ronen. Algorithmic Mechanism
Design. Games and Economic Behavior
35(1–2):166–196, Apr. 2001.

[34] V. Padmanabhan and D. Simon. Secure Traceroute to
Detect Faulty or Malicious Routing. Proc. HotNets-I,
pp. 77–82, Oct. 2002.

[35] D. C. Parkes and J. Shneidman. Specification
Faithfulness in Networks with Rational Nodes. In
Proc. ACM PODC, pp. 88–97, Jul. 2004.

[36] A. Ramachandran and N. Feamster. Understanding
the Network-Level Behavior of Spammers. In Proc.

ACM SIGCOMM, pp. 291–302, Sep. 2006.

[37] Y. Rekhter, T. Li, and S. Hares. A Border Gateway
Protocol 4 (BGP-4). RFC 4271, Jan. 2006.

[38] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and
R. H. Katz. Listen and Whisper: Security mechanisms
for BGP. In Proc. USENIX NSDI, Mar. 2004.

[39] F. Wang and L. Gao. On Inferring and Characterizing
Internet Routing Policies. In Proc. ACM IMC,
pp. 15–26, Oct. 2003.

[40] H. Wang, R. K. Chang, D.-M. Chiu, and J. C. Lui.
Characterizing the Performance and Stability Issues of
the AS Path Prepending Method. In Proc. ACM
SIGCOMM Asia Workshop, Apr. 2005.

[41] H. Wang, H. Xie, Y. R. Yang, L. E. Li, Y. Liu, and
A. Silberschatz. On the Stability of Rational,
Inbound-Dependent Interdomain Route Selection. In
Proc. IEEE ICNP, pp. 40–52, Nov. 2005.

[42] R. White. Deployment Considerations for Secure
Origin BGP (soBGP). Internet Draft (expired),
draft-white-sobgp-bgp-deployment-01.txt, Jun.
2003.

[43] E. L. Wong, P. Balasubramanian, L. Alvisi, M. G.
Gouda, and V. Shmatikov. Truth in Advertising:
Lightweight Verification of Route Integrity. In Proc.
ACM PODC, pp. 147–156, Aug. 2007.

APPENDIX
A. LIES AND FORWARDING LOOPS

Our results in this work indicate that in many realistic
networks, rational nodes do have an incentive to deviate
from BGP in order to attract incoming traffic. Hence, of-
ten cannot rely on path announcement to accurately reflect
the paths taken by traffic. But can we still rely on BGP to
ensure weaker properties of routing, even if some nodes de-
viate from it? At the very least, can we rely on it to prevent
routing loops? .

Below we consider the following mild form of deviation,
which seem realistic: we assume that every node still main-
tains a ranking function over paths and chooses the (first
hop in the) highest-ranked path that was announced to it for
forwarding its traffic. However, we allow nodes to announce
to their neighbors different paths than what they choose for
forwarding. We also assume that paths that do not reach
the destination or have routing loops are ranked −∞ (i.e.,
nodes will not knowingly send traffic into the abyss).

In general, we cannot guarantee that a network will not
have any forwarding loops if (more than one) node lies. In
Figure 11, nodes 1 and 3 both lie about the paths they use,
while nodes 2 and 4 are honest, thus causing a forwarding
loop to form in the data plane. (Notice that the same for-
warding loop would form in the data plane if nodes 2 and
4 lied about the paths they used.) However, we show
that if the ranking functions contain no dispute wheel and
the network has path verification, then no forwarding loops
can occur. (This may help explain why forwarding loops
are uncommon on the Internet, even through not all nodes
announce their true paths.)

Theorem A.1. Consider an AS graph with path verifica-
tion, where all nodes choose their forwarding path based on
their ranking function. If a resulting outcome contains a for-
warding loop in the data plane, then there are (at least two)

14d
143d

1d

“1d” 21d
214d

3d1 2d 3d

d
43d

432d
4d

32d
321d

3d4 3
“3d”

Figure 11: Forwarding Loop.

nodes in the network that announce a path with a next-hop
that is different from the next hop that they actually use,
and all those nodes have a dispute wheel in their ranking
functions.

Proof. Let T be a (not necessarily stable) outcome and
assume that it has a forwarding loop in the data plane. Let
the forwarding loop have the form a1 → . . . → ak → a1

where node ai forwards traffic to ai+1 and announces a path
to ai−1. Since we assume that nodes do not knowingly send
traffic into a loop or a path that does not reach the desti-
nation (and since we have path verification), it follows that
at least one node ni that announces to ai−1 a path different
than what it chooses for forwarding. Denote one such node
by n0 and denote the path that it announces by Q0 and the
path that it chooses for forwarding by P0. Note that n0P0

reaches the destination and has no loops, since n0 chooses
it for forwarding. Note also that the first hops in Q0 and P0

must differ, since n0 receives the announcement P0 from the
next hop on it, and by path-verification n0 cannot announce
a different path starting from the same next-hop.

Clearly, the next node after n0 on P0 is in the loop (since
n0 routes into the loop). Also, if the next node honestly
announces the path that it chooses then also the node after
it P0 is in the loop, and so on. So there must be some node
on P0 that announces a path different than what it chooses
(since P0 eventually leaves the loop to reach d). Let n1 be
the first node after n0 on the path P0 that announces a path
Q1 that is different from what it choose for forwarding, and
by the argument above n1 must be in the loop. Also, Q1

must be a suffix of P0, since all the nodes between n1 and n0

(if any) announce honestly the path that they choose. Thus
we can write P0 = n0R0n1Q1d.

We similarly define Pi = niRini+1Qi+1d for i = 1, 2,
(That is, Pi is the path that ni chooses, ni+1 is the first
node on Pi that does not announce honestly the path that
is chooses, etc.) Repeating the arguments from above, the
first-hop in Pi, Qi must differ for all i. Note that the ni’s
include all the nodes in the loop that do not announce hon-
estly the path that they use, in the order that they appear
on the loop. We must therefore eventually arrive back at
n0, namely we have n` = n0 (with ` ≥ 2).

Since the network has path verification, then the ‘direct’
path niQid to the destination d must exist in the graph and
are available to. Still, ni chooses the ‘indirect’ path Pi =
niRini+1Qi+1d, which means that rni(niRini+1Qi+1d) >
rni(niQid). Hence, there is dispute wheel between the ni.

B. FORMALIZING “NO INCENTIVE TO LIE”
As we mentioned several times in the text, the formal no-

tion of “no incentive to lie” that we use for some of our pos-
itive results is different from “incentive compatibility in ex-
post Nash equilibrium” that was used in prior work; see [35].
Here we explain this difference in more detail.

B.1 Ex-Post Nash
The notion of ex-post Nash equilibrium expands upon the

usual Nash equilibrium to distributed settings, where players
may not have full information on each other’s preferences.
Below we let θi denote the private information of node i.
(In our setting, this consists of the node’s valuation and
attraction functions.

Let si(θi) be a strategy for node i; which takes as input i’s
private information and then describes the actions that node
i takes in each round of the game. (One possible strategy
for our setting was described in Definition 2.1.) A strategy
profile ~s = (s1, s2, . . . , sk) is a tuple consisting of one strat-

egy si for each node i. Together with the private inputs ~θ of
all nodes and a particular schedule t, such a strategy profile
~s determines a particular execution of the interdomain rout-

ing game. Below we denote by gt(~s(~θ)) the outcome of this
execution. (This notation assumes that the execution con-
verges to a stable outcome; otherwise we arbitrarily define
the outcome as the first non-transient global state in this
execution.)

We say that the strategy profile ~s is an ex-post Nash equi-
librium if

ui(gt(s1(θ1), . . . , si(θi), . . . , sk(θk)))

≥ ui(gt(s1(θ1), . . . , s′i(θi), . . . , sk(θk))),

for each node i, every possible alternate strategy s′i that i
could have, every fair schedule t, and for all possible values

of the private information ~θ = (θ1 . . . θk).
In other words, a strategy profile ~s is in ex-post Nash

equilibrium if, regardless of the underlying private infor-
mation of all other nodes, each node i obtains at least as
great a utility by executing strategy si contained in s rather
than some other strategy s′i. This is much stronger than
a Nash equilibrium, in which nodes are assumed to know
the private information of other nodes, and weaker than a
dominant-strategy equilibrium, in which nodes have a sin-
gle strategy that is best to execute regardless of the other
players’ strategies (and not just their private information).
Dominant-strategy equilibrium appeared in some of the ini-
tial work on mechanism design and routing [10,33]. Ex-post
Nash equilibrium, as in [11, 13, 30], can be used to capture
rational specification faithfulness. If we let the strategy pro-
file s contain the strategies that nodes “follow a protocol as
specified,” then showing that s is an ex-post Nash equilib-
rium amounts to showing that nodes have no incentive to
unilaterally deviate from following the protocol.

We note that ex-post Nash equilibrium does not address
deviations by more than one node, although the topic of
collusion-proof ex-post Nash equilibrium is addressed in [13,
30].

B.2 Partially-Specified Strategies
As defined above, ex-post Nash equilibrium requires that

all nodes follow a fully-specified strategy profile. In our set-
ting, this means in particular that all the actions of the

nodes (including their filtering policies) must be spelled out
in this strategy profile. We stress that this requirement goes
well beyond requiring that all nodes comply with the BGP
specification [37]. In particular, a BGP-compliant imple-
mentation allows node to use arbitrary ingress and egress
filtering (as long as the select paths based on their ranking
functions), but such arbitrary filtering is not consistent with
the strategies in prior work [11,13,30].

Insisting that all nodes follow a fully-specified strategy-
profile may not be realistic in large distributed systems,
where protocols are only partially specified and many op-
tions are left for the individual implementations. (Indeed,
avoiding over-specification is crucial for RFCs; see [5, §6].)
We therefore describe BGP-compliance in Definition 2.1 as
a property of a strategy (or, equivalently, as a “set of allowed
strategies”).

B.3 Solution Concepts
Extending the formal treatment to a set of strategy al-

lows one to define a variety of solution concepts. Below we
mention two such concepts that are used in our paper.

Ideally, one would have wanted to augment the notion of
ex-post Nash, allowing also part of the strategy itself (e.g.,
the export rules) and not just the valuation and attraction
functions to be treated as private inputs. Namely, we would
have liked to have a single (fully specified) strategy pro-
file, such that every node i has an incentive to follow its
strategy even when other nodes do not follow theirs, as long
as all nodes follow “allowed strategies”. Hence, this notion
lies somewhere in between ex-post Nash and a dominant-
strategy (and in particular it implies the standard ex-post
Nash concept). We note that our positive result for traffic-
volume attraction in Theorem 4.1 actually meets this strong
solution concept. (The positive result for customer attrac-
tion in Theorem 6.1 achieves a similar concept, but that
result is significantly weaker since it only addresses stable
outcomes.)

Unfortunately, for the case of “generic attractions” in The-
orem 5.1 we are not able to achieve this strong solution con-
cept. In fact, for that case we cannot even show a stan-
dard ex-post Nash result. Instead, we settle for a very weak
notion of solution, showing only that for every node there
exists an “allowed strategy” that is optimal. Following Lavi
and Nisan [28], this concept can be called Set ex-post Nash,
and is defined thus:

A set profile ~S = (S1, . . . , Sk) (one set for every player)
is Set ex-post Nash equilibrium if for every node i and ev-
ery profile of fully specified strategies for the other nodes
s1 . . . si−1, si+1 . . . sk (with sj ∈ Sj for all j), there exists
s∗i ∈ Si such that

ui(gt(s1(θ1), . . . , s∗i (θi), . . . , sk(θk)))

≥ ui(gt(s1(θ1), . . . , s′i(θi), . . . , sk(θk))),

for every possible alternate strategy s′i that i could have,
every fair schedule t, and for all possible values of the private

information ~θ = (θ1 . . . θk).
We emphasize that this solution concept only states that

the “optimal” strategy s∗i for node i exists in Si, without
specifying exactly how to find it. Furthermore, this condi-
tion does not necessarily yield a single (fully-specified) strat-
egy profile ~s that is an ex-post Nash equilibrium, since the
optimal strategy s∗i for node i may change depending of the
strategies of the other players.

C. PROOFS: USEFUL LEMMAS

Lemma C.1 (False path lemma). Consider an execu-
tion of the routing protocol where all the nodes in the AS
graph except perhaps a single manipulator node m follow
BGP-compliant strategies, and assume that this execution
converges to a persistent outcome M . If any node n 6= m
announces a false path P in M (i.e., P differs from the data-
plane path that n uses in M), then P must be of the form
P = nRmQd where nRm a true path and mQd is a false
path.

Proof. Denote the path that n announces by n = arar−1

. . . a1a0 = d. Let ai be the closest node to n on this path
that announces to ai+1 something other than aiai−1P where
ai−1P is the announcement that ai receives from ai−1. Since
this is not consistent with a BGP-compliant strategy, we
conclude that necessarily ai = m. Hence m must be on the
path that n announces in this execution. Let i∗ be the last
occurrence of m on this path (namely m = ai∗ and m 6= aj

for j > i∗). Then for every j > i∗, aj uses a BGP-compliant
strategy so it follows that aj announces to aj+1 the path
ajaj−1 . . . a0, and moreover aj uses aj−1 as its next-hop in
the data-plane path in T . It follows that the data-plane path
of n begins with n = arar−1 . . . ai∗ = m. Thus, denoting
R = ar−1 . . . ai∗+1 and Q = ai∗+1 . . . a0, we have that nRm
is a true path, and since by assumption n announces a false
path it follows that mQd must therefore be a false path.

Before we present the next useful lemma, we first define
a useful concept, called permitted path. (Informally, a per-
mitted path is a path that is not (ingress or egress) filtered
by any node on that path.)

Definition C.2 (Permitted paths). Consider an AS
graph where all nodes use BGP compliant strategies. We say
that a path P is permitted if it is admitted at all the nodes
in it, and moreover every node in it exports it to the next
node.

Note that if all nodes use BGP compliant strategies then
any data-plane path must also be a permitted path.

Our proofs rely heavily on the following lemma, due to
Feigenbaum et al. [13].

Lemma C.3 ([13, Lemma 14.8]). Consider an AS graph
where all nodes use BGP-compliant strategies that obey con-
sistent export, and where the ranking functions of all nodes
are policy-consistent and contain no dispute wheels.

Then there is a unique globally stable outcome T that the
protocol must converge to, and moreover T is locally opti-
mal at all nodes in terms of the ranking functions. Namely:
for any permitted path nSd in the network, the node n is
assigned in T a data-plane path nRd such that rn(nRd) ≥
rn(nSd).

For self-containment, we re-prove this lemma here.

Proof. Since the ranking contain no dispute wheel and
all nodes use BGP compliant strategies, it follows from [22]
that there exists a unique globally stable outcome T to which
the protocol converges. It remains to show that T is locally
optimal at all nodes.

Let ar → ar−1 → . . . a0 = d be any permitted path in the
graph, and for every node ai on this path we denote by Si

arr

aai

a
R’

F th f

Ti-1

ai-1R’’For the reproof

Of FSS
RS

aj

S

d=a0

Q’

0

Figure 12: Case 2 of the induction step in the proof
of Lemma C.3.

the sub-path ai → . . . a0. We will prove by induction over i,
that each node ai is assigned in T a path which is ranked at
least as high as Si.

Base case. The case i = 0 is trivially true, because the
only path for a0 = d is the empty one.

Induction step. Assume that for all j < i it holds that
the path assigned to aj in T (which we denote Tj) is ranked
at least as high as Sj , namely raj (Tj) ≥ raj (Sj). (This
implies in particular that aj is assigned some path in T .)
We now prove for ai.

Note that ai−1 is willing to export Si−1 to ai (since we said
that S was permitted), and therefore it must also announce
Ti−1 to ai because of consistent export. We have two cases:
either the path Ti−1 goes through ai, or it does not.

1. If Ti−1 does not go through ai then from policy consis-
tency and rai−i(Ti−1) ≥ rai−i(Si−1) we get that also

rai(aiTi−1) ≥ rai(aiSi−1) = rai(Si)

Hence ai has an available path that is ranked at least as
high as Si, and therefore must choose one such highly-
ranked path in T .

2. Assume now that the path Ti−1 does go through ai.
We depict this case in Figure 12.

Denote the longest common prefix of the paths Ti−1

and Si−1 by Raj = (ai−1 . . . aj+1)aj (note that R may
be empty). Namely, we have Ti−1 = RajQ, Si−1 =
RajQ

′, and the first nodes in Q,Q′ differ. (In other
words, the node aj is the first node on the path Si−1

that uses a different next-hop in Si−1 and Ti−1.) Since
Ti−1 goes through ai but Si−1 does not, it means that
ai must be somewhere on the sub-path Q, so we can re-
write Ti−1 as Ti−1 = RajR

′aiR
′′d, where Tj = ajR

′aiR
′′d

is the path assigned to aj in T (and Ti = aiR
′′d is as-

signed to ai in T).

By the induction hypothesis we have that raj (Tj) ≥
raj (Sj), but since aj uses different next-hops in Tj , Sj

then the inequality must be strict. It must therefore
be the case that rai(Ti) ≥ rai(Si), or else we have a
(2-pivot) dispute-wheel between ai and aj : ai prefers
Si = ai . . . aj . . . a1d over Ti = aiR

′′d, and aj prefers
Tj = ajR

′aiR
′′d over Sj = aj . . . a1d.

D. PROOFS: VOLUME ATTRACTIONS
We now prove Theorem 4.1.

Theorem 4.1 Consider an AS graph where the valuation
functions contain no dispute wheels. Suppose that all nodes,
except a single manipulator node m, use BGP-compliant
strategies and set their ranking equal to their valuations (rn(·) ≡
vn(·) for every node n). Suppose further that m has a traffic-
volume attraction function, and that at least one of the fol-
lowing two conditions hold:

a. The valuations function of all nodes are next-hop and
the export functions of all the nodes but m obey all-or-
nothing export; or

b. The valuations function of all nodes are policy consis-
tent, the export functions of all the nodes but m obey
consistent export, and the network has path verification.

Then there is a BGP compliant strategy for m that sets
rm(·) ≡ vm(·) and obeys all-or-nothing export (and there-
fore also consistent export), such that this strategy is opti-
mal for m. In particular setting rm(·) ≡ vm(·) and using
export-all rule is one optimal strategy.

Proof. Consider an arbitrary strategy for m and denote
by M any persistent outcome of the protocol (which need
not be globally stable, see Section 3.1). We assume that
um(M) > −∞ (or else any BGP-compliant strategy for m
will do).

Now consider a BGP compliant strategy for m where
rm(·) ≡ vm(·) , and m exports-all on every edge on which it
announces a simple path in M . The rest of m’s export pol-
icy can be arbitrary, as long as it complies with consistent
export. Clearly this strategy is BGP compliant and obeys
consistent export, and moreover when m uses this strategy
then the ranking functions of all nodes are policy-consistent
and contain no dispute wheels (since they are set equal to
the valuation functions). We can therefore apply Lemma C.3
to conclude that there is a unique globally stable outcome
T , which is locally optimal at all nodes with respect to the
ranking functions. We now prove that the utility of m in T
is at least as high as in M . A crucial observation (that we
prove in Lemma D.1 below), is that for every node n, the
data-plane path of n in T has valuation at least as high as
any control-plane announcement that n receives in M . We
can now show that um(T) ≥ um(M).

• From the crucial observation Lemma D.1, we know that
the valuation of m in T is at least as high as in M (since
m routes in M on some path that was announced to it).
Thus vm(M) ≤ vm(T).

• Next we show that every node routing through m in M
must also route through it in T , and so αm(M) ≤
αm(T). To do this, fix some path R = (nrnr−1 . . . n0 =
d) that does not go through m in T . We prove by in-
duction on i that each of the nodes ni use the same
path also in M . The base case n0 = d this is trivial.
For the induction step, assume now that every nj with
j < i uses the same path in T and M . We prove this
is also the case for ni. Denote the path that ni−1 uses
in T and M by Ri−1. Since ni−1 6= m then we know
that ni−1 exports the path Ri−1 to ni also in M . From
the crucial observation Lemma D.1, we also know that
Ri−1 is at least as good as any path which is announced
to ni in M (since ni is in a persistent state). Further,
Ri−1 must be strictly better for ni than any path that

does not have next-hop ni−1. Hence ni will choose the
path ni−1Ri−1d in M as well, and we have completed
the induction step.

Thus, since um(·) = vm(·) + αm(·), we have that um(T) ≥
um(M), and Theorem 4.1 follows.

Lemma D.1 (Crucial Observation). Consider an AS
graph where the valuation functions contain no dispute wheels,
where one node m uses an arbitrary strategy and all other
nodes use some BGP-compliant strategies with rn(·) ≡ vn(·)
. Let M denote an outcome of the routing protocol in this
network and assume that um(M) > −∞ (M is a globally
persistent outcome, but need not be globally stable).

Consider further a BGP-compliant strategy for m where
rm(·) ≡ vm(·) and m exports-all on every edge on which
it announces a simple path in M . The rest of m’s export
policy can be arbitrary, as long as it complies with consistent
export. Let T denote the unique globally stable outcome of
the protocol in this modified network.

Finally, assume that at least one of the following two con-
ditions hold:

a. The valuations function of all nodes are next-hop and
the export functions of all the nodes but m obey all-or-
nothing rule; or

b. The valuations function of all nodes are policy consis-
tent, the export functions of all the nodes but m obey
consistent export, and the network uses path verifica-
tion.

Then for every node n in the network, vn(T) is at least as
high as the valuation of any path announcement that n re-
ceives in M .

Proof. Let R be a path announcement that a node n
receives in M , and assume that vn(nR) > −∞ (otherwise
there is nothing to prove). This means that nR is a simple
path that reaches the destination, so we can denote it by
R = nr−1 . . . n1n0 with n0 = d (and we also denote n = nr).
In the rest of this proof, we show that there must exists a
path nS which is permitted in the network where m uses the
BGP-compliant strategy above, such that vn(nS) ≥ vn(nR).
Then, if we apply Lemma C.3 to the permitted path nS, it
follows that the path assigned to n in T has valuation at
least as high as vn(nS) ≥ vn(nR) and Lemma D.1 follows.

First, notice that if the manipulator m is not on R then
the path nR itself is permitted in the “BGP compliant net-
work” and we are done. Now assume that m = nj for some
j ≤ r − 1. Since we assumed

that um(M) > −∞ then m has some data-plane path
to the destination in M , and we denote this path by mQ.
Note that mQ is a data-plane path that includes only hon-
est nodes, so it must be permitted in the “BGP compliant
network”. We now consider separately the two cases in the
lemma statement.

Case a: next-hop policy and all-or-nothing export.
There are two sub-cases: either mQ goes through n, or it
does not.

• Suppose mQ does not go through n. Let t be the high-
est index (j ≤ t < r) such that the path mQ goes
through nt, and denote the portion of mQ from nt and
on by ntS. Thus S is a data-plane path that does not
go through nr = n and does not go through nj = m.
(See Figure 13.) Hence nr . . . ntS is a simple path,

T1T2

n=nr

c=nr ……

“ n
i Sm

r

n
ni+1c1T2

m
S’n

i+1 S’’

nt

m=n
S’

S
m=co ni

T

“ mS’ni-1S’’d ”

d ” m=nj S

…

d=n0
T1

T2
d=n0

Figure 13: The proof of Theorem 4.1

and by next-hop policy it holds that vn(nr . . . ntS) =
vn(nr . . . nt . . . n0) = vn(nrR). Thus we have proved
that the path nr . . . ntS is ranked at least as high as nR.
It remains to prove that it is permitted. We have two
sub-cases: either m = nt or not.

m = nt. In this case, we have t = j and Q = S.
Then all the nodes nj+1 . . . nr−1 must be honest and
since nr receives the announcement nr−1 . . . n1n0 then
m must have announced something to nj+1 in M . By
construction, m must export all on this link in its BGP
compliant strategy. Also the path mS is admitted at m
(since m has ranking more than −∞), and so mS = nR
is a permitted path as required.

m 6= nt. In this case m is not on the path nr . . . ntS.
We prove by induction that each honest node ni admits
and exports the path nini−1...S in M .

As a base case, nt uses the data-plane path ntS by con-
struction, and thus ntS must be permitted. Further-
more, since nt exports a path to nt+1 in M , from all-
or-nothing export we have that nt is willing to export
ntS also in M . For the induction step, suppose that
ni−1 admits and exports ni−1...ntS to ni. Since ni uses
next-hop policy, we have that vni+1(nini−1...ntS) =
vni+1(nini−1...nt...d). Since ni exported a path to ni−1

in T , from all-or-nothing export we have that ni is will-
ing to export nini−1...ntS also in M .

Thus our induction has shown that the path nnr−1...ntS
in M is permitted (since all the nodes on that path ad-
mit it and are willing to export it), and moreover that
nrnr−1...ntS is ranked at least as high as nrnr−1...n1d =
nR as required.

• Suppose mQ does go through n. Then denote mQ as
mS′nS. Now nS is permitted since it is a data-plane
path, and nS must have higher ranking than nR since
(because n is in a persistent state) n received the an-
nouncement R but is routing in the data-plane over
nS.

This concludes the proof for the setting of next-hop policy
and all-or-nothing export.

Case b: policy-consistency and path verification. Due
to path verification, we know that the path R is admitted
and exported by all the“honest nodes”ni 6= m and therefore
these nodes admit it and export it also in T . Also, by the
way that we defined the ranking and export functions of m
we know that IF vm(mnj−1 . . . n0) > −∞ then also m will
admit and export this path in T (and again we have that nR
is permitted).

It is left to consider the case that vm(mnj−1 . . . n0) = −∞,
namely the case where m announces in M a path that is
not admitted by its valuation function. Again, let t be the
highest index (j ≤ t ≤ r) such that the data-plane path mQ
that m uses in M goes through nt, and denote the portion
of mQ from nt and on by ntS (so S does not go through
nj = m). (See Figure 13.) We now show that the valuation
vnt(ntS) must be at least as high as vnt(ntnt−1 . . . n0).

• If nt = nj = m (so mQ and ntS is the same path)
then this follows from the fact that vm(mQ) > −∞ =
vm(mnj−1 . . . n1d).

• If m 6= nt then we re-write the path mQ as mS′ntS,
and notice that we must have vnt(ntS) ≥ vnt(nt . . .m
nj−1 . . . n0), or else we have a dispute wheel between nt

andm (since vm(mS′ntS) > vm(mnj−1 . . . n0) = −∞).

Now consider the path nrnr−1 . . . ntS. This is a simple path,
and we just showed that vnt(ntS) ≥ vnt(ntnt−1 . . . n0). From
policy consistency it follows that also for each ni, t + 1 ≤
i ≤ r, the path ni . . . ntS has ranking at least as high as
nini−1 . . . n1 (and therefore also valuation at least as high),
since each ni exports the path nini−1 . . . n1 to ni+1 in T it
follows from consistent export that ni exports ni . . . ntS in
M . Hence nrnr−1 . . . ntS is a permitted path with valuation
in n at least as high as nR, as needed. This concludes the
proof for the setting of policy consistency and path verifica-
tion.

E. PROOFS: GENERIC ATTRACTIONS
Theorem 5.1 Consider an AS graph where the valuation

functions are next-hop and contain no dispute wheel. Sup-
pose that all nodes, except a single manipulator node m, use
BGP-compliant strategies where they set their ranking equal
to their valuations (rn(·) ≡ vn(·) for every node n), and obey
all-or-nothing export. Suppose further that the network uses
either loop verification or path verification. Then there ex-
ists a BGP compliant strategy for m that uses rm(·) ≡ vm(·)
and obeys all-or-nothing export, which obtains the best pos-
sible globally stable outcome in terms of the utility function
of m.

Proof. Let M be a globally stable outcome that is ob-
tained by an arbitrary (possibly cheating) strategy for m.
We again assume that um(M) > −∞, or else there is noth-
ing to prove. In particular this implies that m has a (data-
plane) path to d in M . Also, by the discussion in Section 2.3
we can assume without loss of generality that m has a single
outgoing link in M .

Consider a BGP compliant strategy for m where rm ≡ vm

and m exports-all on every edge on which it announces
a simple path in M , and exports nothing on every other
edge. Clearly this strategy is BGP compliant and obeys
all-or-nothing export, and moreover when m uses this strat-
egy then the ranking functions of all nodes are next-hop
(and therefore also policy-consistent) and contain no dis-
pute wheel (since they are set equal to the valuations). This
is exactly the setting of Case b of the crucial observation
Lemma D.1, so we know that there is a unique globally sta-
ble outcome T such that for every node n in the network,
the path assignment of n in T has valuation at least as high
as any path-announcement that n receives in M . In partic-
ular, it follows that vm(T) ≥ vm(M) (because m routes in
M on some path that was announced to it). Since um(·) =
vm(·)+αm(·), it only remains to show that αm(T) ≥ αm(M).

T1T2

n=nr

c=nr ……

“ n
i Sm

r

n
ni+1c1T2

m
S’n

i+1 S’’

nt

m=n
S’

S
m=co ni

T

“ mS’ni-1S’’d ”

d ” m=nj S

…

d=n0
T1

T2
d=n0

Figure 14: The proof of Theorem 5.1

Assume to the contrary that we have αm(T) < αm(M).
We prove a sequence of statements that imply that some
other node b must have raised an alarm, because it receives
a path announcement of the form QbR where b did not an-
nounce the path R, and where m is on path Q. This contra-
dicts either path verification (since b receive an announce-
ment containing a path through b that b did not announce)
or loop verification (where the utility of m is set to −∞
when such an alarm is raised).

Claim E.1. There is a node c that (1) routes through m
in M , (2) uses a different outgoing edge in M than in T ,
(3) every node that routes through c in M uses the same
outgoing link in T and M .

Proof. We assumed towards contradiction thatm gained
an attraction in M , αm(M) > αm(T), which implies that
the subtree of m in M cannot be contained in the subtree
of m in T , namely M(m) 6⊆ T (m). Hence, there exists some
node that routes through m in M and uses a different next
hop in M than in T .

Denoting m = c0, we continue to find nodes ci(i ≥ 1)
as follows: For each node ci, if there are nodes that route
through ci in M and use a different next-hop in M than
in T , then we let ci+1 be one such node. We repeat this
process until we reach a “last node” c such that every node
that routes through c in M uses the same next-hop in T and
in M .

Observe that we must reach such “last node” since other-
wise we will eventually repeat a node, say node cr. But since
each ci routes through ci−1 then repeating a node means
that we have a routing loop in M , and since all these nodes
route through m and all of them (including m) have just one
outgoing link, it follows that m is part of this routing loop,
so in particular m does not have a path to the destination
in M and um(M) = −∞.

It follows by definition that this “last node” c satisfies
items (1) through (3) in the claim assertion.

Claim E.2. Node c has a data-plane path to d in T .

Proof. We again use the crucial observation Lemma D.1
to establish that the path assignment of c in T is ranked at
least as high as any announcement that node received in M .
In particular c is routing through m so it must have received
an announcement with rank higher than −∞ in M , so it
must have a path with rank higher than −∞ also in T .

Denote the data-plane path of c to d in T by nr . . . n1n0

(with c = nr, d = n0), and we distinguish two cases: either
nr−1 has a data-plane path to d also in M or it does not.

Case 1: nr−1 has a data-plane path to d in M . Ob-
serve that nr−1 does not route through nr = c in M , since
it does not route though c in T , and we chose c such that
M(c) ⊆ T (c) (i.e., every node that routes through it in M
uses the same next-hop in T as in M).

Next we claim that nr−1 announces some simple path to
nr in M . Observe that nr−1 exports some path to nr in T .
If nr−1 = m, then by construction it only exports paths
in T on edges on which it announces some simple path in
M , so we know that it must have announced some simple
path to nr in M . On the other hand, if nr−1 6= m then it
uses all-or-nothing export rule, and since we assume that it
has a path in M and we know that it exports a path in T ,
it follows that it must export some path also in M (which
must be simple since only simple paths are announced by
BGP-compliant strategies).

Let nr−1Rd be the path that nr−1 announces to nr = c
in M . Next, we claim that the path nrnr−1Rd contains a
loop. Suppose it did not. Then by next-hop ranking we
would get that rnr (nrnr−1Rd) = rnr (nrnr−1 . . . n0). But
we know that the path nrnr−1 . . . n0 is the T path of nr = c,
so from the crucial observation Lemma D.1 we know that
nrnr−1Rd must be ranked at least as high as any announce-
ment that c received in M . By construction c uses a differ-
ent next-hop than nr−1 in M , and thus it follows that the
path the that c uses in M is ranked (strictly) lower than the
path nrnr−1Rd. Now, since we assume that c = nr is stable
in M , it follows that c = nr would have chosen to route
through nr−1 also in M . This contradicts the fact that c in-
deed chose a different next-hop than nr−1 in M , and hence
we conclude that the path nrnr−1Rd contains a loop.

However, we argued above that the path nr−1Rd is simple.
Thus, only way that nrnr−1Rd could contain a loop is if
c = nr itself appears somewhere on the path nr−1Rd. But
we argued above that nr−1 does not route through c = nr

in T , so the path nr−1Rd is a false path. By the false-path
lemma (Lemma C.1) it follows that this announced path has
the form nr−1SmS

′nrS
′′d (since from the false path lemma

S is a true path and mS′nrS
′′d is a false path, and c = nr

must appear on the false path).
Next, observe that the S′′ portion of the announced path

cannot includem (sincem appears before c = nr and nr−1SmS
′nrS

′′d
is a simple path). But c = nr routes through m in M , and
so invoking the false path lemma again implies that c must
have announced some path that goes through m. It follows
that c = nr did not announce the path nrS

′′d, and so upon
obtaining the announced path mS′nrS

′′d from nr−1, c = nr

would detect a false loop and raises an alarm.

Case 2: nr−1 has no path to d in M . Here we denote
by ni the node closest to c = nr on the T path (but not c
itself) that does have a data-plane path to d also in M . We
know that such ni exists, since in particular d has the empty
path to d in M . By definition of ni, we have that ni+1 does
not have any data-plane path to the destination in M . This
implies (1) that ni+1 6= m (since m has a path to d in M),
(2) that ni+1 does not use the same next-hop in M as it does
in T , and (3) that ni does not route through ni+1 in M .

Again, we argue that ni must announce a simple path
to ni+1 in M , since it announces some path to ni+1 in T .
The argument is the same as in the previous case: either

a b a bc c

Traffic Traffic

⇒

R0Q

Traffic Traffic

a0
R0Q0 Q

Rk-1

0Q
1
Q0

a1dak-1

Q0 Q1

Qk-1

R1Q
2
Q

Rk-1Q0
Qk-1

Q1

Attract c

c n p d
c p dc

p d
n p d
n c p dp nd

Figure 15: Lemma F.1.

ni = m where this follows by construction, or ni 6= m where
it follows from the all-or-nothing export and the fact that
ni has a data-plane path in M .

Also, we denote the path that ni announces to ni+1 by
niRd, and again argue that although this is a simple path,
the path ni+1niRd must include a loop, or else ni+1 would
have chosen it in M rather than having no data-plane path
at all. (This follows because any path with next-hop ni must
be admitted at ni−1 due to next-hop policy, and from the
assumption that ni+1 is stable in M .)

As in the previous case, we conclude that the announce-
ment niRd must include ni+1. However, we argued above
that ni does not route through ni+1 in the data plane. Thus,
we have that niRd is a false path, and so combining this
observation with the false-path lemma Lemma C.1 tells us
that it is of the form niSmS

′ni−1S
′′d. But ni−1 did not

announce the path ni−1S
′′d (since it has no data-plane path

in M , and so it does not announce anything in M). Hence,
ni+1 must raise an alarm upon receiving the announcement
niRd from ni.

F. PROOFS: GAO-REXFORD NETWORKS
Before we start, we need the following useful concept:

Transitive customers. A node b is a strict transitive
customer of node c if b is connected to c via a path con-
sisting of only customer-provider links as in the right half
of Figure 15. We also restate here a simple, useful lemma
of the Gao-Rexford conditions proved by Gao, Griffin and
Rexford in [14].

Lemma F.1 (Transitive customers [14, Theorem VII.4]).
If either the path P = abRc or the path P ′ = cR′ba is per-
mitted, and if node a is not a customer of node b, then node
c is a strict transitive customer of node b over the permitted
path.

We remark that even if not all the nodes in the AS graph
use BGP-compliant strategies, Lemma F.1 still holds as long
as all the nodes on the permitted path (except perhaps
the last one, closest to the destination) use BGP-compliant
strategies that obey the Gao-Rexford conditions.

We now prove the following helper lemma that we use to
derive a contradiction in Theorem 6.1:

Lemma F.2. Consider an AS graph (that obeys GR1) where
all nodes, except perhaps a single manipulator node m, use
BGP-compliant strategies that obey the Gao-Rexford condi-
tions (i.e., rankings obey GR3, export obeys GR2) Let T
be the unique globally stable outcome when m follows some
BGP-compliant strategy that obeys the Gao-Rexford condi-
tions, and let M be a globally stable outcome that results
from some other arbitrary strategy of m.

If there is a node a in the network such that (1) a is a
strict transitive customer of the manipulator m, (2) a uses

amam

b a'
T

⇒

dT1

T1T2

dT1

nm
R

nm

a0

T

T1
T2

a0

TT

d

T1

d

T1T2

Figure 16: Proof of Lemma F.2

a different path in M than in T , and (3) the destination d is
a strict transitive customer of a along a’s path in T . Then
there is a different node a′ 6= a which is a strict transitive
customer of a, such that a′ also satisfies the conditions (1)-
(3).

Proof. Since a is a strict transitive customer of m, and
the destination d is a strict transitive customer of a on a’s
T path, then the Topology condition GR1 implies that m
cannot be on the path of a in T . Denote by b the node
closest to the destination along ai’s path in T that uses a
different path in M than in T (we know that such a b exists
since in particular node a is such a node), and denote the
paths of b in T and M by bQ1d and bQ2d, respectively.

Since all the nodes on the path Q1d are honest and they
all use that path in M , it follows that b must have received
an announcement Q1d from the first hop on that path in
M , (and since M is a persistent outcome) and yet it chose
a different path in M . We conclude that b’s ranking has
rb(M) > rb(T). And since b’s next hop in T is a customer,
the Preferences condition GR3 implies that b’s next hop in
M must also be a customer. Applying Lemma F.1 we get
that (a) node m cannot be on the path bQ2d, or else it
would have to be a strict transitive customer of b and we
would have a customer-provider loop; and (b) since m is not
on bQ2d then the destination is a strict transitive customer
of b along this path.

Let node a′ be the node closest to the destination along the
path bQ2d that uses a different path in M than in T (again,
we know it exists since b is one such node). Denote the paths
of a′ in T and M by a′R1d and a′R2d, respectively. It follows
that the path R2d is also in the path assignment T . Notice
that a′ is also a strict transitive customer of the manipulator
m, and that destination d is a strict transitive customer of a′

along the path R2d. Since all the nodes on the path R2d uses
this path also in T , and since a′ received an announcement
for this path in M (because it uses this path in M) then a′

must have received an announcement R2d in T also (since
T is a globally stable outcome). Yet a′ chose a different
path in T . We conclude that the ranking of a′ has ra′(T) >
ra′(M), which also implies that a′ 6= b.

Since ra′(T) > ra′(M) and since the next hop after a′

on the path a′R2d in M is a customer of a′, the Preferences
condition GR3 implies that the next hop after a′ on the path
a′R1d in T must also be a customer. Then, we can apply
Lemma F.1 to find that the destination is a strict transitive
customer of a′ along the path a′R1d in T .

We established that a′ satisfies the conditions (1)-(3), and
we also know that b is a transitive customer of a (or a itself),
a′ is a strict transitive customer of b, and a′ 6= b. It follows
that a′ 6= a, since otherwise we would have a customer-

provider loop in the graph.

We are now ready to prove the main result of this section.

Theorem 6.1 Consider an AS graph where the valua-
tions are policy consistent and contain no dispute wheels,
and the valuations and attraction functions of all nodes obey
the Gao-Rexford conditions and AT4, and all attractees use
next-hop policy with their providers and peers. Suppose that
all nodes, except a single manipulator node m, use BGP-
compliant strategies that obey consistent export and GR2 ex-
port, and moreover set their ranking equal to their valuations
(rn(·) ≡ vn(·) for every node n). Suppose further that the
network has path or loop verification.

Then there exists a BGP compliant strategy for m that
uses rm(·) ≡ vm(·) and obeys GR2 and consistent export,
which obtains the best possible globally stable outcome in
terms of the utility function of m. In particular, setting
rm(·) ≡ vm(·) and exporting all paths to customers and no
paths to providers and peers is one optimal strategy.

Proof. Let M be a globally stable outcome that results
from some arbitrary strategy for m. We assume M that
um(M) > −∞ (or else any BGP compliant strategy for m
will do).

Now fix a BGP compliant strategy for m where rm ≡ vm,
and where m (i) exports all paths to every customer that
routes through it in M and (ii) exports no paths to nodes
that are not its customers. (Note that this export rule obeys
GR2.) The rest of m’s export policy can be arbitrary, as long
as it complies with consistent export and with GR2.

Clearly this strategy is BGP compliant, and when m uses
this strategy then the ranking functions of all nodes contain
no dispute wheels (since they are set equal to the valuation
functions). The results of Griffin et al. [22] imply that the
protocol converges to a unique globally stable outcome T .
We prove next that the utility of m in T is at least as high
as in M .

Our proof is by contradiction. We assume that um(M) >
um(T), and prove a sequence of claims that together imply
that the conditions of Lemma F.2 must hold in this graph.
We then repeatedly apply Lemma F.2 to show that the graph
contains a customer-provider cycle, and thus violates the
Topology condition GR1.

Denote the data-plane paths of m to the destination in T
and M by mR1 and mR2, respectively.

Claim F.3. The is a node c that is an attractee of m that
routes directly through m in M but not in T .

Proof. Since the data plane path R2 used by m in M
is permitted at all nodes on R2, and since all these nodes
are honest (otherwise mR2 would not be a simple path, and
um(M) = −∞) know that mR2 is permitted also in T . Note
that T satisfies all the conditions of Lemma C.3, since all
nodes use consistent export and set their ranking equal to
their valuations (so the rankings have no dispute wheel and
are policy consistent). So we know that T is locally opti-
mal everywhere. In particular, since the data-plane path
of m in M is permitted also in T (since it only goes through
honest nodes) then vm(T) ≥ vm(M). But we assumed that
um(M) > um(T), so we must have αm(M) > αm(T), which
means that m gained AT4 attraction in M that it did not
have in T .

Claim F.4. Node c has a data-plane path to the destina-
tion in T , and moreover rc(T) > rc(M).

(Note that this claim does not follow from Lemma C.3,
since there could be paths that are “permitted” in M but
not in T : recall that m’s export policy in T dictates that
it does not announce anything to its providers and peers,
whereas it is possible that m did announce something to
them in M .)

Proof. Assume toward contradiction that rc(T) ≤ rc(M).
Since c was defined as a node that uses m as next-hop in
M but not in T , then the inequality has to be strict. Since
c is an attractee of m (and therefore its customer), then c
must use next-hop policy with m. Since c is a customer that
routes through m in M , then the export policy of m in T
includes exporting all to c. Since m is honest in T , we know
that m announces to c the path mR1 that it uses in T .

If mR1 was a simple path, then from next-hop policy we
have that rc(cmR1) = rc(cmR2) > rc(T), which contradicts
the fact that c is stable in T (it should have chosen the better
available path cmR1). So we know that mR1 must have a
loop in it, but mR1 is a simple path (being the data-plane
path of m), so it must be that c appears on that path (which
in particular implies that c has a data-plane path in T). We
can re-write the path that m takes in T as R1 = R′1cnQ, as
depicted in Figure 17(a).

Since c is a customer of m, it follows from the Topol-
ogy condition GR1 that m cannot be a strict transitive
customer of c along the path mR′1c. Hence there are ad-
jacent nodes between m and c on the path R′1 (call them
a, b) such that a is not a customer of b. Since the path
mR′1cnQd is permitted (because it is the data plane path in
T) and since all nodes behave honestly in T , we can apply
Lemma F.1 to conclude that d is a transitive customer of
b along this path. In particular it means that n is a cus-
tomer of c. (Notice that this is true even if n = d.) But this
violates the Preferences condition GR3, since we assumed
that rc(M) = rc(cmR2) ≥ rc(cnQd) = rc(T) where m is a
provider of c and n is its customer.

From now on, let us denote the path of c to the destina-
tion in T by n0n1 . . . nt (where c = n0 and d = nt), and
remember that c uses m as a next-hop in M but not in T ,
so n1 6= m.

From Claim F.4 we can also conclude that n1 6= d: Oth-
erwise (d = n 6= m), the T -path dc would be available to c
also in M , and so c would take it (since we just proved that
the T path is ranked higher than then M path of c) and this
would contradict the stability of c in outcome M . Next we
prove that m is not on the T -path of c.

Claim F.5. c does not route through m in T .

Proof. For the sake of contradiction, suppose that m is
on the T -path of c, namely m = nj for some 1 ≤ j ≤ t.
This means in particular that m = nj exports some path to
nj−1 in T , so nj−1 is a customer of m. (Recall that m only
export paths in T to its customers.) Applying Lemma F.1
we find that c is a strict transitive customer of m along c’s
path in T . In particular, c = n0 is a customer of n1 and n1 is
a customer of n2. Now since the valuations of n1 obey GR3,
we deduce that vn1(n1n2 . . . d) < vn1(n1c . . . d). However,
from Claim F.4 and the fact that c uses next hop policy
with all its providers, we have vc(cn1 . . . d) ≥ vc(cm . . . d).
Furthermore, the inequality is strict, since m 6= n1. Hence
there is a (2-pivot) dispute wheel between c and n and we
have arrived at a contradiction.

T1

gr-clm2

R’ Q
T2

n mc

1

T

n mc
R’1

Q1

T2T1

d

T2
R2

Q
d

Q2

21

Gr-clm3

Gr-clm3

T2
Q1

n mc

RQT
“mQ1 cmR’d”

d
R2

QT1

(a) Claim F.4

T1

gr-clm2

R’ Q
T2

n mc

1

T

n mc
R’1

Q1

T2T1

d

T2
R2

Q
d

Q2

21

Gr-clm3

Gr-clm3 Gr-clm2.5

T2
Q1

n mc

RQT
“mQ1 cmR’d”

c

T

n

n
d

R2
QT1

m

T1 n2

(b) Claim F.5

T1

gr-clm2

R’ Q
T2

n mc
1

T

n mc
R’1

Q1

T2T1

d

T2
R2

Q
d

Q2

21

Gr-clm3

Gr-clm3

T2
Q1

n mc

RQT
“mQ1 cmR’d”

d
R2

QT1

(c) Claim F.6

T1

gr-clm2

R’ Q
T2

n mc

1

T

n mc
R’1

Q1

T2T1

d

T2
R2

Q
d

Q2

21

Gr-clm3

Gr-clm3

T2
Q1

n mc

RQT
“mQ1 cmR’d”

d
R2

QT1

(d) Claim F.8

Figure 17: Pictorial representation of the proof of Theorem 6.1

Claim F.6. The node n1 uses a different (data-plane)
path for its traffic in M than in T .

Proof. Assume toward contradiction that n1 uses the T -
path n1n2 . . . nt = d also in M . Below we also denote this
path by n1Q. From Claim F.4 we know that rc(cmR2) <
rc(cn1Q), so we know that n1 does not announce n1Q to
c = n0 in M (or else c would have used this path). But we
know that n1 exports the path n1Q to c in T , and that n1

is honest, so it would have exported this path to c in M if it
had chosen it. We deduce that n1 had chosen a different path
in the control plane in M (even though it actually routes on
n1Q in the data plane). In other words, n had chosen a false
path in M . From the false path lemma (Lemma C.1), we
have that both the false-path in the control plane and the
data-plane path must include m. But this is a contradiction,
since we assume that n uses the same data-plane path in
both M and T , and from Claim F.5 we know that m is not
on the data-plane path of n1 in T .

Claim F.7. Node n1 announces a path to c = n0 in M .

Proof. For every node ni on the T -path n1 . . . nt−1nt,
we denote the control-plane path that ni chooses in M (if
any) by niQi. We now show by backward induction over
i = t . . . 2 that (i) node ni ranks niQi at least as high as
nini+1 . . . nt, and (ii) ni announces the path niQi to ni−1.
For the proof below, recall that ni 6= m for all i (due to
Claim F.5), so all the ni’s use policy-consistent ranking and
consistent export also in M .

The base case nt = d is obvious. For the induction case,
assume that the two conditions above hold for ni+1 and
we prove for ni. We have two cases: either ni+1Qi+1 goes
through ni or it does not.

• If ni+1Qi+1 does not go through ni, then from pol-
icy consistency (and since ni+1 prefers this path to
ni+1 . . . nt) we have that also ni must prefer nini+1Qi+1

over nini+1 . . . nt. Moreover, since the path nini+1Qi+1

is available to ni in M (as we assume that ni+1 an-
nounces it), and since M is a globally stable outcome,
then ni must choose a control-plane path in M that is
ranked at least as high. We conclude that rni(niQi) ≥
rni(nini+1Qi+1) ≥ rni(nini+1 . . . nt).

• Suppose that ni+1Qi+1 does go through ni. Then rewrite
this path as ni+1Qi+1 = ni+1Ri+1niQ

′
i. By the induc-

tion hypothesis, ni+1 announces this path to ni, and
also prefers it over ni+1 . . . nt. Since ni is honest and
the network uses loop verification, it must be the case
that ni actually announces the path niQ

′
i (or else ni

would have raised an alarm, which would have set the
utility of m in this outcome to −∞). Hence ni must
have chosen niQ

′
i in the control plane in M , in other

words we have Q′i = Qi.

We claim that ni must prefer niQi over nini+1 . . . nt;
otherwise we would have a dispute wheel between ni

and ni+1, since ni+1 prefers ni+1Ri+1niQi over ni+1 . . . nt.

In either case, we know that ni prefers niQi over nini+1 . . . nt.
Since ni uses consistent export, and since it announces nini+1

. . . nt to ni−1 in T , then it has to announce also niQi to ni−1

in M .

Claim F.8. The node n1 is a strict transitive customer
of m, and the destination d is a strict transitive customer
of n1 over the data-plane path of n1 in T .

Proof. Recall that we denote the data-plane path of n1

in T by n1Q. If n1 is a direct customer of c then the first
part of the lemma follows trivially (since c is a customer
of m), and the second part follows by applying Lemma F.1
to the permitted path cn1Q in T .

If n1 is not a customer of c, then c must use next hop
policy with n1. From Claim F.7, we know that n1 announces
a path to c in M . Let n1Q

′ be that path that n1 announces
to c in the manipulated outcome M . If the path n1Q

′ does
not go through c, then we have

rc(cn1Q
′) = rc(cn1Q) > rc(cmR2)

where the equality follows from next-hop policy and the in-
equality is from Claim F.4. But this is impossible, since if
this was the case then c would have chosen n1 as its next-hop
also in M . Thus, the path n1Q

′ must go through c.
Next denote by cmR′ the control-plane path that c chooses

in M . By loop-verification, it must be the case that cmR′

is a suffix of n1Q
′ (or else c would have raised an alarm and

the utility of m would be set to −∞). So re-write n1Q
′

as n1Q
′
1cmR

′. The path Q′1 does not include m, or else n1

wouldn’t have chosen this path since it would contain a rout-
ing loop through m. Hence the partial path n1Q

′
1cm must

be the data-plane path that is used in M (and in particular
it must be a permitted path). Since c is a customer of m,
then we can apply Lemma F.1 to conclude that n1 is a strict
transitive customer of c (and therefore also of m).

Moreover, since n1 is a strict transitive customer of c
then the Topology condition GR1 says that it cannot be
a provider of c. We assumed that n1 is also not a customer
of c, so they must be peers. We can now apply Lemma F.1
to the permitted T path cn1Q, to conclude that the destina-
tion d is a strict transitive customer of n1 over this path.

Claims F.6 and F.8 established the existence of a node
a0 = n1 which is (1) a strict transitive customer of the ma-
nipulator m, and where (2) a0 uses a different path in M
than in T , and (3) the destination d is a strict transitive
customer of a0 along its data-plane path in T . Lemma F.2
asserts that there must be another node a1 6= a0 which is
a strict transitive customer of a0, where a1 also satisfies
the conditions (1)-(3). Repeated applications of this lemma
thus give us a sequence of nodes a1, a2, . . . such that for all i
ai 6= ai−1 and ai is a strict transitive customer of ai−1 (and
they all satisfy the same conditions). Since there are a fi-
nite number of nodes in the AS graph, eventually one of the
nodes in the sequence will repeat, resulting in a customer-
provider cycle and violating the Topology condition GR1.

We see that our assumption that um(M) > um(T) leads to
a contradiction, thus concluding the proof of Theorem 6.1.

