
SHAPE ANALYSIS WITH INDUCTIVE

RECURSION SYNTHESIS

BOLEI GUO

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: DAVID I. AUGUST

JUNE 2008

c© Copyright by Bolei Guo, 2008. All rights reserved.

iii

Abstract

For program optimization and verification purposes, shape analysis can be used to stati-

cally determine structural properties of the runtime heap. One promising formalism for

describing heap is separation logic, with recursively defined predicates that allow for

concise yet precise summarization of linked data structures. A major challenge in this

approach is the derivation of the predicates directly from the program being analyzed. As

a result, current uses of separation logic rely heavily on predefined predicates, limiting

the class of programs analyzable to those that manipulate only predefined data types.

This thesis addresses this problem by proposing a general algorithm based on inductive

program synthesis that automatically infers recursive predicates in a canonical form. This

technique yields a separation logic based shape analysis that can be effective on a much

wider range of programs.

A key strength of separation logic is that it facilitates, via explicit expression of

structural separation, local reasoning about heap where the effects of altering one part

of a data structure are analyzed in isolation from the rest. The interaction between

local reasoning and the global invariants given by recursive predicates is a difficult area,

especially in the presence of complex internal sharing in the data structures. Existing

approaches, using logic rules specifically designed for the list predicate to unfold and

fold linked lists, again require a priori knowledge about the data structures and do not

easily generalize to more complex data structures. We introduce a notion of “truncation

points” in a recursive predicate, which gives rise to generic algorithms for unfolding and

folding arbitrary data structures.

We present a fully implemented interprocedural analysis algorithm that handles re-

cursive procedures. A combination of pointer analysis and program slicing is used to

deal with the scalability issue typically faced by shape analyses.

iv

Finally, we present a data dependence test for recursive data structures that takes

advantage of the results of our shape analysis.

i

Acknowledgments

This thesis is a direct result of the vision of my advisor David I. August. He has always

pushed for more functional and scalable memory analyses on low-level code. I thank him

for believing in me and for his support and guidance throughout my years in graduate

school.

This work was also made possible with the help of the entire Liberty Research Group.

Spyridon Triantafyllis, Matthew J. Bridges, Guilherme Ottoni, Easwaran Raman and

others are responsible for building the Velocity compiler, the framework that allows

me to implement and experiment with my ideas. The insights and suggestions of many

members of the group have improved my research. They have also given me tremendous

help during paper deadlines.

I thank my committee members, Andrew Appel, Michael Hind, Brian Kernighan and

David Walker, for providing valuable feedback on how to improve this thesis. I am also

grateful to Limin Jia and Frances Perry for many interesting discussions that help to

deepen my understanding of separation logic and shape analysis.

This research was generously supported by the Intel Foundation Ph.D. Fellowship and

NSF. I would also like to thank Intel for offering me a valuable summer internship with

their Programming Systems Lab. I had a great time working with Youfeng Wu, Cheng

Wang and Bixia Zheng among others.

Finally, special thanks go to my parents, Duozhi Lei and Jiajie Guo, for their sac-

rifices, unconditional love and support. I always came back reinvigorated from those

weekend trips to home. I could not have done it without them.

Contents

Abstract . iii

1 Introduction 1

1.1 Shape Analysis and Separation Logic 2

1.1.1 Overview of Separation Logic 2

1.1.2 Research Challenges . 5

1.2 Research Objectives and Contributions 7

2 Abstract Semantics 11

2.1 Abstract States . 11

2.2 Abstract Operational Semantics . 16

3 Inferring Recursive Predicates 23

3.1 Inductive Recursion Synthesis . 24

3.1.1 Translating Heap Formulae into Terms 24

3.1.2 Recurrence Detection . 26

3.2 What inductive recursion synthesis can and cannot do 34

4 Truncation Points and Location Reasoning 36

4.1 Unfolding Recursive Predicates . 36

ii

CONTENTS iii

4.2 Folding Recursive Predicates . 40

4.3 A Detailed Example . 45

5 Interprocedural Analysis 51

5.1 Tabulation Algorithm . 51

5.2 Recursive Procedures and Cutpoints . 58

5.2.1 Basic Methodolgy . 58

5.2.2 Cutpoints . 62

6 Implementation 66

6.1 Code Pruning . 66

6.1.1 Pointer Analysis . 67

6.1.2 Program Slicing . 68

6.2 Experimental Results . 68

7 Bridging Optimizations and Shape Analysis 71

7.1 Identifying the Navigator . 74

7.2 Determining if the navigator advances along an acyclic path 75

7.3 Validating the Navigator . 80

7.4 Disproving Other Loop-Carried Dependences 81

8 Related Work 87

9 Conclusion and Future Work 90

9.1 Summary . 90

9.2 Future Directions . 91

9.3 Closing Remarks . 93

CONTENTS iv

Bibliography 95

List of Figures

1.1 A specimen of the tree used in 181.mcf 8

2.1 Target Language . 12

2.2 Abstract States . 13

2.3 Algorithm of rearrange names . 20

2.4 Instruction composition for while loop 22

3.1 Set of Terms . 24

3.2 A Loop in 181.mcf that Builds its Tree 27

3.3 Inductive Recursion Synthesis for the Loop in Figure 3.2 28

3.4 Algorithm for Finding a Valid Segmentation 30

3.5 Algorithm for Checking the Validity of a Segmentation 33

4.1 Algorithm for case analysis in unfoldΘ 39

4.2 Algorithm for unfoldΘ . 40

4.3 Algorithm for foldΘ . 42

4.4 Algorithm for is foldable . 43

4.5 Algorithm for find param . 44

4.6 Local modification to a tree in 181.mcf 45

v

LIST OF FIGURES vi

5.1 The Interprocedural Algorithm . 52

5.2 The Interprocedural Algorithm (Continued) 53

5.3 A Recursive Procedure that Builds a Linked List 59

5.4 Entry and Exit Heaps of build list . 61

5.5 A Recursive Procedure that Builds a Doubly Linked List 63

5.6 Entry and Exit Heaps of build dlist 64

6.1 The Algorithm for Program Slicing . 69

7.1 A While Loop that Traverses a Linked List 72

7.2 Finding Pointer-Chasing Loops . 74

7.3 Algorithm for Identifying the Navigator (based on [8]) 75

7.4 Algorithm for Determining if the Navigator Traverses an Acyclic Path . . 77

7.5 Algorithm for Inferring Sets of Pointer Fields that May Result in Cycles . 78

7.6 The Parameter Substitutation Graph for mcf tree 79

7.7 A Loop that Traverses and Modifies a Tree in 181.mcf 81

7.8 Algorithm for Detecting Loop-Carried Dependece 84

7.9 Algorithm for test pair . 85

Chapter 1

Introduction

Shape analysis is a type of memory analysis that discovers deep properties of the runtime

heap. It offers a higher level of precision than do the traditional pointer/alias analyses

and can enable aggressive code optimizations, program verification, and program under-

standing tools.

In the presence of dynamic memory allocation, the size of a heap-allocated data

structure can not be bounded at compile time. To deliver on the high degree of precision,

shape analysis thus requires a sophisticated heap abstraction mechanism that is detailed

enough to entirely capture the heap layout and yet compact enough to scale to large

programs. Such a mechanism should also make it easy to reason about local updates to

data structures once they have been constructed.

Separation logic [23] is a heap formalism that uses logic formulas to describe the

runtime heap. It provides recursively defined predicates to summarize the global invari-

ants of linked data structures and has locality built into the logic to facilitate modular

reasoning about the heap. Although powerful, the difficulty in using separation logic in

shape analysis is the lack of a general way of achieving fixed-point convergence of the

1

CHAPTER 1. INTRODUCTION 2

analysis. Specifically, it is difficult to derive the recursive predicates that would serve

as the converged abstract respresentation of infinitely many runtime heaps. Existing

research on deriving such predicates only works for a limited set of predicates [7, 16, 14].

As a result, separation logic is mostly useful only for program verification, which

relies on user-supplied program specifications, typically in the form of loop invariants

and procedure pre and post conditions. In order to make separation logic applicable

to fully automatic program analysis with no human intervention at all, we attack the

problem of discovering recursive predicates by developing a novel approach to loop

invariant inference that avoids restricting the analysis to predefined predicates. We also

design a new type of predicates that accommodates local updates to data structures where

the global recursive shape invariants are typically broken temporarily and reestablished

later. The thesis of this dissertation is that the combination of the abovementioned two

techniques makes it possible to use separation logic to build a precise and scalable shape

analysis that is effective on a wide range of programs.

1.1 Shape Analysis and Separation Logic

1.1.1 Overview of Separation Logic

Separation logic [23] is designed for formal reasoning about low-level imperative pro-

grams that manipulate pointers. It extends the standard predicate calculus (∧∨¬⇒ ∀∃)

with four new types of assertions that describe the heap.

CHAPTER 1. INTRODUCTION 3

emp empty heap

exp1 → exp2 single-cell heap

assertion1 ∗assertion2 spatial conjuction

assertionl−∗asseriont2 spatial implication

emp represents an empty heap. A heap containing a single location h whose content

is v is written as h → v. The central feature of separation logic is the spatial conjuction

operator ∗, which connects together two disjoint pieces of heap. A∗B is true in a heap if

it can be partitioned into two disjoint pieces such that A holds over one and B holds over

the other. This definition implies that if we have x→ ∗ y→ , then it must be that x 6= y,

that is, there is no possibility that x and y may alias. What is remarkable about this is that

it eliminates the need to check the global state for aliasing conditions and to subsequently

update the global state whenever the program writes to a single heap location. Thus if a

memory store operation is performed on x, the analysis needs only to deal with the part

of logic formula that directly references x knowing that the rest of the state will not be

changed. The dependence on global state has been one of the main reasons that leads

to high complexity of shape analysis, while spatial conjunction promotes modularity in

the analysis allowing it to scale to program size. Finally, spatial implication A-*B says

that the current heap is conjoined with another heap satisfying A, then the combined

heap satisfies B. Spatial implication is useful for backward analysis where one is given

the program state after the execution of a piece of code and needs to infer the prestate.

Here, we use it in forward style reasoning for the purpose of describing a recursive data

structure minus a portion where the global shape invariant might be temporarily broken

(section 2.1).

Additionally, to model healp-allocated data structures whose size cannot be bounded

statically, separation logic also includes inductively defined predicates. For example, an

CHAPTER 1. INTRODUCTION 4

acyclic linked list is captured by the recursive predicate list(x) .= (x = null∧emp)∨(x→

α ∗ list(α)). It says that a list can either be an empty heap or a heap composed of a

single cell and a list with the cell pointing to the head of that list. Compared to other

approaches to providing finite heap representations, such as summary node [4] which

groups concrete elements of a data structure into a finite number of abstract heap nodes,

and k-limiting [12] which only distinguishes elements of a linked data structure up to

depth k, recursive predicates are precise while being concise. They do not introduce

approximation of the memory states, which leads to loss of information on the exact

shapes of data structures.

For specification of program properties, separation logic also extends Hoare logic [11],

which is a system of logic rules that specifies how the program state can be changed by the

execution of code. It uses a form of judgement {P}C{Q}, named the Hoare Triple, where

P and Q are logic assertions and C is a piece of code that can either be a single instruction

or a composition of instructions. The Hoare Triple says that if the precondition P holds of

the program state before the execution of C and if C terminates, then the postcondition Q

will hold after the execution of C. In addition to the original inference rules for the basic

constructs of low-level imperative language (assignment and conditional, etc), separation

logic adds rules that deal with memory lookup, mutation, allocation and deallocation (all

rules are described in detail in section 2.2). The important Frame rule is also introduced,

which directly expresses the idea of local reasoning about heap.

{P}C{Q}
{P∗R}C{Q∗R} FRAME

C does not modify any free variable in R

CHAPTER 1. INTRODUCTION 5

The idea is that if the footprint of C is enclosed in the heap described by P, then the

execution of C does not affect any heap that is disjoint from P. This proves to be very

helpful in interprocedural analysis where C is a procedure and usin the Frame rule we

can divide the precondition into the part that is relevant to C, namely P, and a frame R,

transform P into Q according to the semantics of C, and combine it back with R to form

the postcondition.

1.1.2 Research Challenges

As an important step torward separation logic based program analysis, Berdine et al.

propose a form of symbolic execution that interprets separation logic formulas as sym-

bolic heaps and updates the precondition in-place to model the actual updates of the

heap [1]. However, it can only handle loop- free programs because with loops here could

be infinitely many symbolic heaps and the analysis will fail to converge. The key problem

here is the lack of ways to infer recursive predicates, which are capable of representing

infinitely many symbolic heaps accurately. Current uses of separation logic typically

have a handful of predefined predicates hardwired into the logic engine and relies on

user-supplied specifications that a predicate holds at a certain program point. In the case

of linked lists, clever logic rules can be designed to recognize certain patterns in the

logic formulas and to rewrite them to synthesize the list predicate. Two analyses of list-

processing programs have been proposed [7, 16], both containing a rule that says if x

points to y and y points to z then there is a list segment between x and z. It is difficult

to generalize this to arbitrary data structures. Lee et al. propose a grammar-based shape

analysis [14] that automatically discovers grammars which can be translated to recursive

predicates. However, their grammars can only have up to two parameters, thus limiting

the class of data structures describable.

CHAPTER 1. INTRODUCTION 6

We propose a shape analysis that performs inductive recursion synthesis to infer

recursive predicates in a canonical form, effectively reverse-engineering the data types

used in the program. This technique leverages an existing method in artificial intelligence

called inductive program synthesis, originally developed for constructing recursive logic

programs from sample input/output pairs [30, 27]. It allows the analysis to extract a loop

invariant from a constant number of symbolically executed loop iterations. Soundness is

guaranteed by verifying that the invariant derives itself over the loop body. If so, then

it allows the analysis to converge over the loop and proceed, but unlike many widening

operations used to reach fixed points, there is no approximation involved and hence no

loss of precision. Otherwise, the analysis will halt and report failure.

Not only is it hard to discover recursive predicates from the program, it is also hard to

handle them in symbolic execution once discovered. While recursive predicates express

global properties that hold over entire data structures, most programs perform many local

alterations (insertions, deletions, rotations, etc.) to the data structures and reestablish

global properties afterwards. Ideally, the analysis should be able to zoom in on a small

part of a data structure, reason about it ignoring the rest, and then zoom back out. The

spatial conjunction operator is designed to facilitate this kind of local reasoning through

explicit expression of structure separation and aliasing. However, for data structures with

complex internal sharing, it is often difficult to isolate a substructure separate from the

rest of the data structure. In [7, 16], logic rules tailored to the list predicate are designed

to unfold a list in order to expose a list element and to fold it back. But again, this does

not easily generalize to other data structures.

To enable smooth transitioning between local reasoning and global invariants, we

introduce the notion of “truncation points” in a recursive predicate, which helps the

CHAPTER 1. INTRODUCTION 7

analysis to cut parts from a data structure. Generic algorithms based on truncation points

are then designed to unfold and fold arbitrary recursive data structures.

1.2 Research Objectives and Contributions

The goal of this research is to handle real applications like those from the SPEC bench-

marks. Such programs present three challenges. First, their data structures are often

complex and cannot be easily taken apart into independent pieces. We will use as a

running example the benchmark 181.mcf from SPEC2000, which builds and manipulates

a left-child right-sibling tree with two kinds of backward links – a parent link and a

left-sibling link. As shown in Figure 1.1, there is a great degree of internal sharing

which makes both inferring its shape and reasoning about its shape challenging. We

demonstrate that our analysis discovers the precise shape invariant of the mcf tree and

maintains this invariant through local updates to the tree. Second, many applications

perform their own memory management by preallocating a large array and taking chunks

from it when needed. To model this correctly, the analysis needs to track aliasing that

arises from pointer arithmetic in addition to access paths. Finally, the analysis should

also scale to large programs. To this end, our algorithm performs a prepass including

a fast pointer analysis and program slicing to preserve only code that may affect the

result of shape analysis. This effectively reduces the overhead of being flow-sensitive on

realistic programs, which is important because flow-sensitivity allows strong updates, a

key to shape analysis. This also reduces noise introduced by nonpointer fields that may

confuse the inductive recursion synthesis algorithm.

The application of inductive recursion synthesis to shape analysis was first proposed

in [10]. The presentation in this dissertation includes a more detailed description of the

CHAPTER 1. INTRODUCTION 8

recursion detection algorithm and the interprocedural analysis algorithm, including an

example for handling recursive procedures. Additionally, to allow code optimizations to

extract information from the result of our shape analysis, we also design a loop-carried

dependence test targeting loops that traverse linked data structures instead of arrays.

This test identifies pointer-chasing loops and computes a dependence distantce between

two iterations that may reference the same memory locations. Such result may enable

automatic thread extraction.

child

parent
sib

sib prev

β2

β1

h′

h

Figure 1.1: A specimen of the tree used in 181.mcf

In summary, the contributions of this thesis include:

• We develop a new approach to loop invariant inference that allows automatic dis-

covery of recursive shape predicates (Chapter 3). This technique can handle any

data type with a tree-like backbone and some other pointer fields that point to the

backbone, possibly producing dags and cycles. This gives our analysis the same

descriptive power as the Pointer Assertion Logic [17]. However, in their framework

shape invariants are already given by nontraditional data type declarations and

the logic engine relies on user specifications including procedure pre and post

CHAPTER 1. INTRODUCTION 9

conditions, and loop invariants. Our analysis starts with zero knowledge and infers

everything, data types, procedure summaries and loop invariants.

• Inductive recursion synthesis is also used to converge over recursive procedures

(Chapter 5). Like the interprocedural shape analysis by Gotsman et al. [9], at each

procedure entry, the analysis extracts the region of heap accessed by the procedure,

called the local heap, and upon return, reincorporates the updated local heap using

the Frame rule of separation logic. Cutpoints [24], the nodes that separate the

local heap from the frame, need to be preserved so that the callee’s effects on heap

can be properly propagated to the caller. In the presence of recursive procedures,

the number of cutpoints can be infinite. Gotsman et al. [9] bound the number of

cutpoints at the cost of potential precision loss. In our case, recursion synthesis

allows cutpoints to be described inductively in the entry/exit invariants of recursive

procedures, hence there is no need to bound them.

• We describe a general algorithm based on truncation points for unrolling and rolling

back arbitrary recursive data structures, even those with internal sharing (Chap-

ter 4). We demonstrate that truncation points allow the modeling of cut and paste

of subtrees in 181.mcf.

• We incorporate various techniques to handle real applications with special memory

allocation semantics (Chapter 2) and large sizes (Chaper 6).

• Same as Ghiya et al. [8], our loop-dependence test (Chapter 7) begins by identifying

the pointer used to traverse the recursive data structure in a given loop. However,

by taking full advantage of the accuracy of our shape analysis, we provide more

sophiscated algorithms to verify that the pointer visits a distinct node in each

iteration and to prove that there is no other loop-carried dependences in addition to

CHAPTER 1. INTRODUCTION 10

that which is induced by pointer-chasing. If additional loop-carried dependences

do exist, our dependence test also computes the dependence distance while the test

described in [8] does not.

The abstract respresentatino of state is described in Chapter 2 Implementation and

experimental results are reported in Chapter 6.2. Related work is further discussed in

Chapter 8. Finally, Chapter 9 summarizes this thesis and discusses several directions for

future work.

Chapter 2

Abstract Semantics

The target language of this shape analysis is an assembly-level intermediate language

used in the Velocity compiler. The syntax of this language is shown in Figure 2.1. Globals

are names of heap locations allocated for global variables. The set of expressions includes

additions so that the analysis can handle pointer arithmetic. In situations where we cannot

precisely compute the result of a pointer arithmetic operation, which is typically the case

when array accesses are involved, indistinguishable array elements will be collapsed into

a single one.

The rest of this chapter describes the abstract representation of states and an abstract

operational semantics tailored to the unstructured control flow of machine-level code.

2.1 Abstract States

An abstract state Π | Σ | Φ consists of a mapping Π from registers to their symbolic

values, a separation logic formula Σ that is the conjunction of a finite number of atomic

heap assertions, and a pure formula Φ that records true branch conditions along the exe-

11

CHAPTER 2. ABSTRACT SEMANTICS 12

Labels l ∈ Label

Globals g ∈ Global

Registers r ∈ Reg

Exprs e ::= null | g | r | r +n | r1 + r2

Insts s ::= r = e | [r1] = r2 | r1 = [r2] | r = malloc() | free(r) | r = f (~x) |

goto l | if c goto l

Branch Conds c ::= r1 = r2 | r1 6= r2

Figure 2.1: Target Language

cution paths with which the state is associated and also records aliasing between pointer

arithmetic and heap names. Two global environments are maintained: Θ for recording the

definitions of recursive predicates and Γ for tabulating procedure summaries. Figure 2.2

gives the definition of the state.

Unlike the “symbolic heaps” defined by Berdine et al. [2], which use program vari-

ables (the high-level counterpart of registers) to name heap locations and record alias

relationships between program variables, our analysis takes the “points-to” approach,

assigning unique names to heap locations and recording the target of each register explic-

itly. Aside from the benefit that there is no need for “rearrangement” rules which set the

prestate in a suitable form by going through the alias pairs, this facilitates the inductive

recursion synthesis algorithm. As will be explained in Chapter 3, the access-path-like

heap names encode important patterns of spatial relationships between heap locations,

which can be recognized and then generalized via inductive reasoning. The heap names

can be simply thought of as logic variables with long names. A heap name may also

appear in curly braces, which indicate that it represents a set of indistinguishable con-

CHAPTER 2. ABSTRACT SEMANTICS 13

Vars α ∈ Var

Recursion vars A ∈ Rec

Heap names h ::= g | α | h.n | {h}

Symbolic vals v ::= null | h+n

Pure assertions P ::= v1 = v2 | v1 6= v2

Heap assertions H ::= h1.n→ h2 | A(h1, ...,hn[;h′1, ...,h
′
m])

Register values Π ::= � |Π,r = v

Heap formulae Σ ::= emp | H | Σ ∗ Σ

Pure formulae Φ ::= P |Φ∧Φ

States S ::= Π | Σ |Φ

Predicate defs Θ ::= � |Θ,A .= P∨Σ

Proc summaries Γ ::= � | Γ,〈 f ,Πentry|Σentry|Φentry,Πexit |Σexit |Φexit〉

Figure 2.2: Abstract States

crete addresses usually belonging to an array. This is necessary because strong updates

are performed on an abstract heap location only if it unequivocally represents a single

concrete location.

Recursive predicates are parameterized so that they are expressive enough to describe

data structures with internal sharing via backward links. The first parameter represents the

top of the data structure and the rest represent targets of backward links. For example, the

left-child right-sibling tree with parent and left-sibling links from 181.mcf can be written

as:

CHAPTER 2. ABSTRACT SEMANTICS 14

mcf tree(x1,x2,x3)
.= (x1 = null∧ emp) ∨

(x1.parent→ x2 ∗ x1.child→ α∗mcf tree(α,x1,null)∗

x1.sib prev→ x3 ∗ x2.sib→ β∗mcf tree(β,x2,x1)).

An instance of such a tree where the root h has null parent and sib prev links is described

by instantiating the predicate: mcf tree(h,null,null).

We also introduce a new type of recursive predicates called truncated recursive pred-

icates, A(h1, ...,hn;h′1, ...,h
′
m) where n is the arity of A. This is designed for handling

modifications to a data structure when the analysis needs to isolate relevant parts of

the data structure so as to reason about the modifications in a localized fashion. The

second set of parameters {h′1, ...,h
′
m} is of variable length and is what we call the set

of truncation points in the data structure rooted at h1. This predicate is syntactic sugar

for (∗i=1..m∃βi,1, ...,βi,n−1.A(h′i,βi,1, ...,βi,n−1))−∗A(h1, ...,hn) (the iterated spatial con-

junction operator is defined in [23]). It identifies a heap that, when combined with

m heaps rooted at h′1, ...,h
′
m on each of which A holds, yields a heap rooted at h1 on

which A holds. In other words, this is the data structure reachable from h1, with all

subgraphs rooted at h′1, ...,h
′
m cut out from it. The definition specifies that the subgraphs

are mutually disjoint, i.e. no truncation point can be in the subgraph of another truncation

point. This invariant is crucial for unrolling predicates as it constrains the number of

possible outcomes (details are in Chapter 4). In Figure 1.1, suppose that at some program

point, there is a pointer to an interior node h′ of the tree, then the heap is described

as mcf tree(h,null,null;h′)∗mcf tree(h′,β1,β2). By the definition of mcf tree, we know

CHAPTER 2. ABSTRACT SEMANTICS 15

that the dangling points β1 and β2 of the heap mcf tree(h′,β1,β2) are backward links and

therefore reside in the other half of the heap.

A linked list fragment between x and y can be described by list(x;y), which looks

similar to the “list segment” predicate list(x,y) .= (x = y∧ emp)∨ (x → α ∗ list(α,y))

defined by Berdine et al. [1]. However, this predicate is defined by specifying a path

by which y is reached from x and is therefore hard to generalize to more complex data

structures, whereas we avoid this complication entirely by working not from the top of

the data structure, but from the bottom, and hiding the reaching path information with

the “magic wand”. Not only is our approach completely general and capable of handling

messy backward links, it is also more flexible by allowing a variable number of truncation

points. This is important because unlike lists, other data structures may have more than

one end. The ability to model this comes in handy, for example, when cutting and grafting

subtrees.

We define a function JKΠ,Φ that evaluates each expression e to a heap name or null.

JnullKΠ,Φ = null JgKΠ,Φ = g

JrKΠ,Φ =

 h′ if Π(r) = h+n and Φ records the alias h+n = h′

Π(r) otherwise

Jr +nKΠ,Φ =

 h′ if Π(r)+n = h+m and Φ records the alias h+m = h′

Π(r)+n otherwise

Jr1 + r2KΠ,Φ =



{h} if Jr1KΠ,Φ = h

{h} if Jr1KΠ,Φ = {h}

{h} if Jr2KΠ,Φ = h

{h} if Jr2KΠ,Φ = {h}

CHAPTER 2. ABSTRACT SEMANTICS 16

In the case of r1 + r2, which typically results from translation of array accesses into low-

level code, one of the two registers contains the base pointer while the other contains the

offset. A simple pointer analysis phase (Chapter 6) that precedes the shape analysis can

identify which register contains the pointer value, hence the function JKΠ,Φ will return the

correct result.

The partial order v over the set of abstract states can be defined as follows: Π1 | Σ1 |

Φ1 v Π2 | Σ2 | Φ2 if there exists a mapping f between the heap names in the two states

such that (i) for each atomic H in Σ1, f †(H) is in Σ2, f † replaces each h appearing in

H with f (h), and (ii) for each atomic P in Φ1, f ‡(P) is in Φ2, f ‡ replacess each h in

P with f (h). Intuitively, this definition says that the heap described by Π1 | Σ1 | Φ1 if a

subheap of that which is described by Π2 | Σ2 | Φ2. Obviously, as the size of the heap

is unbounded in the presence of dynamic memory allocation, there could be infinitely

increasing chains of abstract states. Termination of the analysis is achieved via inductive

recursion synthesis.

2.2 Abstract Operational Semantics

We give the abstract operational semantics for the target language in the style of Lc, a

compositional logic for control flow [31]. Some modifications are made to accommodate

the fact that our logic rules are written for forward analysis. The judgment we use is:

Ψ,F ` Ψ′. F is a set of program fragments l(s)l′, with label l identifying the entry

of instruction s and l′ identifying the default exit. Ψ and Ψ′ are sets of labeled states:

Ψ = {l1 : S1, ..., ln : Sn},Ψ′ = {l′1 : S′1, ..., l
′
m : S′m}. Labels l1, ..., ln are where the control

flow may enter F and labels l′1, ..., l
′
m are where it may leave F . The judgment is read as:

CHAPTER 2. ABSTRACT SEMANTICS 17

if for i = 1..n, the state at entry li is Si, and the execution of F does not get stuck, then for

j = 1..m, the state at exit l′j is S′j.

Table 2.1 and 2.2 list the operational rules that transform entry states of a program

fragment to exit states. It includes one rule for each primitive instruction, composition

rules COMBINE, DISCHARGE and WEAKEN for combining individual instructions,

and the rule UNFOLD for unrolling a recursive predicate to reveal a points-to fact.

In the rule MALLOC, α.? →? simply registers α as an allocated heap node whose

content is unknown.

The MUTATE rule performs strong update if h1 does not appear in braces. In the case

of aliasing due to array elements collapsed into a single heap element, weak updates will

have to be performed, in which case the analysis degenerates into Steensgaard’s pointer

analysis [29]. MUTATE invokes an important subroutine rearrange names, shown in

Figure 2.3, to encode access-path info in heap names. The recursion synthesis algorithm

relies on this to identify the basic structure of a recursion. rearrange names assumes that

the current heap satisfies h1.n→ h2 and that v is to be written to h1.n, that is, value v is to

be stored at location [h1 + n], which previously contained the value h2. The appropriate

name for v is determined based on its form:

• If it is a simple variable, then we assign h1.n as its new name. If the old content

stored in field n of h1 has already claimed this name, then the old content is renamed

to a fresh variable.

• If it is a heap name plus an offset, then it points to the middle of a structure, most

likely an array element. As in the first case, h1.n is assigned as its new name.

Additionally, the analysis records in Φ that the pointer arithmetic aliases with h1.n

CHAPTER 2. ABSTRACT SEMANTICS 18

{l : Π | Σ |Φ},{l (r = e) l′} ` {l′ : Π[r = JeKΠ,Φ] | Σ |Φ} ASSIGN

{l : Π | Σ |Φ},{l (r = malloc()) l′} ` {l′ : Π[r = α] | Σ∗α.?→? |Φ} , α fresh MALLOC

{l : Π,r = h | Σ∗H(h) |Φ},{l (f ree(r)) l′} ` {l′ : Π,r = h | Σ |Φ} FREE

H(h) ::= h.n→ h′ | A(h, ...)

Jr1KΠ,Φ = h1 +n

{l : Π | Σ∗h1.n→ h2 |Φ},{l (r2 = [r1]) l′} `
{l′ : Π,r2 = h2 | Σ∗h1.n→ h2 |Φ}

LOOKUP

Jr1KΠ,Φ = h1 +n, Jr2KΠ,Φ = v h′2 = rearrange names(h1,n,h2,v)
{l : Π | Σ∗h1.n→ h2 |Φ},{l ([r1] = r2) l′} `

{l′ : Π | Σ∗h1.n→ h′2 |Φ}

MUTATE

Γ ` 〈 f ,Πentry | Σentry |Φentry,Πexit | Σexit |Φexit〉 Σ |= σ(Σentry)∗R
{l : Π | Σ |Φ},{l (r = f (~x)) l′} ` {l′ : Π[r = σ(Πexit(ret))] | σ(Σexit)∗R |Φ} PROC CALL

{l : S},{l (goto l1) l′} ` {l1 : S} JUMP

{l : S},{l (if c goto l1) l′} ` filter(c)(l1 : S)∪filter(¬c)(l′ : S)} BRANCH

filter(r1 = r2)(l : Π | Σ |Φ) ={
{l : Π | Σ |Φ∧ Jr1KΠ,Φ = Jr2KΠ,Φ} if Φ 0 Jr1KΠ,Φ 6= Jr2KΠ,Φ

� otherwise

filter(r1 6= r2)(l : Π | Σ |Φ) ={
{l : Π | Σ |Φ∧ Jr1KΠ,Φ 6= Jr2KΠ,Φ} if Φ 0 Jr1KΠ,Φ = Jr2KΠ,Φ

� otherwise

Table 2.1: Abstract Operational Semantics

CHAPTER 2. ABSTRACT SEMANTICS 19

unfoldΘ(l : S,h),F `Ψ′

{l : S},F `Ψ′ UNFOLD

Ψ1,F1 `Ψ′
1 Ψ2,F2 `Ψ′

2

Ψ1∪Ψ2,F1∪F2 `Ψ′
1∪Ψ′

2
COMBINE

Ψ∪{l : S},F `Ψ′∪{l : S}
Ψ,F `Ψ′∪{l : S} DISCHARGE

Ψ,F `Ψ′
2 Ψ′

2 ⇒Ψ′
1

Ψ,F `Ψ′
1

WEAKEN

Ψ1 ⊇Ψ2
Ψ1 ⇒Ψ2

superset Σ′ ; Σ

Ψ∪{l : Π | Σ |Φ}⇒Ψ∪{l : Π | Σ′ |Φ} normalize

recursion synthesis(Σ1) = A(h1, ...,hn[;α1, ...,αm])
Σ∗Σ1 ; Σ∗A(h1, ...,hn[;α1, ...,αm])

synthesis

foldΘ(Σ1) = A(h1, ...,hn[;α1, ...,αm])
Σ∗Σ1 ; Σ∗A(h1, ...,hn[;α1, ...,αm]) fold

Table 2.2: Abstract Operational Semantics (Continued)

so that if later the location is visited via pointer arithmetic instead of access path,

the analysis will recognize it as well.

• Otherwise, v points to a heap location that has already been linked to a parent, and

no special action is necessary.

The intuition behind this is: While a heap location may be reachable via multiple access

paths (one data structure may contain cross pointers to another data structure; or, within a

single data structure, a node may be internally shared in the presence of dags and cycles),

the algorithm chooses the access path that reveals the acyclic backbone of the recursive

data structure to which the location belongs. Our heuristic is to inherit the access path of

first location it is linked to, taking advantage of the fact that such a link is usually created

CHAPTER 2. ABSTRACT SEMANTICS 20

when adding a new expansion to a recursive data structure. In cases where the heuristic

fails, the inductive recursion synthesis will not be able capture the correct patterns of

recursive data structures. Our analysis compensates for this to some degree by performing

a prepass consisting of simple pointer analysis and code pruning (Section 6.1) to remove

code that is not relevant to the construction and manipulation of recursive data structures.

As a result, assignments of cross pointers will be removed and will not confuse the shape

analysis.

rearrange names(h1,n,h2,v)
if v = a then

if h2 = h1.n then
replace h2 everywhere with a fresh variable

replace v everywhere with h1.n
return h1.n

else
if v = h+n then

if h2 = h1.n then
replace h2 everywhere with a fresh variable

record alias 〈h+n,h1.n〉
return h1.n

return v

Figure 2.3: Algorithm of rearrange names

The rule PROC CALL is the same as the one given by Gotsman et al. [9]. It exploits

the Frame rule by breaking the heap at a call site into the “local heap” accessed by the

callee and a frame. σ is a mapping between the formal parameters and the actuals, and

between the return value and destination register of the call instruction. PROC CALL is

understood as follows: If there exists in Γ a recorded summary of the callee, (f ,Πentry |

Σentry | Φentry,Πexit | Σexit | Φexit), and the current heap Σ can be separated into disjoint

pieces σ(Σentry) and R, then the heap after the call instruction is a conjunction of σ(Σexit)

and R; and r is assigned the return value translated by σ (ret is special register for holding

CHAPTER 2. ABSTRACT SEMANTICS 21

return values). Since we are not concerned with bounding the number of cutpoints, they

are simply treated as dangling points from the frame.

The rule UNFOLD is invoked when the analysis encounters a load or store instruction

that accesses a recursive data structure. In order to expose specific points-to facts, the

recursive predicate that globally describes the data structure needs to be unrolled. This is

achieved by the algorithm unfoldΘ, given in Chapter 4.

There are three rules for composing primitive instructions into program fragments.

COMBINE merges states. DISCHARGE gets rid of redundant intermediate states as

some labels are associated with both an entry point and an exit point when instructions are

connected by control flows. WEAKEN is used both for further removing intermediate

states and for converging over loops. It is guided by the binary relation⇒ between sets of

labeled states. Ψ1 ⇒Ψ2 if either Ψ1 contains Ψ2 or at least one normalization step can be

performed on Ψ1 to yield Ψ2. It is the normalize rule that is responsible for guaranteeing

termination of the analysis. There are two kinds of normalization operations. From the

current state, synthesis infers a recursive description that is guaranteed to be more general

(Chapter 3). fold reduces the size of the state by folding surrounding heap nodes into a

recursive predicate (Chapter 4).

We use a while loop to illustrate how the composition rules work together in forward-

reasoning style. In Figure 2.4, after the COMBINE step, the two instructions in Fig-

ure 2.4(a) are merged into a program fragment with entry labels {l, l1} and exit labels

{l, l1, l′}. As control flows are merged, label l identifies both an entry and an exit, so is

label l1. In the case of l1, the states at the corresponding entry and exit are the same,

so using the DISCHARGE rule the internal entry point can be eliminated, as shown in

Figure 2.4(c). Finally, the superset and WEAKEN rules together remove l1 as an exit

point because a subset of labeled states are weaker than the superset. Now, the while

CHAPTER 2. ABSTRACT SEMANTICS 22

loop fragment in Figure 2.4(d) has one entry l carrying the initial state at iteration 0 and

two exits, an outbound one l′ carrying the state upon loop termination and an inbound

one l1 carrying the loop invariant. In the more complex case where the loop invariant has

to be inferred, the normalize rule will be used.

l : S 0 l : S 0

l1 : S1l1 : S1

l1 : S1

l1 : S1

l1 : S1

goto l
...

l : S

goto l
...

l : S

goto l
...

l : S

l : S 0 l : S 0

DISCHARGE WEAKEN

if ... goto l’ if ... goto l’

l’ : S’l’ : S’

goto l
...

l : S

(b)(a)

if ... goto l’

l’ : S’

(c)

if ... goto l’

(d)

l’ : S’

COMBINE

Figure 2.4: Instruction composition for while loop

Chapter 3

Inferring Recursive Predicates

This chapter describes the algorithm for automatically inferring recursive predicates. It

enables the analysis to arrive at loop invariants without introducing unnecessary approx-

imation. Loop invariant inference proceeds in the following steps:

1. Symbolically execute the loop body up to a fixed number of times (2 suffices in the

experimentation).

2. If the analysis does not converge over the loop at this point, then invoke inductive

recursion synthesis, which returns a hypothesized loop invariant.

3. Verify the soundness of the loop invariant by assuming that it holds on loop entry

and checking that for each control flow path in the loop, the state at the end of

the path matches the loop invariant. If the analysis diverges, then halt and report

failure.

4. Otherwise, the loop invariant is valid. By the algorithm of recursion synthesis,

the states associated with the loop entry in the initial number of iterations must be

23

CHAPTER 3. INFERRING RECURSIVE PREDICATES 24

derivable from the invariant by unrolling it. Hence they are eliminated using the

WEAKEN rule.

3.1 Inductive Recursion Synthesis

Inductive program synthesis, the problem of automatic synthesis of recursive programs

from input/output samples, studied in AI research, resembles loop invariant inference

in the sense that the input/output samples are provided by finite executions of the loop

and the invariant can be seen as a highly abstracted encoding of the loop. The approach

introduced by Summers [30] consists of two steps. First, the input/output samples are

rewritten as finite program traces, then a recurrence relation is identified by inspecting

the traces. In our case, the program trace is readily available as the heap formula after

execution of the loop, with crucial information encoded in the logic variable names by

rearrange names in Chapter 2. The logic formula is translated into a term, the form of

inputs on which the recurrence detection algorithm operates, using the domain knowl-

edge about heap semantics. Such global inspection of states is only conducted when

converging over loops. The rest of the analysis updates states locally.

3.1.1 Translating Heap Formulae into Terms

The set of terms is defined in Figure 3.1. A term can be viewed as a tree where each

symbol is a node.

Terms t ::= x variables
| c constants
| f (t1, .., .tn) functions

Figure 3.1: Set of Terms

CHAPTER 3. INFERRING RECURSIVE PREDICATES 25

The idea is to map each heap location to a term that describes the data structure

reachable from it, referred to as a “heap” term. We start by assigning a function symbol

to each logic operator, ∗ for spatial conjunctions, n→ for points-to assertions with n being

the field, and the predicate name for predicate instantiations. As the heap locations are

interconnected with each other, naturally some terms will be subtrees of other terms.

While the heap may contain dags and cycles, the term tree structure must remain acyclic

(consistent with the fact that the backbones of inductive definitions are acyclic). To

achieve this, each heap location is also associated with a “name” term. For all appear-

ances of a heap location on the right hand side of a points-to assertion, only one will

result in the corresponding heap term being linked as a subtree of the left hand side. All

others are translated into name terms by the rewrite function [·], cutting the points-to link

in a sense.

[null] = NULL [g] = g [α] = α [h.n] = n([h]).

The translation process maintains a mapping γ from heap locations to heap terms. [·] is

overloaded to translate heap formulae to terms.

[A(h1, ...,hn[;h′1, ...,h
′
m])] = γ(h1) =

A([h1], ..., [hn][; [h′1]..., [h
′
m]))

[h.n1 → h1 ∗ ...∗h.nr → hr] = γ(h) =

∗(n1→ ([h],get term(h,h1)), ...,
nr→ ([h],get term(h,hr))),

get term(h1,h2) =

 γ(h2) if h2 = h1.n

[h2] otherwise

CHAPTER 3. INFERRING RECURSIVE PREDICATES 26

In a depth-first traversal of the abstract heap, every predicate instantiation is translated

into the heap term of the first parameter; all points-to assertions with the same location

on the left hand side are translated together into the heap term of that location. The choice

between a heap term and a name term for the right hand side is guided by the access paths

encoded in the names of the heap locations. The final result is a forest of top-level term

trees and because of the heuristic adopted in rearrange names, each of these trees roughly

corresponds to a different data structure in the program.

Figure 3.2 contains a loop from 181.mcf that builds the left-child right-sibling tree

with backward links. nodes is an array of tree nodes. All new tree nodes are subsequently

requested from it. Figure 3.3(a) shows the term tree after two iterations of the loop.

Each ∗ term represents a distinct node in the data structure, whose name is given in the

parenthesis next to it. For each field n in the node, the corresponding ∗ term contains
n→ term whose left subterm is the name of the source location and the right subterm is

either the name of the target location or the ∗ term representing the target location. In

the latter case, the expansion of the data structure is continued from below the ∗ term.

In the former case, the data structure reachable from the target location will be expanded

along some other access path reaching that target. The term in Figure 3.3(a) completely

captures the effect of the loop on heap at this execution point and presents it in such a

way that exposes the underlying recursive pattern to the recurrence detection algorithm.

This cannot be achieved by ordinary separation logic formulae without the enhancement

of access-path-based heap names or the domain-specific translation into terms.

3.1.2 Recurrence Detection

For convergence over loops, the recurrence detection algorithm is applied to each top-

level term (a loop may touch multiple data structures). The algorithm we build on is

CHAPTER 3. INFERRING RECURSIVE PREDICATES 27

nodes = malloc(MAX_NODES);

root = nodes;
node = nodes+1;
root->parent = null;

s1: root->child = node;
root->sib = null;
root->sib_prev = null;

for (...) {
node->parent = root;
node->child = null;

s2: node->sib = node+1;
s3: node->sib_prev = node-1;

node++;
}

Figure 3.2: A Loop in 181.mcf that Builds its Tree

by Schmid [27]. The high-level intuition is that if there is a recurrence relation that

explains a term, then the term can be obtained from the recurrence relation by unfolding

the recursion body up to a finite length. So a term can be folded into a recursion by

finding a segmentation of the term corresponding to the unfolding points, together with

parameter substitution rules. As pointed out by Summers [30], this can be viewed as the

converse of using fixed points to give the semantics of a recursive function. The algorithm

proceeds in three steps:

1. Search for a valid segmentation of the input term. This can be quite complex as

the recurrence relation can be of arbitrary form, not just simple linear recursions

such as linked lists. In Figure 3.3(a), bold lines cutting across tree edges segment

the term such that the target node of each edge cut is an unfolding point. Three

unfolding points are NULL nodes, which correspond to the base case of the re-

cursion (modifications are made to Schmid’s algorithm to determine when NULL

CHAPTER 3. INFERRING RECURSIVE PREDICATES 28

child

h *

*

*child

h

child

NULL

child

NULL

parent sib

*

(h)

(h.child) h NULL h NULL

sib sib_prev

(h.child.sib)

(h.child.sib.sib)

parent

hchild

h

child

h

sib

child

h

sib_prev

NULL

sib

child

h

child

h

sib

child

h

sib

child

h

sib_prev

NULLsib

child

h

h NULL

parent

(a) Term tree

g(x1,x2,x3) = ∗(
parent→ (x1,x2),

child→ (x1,g),
sib→ (x1,g),

sib prev→ (x1,x3))

g(x1,x2,x3) = ∗(
parent→ (x1,x2),
child→ (x1,g(child(x1),x1,NULL)),
sib→ (x1,g(sib(x1),x2,x1)),
sib prev→ (x1,x3))

(b) Recurrence

Figure 3.3: Inductive Recursion Synthesis for the Loop in Figure 3.2

CHAPTER 3. INFERRING RECURSIVE PREDICATES 29

nodes are not unfolding points). The unfolding point h.child.sib.sib is where the

symbolic execution of the loop and hence the expansion of the term tree stop. An

unfolding point like this is a single ∗ term with no children. We refer to them as the

“unexpanded” nodes.

The basic algorithm for finding a valid segmentation is given in Figure 3.4. For-

mally, it searches for the set R of recursion points – places in the recurrence body

where it invokes itself. The unfolding points in the term can be derived by repeated

unrolling of the recurrence at its recursion points. In Figure 3.3(a), the recursion

points coincide with the top two unfolding points, closest to the root of the tree.

The other four are results of unrolling twice starting at the recursion point on the

left.

To ensure that the algorithm returns the minimal recurrence relation that explains

the input term, the search for the next recursion point proceeds from left to right

and from top to bottom, backtracking when R does not induce a valid segmentation.

Term tree nodes that may potentially be recursion points are either NULL nodes or

function nodes that have the same symbol as the root of the tree (which is always

the * operator in this analysis) and contain NULL nodes and unexpanded nodes in

its subtree. The subroutine is potential recursion point tests each tree node using

this criterion. The reason for only considering * operators and NULL symbols as

potential recursion points is that they are respectively where a term tree adds and

stops adding new expansions to itself.

The validity of segmentation is checked by first computing a skeleton tskel of the

hypothetical recurrence body. tskel is the minimal term tree that contains all paths

in t leading to the recursion points, with the recursion points replaced by a special

CHAPTER 3. INFERRING RECURSIVE PREDICATES 30

find valid segmentation(t)
R = {} // The set of recursion points
x = leftmost child of t
while x 6= null do

if is potential recursion point(x, t) then
R += x
if is valid segmentation(R, t) then

x = next pos right(x)
continue

else
R −= x

x = leftmost child of x, if any or next pos right(x)
return the set of unfolding points induced by R

is potential recursion point(x, t)
return x is a NULL node ∨ (x has the same symbol as t ∧

x contains NULL or unexpanded nodes in its term tree)

next pos right(x)
if x has no parent then

return null
if x has a right sibling y then

return y
return next pos right(parent of x)

Figure 3.4: Algorithm for Finding a Valid Segmentation

CHAPTER 3. INFERRING RECURSIVE PREDICATES 31

symbol 0. All other paths are replaced by fresh variables at the highest points.

For the term tree in Figure 3.3(a), let R consist of the top two unfolding points,

then the corresponding skeleton is ∗(x1,
child→ (x2,0), sib→ (x3,0),x4), where the 0s

correspond to the recursion points and x1..x4 are fresh variables. Because this stage

of the algorithm is only concerned with finding the recursive backbone of the data

structure, the skeleton discards all nonrecursive parts of the term tree, leaving in

their place simple variables as place-holders. On the other hand, function symbols

on the backbone are preservely in order to verify that these symbols are repeated

recursively along the rest of the backbone. This is done by testing if tskel can

be “embedded” in every subtree rooted at an unfolding point. This notion of a

term being embedded in another one is captured precisely by the binary relation ≤,

defined inductively as

• 0≤ t ′ if t ′ contains NULL or unexpanded nodes,

• x ≤ t ′ if t ′ does not contain NULL or unexpanded nodes,

• f (t1, ..., tn)≤ f (t ′1, ..., t
′
n) if ti ≤ t ′i for i = 1..n.

The idea is that tskel ≤ t if for every path in tskel that ends in a symbol 0 (i.e.

a recursive point), there is a same path in t that ends in a subtree containing

more unfolding points, while each variable in tskel, being a place-holder for a

nonrecursive subtree, maps to a subtree in t that contains no more unfolding points.

In Schmid’s original work, R induces a valid segmentation if for each unfolding

point u derived from R, tskel ≤ u holds. In our case, because not all NULL nodes are

actual unfolding points, an additional check is needed to weed out false positives.

A NULL node is a valid recursion point only if for at least one unfolding point, the

CHAPTER 3. INFERRING RECURSIVE PREDICATES 32

subtree that is associated with the corresponding recursion point in the ≤ relation

contains unexpanded nodes.

Figure 3.5 contains the algorithm for checking the validity of a segmentation. It

does not actually compute tskel. Instead, it compares the segmentation at the root of

the term tree, from which tskel is obtained, with all other segmentations one by one.

2. Compute the body of the recurrence, which is the maximal overlapping portion of

all segments. This is done by anti-unifying (u) the segments:

• f (t1, ..., tn)u f ′(t ′1, ..., t
′
m) = ϕ(f (t1, ..., tn), f ′(t ′1, ..., t

′
m)),

• f (t1, ..., tn)u f (t ′1, ..., t
′
n) = f (t1u t ′1, ..., tnu t ′n).

ϕ is a one-to-one mapping between pairs of terms and variables which guarantees

that identical subterm pairs are replaced by the same variable throughout the whole

term.

3. Find parameter substitutions. The subterms where the segments differ are instan-

tiations of the parameters in the recurrence. Parameter substitutions are computed

by identifying regularities in these terms. In our case, the parameters are precisely

those terms translated from the names of heap locations. The access- paths, now

encoded in the prefix form, provide the excellent opportunity for identifying inter-

relationships between the parameters. We define the notion of positions in a term

tree t: (i) λ is the position of the root (ii) if the node at position u, denoted as t|u,

is a function, then its i-th child has position u.i. Within each segment s, let βs,x j,r

denote the subterm that is the instantiation of parameter x j at recursion point r. The

substitution term for parameter x j recursion point r is computed as sub(x j,r,λ).

CHAPTER 3. INFERRING RECURSIVE PREDICATES 33

is valid segmentation(R, t)
valid NULL nodes = �
for all unfolding point u below t do

queue = {(t,u)}
while queue 6=� do

remove (n1,n2) from queue
if n1 ∈ R then

if n1 is a NULL node then
if the subtree at n2 does not contain NULL nodes or unexpanded nodes
then

if n1 /∈ valid NULL nodes then
R −= n1

else
return false

else
if the subtree at n2 contains unexpanded nodes then

valid NULL nodes += n1
else

if the subtree at n2 does not contain NULL nodes or unexpanded nodes
then

return false
for all child n1i of n1 do

n2i is the i-th child of n2
queue += {(n1i,n2i)}

else if n1 can reach some r ∈ R then
if n1 does not have same function symbol as n2 then

return false
else

if the subtree at n2 contains unexpanded nodes but no NULL nodes then
return false

for all r ∈ R do
if r is a NULL node ∧ r /∈ valid NULL nodes then

R −= r

Figure 3.5: Algorithm for Checking the Validity of a Segmentation

CHAPTER 3. INFERRING RECURSIVE PREDICATES 34

sub(x j,r,u) =

xk if is recurrent(x j,xk,r,u)

f (sub(x j,r,u.1), ..., if ∀ segment s . βs,x j,r|u = f (...),

sub(x j,r,u.n)) with arity(f) = n,

is recurrent(x j,xk,r,u) =

∀ successive segments s, s′ . βs′,x j,r|u = βs,xk,r|λ.

sub is defined by structural induction on term trees. The leafs of the substitution

term are parameter variables. They are determined through comparison of succes-

sive segment pairs in is recurrent to see if a general pattern emerges. For an internal

position u in the substitution term, it must hold that the corresponding parameter

instantiations in all segments share the same function node at u.

For the term in Figure 3.3(a), the recurrence body is shown in Figure 3.3(b) on the

top, and the final recurrence relation with parameter substitutions is shown at the bottom,

which translates to the predicate mcf tree(x1,x2,x3) defined in Chapter 2.

3.2 What inductive recursion synthesis can and cannot

do

The complete algorithm given in [27] handles the case where the recursion does not start

at the root of the term tree, which happens when a recursive data structure is conjoined

with some extra data. It can handle mutual recursions and nested recursions, which

CHAPTER 3. INFERRING RECURSIVE PREDICATES 35

allows the analysis to support nested data structures, e.g. trees of linked lists. It can

also handle interdependencies between parameter instantiations and incomplete program

traces. We believe the algorithm is powerful enough to decipher most recursive data

types. However, our technique relies on the loop that constructs the data structure to

reveal the data structure’s recursive backbone. It will fail, for example, if the code reads a

table that specifies the data structure or copies a data structure by keeping a map between

pointers in the original and those in the duplicate.

Chapter 4

Truncation Points and Location

Reasoning

To facilitate reasoning about local updates to recursive data structures, the idea of trunca-

tion points (Chapter 2) is introduced to model pointers to the interior of a data structure.

When local updates occur, the data structure needs to be unfolded to expose specific

points-to relations in its interior. Afterwards, the data structure needs to be folded back so

as to reestablish global shape invariant. This chapter discusses the algorithms for unfold-

ing and folding arbitrary recursive predicates. They correspond to two subroutines used

in the symbolic execution rules of Chapter 2 – unfoldΘ(l:S,h) and foldΘ(Σ) respectively.

4.1 Unfolding Recursive Predicates

unfoldΘ takes as arguments a state S and a heap location h, which is located either at

the root of a recursive data structure or at the bottom sitting between the data structure

and a truncation point. It unrolls the data structure at h according to the definition of the

36

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 37

recursive predicate that describes the data structure. As a result, the state S will contain

explicit points-to assertions with h on the left hand side. unfoldΘ returns a set of states

because case analysis is needed in the presence of truncation points.

If h is the root of a recursive data structure, indicated by the fact that it is the first

parameter in the recursive predicate describing the data structure, then unfoldΘ needs

to peel away the the top layer of the data structure. This is conceptually easy, simply

replace the recursive predicate with its inductive definition, substituting arguments passed

to the predicate for parameters in the definition. Complication arises when the predicate

contains truncation points. Since their exact positions relative to the root are not specified

in the state, they could be sitting right below the root, in which case they alias with the

newly exposed targets of h, or they could be farther way from h so that they become

the truncation points in the sub data structures below h. Because spatial conjunction

does not allow implicit aliasing, it is necessary to enumerate all possible scenarios of

relative positioning between h and the truncation points. Let n be the number of recursion

points (Chapter 3.1.2) in the definition of the recursive predicate and m be the number

of truncation points in the predicate. The total number of possibilities is exponential

in n×m. However, n is a small constant (1 for linked lists, 2 for binary trees). m is

also small because local updates only involve a few nodes and once done, the global

invariant is restored by calling foldΘ to remove these truncation points. Furthermore,

the possibilities for relative positioning are constrained by the invariant that the subheaps

rooted at truncation points must be mutually disjoint. This means that if one truncation

point h′ is positioned at a recursion point under h, then no other truncation points can be

truncation points of h′.

Consider the heap: mcf tree(h,null,null;α) ∗mcf tree(α,β1,β2). Unfolding h yields

four heaps:

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 38

• h.parent→ null∗h.child→ α∗mcf tree(α,h,null)∗

h.sib prev→ null∗h.sib→ β4 ∗mcf tree(β4,null,h)

• h.parent→ null∗h.child→ β3 ∗mcf tree(β3,h,null)∗

h.sib prev→ null∗h.sib→ α∗mcf tree(α,null,h)

• h.parent→ null∗h.child→ β3 ∗mcf tree(β3,h,null;α)∗

h.sib prev→ null∗h.sib→ β4 ∗mcf tree(β4,null,h)

• h.parent→ null∗h.child→ β3 ∗mcf tree(β3,h,null)∗

h.sib prev→ null∗h.sib→ β4 ∗mcf tree(β4,null,h;α)

Unrolling a recursive predicate from the bottom up makes h a new truncation point,

causing some old truncation points to be removed to maintain mutual-disjointness of

truncation points. Let T be the set of the original truncation points that point to h. Again,

we do not know the exact access path from h to a t ∈ T , so case splitting is required as

well. In this case the link from t to h also limits the possible places where t may alias

with a node under h, according to the definition of the recursive predicate. Consider

again the heap mcf tree(h,null,null;α) ∗mcf tree(α,β1,β2). To unroll β2, because the

link α → β2 is a sib prev link, by definition of mcf tree, α must be the target of the sib

link originating from β2. Hence after unrolling β2, we have mcf tree(h,null,null;β2) ∗

β2.parent → β1 ∗β2.child → β3 ∗mcf tree(β3,β2,null)∗β2.sib → α∗β2.sib prev → β4 ∗

mcf tree(α,β1,β2). If we were to consider α as the target of the child link of β2, then

α would be described as mcf tree(α,β2,null), which is inconsistent with its description

before the unrolling. Similar inconsistency also arises if we do not consider α as any

target of β2. Our algorithm checks each combination to rule out inconsistencies. In

the case of unrolling β1, there are two possibilities, either α is the child of β1 or it is a

truncation point in the child subtree of β1.

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 39

Figure 4.1 contains the algorithm that determines all possible spatial relationships be-

tween an unfolded node h, associated with a recursive predicate A, and a set of truncation

points T . Each possibility is represented by a function π that maps every t in T to either

r or r, where r is one of the recursion points in the definition of A. r means the t is

located at the recursion point and r means that t is further below r. The case analysis

algorithm serves both unrolling from top down and unrolling from bottom up, as shown

in Figure 4.2.

case analysis (h,T) :
valid possibilities = {}
for all π do

if ∀r.(∃t.π(t) = r)⇒ (@t ′.t ′ 6= t ∧ (π(t) = r∨π(t) = r)) then
ok = true
for all t ∈ T do

if ∃ backward link t.n→ h then
let x j be the parameter in A’s definition s.t. x1.n→ x j
let r be the recursion point s.t. π(t) = r or r
if π(t) = r then

if the recursive call at r substitutes x1 for x j then
continue

else
if the recursive call at r substitutes x1 for some xk ∧
∃r′.the recursive call at r′ substitutes xk for x j then
continue

ok = false
break

if ok then
valid possibilities += π

return valid possibilities

Figure 4.1: Algorithm for case analysis in unfoldΘ

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 40

unfoldΘ (S, h) :
states = �
if h is in recursive predicate A(h, ...; [h′1, ..., h′m] then

// Unroll from top down
expand h according to the definition of A
if m > 0 then

for all π ∈ case analysis(h,{h′1, ..., h′m}) do
S′ = duplicate(S)
assign h′1, ..., h′m to positions specified by π

states += S′

else
states += S

else
// h is in recursive predicate A(h1, ..., h, ...)
// Unroll from bottom up
expand h according to the definition of A
if h1 is a truncation point in another recursive predicate P then

replace h1 with h
for all π ∈ case analysis(h,{h1}) do

S′ = duplicate(S)
assign h1 to positions specified by π

states += S′

return states

Figure 4.2: Algorithm for unfoldΘ

4.2 Folding Recursive Predicates

The case analysis performed in unfoldΘ closely mimics the way a programmer may

reason informally about local updates – “If it is the case that x points y, then ...”, but

it does so exhaustively to ensure correctness. In comparison, folding a heap formula

is straightforward because we do not need to worry about accidentally creating implicit

aliasing, hence no case analysis is needed. It cleans up unused truncation points left

behind by unfoldΘ in an attempt to incorporate cut-out pieces of the original data structure

back into it, thereby restoring the global invariant. foldΘ takes a heap, looks for locations

not pointed to by any live register, and tries to merge it into a neighboring data structure.

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 41

Like unfoldΘ, it also works from two directions, starting either with locations sitting

directly atop a recursive data structure and working its way upwards, or with truncation

points and working its way downwards. It achieves similar effect of the rewrite rules for

list in [7, 16], p → k ∗ list(k,q) ; list(p,q) and list(p,k)∗ k → q ; list(p,q). However,

we handle arbitrary predicates by crawling the abstract heap such that each time, instead

of a single heap cell, a whole chunk of heap fitting the definition of the recursive predicate

(including backward links) is absorbed.

Figure 4.3 contains the algorithm for foldΘ. It consists of three parts. As the first

step, the set of boundary locations is identified. These locations must not be folded into

neighboring recursive predicates. They include globals, cutpoints (Chapter 5), locations

pointed to by procedure parameters, the return value register, and all other registers

live at the current program point. The second part of the algorithm takes all recursive

predicates that have truncation points and attempts to merge heap regions from below the

truncation points into the predicates. A queue is used to hold heap locations that will be

considered for the root of a new expansion to the recursive data structure. This test is

performed by the subroutine is foldable, which is given in Figure 4.4 and Figure 4.5. If

the test fails, then the tested heap location becomes a new truncation point. Otherwise, all

recursion points under the tested heap location according to the definition of the predicate

are addeded to the queue. This process continues until the queue is exhausted. The last

part of algorithm works backwards starting from all remaining recursive predicates (some

recursive predicates might have been absorbed in the second part of the algorithm). In

each iterative step, the subroutine get parent obtains the parent of the current location.

Location h1 is considered as the parent of location h2 if h1 points to h2 and h2 inherits the

access-path name of h1, that is h2 = h1.n. is foldable is then applied to the parent location

to determine whether the heap region rooted at it matches the definition of the recursive

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 42

foldΘ (Σ) :
boundaryLocations = {h ∈ Σ | h is pointed to by a procedure parameter ∨

h is pointed to by the return register ∨
h is pointed to by a live register ∨
h is a cutpoint ∨ h is a global}

top = {recursive predicates with truncation points}
while top 6=� do

remove t from top
newTruncationPoints = �
queue = h.truncationPoints
while queue 6=� do

remove h from queue
if !is foldable(h, Θ(t), boundaryLocations) then

newTruncationPoints += h
else

if h is a recursive predicate then
queue −= h

else
queue += the set of recursion points under h according to Θ(t)

t.truncationPoints = newTruncationPoints

bottom = {all remaining recursive predicates}
while bottom 6=� do

remove b from bottom
h = b
hh = get parent(h,Θ(b))
while hh 6= null ∧ is foldable(hh, Θ(b),boundaryLocations) do

bottom −= the set of recursion points under hh
h = hh
hh = get parent(h,Θ(b))

if b ∈ boundaryLocations then
if b is not a recursion point under h then

replace h with a predicate with the same definition as b
h.truncationPoints += b

else
if hh 6= null ∧ h ∈ boundaryLocations then

replace h with a predicate with the same definition as b

Figure 4.3: Algorithm for foldΘ

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 43

is foldable (h, definition, boundaryLocations) :
if h is a recursive predicate then

return h /∈ boundaryLocations ∧ Θ(h) = definition
queue = {(definition.root, h)}
while queue 6=� do

remove (h1, h2) from queue
if h2 ∈ boundaryLocations then

return false
if mapping(h1) 6= null then

if mapping(h1) 6= h2 then
return false

else
mapping(h1) += h2
if h1 is the first parameter in a recursive predicate then

for all parameter pi of h1 do
qi = find param(h2, definition, i)
if qi 6= null then

queue += (pi, qi)
else

return false
else

for all h1.n→ h3 do
if ∃h2.n→ h4 then

queue += (h3,h4)
else

return false
return true

Figure 4.4: Algorithm for is foldable

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 44

find param (h, definititon, i) :
if h is the first parameter in a recursive predicate then

return the i-th parameter in that predicate
vi = the i-th formal parameter in definition
queue = {(definition.root, h)}
while queue 6=� do

remove (h1, h2) from queue
for all h1.n→ h3 do

if h3 = vi then
if ∃h2.n→ h4 then

return h4
else

return null
else

if ∃h2.n→ h4 then
queue += (h3, h4)

return null

Figure 4.5: Algorithm for find param

predicate. When the iteration terminates, either because a parent location cannot be found

or because it fails the test is foldable, the heap region from below the current location h

that has been matched with the recursive predicate can be merged into it by replacing h

with the recursive predicate. If the starting position b is a boundary location, then it is

added as a truncation point of h.

is foldable takes a heap location h, a heap formula that is the definition of a recursive

predicate, and the set of boundary locations. It determines whether there exists a heap

region rooted at h that has the exact structure as is described by the definition of the

recursive predicate and does not contain any boundary location. If h is itself a recursive

predicate with the same definition and h is not a boundary location, then is foldable

immediately returns true. Otherwise, it traverses the heap reachabe from h and the

definition of the recursive predicate together in lock-step, returning false either when

a structural mismatch is detected or when a boundary location is encountered.

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 45

4.3 A Detailed Example

l0:
if (t->sib)

t->sib->sib_prev = t->sib_prev;
l1:

if (t->sib_prev)
t->sib_prev->sib = t->sib;

else
p->child = t->sib;

l2:
t->parent = q;
t->sib = q->child;

l3:
if (t->sib)

t->sib->sib_prev = t;
l4:

q->child = t;
t->sib_prev = 0;

l5:

Figure 4.6: Local modification to a tree in 181.mcf

To illustrate unfolding and folding, we will again turn to 181.mcf. Figure 4.6 contains

a code fragment which cuts a subtree from under its parent and connects it to a new parent.

At entry l0, q and t are two truncation points in the mcf tree whose root is R. The parent

link of t points to p. The code fragment removes the subtree rooted at t from under p,

moving the right sibling of t, if any, towards the left to be the new child of p. t is added

as the child of q, shifting the old child of q, if any, toward the right. The heap formulae

associated with each program label are listed in Table 4.1 to Table 4.4. For each label,

parts of the heap formulae that are different from the previous label are underlined. The

unfold and fold actions taken at each step are also listed. Formula Σ1,2 corresponds to the

case where the branch at l1 is not taken. We omit subsequent formulae derived from it.

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 46

They are similar to those listed here. The same is done for Σ3,2. The registers that are live

at the end of this code fragment are t and q. In the last step, we fold all other nodes back

into the tree. The final heap Σ6,2, where t.sib points to null, is subsumed by Σ6,1 (based

on the definition of v in Chapter 2.1).

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 47

l0

Σ0 :
mcf tree(r,null,null;q, t)∗mcf tree(q,β1,β2)∗
t.parent→ p∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ α1 ∗ t.sib→ α3 ∗mcf tree(α3, p, t)

l1

Σ1,1 : Unfold α3
mcf tree(r,null,null;q, t)∗mcf tree(q,β1,β2)∗
t.parent→ p∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ α1 ∗ t.sib→ α3∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ α1 ∗α3.sib→ α5 ∗mcf tree(α5, p,α3)

Σ1,2 :
mcf tree(r,null,null;q, t)∗mcf tree(q,β1,β2)∗
t.parent→ p∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ α1 ∗ t.sib→ null

l2

Σ2,1 : Unfold α1
mcf tree(r,null,null;q,α1)∗mcf tree(q,β1,β2)∗
α1.parent→ p∗α1.child→ α7 ∗mcf tree(α7,α1,null)∗
α1.sib prev→ α6 ∗α1.sib→ α3∗
t.parent→ p∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ α1 ∗ t.sib→ α3∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ α1 ∗α3.sib→ α5 ∗mcf tree(α5, p,α3)

Σ2,2 : Unfold p
mcf tree(r,null,null;q, p)∗mcf tree(q,β1,β2)∗
p.parent→ α8 ∗ p.child→ α3∗
p.sib prev→ α9 ∗ p.sib→ α10 ∗mcf tree(α10,α8, p)∗
t.parent→ p∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ null∗ t.sib→ α3∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ null∗α3.sib→ α5 ∗mc f tree(α5, p,α3)

Table 4.1: Intermediate states of a tree update in 181.mcf

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 48

l3

Σ3,1 : Unfold q
mcf tree(r,null,null;q,α1)∗
q.parent→ β1 ∗q.child→ β3 ∗mcf tree(β3,q,null)∗
q.sib prev→ β2 ∗q.sib→ β4 ∗mcf tree(β4,β1,q)∗
α1.parent→ p∗α1.child→ α7 ∗mcf tree(α7,α1,null)∗
α1.sib prev→ α6 ∗α1.sib→ α3∗
t.parent→ q∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ α1 ∗ t.sib→ β3∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ α1 ∗α3.sib→ α5 ∗mcf tree(α5, p,α3)

Σ3,2 : Unfold q
mcf tree(r,null,null;q, p)∗
q.parent→ β1 ∗q.child→ β3 ∗mcf tree(β3,q,null)∗
q.sib prev→ β2 ∗q.sib→ β4 ∗mcf tree(β4,β1,q)∗
p.parent→ α8 ∗ p.child→ α3∗
p.sib prev→ α9 ∗ p.sib→ α10 ∗mcf tree(α10,α8, p)∗
t.parent→ q∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ null∗ t.sib→ β3∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ null∗α3.sib→ α5 ∗mcf tree(α5, p,α3)

Table 4.2: Intermediate states of a tree update in 181.mcf (Continued)

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 49

l4

Σ4,1 : Unfold β3
mcf tree(r,null,null;q,α1)∗
q.parent→ β1 ∗q.child→ β3∗
q.sib prev→ β2 ∗q.sib→ β4 ∗mcf tree(β4,β1,q)∗
β3.parent→ q∗β3.child→ β5 ∗mcf tree(β5,β3,null)∗
β3.sib prev→ t ∗β3.sib→ β6 ∗mcf tree(β6,q,β3)∗
α1.parent→ p∗α1.child→ α7 ∗mcf tree(α7,α1,null)∗
α1.sib prev→ α6 ∗α1.sib→ α3∗
t.parent→ q∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ α1 ∗ t.sib→ β3∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ α1 ∗α3.sib→ α5 ∗mcf tree(α5, p,α3)

Σ4,2 :
mcf tree(r,null,null;q,α1)∗
q.parent→ β1 ∗q.child→ null∗
q.sib prev→ β2 ∗q.sib→ β4 ∗mcf tree(β4,β1,q)∗
α1.parent→ p∗α1.child→ α7 ∗mcf tree(α7,α1,null)∗
α1.sib prev→ α6 ∗α1.sib→ α3∗
t.parent→ q∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ α1 ∗ t.sib→ null∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ α1 ∗α3.sib→ α5 ∗mcf tree(α5, p,α3)

Table 4.3: Intermediate states of a tree update in 181.mcf (Continued)

CHAPTER 4. TRUNCATION POINTS AND LOCATION REASONING 50

l5

Σ5,1 :
mcf tree(r,null,null;q,α1)∗
q.parent→ β1 ∗q.child→ t∗
q.sib prev→ β2 ∗q.sib→ β4 ∗mcf tree(β4,β1,q)∗
β3.parent→ q∗β3.child→ β5 ∗mcf tree(β5,β3,null)∗
β3.sib prev→ t ∗β3.sib→ β6 ∗mcf tree(β6,q,β3)∗
α1.parent→ p∗α1.child→ α7 ∗mcf tree(α7,α1,null)∗
α1.sib prev→ α6 ∗α1.sib→ α3∗
t.parent→ q∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ null∗ t.sib→ β3∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ α1 ∗α3.sib→ α5 ∗mcf tree(α5, p,α3)

Σ5,2 :
mcf tree(r,null,null;q,α1)∗
q.parent→ β1 ∗q.child→ t∗
q.sib prev→ β2 ∗q.sib→ β4 ∗mcf tree(β4,β1,q)∗
α1.parent→ p∗α1.child→ α7 ∗mcf tree(α7,α1,null)∗
α1.sib prev→ α6 ∗α1.sib→ α3∗
t.parent→ q∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ null∗ t.sib→ null∗
α3.parent→ p∗α3.child→ α4 ∗mcf tree(α4,α3,null)∗
α3.sib prev→ α1 ∗α3.sib→ α5 ∗mcf tree(α5, p,α3)

fold

Σ6,1 : Fold α1, α3, β3
mcf tree(r,null,null;q)∗
q.parent→ β1 ∗q.child→ t∗
q.sib prev→ β2 ∗q.sib→ β4 ∗mcf tree(β4,β1,q)∗
t.parent→ q∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ null∗ t.sib→ β3 ∗mcf tree(β3,q, t)

Σ6,2 : Fold α1, α3
mcf tree(r,null,null;q)∗
q.parent→ β1 ∗q.child→ t∗
q.sib prev→ β2 ∗q.sib→ β4 ∗mcf tree(β4,β1,q)∗
t.parent→ q∗ t.child→ α2 ∗mcf tree(α2, t,null)∗
t.sib prev→ null∗ t.sib→ null

Table 4.4: Intermediate states of a tree update in 181.mcf (Continued)

Chapter 5

Interprocedural Analysis

The interprocedural algorithm is similar to the ones proposed by Gotsman et al. [9] and

Rinetzky et al. [25]. All three algorithms separate the callee’s local heap from the rest

of the heap and tabulate summary transfer functions for reuse under equivalent calling

contexts. Two things distinguish our analysis. First, the computation of summary transfer

functions applies inductive recursion synthesis for termination. Second, recursion synthe-

sis is also used to handle cutpoints [24] precisely in the presence of recursive procedures.

In comparison, cutpoints are either bounded in number in [9] or summarized by a single

cutpoint in [25], both leading to loss of precision.

We give the algorithm in its entirety in Section 5.1 and focus on the treatment of

cutpoints and recursive procedures in Section 5.2.

5.1 Tabulation Algorithm

Like [9] and [25], at each procedure entry, the analysis splits the state into two disjoint

pieces – a local heap and a frame. The local heap consists of heap regions reachable

51

CHAPTER 5. INTERPROCEDURAL ANALYSIS 52

from the actual parameters and from the globals referenced by the callee and all of its

descendants in the call graph. 1 Based on the Frame rule [19], only the local heap needs

to be considered when analyzing the behavior of the callee. Cutpoints, which refer to

locations in the local heap other than the parameters and the globals that have pointers

pointing to them from within the frame, need to be preserved when computing the transfer

function so that the postheap upon returning from the callee can be properly pieced back

together with the frame. This is achieved in our analysis by imposing a rule on the

algorithm foldθ such that no cutpoint is ever folded away.

Our interprocedural algorithm, shown in Figure 5.1 and Figure 5.2, traverses the

callgraph from top down, starting with the entry of the main procedure. Each time a

call site is encountered, the local heap of the callee is first extracted and then compared

with all previously seen entry heaps of the callee. If a match is found, then the tabulated

exit heap is used to update the caller’s state. Otherwise, the callee needs to be analyzed

with the local heap as entry heap. In addition to the benefit of reusing a transfer function

under calling contexts that are different only in the frame portion of the heap, this top-

down approach also means that the precise structure of the heap and all alias relationships

are always known whenever the analysis steps into a callee and that the analysis only

analyzes calling contexts that may arise in the execution of the program.

analyze program (prog) :
stack = {〈main,S0,{〈entrymain,S0〉}〉}
while stack is not empty do

get 〈proc,Sentry,worklist〉 from stack top
analyze procedure(proc,Sentry,worklist)

Figure 5.1: The Interprocedural Algorithm

1Information about the globals is easily gleaned by a pointer analysis applied before the shape analysis.
This is discussed in Chapter 6.

CHAPTER 5. INTERPROCEDURAL ANALYSIS 53

analyze procedure (proc,Sentry,worklist) :
while worklist is not empty do

remove 〈n,S〉 from worklist
if n is a call node then

Slocal = extract(S,callee)
if summary(callee,Slocal) 6=� then

for all Sexit ∈ summary(callee,Slocal) do
add 〈nreturn,combine(Sexit,S)〉 to worklist

else
push 〈callee,Slocal,{〈entrycallee,Slocal〉}〉 on stack
if callee is recursive then

latest entry statecallee = Slocal
return

else if n is an exit node then
summary(proc,Sentry) += S
if proc is recursive then

latest exit stateproc = S
else

for all control flow edge n→ n′ do
S′ = transform(n→ n′,S)
if n→ n′ is a back edge then

if S′ /∈ loop invariant(n′,Sentry) then
if the loop has not iterated twice then

add 〈n′,S′〉 to worklist
else

recursion synthesis(S′)
check invariant(n,S′)
loop invariant(n,Sentry) += S′

else
add 〈n′,S′〉 to worklist
if n′ is a loop header then

loop invariant(n′,Sentry) += S′

pop stack
if proc is recursive and caller is not in proc’s callgraph SCC then

for all procedure p in proc’s SCC do
recursion synthesis(latest entry statep)
recursion synthesis(latest exit statep)

for all procedure p in proc’s SCC do
check summary(p, latest entry statep, latest exit statep)
summary(p, latest entry statep) += latest exit statep

Figure 5.2: The Interprocedural Algorithm (Continued)

CHAPTER 5. INTERPROCEDURAL ANALYSIS 54

We now describe the algorithm and its notations in more details. In the interprocedural

control flow graph of the program, each procedure has an entry node and an exit node,

and each call site is represented by a call node and a return node. The algorithm maintains

the following data structures:

• stack

The stack models the actual call stack of the program. Each entry on the stack is a

triple 〈proc,Sentry,worklist〉, representing the procedure currently being analyzed,

together with its entry state and a worklist that records the current state in the

symbolic execution of the procedure. Every time a callee needs to be evaluated

under a new calling context, an entry for it will be pushed on the stack. When the

evaluation terminates, the entry will be popped off the stack, exposing the caller’s

entry.

• worklist

A worklist contains events 〈n,S〉. Each event represents a state S that holds right

before an instruction n. Before a procedure is evaluated, a worklist is initialized

to contain an entry state at the procedure entry. The subroutine analyze procedure

iterates through the worklist, terminating either when a call instruction is encoun-

tered and no previously tabulated summary transfer function of the callee can be

used or when the worklist is exhausted, indicating that the analysis has reached the

end of the procedure.

• summary

This data structure tabulates summary transfer functions. For each procedure, it

maps an entry state to a corresponding set of exit states.

CHAPTER 5. INTERPROCEDURAL ANALYSIS 55

• loop invariant

To reduce memory consumption of the analysis, we do not maintain states at all

program points. Instead, the end result of the analysis consists only of loop invari-

ants and procedure summaries. We believe that optimizations are most likely to

query shape information at this level of granularity. Besides, the states associated

with other program points can be easily derived from this chosen set of states,

if needs be. The data structure loop invariant maps each loop header and an

entry state of the procedure containing the loop to a set of loop invariants that are

valid under the given calling context. Additionally, loop invariant also serves as a

temporary place-holder for loop entry states so that at the end of each loop iteration

the analysis can compare the current state with the previously remembered loop

entry state to determine whether it has converged over the loop. If, in the case of

the analysis diverging, inductive recursion synthesis is invoked to produce a loop

invariant, it will be added to loop invariant and the original entry states, subsumed

by the invariant, will be removed.

The algorithm analyze procedure removes one event from the worklist in each it-

erative step and performs different operations depending on whether the current event

contains a call node, a procedure exit node, or a node that is neither. It invokes the

following subroutines:

• extract(S,callee)

Given a call site state S whose heap portion is denoted by Σ, extract determines

two disjoint pieces of heap Σlocal and Σframe such that Σ = Σlocal ∗Σframe. Σlocal is

defined as the part of Σ that is reachable from the actual parameters and the globals

referenced by the callee. Let T denote the set of heap locations pointed to by the

CHAPTER 5. INTERPROCEDURAL ANALYSIS 56

actual parameters and the globals. Σlocal is the spatial conjunction of the smallest

set W of atomic heap assertions that satisfies

1. {H(h) | h ∈ T} ⊆W

2. {H(h) | ∃h′,Σ′ . H(h′,h) ∈ R ∧ Σ = H(h)∗Σ′} ⊆W,

H(h) ::= h.n→ h′ | A(h, ...), H(h1,h2) ::= h1.n→ h2 | A(h1, ... h2, ...).

Next, extract maps the heap locations in Σlocal to the callee’s namespace to form

the callee’s local state Slocal.

• combine(Sexit,Sframe)

combine is performed when a tabulated entry state of the callee is found to match

the local state determined by extract. It takes the corresponding exit state of the

callee, projects it back to the caller’s namespace, and returns the spatial conjunction

of it and the frame.

• transform(n→ n′,S)

transform updates the state S according to the abstract semantics of n (which are

described in detail in Chapter 2.2). One implementation detail concerns branch

instructions. As mentioned before, for memory efficiency we do not keep interme-

diate states around, rather states are typically updated in place. However at split

points of control flow, one state needs to split into two states if the analysis is to be

accurate. Hence, if n is a branch instruction that tests pointer values or it has at least

one store instruction that is control-dependent on it, then a copy of S is generated.

This is the only situation, other than the tabulation of procedure summaries and

loop invariants, in which duplication of states occurs.

CHAPTER 5. INTERPROCEDURAL ANALYSIS 57

transform is also responsible for performing the foldΘ operation to bring states to

the most compact form by eliminating truncation points that no longer have live

registers pointing to them. This step could be performed at each program point, but

it is only essential at call nodes, procedure exits, and loop headers. Hence to make

the analysis fast, we choose to do the latter.

• recursion synthesis(S)

This subroutine performs inductive recursion synthesis on the heap portion of the

state S, modifying it in place. If no recursion is identified, S is left unchanged.

• check invariant(n,S)

The result of recursion synthesis is only a hypothesis for the loop invariant. To

verify its validity, check invariant performs symbolic evalution of the loop body

one more time starting with the hypothesis as the state at the loop header. If the

states eventually propagated to the loop back edge all match the hypothesis, then

we have a valid loop invariant. Otherwise, check invariant will report failure and

halt the analysis.

• check summary(proc,Sentry,Sexit)

Since recursion synthesis is also called to generate hypotheses for the summary

transfer functions of recursive procedures, their validity is verified by check summary.

(More on this in the next section.)

After the while-loop in analyze procedure terminates, the procedure’s corresponding

entry is popped off the stack. Some extra operations are performed if the procedure is

recursive. We discuss them in the next section.

CHAPTER 5. INTERPROCEDURAL ANALYSIS 58

5.2 Recursive Procedures and Cutpoints

In this section, we first show how inductive recursion synthesis is applied to infer the

summary transfer functions of recursive procedures without introducing unnecessary ap-

proximation. Next we show that cutpoints can also be inductively summarized in the

transfer functions, leading to a more precise treatment of them.

5.2.1 Basic Methodolgy

Recursive procedures are handled based on the same methodology by which loops are

handled. When represented by control flow graphs, recursive procedures can be seen as

a special type of loops with two kinds of loop back edges, one for recursive calls and one

for recursive returns. Figure 5.3(a) shows a procedure build list, which constructs a

linked list by calling itself recursively. Its control flow graph is shown in Figure 5.3(b).

There are two loops in the graph, whose respective back edges are drawn as dotted arrows.

Back edge A connects the recursive call to build list to its own entry node. Back edge

B connects the exit node to the corresponding return node.

Just as for loops, inductive recursion synthesis is applied at back edges to detect

recursive patterns in the pre/post conditions of recursive procedures. A group of mu-

tually recursive procedures, identified as strongly-connected-components(SCCs) of the

callgraph, is analyzed together as a unit. The whole process proceeds in the following

steps:

1. Symbolically evaluate the SCC along a sample execution path. Record the states

propagated to procedure entries and exits.

CHAPTER 5. INTERPROCEDURAL ANALYSIS 59

build_list(...) {
if (...)

return null;

x = malloc();
x->next = build_list(...);
return x;

}
(a) build list

B

A

ret = null

EXIT

ret = x

x−>next = ret

RETURN

CALL

x = malloc()

if (...)

(b) Control Flow Graph

Figure 5.3: A Recursive Procedure that Builds a Linked List

CHAPTER 5. INTERPROCEDURAL ANALYSIS 60

2. For each procedure entry/exit, apply inductive recursion synthesis to the last state

associated with it. This yields a hypothesis of summary transfer functions for each

procedure involved.

3. To ensure soundness, verify the validity of the hypothesis by checking that for each

procedure, the postcondition can be arrived at from the precondition, assuming the

hypothesized summary transfer functions for all recursive callees. If the test fails

on any procedure, then report failure and halt. Otherwise, the hypothesis is valid.

Because the inferred summary transfer functions are checked for their correntness,

the choice of sample execution paths does not affect soundness. However, we do want

to pick the execution paths such that the states presented to the inductive recursion

synthesis algorithm are most likely to exhibit detectable recursive patterns and to yield

valid hypotheses of summary transfer functions. To this end, we design a heuristic for

choosing sample execution paths guided that is by two criteria:

• The execution paths should be good representatives of the runtime behavior of the

program. All control flow edges in the SCC needs to be visited at least once. Each

procedure in the SCC need to be called recursively from within the SCC at least

twice and only interprocedurally valid execution paths [28] (i.e. with matching

calls and returns) are chosen.

• They should be as short as possible to minimize the time spent in symbolic execu-

tion.

The first step in the heuristic is to identify exit edges of the loops that result from

recursive calls. At runtime, these control flows will cause the recursive procedures to

terminate and to eventually return to a caller that is not in the same SCC. We refer to

CHAPTER 5. INTERPROCEDURAL ANALYSIS 61

these edges as termination edges. At each branch instruction, if one of its branches

is a termination edge while other is not, then only one of the two branches is taken

depending on whether all constituent procedures of the SCC have already been called

at least twice. Until this condition is true, states are not propagated along the termination

edge. The rationale behind this is that this ordering of termination and nontermination

edges results in an interprocedurally valid execution path through the SCC and at the

same time minimizes propagation of states.

The heuristic is implemented by the subroutine transform in Figure ??, which returns

NULL for the branch that is not taken. However, this heuristic is not in effect when veri-

fying the inferred transfer functions through symbolic evalution. In the verification stage,

we no longer need to iterate over the SCC. Each procedure is verified independently,

assuming the transfer functions that are already inferred for its recursive callees. Hence

states are propagated along both control flows out of each branch instruction.

In Figure 5.3(b), the sample execution path selected by our heuristic is given by

the sequence of numbers on the control flow edges. The entry and exit heap formulas

presented to the inductive recursion synthesis algorithm are show in Figure 5.4 on the

top, and the result is shown at the bottom, which after verification turns to be a valid

transfer function for build list. (ret is a special register that holds the return value of a

procedure.)

Entry heap: emp
Exit heap: ret.next→ ret.next ∗ ret.next.next→ ret.next.next

Precondition: emp
Postcondition: list(ret)

Figure 5.4: Entry and Exit Heaps of build list

CHAPTER 5. INTERPROCEDURAL ANALYSIS 62

5.2.2 Cutpoints

Cutpoints [24] are targets of dangling pointers from the frame to the local heap of a

callee. They are also distinct from the formal parameters and the globals, therefore, it is

possible that they are not referenced at all during the execution of the callee and hence

are not really a part of the callee’s memory footprint. Even though removing such heap

nodes from the callee’s pre and post conditions still yiels a valid summary of the callee’s

behavior, it is necessary to keep them there because upon returning to the caller, we

need to instantiate them with actual values of the dangling pointers in order to properly

combine the heap at the exit of the callee with the frame. Otherwise, the caller would

have no idea where the dangling pointers point at after the merge.

This simple treatment of cutpoints becomes problematic in the presence of recursive

procedures, because it can potentially lead to an infinite number of cutpoints. Consider

the recursive procedure build dlist in Figure 5.5, which constructs a doubly linked list

by repeatedly calling itself and passing the node most recently added to the list as an

argument. At the the call site s1, the heap location pointed to by x is a cutpoint, because

it is reachable from a, hence a part of the callee’s local heap, and it is also accessible from

the caller (it is in fact referenced after the callee returns at instruction s2).

As the analysis iterates over this procedure, the heap at the entry of the procedure in

the ith iteration is shown in Figure 5.6. The formal parameter is denoted by xi. x0, ...,xi−1

are all cutpoints. In fact, they are instances of the formal parameters from previous

iterations of the procedure. The number of cutpoints grows with the symbolic execution

process, causing the analysis to diverge. However, their growth does exhibit a recursive

pattern, hence it is natural to use recursion synthesis to capture this pattern and in the

process summarizes cutpoints in the pre and post conditions inductively.

CHAPTER 5. INTERPROCEDURAL ANALYSIS 63

build_dlist(x) {
if (...)

return;

a = malloc();
a->prev = x;

s1: build_dlist(a);
s2: x->next = a;
}

(a) build dlist

RETURN

A

CALL(a)

x−>next = a

a−>prev = x

a = malloc()

if (...)

EXIT

B

(b) Control Flow Graph

Figure 5.5: A Recursive Procedure that Builds a Doubly Linked List

CHAPTER 5. INTERPROCEDURAL ANALYSIS 64

Figure 5.6 also shows the heap at the exit of the procedure in the ith iteration. From

these two heaps, inductive recursive synthesis is able to infer the pre and post conditions,

shown at the bottom. The recursive predicates listprev and dlist are defined as follows

listprev(x)
.= (x = null ∧ emp) ∨ (x.prev→ α ∗ listprev(α))

dlist(x1,x2)
.= (x1 = null ∧ emp) ∨ (x1.prev→ x2 ∗ x1.next → α ∗ dlist(α,x1)).

The cutpoints x0, ...,xi−1 are described inductively by the predicate listprev(x). When they

are accessed at instruction s2, the predicate is unrolled to expose the points-to relations

of x.

x0 i−1x xi

prevprev prev prev prevprev.prev
next next next next

x0 i−1x xi

prevprevprev . . .

Exit heap

Entry heap

Precondition: listprev(x)
Postcondition: dlist(x,α) ∗ listprev(α)

Figure 5.6: Entry and Exit Heaps of build dlist

In [9], cutpoints beyond a preset bound are abstracted away by simply ignoring the

dangling pointer pointing to them. This allows the extra cutpoints to be removed from

the summary transfer functions. However, the loss of information about the targets of

dangling pointers may lead to imprecise result. Although, as noted in [9], cases of

infinite number of cutpoints are expected to be rare, using recursion synthesis to deal

CHAPTER 5. INTERPROCEDURAL ANALYSIS 65

with cutpoints presents a uniform approach to handle loops, both in the usual sense and

in the form of recursive procedures. In cases where recursion synthesis is able to infer

valid procedure summaries, the information is precise.

Chapter 6

Implementation

6.1 Code Pruning

The shape analysis algorithm is preceded by a code-pruning phase that identifies the part

of the program where the accuracy provided by the shape analysis is needed. This part of

the program manipulates pointers in recursive data structures, if any such data structure

exists in the program. The need for extracting this part of the code is twofold. First, scala-

bility to large programs is important for shape analysis to gain widespread application. To

accurately model destructive updates to heap data structures, the algorithm of the shape

analysis is flow-sensitive, meaning that it follows the program control flow and obtains

different states at different program points. This is more computationally expensive than

flow-insensitive algorithms. Furthermore, inductive recursion synthesis involves global

inspection of states and backtracking, so it is also expensive. As a result, it is necessary to

be precise about where to spend the computation resources. Second, nonessential fields

in the data structures should be absent from the abstract states in order to minimize the

possibility that the pattern detection algorithm of inductive recursion synthesis may be

66

CHAPTER 6. IMPLEMENTATION 67

confused. Such fields include nonpointer fields and pointer fields whose targets are never

involved in a recursive data structure.

The code pruning phase includes a fast pointer analysis to identify recursive data

structures present in the program, and a program slicing algorithm to prune away code

that has no effect on the shape properties of these data structures.

6.1.1 Pointer Analysis

Since this shape analysis targets low-level code with no type information that may be

used to identify recursive data strutures, a pointer analysis is used to essentially reverse-

engineer the high-level type of each pointer. It is a modified Steensgaard’s analysis [29]

in which each inferred pointer type represents a set of runtime locations. For example,

the “next” field in all nodes of a linked list are represented by a single inferred type.

The pointer analysis is both flow and context insensitive and approaches linear time in

complexity [29].

As the result of the pointer analysis, an inferred pointer type is be associated with

each load/store instruction, which over approximates the set of locations accessed by

the instruction. A set of recursive pointer types is then identified by looking for load

instructions that may be involved in traversing recursive data structures. These load

instructions share the property that the destination register contributes to the computation

of the load address. Such a recurrence is easily detected by computing strongly connected

components (SCC) of the reaching-definition graph. An SCC that contains more than

one instructions or one whose single element feeds itself in the reaching-definition graph

indicates the presence of cycles in the reaching-definition graph. To be conservative,

all load instructions belonging to such SCCs are considered to be possibly traversing

CHAPTER 6. IMPLEMENTATION 68

recursive data structures. Finally, the pointer types associated with these load instructions

form the set of recursive pointer types.

6.1.2 Program Slicing

The goal of the program slicing algorithm is to determine all code that may affect contents

of memory locations represented by recursive pointer types (the contents must be pointers

too). The algorithm is given in Figure 6.1. The set trackedFields contains all locations

whose contents may affect memory writes to recursive pointer fields. It is initialized

to the set of recursive pointer type. For each store instruction to a tracked field, all

instructions (including branches and possibly crossing procedure boundaries) that lead

to the computation of either the store address or the value to be stored are added to the

slice. New pointer types that need to be tracked will be identified in the process, causing

more instructions to be added. The algorithm terminates when no more instruction can

be added.

6.2 Experimental Results

This analysis has been implemented in the Velocity compiler. Preliminary experimental

results are reported in Table 6.1. In addition to 181.mcf which uses iterative algorithm

to build and to traverse its data structure, the analysis was also evaluated on four Olden

benchmarks which use recursive procedures. The second column lists the types of recur-

sive data structures in each benchmark. In our experiments, the analysis was able to infer

and maintain shape predicates that precisely describe these data structures.

Column 3 lists the number of assembly-level instructions in each benchmark. The

number of instructions remaining after pointer analysis and program slicing is shown in

CHAPTER 6. IMPLEMENTATION 69

slice = �
trackedFields = {recursive pointer types}
repeat

newTrackedFields = �
for all store instruction s0 to a tracked field do

visited = �
queue = {s0}
while queue 6=� do

remove instruction s from queue
visited += t
slice += t
if !(s is a branch instruction that does not test pointer values) then

for all definition s′ reaching a use in s do
if s′ /∈ queue∧ s′ /∈ visited then

queue += s′

b = the branch that s is directly control-dependent on
if b /∈ queue∧b /∈ visited then

queue += b
if s is a load instruction ∧ the field f accessed by t contains a pointer ∧

f /∈ trackedFields then
newTrackedFields += f

tracedFields += newTrackedFields
until newTrackedFields =�

Figure 6.1: The Algorithm for Program Slicing

Benchmark Data Type # Insts # Insts after Analysis time (s)
slicing Pointer Slicing Shape

181.mcf mcf tree 2158 366 0.59 0.22 0.55
treeadd binary tree 162 12 0.09 0.02 0.05
bisort binary tree 423 70 0.16 0.05 0.38
perimeter quaternary tree 624 31 0.20 0.06 0.10

w/ parent links
power lists 1054 19 0.37 0.07 0.06

Table 6.1: Experiment results

CHAPTER 6. IMPLEMENTATION 70

column 4, which is dramatically smaller for all five benchmarks. The time measurements

was taken on a 3GHz P4 with 512KB cache and 2GB memory. The execution time

is divided among the pointer analysis phase, the program slicing phase and the shape

analysis phase. Except for the benchmark bisort, the shape analysis phase takes less

time than does the pointer analysis, demonstrating the effectiveness of code pruning.

The reason why shape analysis runs relatively longer on bisort is that the program slice

consists mainly of two self-recursive functions and a pair of mutually recursive functions

that manipulate a binary tree. The shape analysis spent much of its time symbolically

unrolling these recursive functions.

Chapter 7

Bridging Optimizations and Shape

Analysis

There are many applications for shape analysis. Being a more advanced type of pointer

analysis, it can be used as a building block in program understanding tools. It can also

be used to verify safety properties of a program. This chapter focus on another category

of applications, which is aggressive code optimizations, particularly those that exploit

coarse-grain parallelism at the loop and function level.

Consider a simple code example in Figure 7.1(a). If shape analysis can determine

that the data structure traversed by the while loop is a simple linked list, then we know

that there is no cycle and hence no sharing of any node in the list. As a result, different

iterations of the loop can execute in parallel. Straightforward as this may sound, the

question remains: how do optimizations extract this information from shape analysis? In

other words, what is the bridge between optimizations and the internal representation of

heap properties understood only by shape analysis?

71

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 72

L: while(x = x->next) {

X: update(x);

}
(a) While Loop

L1

X2

L2X1

L3

X3

L5

X5

L4

X4

L6

X1X1

Core 1 Core 2

(b) CMT Schedule

L3

X4

Core 1 Core 2

X2

L1

L2 X1

X3L4

L5

L6 X5

(c) PMT Schedule

Figure 7.1: A While Loop that Traverses a Linked List

Dependence tests are one way to put queries to shape analysis. Memory dependences

can be divided into those that are loop-carried (meaning that two instructions from dif-

ferent iterations of a loop may interfere with each other) and those that are not. The

latter category is easy to determine. Shape analysis can return a points-to set for each

instruction that accesses memory, just like a typical pointer analysis (but generally with

higher precision). One only needs to compare the points-to set of two instructions to

decide if they may ever access the same memory location. Loop-carried dependences

are more intricate and are usually hard to determine just by using pointer analysis. This

chapter will show how our analysis can be used to perform dependence test on loops that

traverse recursive data structures.

Among such loops, the so-called “pointer-chasing” loops are particularly amenable to

parallel transformations. The body of a pointer-chasing loop performs some computation

on a distinct node of the data structure in each iteration, however the pointer to the next

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 73

node is computed using the pointer from the current iteration. The loop in Figure 7.1(a)

demonstrates the simplest of such behavior. Pointer-chasing loops can be parallelized in

various ways, including Cyclic Multithreading (CMT) [5] and Pipelined Multithreading

(PMT) [21]. Figure 7.1(b) and (c) show the thread schedules produced from applying

CMT and PMT transformations to the loop in Figure 7.1(a), assuming a two-core ma-

chine. The arrows represent data dependences. Solid arrows correspond to intraiteration

dependences while dashed arrows correspond to loop-carried dependences.

The correctness of these optimizations all stems from the guarantee that no two

iterations of the loop will visit the same node. The more precise a shape analysis is,

the better it is able to prove such guarantees. For example, a data structure may as a

whole contain cycles, but if it is only traversed along a subset of pointer fields that never

reach the same node twice, then the pointer-chasing property still stands. This requires

a shape analysis that can precisely describe the patterns of internal sharing in a recursive

data structure and the capability to deduce certain properties from the patterns.

Following the approach of [8], the process of establishing pointer-chasing behavior

takes two steps, as outlined in Figure 7.2. First, a “navigator” is found, which is the

pointer used to traverse the data structure. Next, dependence test is performed to prove

that in addition to the one due to the navigator, there is no other loop-carried dependence

at all or only up to a certain dependence distance. The difference from [8] is that we

perform more sophisticated tests in both steps so that more optimization opportunities

can be captured.

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 74

I. Find a valid navigator.

i. Identify the navigator and the navigator expression.

ii. Determine if the data structure is acyclic considering only the pointer fields
in the navigator expression.

iii. Check that updates made to such fields in the loop do not break the acyclic-
ness of the navigator.

II. Disprove all other loop-carried dependences.

Figure 7.2: Finding Pointer-Chasing Loops

7.1 Identifying the Navigator

If only nonspeculative optimizations are considered, then candidates for pointer-chasing

loops must have a regular control flow pattern, that is, a single exit guarded by the

loop condition test. This restriction can be lifted if the optimizations are able to squash

speculatively executed loop iterations when the loop terminates irregularly.

The navigator can be identified by looking for recurrence in the chain of definitions

that reaches the variables involved in the loop condition test. For completeness, we

summarize the algorithm from [8] in Figure 7.3. Each definition in the chain is the unique

loop-resident definition that definitely reaches the base variable used by its predecessor to

access memory. If the same instruction is encountered twice when tracing the definition

chain, then a potential navigator is found. An access path for the variable used in the loop

condition test can be obtained from the definition chain. The base variable in this access

path is the navigator and the portion of the access path involved in the recurrence is the

navigator expression.

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 75

identify navigator (loop) :
loopCond = loop.cond
pair = find navigator(loopCond.lhsVar, loopCond, loop)
if pair = null then

pair = find navigator(loopCond.rhsVar, loopCond, loop)
return pair

find navigator (var, varInst, loop) :
defChain = []
defChain = get loop def chain(var, varInst, loop, defChain)
if defChain = null then

return null
navigatorExpr = get expression(defChain)
navigator = get base variable(navigatorExpr)
return (navigator, navigatorExpr)

get loop def chain (var, varInst, loop, defChain) :
defs = get loop defs(var, loop)
if defs contains only one element then

def = get element(defs)
if def is already in defChain then

return defChain
if def definitely reaches varInst then

defChain += def
baseVar = get base var(def.rhs)
return get loop def chain(baseVar, def, loop, defChain)

return null

Figure 7.3: Algorithm for Identifying the Navigator (based on [8])

7.2 Determining if the navigator advances along an acyclic

path

The shape analysis used in [8] can only categorize a data structure as being a tree, a DAG

or a cyclic graphs. Hence even if the pointer fields used to advance the navigator will not

result in the same node being visited twice, the navigator will be invalidated in this step

as long as the data structure is labeled as cyclic. Because our shape analysis provides

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 76

detailed characterization of internal sharing in a data structure, a more advanced test can

be performed.

From the recursive predicate associated with the data structure, a set of regular ex-

pressions that describe all possible cyclic paths in the data structure can be inferred.

They are referred to as the set of cyclic regular expressions. The navigator expression

yields another regular expression which summarizes all possible paths traversed by the

navigator. If this regular expression does not intersect with any cyclic regular expression,

then the navigator definitely advances along an acyclic path. Checking whether two

regular expressions intersect can be done by first converting them into two deterministic

finite automata M1 nd M2, constructing the automaton M = M1∩M2, and finally checking

whether the final state of M is reachable from its start state. Although this approach offers

the most precise result, implementing it may prove to be an overkill for the problem at

hand simply because the navigator expression is usually very short. Instead, a simpler test

can be performed, which may sometimes reject a valid navigator. This test only looks at

the set of pointer fields involved in each regular expression, but ignores the order in which

they need to be visited in order to form a cycle. It is then just a matter of checking that

the set of pointer fields in the navigator expression does not contain any subset that is

associated with a cyclic regular expression. This algorithm is given in Figure 7.4. The

subroutine get fields returns the set of distinct pointer fields present in an access path.

The subroutine get cyclic fields returns a set, which, for each cyclic regular expression,

contains the set of distinct pointer fields that appear in the regular expression.

Figure 7.5 contains the algorithm for get cyclic fields. Given a recursive predicate

A(x1, ..., xn), the first step is to compute the set of cyclic regular expressions. This is

achieved by building the parameter substitution graph of the predicate. It is a directed

graph G = (E,V). Each node in V corresponds to an instance of parameter substitution,

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 77

check acylic (predicate, navigatorExpr) :
navigatorFields = get fields(navigatorExpr)
setOfCyclicFields = get cyclic fields(predicate)
for all s ∈ setOfCyclicFields do

if s⊆ navigatorFields then
return false

return true

Figure 7.4: Algorithm for Determining if the Navigator Traverses an Acyclic Path

represented by a pair of numbers (r, i) where r identifies a recursive call site within the

definition of the predicate and i identifies a parameter among {x2, ..., xn}. x2, ..., xn are

dangling pointers pointing to outside of the heap region rooted at x1, hence they may

potentially be backward links that form cycles in the data structure. For each node (r, i),

if the actual value passed to xi at call site r is some x j ∈ {x2, ..., xn} where x j need not be

different from xi, then an edge is added from (r′, j) to (r, i) for every call site r′, including

the case when r′ = r. The edge represents that fact that the value of the dangling pointer

xi at r may be traced to that of x j at r′, that is, if the recursive call at r′ is unfolded, the

actual value passed to x j will be passed on to xi when the unfolded recursion makes the

next level of recursive call at r. In Figure 7.6, the definition of mcf tree is shown on the

top. It has two recursive calls. The one on the second line is numbered call site 1 and

the one on the third line is numbered call site 2. The parameter substitution graph of

mcf tree is shown at the bottom. It contains four nodes since there are two call sites and

two dangling pointers x2 and x3. There are two edges, which enter node (2,2) from (1,2)

and from (2,2) itself. This is because at call site 2, the second parameter x2 is substituted

with x2, which in turn can be traced back to each of the two call sites, introducing two

possible values for the second parameter at call site 2.

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 78

get cyclic fields (A(x1, ..., xn)) :
E = �, V = �, G = (E,V)
for all (r, i),2≤ i≤ n do

if xi is not substituted with NULL at r then
V += (r, i)

for all (r1, i),(r2, j) ∈V do
if x j is substituted with xi at r2 then

E += (r1, i)→ (r2, j)
setOfCyclicFields = �
for all (r0, i0) ∈V do

h = the heap location passed to xi0 at r0
if h /∈ {x2, ... ,xn} then

// (r0, i0) is an entry node
for all (r0, i0) (r1, i1) ... (rl, il) ∈ get paths(G,(r0, i0)) do

p = the access path from h to the heap location passed to x1 at r0
for k = 1..l do

w = the access path from x1 to the heap location passed to x1 at rk
p = pw

w = the access path from x1 to xil
p = pw
setOfCyclicFields += get fields(p)

return setOfCyclicFields

Figure 7.5: Algorithm for Inferring Sets of Pointer Fields that May Result in Cycles

The parameter substitution graph also has a set of entry nodes. An entry node (r, i)

must satisfy the requirement that the substitution for xi at r is not in {x2, ..., xn}, hence

it is an end point in the iterative process of tracing the values of dangling pointers. In

Figure 7.6(b), entry nodes are shown in circles. Each path in the parameter substitution

graph that starts from an entry node correponds to a cycle in the data structure. Given

such a path [(r0, i0) (r1, i1) ... (rl, il)], l ≥ 0, the corresponding cycle can be obtained by

concatenating the following segments of access paths from the definition of the recursive

predicate:

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 79

mcf tree(x1,x2,x3)
.= (x1 = null∧ emp) ∨

(x1.parent→ x2 ∗ x1.child→ α∗mcf tree(α,x1,null)∗
x1.sib prev→ x3 ∗ x2.sib→ β∗mcf tree(β,x2,x1))

(a) Predicate Definition

(2, 3)

(1, 3)

(2, 2)

(1, 2)

(b) Parameter Subsitution Graph

Figure 7.6: The Parameter Substitutation Graph for mcf tree

1. the access path that leads from the heap location passed to xi0 at r0 to the heap

location passed to x1 at r0,

2. the access path that leads from x1 to the heap location passed to x1 at rik , for k = 1..l,

3. the access path that leads from x1 to xil .

The presence of cycles in the parameter substitution graph itself indicates that there are

infinitely many cycles in the data structure, which can be summarized by regular expres-

sions with Kleene stars. For example, there are three sets of paths in the parameter subsi-

tution graph of mcf tree: {[(1,2)]}, {[(1,2) (2,2)], [(1,2) (2,2) (2,2)], ...} and {[(2,3)]},

which yields three cyclic regular expressions: child parent, child sib sib* parent and

sib sib prev. Because we are not interested in the regular expressions per se, but rather in

the pointer fields that they are made up of, we only need to look at the paths dicovered in

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 80

a depth first search of the parameter substitution graph with all back edges ignored. The

subroutine get paths in Figure 7.5 is reponsible for collecting such paths starting from a

given entry node. For mcf tree, it turns up exactly three paths: [(1,2)], [(1,2) (2,2)] and

[(2,3)], which correspond to the cycles child parent, child sib parent and sib sib prev.

7.3 Validating the Navigator

After it has been determined that the navigator advances along an acyclic path, we still

need to check that the loop does not alter pointer fields in the navigator expression in

a way that could violate the guarantee of acyclicness. In [8], this step is performed by

simplying checking that no field in the navigator expression is updated at all within the

loop. This rule can actually be relaxed. As long as the dependence between the update

and the traversal load is an anti-dependence [13], that is, the update always writes to a

location that has been read in a previous iteration or in the same iteration but prior to the

update, then the threads produced by both CMT and PMT are still correct. This is because

due to the existence of interthread communication, both two transformations already

ensure that the ith instance of the traversal load comes before all (i+δ)th instances of the

loop body.

Such anti-dependences often arise in loops that tear down pointer links as they tra-

verse the data structure. For an instance of such behavior, consider the code example in

Figure 7.7, which is a loop taken from the benchmark 181.mcf. This loop traverses the

mcf tree along the parent links. The navigator expression is p->parent at line 15. The

only update to the field parent inside the loop is at line 7. The base variable used in the

update is t which points to the ith node, while the load is performed on p which points to

the (i+1)th node. Hence there is an anti-dependence between them.

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 81

while (t != jminus)
{
1 if (t->sib)
2 t->sib->sib_prev = t->sib_prev;

3 if (t->sib_prev)
4 t->sib_prev->sib = t->sib;
5 else
6 p->child = t->sib;

7 t->parent = q;
8 t->sib = q->child;

9 if (t->sib)
10 t->sib->sib_prev = t;

11 q->child = t;
12 t->sib_prev = 0;

...

13 q = t;
14 t = p;
15 p = p->parent;
}

Figure 7.7: A Loop that Traverses and Modifies a Tree in 181.mcf

7.4 Disproving Other Loop-Carried Dependences

The existence of loop-carried dependences in addition to the one involving the navigator

determines whether the computation part of the loop from different iterations may over-

lap. The CMT transformation requires that no such dependence exists. While the partic-

ular instance of PMT transformation in Figure 7.1(c) does not depend on this, disproving

such dependences would allow multiple worker threads instead of one to be spawned

to receive the values produced by the traversal thread. If loop-carried dependences do

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 82

exist but the dependence distances [18] can be determined, then multiple worker threads

may still be spawn, the total count of which is bounded by the smallest dependence

distance. Dependence distance is originally a concept in array dependence analysis. It

refers to difference between values of the loop induction variable that cause two array

index expressions to access the same array element. It can be used to characterize access

patterns of elements in a linked data structure along the same vein. Here the role of the

loop induction variable is played by the navigator.

Ghiya et al. [8] use a simple test to determine whether additional loop-carried de-

pendences exist. For each pointer in the loop that is not loop-invariant, it is possible to

construct an access path with respect to the navigator, called the “navigator access path”.

Since only pointer fields may possibly lead to a neighboring node of the one currently

being visited by the navigator, the test concludes that two navigator access paths do not

lead to a loop-carried dependence if neither of them includes any pointer field.

To be more precise in the case where the access paths do involve pointer fields, we

propose another test to take advantage of the information provided by the shape analysis.

The basic idea is that inside a recursive data structure some pointer fields never point to

the same node. For example, the left child pointers and the right child pointers in a binary

tree always point to different nodes. Hence if the loop itself never assigns a right child

pointer to a left child pointer, then it is guaranteed that no two such pointers inside the

loop may alias, no matter what iterations they are from. If, on the other hand, the loop

does assign a right child pointer to a left child pointer, then a dependence distance may be

computed. Of course, for correctness, all expressions whose values may be propagated

to a given pointer through a series of assignments need to be checked. This is similar to

constructing def-use chains, but in this case, a definition and a use are not tied together

by shared variable name, but by may-alias relationship instead. In this test, two pointer

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 83

expressions are considered to be may-aliases if they access the same pointer field and

their respective base pointer subexpressions cannot be proven to not alias.

Since proving that two pointers do not alias will affect the dependence test on other

pointers, the overall algorithm as shown in Figure 7.8 is iterative, terminating when

a fixed-point is reached. It invokes the subroutine test pair on each pair of pointers

and records the result in the map distance. The algorithm for test pair is given in

Figure 7.9. For a pointer expr1 in instruction inst1 and a pointer expr2 in instruction inst2,

test pair returns a dependence distance if the pointers may access the same node from two

iterations. 0 is returned if they may access the same node only from the same iteration.

∞ is returned if they never alias with each other at all. It first checks that according to

the predicate associated with the data structure, the two pointers do not alias. This is

true if in the definition of the predicate, the respective fields accessed by the two pointers

point to heap locations that are passed as the first argument to distinct recursive calls to

the predicate itself. If this check fails, then a conservative dependence distance of 1 is

returned to indicate that every iteration is dependent on the previous one. Otherwise, two

dependence distances are computed, one for potential assignment of expr1 to expr2 and

the other for assignment in the opposite direction. One of them is returned based on the

following categorization of dependence distances in descending order of priority: smaller

non-0 non-∞ numbers, larger non-0 non-∞ numbers, 0 and ∞.

In Figure 7.9, the recursive function trace definition chain explores all possible se-

quences of assignments that may result in a value of expr1 being written to expr2. The

last argument in the function is the set of assignments in a particular definition chain that

currently reaches inst2. It ensures that these assignments are not revisited when the chain

is extended beyond inst2, thereby guaranteeing that the function terminates.

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 84

loop carried dependence test (loop, predicate) :
repeat

repeat = false
for all expr1, inst1, expr2, inst2 do

d = test pair(expr1, inst1, expr2, inst2, predicate)
if d 6= distance(expr1, inst1, expr2, inst2) then

repeat = true
distance(expr1, inst1, expr2, inst2) = d

until !repeat

Figure 7.8: Algorithm for Detecting Loop-Carried Dependece

The function get distance computes the distance of a loop-carried dependence result-

ing from a given pointer assignment. It constructs the navigator access paths for the left

and right hand sides of the assignment respectively. Let base1.field1 and base2.field2

be the two access paths. If base1 points to the ∆1th node from the navigator and base2

points to the ∆2th node from the navigator, then the desired distance is | ∆2 −∆1 |. If

either navigator access path cannot be constructed, then the dependence distance cannot

be computed precisely, in which case the conservative solution 1 is reported.

Ghiya et al. [8] describe how to construct navigator access paths. A chain of defini-

tions that starts from the navigator and definitely reaches the given use is first built, from

which the access path is then extracted. The first step is similar to get loop def chain in

Figure 7.3, terminating either when the navigator is encountered or when a unique and

definite definition cannot be found, in which case the function get navigator access path

returns with a null value.

We note that in each iteration of the outer loop of loop carried dependence test,

test pair need not be applied to all pairs of pointer expressions. First of all, a pair

of expressions needs to be tested only if they are the base pointers in two memory

accesses to the same field, one of which is a write. Secondly, two pairs of expressions

(expr1, inst1; expr2, inst2) and (expr3, inst3; expr4, inst4) have the same dependence

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 85

test pair (expr1, inst1, expr2, inst2, predicate) :
if may alias(predicate, get field(expr1), get field(expr2) then

return 1
d1 = trace definition chain(expr1, inst1, expr2, inst2, �)
d2 = trace definition chain(expr2, inst2, expr1, inst1, �)
if d1 = ∞∨ (d2 6= 0∧d2 < d1) then

return d2
else

return d1

trace definition chain (expr1, inst1, expr2, inst2, visited) :
d = ∞

if inst2 /∈ visited then
for all assignment inst from which inst2 is reachable do

if get field(inst.lhs) = get field(expr2)∧
distance(get base(inst.lhs), inst, get base(expr2), inst2) 6= ∞ then
d′ = get distance(inst)
if get field(inst.rhs) 6= get field(expr1) then

d′ += trace definition chain(expr1, inst1, inst.rhs, inst, visited+ inst2)
if d = ∞∨ (d′ 6= 0∧d′ < d) then

d = d′

return d

get distance (inst) :
path1 = get navigator access path(inst.lhs, inst)
if path1 = null then

return 1
path2 = get navigator access path(inst.rhs, inst)
if path2 = null then

return 1
∆1 = the number of navigator expressions in path1
∆2 = the number of navigator expressions in path2
return | ∆2−∆1 |

Figure 7.9: Algorithm for test pair

CHAPTER 7. BRIDGING OPTIMIZATIONS AND SHAPE ANALYSIS 86

relation if 1). expr1 and expr3 access the same pointer field or variable, which is not

updated between inst1 and inst3, and 2). the same is true for expr2 and expr4. For the

code example in Figure 7.7, only five pairs of pointer expressions are interesting. The

result of running loop carried dependence test on them is listed below.

Pairs of Pointer Expressions Dependence Distances

(p,6; q,8) 2

(t,2; t → sib,2) ∞

(t,2; t → sib,10) ∞

(t → sib,10; t → sib,2) 2

(t,1; t → sib prev,4) ∞

Chapter 8

Related Work

Recently there have been many interesting works in applying separation logic to program

analysis, not just verification. Berdine et al. describe a form of symbolic execution that,

for certain types of preconditions, generates postconditions by updating the preconditions

in-place [2]. It does not by itself yield a suitable abstract domain due to the lack of a

guarantee for convergence. Two analyses of list- processing programs [7, 16] use rewrite

rules tailored to the list predicate to reduce logic formulae and thereby arrive at fixed

points. Both analyses are intraprocedural. An interprocedural analysis is given in [9],

limited to predefined predicates as well. [3] studies pointer arithmetic in an abstract

domain where each list node is a multiword.

Most similar to our work, Lee et al.’s grammar-based analysis [14] can also discover

recursive predicates automatically. The abstract domain of their analysis consists of shape

graphs whose summary nodes have grammars associated with them to describe the shapes

of the concrete structures represented by the summary nodes. Their grammars can have

parameters, an implicit self parameter referring to the root of the concrete structure and

an explicit parameter representing the target of a cyclic backward link. These grammars

87

CHAPTER 8. RELATED WORK 88

can be translated to equivalent recursive predicates defined in separation logic. The first

major difference between our work and theirs is that while their grammars allow only one

explicit parameter, our recursive predicates can have an arbitrary number of parameters

and an arbitrary number of truncation points. As a result, their analysis cannot describe

data structures with multiple backward links such as the mcf tree. Neither can it handle

multiple pointers to the interior of a data structure. Another difference is that they arrive

at grammar definitions by using a “cut” rule that removes cyclic connections between two

shape graph nodes, therefore their analysis cannot handle DAGs at all. By comparison,

inductive recursion synthesis is designed to detect all patterns that are recursive in nature,

not any particular type of patterns, thus it represents a more general way of inferring

recursions.

Outside of separation logic, various types of heap abstraction have been proposed

to recover the precision lost due to approximations such as k-limiting. Nonuniform

alias analyses [6, 32, 33] distinguish between elements of recursive data structures by

correlating aliasing relationships with the positions of the elements in the data structures.

For example, one of the aliasing relationships may be “the ith node of list A may alias

with the 2ith node”. The positions are represented either by timestamps on abstract heap

nodes [33] or by numbers of recursive field traversals in access paths [6, 32]. Describing

tree-based data structures with a counter system such as this is not intuitive and may not

be able to precisely capture complex internal sharing patterns.

3-valued logic analysis (TVLA) [26] is a parametric shape analysis framework where

instrumentation predicates are associated with summary nodes to provide more precise

descriptions of the concrete nodes. Their predicates are written in first-order logic and

are no less expressive than ours. However, until their recent work on automatically

generating new predicates [15], the instrumentation predicates had to be provided to the

CHAPTER 8. RELATED WORK 89

shape analysis framework by the user. Like our work, [15] uses inductive learning to

discover instrumentation predicates. But the particular technique they use is a completely

different one from inductive recursion synthesis. It is based on successive refinement

given positive and negative examples. Although in principle their predicates can describe

complex data structures such as the mcf tree, the inference of such recursive predicates is

not demonstrated in their paper. Instead, the paper shows how to discover predicates that

describe sortedness of a list and whether a heap node may be shared.

Chapter 9

Conclusion and Future Work

This dissertation has taken steps to allow separation logic based shape analysis to be

applied to a wide range of programs without a priori restrictions on the types of data

structures. This chapter summarizes the contributions made by this work and discusses

possible directions for future work.

9.1 Summary

This dissertation presented an interprocedural shape analysis that uses separation logic

formulas to describe heaps. The combination of two novel techniques, inductive recur-

sion synthesis and generic recursion unrolling/rolling based on truncation points, makes

separation logic based program analysis applicable beyond simplistic data structures. It

has been shown that the analysis can determine the exact shapes of data structures in both

iterative and recursive programs.

Different from the common approach of guaranteeing termination through widening

(i.e. approximations), inductive recursion synthesis is inspired by inductive reasoning,

90

CHAPTER 9. CONCLUSION AND FUTURE WORK 91

the ability to draw general conclusions from particular observations. The conclusions, if

verified to be valid, do not suffer precision loss that results from approximations. Induc-

tive recursion synthesis also represents a new approach to loop invariant inference, which

frees logic-based program reasoning from having to rely on user-supplied invariants.

In addition to loops, recursion synthesis is also used to handle recursive functions.

Some form of k-limiting (with k often equal to 1) is usually applied in the unrolling of

recursive functions to ensure finiteness of the abstract domain. Approximations like this

is avoided in our analysis by sampling an interprocedurally-valid execution path through

the recursive functions and then applying inductive recursion synthesis. Another source

of approximation that is also avoided is the need to bound the number of cutpoints that

arise from local reasoning of callees.

To make the results of the shape analysis readily usable by code optimizations, a

loop-carried dependence test for recursive data structures is designed. It improves upon

a previous dependence test with new algorithms that query the shape analysis about

existence of cycles in a data structure and whether a node may be shared by two pointers.

The shape analysis is not only able to discover the precise shapes of the data structures,

it is also able to reason about the shapes and prove properties about them. This test also

computes dependence distances when loop-carried dependences cannot be disproved. All

of these features contribute to more optimization opportunities being identified.

9.2 Future Directions

Many opportunities exist for improving and extending this work. For starters, applying

the analysis to a wider set of benchmarks would help to formulate more precisely the

conditions under which inductive recursion synthesis may fail. Our evaluation has shown

CHAPTER 9. CONCLUSION AND FUTURE WORK 92

that it works very well on data structures that contain cycles. Though in theory it can also

work for DAGs, as pointed out in Chapter 3.2, it is possible for the code to not reveal

much clue as to the shape of the data structure. Hence it would be interesting to see how

successful the analysis is on real applications.

A more graceful recovery from the situations where recursion synthesis does fail

is also desirable. Instead of simply halting when the analysis fails to converge over

a loop, extending the symbolic evalution of the loop for a couple of more iterations

may uncover more information about the data structure that ultimately leads to a valid

recursive description. If that fails, a different kind of predicates can be used to express

that all pointers to a particular data structure may alias, allowing other parts of the heap

to be analyzed as usual. Another possibility is to prompt the user for further information

and then proceed.

Another area of improvement concerns the scalability of the shape analysis to large

system software with millions of lines of code and hundreds if not thousands of individual

data structures. At issue here is probably not memory consumption because the number

of symbolically executed iterations per loop is bounded by a constant, which means the

size of the abstract state is also bounded. A more real concern comes from the fact that

inductive recursion synthesis is applied to all top-level term trees (essentially all data

structures) each time the analysis needs to terminate over a loop; this may slow down the

analysis.

Inductive recursion synthesis can be extended to handle arrays. For example, for an

array of pointers to linked lists, it is often important to maintain in the abstract state

that the array elements point to distinct lists. By introducing to the logic an additional

heap assertion for pointer arithmetic h1 + n = h2, the state after symbolically unrolling

of the loop will reveal patterns in the pointer arithmetic as well (arrays can be thought

CHAPTER 9. CONCLUSION AND FUTURE WORK 93

of in terms of recursion too), just like it does for points-to relations. Adding support

for pointer arithmetic in this way would facilitate reasoning about heap structures that

involve a combination of arrays and linked data structures. But since the same location

can be reached by both pointer arithmetic and access paths, decisions need to be made

as to when to use pointer arithmetic to name the location and when to use access paths.

Choosing the appropriate names has a huge effect on whether a valid recursion can be

inferred.

Finally, evaluating the impact of shape analysis on automatic code parallelization and

exploring other types of optimization opportunities would help increase the usability of

shape analysis. Decoupled Software Pipelining (DSWP) [22, 20] is a new technology that

extracts multiple concurrently executable threads from a sequential loop by identifying

strongly-connected components (SCC) in the loop’s dependence graph. It holds the

promise of dramatically speeding up sequential programs on multi-thread and multi-

core architectures. Without shape analysis, DSWP will be constrained by conservative

memory dependence information, resulting in small number of large SCCs, which in turn

leads to small number of threads. With shape analysis, not only can more threads be

extracted, multiple threads can be spawned to execute a portion of the loop from different

iterations. Another potential optimization opportunity is that linked lists can be converted

to arrays to speed up their accesses.

9.3 Closing Remarks

Despite the higher level of accuracy offered by shape analysis over traditional pointer

analysis, it is far from being widely deployed in optimizing compilers due to the fact that

in general, its algorithm is necessarily more complex and it consumes even more memory

CHAPTER 9. CONCLUSION AND FUTURE WORK 94

and execution time. Separation logic is an important step towards providing intuitive and

efficient way of reasoning about the heap. However, it cannot be widely used in automatic

code analysis and optimization unless the analysis can discover recursive predicates and

arrive at loop invariants without user intervention. This dissertation takes a significant

step in this direction by equipping shape analysis with the ability of inductive reasoning.

It holds the promise of allowing the advantages of separation logic as a heap formalism

to be exploited beyond the domain of program verification, in aggressive optimizing

compilers that can better utilize the next generation of architectures.

Bibliography

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation

logic. In Lecture Notes in Computer Science, volume 3328, pages 97–109. Springer-

Verlag, 2004.

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation

logic. In Lecture Notes in Computer Science, volume 3780, pages 52–68. Springer-

Verlag, 2005.

[3] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Beyond reachability: Shape

abstraction in the presence of pointer arithmetic. In Lecture Notes in Computer

Science, volume 4134, pages 182–203. Springer-Verlag, 1995.

[4] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures.

In Proceedings of the ACM SIGPLAN ’90 Conference on Programming Language

Design and Implementation, pages 296–310, June 1990.

[5] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Proceedings

of the International Conference on Parallel Processing, pages 836–884, 1986.

95

BIBLIOGRAPHY 96

[6] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.

In Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language

Design and Implementation, pages 230–241, June 1994.

[7] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on

separation logic. In Lecture Notes in Computer Science, volume 3920, pages 287–

302. Springer-Verlag, 2006.

[8] R. Ghiya, L. Hendren, and Y. Zhu. Detecting parallelism in c programs with

recursive data structures. In Proceedings of the 7th International Conference on

Compiler Construction, pages 159–173, March 1998.

[9] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with

separated heap abstractions. In Proceedings of the 13th International Static Analysis

Symposium (SAS), August 2006.

[10] B. Guo, N. Vachharajani, and D. I. August. Shape analysis with inductive recursion

synthesis. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 256–265, New York, NY, USA, 2007.

ACM.

[11] C. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–580 and 583, October 1969.

[12] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like

structures. In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis:

Theory and Applications, pages 102–131. Prentice-Hall, Englewood Cliffs, NJ,

1981.

BIBLIOGRAPHY 97

[13] D. J. Kuck. The Structure of Computers and Computations. John Wiley and Sons,

New York, NY, 1978.

[14] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using

grammar-based shape analysis. In Prceedings of the 2005 European Symposium on

Programming (ESOP), 2005.

[15] A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via inductive learning. In

Proceedings of the 17th International Conference on Computer Aided Verification,

pages 519–533, 2005.

[16] S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants in separation

logic for imperative list-processing programs. In Workshop on Semantics, Program

Analysis, and Computing Environments for Memory Management (SPACE), January

2006.

[17] A. Mœller and Schwartzbach. The pointer assertion logic engine. In Proceedings

of the ACM SIGPLAN 2001 Conference on Programming Language Design and

Implementation, pages 221–231, 2001.

[18] Y. Muraoka. Parallelism exposure and exploitation in programs. PhD thesis,

University of Illinois, Urbana-Champain, IL, February 1971.

[19] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter

data structures. In Lecture Notes in Computer Science, volume 2142, pages 1–19.

Springer-Verlag, 2001.

[20] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with

decoupled software pipelining. In Proceedings of the 38th IEEE/ACM International

Symposium on Microarchitecture, pages 105–116, November 2005.

BIBLIOGRAPHY 98

[21] D. A. Padua. Multiprocessors: Discussion of some theoretical and practical

problems. PhD thesis, University of Illinois, Urbana, IL, November 1979.

[22] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decoupled

software pipelining with the synchronization array. In Proceedings of the 13th

International Conference on Parallel Architectures and Compilation Techniques,

pages 177–188, September 2004.

[23] J. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings of the 7th Annual IEEE Symposium on Logic in Computer Science,

July 2002.

[24] N. Rinetzky, J., Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for

procedure local heaps and its abstractions. In Proceedings of the 32nd International

Symposium on Principles of Programming Languages, pages 296–309, January

2005.

[25] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-

free programs. Technical Report 26, Tel Aviv University, November 2004.

[26] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

ACM Transactions on Programming Languages and Systems, 24(3):217–298, 2002.

[27] U. Schmid. Inductive synthesis of functional programs. Springer-Verlag, Berlin,

Germany, 2003.

[28] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

In S. Muchnick and N. Jones, editors, Program Flow Analysis: Theory and

Applications, pages 189–233. Prentice-Hall, Englewood Cliffs, NJ, 1981.

BIBLIOGRAPHY 99

[29] B. Steensgaard. Points-to analysis by type inference in programs with structures

and unions. In Lecture Notes in Computer Science, 1060, pages 136–150. Springer-

Verlag, 1996.

[30] P. Summers. A methodology for Lisp program construction from examples. Journal

ACM, 24(1):162–175, 1977.

[31] G. Tan and A. W. Appel. A compositional logic for control flow. In Lecture Notes

in Computer Science, volume 3855, pages 80–94. Springer-Verlag, 2006.

[32] A. Venet. Automatic analysis of pointer aliasing for untyped programs. Science of

Computer Programming, 35(2-3):223–248, November 1999.

[33] A. Venet. Nonuniform alias analysis of recursive data structures and arrays. In

Proceedings of the 9th International Symposium on Static Analysis, pages 36–51,

2002.

