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Abstract

This dissertation explores the problem of buildingeamantic network traffic analyséystem and using it
to investigate various aspects of network traff@emantidraffic analysis uncovers the application-layer
semantics conveyed in packets so that one can examine tbificspeguests, responses, status messages,
error codes, and data items embedded in a connection diAlmayzing these at the application layer, as
opposed to the syntactic byte-string layer, opens up mueatgr insight into the nature and context of the
exchange between two hosts. For this reason, semantic @afiysis is a cornerstone for precise network
intrusion detection and also has broad applications in oreasents of networking systems.

This dissertation advances semantic traffic analysis indasmects. First, we present tools and tech-
nigues for building traffic analyzers and creating sharades, including design and implementation of (1)
a declarative languagbinpac |, for writing application protocol parsers, and (2) a pragraing environ-
ment for packet trace transformation and anonymizationoBe, we characterize two types of previously
unstudied network traffic, Internet background radiatiod anterprise internal traffic. Both studies focus
on traffic semantics, aiming to understand the network apptins that generate the traffic and to uncover

underlying causes of network usage patterns.
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Chapter 1

Introduction

An important aspect of building, managing, and improving@é and complex computer system is mea-
suring its workload and behavior. This holds for computéwmeks, and is especially true for the Internet.
This dissertation deals with one aspect of network measeménsemantic traffic analysjsvhich involves
analyzing application layer payloads of network traffic talerstand the behavior of network applications.
The first part of this dissertation presents techniques aal$ that enable automated analysis of the
application-level traffic data. On this foundation, thesgigation further develops a programming environ-
ment and techniques for packet trace anonymization thaepres application level data. Trace anonymi-
zation is critical to sharing traffic traces for network mesnents and repeatable experiments.
Exploring opportunities brought by semantic traffic an&@yt®ols, the second part of this disserta-
tion presents measurements of two specific kinds of netwaflic—Internet background radiation and
enterprise internal traffic—that had not been studied jresly. Both studies focus on the behavior of

applications that are generating the traffic.

1.1 Background and Motivation

Network measurement can be roughly divided by which netiay&r it is concerned with. Most previous
work has focused on lower layers and is generally concerntdunderstanding how bits move around the
network, including: network topology, how many bits are nimavfrom one end point to another (traffic

matrix), what routes the bits are are taking (routing), ana/ o prevent congestion (congestion control).



Such studies are generally not concerned with the meanigmifcation layer traffic data and consider
them as opaque bits.

This dissertation considers measurement at the applickyer of the network: in particular, analyzing
the contents of application level traffic payload. Througleavering the meaning of application layer bits
we can find out what applications are generating the trafficwhat functionality, whether the traffic is
benign or malicious, how often application level failuregor, and so on. We refer to this general notion as
semantic traffic analysidt is worth noting that measurement of different netwonkdes is closely related.
Understanding application layer traffic semantics oftelpfieeveal the underlying causes of lower-layer
traffic patterns.

In practice, techniques developed for network traffic measients can often be applied to real-time
monitoring as well. Thus, understanding network traffic aatits also helps us to detect and thwart mali-
cious activities (intrusion prevention), locate failufg®uble shooting), and project future usage patterns
(provisioning).

Fundamentally, we measure network traffic semantics so amderstand the applications that are
generating the traffic and, sometimes, the behavior of hub®ings using the applications. Thus, the
ultimate target of measurement is often not the networlfitlsehe narrow sense—links and routers—but
rather the applications. Here we use the textwork applicationin the broad sense—it includes not only
the programs used directly by human users, such as Web noase email clients, but also any program
that communicates over the network, such as clients anéseof DNS (Domain Name Service) and NTP
(Network Time Protocol).

Interestingly, it is often easier to understand applic&tiby measuring their network traffic than by
analyzing the applications themselves. First, applicetimay not be directly accessible in measurements.
For example, it is often infeasible to ask many users to instd/eb browser extension for measuring Web
browsing behaviors from the client side. In contrast, itssially easier to capture and analyze the Web traf-
fic on the network. Second, some applications do not havé-ibuihechanisms that record or report their
activities—consider, for example, characterizing netwactivities generated by all applications running
on a Windows desktop. Finally, even if applications do réploeir activities, for example, Web servers
usually record requests in a log, the records often havedtsmarticular to the applications, making it dif-

ficult to measure multiple applications with a unified medeam In comparison, the structure of network



traffic is well-defined by the application protocols, andgteasier to parse. For all these reasons, network

traffic provides a good window into the behavior of applioas.

1.2 Challenges

Measuring a complex system is challenging in and of itselfisTis especially true for large computer
networks such as the Internet. Below is a short list of cingles network traffic measurement faces in
general. We also discuss how the challenges impact measntetadies in this dissertation and tools and

techniques we develop to overcome the difficulties.

Diversity of network applications. The Internet is a colorful world—it is used by hundreds oflimns
of users with thousands of applications. Moreover, the inoat shift of our daily life towards
computer networks ensures that the Internet diversity eglitinue to grow as we see ever more
network applications. The large number of applicationdlehges us to build analysis tools for a

wide range of the applications and protocols.

This dissertation tackles this challenge by presentingiguage that facilitates the process of build-

ing analyzers for application protocols.

Irregularity in traffic data . Real-world traffic data contains various typesiwégularities, ranging
from deviation from standard protocol syntax, incorrecigth fields or checksums, and completely
corrupted data fields, to missing packets because of imgtetrfaffic capture mechanisms. Thus,
measurement tools must be robust to handle such irregylanéasurement methodology should

also take traffic irregularity into account.

Limited traffic data . The Internet consists of many autonomous and geographitisiributed networks.
Itis often only possible to measure a very small part of itn€ider, for example, how many vantage
points one needs to measure the total number of bytes (or H&quirests) that fly over the Internet
in a day. Note that the difficulty lies not only in the geogragahdistribution or number of systems,
but also in the autonomy each system asserts. This latter fescoften more important, as most
institutions are reluctant to reveal their network struetand traffic information because of concerns
ranging from privacy and security to trade secrets. Becafisee diversity of the Internet, lack of

shared traffic data creates a significant hurdle for netwaeksarements. For example, it is difficult



to distinguish between universal and site-specific charatics of network traffic based on traffic

data from only one or two networks.

One key to creating shared traffic data is traffic anonynmiratia process that removes sensitive
data while preserving non-sensitive information which barused in network measurements. This

is another topic explored in this dissertation.

Asymmetric resource capacitybetween the measurement system and the system to measwa. Ev
when one is measuring a very small part of the Internet, thwark still usually contains far more
computers than the measurement infrastructure does. Asu#t,reiuch more computation resource
is available for traffic generation than for traffic measuegrn This resource asymmetry challenges
us to design efficient measurement tools and sound samplihgigues, as explored in our study of

Internet background radiation.

1.3 Dissertation Contributions

The dissertation makes two sets of contributions. The finglives developing techniques and tools for
people taanalyze traffic semanti@danonymize tracesnotivated by the fact that lack of tools and traces
has significantly hindered measurements of network traéfifoantics. The second consists of measure-
ments of two particular aspects of network traffloternet background radiatioandmodern enterprise
network traffic Both studies are the first characterizations of the regpetyipe of traffic. Next we discuss

each contribution in further details.

1.3.1 Tools and Techniques

To understand network traffic semantics we need to obtaffictteaces and build analysis tools. Below we
discuss how this dissertation advances state of the arttindreas.

We note that the two problems are in fact closely related.mpdrtant channel to obtain network traces
is through sharing anonymized traces. Trace anonymizatimnever, depends on semantic analysis tools
that expose the semantics of data elements in the traffibas@ach element can be sanitized based on its

application level meaning. On the other hand, in developiafic analysis tools it is critical to have access



to network traces so that the tools can be made robust enougintle the irregularity found in real-world

traffic.

A Declarative Language for Protocol Analyzers

A traffic analysis framework such dgo [89] processes network traffic in two stages (Chapter 2
offers a more detailed description of the process). In the §itage, the packets are translated into
a high-level representation of the traffic, in casebod , a sequence of application levevents

For example, &ro eventmay represent an HTTP request, a DNS query, or begin or end of a
connection. In the second stage, one can specify a rich setadfsis tasks that operate on the high
level representation of the traffic. Under this model, deaffit analysis can be expressed with a

short script and carried out efficiently on high volume reale traffic or large packet traces.

One of the main challenges in building such a network trafi@azer such abro is to parse a wide
range of application protocols in order to generate the fégkl events. Protocol parsers are usually
built manually in a general-purpose programming languages as C/C++ [29]. The construction
and maintenance of analyzers requires a considerable dmbeffiort, because of the complexity of
network protocols. For example, Netware Core Protocol haslleds of message types for a wide
range of functionalities from remote file access to printmgl directory service. Furthermore, new
application protocols are constantly emerging, so theyaeat must also be frequently updated. The
guestion, naturally, is: How can we make it easier to build mxaintain protocol parsers? The answer
presented in this dissertation is a high-level, declaedéimguage for specifying protocol parsers. The
language’s compiler generates efficient protocol parse@st+ from the specification of (1) physical
layout of protocol data, (2) semantic relations betweenqual fields, and (3) custom computation
(for examplebro event generation) to carry out during parsing. High-leysdfications reduces
complexity in two ways: (1) the compiler generates code fanmon and usually tedious tasks in
traffic parsing, such as trans-coding byte order, checkinghbaries, and buffering incomplete data,
and thus reduces programming complexity and human errads(2) the separation of concerns—
such as protocol syntax vBro event generation—makes the code easier to maintain anel. rdss

of this high-level language considerably reduces the cerityl of building protocol parsers, and has
helped us to quickly develdpro parsers for complicated protocols such as CIFS/SMB, DCE/RP

and NCP in the study of enterprise traffic.



Semantic-aware Traffic Anonymization

Lack of packet traces has always been at the top of the lishpédiments to network measurements
[90, 5]. Lucky researchers may collect traces at their owstitintions; unlucky ones have to live with
nothing but synthetic traces. In an ideal world of networkemrch, there would be packet traces
of any type of traffic, with full payloads, collected on opiwaal networks all over the world, and
all available to the public. It would not only mitigate theoptem of limited visibility in Internet
measurements, but also allow comparing different teclesquith the same data set and repeating
experiments conducted by other researchers. A major re@sa@me not in such a world is that packet
traces contain a lot of private information that cannot beased to the publiclrace anonymization

is a process that removes sensitive information from tractee hope that the remaining information
is useful in measurements. Before the work presented irdibgertation, trace anonymization had

been limited to TCP/IP headers, crippling research on hatigiraffic semantics.

With the ability to understand network traffic at applicatEemantic level, it is natural to go one step
further—to build a programming environment fmansformingnetwork traffic, again, at application
semantic level [80]. The goal is to allow a simgdeo script to perform tasks such as replacing
user ID “Alice” with “Bob”, inserting new HTTP headers, andbstituting Web items with their
MD5 hashes. The underlying support environment makes sporeding changes at various protocol
layers to keep the traffic well-formed. With theo trace transformation framework, we solve two
problems in trace anonymization: (1) how to find out what infation is contained in the traces; (2)
how to put transformed data back together as well-formezkgaWe also investigate the remaining
problem of how to obscure identities and other sensitiverimfation through anonymizing FTP traces
from the Lawrence Berkeley National Lab for public releas®] in the process, developed methods

to validate that anonymizations are both correctly spetiied correctly applied.

1.3.2 Measurement Studies

Measurement of network traffic semantics is a largely unengal area. Using the tools and techniques
developed in this dissertation, we conducted first-timelisti of two specific aspects of network traffic.
As defined shortly belownternet background radiatiotraffic is mostly generated by malicious programs

(malwaré that scan Internet addresses. Our study provides a br@ad ofi ongoing activities of such



Internet malware, previously analyzed only on an individaesis. The enterprise traffic study, on the other
hand, offers a broad look at the normal network traffithin an institution or corporation. It shows how the
network traffic in a local, managed, and semi-closed enwiremnt differs from the well-studied wide-area

Internet traffic.

Internet Background Radiation

Monitoring any portion of the Internet address space reviealessant activity. This holds true even
when monitoring traffic sent to unused addresses, which me background radiation While the
general presence of background radiation is well known &rtatwork operator community, the
measurement presented in this dissertation is the firsdorbaracterization of the radiation traffic
[81]. One of our main objectives is to discover timentionsbehind the packets sent to unused
addresses. We buildetwork telescopesapplication responders on unused addresses to engage in
conversation with the radiation sources, mimicking ordjn@ersonal computers, till the intentions
are revealed. As most radiation sources turn out to be latemalware—worms and autorootérs,
Internet background radiation offers a comprehensive gntbtdate view of Internet malware that
scans the Internet for victims. We characterize the raatidtiaffic from various angles, for example,

how many are active, how they probe and break into systendshaw they evolve over time.

Enterprise Network Traffic

Like background radiatiorenterprise network traffics also a previously unexplored realm. While
many enterprise networks—institution/corporation inldmetworks—are connected to the Internet,
activities occurringvithin internal networks usually do not appear in the wide-ardéi¢ral herefore,
while the wide-area traffic had been well studied, little waswn about the workload of enterprise
internal networks. Because an enterprise network is mahlhgea single authority in a semi-closed
environment, its workload may differ significantly from thaf the wide-area network. The lack of
measurement is a bit striking given the pressing problenegébbping enterprise network manage-
ment technologies. Modern enterprise networks have grawite ¢arge and complex and become
hard to manage. The largest enterprise networks today @erfdnan the entire Internet fifteen years

ago—when the first measurements of the wide-area traffic wemed out. In this dissertation we

L«autorooter” is a jargon referring to software that autoesathe process of scanning and cracking systems to gaiteged
access to computers.



present a first broad overview of modern enterprise traffibwiaces from Lawrence Berkeley Na-
tional Lab [77]. Our main goal is to provide a first sense of svaywhich modern enterprise traffic
is similar to wide-area Internet traffic, and ways in whiclisitquite different. We find enterprise
internal traffic dominated by applications not commonlyridin wide-area Internet traffic; and take

a first look into these previously unstudied applications.

1.3.3 Thesis Outline

In summary, this dissertation advances our understanditigeomeaning of Internet traffic by (1) build-
ing tools for developing application protocol parsers aradfic anonymizers, allowing wider, semantic
access to Internet traffic beyond administrative limitsj §2) characterizing previously unstudied aspects
of Internet traffic, including Internet background radistiand enterprise network traffic.

The rest of this dissertation is organized as follows. Chaptgives an overview of the semantic struc-
ture of Internet traffic and the process of semantic traffiglgsis. Chapter 3 then describes a high-level,
declarative language for building a critical component t¢fadfic analysis platform—application protocol
parsers. Chapter 4 presents a programming environmengftkep trace transformation and anonymiza-
tion. Chapter 5 and 6 present our characterization of Ietdvackground radiation and modern enterprise
traffic, respectively. This dissertation concludes in Gkaf. As various areas of networking research

overlap with different aspects of this dissertation, tHatesl work is discussed separately in each Chapter.



Chapter 2

Traffic Semantic Analysis andbr o

As many parts of this thesis are built aroubb —a network traffic processing platform, this chapter
presents an overview of the traffic semantic analysis psctsdentifies where the challenges are, de-

scribes how they are handled byo , and reports what open problems remain.

2.1 Traffic Capture

Measuring network traffic semantics starts with tappingvoek links to capture the traffic transmitted on
the link. The captured traffic is usually in the form of a seogeof packets. Depending on the capture
mechanism, the packets may contain various link layer headdter stripping link layer headers, however,
one can usually obtain packets in the Internet Protocol[@B) For simplicity, this dissertation assumes

that a traffic analyzer can tap network links and observehallP packets flying by-

2.2 Extracting High Level Traffic Representation

With traffic captured, the next step is to translate pacletstiigh-level representation of the traffic appli-

cation behaviors. The translation process involves thHeviahg three steps.

1in practice, however, this assumption turns out to be a littler-optimistic. Sometimes the raw traffic contains to@msensitive
information to be analyzed directly. Instead, the traffitadaust be first “anonymized” to remove any sensitive infdfama In other
cases high traffic volumes prohibit capture of full trafficdéor cause packet drops. People usually apply packet fiitecspture
traffic selectivelyand yet packet drops are still a common problem. Howevemdor suppose that the preceding assumption does
hold.



2.2.1 TCP/IP Processing

The captured IP packets are the same as those seen by nebtmteksr Each IP packet has a header,
analogous to the envelope of a letter, with source and dastimaddresses and other relevant information
for the packet to travel from the source host to the destinatiost. The format of IP packet payload—the
contents of the “letter"—is defined by transport layer poatis.

If we consider packets between a pair of end hosts, the toaihgyer is responsible for carrying
data between applications. Multiple applications on thmesand host are indexed lpprt numbers; thus
between the same pair of hosts there can be multiple chamvieth are termedonnectionsThere are two
main transport layer protocols, TCP [94] and UDP [92]. Ea€liPTconnection carries two streams of bytes,
one on each direction, between applications; each UDP ctioné carries two streams of datagrams. The
structure of bytes and datagrams is determined by theiertsie applications.

As IP, TCP, and UDP are well known and simple protocols, ieigtively straightforward to extract
what bytes or datagrams—which we teapplication level data—are sent between two applications with
IP packets as input. To discover the meaning of these bytesxample, whether the stringdot ”
represents an administrator user ID or something else, eadato determine (1) which applications are
sending the bytes, and (2) how the bytes in the TCP byte sgealdDP datagrams are organized according

to the specific application protocol. These are discusskmbe

2.2.2 Recognizing Applications

The usual way to tell which applications are generatingthffi¢ is by the port number of the server appli-
cation, as ports are assigned to applications running orst [ote that we are interested in recognizing
the general application category, such as Web vs. SMTRadsif any particular software implementation,
such as IIS vs. Apache Web server.)

Ports between 1 and 1024 are called “well-known ports” amdamsigned to applications by IANA
[46]. For instance, port 80/tcp is assigned to Web serveid 53/udp for DNS servers. The assignment of
well-known ports is a convention between clients and seps that the client applications, such as Web
browsers, know to which port to send data for a particulaviser There is nothing preventing one from

running a mail server on the Web port, as long as the cliemsvio which port to connect.

2The UDP protocol is “connectionless”, but we can considehdsdirectional pair of UDP datagram flows between the saaire p
of ports as a “connection”.
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There are also many applications that use ports above 1@24&xample, the peer-to-peer application
BitTorrent runs its “tracker” on port 6969. Some such ports\aell-known, though they are not officially
assigned.

Moreover, some applications do not run on any fixed port, blyton some port mapping mechanism
to direct clients to servers. For example, a client that wamtontact the Windows Messaging Service on
another host first connects to the DCE/RPC port mapping servport 135/tcp, which tells the client that
the messaging service runs on pXrtthe client then connects to pofttfor the particular service. In such
cases, one needs to parse the port mapping process to dtggiart-application mapping.

In summary, distinguishing applications by ports works@l a large fraction of network traffic (as
evidenced by use of port-based firewalls as a basic tool fovar& defense). In some cases, it needs to be
supplemented with semantic analysis of port mapping trafficthe other hand, there is significant benefit
in recognizing the part of traffic generated by well-knowpkgations running on non-standard ports. Such
traffic can potentially be moriaterestingbecause it might have been set up to evade detection andsanaly
Ideally we would like to recognize applications bgntentgather than byconventionwell-known ports),
Recent efforts by Dreger et al. [26] are an important stephismdirection. In theory the problem is not
completely solved because writing precise protocol recays requires manually deriving heuristics from
protocol standards and tuning them with real traffic. Howgirepractice the heuristics tend to be quite

robust and stable, and the problem is largely solved for-wetiwn protocols.

2.2.3 Parsing Application Protocols

The second part of analyzing application level data invehlissecting byte streams and datagrams accord-
ing to application protocols and generating high-levetespntations of the traffic. The task appears to be
straightforward, yet in reality there are several majorligmges.

First, there are a large number of application protocols.ifgtanceEthereal [29], a network traffic
monitor known for handling a wide range of application pits, was able to parse 724 protocols as of
November 2005. But the protocols handledBipereal represent only a small portion of all application
protocols found in the Internet traffic [47].

Moreover, certain protocols are used for a wide range of psep and thus are very complex. For
example, Windows systems provide almost all their servigeduding file sharing, messaging, user au-

thentication, and printing, through the combination of @1€&S protocol [19] and the DCE/RPC services.
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There are 72 message types in the CIFS protocol, each tyjregsaveral dozens of fields. The DCE/RPC
protocol, including its various services, is even more cheoaped.

The number and complexity of protocols calls for a quick aglthble way to build protocol parsers.

Second, there is no public documentation for some protostésy protocols are standardized and well
documented, but for some it is difficult to find any documentain the public domain, either because the
protocols are proprietary or just because the software @eddes not bother to make any documentation
available. The vast number of protocols and lack of docuatent makes it an intriguing research problem
to reverse-engineer protocols automatically.

Third, the actual network traffic does not always conformtie protocols. Examples range from
syntactic miscues, such as using a singRor LF, instead of the standaldR+LF, as link breaks, to
behavior deviations such as pipelining all SMTP commanegandless whether they are pipelinable or
not. To handle such deviations, the protocol parsers musithest enough tolerate certain nonconformant
behaviors and be able to recover from others.

Related to protocol irregularity is the problem of dealinghwmissing data. Traffic data can be incom-
plete due to packet drops in capturing network traffic or iseing long-standing connections that are
established before traffic capture starts. A promisingdiiod in handling incomplete traffic data is to build
re-synchronizatiomechanisms into protocol analyzers, so that the analyaersnake good guesses as to
where the messages are aligned and the state of the applisagsion—for example, whether an SMTP
connection is in command/reply conversation or in the nédafl data transfer, and thereby recover from
missing data.

Finally, there is the question of how to build protocol passeusableor a variety of analysis tasks with
different requirements. To illustrate the probldathereal provides a graphical user interface for people
to investigate the traffic interactively, but it lacks suppmr automated traffic analysisEthereal 's
parsers are difficult to reuse as they are tightly integratithd the rest of the system. Without parser reuse,

it will take a significant amount of effort to build one’s owarsers for each different type of analysis.

2.3 Traffic Analysis and Manipulation

With protocol parsers we are able to obtain a semantic leggbsentation of the traffic. In the caseood ,

the representation is in the form of one or multiple applaratevel eventsfor each packet. For example,
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abro eventmay represent an HTTP request, a DNS query, or begin or enatofiaection (Figure 2.1).
The next question is how to utilize the high-level traffic mregentation and build specific traffic analyzers.

bro ’s approach is to provide programming environmerfor traffic analysis. Traffic analysis is pro-
grammed as a collection @venthandlers in théoro scripting language. Thero language is Turing-
complete, procedural, and strongly typed. It has builestfires commonly used in network traffic analysis,
such as hash tables, regular expressions, and asynchrevents.

Consider, for example, building an Email relay detectot thanitors traffic at the gateway of an en-
terprise network to detect Emails relayed through the gniteg network, based on the SMTP Message-1D
headers [48]. Figure 2.2 shows a short script for detectivy B (Email) relays. It detects relays by
looking for Email message ID’s (as appear in the “MESSAGE#Bader) that appear in multiple SMTP
connections. The script maintains a mapping of messagettCtise first connections in which the ID’s
appears in hash tabiasg id _table . (A table entry will expire and be evicted from the table ifdtnot
accessed in a day.) The table is updated in event hammiee_all _headers .

bro generates anime_all _headers event for each set of Email headers it encounters in an SMTP
connection. The event carries two parameters—the cororeictiwhich the headers appear and the set of
headers. Each header is represented card type with two membersname andvalue . The event
handler in the script looks for headers of name “MESSAGE-#Dt looks up every message ID (found in
the corresponding header value) in hash tadg id _table . It inserts message ID’s of first appearance
to the table; for message ID’s that have appeared beforethme salls functioncheck _relay for further
processing.

This simple example highlights a few couple of key charasties of traffic analysis in théro pro-
gramming environment. First, the analysis scripts opesathigh-level data elements, such as names and
values of Email headers, instead of packets or bytes. Setlomdnalysis can keep state across events and
connections and may use data structures such as recordssindales. Furthermore, the programming
environment provides mechanisms to prevent accumulafistate state—a common problem in network
traffic analysis—by automatically expiring stale tablerarst.

The main challenge in building th&o programming environment is to understand requirements of
traffic analysis and to design language features or run¢ifv@onment elements to meet the requirements.
For example, hash tables are commonly used to keep statssamvents. For instance, the SMTP relay

detection script keeps a table of seen message ID’s. Iténaftcessary to make table entries expire over
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event new_connection(c: connection);
event connection_finished(c: connection);

event http_reply(c: connection, version: string, code: co unt, reason: string);
event smtp_request(c: connection, is_orig: bool, cmd: str ing, arg: string);

Figure 2.1: Declarations dfro events

# A mapping from Email message ID to connection.

global msg_id_table: table[string] of connection &read_e xpire = 1 day;
event mime_all_headers(c: connection, hlist: mime_heade r_list)
{

for (i in hlist )

local h = hlist[i];
if ( h$name == "MESSAGE-ID" )
{
local msg_id = h$value;
# Have we seen this message ID before?
if ( msg_id !in msg_id_table )
msg_id_table[msg_id] = c;
else
check_relay(msg_id, msg_id_table[msg_id], c);
}

Figure 2.2: Sample Bro script: (a simplified version of) Elhnellay detection
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time to limit memory consumptiorbro scripts may specify a read or write expiration interval oraatn

table and, optionally, a function to call when an entry egpir

Going one step further beyond traffic analysis, this disdien also presents a framework for semantic-
level traffic manipulation built on top of thebro system. With the framework, a shdyto script can
insert or remove messages or headers, transform protodas, fignd write the resulting traffic data to a
trace file. The trace will look as if the actual traffic was aapd, i.e. the protocol fields (such as lengths
and checksums) will remain consistent with each other dftertransformation. Such a traffic manip-
ulation mechanism provides a foundation for applicatievel trace anonymization (discussed further in

Chapter 4).

2.4 Summary

With this overview we can see that traffic semantic analysi&s hew field with many areas yet to be ex-
plored or advanced. The important open issues include reziog applications by content, dissecting
numerous and complex application protocols, recoveriamferrors, designing language features to facil-
itate analysis programming, and manipulating and anonipmizaffic.

Our main vehicle to explore these areas is Bro—a powerftfitrsemantic analysis tool. In the process
of building protocol analyzers for Bro, we also use Bro todstigate various kinds of network traffic and
to anonymize traffic data. Consequently the dissertatiors &b make contributions in multiple areas. It in-
cludes both techniques to facilitate analysis of traffic aetics and studies of Internet traffic at application

semantic level.
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Chapter 3

bi npac—A yacc for Writing

Application Protocol Parsers

A key step inthe semantic analysis of network traffic is taspahe traffic stream according to the high-level
protocols it contains. This process transforms raw bytesstructured, typed, and semantically meaningful
data fields that provide a high-level representation of thffit. However, constructing protocol parsers by
hand is a tedious and error-prone affair due to the complaxitd sheer number of application protocols.

This chapter presentsinpac , a declarative language and compiler designed to simgiiéytask of
constructing robust and efficient semantic analyzers forgex network protocols. It discusses the design
of thebinpac language and arange of issues in generating efficient gdrsen high-level specifications.
We have usebBlinpac to build several protocol parsers for thierd ” network intrusion detection system,
replacing some of its existing analyzers (handcrafted ir)Cand supplementing its operation with ana-
lyzers for new protocols. We can then us® ’'s powerful scripting language to express applicatiorelev
analysis of network traffic in high-level terms that are botimcise and expressivieinpac is now part of
the open-sourckro distribution.

The rest of this chapter is organized as follows. It begirnth i discussion of background and moti-
vation in Section 3.1, and related work in Section 3.2. ®&c8.3 discusses specific characteristics of ap-
plication protocols compared to languages targeted bytimadl parser-generators. Section 3.4 describes

the binpac language for specifying protocol syntax and the associsggdantic analysis. Section 3.5
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discusses the process of generating a parser fioimp@ac  specification, including buffering of streaming
input and performing robust error detection and recoveegti®n 3.6 presents our experiences with using
binpac to develop protocol parsers for theo NIDS, and we compare their performance with that of

manually written ones. Section 3.7 summarizes the chapter.

3.1 Problem Statement

Many network measurement studies involve analyzing nékwraiffic in application-layer terms. For ex-
ample, when studying Web traffic [7, 32] one often must pars&Piheaders to extract information about
message length, content type, and caching behavior. Siyn#tudies of Email traffic [52, 130], peer-to-
peer applications [102], online gaming, and Internet &kgd81] require understanding application-level
traffic semantics. However, it is tedious, error-prone, smghetimes prohibitively time-consuming to build
application-level analysis tools from scratch, due to theaplexity of dealing with low-level traffic data.

We can significantly simplify the process if we can leverag@amon platform for various kinds of
application-level traffic analysis. A key element of suchlatform is application-protocol parsershat
translate packet streams into high-level representatidrite traffic, on top of which we can then use
measurement scripts that manipulate semantically meanidgta elements such as HTTP content types
or Email senders/recipients, instead of raw IP packets liégion-protocol parsers are also useful beyond
network measurements—they form important componentstefor& monitoring tools (e.g., tcpdump [49],
Ethereal [29], NetDuDe [58]), real-time network intrusidatection systems (e.g., Snort [100, 101] and
bro [89]), smart firewalls, and application layer proxies.

Building application-protocol parsers might appear giinfiorward at first glance, given a specification
of the corresponding protocol. In practice, however, wgtan efficient and robust parser is surprisingly
difficult for a number of reasons. First, many of today’s piils are complex. For example, when an-
alyzing the predominant HTTP protocol, one has to deal wipelpned requests, chunked data transfers,
and MIME multipart bodies. The NetWare Core Protocol [95]-eesmmon protocol used for remote file
access—has about 400 individual request types, each withiaad syntax. Second, even for simpler pro-
tocols, it is tedious and error-prone to manually write ceml@arse their structure: the code must handle
thousands of connections in real-time to cope with the trafflarge networks, and protocol specifications

are seldom comprehensive (i.e., they often ignore corases, which a parser nevertheless must handle
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robustly as theydo occur in real-world traffic). In potentially adversariah@mnments, an attacker may
even deliberately craft ambiguous or non-conforming ted8i8, 43]. Furthermore, several severe vulner-
abilities have been discovered in existing protocol parggrl9, 120, 121, 122])—including one which
enabled a worm to propagate through 12,000 deploymentsexfuity product worldwide in tens of min-
utes [108, 60]—which demonstrates how difficult it is to caoptEnsively accommodate non-conforming
input with hand-written code.

Given the care that writing a good protocol analyzer reqireis unfortunate that existing analyzers
are generally not reusable, because their operation idlysiggtly coupled with their specific application
environments. For instance, the two major open-source ar&timtrusion detection systems (NIDSs),
Snort [101] ancbro [89], both provide their own HTTP analyzers, each exhilgititifferent features and
shortcomings. Ethereal contains a huge collection of matparsers, but it is very difficult to reuse them
for, e.g.,bro due to their quite different interfaces and data structuriésen inside a single software
product, low-level code is generally inlined rather thaatfeed into modules. For example, the Ethereal
version 0.99 source code contains more than 8,000 instaridesrementing or decrementing by a hard-
coded numeric constant, the vast majority of which are dutigsa pointer or a length while stepping
through a buffer. Any instance of an incorrect constant cacoorse result in an incorrect parsing of a
protocol, but the mistake would not be detectable at contpite since using the wrong numeric constant
still type-checks.

We believe that the major reason for all of these difficulifea significant lack of abstraction. In the
programming language community, no one writes parsers algninstead, there are tools likacc and
ANTLR [83] that supportdeclarativeprogramming: one expresses the syntax of the languageeaykstt
in a high-level meta-grammar, along with associated seigcg@anThe parser generator then translates the
specification into low-level code automatically. In thisnkiowe propose to use similar abstractions for
application-layer network protocols. By doing so, userdding analyzers can concentrate on high-level
protocol semantics, while at the same time achieving ctress, robustness, efficiency, and reusability.

However, we observe that existing parser-generation @@shot suitable for parsing network proto-
cols. Common idioms of network protocols, such as data figldseded by their actual length (sometimes
not adjacent), cannot be easily expressed as a contexgifiemmar. Furthermore, when analyzing proto-

cols, we often need to correlate across the two directiorss $ihgle connection; sometimes even syntax
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depends on the semantics of the byte stream in the othetidime€inally, parsers generated by these tools
process input in a “pull” mode and thus cannot concurrerdlgp multiple, incomplete input streams.

To improve this situation we designed and implemenrttetbac —a declarative language and its
compiler—to simplify the task of building protocol analygze Users specify parsers by defining mes-
sage formats, dependencies between message fields, atidreddiomputations to perform (e.g., printing
ASCII records or triggering further analysis) upon parsitifferent message elements. The compiler trans-
lates the declarations into parsers in C+hinpac takes care of all the common and tedious (and thus
error-prone) low-level tasks, such as byte-order handlagplication-layer fragment reassembly, incre-
mental input, boundary checking, and support for debuggibigpac also facilitates protocol parser
reuseby supporting separation of different components of areatyzOne can readily plug in or remove
one part of a protocol analyzer without modifying others.cl$geparation allows analysis-independent
protocol specifications to be reused by different analysikg, and simplifies the task of protocol extension
(for example, adding or removing NFS to the RPC parser).

Our goal is to ensure that the generated parsers are asmfficearefully hand-written ones, so that
they can handle large traffic volumes. Our main strategy isweragedata dependency analysido tailor
the generated parser to the analysis requirementsrapilation time For examplebinpac identifies
appropriate units for buffering of incomplete input basedlee data layout specified by the user.

To demonstrate the power of our approach, we have bgguhc to build several protocol parsers
for thebro NIDS, including HTTP, DNS, CIFS/SMB, DCE/RPC, NCP, and SRR (We emphasize
thatbinpac is not however tied in any significant way lwo .) Having written many protocol analyzers
manually in the past, our experience is thaipac greatly eases the process. In future work we envi-
sion further using thesbinpac specifications to compile analyzers to alternative executnodels: in

particular, directly to custom hardware, without any imediate C++ code, as sketched in [85].

3.2 Related Work

Considerable previous work has addressed facets of desgdhata and protocol layouts using declarative
languages. First, there are various Interface Descrigtamguages for describing the service interface for
specific protocols. For instance, the External Data Reptatien Standard (XDR) [111] defines the way

to describe procedure parameters and return values foréhsER Procedure Call (RPC) protocol [110].
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The XDR compiler generates the underlying code to marshatiarshall data to/from raw bytes. Targeting
a wider range of protocols, ASN.1 [8] is a language for dédsig the abstract syntax of communication
protocols, including a set of encoding schemes. Untikgpac , these languages dictate the underlying
data representation, whilgnpac tries to describe the data layout of a wide range of existthgq,
already designed) protocols that span a variety of formadissayles.

Augmented BNF (ABNF) [20] is used in many protocol standaodspecify the protocol syntax. How-
ever, the goal of ABNF is to provide a concise, yet incompletay to define a protocol, rather than for
complete protocol specification from which one can geneagtarser. In addition, ABNF targets ASCII
protocols.

People have also designed languages for writing networtopob implementations, including both
protocol parsing and processing logic. Abbott et al. [1]geed a language for designing and implement-
ing new network protocols. Prolac [56] is a language for wgtmodular implementations of networking
protocols such as TCP. Biagioni et al. [14] experimentedhwitplementing a TCP/IP network stack in
ML. These efforts differ fronbinpac in that the goal is to build end-system implementationgeid of
analyzers, of protocols. They also target protocols at #tevark and transport layers, rather than the wide
range of application protocols.

More related tdbinpac , there are efforts in the abstract descriptioreristingprotocol syntax. Mc-
Cann and Chandra introduced PACKETTYPES [65], a languagjehlps programmers to handle binary
data structures in network packets as if they were C typestis®o et al. designed and implemented
GAPA [15], a framework for application protocol analyzehs protocol specification language, GAPAL,
is based on (augmented) BNF, but supports both ASCII andnbimatocols. A protocol specification
in GAPAL includes both protocol syntax as well as analysidesaind logic. While GAPA anbinpac
both target application-level traffic analysis in genetlagy are designed with different sets of goals and
therefore take quite different approaches. First, GAPfets traffic analysis at individual end hosts, and
uses an interpreted, type-safe language. @ihpac compiler, on the other hand, generates C++ parsers
intended to process traffic of much higher volume at netwattiegays. Second, GAPA is a self-contained
system that handles both protocol parsing and traffic aisalyith a single scriptbinpac is designed as
a building block for the construction of parsers that can seduby separate traffic analysis systems such

asbro , and thebinpac language stresses separation of parsing and analysis.
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Beyond network protocols, there are a number of languageddscribing data formats in general.
DATASCRIPT [10] is a scripting language with support for delsing and parsing binary data. Developed
more recently, PADS is a language for describing ad hoc datadts [34]. PADS'’s approach to data
layout description is similar to that dfinpac in a number of ways, such as the use of parameterized
types. On the other hand, it is designed for a more generalgserthan parsing network protocols, so it
lacks abstractions and features particular to procesgingmunication traffic, and the generated parsers
cannot handle many input streams simultaneously. RelatBADS, Fisher et al. [35] described a calculus
for reasoning about properties and features of data de&gerilanguages in general. The calculus is used to
discover subtle bugs, to prove the type correctness of PAb&to guide the design of language features.

Hand-written application-layer protocol parsers are apanant part of many network analysis tools.
Packet monitors such as tcpdump [49], Ethereal [29], andifDf&7] display protocol information. Net-
DuDe [58] provides both visualization and editing of padkates. NIDS such as Snort [10bfo [89],
and Network Flight Recorder [75] analyze protocol commati@ns to detect malicious behavior. Protocol

parsers are also components of smart firewalls and applicédiyer proxies.

3.3 Characteristics of Application Protocols

In this section we examine characteristics of network pok®which differ significantly from the sorts
of languages targeted by traditional parser-generatoesdtuss them in terms of syntax and grammar,

input model, and robustness.

3.3.1 Syntax and Grammar Issues

In terms of syntax and grammar, application-layer protes@ain be broadly categorized into two classes:
binary protocols and human-readalA&CII protocols. The messages of binary protocols, like DNS and
CIFS, consist of a (not necessarily fixed) number of diglds These fields directly map to a set of basic
datatypessuch as integers and strings. Clear-text ASCII protocaisthe other hand, typically restrict
their payload to a human-readable request/reply structigiag only printable ASCII-characters. Many
of these protocols, such as HTTP and SMTP, are primarilyliaged, i.e., requests/replies are separated
by carriage-return/line-feed (CR/LF) tuples, and themts is usually specified with grammar production

rules in protocol standards.
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While these two types of protocols appear to exhibit quigtidct language characteristics, we in fact
find enough underlying commonality between binary and AS@dtocols that we can treat both styles in
a uniform fashion within declaratiieinpac specifications, as we will develop below. On the other hand,
there are some critical differences between the grammangtwiork protocols (binary as well as ASCII)

and those of programming languages:

Variable-length arrays. A common pattern in protocol syntax is to use one field to iatiche length of
a later array. Such a length field often delimits the length sfibsequent (not necessarily contiguous) byte
sequence, e.g., the HTTP “Content-Length” field, but caa &ldicate the number of complex elements,
such as in the case of DNS question and answer arrays. A coratepriant of variable-length arrays is
padding i.e., filling a field with additional bytes to reach a speciéngth.

As long as the length-field has constant width, it is theogdiy possible to describe arrays and padding

with a context-free grammar. However, doing so is cumbeesand leads to complex grammars.

Selecting among grammar production rules Both binary and ASCII protocols often use one or multiple
data fields to select the interpretation of a subsequentesiefrom a range of options. For example, DNS
uses a type field to differentiate between various kinds e§durce records”. HTTP uses multiple header
fields to determine whether the message body is a consetwtigesequence, a sequence of byte chunks,
or multipart entities. Sometimes the selector even conwes the opposite flow of the connection, e.g., the
syntax of a SUN/RPC reply depends on program and procedids fiethe corresponding RPC call [110].
In general such a selector can be easily expressed in a gnaogrparameterizingion-terminal symbols—

a very limited form of context-sensitive grammar which wesciibe later in Section 3.4.1, However it is

very hard to specify a selector withcantext-freegrammar.

Encoding. In binary protocols, record fields directly correspond téues. Therefore it is crucial to con-
sider the correct byte-encoding when parsing fields. Fomgte, integers are often either encoded in
big-endian or little-endian byte order. Similarly, stricharacters may be given in a (single-byte) ASCII
encoding or in a (two-byte) Unicode representation. To dazafe the problem, the byte order need not be
fixed for a given protocol. For example, there is a field in DREC header which explicitly indicates the
byte order in which subsequent integers are encoded. In,GBRnilar field gives the character encoding

for strings (which in fact does not apply to all strings: e@mtones are always in ASCII; similarly in CIFS,
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not all integers use the same byte-order). Handling datading is a tedious and error-prone task when

writing a parser manually, and it is hardly expressible byarreeof an LALR(1) gramma.

3.3.2 Concurrent Input

A fundamental difference between a protocol parser any@dat -style parser is their input model. A
protocol-parser has to parse many connections simultaheand, within each connection, the two flows
on opposite directionsn parallel. For example, in persistent HTTP connections each requestato
be associated with the correct reply. Similarly, the syrda SUN/RPC reply depends on program and
procedure fields in the corresponding RPC call [110].

Parsers generated lgpwacc/lex  process input in a “pull” fashion. That is, when input is ingalete,
the parser blocks, waiting for further input. Thus, a thread handle only one input stream at a time.
To handle flows simultaneously without spawning a threadeah one, the parsers must instead process
inputincrementallyas it comes in, partially scanning and parsing incomplgiatiand resuming where the

analysis left off when next invoked.

3.3.3 Robustness

Parsing errors are inevitable when processing networfidrafrrors can be caused by irregularity in real-
world traffic data (protocol deviations, corrupted congras well as by incomplete input due to packet
drops when capturing network traffic, asymmetric routing {sat only one direction of a connection is
captured), routing changes, or “cold start” (a connecti@s &lready underway when the monitor begins
operation). Unlike compilers, protocol parsers cannotpyncomplain and stop processing, but must
robustly detect and recover from errors. This is partidyl@nportant if we consider the presence of

adversaries: an attacker might specially craft traffic twlla protocol parser into an error condition.

1LALR(1) grammar stands for Look-Ahead LR(1) grammar—a gnaem family accepted by common parser generators such as
yacc . Please see [3] for a detailed discussion of LALR and LR gransm
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3.4 Thebi npac Language

In the previous section we examined the grammatical cheriatits of network protocols. This section
describes the design of thénpac language and its compiler, which are specifically tailo@address
these properties.

We begin with a description dfinpac ’s data modein Section 3.4.1, corresponding to production
rules in BNF grammars. In Section 3.4.2 we discuss statéing| in Section 3.4.3 how to add custom
computation, and finally in Section 3.4.4 the “separationafcerns” to provide reusability.

Throughout the discussion we will refer to the examples iguFés 3.1 and 3.2, which show speci-
fications of HTTP and DNS parsers binpac , respectively. We use them to illustrate features of the
binpac language. Note that the HTTP parser shown in Figure Iarspletedy itself (though simplified
from the fully-featured one we built fdiro , and evaluate below), except for the MIME-decoding of HTTP
bodies and escape sequences for URIs. The former takeficaghiadditional work to add; the latter can
be incorporated easily by processing the raw, extractedwltRlan additional function call. Due to space
limitations, we only show an excerpt of the DNS parser, thotlts includes the technically most difficult
element of parsing the protocol, namely compression-lyéetion of domain names.

In the language, text between %.&nd %3 embeds C/C++ codebinpac keywords reflecting op-
tional attributes start with “&” (e.g.&oneline ). Keywords starting with “$”, such acontext and
$element , are macros instantiated during parsing. In the exampleshighlightbinpac keywords
(except for elementary types, introduced below) using Istddt fonts. Table 3.4 summarizes thiapac

language constructs.

3.4.1 Data Model

binpac ’s data model provides integral and composite types whildwalis to describe basic patterns in
protocol data layout, parameterized types to pass infoaomdtetween grammar elements, and derivative

data fields to store intermediate computation results. \&eudis these in turn.
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[Language Construct | Brief Explanation | Section | Example |

%header{ ... % } Copy the C++ code to the generated heagler Fig. 3.1, #15
file

%code{ ... % } Copy C++ code to the generated source fil¢

%membef ... % } C++ declarations of private class members|of §3.4.2 Figure 3.4
connection or flow

lanalyzer ... withcontext Declare the beginning of a parser module and§3.4.2 Fig. 3.1, #1
the members dbcontext

connection Define a connection object §3.4.2 Fig. 3.1, #37

upflow/downflow Declare flow names for two flows of the con- §3.4.2 Fig. 3.1, #38
nection

flow Define a flow object §3.4.2 Fig. 3.1, #40

datagram = ... withcontext Declare the datagram flow unit type §3.4.2 Fig. 3.2, #64

flowunit = ... withcontext Declare the byte-stream flow unit type §3.4.2 Fig. 3.1, #41

lenum Define a “enum” type Fig. 3.1, #5

type ... = Define abinpac type §3.4.1 Fig. 3.1, #11

record Record type §3.4.1 Fig. 3.1, #49

case ... of Case type: representing an alternation amgngs3.4.1 Fig. 3.1, #45
case field types

default The default case §3.4.1 | Fig. 3.1, #103

(type ) Array type §3.4.1 Fig. 3.1, #87

RE/.../ A string matching the given regular expres- §3.4.1 Fig. 3.1, #11
sion

bytestring An arbitrary-content byte string §3.4.1 Fig. 3.1, #73

lextern type Declare an external type §3.4.1 Fig. 3.1, #13

function Define a function §3.4.2 Fig. 3.2, #67

refine typeattr Add a type attribute to thbinpac type §3.4.4 Fig. 3.5

(type ) withinput (input ) Parse(type) on the given(input) instead of | §3.4.1 Fig. 3.2, #59
the default input

&byteorder Define the byte order of the type and all ep- §3.4.1 Fig. 3.2, #7
closed types (unless otherwise specified)

&check Check a predicate condition and raise an ¢x-§3.5.2 Fig. 3.2, #34
ception if the condition evaluates to false

&chunked Do not buffer contents of the bytestring, in- §3.4.1 | Fig. 3.1, #100
stead, deliver each chunk &shunk to
&processchunk  (if any is specified)

&exportsourcedata Makes the source data for the type visible §3.4.1 Fig. 3.2, #7
through a member variabkourcedata

&if Evaluate a field only if the condition is true Fig. 3.2, #16

&length = ... Length of source data should be ... §3.4.1 | Fig. 3.1, #101

&let Define derivative types §3.4.1 Fig. 3.1, #63

&oneline Length of source data is one line §3.5.1 Fig. 3.1, #63

&processchunk Computation for eacchunk of bytestring | §3.4.1
defined with&chunked

&requires Introduce artificial data dependency

&restofdata Length of source data is till the end of input §3.4.1 Fig. 3.1, #73

&transient Do not create a copy of the bytestring 83.6

&until End of an array if condition (offelement §3.4.1 Fig. 3.1, #87

or $input ) is satisfied

Table 3.1: Summary dfinpac
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1 anal yzer HTTP wi t hcontext { # members of $context
2 connection: HTTP_Conn;

3 flow: HTTP_Flow;

4}

5 enum DeliveryMode  {

6 UNKNOWN_DELIVERY_MODE,

7 CONTENT_LENGTH,

8 CHUNKED,

9 }

10 # Regul ar expression patterns

11 type HTTP_TOKEN = RE/[()<>@,;:\"\\\J?={} \t]+/;
12 type HTTP_WS = RE/ \t] */

13 extern type BroConn;

14 extern type HTTP_HeaderInfo;

15 Yheader{

16 /1 Between %+*{ and % is enbedded C++ header/code
17 class HTTP_Headerlnfo {

18 public:

19 HTTP_HeaderInfo(HTTP_Headers +headers) {

20 delivery_mode = UNKNOWN_DELIVERY_MODE;

21 for (int i = 0; i < headers->length(); ++i) {
22 HTTP_Header *h = ( *headers)[i];

2 if (h->name() == 2 "CONTENT-LENGTH") {

24 delivery_mode = CONTENT_LENGTH;

25 content_length = to_int(h->value());

26 } else if (h->name() == "TRANSFER-ENCODING"

27 && has_prefix(h->value(), "CHUNKED")) {
28 delivery_mode = CHUNKED;

29 }

30 }

31 }

32 DeliveryMode delivery_mode;

33 int content_length;

34 h

35 %

36 # Connection and flow
37 connecti on HTTP_Conn(bro_conn: BroConn) {

38 upfl ow = HTTP_Flow(true); downf | ow = HTTP_Flow(false);
39}

40 fl ow HTTP_Flow(is_orig: bool) {

41 fl owunit = HTTP_PDU(is_orig)

42 wi t hcont ext(connection, this);
43}

44 # Types

45 type HTTP_PDU(is_orig: bool) = case is_orig of {
46 true -> request: HTTP_Request;

47 false -> reply: HTTP_Reply;

a8 };

49 type HTTP_Request = record {

50 request: HTTP_RequestLine;

51 msg: HTTP_Message;

52 };

53 type HTTP_Reply = record {

54 reply: HTTP_ReplyLine;

55 msg: HTTP_Message;

56 };

Figure 3.1: AHTTP parser ihinpac with Bro event generation, complete except for MIME and psea
sequence processing (Part 1)
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57 type HTTP_RequestLine = record {

58 method: HTTP_TOKEN;

59 : HTTP_WS; # an anonynous field has no name
60 uri: RE/[[:alnum:][:punct:]]+/;

61 : HTTP_WS;

62 version: HTTP_Version;

63 } &oneline & et {

64 bro_gen_req: bool = bro_event_http_request(
65 $cont ext.connection.bro_conn,

66 method, uri, version.vers_str);

67 };

68 type HTTP_ReplyLine = record {

69 version: HTTP_Version;

70 : HTTP_WS;

71 status: RE/[0-9]\{3\}/;

72 : HTTP_WS;

73 reason: bytestring &restofdatg
74 } &oneline & et {

75 bro_gen_resp: bool = bro_event_http_reply(
76 $cont ext.connection.bro_conn,

77 version.vers_str, to_int(status), reason);
78}

79 type HTTP_Version = record {

80 : "HTTP/",

81 vers_str:  RE/[0-9]+\.[0-9]+/;

82 };

83 type HTTP_Message = record {

84 headers: HTTP_Headers;

85 body: HTTP_Body(HTTP_HeaderInfo(headers));
86 };

87 type HTTP_Headers = HTTP_Header[] &unti | ($i nput.length() == 0);
88 type HTTP_Header = record {

89 name: HTTP_TOKEN;

EY : "

91 : HTTP_WS;

92 value: bytestring &restofdatg

93 } &oneline & et {

94 bro_gen_hdr: bool = bro_event_http_header(

95 $cont ext.connection.bro_conn,

96 $cont ext.flow.is_orig, name, value);

97 }

98 type HTTP_Body(hdrinfo: HTTP_HeaderInfo) =

99 case hdrinfo.delivery_mode of {

100 CONTENT_LENGTH -> body: bytestring &chunked,

101 & engt h = hdrinfo.content_length;
102 CHUNKED -> chunks: HTTP_Chunks;

103 default -> other: HTTP_UnknownBody;

104 };

105 type HTTP_Chunks = record {

106 chunks: HTTP_Chunk][] &unt i | ($el ement.chunk_length == 0);
107 headers: HTTP_Headers;

108 };

100 type HTTP_Chunk = record {

110 len_line: bytestring &onel i ng;

111 data: bytestring &chunked, &l ength = chunk_length;
112 opt_crlf: case chunk_length  of {

113 0 -> none: empty;

114 default -> crlf: bytestring &onel i ng;

115 h

16 } &et {

117 chunk_length: int = to_int(len_line, 16); # in hexadeci mal
118 };

Figure 3.1: AHTTP parser ihinpac with Bro event generation, complete except for MIME and psea
sequence processing (Part 2)
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type DNS_message = record {

header: DNS_header;
question: DNS_question(this)[header.qdcount];
answer: DNS_rr(this)[header.ancount];

authority:  DNS_rr(this)[header.nscount];
additional: DNS_rr(this)[header.arcount];

} &byt eorder = bigendian, &exportsour cedat a
type DNS_header = record { ... };
type DNS_question(msg: DNS_message) = record {

gname: DNS_name(msg); qtype: uintl6; qclass: uintl6;

} &let {

# Generate bro event dns_request if a query
bro_gen_request: bool = bro_event_dns_request(
$context.connection.bro_conn,
msg.header, gname, qtype, qclass)
& f (msg.header.gr == 0); # if a request

}

type DNS_rr(msg: DNS_message) = record {
Ir_name: DNS_name(msg);
rr_type: uint16; rr_class: uint16;
rr_ttl: uint32; rr_rdlen: uint16;
rr_rdata: DNS_rdata(msg, rr_type, rr_class)

& engt h = rr_rdlen;
} &let {

bro_gen_A reply: bool = bro_event_dns_A_reply(
$context.connection.bro_conn,
msg.header, this, rr_rdata.type_a)
& f (rr_type == 1);
bro_gen_NS_reply: bool = bro_event_dns_NS_reply(...);
& f (rr_type == 2);

type DNS_rdata(msg: DNS_message, Ir_type: uintl6,

h

rr_class: uintl6) = case rr_type of {
1 > type_a: uint32 &check(rr_class == CLASS_IN);
2 > type_ns: DNS_name(msg);
# Omtted: TYPE_PTR, TYPE_MX,
default -> unknown: bytestring &restof dat g

Figure 3.2: An (abridged) DNS parserlimpac
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# A DNS nane is a sequence of DNS | abel s
type DNS_name(msg: DNS_message) = record {

labels: DNS_label(msg)|[] &unt i | ($element.last);
}
# A label contains a byte string or a nanme pointer
type DNS_label(msg: DNS_message) = record {
length: uint8;
data: case label_type of {
0 -> label: bytestring &l engt h = length;
3 > ptr_lo: uint8;  # the lower 8-bit of offset
}
} &let {
label_type: uint8 = length >> 6;
last: bool = (length == 0) || (label_type == 3);
# If the label is a pointer
ptr_offset: uintl6 = (length & 0x3f) << 8 + ptr_lo
&i f (label_type == 3);
ptr: DNS_name(msg)
wi t hi nput msgdata(msg.sourcedata, ptr_offset)
&i f (label_type == 3);
b

fl ow DNS_Flow {
dat agram = DNS_message wi t hcont ext (connection, this);

# Returns the byte segnent starting at <offset> of
functi on msgdata(msgdata: const_bytestring,
offset: int): const_bytestring

o

/I Omitted: DNS pointer loop detection

if ( offset < 0 || offset >= msgdata.length() )

return const_bytestring(0, 0);
return const_bytestring(msgdata.begin() + offset,
msgdata.end());
%

<msgdat a>

Figure 3.2: An (abridged) DNS parserlinpac (Part 2)
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Integral and Composite Types

A binpac typedescribes both the data layout of a consecutive segmentte$ land the resulting data
structure after parsing. Typempty represents zero-length input. Elementary type8 , intl6
int32 represent 8-, 16-, and 32-bit integers, respectively, andiostheir unsigned counterpartsnt8 ,
uintlé , anduint32 . As the specification diTTP.ReplyLine shows (Figure 3.1), a string type can
be represented with a constant string (line 80), a regulpression (line 81), or a genetiytestring

either of a specific length (wit&length |, line 101) or running till the end of data (witrestofdata
line 92).

Elementary integer and string types map naturally to theimterparts in C++ (in the case of string,
we define a simple C++ class to denote the begin and end of ting)st This is how the results are
stored and accessed, with one exception. We allow a stririge tchunked to handle potentially very
long byte sequences, such as HTTP bodies, w&ctaunked attribute (Figure 3.1, line 100). A chunked
string is not buffered. Rather, with ti&processchunk attribute one may define computation on each
chunk to process the byte sequence in a streaming fashianingtance, to compute a MD5 checksum
for every HTTP body we may add&processchunk as follows (assumingompute _md5 maintains

intermediate results across chunks):

http_body: bytestring &chunked,
&l engt h = $context.flow.content_length(),

&pr ocesschunk$context.flow.compute_md5($chunk));

External C++types, includindool ,int , and user-defined ones (declared veiktern type ), can
be used in computation, e.g., as types of parameters, bubtappear as types of data fields in protocol
messages.

Users can define composite types: (&tord , a sequential collection of fields of different types;
(2) case , a union (in the C-language sense) of different types; apdrfdy , a sequence of single-type
elements.binpac generates a C++ class for each user-defined type, with déda figapped as class
members, and a parse function to process a segment of byggract various data fields according to the
layout specification.

As we compareecord andcase types with context-free grammar production rules, we canae

clear correspondence between them: a concatenation ofadgmitaps to aecord type and multiple
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production rules of a symbol map tocase type. But there is a difference in the latter mapping. In
the case of LR grammars, the choice of which production rtddsllow is determined by looking ahead
one or more symbols. In contrast, tbase type corresponds to a set of production rules vei¢ho look-
ahead Instead, a production rule is selected based on valuesrlidrefields—for example, DNS record
type determines how to parse the record contents—and, namerglly, an explicit indexing expression
computed from other data fields or type parameters (FigutelBe 99). This allows production rule
selection to be based on external information, and is iritgdmilar to “predicated parsing” introduced in
ANTLR [83]. On the other hand, the zero-look-ahead resaicsimplifies parser construction, but at the
same time poses little limitation on the range of protocbi tan be specified ibinpac . The reason
that there are few protocol syntax patterns that requir&-lmoead, we believe, is by design of protocols.
Since protocol data is generated and processed by progitdasnssually organized in a way that simplifies
the (traditionally hand-written) implementation.

Although an array can be defined with recursive productides;uwe find it a common enough idiom
in protocol syntax that it justifies a separate abstractlarbinpac , the length of an array can be spec-
ified with an expression containing references to other iakds, as in the definition dDNSmessage
(Figure 3.2, line 3-6). An array can also be defined withowgragth, but with some “terminate condition”
that indicates the end of array. Such a condition is spedifiezligh the&until  attribute with a condi-
tional expression. The expression can be computed frormihe data to each elemerdlifiput ), as in
HTTP.Headers (Figure 3.1, line 87), or from a parsed eleme$glement ), as inHTTP.Chunks (line
106).

Type Parameters

As the examples of HTTP and DNS parsers shgpe parameterée.g., in typeHTTP.Body, Figure 3.1,
line 98) allow one to pass information between types withregorting to keeping external state. This is a

powerful feature that can significantly simplify syntax sifieation.
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type NDR_Format = record {
# Note, field names taken from DCE/RPC spec.
intchar uints;
floatspec : uint8;
reserved : padding[2];
} &let {
ndr_byteorder = (intchar & 0xf0) ?
littleendian : bigendian;

h

type DCE_RPC_Message =record {
# Raise an exception if RPC version != 5

rpc_vers 1 uint8 &check(rpc_vers == 5);
rpc_vers_minor : uint8;

PTYPE : uint8;

pfc_flags : uint8;

# ‘drep’--data representation

packed_drep : NDR_Format;

} &byt eorder = packed_drep. ndr_byteorder

Figure 3.3: Specifying dynamic byte order wigbyteorder

Byte Orders

For use with binary protocoldiinpac allows the user to specify the byte order usinglayteorder
attribute. Figure 3.3 shows the specification of dynamiekytder in DCE/RPC, where at the bottom the
user specifies that the byte-order is taken fromrttie _byteorder  field that is defined earli€r.

In most cases we also want to propagate the byte-order sqaitifi along the type hierarchy to the
other types. Conceptually we can pass byte order betwees pa parameter (see Section 3.4.1), but in
practice the byte order parameter is required universallyfnary protocols. Adding a parameter to each
type would be tedious and clutter the specification. To stiieproblem, we designate “byteorder” as an
implicit type parametethat is always passed to referenced types unless it is redefinthe referenced
type. Thebinpac compiler traverses the type reference graph to find out whyiphs require byte-order
specification and adds byte order parameters to their parsgions.

We have not yet added support for ASCII vs. Unicodeébiiopac , though conceptually it will be

similar to the support for byte-order.

3We discuss the definition of “derivative fields” suchral _byteorder in Section 3.4.1.
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Derivative Fields

Sometimes it is useful to add user-defimktivative fieldso a type definition to keep intermediate compu-
tation results (see the definition BTTP.Chunk.chunk _ength in Figure 3.1, line 117), or to further
process parsing result®ilNSlabel in Figure 3.2, line 58-60). Derivative fields are specifiethivi &let

{... } attributes.

A derivative field may take one of two forms. First, a derivatiield can be defined with an expression,
in the form of ‘<id> = <expression> ", asinthe HTTP example.

Second, it can be evaluated by mapping a type onto a piecengiuted input, in the form of<id>:
<type> withi nput <input expression> ". Here <input expression> evaluates to a se-
guence of bytes, which are passed to the parse functictypie> as input data. Suctvithinput
fields allow us to extend parsing beyond consecutive andavenlapping pieces of original input data. For
instance, the computed input data might be (1) a reassenfffitggments (e.g. a fragmented DCE/RPC
message body), (2) a Base64-decoded Email body, or (3) a R® pointer, as shown in Figure 3.2, line
55-60. In the DNS example, a DNS label can be a sequence &f biyte“name pointer” pointing to a DNS
name at some specific offset of the message’s source dathe latter case, we definevethinput
field to redirect the input to the pointed location when pagsthe DNS name (and add an attribute
&exportsourcedata to theDNSmessage to make the input visible as varialdeurcedata ).

The derivative members are evaluated once during parsidgcan be accessed in the same way as
record or case fields in the generated C++ class. The ordedé¢hiaative fields, along with non-derivative
ones, are evaluated depends on only the data dependency éields; the order is undefined for fields that
do not depend on each other. (Note, this lack of orderinglibelate, as it keeps the door open for future
parallelization.) On the other harisinpac provides attributes for users to introduce artificial degemy
edges between fields, in case the user wants to ensure ang@rtaring among evaluation of fields.

Derivative fields are also used to insert custom computgsoch as event generation for theo

NIDS) into the parsing process, as discussed in SectioB.3.4.

3.4.2 State Management

Up to this point we have explored various issues in desagiltire syntax of a byte segment. To model

the state of a continuous communicatidanpac introduces notions oflow and connection A flow
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represents a sequencerfssagesnd state to maintain between messagescoAnectionrepresents a
pair of flowsand state between flows. Note that heomnectionsre not only TCP or UDP connections,
but any two-way communication sessions. For example, a BBE/connectionmay correspond to a
TCP connection on port 135, a UDP session to the Windows mgss@ort, or a CIFS “named pipe” (a
DCE/RPC tunnel through the CIFS protocol).

As shown in the HTTP example (lines 38), the declaration obm@nection consists of definitions of
flow types for each flow. The “upflow” refers to the flow from thenmection originator to the responder,
and the “downflow” refers to the flow in the opposite directidrike types, connections and flows can be
parameterized, too.

Without loss of generality, we assume a flow consists of aeaecgiof messages of the sabiepac
type. (If a flow consists of messages of different types, we exacapsulate the types with a case type.)
Thus one message type is specified for each flow, which weftemrunit type

When specifying the flow unit type, we also specify how inpatadarrive in a flow: it may arrive as
datagramseach containing exactly one message, orliyi@ streamwhere the boundary of data delivery
does not necessarily align with message boundaries, thieghytes are guaranteed to arrive in ortler.
The two input delivery modes are specified with keywoddsagram andflowunit , respectively, as

we see in the examples of DNS and HTTP parsers (lines 64 arngspgctively).

Per-Connection/Flow State

While type parameterization allows types to share inforomatithin a message, in some scenarios we have
to keep state at per-connection or per-flow level. For instan DCE/RPC parser needs to remember onto
which interface a connection is bound, so that requestsepits can be parsed accordingly. As Figure 3.4
shows, a SUN/RPC parser keeps a per-connection table tipgtsaasion ID’s to call parameters, and when
a reply arrives, the parser can find the corresponding cafimpaters by looking up the reply message’s
session ID in the table. Connection/flow state is specifiati mbedded C++ code and corresponding
access functions definedliinpac types.

Further abstraction of state is an important aspect of &utuork, as the abstraction can then expose

data dependencies in the protocol analysis and enable pattlelization or hardware realization. The

4Because the flows represent abstract flows, the delivery miballow does not always indicate whether the underlyingsiant
protocol is TCP or UDP. For example, while the DNS abstraet flikes input as datagrams, it is used for both TCP and UDRgeahe
in the case of TCP, an addition thin layer between the DNS aP¥é protocol delimits one DNS message from another in the TCP
byte stream.
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connecti on RPC_Conn(bro_conn: BroConn) {
%member

typedef std::map<uint32, RPC_Call *> RPC_CallTable;

RPC_CallTable call_table;
%
# Returns the call corresponding to the xid. Returns
# NULL if not found.
functi on FindCall(xid: uint32): RPC_Call
%
RPC_CallTable::const_iterator it = call_table.find(xid
if (it == call_table.end() )
return O;
return it->second;
%
function NewCall(xid: uint32, call: RPC_Call): void
%
if ( call_table.find(xid) == call_table.end() )
call_table[xid] = call;

%
#...
I
type RPC_Call(msg: RPC_Message) = record {
# ..
} &let {
# Register the RPC call by the xid
newcall: void = $context.connection.NewCall(msg.xid, th
}

type RPC_Reply(msg: RPC_Message) = record {
# ..
} &let {
# Find the corresponding RPC call.
call: RPC_Call = $context.connection.FindCall(msg.xid)

h

is);

Figure 3.4: SUN/RPC per-connection state
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main challenge in abstracting state lies in understandinigiwdata structures, such as hash tables, FIFO

gueues, and stacks, are commonly used in protocol parsgéraviding ways to abstract them.

The $cont ext Parameter

For types to access per-connection/flow state, the refessiodhe corresponding connection and flow have
to be given to the type parse functions through function ipatars. As the connection and flow might
be accessed by multiple types, we can propagate them asingaiameters to relevant types, just as the
byte order flag does. More generally, state can also be niaéttaat granularity other than connection
or flow, e.g., at a multi-connection “session” level. We aggate all such parameters as members of an
implicit contextparameter. The members of the context parameter are déelétteanalyzer <name>
withcontext at the beginning of dinpac specification (Figure 3.1, line 1). The member values are

instantiated in thevithcontext  clause in the flow unit definition (Figure 3.1, line 42).

3.4.3 Integrating Custom Computation

In ayacc grammar one can embed user-defined computation, such assyee generation, in the form
of C/C++ code segments, which the parser executes wheninggudes.binpac takes a slightly different
approach in integrating custom computation with parsintge @omputation (e.g., generating an eventin the
bro NIDS) is embedded through addidgrivative fieldgdiscussed in Section 3.4.1). As the definition of
typeHTTP.Header in Figure 3.1 shows (line 94-96) a0 eventfora HTTP header is generated by call-
ing an external functiobro _event _http _header in the definition of derivative fieldbro _gen _hdr .
The function is invoked after parsing the data fields it dejsesn,name andvalue of the header. Note

that these sorts of links are the only tie betweenttimpac specification for HTTP and thHero system.

3.4.4 Separation of Concerns

“Separation of concerns” is a term in software engineeritag tlescribes “the process of breaking a pro-
gram into distinct features that overlap in functionalig/ligtle as possible.” [127] In the case lohpac
one would want to separate the definition of a protocol's &yrfitom specifications of additional compu-
tation (such avro event generation) on parsing results, because such sepaatibws us to reuse the

protocol definitions for multiple purposes and across diffé systems. For the same reason, one may
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refine typeattr HTTP_Header += &l et
process_header: bool =
$context.flow.bro_event_http_header(name, value);

Figure 3.5: Separatinigro event generation from protocol syntax specification witfine

also want to separate specification of sub-protocols (eRLC Rortmapper and NFS) from the underlying
protocol (e.g., RPC) and from each other.

binpac supports a simple but powerful syntactic primitive to alleeparate expression of different
concerns—parsing vs. analysis, a lower-level protocohigher-level ones—and yet make the separated
descriptions semantically equivalent to a unified one. Emgliage includes a “refine typeattr” primitive
for appending new type attributes, usually additional\dsive fields, to existing types. For example, the
generation ohttp _header eventin the HTTP example (line 94-96) can be separated fhemprtotocol
syntax specification, as Figure 3.5 shows.

Such separation allows us to place related-but-distinfinitiens in differentbinpac source files. A
similar refine casetype primitive allows insertion of new case fields to a case typind®n (e.g.,
NFS.Params as a new case for RIP@rams), facilitating syntactical separation betweesadiorelated
protocols.

Note that the support for separation of concernbiimpac is not complete in two ways. First, one
cannot easily change the set of parameters of a type (orifumctvhich can limit extension of protocol
analyzers in some cases, an area for future exploratiororSebinpac does noenforceseparation of
concerns, or make it easier to describe things separatatydbscribing them together. Thus, we rely on

binpac users practicing a discipline of separating their concésnbetter code maintenance and reuse.

3.5 Parser Generation
Two main considerations in parser generation are (1) hagdticremental input on many flows at the same

and (2) detecting and recovering from errors. Below we exattiem in turn.

3.5.1 Incremental Input

One approach to handle incremental input is to make theqamiocess itself fully incremental, i.e., to

make the parse function ready to stop anywhere, buffer wgssed bytes at elementary type level, return,
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type DCE_RPC_Header =record

frag_length: uint16; # length of the PDU

type DCE_RPC_PDU =ecord
header: DCE_RPC_Header; # A 16-byte-long header

&i“engt h = header.frag_length;
Figure 3.6: Specifying buffering length of a type

and resume on next invocation. The parsing state of a coneptypie, such as eecord , can be kept by
an indexing variable pointing to the member to be parsed aedtta buffer storing unprocessed raw data.

However, incremental parsing at elementary type granylaiexpensive, because boundary checks of
adjacent fields can no longer be combined. Itis also unnageks all the protocols we have encountered.
As protocols are designed for easy processing, they oftea &aatural unit for buffering. Binary proto-
cols (such as DCE/RPC) often have a “length” header fielddbabtes the total message length. ASCII
protocols are usually either line-based (such as SMTP)terrslte between length-denoted and line-based
units (such as HTTP). Given such parsing boundaries, weestiliire support for incremental parsing, but
can carry it out at larger granularity and with reduced oeaih

Thus, binpac provides the attributelength and &oneline to specify buffering units
&length gives a message’s length in bytes whileneline triggers line-based buffering&length
usually points to a corresponding length field in the heaBiggure 3.6) but can generally take any ex-
pression to compute the length. Thimpac compiler performs data dependency analysis to find out the
initial number of bytes to buffer before the length expresstan be computed (in the case of a DCE/RPC
message, the first 16 bytes). The generated code will biféemtessage in two steps, first the initial bytes

for computing the message length, then buffer up to the éulfjth before parsing the remaining fields.

3.5.2 Error Detection and Recovery

Protocol parsers have to robustly detect and recover framuwsikinds of errors. Errors can be caused by
irregularity in real-world traffic data, including small stax deviations from the standard, incorrect length

fields, corrupted contents, and even payloads of a compldifférent protocol running on the standard

Spinpac s incremental analysis depends on the existence of thedisusgs. Viewing the record definitions as a tree of types,
each path from the root type to a leaf must contain one of theaman-leaf node.
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port of the parsed protocol. Errors can also result from impkete input, such as due to packet drops when
capturing network traffic. In these cases, the parser mighknow in the specific state of the dialog, e.qg.,
whether what it now sees on HTTP flow is inside a data transferot Errors may also arise through
incorrectbinpac specifications, e.g., through missing cases or trying tes&an unparsed case field, or
due to adversarial manipulation, as discussed earlier.

Parsers generated by thimpac compiler detect errors of various aspects, as we discussib@hen

an error is detected, the code throws a C++ run-time exaeptibich can then be caught for recovery.

Error Detection

Efficient Boundary Checking. Conceptually, boundary checking (whether scanning stétysnithe input
buffer) only need take place before evaluating every elg¢argrinteger or character type field, because all
other types are composed of elementary types. While it wbel@asy to generate the boundary check-
ing code this way, the generated code would be quite inefiicilnstead, thdinpac compiler tries to
minimize the number of boundary checks. The basic idea iforegenerating boundary checking code
for a record field, check recursively whether we can gendtraechecking for the next field. If so, we
can combine them into one check. In this way, the compilerdearmine the furthest field for which the

boundary checking can be performed at a given point of pgrsin

Handling dropped packets.When capturing network traffic, packet drops cannot alwayauwided. They
can be caused by a high traffic volume, kernel schedulingssr artifacts of the monitoring environment.
Such drops lead toontent gapsn application-level data processed by protocol parseexirfg content
gaps, parsers not only are unable to extract data for therumessage, but also may not even know where
the next message starts.

A particular, very common case of a content gap is one locatside a byte sequence of known
length. For example, within an HTTP entity body, a conterjt gan be handled without creating un-
certainty for subsequent protocol elements. If a byte secgiés defined a&chunked in a binpac
specification—and thus only passed to a potetj@ocesschunk function, but not further referenced
by other expressions—then the generated parser can sikiplpger such a gap. (K&processchunk
is defined for the sequence, the function is called with aigfigenarked “gap chunk” so it can take note

of the fact.) This mechanism allows us to handle most corgjaps for protocols in which the majority of
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data is contained in long byte sequences. Hand-writteropobiparsers irbro handle content gaps in a
similar way, but on an individual basis; the chunked bytmgtabstraction ibinpac allows them to be
handled universally for all protocols.

In general, it is trickier to handle content gaps which do fadit fall into a byte sequence of known

size. We discuss these below in Section 3.5.2.

Run-time type safety. The only access to parsing results providethitgpac parsers is via typed inter-
faces. These leaves two aspects of type safety to enforemdime: (1) among multiple case fields in a
case type, the generated code ensures that only the cass siected during parsing can be accessed,
otherwise it throws a run-time exception; (2) access toyagtaments is always boundary-checked. On the
other hand, note théiinpac cannot guarantee complete safety, as it allows arbitrabyegitied C++ code

which it cannot control.

User-defined error detectionA user may also define protocol-specification error checkimjng the
&check attribute. For example, one may check the data against sootecp! signature (e.g., the first
4 bytes of a CIFS/SMB message should bdfSMB ") to make sure the traffic data indeed reflects the

protocol.

Error Recovery

Currently errors are handled in a simple model: when the flave@ssing function catches an exception, it
logs the error, discards the unfinished message as well anfirecessed data, and initializes to resume on
the next chunk of data.

One potential problem with this approach is that, for strdzased protocols, the next message might
not be aligned with the next payload chunk. In the future veapb add support for re-discovering message
boundaries in such cases. Having such a mechanism will alpddfurther improve parsing performance,
as we can then skip large, semantically uninteresting ngessand re-align with the input stream after-

wards.
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Protocol Hand-written binpac

LOC | Time (seconds) Throughput LOC | Time (seconds) Throughput
HTTP 1,896 538-541 244 Mbps / 36.7 Kpps 676 442-444 298 Mbps / 44.7 Kpps
DNS 1,425 37.3-37.5 18.6 Mbps / 13.3 Kppg| 698 44.7-44.8 15.6 Mbps / 11.1 Kpps

Table 3.2: Number of lines of code (LOC), CPU time, and thigqug of protocol analyzers

3.6 Experiences withbi npac

We have usebiinpac to add protocol parsers for CIFS/SMB, DCE/RPC (includisgitd-point mapping
protocol) and NCP tdoro s traffic analysis enginé. To comparebinpac with handwritten protocol
parsers, we also rewrote the parsers for HTTP and DNS (andBB®G, which we have not yet evaluated)
in binpac . We use these latter to provide a comparison in terms of cizdeamid performance between
binpac -based and hand-written parsers.

As Table 3.2 shows, thkinpac -based parsers for HTTP and DNS have code sizes of roughly 35—
50% that of the hand-written parsers, measured in lines d¢¢ ¢and the same holds in source file sizes),
respectively. We also note that for both protocols, the Brecific semantic analysis comprises well over
half of thebinpac specification, so for purposes of reuse, the specificatimnsignificantly smaller than
shown.

To test the performance of the parsers, we collected a onethace of HTTP and DNS traffic at
Lawrence Berkeley National Laboratory’s network gatewa@ile HTTP subset of the trace spans 19.8M
packets and 16.5 GB of data. The DNS subset spans 498K parkk87 MB. The drop rate reported by
tcpdump when recording the trace was below 10~5.

Table 3.2 shows the CPU time required for each type of arglgsiing the minimum and maximum
times measured across 5 runs, using a 3.4 GHz Xeon systermgufreeBSD 4.10 with 2 GB of system
RAM. We also show the throughput in bits/sec and packetsfdeserving that on a per-packet basis, DNS
analysis is much more expensive than HTTP analysis, sinegy M@ TP packets are simply entity data
transfers requiring little work.

For these numbers, we disabled Bro’s script-level analykthe protocols, so the timings reflect the
computation necessary for the parser to generate the Briseerresponding to the application activity

(including TCP/IP processing and TCP flow reassembly) witliunther processing of those events.

8Given the complexity of CIFS, the parser does not yet coveetttire protocol, but only the commonly seen message types.
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We see that theéinpac HTTP parser performs significantly better than the handtamione. This
gain came after tuning the specification by addingteansient attribute toHTTP.header fields,
which instructsbinpac to not create a copy of the corresponding bytestring, imstbgtestrings will
point directly to portions of the input buffer. (Thereforamsient strings are visible only within the parsing
function of the type, while non-transient ones, which arpied, can be accessed after parsing.) We have
not yet applied the same tuning to the DNS specification; assalt; it allocates many more dynamic
objects, and copies more strings than the hand-written oas.dVe do, however, believe that tuning it will
prove straightforward.

We also note that in developing our DNS parser we found twaiignt bugs in the hand-written
parser’s processing. These related to using incorrect fiidiths and non-portable byte-ordering manip-
ulations, and provide direct examples of the benefit in teomsorrectness for specifying analyzers in a

high-level, declarative fashion.

3.7 Summary and Future Directions

This chapter presentsnpac , a declarative language for generating parsers of apmitdayer network
protocols from high-level specifications. Such parsersaaceucial component of many network analysis
tools, yet coding them manually is a tedious, time-consgpand error-prone task, as demonstrated by the
numerous severe vulnerabilities found in such programiserpist.

binpac reflects a different paradigm for building protocol parsesstracting their syntax into a high-
level meta-grammar, along with associated semantics. sepaenerator then translates the specification
into low-level code automatically. By providing such an tabstion, a programmer can concentrate on
high-level protocol aspects, while at the same time achiemectness, robustness, efficiency and reusabil-
ity of the code.

In spirit, this approach is similar to that embodied in the ofyacc for writing parsers for program-
ming languages, but many elements of the network analystdgamm domain require significantly different
underlying mechanisms. First, there are critical diffeenbetween the syntax and grammar of network
protocols and context-free languages. In addition, prsiogsnetwork traffic requires a fundamentally dif-
ferent approach in terms of handling input, namely the giiti incrementally parse many concurrentinput

streams.
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Our domain-specifibinpac language addresses these issues with a set of networKisfeaiures:
parameterized types, variable byte ordering, automatieegaion of boundary checking, and a hybrid
approach of buffering and incremental parsing for handtongcurrent inputbinpac supports both bi-
nary and ASCII protocols, and we have already used it to paiders for HTTP, DNS, SUN/RPC, RPC
portmapper, CIFS, DCE/RPC (including the endpoint mapmeryl NCP. We integrated all of these into
the Bro NIDS, replacing some of its already existing, matyuatitten ones. Our evaluation shows that
binpac specifications are 35-50% the size of handcoded ones, wifbrdiocol description (independent
of the user’s analysis semantics) comprising less tharofittie specification. Our HTTP parser runs faster
than the handcrafted one it replaces (and with equal menmargumption), and we are confident that the
DNS will likewise soon exhibit performance equal to the armmeplacesbinpac is open-source and now
ships as part of the Bro distribution.

In the future, along with specifying further protocols limpac , we envision exploiting its power
in two areas. First, we wish to explore the reusabilitybafpac -generated parsers by integrating them
into additional network tools. Second, we intend to add baa#s other than C++ toinpac to generate
parsers for different execution models. As proposed in,[88 specifically aim to build highly parallel

parsers in custom hardware.
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Chapter 4

A Programming Environment for Trace

Anonymization

Packet traces of operational Internet traffic are invaledablnetwork research, but public sharing of such
traces is severely limited by the need to first remove alliigasnformation. Current trace anonymization
technology leaves only the packet headers intact, coniplstepping the contents; to our knowledge,
there are no publicly available traces of any significané ¢tmt contain packet payloads. This chapter
describe a new approach to transform and anonymize paeketstr Our tool provides high-level language
support for packet transformation, allowing the user tatevshort policy scripts to express sophisticated
trace transformations. The resulting scripts can anongrhizth packet headers and payloads, and can
perform application-level transformations such as editiT TP or SMTP headers, replacing the content
of Web items with MD5 hashes, or altering filenames or replyesothat match given patterns. The chapter
also discusses the critical issue of verifying that anomatidns are both correctly applied and correctly
specified, and experiences with anonymizing FTP traces frenhawrence Berkeley National Laboratory
for public release.

The rest of this chapter is organized as follows. The nexi@e@resents background and problem
statement. Section 4.2 enumerate goals of this work. Sedt® describes generic packet trace transfor-
mation. Section 4.4 explores issues in trace anonymizaRefated work is discussed in Section 4.6. The

chapter concludes with a summary in Section 4.7.
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4.1 Problem Statement

Researchers often use tools such@slump to capture network packet traces. Packet traces recording
real-world Internet traffic are especially useful for resteon traffic dynamics, protocol analysis, workload
characterization, and network intrusion detection. Hosvesharing of Internet packet traces is very limited
because real-world traces contain many kinds of sensitif@ration, such as host addresses, emails,
personal web-pages, and even authentication keys. Thestraast be first “anonymized” to eliminate any
private information, for example, IP addresses, user IDd,@asswords, before they can be shared among
researchers.

To date, Internet packet trace anonymization has beerelihd only retaining TCP/IP headers [132,
91], with IP addresses renumbered and packet payloads etehyptemoved. The lack of traces with
application layer data greatly limits research on appiicaprotocols. It is especially crippling for net-
work intrusion detection research, forcing researchedetdse synthetic attack traces that often lack the
verisimilitude of actual traffic in critical ways, resultrin errors such as grossly underestimating the false
positive rate of “anomaly detection” techniques. [61, 9]

In this work we develop a new method to allow anonymizatiopatket payloads as well as headers.

Traces are processed in three steps:

1. Payloads are reassembled and parsed to generate dpphpaitocol-level, semantically meaningful

data elements.

2. A policy script transforms data elements to remove siesibformation and sends the resulting

elements to the composer.

3. The trace composer converts application protocol damehts back to byte sequences and frames
the bytes into packets, matching the new packets to thenafigas much as possible, in order to

preserve the transport protocol dynamics.

Parsing allows the trace transformation policy script tempe on semantically meaningful data ele-
ments, such as user names, passwords, or filenames, makityggmipts more concise and comprehen-
sible than those operating directly on packets or byte setpgee Working at a semantic level also gives
the opportunity for less draconian anonymization policiesr example, the added information that the

string “root " appears in a filename ffoot/.cshrc ") rather than as a user name might, depending on
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a site’s anonymization policy, allow the string to appeaaimanonymized trace, whereas a purely textual
anonymization would have to excise it, because it could afetg verify that the occurrence did not reflect
a user name.

The design of trace composer aims to generate “correctegiafor instance, as payload data is mod-
ified, checksums, sequence numbers, and acknowledgmenasljisted accordingly. The output traces
just look as if they were collected from the real Internetept that they do not carry private information.
Accordingly, analysis tools that work on raw traces willdikise work on the anonymized traces.

In order to make the anonymization process amenable toatadidl we follow a “filter-in" principle
throughout our design of the anonymizer: instead of foaysin “filtering out” sensitive information, the
anonymizer focuses on what, explicitly, fetain (or insert, in a modified form) in the output trace. With
this principle, it becomes much easier to examine a poligpsfor privacy holes.

An optional “manual inspection” phase can keep more noitea information in the output trace
as the general anonymization script may have to make ccatsenjudgments for some data elements;
for example, whether to allow the commandUSERto appear in a trace of anonymous FTP traffic (the
presence of such a typo can be useful for some forms of asatgih as anomaly detection).

We implemented the anonymizer as an extensidireo [89], a network intrusion detection system, to
take advantage of its application parsers and its builtamguage support for policy scripts.

Beside anonymization, our tool can also be used for generie ttransformations, providing a great
degree of freedom and convenience for various types tramsfiton. For example, we can take a trace of
FTP traffic and remove from it all the connections for which tlser name was noahonymous ”; or all
the ones for which the FTP authentication was unsuccessftiipse that do uploads but not downloads. A
different type of transformation is for testing networkrindion detection systems by inserting attacks into
actual background traffic by slightly altering existingniign connections present in a trace. Still another
type of transformation is to remove large Web items from HEBRnections (including persistent sessions
with multiple items) in order to save disk space (see Seecti8m).

In a sense, the tool spells the end of traces as being stand-evidence of any sort of application-level
network activity, since it makes it so easy to modify whatecé purports to show.

We developed trace transformations for FTP, SMTP, HTTRy&iirand Ident. As a test of the approach,
we anonymized FTP traces from the Lawrence Berkeley Naltiogizoratory (LBNL). Besides testing the

technology, one of the important questions behind the és&wmas to explore what sort of anonymizations
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a site might require, and being willing to abide, for publaase of traces with contents. To this end,
working with the site we devised an anonymization policyegtable to the site and approved for public

release. The corresponding traces are available from [79].

4.2 Goals

We designed the transformation tool with the following goial mind:

1. Policy scripts operate on application-protocol-levaladvalues. This means that instead of oper-
ating on packets or TCP flows, a policy script sees typed améstcally meaningful values (e.g.,
HTTP method, URI, and version). Likewise, the trace trammsfttion scripts also specify application-
protocol-level data to the output trace, without needindittate the details of generating the actual

packets.

2. The output traces contain well-formed connections: ptckave correct checksums and lengths,
TCP flows can be reassembled from the resulting packets, @ltation-protocol data has correct
syntax, so that other programs can process the transformed tra¢ks s5ame way that they handle

originaltcpdump traces.
3. The mechanism supports generic trace transformaticsiddsanonymization.

4. The anonymization is “fail safe” and amenable to verifaat Fail-safety means that the privacy
resulting from the anonymization does not depend on theatiwdlthe policy script being completely
correct. Being amenable to verification means it is easy éoneée and validate the policy script, the

anonymization process, and the output trace.

The first and third goals dictate where to separate mechaarsinpolicy: (1) the mechanism part
should parse the input trace éxposeall application-protocol semantic elements, e.g., conasareply
codes, MIME header types; (2) the mechanism should notetisaw the values are changed, but leave that

to the policy script. We discuss mechanism and anonymizatidicy in the next two sections, respectively.

10r not, if the policy script decides to keep the “dirtines$'tte original trace.
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Figure 4.1: Data Flow in Trace Transformation

4.3 Generic Trace Transformation

Trace transformation consists of three steps: parsing tlahsformation, and composition. These are
shown as the right-hand components of Figure 4.1. The gaesid composition parts do not depend on
the type of trace transformation, and we have implementecthtin bro as built-in mechanisms. The
second step (data transformation) is fully programmaldejdver, and so is implemented abra policy
script.

We first look at the process from the viewpoint of the policyis focusing on the trace input/output

interface, and then discuss details of trace parsing angbosition.

4.3.1 Policy Script Programming Environment

Thebro policy script language is procedural, with strong typingttimcludes support for several network-
specific types (e.g., addresses and ports), as well asyeetatd absolute time, aggregate types (hash tables
and records), regular expression matching, and string podation. More details about theo language
can be found in [89, 86].

From the point of view of a policy script, the parsing parbi® 's event engine, and the composer is a
family of library functions, which we call “rewrite functits”.

A policy script for a protocol usually contains several “aevbeandlers”, which are execution entry points
of the script. Through event parameters, each event haretieives protocol-semantic data elements as
well as a record corresponding to the particular TCP conmecAn event handler may call other functions

to process the data, and writes the transformed data to ttpeitosace by calling the rewrite functions.
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When calling a rewrite function, the policy script specifeesonnection, and sometimes also direction of
the flow, to write the data to. The destination connectiorsigally the same connection of the event, but
can also be any other connection present in the input traibe aame time.

For example, aline in an SMTP messa®XIL From:<alice@bob.org> \r \n"arriving on con-

nectionC' generates the following event:

smtp_request(
conn: connection = C,
command: string = "MAIL",

argument: string = "From: <alice@bob.org>")

The policy script receives the command and argument andlégevhat to write to the output trace—e.qg.,

it could call:
rewrite_smtp_request(C, "MAIL", "From: <namel23@domain 111>")

to change the sender in the trace froatiCe@bob.org " to “namel23@domain111”.
There is usually a correspondence between protocol evemtsewrite functions: e.g., for event
smtp_request , there is functiorrewrite_smtp_request , and they have the same or very sim-

ilar set of parameters.

Explicit Rewriting . Note that the trace composer API requires explicit rewrite., for a data element to
get into the output trace, it must be explicitly placed thigyehe policy script calling a rewrite function.
Alternatively, another style we could have chosen for thmposer API would be to have the policy script
only specify data elements that shoulddb@angedand pass the rest through unmodified. With this style, we
could implement a single generic interface by which scvmsild directly specify the element to change.

For example, the SMTP rewrite above would be specified as:
modify _element(smtp_request_arg, "From: <namel23@doma in111>")

and the composer would alter the location in output traceipiex by the variablemtp_request_arg
to contain the new text rather than the original.
While appealing because a single rewrite function woulfisaifor all protocols (though the application

parsers would have to annotate each script variable withdtgion in the connection’s byte stream), instead
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of having a family of rewrite functions for various protosplve choose the heavier API because it presents
a safer interface for trace anonymization. First, reqgjexplicit rewrite forces the policy script writer to
put consideration into every element, so it will be lessliikinat they overlook a privacy hole. Second,

it is easier for other people to examine a policy script favgey leaks, as the examiner only needs to
look at elements written in the script (rather than havingdep in mind all the protocol elements that are
implicitly not being changed because they don’t show up éndtript). This design choice shows how the
“filter-in” principle affects our design. Additionally, th interface allows type-checking on trace-rewrite

operations to catch inconsistency between output dataegitsm

4.3.2 Trace Parsing

Trace parsing usually consists of three steps: flow readsmgmlifoptional) line breaking, and protocol-

specific parsing.

Flow Reconstruction bro s application parsing begins by reassembling IP fragmeantsthen reassem-
bling the TCP byte stream. (We ignore hére ’'s UDP processing, though our techniques could be applied
to it, too.) In case of TCP retransmission or packet reordgiihe bytes that arrive first are not delivered
until the gap is filled, at which point the bytes are delivei@gether. For example, suppose an SMTP com-
mand arrives in three packets with the last two in reverseortMAIL Fro ”, “bob.org> \r\n”, and
“m:<alice@ ". The reassembler will emitMAIL Fro " on the first packet arrival, nothing on the second

because it comes out of order, and:¥alice@bob.org> \r \n" after processing the third packet.

Breaking into Lines. Many protocols (e.g., SMTP, FTP, the non-data part of HTi®tess application
data one line at a time. For such protocols, there is an irgdiate step that structures the bytes from
reassembler into lines before protocol-specific parsirdiowing the above example, the line divider will

emitaline ‘MAIL From:<alice@bob.org> " after it sees\r \n.

Protocol-Specific Parsing The parser takes plain bytes as input and emits typed andrgeally mean-
ingful data fields. It first divides the bytes according totpmml syntax, then converts bytes of each field
to typed values—e.g., string, integer, boolean, recordd-gnoups the values by events, finally placing
the events in an event queue. (As event parameters, eackldatant carries a semantic meaning.) Cur-
rentlybro has parsers for most commonly seen protocols, including/B€E, DNS, FTP, HTTP, MIME,
Netbios, NFS, Rlogin, RPC, SMB, SMTP, SSH, and Telnet.
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A major challenge in parsing is that the parser often cantriwttly follow the RFCs that define the
application protocol, since in practice there are freglyed¢viations from the letter of the standards, or

deficiencies in the traffic being analyzed. Two particuldfidilties relevant for our discussion are:

Line Delimiters Line-oriented protocols (e.g., SMTP, HTTP) generally grecified to use the two-byte
sequence CRLF\( \n) as the delimiter between lines. However, some end hostsratisrpret single LF
(\n ) and/or CR \r ) as the end of the line. Ideally, we would like to identify whidelimiter each host

uses, and consistently apply that interpretation.

Content Gaps For traces captured under high-volume traffic conditisnetimes the packet filter fails
to capture all of the packets. Such “content gaps” are géperasolvable, but we found that most of them
occur within the data-transfer section of an applicatiaialj rather than in the command/reply exchange.
We developed a content gap recovery mechanism for SMTP aridPHfiat skips over gaps that appear
consistent with being wholly contained within a data tr@nstVith this heuristic, we find that most content
gaps no longer disrupt parsing. (We note that content gapaslso delivered as events, and the policy script
may decide to eliminate them or keep the gaps in the outpee fra

In summary, there can be some loss of fidelity when data goeadh the trace parser. This is in fact

a general problem for any network monitoring tools.

4.3.3 Trace Composer

The trace composer consists of rewrite functions and a pagkeerator. As discussed above, the rewrite
functions are called during event processing. A rewritecfiom generates a byte string on each invocation
and buffers the string for the packet generaton then invokes the packet generator to process buffered

bytes and generate output packets. Below we look at theteefunctions and packet generation in detail.

Rewrite Functions

A rewrite function performs the inverse of parsing: it parthe typed data elements to a byte string in
a protocol specific format, placing them in the right orded auding proper delimiters. For example,
rewrite_finger_request takes four parameters:(the associated connection, of tygmnnection
which is a record of connection informatiori})l  (a boolean flag indicating whether the Finger request

was for the “full” format),username andhostpart (both strings). The rewrite function concatenates

51



username andhostpart , adds\\n to the end, and insertgW " to the beginning of the line when
full is true. Thus, with paramete($, "alice", "host123") , the function generates the string

“/W alice@host123\r\n ", and with parameteré~, "bob", ") , it generatesbbob\r\n .

Rewrite Function Compiler. When implementing the rewrite functions for various pits, we found
a number of commonalities: they all need to convedt values to C++ native values and fetch the con-
nection object, and for each built-in function we need tatevabro -language prototype declaration and
add initialization code to bind thlero built-in function to the C++ function. So we looked for ways t
facilitate code reuse to avoid the tedious and error-prask of repeating the similar code at each place.
To do so, we developed a “rewrite function compiler”. We weriewrite functions withbro -style
function prototypes and C++ bodies. The compiler insertiedor the value conversion and connection
record fetch, extractbro function prototypes, and generates function binding codéth the rewriter
compiler, most rewrite functions can be implemented withuaid 10 lines of code each. Figure 4.2 shows
the source code and the resulting C++ coderefvrite_finger_request ”. Note that each rewrite
function has a hidden first parametec: “ connection ", which is inserted into the C++ code and the
bro prototype during compilatioA.

Currently we have implemented rewrite functions for FTP,THTSMTP, Finger, and Ident.

Packet Generation: Framing

After rewriter functions emit byte sequences, gaeket framedecides how to pack the bytes into packets.
It cares about (1) whether the bytes should fit into a singlketaor be split across multiple ones, and
(2) what timestamp to attach to each packet.

The central concern of the packet framing algorithm is topk#he traffic dynamics as close to the
original as possible and yet to remain transparent to thieyostripts. For example, an HTTP request can
be transmitted line-by-line, one packet per line, or all iregoacket; for each of these cases, we would like
the rewritten request to maintain the original packet strrecand the timestamps.

Note that we cannot directly reuse the packet structureessind ordering—of the input trace because
there is not necessarily a one-to-one mapping between byti® input and output traces, as a policy
script can change data lengths, insert or remove objectshamge the ordering among objects. So in

general it is only possible tapproximatethe original dynamics. Also, because the policy script dogs

2The boolean variable “i®rig = 1” means the direction of the TCP flow is from the coniwtoriginator (the Finger client).
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[Source Code]

# Write a finger request to trace.
rewriter finger_request %(full: bool,
username: string, hostpart: string%)

%{
const int is_orig = 1;
if ( full )

@WRITE@(is_orig, "/W ");
@WRITE@(is_orig, username);
if ( hostpart->Len() > 0 )
{
@WRITE@(is_orig, "@");
@WRITE@(is_orig, hostpart);
}
@WRITE@(is_orig, "\r\n");
%}

[Resulting C++ Code]

Val * bro_rewrite_finger_request(val_list * BiF_ARGS)
{
if ( BiF_ARGS->length() != 4 )
{
run_time("finger_request() takes exactly 4 argument(s)" );
return O;
}
TCP_Rewriter * trace_rewriter = get_trace_rewriter(( * BiF_ARGS)[0]);
if (! trace_rewriter )
return O;
int full = (int) (( * BiF_ARGS)[1]->AsBool());
Stringval * username = (StringVal *) (( *BiF_ARGS)[2]->AsStringVal());
StringVal * hostpart = (StringVal *) (( *BiF_ARGS)[3]->AsStringVal());

const int is_orig = 1;
if ( full )
trace_rewriter->WriteData(is_orig, "W ");
trace_rewriter->WriteData(is_orig, username);
if ( hostpart->Len() > 0 )
{
trace_rewriter->WriteData(is_orig, "@");
trace_rewriter->WriteData(is_orig, hostpart);
}

trace_rewriter->WriteData(is_orig, "\r\n");

return O;
} /I end of finger_request

Figure 4.2: Source and the Resulting C++ Code of a Rewriteftam
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explicitly specify the mapping between original and newadatbjects, when it calls rewrite functions, the
trace composer has to derive an implicit temporal mappiogfbytes to packets, as follows.

In the common case, transformed data is written to the sankeflo® (i.e., same direction of a TCP
connection) as the input packet currently being procesBed framer places the bytes in tberrent output
packet If the payload size exceeds the MTU, it generates anothpubpacket with the same timestamp
to hold the rest of the data.

Usually the data written by the policy script originatesrfralata in the current input packet; thus, the
output trace has a similar packet structure as the input ttdowever, there are two cases in which the data

to write actually comes from an earlier or later input packet

1. When an event consists of data from multiple packets, #t& hay range across packet boundaries
or appear in retransmitted packets. In this case, the wamsid data will be written with respect to
the last packet associated with the event, i.e., the padkesevarrival makes the trace parser generate

the event.

2. In some cases, the policy script cannot decide immegliateht to write before seeing later data.
For example, when rewriting HTTP messages, the new Cohiemith header for an HTTP entity

cannot be decided until the entity is entirely transformed.

For the first of these, we find it tolerable to simply assodilagedata with the event’s last packet, because
to do otherwise would require a great deal of work—tracingheavent parameter’s origin throughout
the trace reassembly and parsing hierarchy in order to kmowm fexactly which input packet the data

originates.

Deferring Writes. The second case, of the policy script having to defer itasfia@mation decision,
presents a larger problem, because it not only leads to itigadimestamps for output packets, but also
causes inconvenience for transformation script programgmin the HTTP message case, the Content-
Length header has to be written before the data entity, sedtigt must buffer up all the transformed data
entity until it finishes processing the entire entity. To el this problem, we added support for deferring
writes so that the script can essentially write packets éataer.

The trace composer supports deferring writes by allowirggghblicy script to reserve slots in current
output packets. The script may then seek the reserved stoliaser point, write data to it, and release the

slot. (Figure 4.3)
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# Reserve a slot when the original Content-Length header
# arrives on connection ¢
msg$header_slot = reserve_rewrite_slot(c);

# After the entire data entity is processed, seek the
# slot
seek_rewrite_slot(c, msg$header_slot);

# Write the header to the slot
rewrite_http_header(c, is_orig, "Content-Length",
fmt(" %d", data_length));

# And release the slot
release_rewrite_slot(c, msg$header_slot);

Figure 4.3: Deferring Writes to HTTP Content-Length Header

Packet Generation: TCP/IP header fields

Once packet payloads are determined, the trace compoaehast TCP and IP headers to output packets.
Also, if no data is written in the current packet cycle, bug thace composer needs to construct a packet
to carry a TCP flag (SYN, RST, or FIN) or simply an acknowledgmé generates an empty packet and
attaches the headers to the packet.

For every output packet, the trace composer first fetches@ieand IP headers of the most recent input

packet on the same TCP flow and generates the new headers Hyimpthe following header fields:

1. If the trace is being anonymized, the source and destimatiidresses in the IP header are anony-

mized, as discussed in Section 4.5.2.

2. As the output trace does not have IP fragmehts (reassembles fragments early in its protocol
processing, making it too difficult to track their contribmrt to the final byte stream), the composer

clears fragment bits in the IP header.

3. The composer keeps the original IP identification fieldes® the (source IP, ID) pair has already

appeared in the output trace, in which case we incremenfthidl ho conflict is found.

4. TCP sequence/acknowledgment numbers are adjusteddotméw data lengths, as is the IP packet

length field. The composer then recomputes the TCP and IFkshers. (Note that, similar to the
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case of fragments in the input trace, becaoise discards packets with checksum failures early in

its processing, it is too difficult to propagate checksunoesrinto the transformed output.)

5. Currently the composer discards IP options, becdmse lacks an interface to access them, and
some of them would take significant effort to address. Thepmsar keeps certain TCP options,
such as maximum segment size, window scaling and SACK raggoti(but not SACK blocks, due
to the ambiguity of the location of the SACK'd data in the sBormed stream), and timestamps; and

replaces other options with the NOP option.

6. TCP flags are propagated, except that the composer rerievE#N flag. This is because additional
packets may be inserted after the last one present in theé stq@am, and these must still be num-
bered in the sequence space before the final FIN to comply V@ semantics. We can imagine a
“conceptual” FIN that is reordered together with the pag®and comes only at the end of the data
flow. Therefore, the trace composer inserts a FIN flag onlymthe flow reassembler has delivered,

and the transformation script has processed, the last obitthie flow.

4.3.4 Trace Rewriters for Trace Size Reduction

As a demonstration of the utility of trace transformatioraieidition to anonymization, we implemented
trace rewriters for HTTP and SMTP to reduce 8ieeof traces rather than the privacy of their embedded
contents. At LBNL, for example, the volume of HTTP trafficerfitexceeds 50 GB per day. The site wants

to continuously record this traffic (for intrusion detectianalysis), but the volume proves problematic.

HTTP trace rewriter replaces HTTP entities beyond a specified size with their MBéh values, changes
the Content-Length header to reflect the new data lengthkeeps the original Content-Length and the
actual data length in an “X-Actual-Data-Length” headere(é@pendix 7.3 for an example). Testing it
on a 729 MB trace file, and setting the threshold to 0 bytes l(senéties are replaced by hashes), the
rewriter reduces the trace size to 25 MB, a factor of 29. If wenpare theyzippedsizes of the traces
(which the site often does with traces, in order to keep thamgér before the disk fills up), the reduction
becomes a factor of 69 (from 377 MB to 5.5 MB). Alternativelyg can implement more selective size
reductions, such as stripping out only non-HTML objects ides to keep the cross-reference structure
intact. Operationally, the site keeps the first 512 bytesagheentity, and keeps those with a MIME type

of “text” in their entirety; this results in about a factor b in size savings, yet retains enough information
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for intrusion analysis—one can analyze most HTTP attacksdmesulting traces to determine whether the

attacks succeeded.

SMTP trace rewriter replaces mail bodies with MD5 hash values and size infomnatbut keeps all

SMTP commands/replies and mail headers.

4.4 Trace Anonymization

In this section we discuss general issues in trace anonyiotizand analyze four types of possible attacks
against anonymization. against any anonymization schermevitably dependent on the specific policy

approved by the site, the general techniques are oftencafyidi to many sites and protocols.

4.4.1 Objectives of Anonymization

The information we try to hide through anonymization fafigoi two categoriesdentities including iden-
tity of users, hosts, and data; and confidendiifibutes e.g., passwords, or specifics of sensitive user
activity [30].

The first step of developing an anonymization scheme is taddeghat information in the trace we
need to hide. For example, in anonymizing FTP traces, we aildeidentitiesof clients, private data
(hidden files), and private servers; and sensititteibutes e.g., passwords, authentication keys, and in
some cases filenames.

Confidential information can be exposed via direct meanferred via indirect means. Therefore,
to hide the identity of client hosts, it may not be enough & anonymize their IP addresses. We analyze
four kinds of inference attacks that may reveal confidemirmation through indirect means, but before

doing so we first discuss the anonymization primitives, hew we anonymize basic data elements.

4.4.2 Anonymization Primitives

Constant Substitution. One way to anonymize a data element is to substitute thewdHtiaa constant,
e.g., replace any password with the strirgpassword> "
Constant substitution is usually used to anonymize contiiglesittributes. Applying constant substi-

tution to identifiers (e.g., IP addresses), however, is gdlyaundesirable, as we would then no longer be
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able to precisely distinguish objects from one anothertebd, identifiers are usually anonymized with a
1-1 mapping, such as sequential numbering or hashing, sthihanonymized identifiers are still unique,

as follows.

Sequential Numbering We can sequentially number alistinctidentifiers in the order of appearance,

e.g., mapping files names télel ”, “file2 " etc.

Hashing. One shortcoming o$equential numbering that we have to keep the whole mapping history
to maintain a consistent mapping during the anonymizatioggss and across anonymizations. Instead,
we can use a hash function as the mapping. Doing so requiradditional state during the anonymiza-
tion process, and in addition using the same hash functimsa@nonymizations will render a consistent
mapping (assuming that the range of the hashing functioargelenough so that likelihood of collision
is negligible). To preserve confidentiality, the hash fimtimust be one-way and preferably resistant to
chosen plain-text attack, so that an adversary can neitbgo\er the input from the output nor compute the
hash by themselves. HMAC-MD5 (with a secret key) satisfies¢lrequirements. Assuming the adversary

can neither reverse MD5 nor extract the secret HMAC keyhingis as secure asequential numbering

Prefix-Preserving Mapping. Sometimes it is valuable to preserve some of the structetationships
between the identifiers, whidequential numberingndhashingcannot do. For example, IP addresses can
be anonymized in a prefix-preserving way [66, 132] such thgttavo IP addresses sharing a prefix will
share a prefix of the same length in their anonymized formfiRpeeserving mapping can be similarly
applied on the directory components of file names. While dpaimluable for some forms of analysis,
prefix-preserving mapping also reveals more informatiooudithe identifiers and thus is more vulnerable

to attacks [135].

Adding Random Noise We can add noise to numeric values, e.g., file sizes, to ntekeesult more
resistant to fingerprinting attacks such as matching filessiz the trace with public files [114]. We have not
applied this primitive in our experiments, however, so wendb have experience regarding how effective

it is and the degree to which it diminishes the value of thedra
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4.4.3 Inference Attacks

Besides anonymizing certain identifiers and attributeditnieate direct exposure of identities and secret
data, we also consider rewriting other data fields to preweditect exposure In order to understand
which data should be anonymized, we need to analyze how arsaty might use additional data to infer
confidential information. Below we discuss four kinds ofdarénce techniques and how they relate to our

FTP anonymization efforts.

Fingerprinting

“Fingerprinting”is the notion of an adversary recoverihg identity of an object by comparing its attributes
to attributes of objects known by the adversary. In ordemdsathe adversary has to know the fingerprints
of the candidate objects. Thus, they cannot, for exampkgoster a previously unknown FTP server
through fingerprinting.

We present here a brief analysis of possible fingerprintimmgur anonymized FTP traces, to convey the

flavor of problem:

1. Fingerprinting files: possible for public files, by lookifor matches in file sizes, similar in spirit to

the techniques of Sun et al [114].

2. Fingerprinting servers: possible for public servers thy structure of their reply messages (espe-
cially the220 greeting banner), help replies, SITE commands, or througjefprinting files on the

server. Itis unclear to us whether it is possible to fingergservers by analyzing response timing.

3. Fingerprinting clients: there are at least two possikdgsvo fingerprint clients: (1) when the client
displays some peculiar behavior known to the adversaryth@ugh “active” fingerprinting: the
adversary inserts a fingerprint for a certain client by seggtiackets to the trace collection site with
a forged source address of the client’s host address, anddbks for how these were transformed

in the anonymized trace.

While fingerprinting public files and servers can expose agagjterns, this does not appear to be a
serious issue becausdomade the access is not exposed.
Fingerprinting clients, on the other hand, would in someuwinstances pose a significant privacy threat.

But this is generally difficult for the adversary to accomspli For the first type of fingerprinting, the client’s
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sessions must possess peculiarities that survive the anpatjon process, and the adversary must discover
these. For the second type of fingerprinting, the fingergras to be inserted during trace collection. We
discuss a defense against active fingerprinting, “knowdesiparation”, in Section 4.4.3.

A patrticular threat is that a class of clients displayingtaier peculiar behaviors will stand out from
other clients. If we want to eliminate this threat, we sheoelichinate or blur the distinction among client

behaviors—which might significantly reduce the value oftiiage.

Structure Recognition

Similar to fingerprinting, the adversary may also explod@ tructure among objects to infer their identities.
For example, traces of Internet traffic often include segjabaddress scans made by attackers probing for
vulnerable hosts. By assuming that an anonymized traceapiplincludes such scans, an adversary can
hunt for their likely presence, such as by noting that a sesfeunanswered SYN packets occur close
together in one part of the trace, or that (when usiaguential numberinguddenly a group of new hosts
appears inthe trace. They can then infer the original addsesf other hosts by the sequence they occupy in
the scan, given the assumption that the scan started atieutmrbase address and proceeded sequentially
up from it [104]. In addition, if the adversary has identifiadingle host in the trace (say a well-known
server), they can then calibrate their inference by configrihat it shows up in the scan in the expected

sequence.

Shared-Text Matching

When attributes or identifiers of different objects share shme text, the unmasking of one can lead to
exposure of the other. For example, if there is both a usererialice” and a file name “alice”, the user
name will be exposed if the adversary can identify the fileadoid this attack, we apply “type-separation:
the user name “alice” should be anonymized as the stringtadiee”, and the file name as “file+alice”.
Generally it is good practice to avoid using the same texdistinct objects (e.qg., files with the same name
on different servers) unless there is some trace analykig #adoing so. The attack on prefix-preserving
IP anonymization also exploits shared-text matching faceding effects, where the shared text is the

prefix.
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Known-Text Matching

When both the original text and the anonymized text are kntaihe adversary, they can identify all
appearances of the anonymized text in the trace. The kngelestjuired for a known-text attack is often
obtained through fingerprinting.

One example is a “known server log” attack: if the adversarams the log of a server present in
the trace, they may be able to identify the mapping betweiemtchddresses and anonymized addresses
through fingerprinting, and then unmask the clients’ atiigion other servers. (Obtaining such logs is
sometimes not difficult—for example, occasionally a queratsearch engine will find them, because the
logs are maintained in a publicly accessible manner.)

Another example is if the adversary can insert traffic withegi strings, such as a particular user ID,
into the trace, similar to the “active fingerprinting” disaed above. They can then observe how the string
was mapped, and look for other occurrences of the resukéixign order to unmask instances of the same
original text.

A general method to counter known-text attacks is througioWidedge separation”. This is similar
to the type-separation defense against shared-text matcliscussed above. For example, to counter a
“known server log” attack, we can anonymize a client IP défely depending on the server it accesses.
To counter the user ID insertion attack, we can anonymize lidsedifferently depending on whether the
login is successful or not (an alternative is to anonymizr UBs depending on the client’s IP address).
Similarly, “active fingerprinting” with forged source IPai defeated by anonymizing addresses differently
for connections that are never established, since the salres will fail to complete the TCP three-way
handshake unless they can conduct an initial-sequenceenguessing attack.

When we apply “knowledge separation”, a single object cae naultiple identifiers in the anonymized
trace, which reduces the value of the trace for some typesalysis. This is a basic trade-off, and the

choice of the degree to incur it will be policy-dependent.

4.5 Case Study: FTP Anonymization

In light of these possible attacks and defenses, we now tuthe anonymization scheme we used for
LBNL's FTP traces. Though the scheme is inevitably dependarthe specific policy approved by the

site, and thus may not be directly applicable to other sitesbelieve the considerations and techniques,
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for instance, the “filter-in” principle, will be also apphble to other site policies and other application
protocols. Accordingly, we discuss in detail relevant geiof the resulting anonymization process. The
full scheme can be found at [79].

The FTP traces were collected at the Internet access poigali Ethernet) of LBNL, and contain
incoming anonymous FTP connections to port 21. The tracasotinclude any of the transferred FTP
items (files uploaded or downloaded, or directory contentsesponding to the FTP “LIST” command),
but only requests and replies.

As stated above, our objectives are: (1) ensure that theyamaation hides the identity of clients,
non-public FTP servers, and non-public files, as well as denfial authentication informatioh;and (2)
the anonymization keeps the original request/reply seciand other nonsensitive information intact.

In some ways, these goals and the resulting traces are qoilesh But we believe that the path to
site’s becoming open to releasing traces with packet cesisrone that must be tread patiently, as sites

quite naturally must develop a solid sense that trust in ttigmization process is warranted.

Self-Explanatory. Besides the above objectives, we designed the anonynnizatheme to beelf-
explanatory it should be easy for other people to examine and validaesttheme by merely looking
at the scheme description or the policy script, without béamiliar with every detail of the FTP protocol.
We believe this is particularly important in order for thelipg makers at a site to understand and accept

trace anonymization.

4.5.1 The Filter-In Principle

The key to obtaining a robust and coherent anonymizatioersetis to apply the “filter-in” principle, which
is that the anonymization policy script explicitly specifighat data to leave in the clear, and everything else
is anonymized (or removed). Thus, “filtering-in” impliesog “white lists” of what is permitted instead of
“black lists” of what is disallowed. The design choice in diamework of “explicit rewriting” also reflects
the “filter-in” principle.

It is critical to employ “filter in” instead “filter out”. Anogmizing FTP traffic is complex enough that

if we try to “filter out” private information by enumeratindlahe sensitive data fields, it is very likely that

SHere, hiding a “non-public” server/file means that if an agaey does not know where to find the serverffile beforehama t
will not be able to find it after looking at the anonymized #ac
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we will miss some of them. Also, a “filter-out” scheme would terd to verify, unless the verifier can
themselves enumerate all of the sensitive fields.

Following the “filter-in” principle, the difference betwae crude anonymization script and a refined
one is that the refined script will preserve more nonsersitiformation in the output trace; but the
two scripts should be equally privacy-safe (though we mestpkin mind the maxim that complexity is
the enemy of robust security). Also, a “filter-in"-style amnization scheme is to some degree self-

explanatory—verification of the scheme does not requireresrating every possibility.

4.5.2 Selected Details of FTP Anonymization

IP addresses(which appear in IP headers, PORT arguments, and some regdgages such as reply to
the PASV command) are sequentially numbered, since thevigites preserving client privacy as vital.

(Recognizing IP addresses in reply messages is discussiini$é.5.4.)

User IDs (arguments of USER/ACCT commands) are anonymized excefaf@nymous”, “guest”, and
“ftp”. However, the anonymizer leaves a user ID in the clédhé login attempt fails and the user ID is
one of the IDs defined as sensitiveliro s default security policy (for examplepackdoor ", “bomb”,
“issadmin ", “netphrack ”, “r00t ", “sync ", “yOuar3ownd ", and many others). This allows us
to preserve one form of attack, namely attempted backdom®sac without exposing any actual account
information.

When we anonymize a user ID, we apply HMAC-MDS5, annotatirgyuker ID prior to hashing with

(1) the server IP to prevent “shared-text” matching, anda(2indication of whether the login was success-

ful to prevent “known-text” matching.

Password We replace the arguments of PASS commands with the stdpgssword> ”. (An alternative
would be to hash passwords for anonymous logins, with thalemdresses annotated with the client IP

address to achieve “knowledge separation”.)

File/directory names are replaced by the stringcpath> ” for non-anonymous logins. For anonymous
logins, file names are left in the clear if they appear on aeviist of well-known sensitive file names (e.g.,
“letc/passwd "), in order to preserve occurrences of attacks; and anongdwvith hashing otherwise.

The hashing input is the absolute path annotated with tivesH? to minimize shared-text matching across
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directories or servers. The reason to anonymize file namersfevanonymous FTP traffic is that we cannot
readily tell truly public files apart from private (hiddenjes that happen to be accessed using anonymous

FTP, but only by users who know the otherwise unpublicizedtion of the file.

Arguments of commands with pre-defined argument setéT YPE, STRU, MODE, ALLO, REST, MACB)

are left intact if well-formed. For example, a TYPE argumgimbuld match the regular expression
I(AE]C  _INTCD?)I|(L[O-9]+)/

according to RFC 959. However, the anonymizer does not assilients follow the RFC—it checks
whether the argument matches the pattern, and leaves ieicl#ar only if that is the case, otherwise
anonymizing the argument as a string.

We apply similar techniques for the “HELP” and “SITE” comnasn for which we only expose the

arguments if they match a manually determined “white lidtpbavacy-safe HELP/SITE arguments.

Unrecognized commandsare anonymized along with their arguments and recordedgtooal manual

inspection.

Timestamps/datesare left in the clear. While timestamps could help an advgnsetch up known traffic
(such as traffic they injected) with its occurrence in thedrahere are enough other ways the adversary
can perform such matching (by making the injected traffigslar) that leaving them intact costs little. On

the other hand, timestamps are valuable for various resganposes?

File sizesare considered to be safe. As argued when analyzing fingéirggj exposing file sizes may allow

the adversary to identify public files. But this is not a camcer LBNL.

Server software version/configurationis also considered to be safe, as the information that camféreed

from the trace can be readily obtained through other meansgshe servers are public).

4.5.3 Refining with Manual Inspection

Whether data is to be left in the clear or anonymized, the wmamus script logs the decision and the

reason for later inspectiohldentical entries are only logged once. Inspection of thye(lith various text

4We chose to preserve timestamps in the clear when we deViseBTP anonymization scheme in 2003. However, two yeags lat
researchers discovered that hosts can be fingerprintedi@khtimestamp options[57], if there are a sufficient numb¢intestamps
in the trace, as each physical device has its unique cloak. skehile this particular attack poses little threat to olddes, such
development highlights the devilish nature of anonymarati

5Here we assume that the administrator of the trace anonyionizean see the original trace—this helps in verifying tesand
generating better traces.
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processing tools) helps us to discover (1) privacy holesdatemonstrate the absence of holes), and also
(2) overly conservative anonymization of nonsensitiv@infation (important for working towards more
refined scripts). We discuss log inspection techniques taildselow.

A “filter-in"-style script always makes conservative judgnts on unknown data. Sometimes it can be
too conservative, missing an opportunity to expose intergsnonsensitive data, e.g., a mistyped command
like “UUSER” or a user id like “annonymous”. It is difficult tbardwire such commands and user names
into the general anonymization script, as they may appeanpredictable forms. Nevertheless, these
special cases do not appear very often in traces, so we aad &dfmanually inspeceach case by looking
at the log after anonymization and then customizing thestwiexpose the nonsensitive ones. Figure 4.4
shows three log entries we have seen: the first entry recardsianon-case anonymization of a path name;
while the other two, recording anonymizations of the “UUSERmmand and user name “annonymous”,
are the kinds of entries we look for during manual inspection

Note that the customization for special cases shouldgtional The script should always first anony-
mize any unknown data, and should make no assumptions abetiter the log will be manually inspected.

As most entries in the anonymization log record the anongtitn of “common” cases, the trick to dig-
ging up special cases is to look for deviant entries thraeghclassificationHere, we examine command
arguments as an example to illustrate how we discover dpmsas:

First, we classify entries by the type of data being anongahiZThe type can be, for example, a non-
guest user name (e.g., the misspelled “annonymous”), omapablic file name, or the argument of a
PORT command. Some types of anonymization, e.g., of pattesand passwords, happen very often,
while others rarely appear in the log. These rare types ohwamization often present interesting cases.
For example, for a trace of an FTP server that only allows gmmus login, there can still be a few user
names being anonymized. We have seeannb”, “anonyo\010 ", “anonymouse ”, “help ", and
“anamouse”, as well as a password mistyped fotJSERcommand. Except for the password, all of the
other user names actually do not reveal any private infaomaBut it's important to catch the password.
Note that none of these strange user names will appear inutipeititrace unless we modify the script to
explicitly allow them, so the password will not appear witlhgpecific action to keep it.

Furthermore, we look for “malformed” path names—those dbmatch a heuristic pattern for well-

formed path names. We find, for examplé?;"* \xdO\xc2\xce\xc4\xbc\xfe\xbc\xdO " Inin
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anonymize_arg: (path name) [CWD] “"conferencing" to "U4211 7b96U" in [x.X.X.X/X > x.X.X.X/ftp]
anonymize_cmd: (unrecognized command) "UUSER" [anonymou s] to "U7b402a69U" in [X.X.X.X/X > X.X.X.X/ftp]
anonymize_arg: (user name) [USER] "annonymous" to "Ufb6db 9afU" in [X.x.X.X/Xx > x.Xx.x.x/ftp]

Figure 4.4: Anonymization Log Entries

This file was not retrieved by Teleport Pro, because it did no t meet the
project ".

In addition, applying similar techniques lets us find midgaecommands, or commands containing
control characters: e.g.lUSE, “UUSER “RETR<BS><BS><BS><BS% all of which we have seen in
practice. These commands likely indicate users typingctlireather than using client software, therefore

it is valuable to preserve this information.

4.5.4 Reply Anonymization

An FTP reply consists of a reply code and a text message. We leply codes in the clear, as they
do not reveal any private information. Reply messages, enother hand, do often contain sensitive
information and are hard to anonymize because there is ndatd format for most reply messages—the
format depends on the server implementation and its corafigun.

One possibility is to discard the original text (except feplies to PASV, which are well-defined) and
replace it with a dummy message. This has the virtue of beémgle. On the other hand, reply messages
do sometimes carry useful information that cannot be iefiéfrom the reply codes. For example, a reply of
code 530 (denial of login) usually explains why the login wajected—it can be “guest login not permitted”
or “Sorry, the maximum number of users from your host areaglyeconnected”. Such information can be
valuable in some cases. So we explored methods to anonymizedplies.

As messages may contain variables such as file names/sates, dnd domain names, there can be
countless distinct messages. However, we observe tha ihenly a limited set of messagemplates
as the number of templates is bounded by the number of diffeserver software/configurations at the
site. And we can extract templates (along with human asgie)aby comparing messages against each
other and distilling the common parts. Figure 4.5 shows a é@ample message templates. Once we
have extracted the message templates, we can parse mesgagaishing them against the templates and

thereby understanding the semantics of the data elemetits text.

8Teleport Pro is the name of an offline browser.

66



150 |opening| |ascii, binary| |mode| |data| |connection| | for| |7 arg| " ip] |7 num| |7 num| |bytes|
211 |connected| |to] |© domain, ~ ip|

220 |welcome| [to] |” *| |ftp| |server|

550 | arg| |not| |a| |directory|

Figure 4.5: FTP Reply Message Templates

MeSSage. 150 Opening BINARY mode data connection for /def.pdf (123. 45.67.89,50034) (156678 bytes)"

Sp||t~» "150 |opening| |binary| |mode| |data| |connection| [for| | /def.pdf| |123.45.67.89| |50034| |156678| |bytes|"
abstract. 150 lopening| |binary| |mode| |data| |connection| [for| | ~arg| [ ip] |7 num| [ num| |bytes|"
merge- "150 |opening| |ascii, binary] |mode| |data| |connection| [for| [~ arg| [" ip| [ num| | num| |bytes|"

Figure 4.6: Message Template Extraction

Message templates are first automatically extracted byiptgben manually sanitized before being
used for template matching. The automated template eidraistdone in three steps: splitting, abstraction,
and merging (as shown in Figure 4.6). We figplit a message into parts—each part contains a word or a
data element such as an IP address or a file name. Neadbsinmaction we try to guess whether each part
is a variable or a constant part of the message template.ughibstractionwe are able to find most of
variable slots in message templates, aretginghelps to reveal the rest of them. We merge two templates
when they are identical on all but one part, and this procgesterated till no templates can be further
merged.

The message extraction process is refined through the adatiomuof experience. We found that the
key issue in abstraction is to recognize the correspondingeand argument echoed in the reply message.
This is tricky because the echoed argument is sometime=reliff from the original argument, particularly
when it is a file name. For example, the echoed argument camebadisolute file path or only contain the
base file name with the directory parts. Therefore we needdognize variants of the argument. The key
for good message splitting is to know wharet to split. By default we split at spaces and punctuation;
however, we do not want to split an IP address or a file nameywike they cannot be recognized during
abstraction.

Extracted message templates need to be examined andsdhigfore being used for message match-
ing. This can be a tedious process and we strived to minirhestquired effort. Currently, when extracting
templates from a set of ten-day long FTP traces, which combaire than 1.4 M lines of replies in 22.6 K
connections to 318 distinct servers, we wound up with 46 1samgs templates for 32 kinds of reply codes.
Among the 461 templates, 25 require sanitization to remewees identity information. Examining a few

hundred templates is feasible but still not easy—perhapsgihe price for processing free format text.
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455 \erification

Verification is a fundamental step of the anonymization pesc No matter how much thought we apply
to the anonymization policy, the safety of the anonymizatitso depends on the correctness of the policy
script and on the underlyifgro mechanisms. Therefore, besides inspecting the anonyionizigscription
and script, it is also important to examine the output traocecty.

Ideally, the verification process would guarantee that thesformed trace complies with tivdended
anonymization policy. This is a different notion that texpressednonymization policy, due to the pos-
siblity of errors occurring in coding up the expression. Gtrategy therefore is to attempt to analyze the
general properties of the transformed trace without tyhese too closely to the anonymization script that
was used to effect the transformation. As such, we cannotgtee that there are no “holes” in the anony-
mized trace (and indeed doing so appears fundamentalbctatole). Instead, we aim to provide another
level of precaution. In general, it is particularly impantdo have a strong “verification story” in order to
persuade sites that the anonymization process will megtrétlirements.

For verification we do not uskbro to parse the output trace’s packets—doing so would intreduc
common point of failure across anonymization and verifaratiinstead, we look at the packets directly,
using different tools. Automating the verification processmains an open problem—currently, it requires
human assistance, although some of the steps can be audamateluce the burden.

For packet headers, we inspect the source and destinatiaddifesses. As the anonymized addresses
are sequentially numbered, verification that these lie énetkpected range can be performed automatically.

For FTP requests in packet payloads, we enumerate all clisttmmands and arguments present in
the trace, except those which are already hashed (hashsrédidws a particular textual format and thus
can automatically excluded). When the text parts of replgsages are discarded, it is straightforward to
verify that FTP replies only contain reply codes and a platadr of dummy text.

When we choose to anonymize reply messages, verificatiogisterof two parts, checking vocabulary
and numbers, respectively. Vocabulary checking is sinidlanessage template extraction, but simpler and
implemented separately. Messages are again split at bemkpunctuation, this time without worrying
about special cases as in splitting for message templat@ctirin. Next we abstract the parts by two rules:
(1) if a part is a decimal number, substitute it with the girienum>"; (2) if a part is a hashing output,

substitute it with the string<hash>". This way we can reduce 1.4 M anonymized messages to about
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600 patterns. We then manually inspect these, which canedéted by first sorting them so that similar
patterns are clustered.

In checking numbers we are mainly concerned about numbestiaating IP addresses. Accordingly,
we look for any four consecutive number parts in split meesamnd record each instance that does not fall
within the range of anonymized addresses. Interestingbh saseslo appear, though they are quite rare,
and safe—e.qg., part of a software version string such as2\8L2(1)".

Verification helped us find a potential hole in an earlier i@r®f our anonymization script. We found
two suspicious command argument&SSAPI' and “KERBEROS_V4 Though the strings themselves
do not disclose any private information, their appearasedsrming because they are not defined anywhere
to be “safe” in the script.

Looking into the logs revealed that they were argumentsyar tejected “AUTH” commands. Ac-
cording to RFC 2228, the argument for the “AUTH” command sfpes the authentication mechanism.
Thus, a rejected mechanism seems safe to expose. Howeirgy,sdooverlooks the possibility that a user
might mistakenly specify sensitive information, such asaagword, instead of an authenticatimecha-
nism A “fail-safe” solution is to white list GSSAPI"and “KERBEROS_VZand anonymize any unknown

argument for the “AUTH” command.

45.6 Discussion

Integrity of Output Trace . Besides the absence of private information, we also wactiéck whether the
packets, TCP flows, and FTP requests and replies in the anpegrmace are allvell-formed To do so,

we runbro ’s FTP analyzer on the anonymized traces to see whétteercan reassemble the TCP flows
and parse the FTP requests and replies. We compare the F¥?dagboth tracesro 's FTP log records
start and finish of FTP sessions and all requests and repligeisession. For a day-long FTP trace of
80 MB, 8,871 connections, and 86,908 request-reply paiesfimd that the two logs have the same FTP
session starting timestampsequest command sequences (not including the argumerdseaty code
seguences, also at the same timestamps. For command atgwamdmeply messages, we cannot compare
them directly as of course many of them are anonymized. Weonaty picked a few sessions and manually

checked the arguments and messages.

“In some casedyro 's connection termination is triggered by a timer, whichulesin slightly different session finish timestamps.
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FTP analyzer 131 seconds
FTP analyzer + anonymizer 1009 seconds
FTP analyzer + dummy rewriter 192 seconds

Figure 4.7: Execution time of various FTP policy scripts

Anonymized Traces for Intrusion Detection As mentioned earlier, packet traces are particularlyvalu
able for research on network intrusion detection. So we weugh want trace anonymization to preserve
intrusion-like activities. This applies both to presexyiactual attacks, but, even more so, unusual-but-
benign traffic that stresses the false-positive/falseatiegaccuracy of intrusion detection algorithms. This
latter is particularly important because it is often a kegneént missing from assessments of network in-
trusion detection mechanisms—it is easy for researchextam traces of actual attacks, because they can
generate these using the plethora of available attack, toatis is much more difficult today for researchers
to attain detailed traces of background traffic.

Generally whether an attack survives anonymization dep@mdboth its characteristics and how it
is detected. Some FTP intrusions are recognized by siggmtfrfiles or user IDs the intruder tries to
access or login as. For example, directory nata@fed " is often associated with FTP warez attacks;
failed “root ” or “sysadm” login attempts suggest server backdoor probing. Presgrihiese attacks
requires leaving relevant identifiers in the clear. Fortafyathe identifiers are mostly well-known and
do not expose private identities, so they can kept througimyamization by establishing a white list for
“sensitive” file names and user IDs to leave in the clear. Teaochowever, requires knowing the attack
signatures beforehand; thus, attacks with unknown sigesaimay still be lost in anonymization.

Other types of intrusions are recognized by activity pagerather than identifier signatures. Most
of these attacks can survive anonymization. For instancg, gganning is marked by unanswered (or
responded by TCP-RST) TCP-SYN packets from the same soostaddifferent destination hosts; suc-

cessive failed attempts at creating directories on malt§glrvers may imply an FTP warez attack.

Performance Figure 4.7 shows the CPU time spent on a 1 GHz Pentium lllgssar running on the
day-long trace mentioned above. We see that the FTP anoagmilich also requires the FTP analyzer,
is 7.7 times slower than the FTP analyzer. To understandewi@e is spent, we also testbdb with a
dummy FTP trace rewriter, which simply writes the originatjuests and replies to the output trace. We
find that the execution overhead of the anonymizer scripffiteeavily dominates, comprising 81% of the

total processing. The time is spent performing numeroub tetse lookups, string operations, and regular
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expression matches, and generating a 3.8 MB anonymizaign We find this performance adequate,
especially for off-line anonymization. It even suffices for-line anonymization for FTP, though when

extended to a higher volume protocol such as HTTP may pravel@matic®

4.6 Related Work

TCPdpriv [66] anonymizescpdump traces by stripping packet contents and rewriting packedbe
fields. One of its features is a form of “prefix-preservingbagmization of IP addresses (the “-A50” op-
tion). [135] analyzes the security implications of this apmization, proposing an approach that might
be used to crack the “-A50” encoding by first identifying testith well-known traffic patterns (e.g.,
DNS servers). Xu et al proposed a cryptography-based schampeefix-preserving address anonymiza-
tion [132]. The scheme can maintain a consistent anonymizatapping across multiple anonymizers
using a shared cryptographic key. Peuhkuri presented dypsiéaf the private information contained in
TCP/IP header fields and proposed a scheme to anonymizetpeasdes and store the results in a com-
pressed format [91]. Peuhkuri's scheme for network ad@easonymization cannot be directly applied to
our work because the scheme generates 96 bits instead afs¥2ibéach address, and we are constrained
by needing to generate outputtecpdump format. Finally in recent work with colleagues [78] | expar
the devilish issues in anonymizing traces collected inaidenterprise network. All of these works address
only the anonymization of TCP/IP headers, with no mechasiemretaining packet payloads.

NetDuDe (NETwork DUmp data Displayer and Editor) [58] is a ida4sed tool for interactive editing
of packets intcpdump trace files. NetDuDe itself does not parse applicationlpr@tocols, but allows
user to write plug-in’'s for packet processing, e.g., a csaokfixer plug-in can recompute checksums and
update the checksum fields in TCP and IP headers.

There has also been considerable work on extracting apiplicievel data from online traffic, though
without significant applications to content-preservingymization. Gribble et al built an HTTP parser
to extract HTTP information from a network sniffer [41]. HEehann in [31] describes BLT, a tool to
extract complete HTTP headers from high-volume traffic, distusses various challenges in extracting
accurate HTTP fields. Pandora [84] is a component-basedefvank for monitoring network events,

which contains, among others, components to reconstrud@iHdata from packets. It is similar in spirit

8Note that the HTTP rewriter used to reduce HTTP packet trasediscussed in Section 4.3.4 runs on-line, processindynear
100 times the daily data volume, though in a simpler fashion.
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to Windmill [64]. Ethereal is able to reconstruct TCP sessiétreams, and parses the stream to extract
application protocol level data fields [29]. The fields canuged to filter the view of the trace. Ethereal
has a GUI-based interface to display trace data. There smenaimerous commercial network monitoring
systems that can extract application-level informatiog,,d&therPeek|[128].

There are also efforts on setting up honeypots [45] and bieakallenges [18] to collect traces of
network intrusions. Such pure intrusion traces have thei@iof containing little private information, as
the target hosts are not used for other purposes. For the isasen, however, the traces do not contain
background traffic with various unusual-but-benign atithg, and thus are very different from traffic at an
operational site.

Finally, Mogul argues “Trace Anonymization Misses the R0ja7], proposing an alternative strategy
to trace anonymization—instead of sharing anonymizede#aesearchers send reduction agents to the
site that has the source trace data. We believe our tool sdhcomplementary to this sort of approach.
Mogul raises the question: what kind of code should be setiidsource sites? Our answer is: beo

script for trace transformation.”

4.7 Summary

In this work we have designed and implemented a new tool fokgtstrace anonymization and general
purpose transformation. The tool offers a great degreeeddom and convenience for trace transfor-
mation by providing a high-level programming environmamtwhich transformation scripts operate on
application-level data elements.

Using this framework, we developed an anonymization séoigE TP traces and applied it to anonymiz-
ing traces from LBNL for public release. Unlike previous gattrace anonymization efforts, packet pay-
load contents are included in the result. We discussed thekenymization principle of “filter-in” as
opposed to “filter-out”, and the crucial problem wérifyingthe correctness of the anonymization proce-
dure. We also analyzed a class of inference attacks and hawigie defend against them.

We believe this tool offers a significant step forward tovgaetding the current state of there being
no publicly available packet traces with application consenfAs such, we hope to help open up new

opportunities in Internet measurement and network inbrusietection research.

72



Chapter 5

Characteristics of Internet Background

Radiation

Monitoring any portion of the Internet address space reve@alessant activity. This holds even when
monitoring traffic sent to unused addresses—thus we terrrdffec “background radiation.” Background
radiation reflects fundamentally nonproductive traffither malicious (flooding backscatter, scans for vul-
nerabilities, worms) or benign (misconfigurations). White general presence of background radiation is
well known to the network operator community, its nature hatlbeen previously characterized. This the-
sis develops a broad characterization based on data @allécim unused networks in the Internet. Three
key elements of the methodology are (1) the use of filteringtluce load on the measurement system, (2)
the use of active responders to elicit further activity frecanners in order to differentiate different types
of background radiation, and (3) the use of applicationlléedfic semantic analysis to uncover activity
details at application protocol level. This study breake/sddhe components of background radiation by
protocol, application, and often specific exploit; anal/temporal patterns and correlated activity; and
assesses variations across different networks and over tWhile a menagerie of activity is found in
background radiation, probes from worms and autorootesgilyedominate the traffic.

This chapter proceeds as follows. Section 5.1 defines ‘fietdrackground radiation” and the goals of
this study. Section 5.2 discusses related work. Sectiodés8ribes the sources of data used in this study

and the methodology related to capturing and analyzingdhta. Section 5.4 analyzes what we can learn
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from our monitoring when we use it purely passively, and Becbk.5 then extends this to what we can
learn if we also respond to traffic we receive. In Section 5e6awaluate aspects of traffic source behavior.

We conclude with a summary of our study in Section 5.7.

5.1 Problem Statement

In recent years a basic characteristic of Internet traffe ¢feanged. Older traffic studies make no mention
of the presence of appreciable, on-going attack traffic §4,116, 6], but those monitoring and operating
today’s networks are immediately familiar with the incedsaresence of traffic that is “up to no good.”
We can broadly characterize this traffic msnproductive it is either destined for addresses that do not
exist, servers that are not running, or servers that do not teareceive the traffic. It can be a hostile
reconnaissance scan, “backscatter” from a flooding atta&tkmizing someone else, spam, or an exploit
attempt.

The volume of this traffic is not minor. For example, traffigtofrom the Lawrence Berkeley National
Laboratory (LBL) for an arbitrarily-chosen day in 2004 shtivat 138 different remote hosts each scanned
25,000 or more LBL addresses, for a total of about 8 millionreection attempts. This is more than double
the site’s entire quantity of successfully-establishembiming connections, originated by 47,000 distinct
remote hosts. A more fine-grained study of remote scannitigitgcfound (for a different day) 13,000
different scanners probing LBL addresses [51].

What is all this nonproductive traffic trying to do? How can wlassify various types of activity in
order to detechewtypes of malicious activity?

Because this new phenomenon of incessant nonproductffie tras not yet seen detailed characteri-
zation in the literature, we have lacked the means to answesetquestions. This study aims to provide an
initial characterization of this traffic. Given the trafighervasive nature (as we will demonstrate), we term
it Internet “background radiation”.

A basic issue when attempting to measure background radigthow, in the large, to determine which
observed traffic is indeed unwanted. If we simply includeualsuccessful connection attempts, then we
will conflate truly unwanted traffic with traffic represengitbenign, transient failures, such as accesses to

Web servers that are usually running but happen to be ddfdimring the measurement period.
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By instead only measuring traffic sent to hosts tha't exist—i.e., Internet addresses that are either
unallocated or at least unused—we can eliminate most fofrnerugn failures and focus on traffic highly
likely to reflect unwanted activity. In addition, analyzingused addresses yields a secandjor mea-
surement benefit: we can safelyspondto the traffic we receive. This gives us the means to not only
passively measure unwanted traffic (for example, what metgrobed), but to then engage the remote
sources in order to elicit from them their particular iniens (for example, what specific actions they will
take if duped into thinking they have found a running server)

Given the newness of this type of Internet measurement, btteeccontributions of our study is the
set of methodologies we develop for our analysis. Thesaidecbonsiderations for how to ufitering
to reduce the load on the measurement system, how to conattize responderto differentiate dif-
ferent types of background radiation, and ways for inteipgewhich facets of the collected data merit

investigation and which do not.

5.2 Related Work

Several studies have characterized specific types of roafidraffic. Mooreet al.investigate the prevalence
of denial-of-service attacks in the Internet using “baeltar analysis” [73]j.e., observing not the attack
traffic itself but the replies to it sent by the flooding victiwhich are routed throughout the Internet
due to the attacker's use of spoofed source addresses. Mest studies of the Code Red I/l worm
outbreaks [71], the Sapphire/Slammer worm outbreak [7Q),&8 the Witty worm [60] provide detail on
the method, speed and effects of each worm’s propagationghrthe Internet. Additional studies assess
the speed at which counter-measures would have to be dejtloyehibit the spread of similar worms [72].
The empirical components of these studies were basedyargelata collected at “network telescopes”
(see below) similar to those used in our study, though witlaouactive-response component. A related
paper by Staniforet al. mathematically models the spread of Code Red | and considezats posed
by potential future worms [112]. A small scale study of Imetr attack processes using a fixed honeypot
setup is provided in [23]. Yegneswarahal.explore the statistical characteristics of Internet &ttacd
intrusion activity from a global perspective [134]. Thatikevas based on the aggregation and analysis of
firewall and intrusion detection logs collected Dghield.org over a period of months. The coarse-grained

nature of that data precluded an assessment of attacks dbegtnibution to specific ports. Finally, Yeg-
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neswararet al. provide a limited case study in [133] that demonstrates titerggial of network telescopes
to provide a broad perspective on Internet attack activitg.extend that work by developing a much more
comprehensive analysis of attack activity.

Unused IP address space has become an important sourcemhation on intrusion and attack ac-
tivity. Measurement systems deployed on unused IP addeegges have been referred to as “Internet
Sink-holes” [40], and “Network Telescopes” [68]. Activegpects focused on unused address space mon-
itoring include Honeynet [44], Collapsar [50], Potemkirill, Honeyd [97, 96], and GQ [21]. Honeynet,
Collapsar, and Potemkin focus on the use of live virtualdmrae-based systems to monitor unused ad-
dresses. Honeyd uses a set of stateful virtual respondepetate as an interactive honeypot. GQ attempts
to use a combination of a RolePlayer-based [22] simulatdraawirtual machine system to achieve both
scalability and high interactivity.

Finally, network intrusion detection systems, includingo8 [100, 101], Bro [89], and a variety of
commercial tools, are commonly used to detect scans foiifgpewlicious payloads. An emerging area
of research is in the automated generation of attack sigestu~or example, Honeycomb [59] is an ex-
tension of Honeyd that usesl@ngest common substringCS) algorithm on packet-level data recorded
by Honeyd to automatically generate signatures. Othemtemerk pursues a similar approach, includ-
ing Earlybird [109] and Autograph [54]. Our study can infofature developments of such systems with

respect to both the type and volume of ambient backgrouadlatctivity.

5.3 Measurement Methodology

This section describes the methods and tools we use to neeaisdranalyze background radiation traffic,

addressing three key issues:

1. Creating deep conversationsWe find thatTCP/SYN packets dominate background radiation traffic
in our passive measurements, which means we need to accematmns from the sources and ex-
tend the dialog as long as possible to distinguish among/ffestof activities. The key problem here
is building responders for various application protocslsch as HTTP, NetBIOS, and CIFS/SMB,

among others.

2. Taming large traffic volume: We listen and respond to background traffic on thousandsito m

lions of IP addresses. The sheer volume of traffic presentgjarrhurdle. We handle this with
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two approaches: 1) devising a sound and effective filteraigeme, so that we can significantly re-
duce the traffic volume while maintaining the variety of figfand 2) building a scalable responder

framework, so we can respond to traffic at a high rate.

3. Analyzing traffic semantics We capture network traffic between radiation sources amdespon-

ders and analyze application level semantics of variogsawction.

5.3.1 Application-Level Responders

Our approach to building responders was “data driven”: wereined which responders to build based
on observed traffic volumes. Our general strategy was to fhiekmost common form of traffic, build
a responder for it detailed enough to differentiate thefitrahto specific types of activity, and once the
“Unknown” category for that type of activity was sufficiepdmall, repeat the process with the next largest
type of traffic.

Using this process, we built an array of responders for tHeviang protocols (Figure 5.1): HTTP (port
80), NetBIOS (port 137/139), CIFS/SMB [19] (port 139/44B)CE/RPC [25] (port 135/1025 and CIFS
named pipes), and Dameware (port 6129). We also built regrsnio emulate the backdoors installed by

MyDoom (port 3127) and Beagle (port 2745) [13], [74].

ports
80,1080,3128,8888

ports 2745,3127

port 137 port 6129

Dameware Responder
(Agobot)

ports 135,1025

HTTP Responder
(Welchia, Agobot,CodeRed, Tickerbar)

NBNS Responder
(NetBIOS name requests)

Echo Responder
(Beagle,MyDoom,Agobot)

SMB?

SMB Responder
(Welchia, Sasser, Xibo, Agobot,Randex)

RPC?
DCERPG Responder
(Welchia, Blaster, Agobot)

Figure 5.1: Top level Umbrella of Application Responders
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Application-level responders need to not only adhere tosthécture of the underlying protocol, but
also to knowwhatto say. Most sources are probing for a particular implementaof a given protocol,
and we need to emulate behavior of the target software irr todeeep the conversation going.

The following example of HTTP/WebDAV demonstrates whas ttails. We see frequetGET /"
requests on port 80. Only by responding to them and mimickifdicrosoft 11S with WebDAV enabled
will we elicit further traffic from the sources. The full segpuce—in which the “411 Length Required”

response indicates that WebDAV is enabled, which thencistthe attack—plays as:

GET /

= |200 OK ... Server: Microsoft-11S/5.0]|
SEARCH /

= |411 Length Required|

SEARCH /AAA... (URI length > 30KB)

= (buffer overflow exploit received)

Some types of activity require quite intricate respondkftany Microsoft Windows services run on top
of CIFS (port 139/445), which lead us to develop the detaiktaf responses shown in Figure 5.2. Requests
on named pipes are further tunneled to various DCE/RPC resgs. One of the most complicated activi-
ties is the exploit on the SAMR (“Security Account Managenixe”) and later on the SRVSVC (“Server
Service”) pipe, which involves more than ten rounds exclemngnessages before the source will reveal
its specific intent by attempting to create an executableofiléghe destination host. Figure 5.3 shows an
example where we cannot classify the source until the “NTa€réndX” request fomsmsgri32.exe
(The NetrRemoteTOD command is used to schedule the wormegsato be invoked one minute after
TimeOfDay [11].) We found this attack sequence is sharedsacseveral viruses, including the Lioten
worm [11] and Agobot variants [2].

Building responders like this one can prove difficult due hhe tack of detailed documentation on
services such as CIFS and DCE/RPC. Thus, we sometimes nsost te probing an actual Windows
system running in a virtual machine environment in orderralgze the responses it makes en route to
becoming infected. We modified existing trace replay toikksflowreplay  for this purpose [36].

More generally, as new types of activity emerge over time,regponders also need to evolve. While
we find the current pace of maintaining the responders théetan important question is to what degree

we can automate the development process.
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Port445

472,180 / 506,892

Negotiate_Protocol

460,630

Session_Setup

626

wmmiexe.exe

msmsgri32.exe winlord32.exe Lovgate.exe microsoft.exe

Figure 5.2: Example summary of port 445 activity on Class 86,892 sessions in total. Arcs indicate
number of sessions.
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-> SMB Negotiate Protocol Request

<- SMB Negotiate Protocol Response

-> SMB Session Setup AndX Request

<- SMB Session Setup AndX Response

-> SMB Tree Connect AndX Request,
Path: \\XX.128.18.16\IPC$

<- SMB Tree Connect AndX Response

-> SMB NT Create AndX Request, Path: \samr

<- SMB NT Create AndX Response

-> DCERPC Bind: call_id: 1 UUID: SAMR

<- DCERPC Bind_ack:

-> SAMR Connect4 request

<- SAMR Connect4 reply

-> SAMR EnumDomains request

<- SAMR EnumDomains reply

-> SAMR LookupDomain request

<- SAMR LookupDomain reply

-> SAMR OpenDomain request

<- SAMR OpenDomain reply

-> SAMR EnumDomainUsers request

Now start another session, connect to the
SRVSVC pi pe and i ssue Net Renpt eTOD
(get remote Tine of Day) request

-> SMB Negotiate Protocol Request
<- SMB Negotiate Protocol Response
-> SMB Session Setup AndX Request
<- SMB Session Setup AndX Response
-> SMB Tree Connect AndX Request,
Path: \ \XX.128.18.16\IPC$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request, Path: \srvsvc
<- SMB NT Create AndX Response
-> DCERPC Bind: call_id: 1 UUID: SRVSVC
<- DCERPC Bind_ack: call_id: 1
-> SRVSVC NetrRemoteTOD request
<- SRVSVC NetrRemoteTOD reply
-> SMB Close request
<- SMB Close Response

Now connect to the ADM N share and wite the file

-> SMB Tree Connect AndX Request, Path: \\XX.128.18.16\ADM IN$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request,

Pat h: \ syst en82\ nensgri 32. exe <<<===

<- SMB NT Create AndX Response, FID: 0x74ca

-> SMB Transaction2 Request SET_FILE_INFORMATION
<- SMB Transaction2 Response SET_FILE_INFORMATION
-> SMB Transaction2 Request QUERY_FS_INFORMATION
<- SMB Transaction2 Response QUERY_FS_INFORMATION
-> SMB Write Request

Figure 5.3: Active response sequence for Samr-exe viruses
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5.3.2 Taming the Traffic Volume

Responding to the entirety of background radiation traffaetived by thousands to millions of IP addresses
would entail processing an enormous volume of traffic. Faneple, we see nearly 30,000 packets per
second of background radiation on the Class A network we fapniaming the traffic volume requires

effective filtering and a scalable approach to building cegfers. We discuss each in turn.

Filtering

When devising a filtering scheme, we try to balance trads+odtween traffic reduction and the amount of

information lost in filtering.! We considered the following strategies:

Source-Connection Filtering: This strategy keeps the firéf connections initiated by each source and
discards the remainder. A disadvantage of this strateglyasit provides an inconsistent view of
the network to the source: that is, live IP addresses becamaaahable. Another problem is that
an effective value ofV can be service- or attack-dependent. For certain attacks{Code Red”),

N = 1 suffices, but multi-stage activities like Welchia, or mwléctor activities like Agobot, require
larger values ofV. Moreover, if a source tries to contact more thisindestination addresses at the

same time, our view will be limited to at most one connectiengpurce-destination pair.

Source-Port Filtering: This strategy is similar except we kedpconnections for each source/destination
port pair. This alleviates the problem of estimatiigfor multi-vector activities like Agobot, but
multi-stage activities on a single destination port likel#kiéa remain a problem. This strategy also

exposes an inconsistent view of the network.

Source-Payload Filtering: This strategy keeps one instance of each type of activitysparce. From
a data richness perspective, this seems quite attractiosvettr, it is very hard to implement in
practice as we do not often know whether two activities aneilar until we respond to several
packets (especially true for multi-stage activities andtghprotocols like NetBIOS). This strategy

also requires significant state.

Source-Destination Filtering: This is the strategy we chose for our experiments, basedeoasgsumption

that background radiation sources possess the same dégffiaity to all monitored IP addresses.

LFiltering is mostly the work of my collaborators, Vinod Yeggwaran and Vern Paxson, and is included in this dissart#tio
preserve completeness of the study.
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More specifically, if a source contacts a destination IP eslsldisplaying certain activity, we assume
that we will see the same kind of activity on all other IP addes that the source tries to contact.
We find this assumption generally holds, except for the casertain multi-vector worms that pick

one exploit per IP address, for which we will identify onlyenaf the attack vectors.

Figure 5.4 illustrates the effectiveness of this filterimgdifferent networks and services when run for
a two-hour interval. The first plot shows that the filter redsithe inbound traffic by almost two orders
of magnitude in both networks. The LBL network obtains magmsicant gains than the larger Campus
networks because the Campus network intentionally doesaspbnd to the last stage of exploits from
certain frequently-seen Welchia variants that in theit asp send a large attack payload 30KB buffer
overflow). The second plot illustrates the effectivenestheffilter for the various services. Since Blaster
(port 135) and MyDoom (port 3127) scanners tend to horidtyrgaveep IP subnets, they lead to significant
gains from filtering, while less energetic HTTP and NetBI@&rmers need to be nipped in the bud (low
N) to have much benefit.

With source-destination filtering, a Honeyd responder migion a single computer can easily respond
to background radiation on 10 /24 subnets (2560 IP addresBesponding on telescopes that are mag-
nitudes larger, e.g. on a /16 network (65536 addresses)eVvewrequires a more scalable responder

platform.

Active Sink: an Event-driven Stateless Responder Platform

Part of our active response framework explorestatelessapproach to generating responses, with a goal
of devising a highly scalable architecturé. Active Sink is the active response component of iSink, a
measurement system developed by Yegneswaran et al. [138atably monitor background radiation
observed in large IP address blocks. Active Sink simulaidsal machines at the network level, much
like Honeyd [96], but to maximize scalability it is implented in a stateless fashion as a Click kernel
module [133] [55]. It achieves statelessness by using tire & incoming application traffic to determine
an appropriate response (including appropriate sequameders), without maintaining any transport or
application level state. A key question for this approachiiether all necessary responders can be con-

structed in such a stateless fashion. While exploring #s8e is beyond the scope of the present work, we

2Active Sink is mostly the work of my collaborators, Vinod Yegswaran and Paul Barford, and is included in this dissenta
preserve completeness of the study.
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note that for all of the responders we discuss, we were ahfapgtement a stateless form for Active Sink,
as well as a stateful form based on Honeyd. (To facilitatedilnel development, we developed interface

modules so that each could use the same underlying codesfoesponders.)

5.3.3 Traffic Analysis

Once we can engage in conversations with background radiaturces, we then need to undertake the
task of understanding the traffic.

Here our approach has two components: first, we separafie aglysis from the responders them-
selves; second, we try to analyze the traffic in terms of ifgiaation-level semantics.

It might appear that the job of traffic analysis can be donéheyrésponders, since the responders need
to understand the traffic anyway. However we believe thatthee significant benefits to performing traffic
analysis independently—by capturing and stoticgdump packet traces for later off-line analysis. Inde-
pendent analysis allows us to preserve the complete infimmabout the traffic and evolve our analysis
algorithms over time. The flip side is that doing so poses dletge for the analysis tool, since it needs
to do TCP stream reassembly and application-protocolipgrdio address this issue, we built our tool on
top of the Bro intrusion detection system [89], which prasda powerful platform for application-level
protocol analysis.

Our analysis has an important limitation: we do not atteroptrtderstand the binary code contained in
buffer-overrun exploits. This means we cannot tell for suhéch worm or autorooter sent us a particular
exploit (also due to lack of a publicly available database/ofm/virus/autorooter packet traces). If a new
variant of an existing worm arises that exploits the samaenability, we may not be able to discern the
difference. However, the analysis will identify a new worinit iexploits a different vulnerability, as in the

case of the Sasser worm [103].

5.3.4 Experimental Setup

We conducted our experiments at two different sites. Thasdwo different systemsSinkandLBL Sink

which conducted the same forms of application responsedad different underlying mechanisms.

iSink: Our iSink instance monitored background traffic observeal@lass A network (/822* addresses),

and two/19 subnets (16K addresses) on two adjacent UW campus class\Bris, respectively.
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Figure 5.5: The Honeynet architecture at iSink and LBL

Filtered packets are routed via Network Address Trangtaiiathe Active Sink, per Figure 5.5. We
used two separate filters: one for the Class A network anchandor the two campus /19 subnets.
We collected two sets a€pdump traces for the networks: prefiltered traces with of packeidees,
which we use in passive measurements (of periods duringhithie active responders were turned
off), and filtered traces with complete payloads, which we i active traffic analysis. The pre-

filtered traces for the Class A network are sampled at 1/1@gta¢o mitigate storage requirements.

LBL Sink: The LBL Sink monitors two sets of 10 contiguous /24 subnele flrst is for passive analysis;
we merely listen but do not respond, and wendfilter the traffic. The second is for active analysis.
We further divide it into two halves, 5 /24 subnets each, gqlydfiltering on these separately. After
filtering, our system tunnels the traffic to the active regpams, as shown in Figure 5.5. This tunnel is
one-way—the responses are routed directly via the inteaudibr. We use the same set of application
protocol responders at LBL as in iSink, but they are invokgdHoneyd instead of iSink, because
Honeyd is sufficient for the scale of traffic at LBL after filiteg. We trace active response traffic at

the Honeyd host, and unless stated otherwise this comesifinerof the halves.g.,5 /24 subnets).

Note that the LBL and UW campus have the same /8 prefix, whiedsgihem much more locality than
either has with the class A network.
Table 5.1 summarizes the datasets used in our study. At edalork we collected passivepdump

traces and filtered, active-response traces. On the two UWonles and the LBL network, we collected
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| Site | Networks (/size) | Datasets|| Duration

iSink UW-I (/19) Active Mar16-May14, 2004
Passive || Mar11-May14, 2004

UW-11 (/19) Active Mar16-May14, 2004

Passive || Mar11-May14, 2004

Class A (/8) Active Mar12-Mar30, 2004

Passive || Mar16-Mar30, 2004
LBL Sink | LBL-A(2x5x/24) | Active Mar12-May14, 2004
LBL-P (10 x /24) Passive || Apr28-May 5, 2004

Table 5.1: Summary of Data Collection

two months’ worth of data. Our provisional access to thesckagnabled us to collect about two weeks of
data.

The sites use two different mechanisms to forward packethdoactive responder: tunneling, and
Network Address Translation (NAT). The LBL site uses tuimglencapsulation of IP datagrams inside
UDP datagrams), which has the advantages that: (1) it is steayghtforward to implement and (2) it
does not require extensive state management at the forivatdeever, tunneling requires the receive end
to (1) decapsulate traces before analysis, (2) handle &atation of full-MTU packets, and (3) allocate a
dedicated tunnel port. NAT, on the other hand, does not Hesetthree issues, but necessitates maintaining
per-flow state at the forwarder, which can be significantigdanetworks. The stateless responder deployed
at the UW site allows such state to &ghemerglwhich makes the approach feasible. That is we only need
to maintain a consistent flow ID for each outstanding incapacket, so the corresponding flow record at
the filter can be evicted as soon as it sees a response. Headiéetime of flow records is on the order of

milliseconds (RTT between the forwarder and active-sinkjead of seconds.

5.4 Passive Measurement of Background Radiation

This section presents a baseline of background radiatafficton unused IP addressedthout actively
responding to any packelt starts with a traffic breakdown by protocols and ports] #ren takes a close

look at one particular facet of the traffic: backscatter.
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5.4.1 Traffic Composition

A likely first question about background radiation charastis is “What is the type and volume of ob-
served traffic?”. We start to answer this question by lookangwo snapshots of background radiation
traffic shown in Table 5.2 which includes an 80 hour tracesm#d at UW Campus on a /19 network from
May 1 to May 4, a one week trace at LBL collected on 10 contigu@4 networks from April 28 to May

5, and finally a one-week trace at Class A with 1/10 sampliogifMarch 11 to 18.

Protocol UW-1 LBL-P Class A
Rate % | Rate % | Rate %
TCP 928 95.0%| 664 56.5%| 130 88.5%
ICMP 4.00 4.2%| 488 39.6%| 0.376 0.3%
UDP 0.156 0.8%| 45.2 3.8%| 165 11.3%

Table 5.2: Protocol breakdown by packet rate. The rate ispeted as number of packets per destination
IP address per daig., with network size and sampling rate normalized

Protocol Uuw LBL

#SrclP  Percentage #SrclP  Percentage
TCP 759,324 87.9% 586,025 90.0%
ICMP 109,135 12.6% 64,120 9.8%
UDP 4,273 0.5%| 4,360 0.7%

Table 5.3: Protocol breakdown by number of sources.

Clearly, TCP dominates more or less in all three networkse fdtatively lower TCP rate at Class A
is partly due to the artifact that the Class A trace was ctéleén March instead in May, when we see a
few large worm/malware outbreaks (include the Sasser wolNo} shown in the table, about 99% of the
observed TCP packets are€P/SYN.

The large number of ICMP packets (of which more than 99.9% G /echo-req ) we see at LBL
form daily high volume spikes (Figure 5.6), which are theutesf a small number of sources scanning
every address in the observed networks. On the other hanéeva bt fewer ICMP packets at the Class
A monitor which is probably because the Welchia worm, whioblqes withiCMP/echo-req , avoids the
Class A network.

Finally, the surprising low rate of UDP packets observed ¥t I3 largely due to the artifact that UW
filters UDP port 1434 (the Slammer worm).
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Figure 5.6: Number of background radiation packets per keen at LBL

In Figure 5.6, we can also see tHIP/SYN packets seen at LBL arrive at a relatively steady rate,
(and this is the case for the other two networks as well) intrest to daily ICMP spikes. A closer look
at the breakdown of CP/SYN packets by destination port numbers at LBL (Table 5.4) risviiwat a small
number of ports are the targets of a majorityf@fP/SYN packets (the eight ports listed in the table account
for more than 83% of the packets).

Table 5.3 shows the same traces from the perspective of threesof the traffic. Note that the rows
are not mutually exclusive as one host may send both TCP arfel piokets. It is clear that TCP packets
dominate in the population of source hosts we see. Theldlision across ports of LBL traffic is shown in

Table 5.4; as before, a small number of ports are dominant.

TCP Port| # Source IP (%)| # Packets (%
445 43.4% 19.7%

80 28.7% 7.3%

135 19.1% 30.4%
1025 4.3% 5.8%
2745 3.2% 3.6%
139 3.2% 11.1%
3127 2.7% 3.2%
6129 2.2% 2.4%

Table 5.4: The Most Popular TCP Ports. Ports that are vibiyettie most number of source IPs, asin a one
week passive trace at LBL. In total there are 12,037,064¢tadkom 651,126 distinct source IP addresses.

As TCP/SYN packets constitute a significant portion of the backgrowatiation traffic observed on a
passive network, the next obvious questiorighat are the intentions of these connection requestyvé

explore this question in Section 5.5 and 5.6.
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5.4.2 Analysis of Backscatter Activity

The term Backscatter is commonly used to refer to unsoticific that is the result of responses to attacks
spoofed with a network’s IP address. We assume that packetswed at network telescopes with certain
types of TCP flags, such as SYN-ACK and RST, or ICMP messagestyguch as ICMP Unreachable
and TTL-exceeded, are backscatter traffic, because theketgare usually generated in response to other
packets, but themselves do not solicit responses—so thaceincentive to send these packets intentionally
to random addresses.

Figure 5.7 provides a time-series graph of the backscattafity seen on the four networks. Not sur-
prisingly, TCP/RSTs andSYN-ACKs account for the majority of the scans seen in all four neltaiot hese
would be the most common responses to a spoofed SYN-floodigDeinService) attack. The figures
for the two UW and the Class A networks span the same two we&ks. backscatter in the two UW
networks looks highly similar both in terms of volume andighbility. This can be observed both in the
TCP RSTs/SYN-ACKSs and the two surges in ICMP TTL-Exceedenvshin Figures 5.7(a) and (b), and
makes sense if the spoofed traffic which is eliciting the Isaakter is uniformly distributed across the UW
addresses. The only difference between the networks i$Jat tends to receive more “Communication
administratively prohibited” ICMP messages than UW Il. Weyet have an explanation why. While we
see some common spikes in tA¥N-ACKSat the Class A and UW networks, there seem to be signifi-
cant differences in th&STs. Another notable difference is that the Class A netwonlaats much more
backscatter in other categories, as shown in Figure 5.8.

The LBL graph shown in Figure 5.7(c) belongs to a differenélvand displays a quite different pattern
than that of UW. We note that the backscatter in the UW nete/fok the same week (not shown here)
shows a very similar pattern as at LBL for the dominant trafffiges (TCPRSTS/SYN-ACKs and ICMP
TTL-Exceeded ). This is not surprising, because the two UW networks and_f8ke network belong to
the same /8 network. On the other hand, the LBL network seemsceive far fewer scans in the other
categories.

A significant portion of ICMPhost-unreach  messages we see at Class A are responses to UDP
packets with spoofed source addresses from port 53 to p26&. Me first thought we were seeing backscat-
ters of DNS poisoning attempts, but then we found that we e seeing the UDP packets in other
networks as well. Examining these packets reveals thatdheyot DNS packets, but rather Windows

Messenger Pop-Up spams, as discussed in the next section.
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5.5 Activities in Background Radiation

In this section we first divide the traffic by ports and preszmbdur of dominant activities on the popular

ports. Then we add the temporal element to our analysis tb@sehe volume of activities vary over time.

5.5.1 Details per Port

We rank activities’ popularity mostly by number of sources|Pather than by packet or byte volume,
for the following reasons. First, our filtering algorithmliéased against sources that try to reach many
destinations, thus affects packet/byte volumes unevenlgifferent activities. The number of source IPs,
however, should largely remain unaffected by filteringuasing a symmetry among destinations, i.e. when
a source contacts a number of destinations, the responkeckoof one) from one host will not affect the
semantics of traffic to other hosts, though the rate of traffic be affected. Also, number of source IPs
reflects popularity of the activity across the Internet—ativity with a huge number of sources is likely to
be prominent on the whole Internet. Finally, while a singtetce activities might be merely a result of an
eccentric host, a multi-source activity is more likely toibtentional.

When a source host contacts a port, it is common that it sendopmore probes before revealing
its real intention, sometimes in its second or third conioacto the destination host. A probe can be an
empty connectioni,e. the source opens and closes the connection without sendigtgaor some short
requeste.g, an HTTP"GET /" . Since we are more interested in the intention of sourceschvo®se
to look at the activities at a per-session (source-destingiair) granularity rather than a per-connection
granularity. Otherwise one might reach the conclusion thatprobes are the dominant elements. We
consider all connections between a source-destinatiaropathe given destination port collectively and
suppress repetitions. This approach usually gives us agietare of activity on each port.

Below we examine the activities on popular destinationgy@md for each port we present the dominant
activities. For convenience of presentation, we introdalgiereviations for activity descriptions, as shown
in Table 5.5. We pick an arbitrary day, March 29, 2004, to careghe distribution of activities seen at
different networks, LBL, UW (1,11), and the Class A networkVe consider the two UW networks as a

single network to eliminate possible bias that might ocawe tb a single filter.
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Port/Abbrev. | Activity

80/Get "GET /"
80/GetSrch "GET /"
"SEARCH /"
80/SrchAAA "GET /"
"SEARCH /"
"SEARCH /AAA..."
80/Srch64K "SEARCH Ax90\x02\xb1\x02\xb1..." (65536 byte URI)

135/Bind1 RPC bind: 000001a0-0000-0000-c000-000000000046
135/RPC170 | Unknown RPC request (170 bytes)

135/Bla RPC exploit: Blaster

135/Wel RPC exploit: Welchia

135/RPC-X1 | RPC exploit: (1624 bytes)

135/EP24-X2 | (Empty connection on port 135/tcp)

RPC request (24 bytes)

RPC exploit: (2904 bytes)

445/Nego (CIFS session negotiation only)

445/Locator "\<ip>\IPC$ \locator" => RPC exploit: 1896 bytes
445/Samr-exe | "\<dst-IP>\IPC$ \samr"

"\<dst-IP>\IPC$ \srvsvc => CREATE FILE: "[...].exe"
445/Samr "\<dst-IP>\IPC$ \samr"

445/Srvsvc "\<dst-IP>\IPC$ \srvsvc"

445/Epmapper] "\<dst-IP>\IPC$ \epmapper"

Table 5.5: Abbreviations for Popular Activities. Each lirdlects a separate connection.

The background radiation traffic is highly concentrated emall number of popular ports. For exam-
ple, on March 29 we saw 32,072 distinct source IPs at EBind only 0.5% of the source hosts contacted
a port not among the “popular” ports discussed below. Thusdbking at the most popular ports, we cover
much of the background radiation activity.

Note that looking at the ports alone does not allow us tomistish the background radiation traffic,
because many of the popular porsj.,80/tcp (HTTP), 135/tcp (DCE/RPC) and 445/tcp (SMB), are als
heavily used by the normal traffic. On the other hand, onceosk ht the background radiation traffic
at application semantic level, it has a very distinctive mladistribution. For example, the activities on
port 135 are predominantly targeted on two particular DGEIRnterfaces, and almost all buffer-overrun
exploits are focused on one interface. It is worth noting tha activity composition may change dramati-
cally over time, especially when new vulnerabilities/warappeare.g.,the dominant activity on port 445
is no longer “Locator” after the rise of the Sasser worm. Hegrewe believe the modal pattern will last as

long as the background radiation traffic remains highly mated.

SHere we ignore the effect of source IP spoofing, since ouraredgr was able to establish TCP connections with most of the
source hosts.
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Activity LBL UW | Class A
Get 51%| 2.9% 4.6%
GetSrch 5.2% | 93.2%| 93.4%
SrchAAA | 84.2%| 0.0% 0.0%
Srch64K | 0.9% | 1.1% 0.0%
CodeRed| 0.6% | 0.4% 0.5%
Nimda 0.2% | 0.1% 0.2%
Other 3.8%| 2.3% 1.3%

Table 5.6: Port 80 Activities (March 29, 2004) Note that tduee trace size the active responders at UW
and Class A do not respondtSEARCH /" to avoid getting the larg8rchAAA requests.

TCP Port 80 (HTTP) and HTTP Proxy Ports: Most activities we see on port 80 (Table 5.6) are targeted
against the Microsoft IIS server. In most cases, imitathrgyresponse of a typical IS server enables us to
attract follow-up connections from the source.

The dominant activity on port 80 is a WebDAV buffer-overrumptit [126] (denoted as SrchAAA).
The exploit always makes two probe¥GET /* and"SEARCH /", each in its own connection, be-
fore sending dSEARCH" request with a long URI (in many cases 33,208 bytes, but tigthecan vary)
starting with"/AAAA..."  to overrun the buffer. Unlike exploits we see on many othetgdhis ex-
ploit shows a lot of payload diversity—the URIs can be diferfrom each other by hundreds of bytes.
More interestingly, the URIs are composed solely of lonasecletters except for a few dozens of Unicode
characters near the beginning. The Unicode section turhgodae a short decoder which translates the
remaining characters in the URI to executable x86 code.d@esihis exploit, we also see other WebDAV
exploits,e.g, one popular exploit (Srch64K) from Agobot carries a fixe¢5&8® byte URI.

Old IIS worms, Nimda and CodeRed Il, remain visible in theadats. The CodeRed Il worm is almost
the same as the original CodeRed IlI, except shift of a spadelenchange of expiration date to year
0x8888. We also often se€'@PTIONS /" followed by a"PROPFIND" request. As both requests are
short, they look like probes. We have not been able to elicther requests from the sources and do not
yet fully comprehend the intention behind such probes. Vé¢pact that they might be scanners trying to
obtain a listing of list of scriptable files by sending “tréate: f” in the header of the HTTP request [105].

An interesting component of background radiation obsea&oss all networks on the HTTP proxy
ports: 81/1080/3128/8000/8080/8888&s well as on port 80, is source hosts using open-proxiesno se

probes tdtickerbar.net . A typical request is shown in Figure 5.9. These request$rane sources

4Though some of these ports are not officially assigned to HiFEPtraffic we received almost contained only HTTP requests
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abusing a “get rich quick” money scheme from greenhorse-@oweb site pays users money for running
tickerbar while they surf the net. By using open-proxiesstsources can potentially appear to be running

hundreds of nodes. The Greenhorse website seems to hagésian inactivated.

GET http://dc.tickerbar.net/tld/pxy.m?nc=262213531 HT TP/1.0
Host: dc.tickerbar.net
Connection: Close

Figure 5.9: Typical HTTP request of a tickerbar host

TCP Port 135/1025 (DCE/RPC) Port 135 is the Endpoint Mapper port on Windows systems §2f)
one of the entry points to exploit the infamous Microsoft \imws DCOM RPC service buffer overrun
vulnerability [124]. This vulnerability is exploited by ¢hBlaster worm and the Welchia worm among
others.

Figure 5.10 shows the dominant activities on the port. Ttastr worm was seen on all three networks,
but strangely we only saw the Welchia worm at LBL. There wds® @ number of empty connections
without follow-ups and a few types of probesd.,135/RPC170) we do not understand well. Comparing
the activity distribution across three networks, the difece is striking and unlike what we see on other
ports. This may be due to 1) lack of a single dominant actigitg 2) that certain scanning and exploits
might be targeted or localized.

On port 1025, which is open on a normal Windows XP host, we samiar set of exploits. Further,
DCE/RPC exploits are also seen on CIFS named pipes on podrid445. We present a closer look at

RPC exploit in Section 5.5.2.

TCP Port 139/445 (CIFS) Port 139 is the NetBIOS Session Service port and is usuaéyg on Windows
systems for CIFS (Common Internet File System) [19] oveB\@86. Port 445 is for CIFS over TCP and
is also known as Microsoft-DS. When used for CIFS sessitiestyto ports are almost identical except that
NetBIOS requires an extra step of session setup. Sourcestairaously connecting to both ports prefer
port 445 and abandon the port 139 connection. Thus we frelyusse empty port 139 connections.

As many Windows services run on top of CIFS there are a gra#@tyaof exploits we see on these
two ports. Figure 5.2 shows a snapshot of exploits we see drdgb at the Class A network. There are
basically two kinds of activities: 1) buffer-overrun RPCpéoits through named pipes,g.the Locator pipe
[125] or the Epmapper pipe (connected to the endpoint maggreice); and 2) access control bypassing

followed by attempts to upload executable files to the tangst,e.g.as in exploit 445/Samr-exe.
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Figure 5.10: Port 135 activities on March 29

Activity LBL UW | Class A
445/empty 2.4% | 1.3% 0.9%
445/Nego 3.3%| 2.4% 3.7%

445/Locator 72.7%| 89.4%| 89.3%
445/Samr-exe| 11.6% | 1.8% 1.1%
445/Samr 2.7% | 0.8% 0.6%
445/Srvsvc 1.1%| 0.4% 0.8%
445/Epmapper 0.8% | 0.3% 0.0%
Other 54% | 3.7% 3.5%

Table 5.7: Port 445 activities

As shown in Table 5.7, the Locator pipe exploit dominateg gdb activities at all four networks.
Besides that, some sources did not go beyond the sessiotiategostep—the first step in a CIFS ses-
sion. We also see exploits that first connect to the SAMR (Begsccount Manager) pipe, then connect
to the SRVSVC pipe and attempt to create an executable file métnes such amsmsgri.exe (W32
Randex.D) [99] andMicrosoft.exe [2]. Finally, by connecting to the Epmapper pipe the souares
exploiting the same vulnerability as on port 135/1025—rth# this activity is not seen in the Class A
network.

On port 139, 75% to 89% of source hosts either merely inigatgty connections or do not go beyond
the NetBIOS session setup stage, and then migrate to porffdgsdominant activity that we accurately
identify are attempts to create files on startup folderg aft@necting to the SRVSVC pipé.exe (W32-
Xibo) [131].Unlike port 445, we see few hosts attemptingxpleit the buffer overflows on the Locator or

Epmapper pipe. We also see Agobot variants that connecetBAMR pipe and drop executables.
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TCP Port 6129 (Dameware) Dameware Remote Control, an administration tool for Wind@ystems,
listens on port 6129. Dameware has a buffer overrun vulniisain its early versions [123]. The Dame-
ware exploits we see are similar to those of published ekploigrams but do not have exactly the same
payload. To launch an exploit, the source host will first s byte message to probe operating system
version and then ship the exploit payload, which is almasagé 5,096 bytes long.

On March 29, 2004, 62% of the source hosts that connect ta51@@ at LBL® close the connections
without sending a byte; another 26% abandoned the conmecdifter sending the probe message; and
we see exploit messages from the remaining 12% (the numbmreis30% on Apr 29). It would be
reasonable to question if the large number of abandonedscbions suggest that the sources did not like
our responders. However, we also find source hosts that Wissi@onnect with an empty connection and
later came back to send an exploit. Port 6129 is associatibdthé Agobot that connects to a variety of
ports (see Section 5.6.1), and possibilities are that tkeerbay connect to a number of ports simultaneously

and decide to exploit the port that they receive a respoise first.

TCP Port 3127/2745/4751 (Virus Backdoors)Port 3127 and 2745/4751 are known to be the backdoor
ports of the MyDoom and Beagle viruses, respectively. Ontrpog 3127 connections, we see a fixed 5-
byte header followed by one or more Windows executable figsads. The files are marked byZ" as
the first two bytes and contain the strifithis program cannot be run in DOS mode" near
the head of the file. Running several captured executabkifil@ closed environment reveals that the
programs scan TCP ports 3127, 135, and 445.

On port 2745, the dominant payload we see at LBL and UW is theviong FTP URL, which comes

after exchanging of one or two short binary messages.
"ftp://bla:bla@<src-IP>:<port>/bot.exe \0"

On the Class A network, however, we do not see a lot of port 26tvities. Interestingly, we see
several source hosts that attempt to upload Windows exXalestaWe also see many hosts that close the
connection after exchange of an initial message.

On port 4751, in some cases we see binary upload after echdiegder, similar to what happens on
port 3721, butin most cases we receive a cryptic 24-byte agesand are unable to elicit further response

by echoing.

5Due to an iSink responder problem we do not have data for theadtClass A network.
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20:27:43.866952 172.147.151.249.domain > 128.3.x.x.dom ain: [udp sum ok]
258 [b2&3=0x7] [16323a] [53638q] [9748n] [259au]

Type26904 (Class 13568)? [|domain] (ttl 115, id 12429, len 5 8)
0x0000  (...)
0x0010 XXXX XxXX 0035 0035 0026 xxxx 0102 0007  ..ooeeen
0x0020  d186 3fc3 2614 0103 d862 6918 3500 d54c .?.&....bi.5 .L
0x0030 8862 3500 chlf ee02 3500 .b5.....5.

Figure 5.11: Unknown packets on UDP port 53 (DNS port)

TCP Port 1981/4444/9996: (Exploit Follow-Ups) While worms such as CodeRed and Slammer are
contained completely within the buffer-overrun payloaglexal of the other worms such as Blaster and
Sasser infect victim hosts in two steps. First, the buffesroun payload carries only a piece of “shell
code” that will listen on a particular port to accept furtltemmands. Second, the source then instructs
the shell code to download and execute a program from a rehaste For example, on port 4444, the
follow-up port for the Blaster worm, we often see:

tftp -i <src-IP> GET msblast.exe

start msblast.exe

msblast.exe

Similarly, on port 1981 (Agobots) and 9996 (Sasser) we sgeeseces of shell commands to download
and execute hdot.exe . In contrast, there is a different kind of shell code callegverse shell” which

does not listen on any particular port, but instead conneat& to the source host (“phone home”). The
port on the source host can be randomly chosen and is embéadtiexishell code sent to the victim. The
Welchia worm uses a reverse shell (though its random paetteh is flawed). This makes it much harder
to capture the contents of follow-up connections, becaliseelwill have to understand the shell code to
find out the “phone-home” port; and 2) initiating connectidrom our honeypots violates the policy of the

hosting networks.

UDP Port 53 We expected to see a lot of DNS requests, but instead, finde®gending non-DNS (or
malformed) packets as shown in Figure 5.11.

We do not know what these packets are. These requests denid packets observed in the LBL
and UW (1,11) networks.

Table 5.8 provides a summary of the DNS activity observethén@lass A network during a 24 hour
trace showing a more diverse activity. Much like the UW and_Liitworks, sources sending malformed

DNS requests dominate. However, in terms of packet couhisr ajueries are substantial. We suspect
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Type Num packets | Num sources
Malformed packets 5755 3616
Standard (A) queries 10139 150
Standard query (SOA) 4059 95
Standard query (PTR) 1281 27
DNS Standard query SRV packets 785 20
DNS Standard query AAAA packets 55 16
DNS Standard unused packets 739 3
DNS Standard unknown packets 1485 3

Table 5.8: Summary of DNS activity seen in the Class A (24 kpur

these are possibly due to misconfigured DNS server IP adeivass hosts. These queries are sent to
various destination IP addresses and originate from van@iworks. Hence it seems unlikely that these
are a result of stale DNS entries.

The biggest contributor in terms of volume are standard Ariggehat resolve IP address for domain
names. The SOA packets are “Start of Authority” packets tgeelgister domain authorities. We observed
45 sources (out of total 95) registering different domaithatities in BGC.net. Other queries include PTR
queries (used for reverse DNS lookups), SRV records (usegéaify locations of services) and AAAA

gueries (IPv6 name resolution).
UDP Port 137: The activities are dominated by NetBIOS standard nameiggigorobes).

UDP Port 1026, 1027 (Windows Messenger Pop-Up Spani)hese appear as UDP packets with source
port 53 and destination port 1026 (or 1027). While this pornbination typically connotes a DNS reply,
examination of packet contents reveals that they are inD&E/RPC requests that exploit a weakness in
the Windows Messenger API to deliver spam messages to urgghWindows desktops [129]. Figure 5.12
shows a trace of a typical packet. The source IP addresskesd packets are often spoofed, as suggested
by the observetiCMP host-unreach  backscatter of these attacks in the Class A. The choice o€sou

port 53 is most likely to evade firewalls.

UDP Port 1434 The Slammer worm is still alive and is the only backgroundiation we see on port

1434.

TCP Port 1433 We have not yet built a detailed responder for MS-SQL. Itesgpp that most source hosts

are trying to log in with blank passwords.
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05:23:16.964060 13.183.182.178.domain > XXX.XXX.XXX.XX x.1026: 1024 op5
[4097q] 68/68/68 (Class 0) TypeO[|domain] (DF)

0x0010 .ot e e e 0400 a880
0x0020 1001 000Oa 000a 000a 0000 0000 0000 Of
0x0030 0000 0000 f891 7b5a 00ff d011 a9b2 00cO
0x0040  4fb6 e6fc 4bab6 e851 f713 8030 a761 c319
0x0050  13f0 e28c 0000 0000 0100 0000 0000 0000
0x0060 0000 ffff ffff 6400 0000 0000 0OcOO0 0000
0x0070 0000 0000 OcOO 0000 5265 616¢ 2057 6f6d
0x0080  656e 0000 0400 0000 0000 0000 0400 0000
0x0090  596f 7500 3000 0000 0000 0000 3000 0000
0x00a0 5741 4e54 2053 4558 3f0d 0aOd 0a46 494e
0x00b0 4420 5553 2041 543a 0dOa 0dOa 0977 7777
0x00cO  2exx XXXX XXXX XXXX xx2e 4249 5a0d 0a00 . woeweees BIZ...

Figure 5.12: Observed Windows Messenger Pop-Up Spam sacket

TCP Port 5000. We do not know enough about this port. The port is reservetfaversal Plug-and-Play
on Windows Systems, but almost none of requests we see &é-MalP requests. However, most requests

contain a number of consecutive Ox90%@P and thus look like buffer-overrun exploits.

All the ports we examine above exhibit a modal distributibtha application semantic levéle., they
all contain one or a few dominant elements. The only excaptidhe DCE/RPC ports, on which we see
some diversity, but in some sense, the various exploits oB/BEC ports have a single dominant element
on a higher level—they target the same vulnerability. Asdbeninant elements are quite different from
what we see in the normal traffic, this suggests that we witilble to capture the majority of background

radiation traffic with a sound classification scheme at theiegtion semantic level.

5.5.2 Temporal Distribution of Activities

We examine two cases of temporal activity. First, we lookatexploits with the largest source population
and consider the population variation over time. Secondlosk at the exploits targeted at a particular
vulnerability and consider how these exploits evolve anéidiify over time. We focus on the LBL network

for this analysis.

The Dominant Exploits

Figure 5.13 shows how the nhumbers of source hosts vary oeerdhrse of 18 days for the four exploits
with largest source population.

The source volumes for the SrchAAA and Locator exploits afatively stable and close to each other
over time. This is not surprising because these exploitdileely coming from the same worm, as we see

in Section 5.6.2.
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Figure 5.13: The Big Exploits (Apr 20 to May 7, 2004), as obseron 5 /C networks at LBL. The source
hosts are counted every three hours.

The other two exploits, Exploit1464 and Sasser, show mucldarwange of source volume dynamics.
This is especially true for Exploit1464, which temporarnigtreated to a much smaller scale around April
30th.

All four exploits demonstrate a strong diurnal pattern,hwobvious peaks at local time noon. We do
not have good explanations for this pattern. For SrchAAAGdtor, and the Sasser exploits, the peak might
be due to hosts being turned on at daytime and doing locakbiaearch. However, for Exploit1464, the
steep narrow peaks lead us to believe they could be causén Isganning mechanism itself.

Overall, we can see that there are two common types of terhpatirns in background radiation at
the granularity of every few hours: the source populatiosarhe radiation activities (such as SrchAAA)
remains largely constant, likely a result of continual amdependent random scanning by the source hosts;
some other radiation activities (such as Exploit1464) kitlarge variations, suggesting synchronized or
centrally controlled scanning.

We also observe variation of source population at largee tjranularity—in terms of days or weeks.
Such variation can be a result of a new vulnerability andefee new types of exploits, as shown by the
Sasser exploit, which starts to appear around the April iB8J\ coming from the Sasser worm. On the
other hand, the source population of existing radiatioiviiets may decrease as new types of malware
emerge and take over some of the hosts, as the SrchAAA anddrgoapulation does upon the Sasser

worm outbreak.
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DCE/RPC Exploits

DCE/RPC exploits that target the Microsoft DCOM RPC vulibdity [124] present an interesting case
of a single well-known vulnerability being used and reusgdvlirious worms and/or autorooters. This
vulnerability is particularly attractive because it egisin every unpatched Windows 2000/XP system, in
contrast tog.g.vulnerabilities that exist only on 1S or SQL servers.

We have seen quite a few different exploit payloads in thia.d&here are at least 11 different payload
lengths. This does not appear to be result of intentionairpolphism, for two reasons: 1) from almost
every single source IP we see only one payload length; ariadv®lild be easy to vary the length of payload
by simply insertingNOPs if the adversary wanted to incorporate some polymorphigimus we believe
that the diversity of payloads is not due to deliberate payphism but due to different code bases. While
the payloads themselves might not be very interestingegime diversity is likely due to the various “shell
code” they carry, the diversity offers us an opportunitydoK at the rising and ebbing of different exploit
programs.

Without a robust way to cluster payloads by contents (paldaaf same length sometimes differ on
tens to hundreds of bytes and the differences are not mer#ting of contents and paddings), we choose
to cluster the exploits by lengths and the ports on which tygyear, including port 135/1025 and the
Epmapper pipes on port 445/139. Under this scheme, we see timan 30 different exploit types. We
select nine of the popular exploits and consider how the rarrobsource IP addresses for each exploit
varies over time during April 2004. The exploits have fouifetient payload lengths: 1448, 1464, 2972,
and 2904, and are seen on port 135, 1025, and 445.

We observe strong temporal correlation among exploits @stme length for lengths 2792 and 2904,
while this is not the case for lengths 1448 and 1464. The frpioés also show some correlation in terms
of activity to port 135 and to port 445, which is due to the samerce probing both ports. We also find that
even for multiple sources, activity for particular portitgth pairs tends to come in bursty spikes, suggesting
that certain malware performs synchronized scanning arttemgources.

The temporal correlation among some types of DCE/RPC etspdtiows us to guess which exploits
are coming from the same malware. It shows that some malwaobsbly send different exploits to attack

the same vulnerability, but it is not clear why they do so {thgation is too little for evading signatures).
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Figure 5.14: Time series of activity on Agobot ports in thetWW /19 networks (on adjacent Class B
networks)

5.6 Characteristics of Sources

This section examines the background radiation activitigerms of source hosts. We associate various
activities coming from the same source IP to construct ativig vector” for each source IP, which we
then examine in three dimensions: 1) across ports, 2) adestgation networks, and 3) over time.

One caveat here is the possibility of IP spoofing. Yet we firat the are able to establish two-way
conversation with the majority of source hosts in backgrbradiation, suggesting that most sources are
not spoofing their IP addresses.

There is another caveat about identifying hosts with IP eslsles: due to DHCP, hosts might be assigned
different addresses over time. A study [71] concluded thaiddresses are not an accurate measure of the
spread of a worm on timescales longer than 24 hours”. Howexdrout a better notion to identify hosts,

we still use IP addresses to identify hosts, while keepirgdaveat in mind.

5.6.1 Across Ports

Associating activities across ports sometimes gives ugifgiantly better picture of a source’s goals.
This especially helps with analyzing puzzling activitibecause it puts behavior on individual ports in the
context of collective activity. For example, simply loogiat an RPC exploit may not readily reveal the
worm or autorooter that sends it, but once we see a followeygmtt 4444 with'tftp msblast.exe” ,
we know that the earlier exploit comes from Blaster.

Table 5.9 provides a summary of the top multi-port scannipigaes seen in the four networks. The
most common is sources that scan both 139 and 445. Many sithaé exploit NetBIOS/SMB (CIFS)

exhibit this behavior since for propagation the ports canged interchangeably. This next most common
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Name Ports Description Number of Sources (Rank)
LBL Uwi Uw i Class A
NB-1 139,445 Xi.exe (W32-Xibo), 4,310 (1) | 4,300 (1) | 4,313 (1) | 7,408 (1)
msmsgri32.exe (Randex.D)
Antivirus32.exe (SDBot.JW)
NB-EP1 135,139,445 EP-2704, 1,187 (2) | 1,028(2) | 1,046 (2) | 537 (4)
mdms.exe(Agobot)
NB-EP2 135,139, EP-2792, EP-2904 780 (3) 678 (3) 721 (3) 15
445,5000
Agobot-1 1025,1981, Agobot variant-I 16 452 (4) | 68(10) 0
2745,6129
Agobot-2 | 1025,2745,6129 Agobot variant-1I 1 437 (5)
Agobot-3 80,139,1025, Agobot variant-IIl 0 415 (6)
2745,6129

Table 5.9: 24 hours of multi-port source activity at the feites

multiport source behavior exploits the Microsoft DCE/RP@nerability [124] both via port 135 and
by connecting to the Epmapper pipe through port 139 and ptstduring the same episode. These are
likely variants of Welchia. Most port 5000 connections amgpéy and the rest small portion of them look
like buffer overrun exploits. We also find Agobot variantattoccasionally target these services. They
connect to the SAMR pipe through CIFS to obtain registry iinfation, following the sequence described
in Figure 5.3 and drop the fillmdms.exe into one of the startup folders. The least common profiles are
used exclusively by Agobot variants (I, Il and IlI).

We can examine the spatial variance of multi-port profilescbynparing the data collected at each
network during the same 24 hour period. We order the profiésgt on the ranks of all multi-port profiles
collected at the UW | network, which showed the greatestigffto Agobot. The table reveals several
notable observations. First, the top two exploits are esitety observed across all four networks and their
rankings are consistent in the Class B networksspatial invariant Second, although the LBL network
is much smaller, it observes the same number of sources aghtbetwo UW networks for the top three
exploits. This is probably due to the fact that the netword®bg to the same /8, and suggests that these
multi-port sources often sweep the address space. Third] kddkives many more Agobot scans than the
other networks, though we don’t know why.

We explore Agobot scans in greater detail in Figure 5.14. figneres show the volume of unique
sources per hour on several of the Agobot ports during a fayegkriod in March at the two adjacent

UW networks. The graph at UW | shows four visible spikes, éating an Agobot attack. While UW 1
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Activity LBL UW ClassA | LBLNnUW LBL NnClass A
All 31K 276K 582K 15K 6.5K
Srch+lLoc| 76%  85% 57% 75% 91%
Samr-exe| 1,601 2,111 2,012 1,634 116
Witty 72 241 162 61 18

Table 5.10: Traffic from sources seen across networks:sattions vs. individual networks

background radiation seems to otherwise closely follow U\ése Agobot spikes are peculiarly absent.
These graphs also provide a temporal perspective on thetlymiwAgobot, with a striking daily spike-
followed-by-decay pattern, presumably as new machineslaamed up over the course of the day.

We see little Agobot on the Class A network. This likely reflieAgobot’s “maturity” as malware. It
has gone through iterative enhancements and likely hasr(gally) “evolved” to have been programmed
to avoid unused class A networks; or perhaps it has becomppepiwith list of target networks, or the

scanning is being consciously focused by a human operadR@ control channels.

5.6.2 Sources Seen Across Networks

We now consider sets of source hosts seen on multiple neswairpproximately the same time. We
analyze source IPs seen across networks on an arbitralyechday (March 29 GMT), characterizing
them in terms of: 1) How many such source hosts are there? Zh&osend the same traffic to different
networks? 3) What does the activity distribution look like?d 4) how does it compare to the distribution
on individual networks?

As shown in Table 5.10, source IPs seen at LBL and UW have aisingly large intersection set—
almost half the source IPs seen at LBL are also seen at UW.ntrasi, the intersection of LBL and the
Class A is much smaller, even though we are seeing many mareestPs at the Class A than at LAW.
This contrast may be due to some sources avoiding the Clagtwiorks, and also the proximity of LBL
and UW in the IP address space.

The next evaluation is to confirm that a given source indeadséhe same traffic to the different net-
works. We extract an activity vector for each source IP oriL.iBe and UW networks and compatre, finding
that indeed this is the case, with one peculiarity: whileesabthousand SrchAAA and Locator sources are

common, we also find nearly two thousand Locator-only s@ieteone network that are SrchAAA-only

6Since we only see ICMP Unreachable backscatter only on thesGA network, and these constitute a significant number of
source IPs, here we exclude them from the comparison to akeiding the activity distribution.

104



Mar29 Mar30 Apr29| 1-Dayn 1-Monthn
All 31K 30K 62K 1,513 680
Srch+Loc 76% 83% 42% 68% 85%
Witty 72 64 0 15 0
Blaster 30 31 24 8 7

Table 5.11: Traffic from sources seen over time: intersestigs. individual periods

sources at the other. This turns out to be due to the interatigtween source-destination filtering and
the scanning mechanism of the SrchAAA/Locator sourcessé&lseurces choose, apparently randomly, to
send either SrchAAA or Locator to a given destination, butbath.

Finally, what does the activity profile of a given source tedlabout how likely we are to see it else-
where? As shown in Table 5.10, sources exhibiting the domiiaetivity profile—SrchAAA and Locator—
are often seen at multiple locations in the network. On thiohand, Samr-exe and Witty present an
interesting case. The Samr-exe sources we see in the ictiersef LBL and UW are more than what we
find at LBL alone! (1,634 vs 1,601) This seeming inconsisgesccaused by a number of source hosts
not completing the exploit when contacting LBL, and thusmeing identified there, but doing so at UW.
In addition, the Samr-exe population seen at UW is merelg2 (@.7%), so we see a surprisingly large
overlap for it between LBL and UW. On the other hand, LBL and @€lass A have only 116 Samr-exe
sources in common, out of more than 2,000 seen on the Classg8esting that Samr-exe sources scan

with a local bias.

5.6.3 Sources Seen Over Time

To characterize sources seen at the same network over tien@nalyze activity seen at LBL on three days:
March 29, March 30, and April 29. This gives us comparisonsaffjacent days and one month apatrt,
respectively. Table 5.11 characterizes the variation. ¥¢etbat the intersection of source hosts—even in
the case of only one day apart—is much smaller than the exdgos across networks. While this is partly
because the UW network is larger than LBL, looking at the §sbarces seen on another LBL network of
the same size on March 29 we find more than 5,000 hosts in comrfaa confirms that we tend to see
a larger intersection of source IPs across networks thantowe. One effect we have not controlled for
here, however, is DHCP artifacts: a host might be assignigetelint addresses on different days. We also

note that the intersection size does not decrease very nouittef over one month'’s time, suggesting that
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if a host does not have the DHCP artifact, then it tends toistthe intersection. The initial steep decaying

of source IP sets also suggests that it will be easier to tidokalicious) host across space than across time.
The number of source hosts seen over time also varies byitgcthor example, Witty did not persist

over a month (nor could it, as it was a rare instance of a woahdbliberately damages its host); Blaster's

grip on hosts is quite tenacious; and the SrchAAA/Locatarrses fall in between.

5.7 Summary

Previous studies of Internet traffic have identified a nundfenow well-established properties: diurnal
cycles in volume; variability in mix across sites and overdi bursty arrivals; the ubiquity of heavy-tailed
distributions. Over the past several years, however, aroitapt new dimension of Internet traffic has
emerged, and it has done so without any systematic obsemwaticharacterization. The gross features of
this new breed of traffic are that it is complex in structurghty automated, frequently malicious, and
mutates constantly. Each of these characteristics mesvidie need for a deeper understanding of this
“unwanted” traffic.

We have presented an initial study of the broad charadtisf Internetbackground radiation Our
evaluation is based on traffic measurements from four langesed subnets within the IPv4 address space.
We developed filtering techniques and active respondersaadruour monitoring, analyzing both the char-
acteristics of completely unsolicited traffic (passivelgsia) and the details of traffic elicited by our active
responses (activities analysis).

Passive analysis demonstrates both the prevalence aadbifyriof background radiation. Evaluation
of destination ports reveals that the vast majority of tcaffirgets services with frequently-exploited vul-
nerabilities. Analysis of backscatter traffic shows therallelominance of TCP SYN-ACK/RST packets,
but otherwise we do not find a great deal of consistency athessionitored subnets.

Our activities analysis focused on the most popular sesviaeyeted by background radiation, finding
a rich variegation. Activities across all of the monitoreshsces include new worms released during our
study, vestiges of old worms such as Code Red and Nimda, ¢a@dnt presence of “autorooter” scans
(similar to worms, but without self-propagation), and aioeable number of connections that are simply
empty even when given an opportunity to send data. As withptesive analysis, we find significant

diversity across the subnets we monitored, and also over. tim
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We also examined background radiation from the perspectiwource host behavior. Considering
source activities across ports reveals consistent behavieach of the measurement sites for the most
prevalent multi-port scan type (scans to both ports 139 a%.4Furthermore, there was an appreciable
intersection of sources across measurement sites. Thisecarplained by the random scanning behavior
of worms like Welchia. However, there was a much smaller $sbarces common to all measurement
sites when they are considered over time.

Perhaps the most striking result of our analysis is the ex¢rdynamism in many aspects of background
radiation. Unlike benign traffic, which only shows major f&hiin constituency when new applications
become popular (which happens on fairly lengthy time sg¢aies mix of background radiation sometimes
changes on a nearly-daily basis. This dynamism results ot@oprri of connection-level behavior, packet
payloads, and activity sessions seen in different regibtissoaddress space.

Our efforts have implications for both the research and afp@nal communities. The ubiquity of back-
ground radiation presents significant difficulties for ta@gho monitor Internet traffic: it can clog stateful
analyzers with uninteresting activity, and due to its vgriecan significantly complicate the detection of
new types of activity (for example, a new worm using the saw @s existing worms). It is clear from
the highly diverse and dynamic activity we have found thathfer work is needed to both assess the evo-
lution of background radiation over time and to develop nabetailed characterizations. We believe that
our framework—prefiltering the traffic, using lightweiglgsponders to engage sources in enough detail to
categorize them, analyzing the resulting traffic along tkessave have explored—is an important first step

towards comprehensively studying this new phenomenon.
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Chapter 6

A First Look at Modern Enterprise

Traffic

While wide-area Internet traffic has been heavily studigaifany years, the characteristics of traffiside
Internet enterprises remain almost wholly unexplored.riyesl of the studies of enterprise traffic available
in the literature are well over a decade old and focus on idd&l LANs rather than whole sites. In this
paper we present a broad overview of internal enterpridéicdreecorded at a medium-sized site. The
packet traces span more than 100 hours, over which actiaty & total of several thousand internal hosts
appears. This wealth of data—which we have publicly rel@é@&s@nonymized form—spans a wide range
of dimensions. While we cannot form general conclusionsgidata from a single site, and clearly this sort
of data merits additional in-depth study in a number of wayshis chapter we endeavor to characterize
a number of the most salient aspects of the traffic. Our gol rovide a first sense of ways in which
modern enterprise traffic is similar to wide-area Intermaffic, and ways in which it is quite different.

The general structure of the chapter is as follows. Sectitrpfesents the background and motivation
of this study. Section 6.2 gives an overview of the packegsave gathered for our study. Next, Section 6.3
presents a broad breakdown of the main components of tHi trahile Section 6.4 looks at the locality
of traffic sources and destinations. Section 6.5 examinagacteristics of the applications that dominate

the traffic. Section 6.6 provides an assessment of the loai@ddy the monitored networks. Section 6.7
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offers final thoughts. We note that given the breadth of tipécgcovered, we have spread discussions of

related work throughout the chapter, rather than concengréhese in their own section.

6.1 Problem Statement

When Caceres captured the first published measurementsitoé’s wide-area Internet traffic in July,
1989 [16, 17], the entire Internet consisted of about 13D 00sts [62]. Today, the largest enterprises
can have more than that many hosts just by themselves.

It is striking, therefore, to realize that more than 15 yeddfter studies of wide-area Internet traffic
began to flourish, the nature of trafficside Internet enterprises remains almost wholly unexplorede Th
characterizations of enterprise traffic available in theréiture are either vintage LAN-oriented studies [42,
38], or, more recently, focused on specific questions suatfasing the roles played by different enterprise
hosts [115] or communities of interest within a site [4]. Tdrdy broadly flavored look at traffic within
modern enterprises of which we are aware is the study of OS8Rty behavior in [107]. Our aim is to
complementthat study with a look at the make-up of trafficesnsat the packet level within a contemporary
enterprise network.

One likely reason why enterprise traffic has gone unstudiedd long is that it is technically difficult
to measure. Unlike a site’s Internet traffic, which we canagafly record by monitoring a single access
link, an enterprise of significant size lacks a single chpk@t for its internal traffic. For the traffic we
study, we primarily recorded it by monitoring (one at a tintle¢ enterprise’s two central routers; but our
measurement apparatus could only capture two of the 20-ergatrts at any one time, so we could not
attain any sort of comprehensive snapshot of the enteipaséivity. Rather, we piece together a partial
view of the activity by recording a succession of the enisg¥ subnets in turn. This piecemeal tracing
methodology affects some of our assessments. For instifimezhappen to trace a portion of the network
that includes a large mail server, the fraction of mail tcaffill be measured as larger than if we monitored
a subnet without a mail server, or if we had an ideally comensive view of the enterprise’s traffic.
Throughout the chapter we endeavor to identify such biaséisey are observed. While our methodology
is definitely imperfect, to collect traces from a site liker®in a comprehensive fashion would require a

large infusion of additional tracing resources.
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Our study is limited in another fundamental way, namely #ibbf our data comes from a single site,
and across only a few months in time. It has long been estedalithat the wide-area Internet traffic seen
at different sites varies a great deal from one site to amd¥% 87] and also over time [87, 88], such
that studying a single siteannotbe representative. Put another way, for wide-area Intdraéic, the
very notion of “typical” traffic is not well-defined. We woulgkpect the same to hold for enterprise traffic
(though this basic fact actually remains to be demonstjaséedl therefore our single-site study can at best
provide anexampleof what modern enterprise traffic looks like, rather than aagal representation. For
instance, while other studies have shown peer-to-peerHeeirsy applications to be in widespread use
[106], we observe nearly none of it in our traces (which igljka result of organizational policy).

Even given these significant limitations, however, themaigh to explore in our packet traces, which
span more than 100 hours and in total include activity fro®08,internal addresses at the Lawrence
Berkeley National Laboratory and 47,000 external addsessedeed, we found the very wide range of
dimensions in which we might examine the data difficult topgde with. Do we characterize individual
applications? Transport protocol dynamics? Evidencedtrsmilarity? Connection locality? Variations
over time? Pathological behavior? Application efficien€ffanges since previous studies? Internal versus
external traffic? Etc.

Given the many questions to explore, we decided in this fixsk project to pursue a broad overview
of the characteristics of the traffic, rather than a specifiesgion, with an aim towards informing future,

more tightly scoped efforts. To this end, we settled uporfellewing high-level goals:

1. To understand the makeup (working up the protocol stamk fihe network layer to the application

layer) of traffic on a modern enterprise network.
2. To gain a sense of the patterns of locality of enterprisid:

3. To characterize application traffic in terms of how ingatraffic characteristics can differ from

Internet traffic characteristics.

4. To characterize applications that might be heavily useahienterprise network but only rarely used

outside the enterprise, and thus have been largely igngretdloleling studies to date.

5. To gain an understanding of the load being imposed on maslgerprise networks.
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| | Do [ Dy | D> | Ds | Di |

Date 10/4/04| 12/15/04| 12/16/04| 1/6/05 | 1/7/05
Duration 10 min 1hr 1hr 1hr 1hr
Per Tap 1 2 1 1 1-2

# Subnets 22 22 22 18 18
# Packets 17.8M 64.7M 28.1M | 21.6M | 27.7M
Snaplen 1500 68 68 1500 | 1500
Mon. Hosts | 2,531 2,102 2,088 1,561 | 1,558
LBNL Hosts | 4,767 5,761 5,210 5,234 | 5,698
Remote Hosty 4,342 10,478 7,138 | 16,404| 23,267

Table 6.1: Dataset characteristics.

Our general strategy in pursuing these goals is “underdfamdbig things first.” That is, for each of
the dimensions listed above, we pick the most salient dautsi's to that dimension and delve into them
enough to understand their next degree of structure, amdrédpeat the process, perhaps delving further if
the given contributor remains dominant even when brokenmdioto components, or perhaps turning to a

different high-level contributor at this point.

6.2 Datasets

We obtained multiple packet traces from two internal netwocations at the Lawrence Berkeley National
Laboratory (LBNL) in the USA. The tracing machine, a 2.2 GHz®anning FreeBSD 4.10, had four NICs.
Each captured a unidirectional traffic stream extractea ngtwork-controllable Shomiti taps, from one of
the LBNL network’s central routers. While the kernel did meport any packet-capture drops, our analysis
found occasional instances where a TCP receiver acknoetkdgta not present in the trace, suggesting
the reports are incomplete. It is difficult to quantify thgrsficance of these anomalies.

We merged these streams based on timestamps synchronipad #te NICs using a custom modifi-
cation to the NIC driver. Therefore, with the four availabléCs we could capture traffic for two LBNL
subnets. A further limitation is that our vantage point dadlthe monitoring of traffic to and from the
subnet, but not traffic that remained within the subnet. Wadexpectscript to periodically change the
monitored subnets, working through the 18-22 differenn&tb attached to each of the two routers.

Table 6.1 provides an overview of the collected packet satée “per tap” field indicates the number
of traces taken on each monitored router port, 8ndplergives the maximum number of bytes captured

for each packet. For examplB, consists of full-packet traces from each of the 22 subnetstm@d once
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| [ Do [ Dy [ Do [ Dy | Da ]
IP_ | 99%] 97% ] 96% | 98% | 96%
non-iP| 1% | 3% | 4% | 2% | 4%
ARP | 10%] 6% | 5% | 27%] 16%
IPX | 80% | 77% | 65% | 57% | 32%
Other | 10% | 17% | 29% | 16% | 52%

Table 6.2: Fraction of packets observed using the givenaritiayer protocol.

for ten minutes at a time, whil®; consists of one-hour header-only (68 bytes) traces frol2&wubnets,

each monitored twice (i.e., two one-hour traces per subnet)

6.3 Broad Traffic Breakdown

We first take a broad look at the protocols present in our saegamining the network, transport and
application layers.

Table 6.2 shows the distribution of “network layer” prottga.e., those above the Ethernet link layer.
IP dominates, constituting more than 95% of the packets ahn elataset, with the two largest non-IP
protocols being IPX and ARP; the distribution of non-IP fiaf/aries considerably across the datasets,
reflecting their different subnet (and perhaps time-of)adagkeup:

Before proceeding further, we need to deal with a somewhaptioated issue. The enterprise traces
includescanning traffidrom a number of sources. The most significant of these ssuape legitimate,
reflecting proactive vulnerability scanning conducted bg site. Including traffic from scanners in our
analysis would skew the proportion of connections due tfediht protocols. And, in fact, scanners can
engage services that otherwise remain idle, skewing ngttbel magnitude of the traffic ascribed to some
protocol but also the number of protocols encountered.

In addition to the known internal scanners, we identify &iddial scanning traffic using the following
heuristic. We first identify sources contacting more thand&linct hosts. We then determine whether
at least 45 of the distinct addresses probed were in asagodidescending order. The scanners we find
with this heuristic are primarily external sources usingViZ probes, because most other external scans

get blocked by scan filtering at the LBNL border. Prior to oubsequent analysis, we remove traffic from

IHour-long traces we made of 100 individual hosts (not otherwise analyzed here) havelenmof 35-67%mon-IPv4 packets,
dominated bybroadcastIPX and ARP. This traffic is mainly confined to the host’s subaed hence not seen in our inter-subnet
traces. However, the traces are too low in volume for mednirgeneralization.
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Connections
DO/all | D1/all | D2/all | D3/all | D4/all
Total 198133| 1391718| 563629| 881200| 1232789
Scanl 11% 0.9% 2% 2% 2%
Scan2 1% 15% 1% 9% 1%
WAN Scanner 5% 0.6% 1% 3% 3%
Non-Scan 82% 84% 96% 86% 93%

Table 6.3: Fractions of scan connections (removed fronmé&rranalysis)

| | Do | Dy | D: | Ds | Ds |
[ Bytes (GB)[ 13.12] 31.88] 13.20] 8.98 | 11.75|

TCP 66% | 95% | 90% | 77% | 82%
UDP 34% | 5% | 10% | 23% | 18%
ICMP 0% | 0% | 0% | 0% | 0%
[Conns(M) | 0.16 | 1.17 | 0.54 [ 0.75] 1.15 |
TCP 26% | 19% | 23% | 10% | 8%
UDP 68% | 74% | 70% | 85% | 87%
ICMP 6% | 6% | 8% | 5% | 5%

Table 6.4: Fraction of connections and bytes utilizing @asi transport protocols.

sources identified as scanners along with the two interreairsers. Table 6.3 shows that the fraction of
connections removed from the traces ranges from 4-18% sthesdatasets. A more in-depth study of
characteristics that the scanning traffic exposes is dtittea for future work.

We now turn to Table 6.4, which breaks down the traffic by tpamsprotocol (i.e., above the IP layer)
in terms of payload bytes and packets for the three most pofrahsports found in our traces. The “Bytes”
and “Conns” rows give the total number of payload bytes amtheations for each dataset in Gbytes and
millions, respectively. The ICMP traffic remains fairly csistent across all datasets, in terms of fraction of
both bytes and connections. The mix of TCP and UDP trafficegaai bit more. We note that the bulk of
the bytes are sent using TCP, and the bulk of the connectem&DP, for reasons explored below. Finally,
we observe a number of additional transport protocols indatasets, each of which make up only a slim
portion of the traffic, including IGMP, IPSEC/ESP, PIM, GRiad IP protocol 224 (unidentified).

Next we break down the traffic by application category. Weugrd CP and UDP application proto-
cols as shown in Table 6.5. The table groups the applicatimgether based on their high-level purpose.
We show only those distinguished by the amount of traffic ttrapsmit, in terms of packets, bytes or
connections (we omitnanyminor additional categories and protocols). In Sectionweexamine the

characteristics of a number of these application protocols
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% payload

| Category || Protocols

backup || Dantz, Veritas, “connected-backup”
bulk FTP, HPSS
email SMTP, IMAP4, IMAP/S, POP3, POP/S, LDAP
interactive || SSH, telnet, rlogin, X11
name DNS, Netbios-NS, SrvLoc
net-file NFS, NCP
net-mgnt || DHCP, ident, NTP, SNMP, NAV-ping, SAP, NetInfo-loca
streaming | RTSP, IPVideo, RealStream
web HTTP, HTTPS
windows || CIFS/SMB, DCE/RPC, Netbios-SSN, Netbios-DGM
misc Steltor, MetaSys, LPD, IPP, Oracle-SQL, MS-SQL

Table 6.5: Application categories and their constituentgeols.
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Figure 6.1: Fraction of traffic payload bytes of various agation layer protocols.
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Figure 6.1, 6.2, and 6.3 show the fraction of unicast paylmads, packets, and connections from each
application category, respectively (multicast traffic isatissed below). The five bars for each category
correspond to our five datasets. The total height of the h@esents the percentage of traffic due to the
given category. For each dataset, the height of bars adds L@0%. The solid part of the bar represents
the fraction of the total in which one of the endpoints of tlemrection resides outside of LBNL, while
the hollow portion of the bar represents the fraction of ttaltthat remains within LBNL's network. (We
delve into traffic origin and locality in more depth in Secti6.4.)

First, the plots show avider range of application usageithin the enterprise than over the WAN.
In particular, we observed 3—4 times as many applicatioagmates on the internal network as we did
traversing the border to the WAN. The wider range likely reffethe impact of administrative boundaries
such as trust domains and firewall rules, and if so shouldgt@told for enterprises in general. The figure
also shows that the majority of traffic observed is local t ¢émterprise. This follows the familiar pattern
of locality in computer and network systems which, for exémplays a part in memory, disk block, and
web page caching.

In addition, Figure 6.3 and 6.1 show the reason for the findingve that most of the connections in
the traces use UDP, while most of the bytes are sent acros@@iections. Many connections are for
“name” traffic across all the datasets (45-65% of the conmes). However, the byte count for “name”
traffic constitutes no more than 1% of the aggregate traffibe Thet-mgnt”, “misc” and “other-udp”
categories show similar patterns. While most of the coriaestare short transaction-style transfers, most
of the bytes that traverse the network are from relatively éennections.

Figure 6.1 shows that the “bulk”, “network-file” and “bacKugategories constitute a majority of the
bytes observed across datasets. In some of the dataseatslotms”, “streaming” and “interactive” traffic
each contribute 5-10% of the bytes observed, as well. Thetfis make sense because they include
bulk-transfer as a component of their traffic; and in facerattive traffic does too, in the form of SSH,
which can be used not only as an interactive login facility &iso for copying files and tunneling other
applications.

The breakdown in term of packets (Figure 6.2) is similar tolitheakdown in terms of bytes (Figure 6.1),
except that when measuring in terms of packets the percetfagteractive traffic is roughly a factor of
two more than when assessing the traffic in terms of bytes;atidg that interactive traffic consists, not

surprisingly, of small packets [24].
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Most of the application categories shown in the breakdowurdig areunbalancedn that the traffic
is dominated by either the connection count or the byte colihe “web” and “email” traffic categories
are the exception; they show non-negligible contributimnisoth the byte and connection counts. We will
characterize these applications in detail in Section Gibhbre we note that this indicates that most of the
traffic in these categories consists of connections withesbte-not tiny or huge—lengths.

In addition, the plot highlights the differences in traffimfile across time and area of the network
monitored. For instance, the number of bytes transmittedldackup” activities varies by a factor of
roughly five fromD, to D,4. This could be due to differences in the monitored locationslifferent tracing
times. Given our data collection techniques, we cannailldignds from the data; however this is clearly
a fruitful area for future work. We note that most of the apption categories that significantly contribute
to the traffic mix show a range of usage across the datasetgeWn, the percentage of connections in the
“net-mgnt” and “misc” categories are fairly consistent@ss the datasets. This may be because a majority
of the connections come from periodic probes and announcesyend thus have a quite stable volume.

Finally, we note that multicast traffic constitutes a sigrfit fraction of traffic in the “streaming”,
“name”, and “net-mgnt” categories. We observe that 5-10%I0fFCP/UDP payload bytes transmitted are
in multicast streaming—i.e., more than the amount of trdffind in unicast streaming. Likewise, multi-
cast traffic in “name” (SrvLoc) and “net-mgnt” (SAP) each stitutes 5-10% of all TCP/UDP connections.

However, multicast traffic in the remaining applicationegiries was found to be negligible.

6.4 Origins and Locality

We next analyze the data to assess both the origins of traffidlee breadth of communications among
the monitored hosts. First, we examine the origin of the flowsach dataset, finding that the traffic
is clearly dominated by unicast flows whose source and dsgiim are both within the enterprise (71—
79% of flows across the five datasets). Another 2—-3% of unftags originate within the enterprise but
communicate with peers across the wide-area network, aad%-originate from hosts outside of the
enterprise contacting peers within the enterprise. Am&H10% of the flows use multicast sourced from
within the enterprise and 4-7% use multicast sourced exligrn

We next assess the number of hosts with which each monitegdbmmunicates. For each monitored

hostH we compute two metricsi)fan-inis the number of hosts that originate conversations Withvhile
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(7¢) fan-outis the number of hosts to whicH initiates conversations. We calculate these metrics imger
of both local traffic and wide-area traffic.

Figure 6.4 shows the distribution of fan-in and fan-out foy and D3;. We observe that for both fan-
in and fan-out, the hosts in our datasets generally have peges within the enterprise than across the
WAN, though with considerable variability. In particularne-third to one-half of the hosts have only
internal fan-in, and more than half with only internal fante-much more than the fraction of hosts with
only external peers. This difference matches our intuittwat local hosts will contact local servers (e.g.,
SMTP, IMAP, DNS, distributed file systems) more frequentign requesting services across the wide-area
network, and is also consistent with our observation thatemvariety of applications are used only within
the enterprise.

While most hosts have a modest fan-in and fan-out—over 90#teofiosts communicate with at most
a couple dozen other hosts—some hosts communicate witesstmthundreds of hosts, primarily busy
servers that communicate with large numbers of on- andit#ff®sts (e.g., mail servers). Finally, the tail
of the internal fan-out, starting around 100 peers/sousdargely due to the peer-to-peer communication
pattern of SrvLoc (Service Locator Protocol [117]) traffic.

In keeping with the spirit of this study, the data presentethis section provides a first look at origins
and locality in the aggregate. Future work on assessindgcp&t applications and examining locality

within the enterprise is needed.

6.5 Application Characteristics

In this section we examine transport-layer and applicaléyer characteristics of individual application
protocols. Table 6.6 provides a number of examples of therfigigdwe make in this section.

We base our analysis on connection summaries generatedd|88}. As noted in Section 6.2);
and D5, consist of traces that contain only the first 68 bytes of eaatket. Therefore, we omit these two
datasets from analysis that require in-depth examinatfopacket payloads to extract application-layer
protocol messages.

Before turning to specific application protocols, howewee, need to first discuss how we compute
failure rates. At first blush, counting the number of failezhnections/requests seems to tell the story.

However, this method can be misleading if the client is awatmt and endlessly retries after being rejected
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Figure 6.4: Locality in host communication.
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§6.5.1 | Automated HTTP client activities constitute a significardction of internal
HTTP traffic.

§6.5.1 | IMAP traffic inside the enterprise has characteristics intb wide-area email
except connections are longer-lived.

§6.5.1 | Netbios/NS queries fail nearly 50% of the time, apparentlg tb popular name
becoming stale.

§ 6.5.2 | Windows traffic is intermingled over various ports, with Kets/SSN (139/tcp
and SMB (445/tcp) used interchangeably for carrying CIRgfit. DCE/RPC
over “named pipes”, rather than Windows File Sharing, eraei@s the most ag
tive component in CIFS traffic. Among DCE/RPC services, fimin and user
authentication are the two most heavily used.

§6.5.2 | Most NFS and NCP requests are reading, writing, or obtaifilegttributes.

§ 6.5.2 | Veritas and Dantz dominate our enterprise’s backup apics. Veritas exhibitg
only client— server data transfers, but Dantz connections can be largihier
direction.

12}

Table 6.6: Example application traffic characteristics.

by a peer, as happens in the case of NCP, for example. Theyaferinstead determine the number of
distinct operationbetweendistinct host-pairavhen quantifying success and failure. Such operations can
span both the transportlayer (e.g., a TCP connection récuesthe application layer (e.g., a specific name
lookup in the case of DNS). Given the short duration of ouces we generally find a specific operation

between a given pair of hosts either nearly always succeedgarly always fails.

6.5.1 Internal/External Applications

We first investigate applications categories with traffiboth the enterprise network and in the wide-area

network: web, email and name service.

Web

HTTP is one of the few protocols where we find more wide-araffitrthan internal traffic in our datasets.
Characterizing wide-area Web traffic has received muctdte in the literature over the years, e.g.,
[63, 12]. In our first look at modern enterprise traffic, we fiimernal HTTP traffic to be distinct from
WAN HTTP traffic in several ways:i] we observe that automated clients—scanners, bots, afidatigms
running on top of HTTP—have a large impact on overall HTTHita&haracteristics;if) we find a lower
fan-out per client in enterprise web traffic than in WAN wediftic; (i47) we find a higher connection failure
rate within the enterprise; anduv{ we find heavier use of HTTP®onditionalGETin the internal network

than in the WAN. Below we examine these findings along witresghadditional traffic characteristics.
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Request Data
DO/ent| D3/ent| D4/ent| DO/ent]| D3/ent| Dé4/ent
Total 7098 | 16423| 15712| 602MB | 393MB | 442MB
scanl 20% | 45% | 19% | 0.1%| 0.9% 1%
googlel| 23%| 0.0%| 1% | 45%| 0.0%| 0.1%
google2| 14% 8% 4% 51% 69% 48%
ifolder 1% 0.2% 10% 0.0% 0.0% 9%
All 58% 54% 34% 96% 70% 59%

Table 6.7: Fraction of internal HTTP traffic from automatdidmts.

Automated Clients: In internal Web transactions we find three activities nagioating from traditional
user-browsing:scanners Google botsand programs running on top of HTTP (e.g., NovEtlder and
ViacomNet-Meeting. As Table 6.7 shows, these activities are highly significaccounting for 34—58% of
internal HTTP requests and 59-96% of the internal data logefed over HTTP. Including these activities
skews various HTTP characteristics. For instance, bothgledmots and the scanner have a very high “fan-
out”; the scanner provokes many more “404 File Not Found” RTr€plies than standard web browsing;
iFolder clients usePOSTmore frequently than regular clients; aiteblder replies often have a uniform
size of 32,780 bytes. Therefore, while the presence of theseities is the biggest difference between
internal and wide-area HTTP traffic, we exclude these froenrtmainder of the analysis in an attempt to

understand additional differences.

Fan-out: Figure 6.5 shows the distribution of fan-out from monimients to enterprise and WAN HTTP
servers. Overall, monitored clients visit roughly an ordEmagnitude more external servers than internal
servers. This seems to differ from the finding in Section Bat bver all traffic clients tend to access more
local peers than remote peers. However, we believe thatdtierp shown by HTTP transactions is more
likely to be the prevalent application-level pattern andttie results in Section 6.4 are dominated by the
fact that clients access a wider variety of applicationgs Eerves to highlight the need for future work to

drill down on the first, high-level analysis we present irsteiudy.

Connection Success Ratelnternal HTTP traffic shows success rates of 72—-92% (by rarrob host-
pairs), while the success rate of WAN HTTP traffic is 95—-99%e Toot cause of this difference remains a
mystery. We note that the majority of unsuccessful intecoainections are terminated with TCP RSTs by

the servers, rather than going unanswered.
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Figure 6.5: HTTP fan-out. Tha&' in the key is the number of samples throughout the chaptethisrcase,
the number of clients.

Conditional Requests Across datasets and localities, HTEGETcommands account for 95—-99% of both
the number of requests and the number of data bytes.PT®Tcommand claims most of the rest. One
notable difference between internal and wide area HTTHdriafthe heavier use internally of conditional
GETcommands (i.e., &ETrequest that includes one of tifeModified-Since headers, per [33]).
Internally we find conditionalGET commands representing 29-53% of web requests, while athgrn
conditional GET commands account for 12-21% of the requests. The conditieqaests often yield
savings in terms of the number of data bytes downloaded tretraditional requests only account for 1-9%
of the HTTP data bytes transfered internally and 1-7% of #ta 8ytes transfered from external servers.
We find this use of the condition@ETpuzzling in that we would expect that attempting to save vadea
network resources (by caching and only updating contentnwiezded) would be more important than
saving local network resources. Finally, we find that ove¥698f web requests are successful (meaning
either the object requested is returned or that an HTTP 30dt ¢thodified”) reply is returned in response
to a conditionalGET).

We next turn to several characteristics for which we do nad fimy consistentdifferences between

internal and wide-area HTTP traffic.
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Request Data
enterprise] wan || enterprise] wan
text 18% — 30%| 14% — 26%| 7% —28%| 13% —27%
image 67% — 76%| 44% — 68%|| 10% — 34%| 16% — 27%
application 3% —-7%| 9% —42%]| 57% — 73%| 33% — 60%
Other 0.0% —-2%| 0.3% —1%]|| 0.0%—9%| 11% — 13%

Table 6.8: HTTP reply by content type. “Other” mainly inchshudio, videg andmultipart.

Content Type: Table 6.8 provides an overview of object types for HTGETtransactions that received

a 200 or 206 HTTP response code (i.e., success).t®tieimage andapplicationcontent types are the
three most popular, wittmageandapplicationgenerally accounting for most of the requests and bytes,
respectively. Within thepplicationtype, the popular subtypes inclugsrascript octet streamzip, and
PDF. Theothercontent types are maingudio, videg or multipart objects. We do not observe significant

differences between internal and WAN traffic in terms of aqgtion types.

HTTP Responses Figure 6.6 shows the distribution of HTTP response bodgssizxcluding replies
without a body. We see no significant difference betweerrmateand WAN servers. The short vertical
lines of theDy/WAN curve reflect repeated downloading of javascripts faparticular website. We also
find that about half the web sessions (i.e., downloading &ireameb page) consist of one object (e.g., just
an HTML page). On the other hand 10-20% of the web sessiongridataset include 10 or more objects.

We find no significant difference across datasets or sereatiton (local or remote).

HTTP/SSL: Our data shows no significant difference in HTTPS traffismstn internal and WAN servers.
However, we note that in both cases there are numerous sarmaikctions between given host-pairs. For
example, inD, we observe 795 short connections between a single pair ¢ dosing an hour of tracing.
Examining a few at random shows that the hosts complete thén&%dshake successfully and exchange a
pair of application messages, after which the client teavgrdthe connection almost immediately. As the
contents are encrypted, we cannot determine whether thést® application level fail-and-retry or some

other phenomenon.

Email

Email is the second traffic category we find prevalent in batkerinally and over the wide-area network.

As shown in Table 6.9, SMTP and IMAP dominate email traffi;ystduting over 94% of the volume in
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Figure 6.6: Size of HTTP reply, when present.

Bytes
DO/all | Di/all| D2/all| D3/all | D4/all

SMTP | 152MB | 1658MB | 393MB | 20MB | 59MB

SIMAP | 185MB | 1855MB | 612MB | 236MB | 258MB

IMAP4 | 216MB 2MB | 0.7MB | 0.2MB | 0.8MB

Other 9MB 68MB | 21MB | 12MB | 21MB

Table 6.9: Email Traffic Size
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bytes. The remainder comes from LDAP, POP3 and POP/SSL .abttee shows a transition from IMAP to
IMAP/S (IMAP over SSL) betweei®, and D1, which reflects a policy change at LBNL restricting usage
of unsecured IMAP.

DatasetsD,_» include the subnets containing the main enterprise-wid&gBlgnd IMAP(/S) servers.
This causes a difference in traffic volume between dataBgts, and D5_,4, and also other differences
discussed below. Also, note that we conduct our analystseatransport layer, since often the application
payload is encrypted.

We note that the literature includes several studies of lemadiic (e.g., [87, 39]), but none (that we are
aware of) focusing on enterprise networks.

We first discuss areas where we find significant differencevéen enterprise and wide-area email

traffic.

Connection Duration: As shown in Figure 6.7(a), the duration of internal and WAMT® connections
generally differs by about an order of magnitude, with madlarations around 0.2-0.4 sec and 1.5-6 sec,
respectively. These results reflect the large differenceumd-trip times (RTTS) experienced across the two
types of network. SMTP sessions consist of both an exchaingentrol information and a unidirectional
bulk transfer for the messages (and attachments) thensseBath of these take time proportional to the
RTT [76], explaining the longer SMTP durations.

In contrast, Figure 6.7(b) shows the distribution of IMARSNnection durations across a number of
our datasets. We leave aff; to focus on IMAP/S traffic, and;_, WAN traffic because these datasets
do not include subnets with busy IMAP/S servers and hence litile wide-area IMAP/S traffic. The
plot shows internal connections often last 1-2 orders ofnitade longer than wide-area connections.
We do not yet have an explanation for the difference. The mari connection duration is generally
50 minutes. While our traces are roughly one hour in lengtHing that IMAP/S clients generally poll
every ten minutes, generally providing only five observasiwithin each trace. Determining the true length
of IMAP/S sessions requires longer observations and is gesutor future work.

We next focus on characteristics of email traffic that arelsinacross network type.

Connection Success RatéAcross our datasets we find that internal SMTP connectiame Buccess rates
of 95-98%. SMTP connections traversing the wide-area nitivave success rates of 71-93%ly_»

and 99-100% inDs;_4. Recall thatDy_» include heavily used SMTP servers afg_, do not, which

125



Cumulative Fraction

Cumulative Fraction

”—’_;1 ==
%/zﬁ;
7 !
> i
(!
I
/1Y
0.6 7
/1)
/174
1y
0.4 |
// // ent:D0:N=967
/ /, ent:D1:N=6671
// ( ent:D2:N=1942 ——
y / ent:D3:N=447 ——
0.2 / " ent:D4:N=460 ——
y/ ' wan:D0:N=1030— —
e wan:D1:N=10189— —
// /J wan:D2:N=3589 — —
v 7 wan:D3:N=262 — —
0 77 wan:D4:N=222 — —
0.0001 0.001 0.01 0.1 1 10 100 1000 10000
Duration (Seconds)
(@) SMTP
1 T T
ent:D1:N=8392 ——
ent:D2:N=3266——
ent:D3:N=776
ent:D4:N=742 V/
wan:D1:N=1849— — [/
0.8 wan:D2:N=1010— —
§Y7
7
=5
J 7 /
0.6 y 4
J /
= ://
e
o
g _—
7 /
4
0.2 ﬂ i //
// —
4
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Duration (Seconds)
(b) IMAP/S

Figure 6.7: SMTP and IMAP/S connection durations.
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likely explains the discrepancy. The success rate for INBA&INnnections is 99—-100% across both locality

and datasets.

Flow Size Internal and wide-area email traffic does not show significkéfferences in terms of connection
sizes, as shown in Figure 6.8. As we would expect, the trafflamme of SMTP and IMAP/S is largely
unidirectional (to SMTP servers and to IMAP/S clients),hfitaffic in the other direction largely being
short control messages. Over 95% of the connections to SMs and to IMAP/S clients remain

below 1 MB, but both cases have significant upper tails.

Name Services

The last application category prevalent in both the intearal the wide-area traffic is domain name
lookups. We observe a number of protocols providing namegthry services, including DNS, Net-
bios Name Service (Netbios/NS), Service Location Prot¢SolLoc) [117], SUN/RPC Portmapper, and
DCE/RPC endpoint mapper. We also note that wide-area DNBd@sstudied by a number of researchers
previously (e.g., [53]), however, our study of name lookiqdudes both enterprise traffic and non-DNS
name services.

In this section we focus on DNS and Netbios/NS traffic, duéntrtpredominant use (Netbios/NS is
mainly used for identifying hosts, workgroups, and domain&indows networking for sharing files, print-
ers, and other services). DNS appears in both wide-areané@ahal traffic. We find no large differences
between the two types of DNS traffic except in response lgtenc

For both services a handful of servers account for most ofrtiféic, therefore the vantage point of the
monitor can significantly affect the traffic we find in a trateparticular,Dy_- do not contain subnets with
a main DNS server, and thus relatively few WAN DNS connedidrherefore, in the following discussion
we only useD3_4 for WAN DNS traffic. Similarly, more than 95% of Netbios/NSageests go to one of
the two main serversD,_, captures all traffic to/from one of these ahd_, captures all traffic to both.
Finally, we do not consideb,_» in our analysis due to the lack of application payloads irséhdatasets
(which renders our payload analysis inoperable).

Given those considerations, we now explore several cheriatits of name service traffic.

Latency: We observe median latencies are roughly 0.4 msec and 20 fmsixternal and external DNS

queries, respectively. This expected result is directitattable to the round-trip delay to on- and off-site
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Figure 6.8: SMTP and IMAP/S: flow size distribution
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DNS servers. Netbios/NS, on the other hand, is primarilgwsi¢hin the enterprise, with inbound requests

blocked by the enterprise at the border.

Clients: A majority of DNS requests come from a few clients, led by twain SMTP servers that perform
lookups in response to incoming and outgoing mail. In catirae find Netbios/NS requests more evenly

distributed among clients, with the top ten clients genegdess than 40% of all requests across datasets.

Request Type DNS request types are quite similar both across datasdtkaation of the peer (internal
or remote). A majority of the requests (50-66%) are Aorecords, while 17-25% are féXxAAA(IPv6)
records, which seems surprisingly high, though we have goefl a similar ratio in the wide-area traffic
at another site. Digging deeper reveals that a number o§tawstconfigured to request bodtand AAAA
in parallel. In addition, we find 10-18% of the requests aréfoRrecords and 4—7% are fdfiXrecords.
Netbios/NS traffic is also quite similar across the datag#ts85% of requests consist of name queries,
with the other prevalent action being to “refresh” a registename (12—-15% of the requests). We observe
a number of additional transaction types in small numbeardyuding commands to register names, release

names, and check status.

Netbios/NS Name Type Netbios/NS includes a “type” indication in queries. We fithéit across our
datasets 63—71% of the queries are for workstations aneiserwhile 22—-32% of the requests are for

domain/browser information.

Return Code: We find DNS has similar succeS$QERRORates (77-86%) and failur®lXDOMAINrates
(11-21%) across datasets and across internal and widerafia We observe failures with Netbios/NS
2-3 times more often: 36-50% of distinct Netbios/NS queyield anNXDOMAINeply. These failures
are broadly distributed—they are not due to any single tlisarver, or query string. We speculate that
the difference between the two protocols may be attribetablDNS representing an administratively
controlled name space, while Netbios/NS uses a more distiband loosely controlled mechanism for

registering names, resulting in Netbios/NS names going-tdwdate” due to timeouts or revocations.
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6.5.2 Enterprise-Only Applications

The previous subsection deals with application categdoiesd in both internal and wide-area communi-
cation. In this section, we turn to analyzing the high-lemetl salient features of applications used only

within the enterprise.

Windows Services

We first consider those services used by Windows hosts foda minge of tasks, such as Windows file shar-
ing, authentication, printing, and messaging. In particulve examine Netbios Session Services (SSN),
the Common Internet File System (SMB/CIFS), and DCE/RPC.dé/@ot tackle the Netbios Datagram
Service since it appears to be largely usethin subnets (e.g., for “Network Neighborhoods”), and does
not appear much in our datasets; and we cover Netbios/NScitio8€5.5.1.

As demonstrated in Figure 6.9, one of the main challengesatyaing Windows traffic is that each
communication scheme can be used in a variety of ways. F@arios, TCP port numbers reveal little about
the actual application: services can be accessed via feutifannels, and a single port can be shared by
a variety of services. Hosts appear to interchangeably UiS8 @a its well-known TCP port of 445 and
via layering on top of Netbios/SSN (TCP port 139). Similatke note that DCE/RPC clients have two
ways to find services:i) using “named pipes” on top of CIFS (which may or may not bested on top
of Netbios/SSN) andi{) on top of standard TCP and UDP connections without usingCilfrwhich case
clients consult the Endpoint Mapper to discover the port pagicular DCE/RPC service. Thus, in order
to understand the Windows traffic we had to develop rich Baiqarol analyzers, and also merge activities
from different transport layer channels. With this in plagee could then analyze various facets of the

activities according to application functionality, aslfoVs.

Connection Success RateAs shown in Table 6.10, we observe a variety of connectiamtasss rates for
different kinds of traffic: 82—92% for Netbios/SSN conneat, 99-100% for Endpoint Mapper traffic,
and a strikingly low 46—68% for CIFS traffic. For both Netbi®SN and CIFS traffic we find the failures
are not caused by a few erratic hosts, but rather are spreasisdtundreds of clients and dozens of servers.
Further investigation reveals most of CIFS connectionfas are caused by a number of clients connecting
to servers on both the Netbios/SSN (139/tcp) and CIFS (dgpytortin paralle—since the two ports can

be used interchangeably. The apparent intention is to usgheder port works while not incurring the cost
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Port 139 —» NETBIOS File Sharing

Port 445 CIFS/SMB &—» LAN Browsing
DCE/RPC
Port 135 ------------------------- '+ Endpoml M'dppCl'
Pl DCE/RPC Services

Dynamic Ports

(logon, msgr, etc.)

Figure 6.9: Windows (CIFS and DCE/RPC) Traffic Structure

Host Pairs
Netbios/SSN] CIFS | Endpoint Mapper|
Total 595 -1464| 373-732 119 -497

Successful 82% — 92%]| 46% — 68% 99% — 100%
Rejected 0.2% — 0.8%| 26% — 37% 0.0% — 0.0%
Unanswered 8% —19%| 5% —19% 0.2% — 0.8%

Table 6.10: Windows traffic connection success rate (by rerrabhost-pairs, for internal traffic only)

of trying each in turn. We also find a number of the servers andigured to listen only on the Netbios/SSN

port, so they reject connections to the CIFS port.

Netbios/SSN Success RateAfter a connection is established, a Netbios/SSN sessi@s ghrough a
handshake before carrying traffic. The success rate of theédiake (counting the number of distinct host-
pairs) is 89-99% across our datasets. Again, the failuesatrdue to any single client or server, but are

spread across a number of hosts. The reason for these &ihewts future investigation.

CIFS Commands Table 6.11 shows the prevalence of various types of commased in CIFS channels
across our datasets, in terms of both the number of commantisddume of data transferred. The first
category, “SMB Basic”, includes common commands used fesiea initialization and termination, and
accounts for 24-52% of the messages across the dataseig)yp8+15% of the data bytes. The remaining
categories indicate the tasks CIFS connections are usedfrm. Interestingly, we find DCE/RPC pipes,
rather than Windows File Sharing, make up the largest podfomessages (33—-48%) and data bytes (32—

77%) across datasets. Windows File Sharing constitute 78b-of messages and 8% to 43% of bytes.
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Request Data

DO/ent| D3/ent| D4/ent| DO/ent| D3/ent| D4/ent
Total 49120| 45954 | 123607| 18MB | 32MB | 198MB
SMB Basic 36% | 52% | 24% | 15%| 12% 3%
RPC Pipes 48% 33% 46% 32% 64% 7%
Windows File Sharing 13% 11% 27% 43% 8% 17%
LANMAN 1% 3% 1% 10% 15% 3%
Other 2% | 0.6% 1.0%| 02%| 0.3% 0.8%

Table 6.11: CIFS command breakdown. “SMB basic” includesciimmon commands shared by all kinds
of higher level applications: protocol negotiation, sesssetup/tear-down, tree connect/disconnect, and
file/pipe open.

Finally, “LANMAN", a non-RPC named pipe for management &gk “network neighborhood” systems,

accounts for just 1-3% of the requests, but 3—15% of the bytes

DCE/RPC Functions Since DCE/RPC constitutes an important part of Windowsi¢tave further an-
alyze these calls over both CIFS pipes and stand-alone TP/tbnnections. While we include all
DCE/RPC activities traversing CIFS pipes, our analysisDQE/RPC over stand-alone TCP/UDP con-
nections may be incomplete for two reasons. First, we ileBXCE/RPC activities on ephemeral ports by
analyzing Endpoint Mapper traffic. Therefore, we will missftic if the mapping takes place before our
trace collection begins, or if there is an alternate mettwodiscover the server’s ports (though we are not
aware of any other such method). Second, our analysis todmly cannot parse DCE/RPC messages
sent over UDP. While this may cause our analysis to miss aesuwhat only use UDP, DCE/RPC traffic
using UDP accounts for only a small fraction of all DCE/RPé&fftc.

Table 6.12 shows the breakdown of DCE/RPC functions. Acadisdatasets, th&poolssprinting
functions—andNritePrinter in particula—dominate the overall traffic i34, with 63—91% of the
requests and 94-99% of the data bytesDlj Spoolsdraffic remains significant, but not as dominant as
user authentication functionslétLogonandLsaRP@, which account for 68% of the requests and 52% of
the bytes. These figures illustrate the variations preséhimthe enterprise, as well as highlighting the
need for multiple vantage points when monitoring. (Foranse, inD, we monitor a major authentication

server, whileDs_ 4 includes a major print server.)
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Request Data

DO/ent| D3/ent| D4/ent| DO/ent| D3/ent| D4/ent
Total 14191| 13620| 56912| 4MB | 19MB | 146MB
NetLogon 42% 5% | 0.5%| 45% | 0.9% 0.1%
LsaRPC 26% 5% | 0.6% 7% | 0.3% 0.0%
Spoolss/WritePrinter  0.0% 29% 81% | 0.0% 80% 96%
Spoolss/other 24% 34% 10% 42% 14% 3%
Other 8% 27% 8% 6% 4% 0.6%

Table 6.12: DCE/RPC function breakdown.

Connections Bytes
DO/all | D1/all | D2/all | D3/all | D4/all | DO/all| Di/all| D2/all D3/all | D4/all
NFS | 1067 | 5260 | 4144 | 3038 | 3347 | 6318MB | 4094MB | 3586MB | 1030MB | 1151MB
NCP | 2590 | 4436 | 2892 628 802 777TMB | 2574MB | 2353MB | 352MB | 233MB

Table 6.13: NFS/NCP Size

Network File Services

NFS and NCP comprise the two main network file system protocols seeniwiite enterprise and this
traffic is nearly always confined to the enterpriséle note that several trace-based studies of network file
system characteristics have appeared in the file systeratlite (e.g., see [28] and enclosed references).

We now investigate several aspects of network file systeffictra

Aggregate Sizes Table 6.13 shows the number of NFS and NCP connections andrttount of data
transferred for each dataset. In terms of connections, wleNIFS more prevalent than NCP, excepfip.

In all datasets, we find NFS transfers more data bytes peremiom than NCP. As in previous sections,
we see the impact of the measurement location in that théwelamount of NCP traffic is much higher
in Dy_o than in D3_4. Finally, we find “heavy hitters” in NFS/NCP traffic: the tlerenost active NFS
host-pairs account for 89-94% of the data transfered, antthéotop three NCP host-pairs, 35-62%.

Keep-Alives We find that NCP appears to use TCP keep-alives to maintampliged connections and
detect runaway clients. Particularly striking is that 409480f the NCP connections across our datasets

consistonly of periodic retransmissions of one data byte and therefonread include any real activity.

UDP vs. TCPWe had expected that NFS-over-TCP would heavily dominatdermouse of NFS, but find
this is not the case. Across the datasets, UDP comprisesl®8#4631%/94%/7% of the payload bytes, an

2NCP is theNetware Control Protocola veritable kitchen-sink protocol supporting hundredmetsage types, but primarily used
within the enterprise for file-sharing and print service.
3We found three NCP connections with remote hosts acrossiatlatasets!
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Request Data

DO/ent| D3/ent| D4/ent| DO/ent| D3/ent| D4/ent
Total 697512 | 303386| 607108| 5843MB | 676MB | 1064MB
Read 70% 25% 1% 64% 92% 6%
Write 15% 1% 19% 35% 2% 83%
GetAttr 9% 53% 50% 0.2% 4% 5%
LookUp 4% 16% 23% 0.1% 2% 4%
Access 0.5% 4% 5% 0.0% 0.4% 0.6%
Other 2% 0.9% 2% 0.1% 0.2% 1%

Table 6.14: NFS requests breakdown.

enormous range. Overall, 90% of the NFS host-pairs use UDiewnly 21% use TCP (some use both).
One possible explanation is that the enterprise internalor& has a low packet drop rate, so there is little

incentive to use TCP over UDP.

Request Success Ratdf an NCP connection attempt succeeds (88—98% of the tiai®)ut 95% of the
subsequent requests also succeed, with the failures dtadibg “File/Dir Info” requests. NFS requests
succeed 84% to 95% of the time, with most of the unsuccessfuiests being “lookup” requests for non-

existing files or directories.

Requests per Host-Pair Since NFS and NCP both use a message size of about 8 KB, laukipests
are needed for large data transfers. Figure 6.10 shows tiderof requests per client-server pair. We
see a large range, from a handful of requests to hundredeos#inds of requests between a host-pair. A

related observation is that the interval between requssted by a client is generally 10 msec or less.

Breakdown by Request Type Table 6.14 and 6.15 show that in both NFS and NCP, file reaid/vaquests

account for the vast majority of the data bytes transmit®84:99% and 92-98% respectively. In terms of
the number of requests, obtaining file attributes joins read write as a dominant function. NCP file
searching also accounts for 7-16% of the requests (but emlyslof the bytes). Note that NCP provides
services in addition to remote file access, e.g., directeryise (NDS), but, as shown in the table, in our

datasets NCP is predominantly used for file sharing.

Request/Reply Data Size Distribution As shown in Figure 6.11, NFS requests and replies have clear
dual-mode distributions, with one mode around 100 bytesthadther 8 KB. The latter corresponds to
write requests and read replies, and the former to evenyttise. On the other hand, as Figure 6.12 shows,

NCP requests exhibit a mode at 14 bytes, corresponding tbreggiests, and each vertical rise in the NCP
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Request Data

DO/ent| D3/ent| D4/ent| DO/ent| D3/ent| D4/ent
Total 869765| 219819| 267942| 712MB | 345MB | 222MB
Read 42% 44% 41% 82% 70% 82%
Write 1% 21% 2% 10% 28% 11%
FileDirlnfo 27% 16% 26% 5% 0.9% 3%
File Open/Close 9% 2% 7% 0.9% 0.1% 0.5%
File Size 9% 7% 5% 0.2% 0.1% 0.1%
File Search 9% 7% 16% 1% 0.6% 4%
Directory Service 2% 0.7% 1% 0.7% 0.1% 0.4%
Other 3% 3% 2% 0.2% 0.1% 0.1%

Table 6.15: NCP requests breakdown.

Connections  Bytes
VERITAS-BACKUP-CTRL 1271 0.1MB
VERITAS-BACKUP-DATA 352 | 6781MB
DANTZ 1013 | 10967MB
CONNECTED-BACKUP 105 214MB

Table 6.16: Backup Applications

reply size figure corresponds to particular types of commardbyte replies for completion codes only
(e.g. replying to “WriteFile” or reporting error), 10 bytdésr “GetFileCurrentSize”, and 260 bytes for (a

fraction of) “ReadFile” requests.

Backup

Backup sessions are a rarity in our traces, with just a smatirer of hosts and connections responsible
for a huge data volume. Clearly, this is an area where we naagkl traces. That said, we offer brief
characterizations here to convey a sense of its nature.

We find three types of backup traffic, per Table 6.16: two im&btraffic giants, Dantz and Veritas, and
a much smaller, “Connected” service that backs up data toctmral site. Veritas backup uses separate
control and data connections, with the data connectiorfggitraices all reflecting one-way, client-to-server
traffic. Dantz, on the other hand, appears to transmit codtxta within the same connection, and its
connections display a degree of bi-directionality. Fumhere, the server-to-client flow sizes can exceed
100 MB. This bi-directionality does not appear to reflectlhgrvs. restore, because it exists not only
betweerconnections, but alswithin individual connections—sometimes with tens of MB in bothedi

tions. Perhaps this reflects an exchange of fingerprintsfesedmpression or incremental backups or an
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exchange of validation information after the backup is fieid. Alternatively, this may indicate that the
protocol itself may have a peer-to-peer structure rathan th strict server/client delineation. Clearly this

requires further investigation with longer trace files.

6.6 Network Load

A final aspect of enterprise traffic in our preliminary invigstion is to assess the load observed within the
enterprise. One might naturally assume that campus nesnayekunderutilized, and some researchers aim
to develop mechanisms that leverage this assumption [3&@Jas8ess this assumption using our data.

We discuss onlyD,, since the other datasets provide essentially the samghissabout utilization.
Figure 6.13(a) shows the distribution of theakbandwidth usage over three different timescales for each
trace in theD, dataset. As expected, the plot shows the networks to beHessfully utilized at each
timescale. The one-second interval does show networkagagnr(100 Mbps) in some cases. However, as
the measurement time interval increases the peak utdizatiops, indicating that saturation is short-lived.

Figure 6.13(b) shows the distributions of several metrigswated over one-second intervals. The
“maximum” line on this plot is the same as the “one-seconaé Ibn the previous plot. The second plot
concretely shows that typical (over time) network usage-i2 érders of magnitude less than the peak
utilization and 2—3 orders less than the capacity of the agt\{L00 Mbps).

We can think of packet loss as a second dimension for asgassiwork load. We can form estimates of
packet loss rates using TCP retransmission rates. Thesaigéa not fully agree, due ta TCP possibly
retransmitting unnecessarily, and)(TCP adapting its rate in the presence of loss, while non-fr&ffic
will not. But the former should be rare in LAN environmentitié opportunity for retransmission timers
to go off early), and the latter arguably at most limits oualgsis to applying to the TCP traffic, which
dominates the load (cf. Table 6.4).

We found a number of spurious one-byte retransmissions ald&CP keep-alives by NCP and SSH
connections. We exclude these from further analysis beddwey do not indicate load imposed on network
elements. Figure 6.14 shows the remaining retransmissitefor each trace in all our datasets, for both
internal and remote traffic. In the vast majority of the tgdbe retransmission rate remains less than 1%
for both. In addition, the retransmission rate for internaffic is less than that of traffic involving a remote

peer, which matches our expectations since wide-areattedfierses more shared, diverse, and constrained

139



CDF

CDF

x I
0.9 x o /
. x x ]f
0.8 oA
. x v I/
0.7
: ¥ ¥ I/
0.6 R
. . ;
0.5 R
X VA
04 /*r J /f
0.3 ¥ //?/
0.2 - x/?y/;* 1 second—— 7
01 L% _~ 10 seconds— » — |
0 oo ...,  60seconds > -
0.01 0.1 1 10 100
Peak Utilization (Mbps)
(a) Peak Utilization
1 /1 S gt X
0.9 g e %
/ - )
0.8 A B k
! / ’,' l/ i T
0.7 ,./i ’ab x
. o o ok %
0.6 ad S :
) ol bk )
w
0.5 o'y A
O 4 EI",=' f/# > 1
' 17~ &x  Minimum b
0.3 povmm e e T Maxi — e —
o x Average - -x- - |
0.2 - f//’ZSth perc.---ga---
0 e T Median — =— ]
75th perc.— o —
O 1 1
0.0001 0.001 o0.01 0.1 1 10 100

Utilization (Mbps)

(b) Utilization

Figure 6.13: Utilization distributions fab,.

140



0.14 .
0.12 WAN =m0

0.1

0.08

0.06

0.04 t\

Fraction of Retransmitted Packets

0.02 Y

-~
~——

0 20 40 60 80 100 120
Traces

Figure 6.14: TCP retransmission rate across traces (foesravith at least 1000 packets in the category)

networks than does internal traffic. (While not shown in tigaFe, we did not find any correlation between
internal and wide-area retransmission rates at per-sigvagtlarity.)

We do, however, find that the internal retransmission rateetimes eclipses 2%—peaking at roughly
5% in one of the traces. Our further investigation of thig temce found the retransmissions dominated by
a single Veritas backup connection, which transmitted 1.padkets and 2 GB of data from a client to a
server over one hour. The retransmissions happen almaoslyeveer time, and over one-second intervals
the rate peaks at 5 Mbps with a‘@5percentile around 1 Mbps. Thus, the losses appear due ter eith
significant congestion in the enterprise network downstré@m our measurement point, or a network
element with flaky NIC (reported in [113] as not a rare event).

We can summarize these findings as: packet loss within anpgiseappears to occur significantly less

than across the wide-area network, as expected; but exdééedson-negligible proportion of the time.
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6.7 Summary

Enterprise networks have been all but ignored in the moderasurement literature. Our major contribu-
tion in this study is to provide a broad, high-level view ofrmerous aspects of enterprise network traffic.
Our investigation runs the gamut from re-examining topievjpusly studied for wide-area traffic (e.qg.,
web traffic), to investigating new types of traffic not aseekss the literature to our knowledge (e.g.,
Windows protocols), to testing assumptions about entsggraffic dynamics (e.g., that such networks are
mostly underutilized).

Clearly, our investigation is only an initial step in thisage. An additional hope for our work is
to inspire the community to undertake more in-depth studfethe raft of topics concerning enterprise
traffic that we could only examine briefly (or not at all) ingrstudy. Towards this end, we have released

anonymized versions of our traces to the community [82].
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Chapter 7

Conclusions

This chapter summarizes dissertation contributions atiéhes the future directions.

7.1 Contributions

7.1.1 Thebi npac Language

The first contribution of this dissertation is the design amg@lementation obinpac , a declarative lan-
guage for generating protocol parsers from high-level gjgations. Prior to this work network proto-
col parsers have been mostly hand-written, requiring atarable and often tedious efforts. We envision
binpac to serve in a role analogous to thatyafcc s for generating parsers for programming languages.
We note, however, that network protocols are different fmegramming languages in a number of ways,
in particular, network traffic consists of many continuoad &i-directional flows. Consequently the design
of binpac has a few key features that distinguish it from systems, ssgfacc , for generating pro-
gramming language parsetsinpac introducegparameterized typesa limited form of context-sensitive
grammar—to allow concise description of data dependenmsametwork messages and flows. This sim-
ple feature allowdinpac to describe a wide range of protocols. The language alsades|the concepts
of connection and flow as state container in parsing netwafic. Thebinpac compiler automates
saving states for later continuation in parsers to enabitking between flows within a single processor
thread, thus supporting efficient processing of a large rermobconcurrent flows without requiring large

number of threads. Finally, the designlifipac supports separate specification of the intrinsic syntax
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and semantics of the protocol from specification of custootessing (for example, Bro event generation),
therefore allowing the basic protocol specification patbégeusedacross multiple systems. Our evalua-
tion shows that parser specificationdinpac are half to two-third shorter than the corresponding parser
handwritten in C++. On the other hand, thepac compiler generates efficient protocol parsers in C++,

whose performance is comparable to handcrafted parsers.

7.1.2 Semantic-Aware Traffic Anonymization

The second contribution of this dissertation lies in oupdf of application level traffic anonymization.
Anonymization of network traces is critical for creatinghpic repositories of network traffic. Prior to our
attempt, there had been no publicly available packet tradtbsapplication level payloads—to the best of
our knowledge, largely because of the difficulty of anonyatian. Lack of such traces significantly hinders
research that relies on semantic traffic analysis, in pagicnetwork intrusion detection.

We note that there are two main problems in traffic anonyriapat(1) difficulty in rewriting packet
traces due to lack of application-level abstraction foffitanodification, (2) lack of understanding on how
to anonymize application level data, which has much rickenantics than TCP/IP fields have. This dis-
sertation addresses both problems. For the first problepnegents a trace rewriting framework—on top
of thebro network intrusion detection system [89, 86]—that greaittydifies application level data ma-
nipulation. Within the framework, a rewriting script carcfes on application level semantics, for example,
how to transform a FTP user name, while the underlying meishamake the corresponding changes
in both application protocol and TCP/IP (such as TCP sequenmber and TCP and IP checksums) to
reflect the change. Therefore this framework provides adation for application level trace anonymiza-
tion efforts. For the second problem, this dissertatiorl@gs issues in anonymizing FTP traces collected
at LBNL and releasing them to the public. It proposes the€ffilh” principle in trace anonymization to
safeguard incomplete coverage. It also investigates camforons of inference attacks on trace privacy
and how to defend against them. Our treatment of variousstgpsemantic elements, especially identity

data, provides a foundation for future efforts in applioatievel traffic anonymization.
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7.1.3 Internet Background Radiation

The third contribution of this dissertation is our studylofernet background radiation-a special kind
of traffic that universally reaches any Internet addresslutting unused ones. Ours is the first broad
characterization of Internet background radiation.

We develop methods to observe and analyze Internet baakdrmdiation through larg@etwork
telescopes-blocks of unused, but globally reachable IP addresses. Wil &pplication protocol respon-
ders to keep conversation with sources going as far as pessibtheir intention is revealed. We apply
destination-per-source filtering to reduce the traffic wodu Finally, we uséro for automated traffic
semantic analysis. We find that the majority of Internet lpgokind radiation is generated by malicious
programs, including Internet worms, that attempt to pr@geadpy randomly searching for vulnerable vic-
tims. Our classification of their behavior at applicationdereveals the rich collection of different kinds
of malicious exploits. The study also characterizes thiedifice of background radiation observed across

telescopes at different locations and over time.

7.1.4 Enterprise Network Traffic

The fourth and final contribution of this dissertation is @haracterization of modern enterprise network
traffic. Unlike wide-area Internet traffic, enterprise imtal network traffic has been almost unstudied in
the past decade. Based on traces collected at LBNL's iftaestavork, our study presents a first look at
the enterprise traffic to provide a sense of ways in which modaterprise traffic is similar to wide-area
Internet traffic, and ways in which it is quite different. Tsieidy reveals that the enterprise internal traffic
comes from a much richer collection of network applicatitimsn wide-area traffic coming into or going
out of the enterprise network does; the internal traffic woduis dominated by network file systems and
back-up traffic. Furthermore, zooming into individual a@pptions, the study re-examines applications
well-studied for wide-area traffic (for example, Web and Dixsfic), and investigates new types of traffic

not assessed in literature (for instance, Windows traffic).

7.2 Future Directions

Semantic traffic analysis is a new research area with a lotuektions to be explored. An important

part of future exploration in this area will lie insingsemantic traffic analysis to understand application
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level characteristics of specific kinds of network trafficngar to the two traffic studies presented in this
dissertation. On the other hand, there is also a lot of roanmiprovement in the art of semantic traffic

analysis and anonymization—which we discuss in furthesitiein this section.

7.2.1 Traffic Analysis

Traffic analyzers in custom hardware. One important future direction in semantic traffic analyisis
to explore fundamentally new ways to program and structetevark traffic analysis systems so that we
can leverage massive parallelism available on future caimgunardware. As discussed in further de-
tails in our HotSec’06 paper [85], today’s network secusgpstems are facing fiercely growing perfor-
mance pressure from a number of trends. First, as intrudienesme increasingly profit-driven and their
techniques ever more stealthy and sophisticated, netvamlirsy systems need to conduct increasingly
complex analysis—processing traffic at higher semantieleand incorporating context correlated across
multiple connections, hosts, sensors, and over time. Eprtihe security systems also needéuwarite traf-
fic on the fly (1) to eliminate broad classes of evasion thr€atsrmalization”) and (2) tqreventattacks
rather than passively “detecting” them. Thus the systenesl @ analyze traffic in real-time and alter it
inline without introducing excessive latency. Finally, the growf network traffic volume has been out-
pacing that of single-processor performance, and this é&esbated by the collapse of Moore’s law for
processor clock rate. While the main alternatives—ASIG$ BRGAs—support vastly more processing
power through parallelism, they require highly deliberatestomized programming, which is directly at
odds with the pressing need to perform diverse and rich fafrasalysis. Given these growing pressures—
more sophisticated forms of analysis, conducted inlin&jgtter rates, on non-uniprocessor hardware—it
is time to fundamentally rethink the ways of using hardwarsupport network security analysis. The key,
we think, is to devise an abstraction of parallel processivag allows us to expose parallelism latent in
semantically rich, stateful analysis algorithms and thatoan further compile to hardware platforms with
different capabilities.

Parallelization is a known hard problem. But in the partizudase of network security analysis, there
is vast amount of potential parallelism that can be expibiteve structure and express the tasks properly.
Figure 7.1 shows the spectrum of parallelism present in b-légel traffic analysis pipeline. On a link

of 1-10 Gbps, we might have, sal)* concurrent connections, and thus we can then parallelidéoan
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Figure 7.1: The spectrum of parallelism present in a higlellaetwork security analysis pipeline.

pipeline the process of TCP stream reassembly and norrtiatizemongst thesg)* independent streams.
At the protocol analysis stage, the amount of parallelisffuither amplified because one needs to run
different possible application parsers in parallel to dyiaally determine which parser finds the flow syn-
tactically and semantically consistent. “Events”—thecoue of protocol analysis—reflect a distillation
of application-layer activities and can be analyzed firstagper-connection basis, thus this stage main-
tains the earlier parallelism at transport layer. Finallg system aggregates selected information across
connections, sessions, and hosts, where the number oftiabfmrallelizable tasks range from 10 to 1,000.
While there is more than sufficient amount of potential datiain to explore in traffic analysis, the ma-
jor challenges of exposing parallelism and mapping thelpipéo hardware remain. We envision pursuing
these using three fundamental elements: (1) a high-lewgliage for expressing rich forms of network
analysis; (2) a powerful abstraction of parallel executionvhich we target compilation of the elements
of the language; and (3) a final step of compilation from thstaction to concrete hardware implemen-
tations. Thebinpac language presented in this dissertation offers an impbfiish step towards (1), as
protocol parsing is one of the most cycle-demanding taskisampipeline. A high-level specification of the
parsers irbinpac provides a complete picture of data dependency inside atwela connections—the

key information the compiler needs for parallelization.

Learning protocol syntax from examples. Currently we build protocol parsers according to the syntax
specification in protocol standards. However, there areynsitnations in which it is very useful to in-
fer protocol syntax from traffic examples. First, it wouldoaV us to analyze protocols without publicly
available specification. A number of important network égadions, for example, Microsoft SQL database

server and Kazaa file sharing system, psaprietary, instead of open, protocols. Similarly, it also helps
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when the protocol specification is incomplete or outdatedcoBd, protocol learning can also expedite
the process of specifying a complex protocol, such as thetatmset of DCE/RPC services on Windows
systems, by generating the protocol parsers (e.g., ibithfgac language). As an intermediate goal, we
envision semi-automated protocol learning where humanleawhing algorithms interactively discover

protocol syntax and generate protocol parsers.

A first step towards protocol learning is represented by tb&eRlayer traffic replay system, by Cui
et al. [22]. RolePlayer tries to infer the protocol syntaxlbgking for some common elements (length
field, cookie, IP addresses, and ports) based on contextioatriation—observing which elements vary
with the environment and which do not—and by aligning andtiasting multiple samples of similar
protocol conversation. The initial results are encourggiiRolePlayer is able to learn and replay complex
conversation in protocols such as CIFS and FTP. Yet much neanains for exploration, in terms of being
able to leverage more traffic samples, handling more présp@nd recognizing more complex syntax

structures.

7.2.2 Traffic Anonymization

The anonymizations techniques proposed in this dissentatie an early push towards making richer packet
traces available to the research community. There is stiilmo be done in this area. From our experience,
we believe the main challenges include: (1) to formalizausgcrisks and the process of developing an
anonymization scheme; (2) to automate the process of anaation and verification; (3) to keep more

packet dynamics in the transformed traces. Below we brigéfiguss each of these.

Formalizing anonymization. In Section 4.4 we describe our methodology for trace andrgtion and
analyzed four types of inference techniques, but our aisitysot formal or complete. While accumulation
of experience will help us have a better understanding of¢fetionship among various data elements,
developing a formal model for anonymization would be a bapdbrward beyond the intuitive methods.
A formal model would mean that users can have a complete viateothreats and rigorously deduce a
detailed anonymization scheme from the objectives. Howevieindamental difficulty in pursuing such a
model is the very rich semantics network traces encompassh-semantics are difficult to capture with

concise high-level abstractions and often involve corases that can inadvertently leak information.
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Automating the anonymization process Although the anonymization process has been much sintglifie
by operating at the application-protocol level, currentiy still need human assistance in tailoring scripts
for traces (4.5.3), processing free-format texts (4.5adAY result verification (4.5.5). The first two, though
being optional, often largely improve the quality of the puittrace. The last one—verification—is an
essential step which we currently cannot perform withounha interaction. On the other hand, fully
automating anonymization will bring substantial benef{ts} it will minimize human effort in releasing
traces, making it easier for sites to make traces availdBleit is essential for environments where the
trace providers themselves are not allowed to see the atityaffic (e.g., for traces collected at some ISPs);
(3) automated verification will foster a model of “scriptlata” exchange, where users send anonymization
scripts to data owners who use them to easily generate tragesed to the users [67].

The key for automating result verification is to make the gmoization scheme “understandable” to the
verifier program. One way is to design a declarative (instdgufocedural) language for the anonymization
scripts. Being declarative, the anonymization schemeifpetion is also amenable to verification, which

is necessary to ensure that the scheme is correctly specified

Keeping traffic dynamics. One fundamental difficulty of keeping the original traffigrédhmics is that
lengths of data may be changed during transformation, amehéhv lengths must be reflected in TCP/IP
headers to keep packets “well-formed”. Therefore thereosasingle best way to keep the original
dynamics. One possibility is to create an out-of-band ckatm convey information such as original
packet lengths, fragmentation, retransmission, etc.

Also, because traffic parsing is stateful, it is difficult tmpess two parallel versions of the data—for
instance, when there are inconsistent TCP retransmisstmnae have to remove at least one version from
the anonymized stream, even though in some contexts (Balyzing possible intrusion detection evasions

seen in practice [89]) it would be very useful to have bothiespf inconsistent retransmissions retained.

7.3 Summary

This dissertation exploresemantic traffic analysis-examining application-level data of network traffic to
understand the behavior of network applications. The digten first describebinpac —a declarative
language for building protocol analyzers, and tools antnéques for creating shared traffic data through

anonymization of packet traces. We then present charaatems of two types of previously unstudied
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traffic—Internet background radiation and enterpriserim&network traffic—with a focus on application

semantics, as examples of what one can learn about netwplik@pons through semantic traffic analysis.
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Appendix: A Sample HTTP Trace

Transformation

The original trace was collected bgpdump recording a retrieval of the www.google.com homepage. The
tcpdump output (with wrapped packet summary lines and TCP payloafig)e original trace is shown
on the next page.

We use our tool to transform the trace with a script that:

1. Replaces the data entity with its MD5 hash value (in théeca
“867119294265e3f445708c3fcfb2144f ");

2. Rewrites theContent-length field to reflect the length of the MD5 hash value;

3. Addsthe header: “X-Actual-Data-Length: 2709; gap=Oiteat-length=2709" to record the original

Content-length field and how many bytes are actually trarede

Thetcpdump output of the transformed trace is also on the next page.

Note that “Write-Deferring” is applied here: the new headare written at the position of the original
Content-length header, even though the actual data size is not determirig¢dlliof the data is seen.
The script defers writing the headers until the end of thesags and then writes back to the reserved
position.

Furthermore, by changing only one line of the script, from:
msg$abstract = md5_hash(data);

to:
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msg$abstract =

subst_string(data, "Google", "Goooogle");

the script then replaces every occurrence of “Google” indéi entity with “Goooogle”, instead of replac-

ing the whole data entity with its MD5 hash value. Next pagenshpart of the transformed trace. (There
are four occurrences of “Google” in the original messagesttne Content-length increases from 2709 to
2717.) Note that sequence and acknowledgment numbersédrethve traces differ due to packet reframing

and the addition of X-Actual-Data-Length headers.
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Original trace:

1044328495.549695 192.150.187.28.1472 > 216.239.51.101 .80:

S 1352447574:1352447574(0) win 57344

<mss 1460,nop,wscale 0,nop,nop,timestamp 92919815 0> (DF
1044328495.632608 216.239.51.101.80 > 192.150.187.28.1 472:

S 3009119707:3009119707(0) ack 1352447575 win 1460

<mss 1460,nop,nop,timestamp 752104543 92919815,nop,wsc
1044328495.632647 192.150.187.28.1472 > 216.239.51.101

. ack 1 win 57920

<nop,hop,timestamp 92919823 752104543> (DF)
1044328495.632966 192.150.187.28.1472 > 216.239.51.101 .80:

P 1:81(80) ack 1 win 57920

<nop,nop,timestamp 92919823 752104543> (DF)
0x0030 2cd4 345f 4745 5420 2f20 4854 5450 2f31 ,.4_GET./.HTT
0x0040 2e30 0dOa 5573 6572 2d41 6765 6e74 3a20 .0..User-Agen
0x0050 5767 6574 2f31 2e35 2e33 0d0a 486f 7374 Wget/1.5.3..H
0x0060 3a20 7777 772e 676f 6f67 6c65 2e63 6f6d :.www.google.
0x0070 3a38 300d 0ad4l 6363 6570 743a 202a 2f2a :80..Accept:.
0x0080 0dOa OdOa
1044328495.716691 216.239.51.101.80 > 192.150.187.28.1

. ack 81 win 30660

<nop,hop,timestamp 752104551 92919823> (DF)
1044328495.737787 216.239.51.101.80 > 192.150.187.28.1

P 1:1449(1448) ack 81 win 31856

<nop.nop. timestamp 752104553 92919823> (DF)
0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030 ...HTTP/1.0.
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-
0x0050 6774 683a 2032 3730 390d 0a43 6f6ée 6e65 gth:
6374 696f 6e3a 2043 6¢6f 7365 0d0a 5365 ction:.Close.
7276 6572 3a20 4757 532f 322e 300d Oad4 rver.GWS/2.0
6174 653a 2054 7565 2c20 3034 2046 6562 ate:.Tue,.04.
2032 3030 3320 3033 3a31 343a 3535 2047 .2003.03:14:5
4d54 0dOa 436f 6e74 656e 742d 5479 7065 MT..Content-T
3a20 7465 7874 2f68 746d 6c0d 0a43 6163 :.text/html..
6865 2d63 6f6e 7472 6f6c 3a20 7072 6976 he-control:.p
6174 650d 0a53 6574 2d43 6f6f 6b69 653a ate..Set-Cook
2050 5245 463d 4944 3d31 6538 6337 3538 .PREF=ID=1e8c
6231 6632 3965 3836 643a 544d 3d31 3034 blf29e86d:TM=
3433 3238 3439 353a 4c4d 3d31 3034 3433 4328495:LM=10
3238 3439 353a 533d 6638 344d 6753 7948 28495:S=f84Mg
3347 452d 3439 5070 3b20 6578 7069 7265 3GE-49Pp;.exp
5375 6e2c 2031 372d 4a6l 6e2d 3230 s=Sun,. 17 Jan

472:

472:

2e67 6f6f 676c 652e 636f 6d0d 0aOd Oa3c .google.com..
6874 6d6c 3e3c 6865 6164 3e3c 6d65 7461 html><head><m
2068 7474 702d 6571 7569 763d 2263 6f6e .http-equiv="
7465 6e74 2d74 7970 6522 2063 6f6e 7465 tent-type".co
6e74 3d22 7465 7874 2f68 746d 6c3b 2063 nt="text’/html
6861 7273 6574 3d49 534f 2d38 3835 392d harset=1SO-88
3122 3e3c 7469 746c 653e 476f 667 6¢65 1"><title>Goo
3c2f 7469 746¢c 653e 3c73 7479 6¢65 3e3c </title><styl

0x0190
0x01a0
0x01b0
0x01c0
0x01d0

0x0360
0x0370

3237 3620 6865 6967 6874 3d31 3130 2061 276.height=11
6c74 3d22 476f 6f67 6c65 223e 3c2f 7464 It="Google"><

1044328495.737951 216.239.51.101.80 > 192.150.187.28.1

P 2897:3025(128) ack 81 win 31856

<nop,nop,timestamp 752104553 92919823> (DF)
0x0030 0589 d80f 6f6e 743e 0a3c 703e 3c66 6f6e ....ont>.<p><
0x0040 7420 7369 7a65 3d2d 323e 2663 670 793b t.size=-2>&co
0x0050 3230 3033 2047 6f6f 676c 653c 2f66 6f6e 2003.Google</
0x0060 743e 3c66 6f6e 7420 7369 7a65 3d2d 323e t><font.size=
0x0070 202d 2053 6561 7263 6869 6e67 2033 2c30 .-.Searching.

472:

1044328495.737987 192.150.187.28.1472 > 216.239.51.101 .80:
. ack 1449 win 57920
<nop,nop,timestamp 92919833 752104553> (DF)
1044328495.738022 216.239.51.101.80 > 192.150.187.28.1
F 3025:3025(0) ack 81 win 31856
<nop,hop,timestamp 752104553 92919823> (DF)
1044328495.738054 192.150.187.28.1472 > 216.239.51.101 .80:
. ack 1449 win 57920
<nop,nop,timestamp 92919833 752104553> (DF)
1044328495.739267 216.239.51.101.80 > 192.150.187.28.1
P 1449:2897(1448) ack 81 win 31856
<nop nop timestamp 752104553 92919823> (DF)
0x0030 0589 d80f 2f66 6f6e 743e 3c2f 613e 3c2f ..../font></a
0x0040 7464 3e3c 7464 2077 6964 7468 3d31 353¢ td><td.width=
0x0050 266e 6273 703b 3c2f 7464 3e3c 7464 2069 &nbsp;</td><t
0x0060 643d 3320 6267 636f 6c6f 723d 2365 6665 d=3.bgcolor=#
0x0070 6665 6620 616c 6967 6e3d 6365 6e74 6572 fef.align=cen

7562 6d69 7420 7661 6¢75 653d 2247 6f6f ubmit.value="
676c 6520 5365 6172 6368 2220 6e61 6d65 gle.Search.n

472:

472:

0x0370
0x0380

1044328495.739318 192.150.187.28.1472 > 216.239.51.101 .80:
ack 3026 win 56344
nop nop,timestamp 92919833 752104553> (DF)
1044328495.741006 192.150.187.28.1472 > 216.239.51.101 .80:
F 81:81(0) ack 3026 win 57920
<nop,nop,timestamp 92919834 752104553> (DF)
1044328495.823516 216.239.51.101.80 > 192.150.187.28.1
. ack 82 win 31856
<nop,nop,timestamp 752104562 92919834> (DF)

472:

ale 0> (DF)
80:

200
Len
nne

Feb
5.G
ype
Cac
_riv

758
104
443
SyH
ire
-20
MT;
in=

eta

153

Replacing data entity with MD5 hash value:

1044328495.549695 192.150.187.28.1472 > 216.239.51.101 .80:

S 1352447574:1352447574(0) win 57344

<mss 1460,nop,wscale 0,nop,nop,timestamp 92919815 0>
1044328495.632608 216.239.51.101.80 > 192.150.187.28.1

S 3009119707:3009119707(0) ack 1352447575 win 1460

<mss 1460,nop,nop,timestamp 752104543 92919815,nop,wsc
1044328495.632647 192.150.187.28.1472 > 216.239.51.101 .80:

. ack 1 win 57920

<nop,nop,timestamp 92919823 752104543>
1044328495.632966 192.150.187.28.1472 > 216.239.51.101 .80:

P 1:130(129) ack 1 win 57920

<nopynop, timestamp 92919823 752104543>
0x0030 4 345f 4745 5420 2f20 4854 5450 2f31 ,.4_GET./.HTT
0x0040 Ze3O 0d0a 5553 4552 2d41 4745 4e54 3a20 .0.USER-AGEN
0x0050 6574 2f31 2e35 2e33 0dOa 484f 5354 Wget/1.5.3..H
0x0060 7777 772e 676f 6f67 6c65 2e63 6f6d .www.google.
0x0070 300d Oa4l 4343 4550 543a 202a 2f2a :80..ACCEPT:.
0x0080 0dOa OdOa 582d 4163 7475 616¢c 2d44 6174 ...X-Actual-
0x0090 612d 4c65 6e67 7468 3a20 303b 2067 6170 a-Length:.0;.
gxgggg 2(:20 636f 6e74 656e 742d 6¢65 6e67 =0, contentl
X
1044328495 716691 216 239.51.101.80 > 192.150.187.28.1

. ack 130 win 30660

<nop,nop,timestamp 752104551 92919823>
1044328495.737787 216.239.51.101.80 > 192.150.187.28.1

P 1:371(370) ack 130 win 31856

<nop,nop,timestamp 752104553 92919823>
0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030 ...HTTP/1.0.
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-
0x0050 6774 683a 2033 320d 0a58 2d41 6374 7561 gth:.32..X-Ac
0x0060 6c2d 4461 7461 2d4c 656e 6774 683a 2032 I|-Data-Length
0x0070 3730 393b 2067 6170 3d30 2c20 636f 6e74 709;.9ap=0,.c
0x0080 656e 742d 6¢65 6e67 7468 3d20 3237 3039 ent-length=.2
0x0090 0dOa 434f 4ede 4543 5449 4fde 3a20 436c ..CONNECTION:
0x00a0 6f73 650d 0a53 4552 5645 523a 2047 5753 ose..SERVER:.
0x00b0 2f32 2e30 OdOa 4441 5445 3a20 5475 652c /2.0.DATE.T
0x00cO 2030 3420 4665 6220 3230 3033 2030 333a .04.Feb.2003.
0x00d0 3134 3a35 3520 474d 540d 0a43 4fde 5445 14:55.GMT..CO
0x00e0 4e54 2d54 5950 453a 2074 6578 742f 6874 NT-TYPE:.text
0x00f0  6d6c OdOa 4341 4348 452d 434f 4e54 524f ml..CACHE-CON
0x0100 4c3a 2070 7269 7661 7465 0dOa 5345 542d L:.private..S
0x0110 434f 4f4b 4945 3a20 5052 4546 3d49 443d COOKIE:.PREF=
0x0120 3165 3863 3735 3862 3166 3239 6538 3664 1e8c758b1f29e
0x0130 3a54 4d3d 3130 3434 3332 3834 3935 3adc :TM=104432849
0x0140 4d3d 3130 3434 3332 3834 3935 3a53 3d66 M=1044328495:
0x0150 3834 4d67 5379 4833 4745 2d34 3950 703b 84MgSyH3GE-49
0x0160 2065 7870 6972 6573 3d53 756e 2c20 3137 .expires=Sun,
0x0170 2d4a 6166 2d32 3033 3820 3139 3a3l 343a -Jan-2038.19:
0x0180 4d54 3b20 3d2f 3b20 07.GMT;.path=
0x0190 646f 6d61 696e SdZe G76f 8f67 6c65 2e63 domaln goog!

6f6d 0dOa 0dOa

1044328495 737987 192.150.187.28.1472 > 216.239.51. 101 .80:

. ack 371 win 57920

<nop,nop,timestamp 92919833 752104553>

472:

472:

472:

1044328495.739267 216.239.51.101.80 > 192.150.187.28.1 472:
FP 371:403(32) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0030 0589 d8Of 3836 3731 3139 3239 3432 3635 ...867119294

0x0040 6533 6634 3435 3730 3863 3366 6366 6232 e3f445708c3fc
0x0050 3134 3466 144f
1044328495.739318 192.150.187.28.1472 > 216.239.51.101 .80:
. ack 404 win 56344
<nop,nop,timestamp 92919833 752104553>
1044328495.741006 192.150.187.28.1472 > 216.239.51.101 .80:
F 130:130(0) ack 404 win 57920
<nop,nop,timestamp 92919834 752104553>
1044328495.823516 216.239.51.101.80 > 192.150.187.28.1
. ack 131 win 31856
<nop,noptimestamp 752104562 92919834>

472:

Substituting “Google” with “Goooogle”

1044328495.737787 216.239.51.101.80 > 192.150.187.28.1

P 1:373(372) ack 130 win 31856

<nop,hop,timestamp 752104553 92919823>
0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030 ...HTTP/1.0.
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-
0x0050 6774 683a 2032 3731 370d 0a58 2d41 6374 gth:.2717..X-
0x0060 7561 6c2d 4461 7461 2d4c 656e 6774 683a ual-Data-Leng
0x0070 2032 3730 393b 2067 6170 3d30 2c20 636f .2709;.gap=0,
0x0080 6e74 656e 742d 6c65 6e67 7468 3d20 3237 ntent-length=
0x0090 3039 0OdOa 434f 4ede 4543 5449 4fde 3a20 09..CONNECTIO

472:

1044328495.739267 216.239.51.101.80 > 192.150.187.28.1
P 373:1821(1448) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0080
0x0090

472:

3838 3539 2d31 223e 3c74 6974 6¢c65 3e47 8859-1"><titl
6f6f 6f6f 676c 653c 2f74 6974 6¢65 3e3c oooogle<titl

0x0230
0x0240

743d 3131 3020 616¢c 743d 2247 6f6f 6f6f t=110.alt="Go
676c 6522 3e3c 2f74 643e 3c2f 7472 3e3c gle"></td></t

1044328495.739267 216.239.51.101.80 > 192 150.187.28.1
F 1821:3090(1269) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

7574 2074 7970 653d 7375 626d 6974 2076 ut.type=submi
616¢c 7565 3d22 476f 6f6f 6f67 6c65 2053 alue="Goooog|
6561 7263 6822 206e 616d 653d 6274 6e47 earch'.name=b

472:

0x0230
0x0240
0x0250

0x04c0
0x04d0

7079 3b32 3030 3320 476f 6f6f 6f67 6¢65 py;2003.Goooo
3c2f 666f 6e74 3e3c 666f 6e74 2073 697a </font><font.

ale 0>

P/1
T
osT
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wf %
Dat
gap
eng

265
b2

e>G
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000
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