SHAPE DISTINCTION FOR3D OBJECT

RETRIEVAL

PHILIP NATHAN SHILANE

A DISSERTATION
PRESENTED TO THEFACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE
BY THE DEPARTMENT OF

COMPUTERSCIENCE

APRIL, 2008



(© Copyright by Philip Nathan Shilane, 2008. All rights resetve



Abstract

In recent years, there has been enormous growth in the nushBBrmodels and their
availability to a wide segment of the population. Examptedude the National Design
Repository which stores 3D computer-aided design (CAD) risofibe tens of thousands
of mechanical parts, the Protein Data Bank (PDB) that hawmiatpositions for tens of
thousands of protein molecules, and the Princeton ShapehBeark with thousands of
everyday objects represented as polygonal surface modétk.the availability of free
interactive tools for creating 3D models and graphics cdsdbome computers, we can
expect 3D data to become ever more widely available.

Given the availability of 3D data, searching for a 3D objethilarge database is a
core problem for numerous applications including objecognition and the reuse of
expertly created data. This raises two key research prabldmHow can we improve
search techniques? and 2) How do we evaluate 3D search ¢eeis?i

The first contribution of this dissertation is an analysisht@que to select the most
important or distinctive regions of an object. Our approatantifies regions of a surface
that have shape consistent with objects of the same type diiededt from objects
of other types. By focusing a retrieval method on the mostartgnt regions of an
object, we can improve retrieval performance in comparigoalternative feature point
selection techniques. We investigate properties of shagp@ction including techniques
for calculating distinction, a method for visualizing difences in a database, and a
prediction algorithm based on likelihoods of local shap&8e also demonstrate that
shape distinction can be used in graphics applications aaaghesh simplification and
icon generation.

The second contribution is a new methodology to analyze eshapieval methods
with a common data set of classified 3D models and softwais tadled the Princeton
Shape Benchmark (PSB). Based on experiments with sevéfexkedit retrieval methods,
we find that no single method is best for all classificationslgécts, and thus the main
contribution of the PSB is a framework to evaluate retriewathods.
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Chapter 1
Introduction

In recent years, there has been enormous growth in the nuoft3edimensional (3D)
models and their availability to a wide segment of the pofpaia Examples include
the National Design Repository, which stores 3D compuigeehdesign (CAD) models
for tens of thousands of mechanical parts; the Protein DatekBPDB) with atomic
positions for tens of thousands of protein molecules; nadiollections such as the
Visible Human; and the Princeton Shape Benchmark (PSB)3Gifh00 everyday objects
represented as polygonal surface models. The number ofraotes] or measured 3D
models is experiencing enormous growth, and with the av#iiia of free interactive
tools for creating 3D models, we can expect the number of 3[@deaisoto continue to
grow. As models have become more widespread, graphics éard®me computers
have become faster and inexpensive, making 3D data awai@blearly everyone. A key
problem for everyday users who interact with 3D objects i# lto search for 3D data
within large collections.

Those who are not computer experts interact with 3D objectaimerous ways, and
3D shape similarity queries are useful in several appbeegti In the mechanical CAD
community, computer models of individual pieces such assherhd brackets are often
combined into complex mechanical parts, and shape sityilsgarch can aid their work.
Manufacturing companies could create databases of thete[pd], so when designing
a new device, the question is how to reuse or modify an eggtart instead of designing
one from scratch. Similarly, in the computer graphics comitydatabases of common,
household objects have been created [45]. When designitghirorlds, novice users
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can quickly create complex scenes using a database of sljesteéad of creating each
object individually [35]. For both the CAD and computer gragghcommunities, a user
may start with a rough model that approximates his or her godl then improve the
model with detailed subparts that already exist.

In the fields of molecular biology and chemistry, the 3D stuoe of proteins can be de-
termined using X-ray crystallography [44] or nuclear magneesonance spectroscopy,
and approximately 45,000 structures are currently stangtie PDB [10]. Studying the
properties of a protein experimentally in a laboratorynsdiintensive, so any information
about similar proteins that can guide the experiments isesfefit. While a protein
sequence can be used as a search term into the PDB, the 3uigirata protein can
also suggest distantly related proteins [38], which cadlglaboratory studies.

For a computer vision system, 3D data scans of the envirohoznbe the input to a
recognition system that matches the scene data to objeatabeled database. Systems
that scan objects in the environment typically involve soroenbination of mounted
cameras or camera and laser system, which triangulateigusiin the environment
to create a range image indicating the distance from the @system to the surface
of the object. Scans of real-world objects often have nais¢he measurements or
missing regions due to obscured points of view. Even whercéimera system has an
unobstructed view of the object, portions of the object malj-acclude regions. A
retrieval system using scanned input needs to handle ieqieaind incomplete data.
Because of the incomplete data problem, research in thé leae moved toward local
shape matching. The idea is that since the entire query bilgawt available, small
features of the query object can be compared to correspgrie@tures in a database.

Searching for textual information on the World Wide Web hasdime commonplace
using search engines such as Google or Yahoo, but we aratstile early stages of
performing 3D search. To make 3D data become truly usefuln@exl a search engine
for 3D objects that produces accurate retrieval resultsiefitly. An example is shown
in Figure 1.1, where search results for the key word “plane shown. The image
thumbnails on the right show pictures of 3D objects retriefrem the database. While
text search is typically able to retrieve at least one objgdhe desired type, Min et
al. [88] have shown that most 3D data lacks consistent teldbals, causing a mixture
of airplanes and mathematical planes to match the seanch“dane” in this example.
These results are typical for search engines that use tdkeaguery into a database of
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Text & 2D Sketch e eton Shoape Retrieval and Analysis Group
Search Al Madel = H
ISSRE [svoses <] 3D Model Search Engine
|Keywurds: ‘mane
Text & 2D Skelch Text & 3D Skelch File Compare Research ContactUs Links FAQ Main
View Search results in database [all], 36000 models (click on & thumbnail for mare information on that model)
1
[ext page (17 - 32) search type: [text only], results: 100
i
View 1. plane (cf) 2. plane (we1)(www) 3. plane (w=1){www) 4. plane (w=2){(www)
Eind similar shape Eind similar shape Eind similar shape Eind similar shape
Lett mouse button = draw
Right mouse button = erase
L A e
e s
yr= 5. plane (wz1)(www) 6. Plane 5 (wz1)(www) 7. plane (wz1){www) 8. plane 1 (wz2){www)
|;w Find similar shape Find similar shape Find similar shape Find similar shape
= e = [ Ve
9. plane 2 {sw=1)(www) 10, plane 3 (sw=1)(www) 11, plane 4 {w=1)(ww) 12. Bi plane (we2){www)
Eind similar shape Eind similar shape Eind similar shape Eind similar shape
- =
13. bi plane (za=)(www) 14. plane (wza){www) 15, plane (za=)(www) 16. copy this to plane {w=z){www)
Eind similar shape Eind similar shape Eind similar shape Eind similar shape

MNext page (17 - 32)  Something didn't work? Let us know!

Figure 1.1: An example of text search for a 3D database. Begytor the term “plane”
resulted in a variety of airplanes, as well as less-desesdlts.

non-textual objects. Designers who create original 3D abjeften neglect to label each
object, or they use labels that are only relevant within aavarcontext. For example,
an airplane could be labeled “airplane” indicating its fuoe, or “Spirit of St. Louis,”
indicating it is the airplane that Charles Lindbergh flew asrthe Atlantic. Text-based
searches are often insufficient for these reasons and négleartant shape-based infor-
mation. Similar issues apply to image search, where a caatibm of text and image
similarity search is effective [100].

Given at least one good result from a database using a tes¢aath or other method,
though, we can use the shape of the object itself as a querth@etdatabase. The example
search engine from the Princeton Shape Retrieval and AsaBreup [107] (Figure 1.1)
supports that functionality with the “Find similar shap&iis under the images. Clicking
on the “Find similar shape” link under the first airplane irragauses a shape similarity
search to be performed, using the airplane itself as the 3yqguThe goal is to then
find objects in the database that have a similar 3D shape apigrg object. As shown
in Min et al. [88] and Figure 1.2, shape search of a 3D quergatbyersus text search,
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wa}w] Shape Refrieval and Analysis Group

Search results in database [all], 36000 models

3D Model Search Engine

Text & 2D Skelch Texi & 3D Skelch File Compare ContactUs  Links FAQ Main

(click on a thumbnail for more information on that model)

1
Mext page (17 - 32 search type: [similar shape], results: 100
oo 2. b747 (esp) = =
View 1. plane (cf) Find similar shape 3. boeing (aa=)(www) 4. PhantomGR {s=1){www)
2 Find similar shape Find similar shape Find similar shape
Left mouse button = draw
Right mouse button = erase
Unlo e LLTRI ‘G
i 5. feraft (aa=)(www) 6. spitRacer (w=1){www) 7. piper3 (cf) 8. TAT (awo)(www)
|;w Eind similar shape Eind similar shape Eind similar shape Eind similar shape
B C—
- = e 11. 767 (esp) S aassiS
9. TAT (wc2){winw) 10, T4T (za=)(www) Find similar shape 12, TAT (wz2)(wwwv)
Eind similar shape Eind similar shape Eind similar shape

13 74T (sas)(www) 16, L 39 (wz2)(www)
Find similar shape Find similar shape

14, custom (swz2)(www)
Find similar shape

15, jetl2 (wez)(www)
Find similar shape

Mext page (17 - 32 Something didn't work? Let us know!

Figure 1.2: An example of shape search for a 3D database tisinfiyst airplane as a
shape-based query. Airplanes with similar shapes weredfoun

can greatly improve retrieval results. A shape similaritgthod considers the geometric
form of a shape and may either match a shape as a whole (gl@tehimg) or subparts
(local matching). Local matching is well motivated when jgaitts of an object are either
optional or can be located in multiple configurations suclioasrticulated machinery.
This dissertation builds upon the idea of local feature imatg, but extends the previous
work by identifying important regions of shapes that digtiish objects of the correct
class from other types of objects.

Representing the 3D structure of a shape with a feature veetited a shape descrip-
tor, is among the most effective search techniques. Usiagesddescriptors, shapes in a
database and the query shape are transformed into a refa@sethat can be compared
directly such that a distance score can be calculated. &it® shows a typical shape
search engine system, in which there is a shape descripteatd object represented by
the “?” symbol. The distance between the query shape déscepd every descriptor in
the database is calculated and the distances are sortedefasirio greatest. The closest
results are then presented to the user.
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3D Model Shape
Descriptor

Model Database
with Shape Descriptors

Figure 1.3: When a user presents a query model to a shape saayote, the query
is converted into a shape descriptor (the “?” symbol) andgamed to the descriptors
representing all of the shapes in the database. The bedt@sadce returned as results.

The multiple representations of 3D objects have led to s@maihology ambiguity.
Shapes the most generic term and refers to the abstract notioheofdrm of an object
and corresponds to its semantic meaniidpodel generally refers to the representation
of a 3D object without specifying details of the represaotal format, meaning the
shapeof an object is represented by a model. Objects created isysaaite also generally
referred to as models. The temmeshspecifically refers to a representation of the surface
of a model as opposed to point samples or volumetric deasiiehorse model has the
shape of creatures in the semantic group “horse” whetherrigpresented as a surface
mesh, points, or density values. In this dissertation, veelsanostly on surface models
because they are common within the graphics community,gih@oany of the retrieval
techniques presented can be adapted to other represantéioother representations
can be converted to surfaces). We use the terms shape, randehesh interchangeably,
unless otherwise noted.
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Contributions

This dissertation creates a technique to determine thandise regions of 3D meshes
and focuses shape matching on those regions. To measurenfiogtance of mesh
surfaces, we create a methodology for evaluating shapevatmethods. Specifically,
we make the following research contributions:

Distinctive Regions Selecting the most “important” regions of a surface is ulsédu
shape matching and a variety of applications in computeslgca and geometric
modeling. While previous research has analyzed geometrjmepties of meshes in
isolation, we select regions that distinguish a shape frbjaats of a different type.
Our approach to analyzing distinctive regions is based oiopring a shape-based
search using each region as a query into a database. Diginegions of a surface
have shapes consistent with objects of the same type armdeditffrom objects of
other types. An important property of distinctive regiosshat they correspond
to features that distinguish between classes as opposeevioys techniques that
determined important regions for each mesh in isolation.

Shape Retrieval with Distinction A shape matching method that focuses on the dis-
tinctive regions of a shape can improve retrieval succelsdive to considering
all regions of a shape equally. To achieve this goal, theegyshaintains a priority
gueue of potential sets of feature correspondences (paiahes) sorted by a cost
function accounting for both feature dissimilarity and tieometric deformation.
Only partial matches that can possibly lead to the best falicim are popped off
the queue, and thus the system is able to find a provably optmatch while
investigating only a small subset of potential matches ieva$econds per query.
By filtering the set of shape descriptors representing ehapesin the database to
include only the most distinctive, the matching algorithroguces better retrieval
accuracy than previously tested methods.

Updating Distinction Distinction values for each mesh region are a measure of halv w
each region corresponds to objects of the same class aimbdishes from objects
of different classes. As a database undergoes the addimneanoval of objects,
distinction values must be updated to reflect changes in atabdse, which can
be computationally infeasible. By calculating an appraadiion to distinction that
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only requires a small set of similar regions that can be fowitd a spatial index
structure, distinction scores can be updated efficiently.

Predicting Distinction The definition of distinction is based on analyzing a clasdifi
database, which facilitates processing target models;dnriot be directly applied
to query shapes. Using a prediction model, distinction ess@an also be found
for new query models, even though their classification isnomkn. During a
preprocessing phase, a training set of models is analyzide following steps:
descriptor likelihood is measured with a multi-variate Gsian distribution of real-
valued shape descriptors, the distinction score of eadtrigésr is calculated from
atraining set, and these performance values are averagedHiy likelihood value.
For a new shape presented to the system, distinction vategsedicted across the
surface of the shape based on a function that maps from tekhiilod for local
shape descriptors to predicted distinction values. Usiadipted distinction values
provides favorable retrieval performance while reducing query time.

PSB The Princeton Shape Benchmark is a publicly available @abf polygonal mod-
els collected from the World Wide Web and a suite of tools fomparing shape
matching and classification algorithms. A key feature ofltkachmark is that it
provides multiple semantic labels for each 3D model. Faainse, it includes one
classification of the 3D models based on function, anotherabnsiders function
and form, and others based on how the object was construetgd (nan-made
versus natural objects), and these classifications cansexgifferent properties
of shape-based retrieval algorithms. Experiments withrgelaaumber of shape
descriptors show that no single descriptor is best for ghesy of objects, and
thus, the main contribution of the PSB is to provide a framdwo determine
the conditions under which each descriptor performs best.
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Dissertation Structure

The remainder of this dissertation describes the backglhadesign decisions, and results
of this project. Chapter 2 discusses previous work on shapeval techniques. Chap-
ter/3 gives an overview of defining distinction, and Chaptexglans our method in
further detail as well as the effect of various parameteiomst Chapter 5 demonstrates
how to incorporate distinctive regions into a priorityaden search engine to improve
efficiency and accuracy of retrieval. As new shapes are atladlatabase, distinction
scores are updated, and we present an efficient method in€Sl€agthapter 7 presents a
method for predicting distinction scores for new query medsing a classified training
database. In Chapter 8, we demonstrate how distinction caisdxkin various graphics
applications. The Princeton Shape Benchmark is describ€thapter 9, and state-of-the
art shape descriptors are compared. Finally, we conclu@hapter 10 with a summary
and a discussion of possible future work.



Chapter 2
Background and Related Work

To organize and analyze the large amount of 3D data that ltasrieeavailable, numerous
search techniques have been developed. The general appsoameasure th@milarity
between a query object and every object in a database, wkads |to the question,
“How is the similarity of 3D shapes measured?” Alternatyydiow can we measure
the dissimilarity of 3D shapes such that objects of the san®astic class have a small
dissimilarity score and objects of different semantic sésshave a large dissimilarity
score.

A common technique is to convert a model into a feature vaejmresentation, called
a shape descriptor, and then the dissimilarity of 3D objectaeasured by the distance
between their feature vector representations. A datalfadepes can be compactly rep-
resented by their respective shape descriptors. Then, whiser presents a query shape
to the system, the query shape is converted into a shapdmtesend compared against
the database. One of the main advantages of using shapittascior matching is the
ability to support high-throughput search results becaliseompact representation can
be compared quickly and index structures can be used fdrdusfficiency. There are
several properties to consider when discussing shapeipiEssr

e represents important shape properties
e compact to store
e quick to compute

e quick to compare
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e insensitive to noise
¢ independent to 3D representation
e invariant to similarity transformations

To explain these properties in more detail, consider ansgex query into a shape
database with millions of models. Besides representingmapt features for matching,
the shape descriptors must be small enough to fit within mamany for efficient
comparison, calculating the descriptor for the query stidaé quick, and comparing
the query descriptor against the entire database shouidlyapturn results. Also, the
shape descriptor should be robust to small errors commoreshes such as missing or
disconnected polygons and different polygon represemtatdf similar surfaces.

Invariance to similarity transforms refers to a group ohsBrmations that preserve
what humans generally think of as the appearance of a shapeasyposition, rotation,
and scale. A 3D model is typically defined with surface possirelative to a local coor-
dinate system without any guarantee that the coordinatersyis consistent across mod-
els. Ideally, a shape descriptor representation for ancbljeuld be the same regardless
of its position, rotation, or scale so that if a model undega similarity transformation,
its descriptor will be unaffected. An alternative to designa shape descriptor that is
invariant to certain transformation is to normalize a mdalfbre calculating a descriptor.
The main normalization technique is to transform all modeish that their descriptors
can be compared directly. Position differences can be lednoly translating the center
of mass of the object t(0,0,0) of the coordinate system. Rotation can be handled either
by determining the important axis of the shape and rotatwogée to align with the,y, z
planes, searching over all rotations when matching, or Isigiéng a descriptor that
is invariant to rotation about one or more axes by constwnc{68, 69, 130]. Scale
information should be preserved for certain shape matchnodplems involving scans
of real world objects such as proteins [1] or archaeologaectfacts [54]. For artistically
generated models, though, scale is often arbitrary and ax»mmormalization technique
is to scale a model to fit within a unit sphere or according teeofproperties. Shape
normalization and invariance technigues are more thornyudgscribed by Kazhdan [65].
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2.1 Global Shape Descriptors

Creating shape descriptors for content-based retrievabéeas an active area of research
for over a decade. In this section, we review the main typeshape descriptors. See
the survey papers by Tangelder et al. [121], Bustos et a], Hir@l lyer et al. [56] for a
thorough discussion and comparison of shape descriptors.

Simple Properties Many simple properties of shapes have been considerechps sh
descriptors. For manifold models of fixed scale, volume reenlconsidered [141, 142]
as well as ratios of surface area to volume [24, 56]. The dspéo of bounding boxes
can be used for aligned models [101, 142]. These propentesgea low dimensional
feature vector of limited descriptive power.

Surface Normals and Curvature Representing surface normals (vectors perpen-
dicular to small surface patches) and curvature propersiasseful for distinguishing
between boxy, man-made objects and natural, smooth sarfd¢ern developed a de-
scriptor called the Extended Gaussian Image (EGI) [52] thedrds the distribution of
surface normals binned to regularly positioned samplesgphare, though rotation nor-
malization must be performed. A similar descriptor was d@ved by Shum et al. [134],
and when comparing two descriptors, the minimum distance eedculated across all
rotations. The EGI descriptor was extended by Kang et al. fibéhcorporate with the
distribution of normals the distance from the surface todéetroid in a complex-valued
spherical function. The distribution of local curvaturesnssed as a descriptor by Zaharia
et al. [139]. First, local curvature was measured as a fanaif principal curvatures, and
a histogram of these values formed the descriptor.

Surface Distribution: The position of a shape’s surface is perhaps its most impor-
tant property and has been investigated with many descsiptthe distribution of the
distances between random points on the surface was defin@ddnyja et al. [99] as the
D2 descriptor. For CAD models, the D2 descriptor was modifigdet al. [55] to
incorporate whether the line segments fall completely withe volume of the model,
outside the volume, or extends through both regions. Ohlaieth. [96] also modified the
D2 descriptor to include the angle between the line segnmehttee normal of the surface.
The higher moments of surface area have also been usedrievat¢tafter removing the
lower moments that incorporate translation and rotatidormation[28, 103, 131]. Saupe
et al. [109] measured the distance from the centroid to thfase, sampled at regular

11
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positions on a sphere. A more detailed version was develbgédranic et al. [131],
which considered distances from the centroid to the mosanlisurface region within
a given shell. Ankerst et al. [1] established Shape Histogras the distribution of the
model partitioned by bins defined by evenly spaced sectarshells. A discrete version
of the Shape Histogram that measures the occupancy of vekkehas also been used as
a descriptor [70, 73, 95].

Morphing Distance: Several shape descriptors have been developed that amattex
the amount of deformation needed to morph one mesh to anéthehdan et al. [65, 69]
developed several shape descriptors that improve upon @l dscriptor along with
techniques for creating rotation-invariant descriptéiisst, the Euclidean distance trans-
form is calculated on a binary voxel grid representing thdaze of a shape. Then, the
values are composed with a Gaussian function and reprekueiitie spherical samples
for concentric shells, which is called the Gaussian EuelidBistance Transform. The
distance between two descriptors of this form is an uppenrbdoon the deformation
between shapes. Using a spherical representation, aomiatrariant descriptor called
the Harmonic Shape Descriptor was created by decomposinfyitiction into spherical
harmonics and storing the norm of each harmonic frequendyis General technique
could be used to transform 3D functions that are rotatigpedelent into a rotation-
invariant version, though there is a loss of informationhie tonversion. Funkhouser
et al. [37] presented the Fourier Shape Descriptor (FSDgdhas a modification of this
technique that stores the amplitude of every spherical baitncoefficient, making the
descriptor invariant to rotation about one axis.

Symmetry: Symmetry is an important feature of 3D shapes, and objddteecsame
semantic class often have similar planes reflecting pastadithe model onto itself. Early
research explored how to measure imperfect symmetries DoslZapes by defining a
continuous symmetry measure [136, 137, 138]. This was detério 3D shapes by
reflecting the surface about a plane and measuring the destsrthe reflected surface to
the original surface [66, 67]. For all planes through theteenf mass, these distance
values define a shape descriptor parameterized by the naontbe reflection plane.
Podolak et al. [106] considered all reflection planes, edtef just those through the
center of mass. Both symmetry descriptors were shown toawgoretrieval when used
in combination with non-symmetry based descriptors.

12
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Image-based Image-based methods are based on the property that sishiggres
have similar appearances from one or more camera positibnkiple images of shapes
in a database are captured from several camera positions@each shape. The images
are often processed to either produce a binary represent&@] or to extract boundary
contours[36]. Then images of the query shape or sketch pextloy a user are processed
in a similar manner and compared to the database. Min [8&jdtized the match as an
optimization process for parameterized ovals approxingagiach image. Chen et al. [19]
represented binary images by their Zernike moments andéfaroefficients and found
the minimum distance between corresponding images to peotigh quality retrieval
results. An improvement to this technique is to capture lidypiffer images (distances
from the camera) represented with their Fourier coeffideast described by Heczko et
al. [48] and implemented by Vranic [129]. Recording the aiste to the surface of a
model is roughly similar to early stages of computer visiechniques for constructing
the surface of objects with a camera system.

Matching with Global Descriptors

When calculating the distance between two instances of sesthegcriptor, several ap-
proaches have been considered. Often, there is a striatiogder the dimensions of the
descriptor, meaning that thth feature of descriptaX can be directly compared against
theith feature of descriptoY. Then, a Minkowski distancke can be calculated with the
following definition.

ol

d-1
Lp(X,Y) = (%lm—m*’) X.YeR% p>1
i=

ForLo, this is the well known Euclidean distance function. Vagather distance metrics
were investigated by Osada et. al [99]. Weights can also pkeajto place importance
on particular dimensions in a straightforward manner. Fostof the types of descriptors
considered in this dissertation, the distance is used.

The Minkowski distance cannot be used directly when theratidimensions changes
between descriptors. In the extreme case, there is no pomdsnce between the order
of X andY. A more common case is whex andY are related by a rotation, typi-
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cally because there was ambiguity about the coordinatersysthen calculating a shape
descriptor. The optimal rotation is found by consideringcanstant offsets between
dimensions of the descriptors.

1
p

d-1
mAin (.Z)|Xi—Y(i+A)modd|p> X,YeRY p>1
i=

Normalizing shapes for rotation or constructing rotatiomariant descriptors are two
ways to address this issue so that searching for the cdrisatnnecessary, which makes
indexing descriptors possible.

2.2 Local Shape Descriptors

While the discussion of shape descriptors has mostly focaseglobal representations

of a shape by a single descriptor, an alternative approdachrepresent a shape by many
local descriptors. Then, each shape has a collection ofrigess, each describing a

small region along with the position of the local descriptdher relative to a reference

frame (e.g. center of mass) or other local descriptors. ¢J&inal descriptors for feature

matching has numerous advantages when dealing with tleoly issues:

Missing Data: Many 3D models created from scanned objects are missingcasgtbe-
cause of occlusion. In some cases, a model only consistsingke sange image
from one camera position, so the entire backside of the bigemissing. Local
descriptors handle these data sets naturally, becauderatehes can be found.

Articulation: A model may represent an underlying object that has artiedlimbs,
and a matching algorithm should be able to handle arti@datExamples of such
models include animals that can have limbs in differentpmss and vehicles that
may have their hoods or doors open. Local descriptors canifgdocal matches
and allow an algorithm to consider topological similastim the face of global
differences.

Feature Importance: Because a shape descriptor converts from a model to a differe
representation, locality information often is lost, sositdifficult to assign impor-
tance values on specific regions. A classic example frontiigerg cars is that the
Mercedes hood ornament is highly correlated with Merceddscles, while the
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rest of a sedan is fairly consistent across brands of cargigUscal descriptors,
importance values can be determined for each local region.

Several researchers have investigated shape descriptaistérmine feature corre-
spondences (e.g., [7, 20, 40, 63, 94]). The general strasegycompute multiple local
shape descriptors for every object, each representingidyaesfor a region centered at a
point on the surface of the object. Virtually any global dggor could be used as a local
descriptor by limiting the scale of the descriptor to a loegion, but in this section, we
present several of the more effective local descriptors.

Perhaps the most thoroughly investigated local shapeigéstis the Spin Image by
Johnson et al. [63]. A spin image is calculated relative tasipoint on the surface
of a model, and a cylindrical coordinate system is creat&dive to the surface normal.
The distribution of nearby points is measured based on twarpeters: distance from the
basis point perpendicular to the normal and signed distalocey the normal. Because of
the cylindrical coordinate system, all points along a eir@éntered on a line aligned with
the surface normal project to the same bin in the spin imade;wprovides invariance
to rotation about the normal.

Numerous other local descriptors have been investigatadelis Chua et al. [20]
created the Point Signatures by measuring the Euclidedandis from points along
the circumference of a circle to a model’s surface. Sincestiaeting position of the
circumference is not specified, during matching, all pdssibtations of the descriptor
must be considered. Shape Contexts [34, 72] is similar to 82 fut positions the shells
progressively farther apart so there is more informatiaccorded near the center of the
descriptor before calculating the spherical harmonic facehts.

Matching with Local Descriptors

When matching with local shape descriptors versus globatrgeers, the matching
algorithm is more complex and involves optimizing the défiece between numerous
local shape descriptors or uses descriptors to create gmmadint between shapes before
a more expensive difference calculation.

Recently, several researchers have investigated ap@edcipartial shape matching
based on feature correspondences (e.g., [7, 20, 40, 63, 94i¢ general strategy is
to compute multiple local shape descriptors (shape fesfuor every object. Then,
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the similarity of any pair of objects is determined by a castdtion determined by
the optimal set of feature correspondences at the optinfetive transformation, where
the optimal match minimizes the differences between cpmeding shape features and
the geometric distortion implied by the feature corresprads. This approach has
been used for recognizing objects in 2D images [7, 9], re@ngg range scans [63],
registering medical images [5], aligning point sets [21ligrang 3D range scans [42, 79],
and matching 3D surfaces [94, 111].

The challenge is to find an optimal set of feature correspoceke efficiently. One ap-
proach is to consider an association graph [6] containingckefior every possible feature
correspondence and an edge for every compatible pair césgpondences. If each node
is weighted by the dissimilarity of its associated featuard each edge is weighted by
the cost of the geometric deformation implied by its asdedigair of correspondences,
then finding the optimal set dffeature correspondences reduces to finding a minimum
weightk-clique in the association graph. Researchers have agpddhbis problem with
algorithms based on branch-and-bound [42], integer qtiadpgogramming [9], etc.
However, previous work in this area has been aimed at paraignment of objects,
and current solution methods are generally too slow for acbeaf large databases.

“Bag of words” approaches can be used to discretize descisptace, where descrip-
tors are binned into a discrete set of possible values. Famele, Mori et al. [89]
clusters descriptors into “shapemes,” builds a histograshapemes for every object,
and then approximates the similarity of two objects by timeilsirity of their histograms.
Grauman et al. [46] extended this approach to consider pgsaof clusters. However,
these methods make little or no use of the geometric arraagenof features, which is
an important property when distinguishing among models.

Another approach using local shape descriptors is basedeoRANSAC algorithm
[30, 111]. Sets ok feature correspondences are generated, wkédarge enough to
determine an aligning transformation, and the remainirguiees are used to score how
well the objects match after the implied alignment. For eganJohnson et al. [63] finds
small sets of compatible feature correspondences, cospgealignment providing a
least-squared best fit of corresponding features, and tbefies the alignment with an
iterative closest point algorithm [11]. Shan et al.[111pposed a “Batch RANSAC”
version of this algorithm that considers matches to all¢tupjects in a database all
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at once, generating candidate matches preferentiallyhfotdrget objects with features
compatible with ones in the query.

Graph matching algorithms represent a shape by a set ofnreguith connections
between adjacent regions. Then, a match score between twelsis related to the
similarity of their graph representations, where each yrapde may also have properties
such as a local shape descriptor. A model may be divided ants psing the Medial Axis
Transform [14], Reeb graph [49], thinning operator [39, B&9], or other technique.
Constructing a graph for a model in the context of noise leadsyétching methods
that attempt to compensate for changes in topology [104, 118, 116]. Besides the
difficulty of constructing consistent graphs, computing thatching subgraph (subgraph
isomorphism) is known to be computationally inefficient.

2.3 Selection of Local Shape Descriptors

Considering all possible feature correspondences for nragehay be infeasible, because
the number of possible feature correspondence sets grgvementially with the set size.
Naively checking all possible sets &ffeature correspondences amomdeatures on
two objects take©(n¥) operations. In practice, searching the space of potermtilife
correspondences for a single pair of surfaces can takeaeseronds or minutes, and
using these methods to find the best matches in a large datisbagractical. Acommon
technique is to subsample important shape descriptoretiern subset representative of
the original shape. There has been a long history of relateld im cognitive psychology,
computer vision, computer graphics, geometric modelitegjsics, and pattern recogni-
tion.

Perceptual Criteria: There have been several attempts to select regions of 3eshap
that humans find visually important in object recognitioergeptual psychology, and
computer vision. For example, Howlett et al. [53] used antegeker to record which
surfaces of a 3D model people tend to focus on and then usehtbanation to assign
importance to vertices in a mesh simplification algorithm. i/khis method captures

a useful notion of surface importance, it is viewpoint-degent and requires human
analysis of every 3D mesh, which is impractical for the ladggabases of 3D meshes
targeted by our system.
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Several psychophysical experiments have found that thehwisual system quickly
processes regions of high curvature (e.g., [50]), and tfiesings have been applied
extensively for object recognition in computer vision [&3]. For example, combina-
tions of filters measuring edges and local maxima of cureatn2D images have been
used to focus scene recognition algorithms [33]. More rdgeaurvature filters have
also been applied to define measures of saliency for meslegsing applications. For
example, Lee et al. [77] use a center-surround filter of duresacross multiple scales to
select salient regions for mesh simplification and viewpeglection. Similarly, Gal et
al. [40] compute the saliency of a region based on its sizgivel to the whole object, its
curvature, the variance of the curvature, and the numbeuBture changes within the
region. They use this measure to guide partial shape matcbatf-similarity detection,
and shape alignment. Li et al. [79] compute surface sigeatdescribing the curvature
and other properties for local regions and only keep the an#ssignificantly non-zero
magnitude. Novotni et al. [94] select points found as loséleana of the differences of
Gaussian filters applied to the characteristic functiorhefgurface.

While these approaches are able to select regions that magumly noticable, they
focus on curvature and other measures appropriate for mldrsurfaces. Thus, they
cannot be used effectively for the majority of 3D computexgjrics models which often
contain disjoint and intersecting polygons. More impotigrihey measure how much a
region sticks out from the rest of the object rather than howartant the region is for
defining the object type.

Statistical Criteria: Numerous techniques have been developed for selectingiamio
features in the realm of statistical analysis and pattecnggition, which are covered in
several classical books [27, 47, 84]. The problem is thadrya set of feature vectors and
labeled training data to select a subset of features thab& mseful for classification.
Many techniques from this field can also produce real-valogzbrtance scores for each
feature. Discriminant analysis [74] or analysis of var@f8NOVA) [85] selects feature
vectors that are consistent within a class and have a laggatton from other classes
of objects. Using regression analysis [23, 32], a subsetatiifes can be selected with
stepwise selection that either grows or shrinks a subsetatfifes to optimize a function.
Stepwise methods [59] add or remove features using a vareror metrics including a
measure of group differences or the Mahalanobis distanwesle® groups and stop when
altering the subset of features would create an insignificiaange to the accuracy. Linear
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regression was used to remove outlier points for 2D matchinBryden et al. [26] The
problem we address differs from classical statistical ysialbecause these approaches
assume a correspondence between features, and they sglessbns of a feature vector
rather than positions on a surface.

In the shape matching literature, the relative rarity ofalosurface patches has been
used as a measure of importance to guide several shape ngasgisiems without requir-
ing correspondences between patches. Typically, repessams of local shape (shape
descriptors) are computed for many regions of a surface,thed they are weighted
according to a measure of uniqueness when point sets areedlnd/or matched. For
example, Chua at al. [20] found “selective points” on a swefag comparing their de-
scriptors to others in a local neighborhood and used therig¢sicthat was most unique
for shape matching. Johnson [62] computed the likelihoceboh shape descriptor based
on a Gaussian distribution of the descriptors for each medliteen selected only the least
likely, i.e. rarest, descriptors to speed up surface matzhHHowever, these methods only
find descriptors that are rare — they do not specifically finedsathat are distinctive of an
object class.

Shan et al. [111] used shape descriptor matching to definerpertance of points
on a mesh after calculating correspondences in a databdmse.mEthod selects points
based on how well they match multiple points on one objegt (a.spherical region will
be selected if there is an object with many spherical regionise database), and thus it
provides a measure of stability for shape matching, rathem &t measure of importance
for object classification, as is provided by our method.

2.4 Research Challenges

There are several research challenges to improve all plodisesetrieval system. These
challenges include increasing the accuracy of searchtsesuaiproving the speed of
finding results, and answering the underlying question @f tioeven evaluate success.

First, certain features of a shape are often more importamndéfining its class than
others. For a chair, the back, seat, and legs define the dgasdiess of the level of
ornamentation, color, or the aspect ratio of the object. &kact position of certain
features is also irrelevant for some objects - e.g. whetluliraney is on the side or rear
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of a roof. A shape matching algorithm should be able to plaoeerweight on important
regions.

Second, while local matching can handle certain issues eiteetively than global
descriptors, it requires a large increase in the number sérjgors and slows matching
time. Handling articulation and occluded data naturallgne of the advantages of using
local descriptors. There is also an opportunity to focuscmag on local regions that are
judged to be more important. Using local descriptors maglwver dozens to hundreds of
descriptors, so the question remains how to realize therddgas of local matching in
an efficient search algorithm.

Third, indexing structures are needed to speed up the séarokighbors in the high
dimensional space of shape descriptors. Typically, a sssatisfied with a few pages of
search results, so it is unnecessary to calculate the destagtween the query and every
other shape if the nearest neighbors can be found directipe#est neighbor search
is usually accelerated with indexing data structures, bdéxing generally degrades to
linear search time when the dimensionality is beyond fifty.

Fourth, given the large number of shape retrieval methodssilgated in the literature,
users are often left wondering, “Which technique works Bel$i® not a straightforward
guestion because most papers in the field evaluate a shaiggaktechnique on a cus-
tomized data set without comparing to previous technigailed they have used their own
measurement of retrieval performance.

We address several of these research challenges in thestdissn. Based on an-
alyzing shapes in a database, we improve upon standard shtaieeal techniques by
identifying the most distinctive regions of each shape (@wap3 and 4). We focus a
local shape matching method on those regions using a prdriven search algorithm
that efficiently searches for the best matches before clogl the distance to more
distant matches based on monotonically increasing patisaéhnces (Chapter 5). As a
database changes, distinction scores for hundreds ofahdssof descriptors must be
updated, and we explore several techniques involving aatdnndex structure (Chapter
6). Besides analyzing distinctive regions of models in @base, we predict important
regions for query models to improve matching (Chapter 7).alynwith the Princeton
Shape Benchmark, we create a methodology to evaluate skapeval performance
(Chapter 9). This allows us to directly compare shape reattialgorithms on the same
data set and report standardized performance metrics.
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Chapter 3

Introducing Distinction

Introduction

Many problems in computer graphics, computer vision, arahggric modeling require
reasoning about which regions of a surface are most “impatta=or example, in an
object classification system, a query might be compared agdynst the most important
regions of a target object to provide more discriminatingtahas. For mesh simpli-
fication algorithms, the importance of vertices may guide dinder in which they are
decimated, and in an icon generation system, the most isamorégions of an object
should be visible. Our approach is to compute local shaperigsrs, analyze which
descriptors best represent each class of objects, andateetpat analysis information
into a shape matching algorithm (Shilane and Funkhousé&]11

Although there has been significant progress in algorithonslétermining important
regions of polygonal meshes, most prior work has focusedemmgtric properties of
every mesh in isolation. For example, Lee et al. [77] definetkasure of mesh saliency
using a center-surround operator on Gaussian-weighted cw@waatures. Related mea-
sures of mesh importance have been defined by Gal et al. [4@};, &l. [79], Novotni
et al [94], Gelfand et al. [42], and others. However, almdisbiathese methods simply
select regions where the curvature of a surface patch isrdiit than in its immediate
neighborhood.
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Intuitively, the important regions of an object for recogom are not the ones with
specific curvature profiles, but rather the ones that disisigit from objects of other
types, i.e., thelistinctiveregions. For example, consider the biplane shown in Figure 3
Most people will tell you that the important features of theléne are the wings and tail.
Those features are unique to biplanes and thus distinghébiplane from other types
of vehicles. Generalizing this idea, we define thstinctionof a surface region as how
useful it is for distinguishing the object from others offdient types.

Mesh Distinction

Figure 3.1: Distinctive regions of a plane correspond toitiggortant regions that define
the object type and distinguish the plane from other typesbgécts. Regions shown in
red are the most distinctive, blue are least distinctivel, green are in the middle. This
result corresponds to our intuition that the wings and t&lisnportant features of a plane.

Intuitively, regions that are common among many objectsdasare not distinctive
(e.g., planar regions, spherical regions, etc.), whileerththat are found in only one
object class are very distinctive (e.g., the head of a wrenchour system, each region
of a shape is considered as a query into a classified databhad®est matching region on
each shape is determined with a distance metric, and théhemsre sorted from closest
match to furthest match. This list is the retrieval result éach region. The retrieval
list is evaluated, and we assign a continuous value of disbin to every surface region,
with “0” indicating that the region is not distinctive at &ile., that region could be found
equally well in any object class), “1” indicating that thegien is perfectly distinctive
(i.e., that region is found in only one object class), andigalin between representing the
degree to which the region distinguishes the object class.

This definition of distinction has an important implicatian order to determine how
distinctive a surface region is, we must not only considgrpitoperties, but we must
also consider how consistent those properties are withieroinstances of the same
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object type and how unique those properties are with respeather object types under
consideration. For example, if we consider the biplane ajather types of airplanes,
we find that the wings are the most distinctive features. Heweaf we consider it as

a biplane among other types of objects (tables, animals, ets.) many of which have
large flat regions, we find that the tail is most distinctivég(ffe/3.1). In general, the
distinctive regions of a surface will be different depemgon the granularity and range
of object types under consideration.

3.1 Examples

To help the reader understand which regions are found disteby the proposed method,
we show a sampling of images depicting which regions areddarbe distinctive for a
variety of object classes in a variety of databases. Imph¢at®n details are provided in
Chapter 4. In all images, regions shown in red are the moshdiste, blue regions are
least distinctive, and green regions are in the middle. Wienpiting distinction, local
shape descriptors were generated to include a small re§ieaat object (0.25 times the
mesh radius). For example, in Figure 3.2, the ears of thef@@Bunny are unique to
rabbits (red) and thus distinguish the bunny from othersga®f animals, while the shape
of the body is not very distinctive (blue). Similarly, thedteof the wrench, wheels of the
vehicles, pot of the plant, and struts of the guitar are irtgrdrparts for distinguishing
each class of objects within the Princeton Shape Benchma#q [

Our next example shows distinctive regions found for threlcbpters (all except the
right-most image of Figure 3.3). In this case, distinctioaswneasured with respect
to a database of flying vehicles dominated by airplanes. Thpglers are red (the
most distinctive region) in every case, which matches otuition that the part that
distinguishes a helicopter from other flying vehicles igitgpeller. For comparison sake,
we show the mesh saliency values computed by Lee et al. [TThéothird helicopter.
The areas predicted to be salient by their approach hightightions of the cockpit and
tail due to variations of curvature there, and do not deteetrhportance of the propellers.

A second example shows regions that distinguish cars frévaratlasses of vehicles
(Figure 3.4). In this case, distinction was measured wispeet to a database containing
cars, planes, and jeeps selected from the PSB. The wheeisastedistinctive (red) in
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Figure 3.2: Distinctive regions of meshes correspond tartiportant regions that define
their class of objects. In all images, regions shown in redthe most distinctive, blue
are least distinctive, and green are in the middle. Modeddram the Princeton Shape
Benchmark, and regions were sized to be 0.25 times the mdalsra

all cases, although for the top-left car, the front and rédhe car are equally distinctive
probably because of the different aspect ratio of this ckative to other cars. Again,
for comparison sake, we show the mesh saliency values ceajfoyt Lee et al. for the
top-right car — the regions predicted to be salient by thepraach do not correspond as
well to distinguishing parts.

A third example shows the regions found to be distinctiveafeet of humans standing
in a spread-eagle pose in Figure 3.5. In this case, distimetas measured with respect
to all classes in the test database of the PSB. For thirte¢neofifteen examples, the
arms are found to be the most distinctive region. For therdihe, the top of the head
is most distinctive (those two people have wider arms andgaty) different pose than
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Mesh Saliency

Figure 3.3: Visualizations of distinctive regions (red) tmee helicopters with respect
to a database of flying vehicles selected from the PSB. Theight-most images show
a comparison of distinction to mesh saliency as computeddw®y &t al. for the same
helicopter model. Regions were calculated at 0.25 timegeh radius.

Mesh Saliency

Figure 3.4: Visualizations of mesh distinction for five casscomputed with our method.
The right-most column shows a comparison between distinend saliency for the same
car model. Note that the tires are consistently distin¢ctiug not particularly salient.
Regions were calculated at 0.25 times the mesh radius.

the others). This result is interesting because the regand to be most distinctive is
not obviously what a human might choose as the distinguisfeature of this class at
first glance. However, the PSB test database has 92 diffelesges, including “humans
in a standing pose,” “humans in a walking pose,” “faces,’dtie” “skulls,” “hands,”
etc., and thus it is indeed the pose of the arms that bestelitiiates this class from the
others. This example points out both an advantage and disgalye of our approach:
our method can automatically determine the differencewden classes in a database,
but the distinctive regions may not correspond to semaiatitsp
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Tirietats
Trif st

Figure 3.5: Visualizations of mesh distinction for fifteaimmans. Note that the distinctive
regions for humans in this pose are typically around thevelaoea. This region best
differentiates this class of objects from other classesushdin models in the Princeton
Shape Benchmark with regions calculated at 0.25 times tish maelius.
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Chapter 4

Computing Distinction

Introduction

Our definition of shape distinction requires evaluatingrgweirface region to determine
how well it matches shapes of the correct class. In this @iapie describe a method
for computing distinction that is motivated by shape retleapplications (Shilane and
Funkhouser [113]). A shape retrieval method may match gjidmes of shapes using local
shape descriptors to represent each region, where thesimf two shapes is related to
the similarity of their subparts. This may involve compgtimumerous shape descriptors,
possibly at multiple scales. Our technique for computingpehdistinction fits into this
pipeline by analyzing local shape descriptors in the da@lduring a preprocessing
phase. We assign a distinction score that relates the vainatohing each region relative
to the current database, which can be used to focus a shapkingaalgorithm. In the
remainder of this chapter, we explain our specific technigne explore properties of
distinction scores.

The organization of this chapter is as follows: In Sectidh %e explain our technique
for processing meshes to compute distinction scores. Tihgestions that follow explain
each step of our technique in more detail. Then, in Secti@nwe demonstrate how
various parameters affect distinction scores. Finallgti®a 4.3 provides a discussion of
conclusions and limitations of our approach.
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4.1 System Overview

Computation of surface distinction proceeds in our systeshawn in Figure 4.1. Given
a database of meshes partitioned into object classes, wedénerate for each mesh
a set of random points that are the centers of spherical megiovering its surface at
multiple scales. Then, for every region, we compute a shagergtor representing the
distribution of surface area within that region. Next, wengare the difference between
all pairs of shape descriptors to produce a ranked list ofchest for each descriptor
ordered from best to worst. The ranked lists are then andlyag@roduce measures of
how distinctive different local regions are — i.e., how matescriptors from the same
class of objects appear near the front of their ranked lBtgse measures can be directly
used to improve shape matching applications, and can alswapped from the regions
back onto the vertices of the mesh and used to guide mesHizaian, processing, and
analysis. The following subsections describe each of theges in detalil.

Random
Mesh M. Points
AR

Distinct Vertex
s, Regions Distinction

Figure 4.1: Overview of our technique for computing distioo on the surface of a mesh.

4.1.1 Constructing Regions

The first step of our process is to define a set of local regiavering the surface of
the object. In theory, the regions could be volumetric ofae patches; they could be
disjoint or overlap; and they could be defined at any scale.

In our system, we construct overlapping regions defined hgsgal volumes centered
on points sampled from the surface of an object (Figure 4.Ris choice supports robust
processing of arbitrary surface meshes with degeneratédgyp and it naturally supports
overlapping regions at multiple scales. Formally, the ldasa consists of a set of meshes
{My,...,Mn}, each mesiM; has a set of point$p, j,..., pnj} Wherep R3, and each
point has a set of scalgsy,...,s,}, where a spherical region ; x has centerp; j and
radiussi,. We have experimented with two different point sampling moels, one that
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Figure 4.2: Four regions are shown with the same center foindifferent scales. At
the 0.25 scale, the tail is included, and at larger scalegjrpssively more of the plane is
included. At the 2.0 scale, the entire plane is includednevieen the region is centered
on the end of the plane.

selects points randomly with uniform distribution with pest to surface area and another
that selects points at vertices of the mesh with probabddyal to the surface area of
the vertices’ adjacent faces. Of course, other samplindnoust that sample according
to curvature, saliency, other surface properties, or basedolumetric properties [91]
are possible as well. However, we found that they do not gigeifsccantly different
performance, and so we consider only random sampling wepeet to surface area in
the remainder of this dissertation. In most of our experitegwe consider four different
scales for every point, where the smallest scale has radAstOnes the radius of the
entire object and the other scales are 0.5, 1.0, and 2.0 tmagsectively. Note that the
biggest scale is just large enough to cover the entire obpethe most extreme position
on the surface, and the smallest scale is large enough tainadsily recognizable shape
features.

Our implementation for selecting random points on a surfaseenters for these
spherical regions follows the approach of Osada et al. [98 have modified their
algorithm slightly to make sampling more efficient and taasty samples in meshes
with large triangles. Specifically, in the first stage, webadlte a number of points to
every triangle in proportion to its surface area. Then, mdbcond stage, we sample the
allocated number of points from every triangle uniformlythviespect to its surface area.
This method is faster than Osada’s method, takig) rather tharO(nlogn) for a mesh
with n triangles.
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4.1.2 Describing Shapes

In the second step of our process, for each spherical regignwe generate and store a
shape descriptog j x which has dimensiod. There will be many such regions for every
surface, so the shape descriptors must be quick to compdteoatise to store. Since we
will be matching all pairs of the shape representationg; thest be indexable and quick
to compare. Also, our methods should work for any input dbjepresentation; they

must be independent of shape description, insensitiveplmdagy, and robust to common
input file degeneracies. Finally, since we aim to model hastiritive the shape of each
surface region is, they must be discriminating of similarsus dissimilar shapes.

There are many shape descriptors that meet some or all of thees (see surveys
in [16, 56, 121]). For example, Belongie et al. [8] have udeal& contexts for describ-
ing local regions of 2D images, and Kortgen et al. [72] haviermdted their method to
3D. However, shape contexts are dependent on a particuéartation and thus require
alignment within a global coordinate system or searchingsfide rotations as they are
matched [34]. Johnson et al. [63] have used spin images t@gsept the shapes of
local regions with orientation dependence on just the nbtmthe surface at a sample
point, and Vranic et al. [130] have described Fourier dgsors that could be used to
provide invariance to all rotations except those aroundtireace normal. However, those
methods are sensitive to normal orientation, which is lyigikiable in sparsely sampled
point sets considered in this dissertation. Kazhdan e68].described a Harmonic Shape
Descriptor (HSD) that is invariant to all rotations. The mailea is to decompose a
spherical region into concentric spherical shells of défe radii, compute the spherical
harmonic decomposition for a function describing the shapeach of those shells, and
then store the amplitudes of the harmonic coefficients widvery frequency (order) to
form a feature vector for indexing and matching (see [36|deiails).

In our system, we have experimented with three differenpsldescriptors based on
spherical harmonics. All three decompose a sphere intoerdric shells of different
radii and then describe the distributions of shape withimséhshells using properties
of spherical harmonics. The first (SD) simply stores the aunbé of all shape within
each shell (the zero-th order component of spherical haieap+ it is a one-dimensional
descriptor equivalent to the Shells shape histogram of TBe second (HSD) stores the
amplitude of spherical harmonic coefficients within eadqfrency — it is equivalent to
the Harmonic Shape Descriptor of [36, 69]. The last (FSDxdp®or stores the ampli-
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tude of every spherical harmonic coefficient separatelyis gimilar to the Harmonic
Shape Contexts of [34]. In all of our experiments, we utiliZespherical shells and 16
harmonic frequencies for each descriptor.

We chose these shape representations for several reassisthiey are well-known
descriptors that have been shown to provide good perforenanprevious studies [34,
114]. Second, they are reasonably robust, concise, anddasarch. Finally, they
provide a nested continuum with which to investigate thddraffs between verbosity
and discrimination — SD is very concise (32 values), but hat tliscriminating; HSD is
more verbose (512 values) and more discriminating; and ESBe most verbose (4352
values) and the most discriminating. The three descrigmeselated in that each of the
more concise descriptors is simply a subset or aggregafiterms in the more verbose
ones (e.g., the SD descriptor stores the amplitude of ordyztiro-th order spherical
harmonic frequencies). Thus, the difference of each descriptor provides a lower
bound on thd_, difference between the more verbose ones, which enablgsgssive
refinement of descriptor differences, which could be expbbin future work.

Our method for computing the HSD for all regions of a singléate starts by com-
puting a 3D grid containing a Gaussian function of the s@wf&uclidean Distance
Transform (GEDT) [65]. This function, which is one at thefage and falls off grad-
ually with Euclidean distance, provides a soft penalty fiorcfor matching surfaces by
comparison of volumes. The GEDT grid resolution is chosenatch the finest sampling
rate required by the HSD for regions at the smallest scagetrtngles of the surface are
rasterized into the grid; and the squared distance tramsfocomputed and stored. Then,
for every spherical region centered on a point sampled floersurface, a spherical grid
is constructed by sampling the GEDT at regular intervalsadius and polar angles; the
Spharmonickit software [118] is used to compute the sphkharmonic decomposition
for each radius; and the amplitudes of the harmonic coeffisi@ithin each frequency are
stored as a shape descriptor. The amplitudes of the harrmooefticients (or frequencies,
depending on the type of shape descriptor) are computedshbpe descriptors are
compressed using principal component analysis (PCA); aadlitmensions associated
with the topC eigenvalues (G- 10%) are stored as a shape descriptor.

For each 3D object, computing the three types of shape g¢sicentered at 128
points for 4 scales (0.25, 0.5, 1.0, and 2.0) takes apprdarisndour minutes overall
and generates around 1 MB of data per object. One minute ist spsterizing the
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triangles and computing the squared distance transforrasatiution sufficient for the
smallest scale descriptors, almost two minutes are spenpgting the spherical grids,
and a few seconds are spent decomposing the grids into sphbkarmonics for each
object. Compression amortizes to approximately one minateopject for FSDs and
approximately 1 second per object for HSDs.

4.1.3 Measuring Distinction

In the third step of our process, we compute how distinctivene shape descriptor is
with respect to a database containing multiple classesjettsdh Our goal is to compute
a continuous measure that reflects how well the shape descigp a local region of a
surface matches others within the same class of objectsveeta how well it matches
descriptors in other classes. Descriptors whose best estuie all from its own class are
distinctive, while ones that match descriptors in a wideetgirof classes equally well are
not. While we would ideally like to calculate the distinctigalue for all combinations
of local descriptors and at all scales, this is computatipmafeasible. Instead, we make
an independence assumption and calculate distinctioraefdr descriptor independently,
modeling distinction with an information retrieval metric

Given the distance from thigh descriptor of mesiM; (i.e. descriptorx; j «) to the
closest descriptor of every other mesh in the database etherdistance to med¥; is:

dist(X;j.k: Mt) = Min||x;jk = Xo,t x|

We sort the distances from smallest to largest to createctiieval list forx; j x. This
retrieval list represents the order of matching resultshie database if we had used a
single descriptor fronM; as a query. We then compute the distinction of the descrigtor
evaluating a retrieval performance metric that measureswell meshes in the query’s
class appear near the front of the list. Retrieval metripgclly evaluate a retrieval list
into a score between 0 and 1, where scores closer to 1 indichtdter retrieval list.
There are numerous evaluation metrics that could be usedned a retrieval list into
a numeric score. While none of these statistics are new, viedadetailed descriptions
for completeness.
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Nearest Neighbor is the percentage of the closest matches that belong to e dass
as the query. This statistic provides an indication of hovll aenearest neighbor
classifier would perform. Obviously, an ideal score is 10@¥ higher scores
represent better results.

First-Tier and Second-Tier refer to the percentage of models in the query’s class that
appear within the to matches, wher& depends on the size of the query’s class.
Specifically, for a class withC| membersK = |C| — 1 for the first tier, andK =
2% (|C| — 1) for the second tier. The first tier statistic indicates theatefor the
smallesK that could possibly include 100% of the models in the queags| while
the second tier is a little less stringent (i}€.js twice as big). These statistics are
similar to the “Bulls Eye Percentage Scor& £ 2« |C|), which has been adopted
by the MPEG-7 visual SDs [139]. In all cases, an ideal matghasult gives a
score of 100%, and higher values indicate better matches.

E-Measure is a composite measure of the precision and recall for a fixedber of
retrieved results [125]. The intuition is that a user of arskangine is more
interested in the first page of query results than in laterepadso, this measure
considers only the first 32 retrieved models for every querg aalculates the
precision and recall over those results. The E-Measurefisatbas [125, 78]:

E= 2

T, 1T
PR
The E-measure is equivalent to subtracting van Rijsbesgéefinition of the E-

measure from 1. The maximum score is 1.0, and higher valudisate better
results.

Discounted Cumulative Gain (DCG) is a statistic that weights correct results near the
front of the list more than correct results later in the rahlist under the as-
sumption that a user is less likely to consider elements tieaend of the list.
Specifically, the ranked lidR is converted to a lisG, where elemen®; has value 1
if elementR; is in the correct class and value 0 otherwise. Discountedutative
gain is then defined as follows [60]:

DCG — Gy, i=1
'7 ] DCG_1+ m(;ﬁ’ otherwise
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This result is then divided by the maximum possible DCG (itkeat would be
achieved if the first C elements were in the correct classre/fias the size of the
class) to give the final score:

DCG

IC| 1
1+3 %260

DCG=

wherek is the number of models in the database.

Each of these measures has trade-offs in terms of how mudheatetrieval list is
included in the calculation (nearest neighbor uses the ritsieval result, while DCG
requires the full list) versus the time necessary to cateulae results (nearest neighbor
could be quickest using an indexing structure to find theadbsesult and DCG the
slowest). We have selected the DCG [60] retrieval measurmtmt of our experiments
because it has been shown to provide the most stable rétme@easure in previous studies
[78, 114]. The choice of retrieval metric is considered ieajer detail in Chapter 6. The
distinction score for a descriptog j x associated with positiop; ; and scales, is the
DCG score calculated for the retrieval list when usig as a query.

D(xi,jk) = D(pi,j,s«) = DCG

In our system, we compute and store a measure of retrievédrpence for every
shape descriptor of every object during an off-line procesphase. Comparing two
HSD descriptors takes 2.5E-6 seconds on a 2.2 GHz computamg Linux, and in
general take©(srPm?) time to make all pairs of comparisons, wheris the number of
scales is the number of descriptors per mesh, ands the number of meshes in the
database. This process takes 37 hours for 128 points atdalessfor 907 meshes in the
Princeton Shape Benchmark. However, it must be done onlg pacdatabase during a
batch processing phase — we computed the distinction fdr @escriptor once and then
stored it in a file for use multiple times in various applicaus.

4.1.4 Mapping to Vertices

The final step of the process is to map the computed measutass distinction back
onto the vertices of the mesh. While this step is not requifeallaapplications (e.g.,
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shape matching), it is useful for several mesh processsigtge.g., mesh simplification)
that need to have a measure of importance associated diveittl every vertex. An
alternative to mapping distinction scores from sampleserstrface is to calculate shape
descriptors at each vertex and calculate distinction tdyelout we have typically been
working with a vastly smaller number of descriptors thanribenber of vertices per mesh.

Our approach to this problem is quite straightforward. W@y model distinction
as a mixture of Gaussians. For every vertex, we estimate h&tmctive it is by com-
puting a weighted average of the DCG values that have beenutethfor nearby shape
descriptors for a given scale where the weights are detexiriy the value of a Gaussian
function of the distance between the vertex and the middteesurface regiorp; ;.

Consider mesiM consisting of a set of shape descriptors each with a centatiquo
p € R® and distinction scor® defined for each scalg whereD(p,s) is calculated as
described in Section 4.1.3. For every vertean the mesh oM, distinction is defined as

follows:
—[[p-v|?

D(v,s) = S pemD(p,s)e 202

—[lp-v||2
Ypem€ 207

While using the Euclidean distance instead of geodesicraistggnores connectivity
information, it is robust to disconnected meshes. Alsa;esihe regions selected on each
shape are generally overlapping and nearby descriptotsttdoe similar, it is reasonable
to assume, and we observe in practice, that distinctioresodiange smoothly across a
mesh. In all of the following results, we set0.1 times the mesh radius.

4.2 Results

The methods described in the previous section have beeardtestseveral databases of
3D meshes. In this section, we present images depicting mhisshction for several
examples and investigate: 1) how sensitive our resultscedédferent parameter settings,
and 2) how mesh distinction compares to previous measursgoftance (i.e., saliency).
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4.2.1 Effect of Database

A key feature of our formulation for mesh distinction is thhe results depend on the
database under consideration and how it is partitionedahject classes. In this section,
we investigate how the distinctive regions of a surface migghaffected by changes in
the database.

Figure 4.3 shows four images of the same biplane, the firsetbf which are colored
by mesh distinction as computed with our method at 1024 ipositat the 0.25 scale,
while the fourth image from the left shows the mesh coloredrish saliency. The
difference between the first three images is only that difiedatabases were used to
evaluate the DCG measure during the computation of mesclisin. The left-most
image shows that the wings and tail are most distinctive wepect to the other 91
classes in the Princeton Shape Benchmark. The second ithags that the tail is most
distinctive with respect to a smaller database containthgroclasses of vehicles (cars,
jeeps). The third image shows that the struts between thgsnand cockpit are most
distinctive with respect to a database containing diffectssses of planes (commercial
jets, fighter planes, etc.). In contrast, the fourth imagewshthat mesh saliency is
unaffected by database changes.

In short, the distinctive area of the biplane changes dapgruh the database under
consideration. This is a very useful feature of our methadit allows the measure to
adapt to finer differences in databases with more similagdlglasses.

Princeton Shape Vehicle DB Plane DB Mesh Saliency
Benchmar

Figure 4.3: The distinctive surfaces of the biplane depemighe database under
consideration.
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4.2.2 Effect of Scale

Another factor affecting the distinction of surfaces is sisale (size of the region) covered
by each spherical shape descriptor. Figure 4.4 comparels digtinction computed for
a model of a dog with respect to other quadrupeds with shaperigéors covering 0.25,
0.5, 1.0, and 2.0 of the mesh radius. As the scale of the shegmiptors vary, the dis-
tinctive regions vary. At the smallest scale, the head isribst distinctive region, while
at the largest scale, the most distinctive region is cedterethe front feet. Compared
to other quadrupeds in this database, at a small scale, #tkifithe most distinguishing
local feature. At larger scales, the aspect ratio of dogsusetaller animals such as
horses causes an extremity to be the center of the mostglistiring region. This result
is typical, smaller scales usually choose a region with allgpaat having a distinctive
shape, while larger scales usually choose an extremitypifoaides a distinctive center
point for describing the global shape of the mesh.

Figure 4.4: As the scale of the shape descriptor increastieremt surfaces become
distinctive.

These images highlight that distinction is dependent onsttede selected, and we
have specifically preserved these differences as compareahtbining distinction in a
multiscale method as was calculated for saliency [77]. Faps matching purposes,
descriptors can be calculated at multiple scales, so it igralato focus a matching
technigue on distinctive regions at the appropriate sedhch we explore in Chapter 5.

4.2.3 Alternatives to Distinction

We next investigate how well distinction scores corresptmélternative importance

measures across an entire database of shapes. Insteadgfthbape distinction, there
are possibly other techniques for selecting importantaiegjion a shape by focusing on
properties that are intrinsic to the shape.
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Distance: Surfaces of a shape near the center of mass or near an extraayitrepresent
important regions. We have noticed examples such as thar@ph Figure 3.1
where positions on the extremity have high distinction,ekhnotivates this inves-
tigation.

Surface Area: The amount of surface area enclosed within each regions/acmss the
shape depending on the curvature of the shape and scaled#fgbeptor. We might
expect that regions that include a large amount of surfae® are more distinctive,
while regions that mostly enclose empty space are lessidiste.

Likelihood: Previous projects [20, 62] have treated shape descriptotsgh dimen-
sional feature vectors and selected the least likely deteecs for matching, so
shape descriptor likelihood is possibly a good indicatatisfinction. We assumed
a multivariate Gaussian distribution with mean and covenreameasured from the
descriptors to calculate likelihood.

Saliency: Shape saliency finds the regions of shapes that stick out @nang@ortant
for visual representation [77], so we considered salierscy @roperty similar to
distinction. Saliency scores were calculated by the sajiene program (provided
by Chang Lee [77]) on the vertices of a mesh, and saliency segee interpolated
to the centers of the regions.

We compared each of these techniques to distinction for @et&st models of the
Princeton Shape Benchmark across all descriptor scalesréfléed 256 regions on each
shape, created shape descriptors at multiple scales, &datad distinction for each
descriptor. We also calculated for each position the degdrom the center of mass of
the shape, the amount of surface area (for regions of eadd)stize likelihood based
on a Gaussian distribution, and the saliency iﬁiom’e then calculated the correlation
score r [105] comparing distinction values to each alteveatechnique at each scale
independently:

1 I
= Do & PP DM 80

1The saliency.exe program was not able to process one maday; because it was a highly broken
mesh with many disconnected polygons.
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The termy; is one of the alternative techniques calculated at posgigrof meshMj,
andD(Mj,s) is the average distinction score over theegions ofM; at scales,. We
found that, in all cases, the correlation score was betwd®04 and 007, where scores
closer to either-1 or 1 indicate a linear relationship (negative or positiespectively),
and values close to zero indicate little or no associatidresg correlation scores for the
1.0 scale indicate that neither Distance<—0.04), Surface Arear(= 0.07), Likelihood
(r =0.04), nor Saliencyr(= 0.03) correlates well to distinction.

While this study only considers a linear relationship betweéestinction and other
properties, it is clear that each property is unable to ctestly predict which shape
surfaces match within a class and to distinguish shapesditierent classes.

4.3 Conclusion

In summary, we have defined distinctive regions of a 3D serfabe those whose shapes
provide the best retrieval performance when matched agaihser shapes in a database
of objects partitioned into classes. This definition praaBimeasures of distinction that
adjust to the types of classes in the database and provides &fformation at multiple
scales. For a number of examples, we have shown that the nstisictive parts are
consistent within a class and sometimes correspond toifddate parts of a surface.

There are several limitations of our approach. First, teewal measure (DCG) used
in our implementation is slow to compute. Even with appraadiion techniques and index
structures, analyzing a database with thousands of mestwes$ake hours, while calcu-
lating saliency takes 4.3 seconds per model and less thaoades required to calculate
likelihood or select descriptors randomly. Since disiimttcan be calculated during the
preprocessing of the database, we believe it is a worthvgkgle to dramatically improve
retrieval performance.

Second, our implementation has focused on distinction irs@Bace shape. While
this is well-motivated for some applications such as shaptining, perhaps other ap-
proaches based on distinction in 2D images of 3D shapes vibautetter for others (e.qg.
visualization applications). We believe that the prinegbutlined in this dissertation can
help guide further work in determining and utilizing the iorfant regions of objects.
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Matching with Distinction

Introduction

One of the main advantages of shape distinction is to guideptbcess of matching
shapes represented by local descriptors. Before a quepesBaeven presented to a
retrieval system, descriptors for target shapes in a datban be filtered by selecting
the most distinctive. Even with an importance function lolase shape distinction, there
will be numerous possible feature correspondences that Ineuisivestigated. Checking
all possible sets of correspondences will take time expimalen the size of the set, which
is too slow for many retrieval applications.

In this chapter, we introduce a priority-driven algorithor §earching all objects in a
database at once by focusing on distinctive regions (Funsdgroand Shilane [37]). The
algorithm is given a query object and a database of targettdyjall represented by sets of
local shape features, and its goal is to produce a rankeaf lise best target objects sorted
by how well any subset df features on the query match features on the target object.
To achieve this goal, the system maintains a priority qudusotential sets of feature
correspondences (partial matches) sorted by a cost funatioounting for both feature
dissimilarity and geometric deformation. Initially, alhpwise correspondences between
the features of the query and features of target objectoadked onto the priority queue.
Then, at every step, the best partial matcts popped off the priority queue, new patrtial
matches are created by extendmdo include compatible feature correspondences, and
those new partial matches are added to the priority queuis prbcess is iterated until
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the desired number of full matches witHeature correspondences have been popped off
the priority queue.

The advantage of this approach is that the algorithm prgviaidls the optimal set of
matches over the entire database while investigating osiynal subset of the potential
matches. Like any priority-driven backtracking searclg(eDijkstra’s shortest path
algorithm), the algorithm considers only the partial maghhat can possibly lead to
the lowest cost match (Figure 5.1). Although some poor glamiatches are generated,
they never rise to the top of the priority queue, and thus theyr little computational
overhead. By using a single priority queue to store partialaies for all objects in the
database at once, we achieve great speedups when retr@vinghe top matches — if
a small set of target objects match the query well, theiruieatorrespondences will be
discovered quickly, and the details of other potential mescwill be left unexplored.
This approach largely avoids the combinatorial explosibeearching for multi-feature
matches in dissimilar objects.

uer : Cle. c2 Targets
aq A3 G S
L& »C3 5 - B1
- - - } ®
_é X ‘\i 5= ¥=i5;_ E : _i‘ 1 ﬂ
Al . Cl & il
A2 . CBZ B3
(A1,B2) (A1,B2)

vahee | (A2,B3) | (ALB3) | (A2B1) /\/\/
(A3,B1) | (A2,B2) | (A3,B3) (A3,C1) | (A4,B1) | (A2,C3)
Cost of Match| 0,03 0.12 0.18 95.3 120.6 | 161.5
Low Cost €——— Priority Queue—> High Cost

Figure 5.1: Priority driven search: a priority queue (batostores potential matches
of features (labeled dots) on a query to features of all taopgects at once. Matches
are extended only when they reach the top of the priority guiiie leftmost entry),
and thus high cost feature correspondences sit deep initbrtypgueue and incur little
computational expense.
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This chapter makes several research contributions. Irtiaddd the idea of priority-
driven search, we explore ways of improving computatiofiiaiency and retrieval per-
formance of multi-feature matching algorithms: 1) we usekearather thari, differ-
ences to measure feature similarity; 2) we use surfacendigiin to select features; and, 3)
we match features at multiple scales. Finally, we provideekimg shape-based retrieval
system and analyze its performance over a wide range ofrapéind parameter settings.
We find that our system provides significantly better retlggerformance than previous
shape matching approaches on the Princeton Shape Benclwhidekusing increased,
but reasonable, processing and storage costs.

The organization of this chapter is as follows. Section ®rtains an overview of the
priority-driven search algorithm followed by a detailedsdaption for every algorithmic
step. Section 5.2 compares the performance of the pridritien search approach to
other state-of-the-art shape matching methods and igasts how modifying several
aspects of the algorithm impacts its performance. Fin&gtion 5.3 provides a brief
discussion of conclusions and limitations.

5.1 System Execution

Execution of our system proceeds in two phases: a preprogephase and a query
phase. We provide an overview of both phases before exptagach in greater detail.

During the preprocessing phase, we build a multi-featupeesentation of every ob-
ject in the database. First, we generate for each objectat spherical regions covering
its surface at different scales and compute a descriptdnethape within that region.
Second, we compute differences between all pairs of daecsijat the same scale and
associate with every descriptor a mapping from rank to cifiee. Finally, we select
a subset of features to represent each object based on htmctiie they are of their
object class. The result of this preprocessing is a set adpstfeatures” (or “features,”
for short) for every object, each with an associated pasifm, normal ), radius (),
and shape descriptor (a feature vector of numbers repiagemtocal region of shape),
and a description of how discriminating its shape descrifgavith respect to others in
the database.
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For every query, our matching procedure proceeds as showigime 5.2. The inputs
are: 1) a query objectjuery, 2) a database of target objeal®, each represented by a set
of shape features, 3) a cost functianst measuring the quality of a proposed set of fea-
ture correspondences, 4) a constéantndicating the number of feature correspondences
that should be found for a complete match, and 5) a constainglicating the number of
objects for which to retrieve optimal matches. The outpu Ist of the best matching
target objectsM, along with a description of the feature correspondencescast for
each one.

PriorityDrivenSearch(Object query, Database db,
Function cost, int k, int c)
# Create correspondences
foreach Object target in db
foreach Feature q in query
foreach Feature tin target
p = CreatePairwiseCorrespondence(q, t, cost)
if (IsPlausible(p))
AddToPriorityQueue(Q, p)
AddToList(C[target], p)
if (cost(p) < cost(M[target]))
M[target] = p

# Expand matches until find complete ones
completematchcount =0
while (completematchcount< c)

# Pop match off priority queue

m = PopBestMatch(Q)

target = GetTargetObject(m)

# Check for complete match

if (IsMatchComplete(m, k))
RemoveMatchesFromPriorityQueue(Q, target)
completematchcount++
continue;

# Extend match
foreach PairwiseCorrespondence p in Cltarget]
m’ = ExtendMatch(m, p, cost)
if (IsPlausible(m”))
AddToPriorityQueue(Q, m’)
if (cost(m’) < cost(M[target]))
M[target] = m’

# Return result
return M

Figure 5.2: Pseudo-code for priority-driven search.
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Initially, a priority queue,Q, is created to store partial matches, and an aiviyis
created to store the best match to every target object. Hilgpairwise correspondences
between the features of the query and features of the tabjetts are created, stored in
lists associated with the target objects, and loaded omt@tiority queue. The priority
gueue then holds all possible matches of size 1. Then, cictiimplete matches have
been found, the best partial match,is popped off the priority queue. If it is a complete
match (i.e., the number of feature correspondences satigfi¢hen the search of that
target object is complete, and the priority queue is clearedartial matches to that
object. Otherwise, for every feature correspondence keiwiee query and the target of
m, the match is extended by one feature correspondence todarew matchni. The
best match for every target object is retained in an aivgyvhen it is added to the priority
gueue. This process is iterated until at lezfstil matches withk feature correspondences
have been popped off the priority queue éadistinct target objects, and the array of the
best matches to every target objedt, is returned as the result.

The computational savings of this procedure come from twoas. First, matches
are considered from best to worst, and thus, poor pairwiseespondences are never
considered for extension and add little to the executiore tohthe algorithm. Second,
after complete matches for at leadtarget objects have been added to the priority queue,
it is possible to determine an upper-bound on the cost of imeatthat can plausibly lead
to one of the best matches. If the score computed for an ex¢tenthtchr, is higher
than that upper bound, then there is no reason to add it taueeg and it can be ignored.
Similarly, if a match,m, is popped off the queue, then it is provably the best remgini
match — i.e., no future match can be considered with a lowst. cbhus, the algorithm
can terminate early (immediately aftebest matches have been popped off the priority
gueue) while still guaranteeing an optimal solution.

Of course, there are many design decisions that impact fiea@f of this search
procedure, including how shape descriptors are computedi(® 5.1.1), selecting dis-
tinctive descriptors from target shapes (Section 5.1.Batveost function is used (Sec-
tion/5.1.3), how implausible matches are culled (Sectidn), and so on. The following
subsections describe our design decisions in detail, antioBe5.2 provides the results
of experiments aimed at evaluating the impact of each onearck speed and retrieval
performance.
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5.1.1 Computing Shape Descriptors

The first step of our system is to generate local regions fdragpe and construct shape
descriptors, which is identical to the procedure describeslection 4.1.2. We randomly
select point samples on the surface of each mesh and cospigerical regions centered

at those positions across multiple scales. In our matchipgrements, we consider
four scales (®5,0.5,1.0,and2.0 times the shape’s radius). Each region is represented
by a shape descriptor that provides a compact feature vespoesentation that can be
efficiently calculated and compared. Most of our experimezampare three related
descriptors: the Shells Descriptor (SD), Harmonic Shapscbgtor (HSD), and Fourier
Shape Descriptor (FSD).

5.1.2 Selecting Distinctive Features

The next step of our system for preprocessing target mo@sswo phases. In the first
phase, we calculate for each descriptor a measure of howitwelitches shapes of the
same class versus shapes of other classes, which we cak-tordifference mapping.

In the second phase, we filter the set of descriptors to a smahat are most distinctive.

Selecting a subset of local shape descriptors is a well krteaimique for speeding
up retrieval, and several researchers have proposedatiffenethods for this task. The
simplest technique is to select features randomly [34, &3, 8ther methods have
considered selecting features based on surface curvdiBgg, [saliency [40], likelihood
within the same shape [42, 63], persistence across sc@gsafd number of matches to
another shape [111].

In the first phase, for every feature, we compute tthedifference of its shape de-
scriptor to the best match of every other object in the databsort the differences from
best to worst, and save them irrank-to-difference mappin(RTD). To save space, we
store an approximation to the RTD containing log(N) valugssampling distances at
exponentially larger ranks. We then use the RTD to estimfaedistinction (DCG) of
every shape feature.

In the second phase, we employ a greedy algorithm to seleoiall set of features
to represent every target object (Figure 5.3). The sele@lgorithm iteratively chooses
the feature with highest DCG whose position is not closer thdfuclidean distance
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threshold,minlength to the position of any previously selected feature. Thiscpss
avoids selecting features nearby each other on the meshravidgs an easy way to vary
the subset size by adjusting the distance threshold.

(a) All Features (b) Feature Distinction (c) Seledtedtures

Figure 5.3: Feature selection: (a) positions sampled naatylon surface, (b) computed
DCG values used to represent feature distinction (red isdsighblue is lowest), and (c)
features selected to represent the object during matching.

The net result of this process is a small set of features feryetarget object, each
with an associated positiorp), normal ), radius ¢), a set of shape descriptorSI,
HSD, andF SD), a rank-to-difference-mappindr{ D), and a retrieval performance score
(DCG). The storage for the resulting data required at query tisngpiproximately 100
KB per object.

5.1.3 Creating Pairwise Feature Correspondences

When given a query object to match to a database of targettsbjbe first step is to
compute the cost of pairwise correspondences betweendsaifithe query to features of
the target. The key to this step is to develop a cost funchahgrovides low values only
when two features are compatible and gradually penalizies tieat are less similar. The
simplest and most common approach is to usd thdifference between their associated
shape descriptors. This approach forms the basis for odemmgntation, but we augment
it in three ways.
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First, given featuref; andF,, we compute thé, difference,D, between their shape
descriptors. Then, we use the rank-to-difference mapp(RJ®) of each feature to
convertD into a rank (i.e., where that distance falls in the rankedhssociated with each
feature). The new difference measu€,fx) is the sum of the ranks computed fer
with respect to the RTD df,, and vice versa:

Crank = RanKRT Dy, D) + RanKRT Dy, D)

This feature rank cost (which we believe is novel) avoidspitablem that very common
features (e.g., flat planar regions) can provide false pesitatches wheh; differences
are small. Our approach considers not the absolute difterdretween two features,
but rather their difference relative to the best matchirgtdess of other objects in the
database. Thus, a pair of features will only be considemdasi if both rank highly in
the retrieval list of the other.

Second, we augment the cost function with geometric terrasp&rt-in-whole object
matching, we can take advantage of the fact that featuremare likely to be in corre-
spondence if they appear at the same relative position aedtation with respect to the
rest of their objects. Thus, for each feature, we computeligtance between its position
and the center of mass of its objeB)(scaled by the average Bffor all features in the
object RAV G, and we add a distance tefpqiys to the cost function accounting for the
difference between these distances:

Ry Ro

We also compute a normalized vecidrom the object’s center of mass to the position
of each feature and store the dot product of that vector with durface normali
associated with the feature. The absolute value of the dolyat is taken to account for
the possibility of backfacing surface normals. Then, thed@nce between dot products
for any pair of features is used to form a normal consisteaoy tto the cost function:

Cnormal = “ﬁﬁl‘ - ’5ﬁ2|’
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Overall, the cost of a feature correspondence is a simpleifumof these three terms:

Yrank Vradi Ynormal

Ceorrespondence= ArankCiank + AradiusCagius T AnormaChormal
The a coefficients andy exponents are used to normalize and weight the terms with
respect to each other.

Of course, computing all potential pairwise feature cqgeglences between a query
object and a database of targets is very costly. If the quasimy, features and each of
N targets hadlt selected features, then the total number of potential featorrespon-
dences iN x Mg x M. To accelerate this process, we utilize conservative kiulels
on each of the three termméxrank maxradiug maxnorma) to throw away obviously
poor feature correspondences. The terms are computed artdrésholds are checked
progressively in order of how expensive they are to competg Cank is last), and thus
there is great opportunity for trivial rejection of poor rhaes with little computation.
Indexing and progressive refinement could further redueectimpute time as described
in Chapter 10.

5.1.4 Searching for the Optimal Multi-Feature Match

The third step of the query process is to search for the belsi-feature matches between
the query object and the target objects. This is the mainatpgority-driven search.

A priority queue is used to store incomplete sets of featuagchres during a back-
tracking search. Initially, all pairwise corresponden¢esmputed as described in the
previous subsection) are loaded onto the priority queueenTkhe best partial match,
m, is repeatedly popped off the priority queue, and then eléddrmatches are created
for every compatible feature correspondence and loadeal thet priority queue. This
process is iterated until at leastull matches withk feature correspondences have been
popped off the priority queue for distinct target objects.

As a partial match is extended to include one more featunespondence, two extra
terms are added to the cost function to account for geomeeficrmations implied by
multiple pairwise feature correspondences (Figure 5.43t,Fa chord length ter@iength
is added to penalize matches with inconsistent inter-fealengths. Specifically, for
every pair of feature correspondencesriywe compute the length of the chord between
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feature positions in the same objek},(scaled by the average bfover all features in the
object (). Then, we compute the difference between these distamceaamalize by
the greater of the two to produce the length term of the costtfan:

B-g
L L

Clength: L Lo~
max(E, £2)

Descriptor

Figure 5.4: A 3-feature match for two airplanes. Red poiefgesent feature positions
on the surface. For three features, red circles represanbng gray histograms
represent shape descriptors, orange lines representdeaturespondences, and black
lines represent lengths between features of same object.sisTency of all shape
descriptors, lengths, and angles is required for a goodhmatc

Second, a surface orientation term is added to penalizenasitwith pairs of feature
correspondences whose surface normals are inconsistieisttefm penalizes both mis-
matches in the relative orientations of the two pairs of redewvith respect to one another
and mismatches in the orientations of the normals with re&sjpethe chord between the
features. Ifv; is the normalized vector between features 1a and 1b with alsmig, and
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Nip in object 1, and similar variables describe the relativemtations of features in object
2, then the orientation term of the cost function can be cdegpas follows:

Corient = ||Mia - Nip| — |M2a- N2p||+
|[V1 - Nia| — [V2 - MBal|+
|[V1 - Nip| — V2 - Mgp|

These terms are also weighted and raised to exponents tmenoermalization when
added to the overall scoring function computed for a matdi Wifeature correspon-
dences:

Yiength Yori
Cehord = alengttp|en§th+ AorientCoriant

As in the previous section, we utilize conservative thrédgh@n Ciengtnh and Corient
(maxlengthrandmaxorientatiof to throw away obviously poor feature correspondences.
We also utilize a threshold on the minimum distance betweeatufes within the same
object (inlength in order to avoid matches comprised of features in closgipmty to
one another.

The overall cost of a match is the sum of the terms represgwliffierences in the
k feature correspondences and the geometric differencegebntthe k(k-1)/2 chords
spanning pairs of features:

Cmatch: Ekccorrespondenc@)‘i‘ Z CChOI’d(ivj)
i

< i<]<k

5.2 Results

In this section, we present results of experiments withriyiadriven search. We inves-

tigate the performance of the method in relation to the spaténe art in shape-based
retrieval and investigate the impact of several designagd®bn the speed and quality
of retrieval results. Using our priority-driven search @lighm, we compare focusing

a search algorithm on distinctive regions of shapes versg®ms selected with other
techniques.

In a representative preprocessing phase, we generatedeatti128 surface points
with 4 different scales for every object. For every featuve,compute its shape descrip-
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tors, RTDs, and DCGs, and then we select the most distinativef slescriptors. The total
preprocessing time for all 907 objects is 70 hours and thad tize of all data generated
is 1GB, of which 64MB represents the selected features tleas@red in memory for

target objects during the query phase.

During the query phase, we perform a series of “leave-oré-@assification tests
with the Princeton Shape Benchmark. In each test, evergbbi¢he database is used as
aquery objecto search databases containing the remaihingdl target objects. Standard
information retrieval metrics, such as precision, recaarest neighbor classification
rate (1-NN), first-tier percentage (1-tier), second-tiergentage (2-tier), and discounted
cumulative gain (DCG), are computed to measure how many tijethe query’s class
appear near the top of its ranked retrieval list, and thost&icseare averaged for all
gueries.

Unless otherwise stated, experiments were run on Linuxesavith a x8664 proces-
sor running at 2.2 GHz and with 12 GB of memory. Parametersher‘base configu-
ration” of the system were set as follows= 1, k = 3, number of features per object =
128, number of feature scales =4 (0.25, 0.5, 1.0, and 2.8pestescriptor type = HSD,
compression ratio = 10Xnaxradiuss maxnormak maxlength= maxorientation= 0.25,
minlength= 0.3- RAV G 0rank = 0.01,0radius = Onormal = Qiength = Oorient = 1, @andyrank
= 4, Yradius = Ynormal = Yiength = Yorient = 2. These parameters were determined empirically
and used for all experiments without adjustment, excepeictiSn 5.2.1 where the FSD
shape descriptor was used, and in Section 5.2.3 where thectrop specific parameter
settings was studied.

5.2.1 Comparison to Previous Methods

The goal of the first experiment is to evaluate the retrieeafgrmance of the proposed
priority-driven search (PDS) approach with respect to jmes state-of-the-art shape-
based retrieval methods:

Depth Buffer Descriptor (DSR740B) This shape descriptor achieved the highest re-
trieval performance in the study of Bustos et al. [17] and @un study with the
PSB. It describes an object by six depth buffer images cagttrom orthogonal
parallel projections [48]. Images are stored as Fourieffimients of the lowest
frequencies, and differences between Fourier coefficiprigide a measure of
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object dissimilarity. We use Dejan Vranic’s implementatiof this method [129]
without modification and ran it on a 2 GHz Pentium 4 running tdws XP.

Light Field Descriptor (LFD) It represents an object as a collection of images rendered
from uniformly sampled positions on a view sphere [19]. Thssuhilarity of two
objects is defined as the minimubn-difference between aligned images of the
light field, taken over all rotations and all pairings of wees on two dodecahedra.
We use the original implementation provided by Chen et alheit modification
and ran it on a 2 GHz Pentium 4 running Windows XP. This shasergeor
achieved among the highest retrieval performance on thre@®won Shape Bench-
mark.

Global Harmonic Shape Descriptor (GHSD) The GHSD is the shape descriptor cur-
rently used in the Princeton 3D Search Engine [36]. It déssrian object by a
single HSD feature positioned at the center of mass anddtalaclude the entire
mesh. We include it in this study to provide an apples-tolegppomparison to a
method that matches a single global shape descriptor ofitine $ype used in our
study.

Random A random retrieval list is created for every query as a basefor retrieval
performance.

Figure 5.5 shows a precision-recall plot comparing the ayeretrieval performance
for all queries for each of these shape matching methodsflrprecision and recall are
metrics used to evaluate ranked retrieval lists. If one iclans the togM matches for any
guery,recall measures the fraction of the query’s class found, predisionmeasures the
fraction of objects found from the query’s class — highewnesrrepresent better retrieval
performance. The Random line provides a baseline for cosgrarand the increase
around Recall = 0.1 relates to averaging the results ofréiffeclass sizes together.

Timing statistics and standard retrieval performance m@ssare shown in Table 5.1.
The leftmost column indicates the shape matching metho&(BEhe one described in
this chapter). The remaining columns list the average tieqgiired for one query into
the database (in seconds) and various retrieval measures.

From these statistics, we see that the priority-drivendealgorithm provides the best
retrieval performance of the tested methods on this datal'detimprovement in nearest
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Figure 5.5: Precision-recall plot comparing priorityacen search (PDS) to other state-
of-the-art shape matching methods using the PrincetoneéSRapchmark.

| Method || Time [ 1-NN | 1-Tier | 2-Tier | E-Meas.| DCG |
PDS 2.4 69.2 43.5 55.7 31.3 68.7
DSR740B|| 0.005( 66.5 40.3 51.2 29.5 66.3
LFD - 65.0 37.2 47.4 27.1 63.6
GHSD 0.003| 55.6 30.9 41.1 24.0 58.4
Random 0 1.7 1.6 34 2.2 26.1

Table 5.1: Comparison of retrieval statistics between pyiairiven search (PDS) and
other methods on the Princeton Shape Benchmark. (Timindtsesre in seconds.)

neighbor classification rate over the Depth Buffer Desorijg 4% (69.2% vs. 66.5%)
and the improvement over the Light Field Descriptor is 6.46%.2% vs. 65.0%).

However, the PDS algorithm takes considerably more compute to preprocess
the database (4-5 minutes per object), more memory per €0 KB per target
object), and more time to find matches (2.4 seconds per quleay) the other tested
shape descriptors. Almost all of the query processing timepent establishing the
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cost of feature correspondences, and less than a tenth abadés spent finding the
optimal multi-feature match with priority driven searchhds, we believe that simple
improvements to the basic algorithm (e.g., compressiaeximg, etc.) will significantly
improve the processing speed and that query processing fiess than a second are
possible in this framework (Section 5.3).

In any case, it seems that priority-driven search is wellesufor batch applications
where retrieval accuracy is premium. Often, query resudts loe computed off-line and
cached for later interactive analysis — e.g., for discovarelationships in mechanical
CAD, molecular biology, etc. Even interactive search engjicen benefit from off-line
preprocessing with high-accuracy matching methods, fangte, to preprocess queries
that find a shape similar to another in the database (over S0¥e®3D queries to the
Princeton 3D Search Engine are of this type [87]).

5.2.2 Evaluation of Algorithmic Contributions

The goal of the second experiment is to understand whichrittiguc features of the
priority-driven search algorithm contribute most to ithiing and retrieval performance.
To study this question, we started with the “base configondtand ran the system
multiple times on the Princeton Shape Benchmark with dffieéraspects of the system
enabled and disabled.

Distinction (D) If enabled, a small subset of features ) was selected for matching
within every target object, as described in Section 5.1.2he@vise, all features
were included within the target objects.

Rank (R) If enabled, the cost of two corresponding shape descrif@gsx) was the
sum of the two ranks in their respective retrieval lists, esalibed in Section 5.1.3.
Otherwise, it was the diredt, distance between shape descriptors (the most com-
mon measure of descriptor difference in other systems).

Multi-Scale (S) If enabled, the costs of the best matches found at all folesamere
summed. Otherwise, the cost of the best match found amomgrésaat scale 1.0
was used (the scale that gave the best retrieval perfornanite own).

Results of this experiment are shown in Table 5.2 and Figue Fhe first three
columns of Table 5.2 indicate whether each of the three algoic features (R, M,
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and D) are enabled (Y) or disabled (N), and the remaining roaki provide retrieval
performance statistics (note that the top row shows theopeence statistics for PDS
with all its algorithmic features enabled: Y Y Y).

S || 1-NN [ 1-Tier | 2-Tier | E-Meas.| DCG |
62.8 40.2 51.7 29.7 65.6
66.6 37.2 48.7 28.0 64.4
60.3 33.2 43.5 25.8 60.5
57.0 33.3 44,3 25.8 59.1
63.4 32.7 42.6 25.0 60.6
60.7 31.6 42.6 24.8 59.0
51.0 28.7 39.7 23.0 55.7
57.1 28.5 38.7 22.8 56.4

Z2|<Z2Z<<Z|<|0
ZZ2<Z<KZ2X|K|xD
222 <2<

Table 5.2: Results of experiments to investigate the iddiai and combined value of
three algorithmic features of priority-driven search (BDBhe top row represents the
base PDS algorithm (Y Y Y). Other rows represent varianthefdlgorithms with three
algorithmic features (D = distinctive, R = rank, and S = msltale feature selection)
enabled (Y) or disabled (N). Differences in the results aebd with these variants
provide insights into which aspects of the PDS algorithmigbuate most to its results.

From these results, we see that the retrieval performanoaio$ystem comes from
several sources. That is, all three algorithmic featuregete contribute a modest but
significant improvement to the overall result. Specificaflye consider the incremental
improvements in nearest neighbor classification ratesN)-& the combinations shown
in Figure| 5.6, we find that using descriptor ranks rather tharlifferences provides
a 6% improvement (60.7% vs. 57.1%) and using multi-scaléufea further boosts
performance by another 16% (66.6% vs 57.0%). Selectingndiste features of target
objects degrades performance slightly when used alonecedly for the NN metric,
but has an overall positive benefit when used in combinatitin the other algorithmic
features. This is most noticeable with the DCG score incnggb6% (65.6% vs. 56.4%),
though the NN score when using distinction features deeseimisseveral examples. This
is likely because the NN metric is sensitive to the first extal result, and our measure of
distinction (DCG) is based on evaluating the entire rettiésa

With respect to timing, the main expense of the priority dnsearch implementation
is establishing the initial set of pairwise feature corasences~{0.3 seconds per query
per scale). By comparison, the time required to search fob#st multi-feature match is
negligible 0.1 seconds). So, the timing results are currently doméhbayethe number
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Figure 5.6: Precision-recall plot showing the relative trifnutions of different
algorithmic features of priority-driven search. The topvai(red) shows the retrieval
performance of the best performing set of options for the RISrithm (it is the same
as the red curve in Figure 5.5). The second curve (green)stwwesult of using HSDs
rather than FSDs as shape descriptors (it represents tee tmamfiguration” for the study
in Section 5.2.3). The third curve (blue) shows the resulthaut selecting a subset
of distinctive features on target objects; the fourth cufregenta) shows the same,
but usingL, differences instead of ranks to measure feature corregpmedcosts; the
next-to-bottom curve (cyan) also disables multi-scaléuieamatching (all features are
matched only at scale 1.0); and the bottom curve (brown) shibe/results when finding
only one point per match rather than 3. Note how the retripesformance degrades
significantly when each of these algorithmic features iallisd.

of features considered for each target object and the nuailseales considered for each
feature.

Overall, we find that choosing distinctive features (D) ioy@s both precision and
speed significantly; using ranks rather thgndifferences (R) improves precision with
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negligible extra compute time; and using features at foatesc(S) improves precision,
but incurs four times the computational expense.

5.2.3 Investigation of Parameter Settings

The goal of the third experiment is to investigate in detawhvarious options of the
priority-driven search system affect the timing and retueperformance. Of course,
there is a large space of possible options, and thus we areddo focus our discussion
on small “slices” through this space. Our approach is toerentir investigation on the
“base configuration” set of options described in the begigmf this section and to study
how timing and retrieval statistics are affected indepeatigeas one option is varied at a
time.

The results of this study are shown in Table 5.3(a-d) — edak &tudies the impact of
a different option, and different rows represent a différsatting for that option. Please
note that rows marked with an *’ represent the same data y pihevide results for the
base configuration through which slices of option space aiegstudied.

Impact of shape descriptor type (Table/ 5.3(a)) More verbose descriptors generally
provide better retrieval performance, albeit at higherage and compute costs. For
example, the Fourier Shape Descriptor (FSD) provides be#arest neighbor classifica-
tion rates (69.2%) than the Harmonic shape descriptor (H6R28%). However, it is also
eight times bigger, and thus eight times more expensive mapeoe. There is a further
decrease in retrieval performance and improvement in cosgratime when using the
SD shape descriptor. Further study is required to determwimeh descriptors provide
the best “bang for the buck” for specific applications and mowtiple descriptors can be
combined to provide the accuracy of the most verbose onde witiurring query times

of the smaller ones (Section 5.3).

Impact of feature scale(Table 5.3(b)) Medium scale features (radius = 0.5-1.0yig®
better retrieval performance than small and large scalésisrntest, and multi-scale fea-
tures perform the best of all (nearest neighbor classiboatates are 62.8% with multi-
scale versus 57.2% with the best single scale (0.5)). Istiegdy, summing the cost
functions computed for matches at all four scales sepgrét®lulti-scale”) provides
better retrieval performance than matching features acalles simultaneously (“All”).
The difference is that the same set of features must matdh4seales in “All,” while
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Descriptor || Time || 1-NN | 1-Tier | 2-Tier | E-Meas.| DCG

SD 11 542 | 30.5 | 405 23.8 57.9
HSD * 1.2 62.8 | 40.2 | 51.7 29.7 65.6
FSD 2.4 69.2 | 435 | 55.7 31.3 68.7

(a) Shape descriptor type

Radius Time || 1-NN | 1-Tier | 2-Tier | E-Meas.| DCG

0.25 0.3 48.1 | 242 | 33.8 20.0 51.5
0.5 0.3 572 | 30.8 | 415 23.8 57.4
1.0 0.3 57.0 | 33.3 | 443 25.8 59.1
20 0.3 513 | 29.2 | 39.6 23.0 55.5
Multi-scale * || 1.2 62.8 | 40.2 | 51.7 29.7 65.6
All 0.6 60.9 | 33.0 | 46.2 26.1 61.2

(b) Scales used for matching shape features

# Points Time || 1-NN | 1-Tier | 2-Tier | E-Meas.| DCG

64 0.6 64.5 | 38.0 | 50.0 28.8 64.3
128 * 1.2 62.8 | 40.2 | 51.7 29.7 65.6
256 4.0 64.2 | 40.9 | 53.2 30.4 66.2
512 176 || 655 | 421 | 541 31.0 66.9

(c) Number of sample points per object

k Time || 1-NN | 1-Tier | 2-Tier | E-Meas.| DCG
1 1.2 61.7 | 38.7 50.5 29.5 64.3
2 1.2 63.4 | 39.3 | 50.9 29.6 64.7
3* 1.2 62.8 | 40.2 51.7 29.7 65.6
4 1.2 63.0 | 40.0 | 51.8 29.8 65.2
5 1.2 61.4 | 40.1 | 51.6 30.0 65.2

(d) Number of feature correspondences per makgh (

Table 5.3: Results of experiments to investigate the impkstveral options on the query
time (in seconds) and retrieval performance of prioritivein search.

different features can be selected independently for eaale sn “Multi-scale.” This
result seems to suggest that features persistent acrotiplmatales are not necessarily
as useful for classification as ones that are very distia@ba particular scale.

Impact of the number of sample points per object(Table5.3(c)) Including more
sample points for each object improves retrieval perforcean this test, at least up to 512
points. The DCG classification rate is 66.9% for 512 pointsgigect, while it is 66.2%
for 256 points, 65.6% for 128 points, and 64.3% for 64 poimdthough a small set
of distinctive features are ultimately selected for evengét object during a preprocess,
features centered at all sample points of the query objectamndidates for a match, and
thus the compute time for each query should be proportiantide number of points (the
guadratic growth observed in this experiment is an artiédictur implementation).
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Impact of number of feature correspondencegTable 5.3(d)) Matching large numbers
of features does not improve retrieval performance in thighg In fact, matching more
than 3 features seems to degrade performance. This resylbenbecause features are
quite large scale and spread apart, and thus 3 features reagtgethe shape as well as
is possible with the HSD feature representation. Intemgstj matching larger numbers
of features also does not increase query times — this is Bedhe priority-driven search
algorithm is able to find good matches in time that is largatyeipendent of the number
of possible matches — it investigates only the good matchésgmores the rest.

5.2.4 Alternative Selection Techniques

Using the framework of priority-driven search, we can coneddtering local descriptors
using distinction relative to other techniques for selagt@ small subset of descriptors,
such as methods that select regions of a shape in isolatoonwithout considering the
context of a database. We consider three common technigudstéring descriptors
from individual models. Several previous projects [34, &3jdomly selected descriptors
on the mesh surface, which is a simple technique. The ldaty shape descriptors have
been used for matching by [20, 62] under the assumption éinatdescriptors correspond
to important shape features. “Salient” regions [40, 77, $4ifaces where the shape
sticks out or has variable curvature, have been studied hslwelihood was calculated
by considering shape descriptors as feature vectors anchasg a multivariate Gaussian
distribution calculated from the database, and saliensyoaéculated using an executable
provided by Lee at al. [77].

We compare our technique of using the most distinctive d@scs against the alter-
natives of selecting descriptors randomly or based onilikeld or saliency. Figure 5.7
shows regions selected on the same helicopter model usriguhtechniques. The color
of the sphere centered on each region indicates the distinstore associated with the
region, where red spheres indicate higher distinctioneszoBelecting regions based on
the likelihood, saliency, or random selection leads to@spnting meshes with regions
that perform poorly in retrieval tasks. A similar number efjions were selected for the
helicopter in all cases, but some selected regions are siftleiin Figure 5.7 because
they appear on the backside of the mesh.
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Figure 5.7: Descriptors are selected based on distinctikeljhood, saliency, or are
selected randomly. The coloring of the sphere is based dimclion scores, indicating
that descriptors with poor distinction scores are seleetgd the other techniques. A
similar number of descriptors are selected for all four teghes, although some appear
on the backside of the mesh.

In this study, 128 shape descriptors were used for the queshrand matched against
a subset of the descriptors from every other mesh based oleetisa technique. In
our experiments, we explored a range of parameter settorghé priority-driven search
algorithm and found that the relative performance of theghechniques was consistent
across all settings. In the following discussion, we selégarameters that optimized
the retrieval performance independently for descripta@ieced based on likelihood,
saliency, or distinction scores as well as descriptorscsaterandomly.

Figure 5.8 shows precision-recall plots of retrieval résakhieved with the proposed
method during a leave-one-out study with the training astigets of the PSB. Retrieval
statistics are also shown in Table 5.4. Column 1 lists the atktiised for selecting
descriptors for retrieval and Column 2 lists the number ofcdpsorsK selected during
matching. Columns 3-7 and 8-12 show several measures evaitperformance, and in
all cases, higher scores indicate better retrieval peréoice.

Looking at both the plots and tables, the first result to moiscthat selecting features
based on distinction provides better retrieval perforngathan selecting them based on
saliency, likelihood, or at random. When considering muitip matching (K=3) with all
four scales on the PSB Test set, the DCG score for Distinci@®i6% as compared to
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Figure 5.8: Selecting distinctive features to focus matghleads to better retrieval
performance than selecting features that are least likalyst salient, or randomly
selected.
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PSB Training Set PSB Test Set

Descriptor || K | NN | 1-Tier | 2-Tier | E | DCG || NN | 1-Tier | 2-Tier| E | DCG
Selection (%) | () | () | (%) | (%) || (%) | (%) | (%) | (%) | (%)
Distinction || 3 || 68.3| 42.1 | 54.2 | 29.3| 67.6 || 62.8| 40.2 | 51.7 | 29.7| 65.6
Likelihood || 3 || 64.9| 37.4 | 49.2 | 27.3| 64.4 || 66.5| 37.0 | 49.0 | 27.9| 64.2
Random || 3 || 68.2| 39.0 | 50.0 | 27.3| 65.8 || 66.5| 36.0 | 47.7 | 27.5| 63.4
Saliency || 3 || 61.7| 35.1 | 46.6 | 25.6| 62.7 || 61.6| 33.5 | 44,5 | 25.9| 60.9
Distinction || 1 || 54.7| 34.9 | 485 | 26.0| 61.5 || 51.9| 33.3 | 46.7 | 26.5| 59.7
Likelihood || 1 || 55.8| 31.3 | 43.6 | 24.0| 59.5 | 55.5| 29.7 | 40.9 | 23.8| 57.8
Random || 1 || 56.3| 31.8 | 43.6 | 24.1| 59.9 || 55.6| 30.0 | 41.4 | 24.0| 57.8
Saliency || 1 || 54.6| 30.6 | 428 | 23.5| 59.1 || 53.4| 29.2 | 40.6 | 23.3| 574
Centroid 11 54.1| 28.6 38.1 | 21.7| 57.0 || 53.3| 26.3 351 | 211 544
Oracle 1] 926| 546 | 634 |33.1| 81.1| 89.5| 535 | 63.3 | 34.2| 79.7

Table 5.4: Selecting the most distinctive descriptors fthentarget set improves retrieval
relative to selecting based on likelihood, saliency, oeatom. Retrieval improves when
using several local descriptors on the query (K=3 in thisilt¢sas compared to using
a single descriptor. Using the most distinctive descrgpiorproves over using a single
global descriptor (Centroid), while there is still room togrove upon these results since a
single descriptor selected by an oracle outperforms amgraéchnique. All experiments
are with meshes from the Training and Test sets of the Ponc&hape Benchmark.

64.2% for Likelihood, 63.4% for Random, and 60.9% for Satiermnd across most met-
rics, Distinction outperforms Likelihood, Random, andi&aty. For single descriptor
matching, K=1 at the 1.0 scale, Distinction (DCG=59.7%) dleats Likelihood, Ran-
dom, and Saliency with DCG scores of 57.8%, 57.8%, and 57.4%pectively. While
the numbers change somewhat for the PSB Training set, tHéaqwa results are the
same. Nearest Neighbor scores are possibly lower for 2i&hin in some cases because
of the instability of only considering the first retrievalstdt. Of course, the improved
retrieval performance using distinction comes at the cbst@eased computation time
and the requirement that the database is classified.

Besides investigating feature selection methods, we asgared retrieval with dis-
tinct descriptors to two other retrieval methods that pdevan informative comparison
for retrieval performance. The most common shape matclaognique [16, 121] is to
use a single shape descriptor centered at the centroid bofskape with a region size
large enough to include the entire shape (Centroid). Matchisingle descriptor at the
1.0 scale on the surface of a shape has better retrievakpefwe than using the Centroid
with DCG scores of 54.4% for Centroid as compared to 59.7%, %/ 87.8%, and
57.4% for Distinction, Likelihood, Random, and Salienaspectively, on the Test set.
The DCG score for Distinction increases to 65.6% when matchvith three descriptors
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combined at each of four scales. Of course, this improvetevet performance comes
at some cost (retrieval time of 1.2 seconds versus 3 mithisds), but we believe that
surface descriptors are preferable when retrieval perdoee is critical.

We next compared our technique of selecting distinctivecdg®rs versus a best-
case method where an oracle selects a single descriptortfreraurface of the query
shape across all scales. For each query shape, the singleptiaswith the highest
distinction score (calculated during preprocessing) vedscted to use as the query, and
the closest match to each target in the database was foutttbu§jh this process is not
usually possible in a real application (since the class@fjtirery is generally unknown), it
provides an upper bound on the retrieval performance plessiith surface descriptors.
The Oracle technique has a DCG score of 79.7% on the Test sath whamatically
outperforms all other selection techniques we have coreiderhis result suggests that
future work should focus on improving the selection of dggors from the query shape
and that using surface descriptors for shape matching kgsotiential to achieve accurate
retrieval results.

We also investigated how often the most distinctive regixiste at a particular scale.
Table 5.5 shows the percentage of time a descriptor from seale was selected by the
Oracle technique. On both the PSB Training and Test setsrigess from every scale
were selected as the most distinctive, though the 1.0 sadeselected most often.

Scale
Database 0.25 0.5 1.0 2.0
PSB Training|| 18.3% | 23.4% | 38.5%| 19.8%
PSB Test 20.9% | 27.0%| 34.4% | 17.6%

Table 5.5: With the Oracle selection method, the most disitia feature was selected to
represent each query shape across all scales. Every scalesed for matching, though
the 1.0 scale was selected most often for both the PSB Trpand Test databases.
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5.3 Conclusion

This chapter describes an algorithm for multi-feature risiig of 3D shapes with priority-
driven search that focuses on distinctive regions of targeghes. The two main contribu-
tions are an algorithm for searching a database for the belsi-f@ature matches and an
exploration of the benefit of focusing the algorithm on distive regions. Perhaps just as
valuable is the investigation of factors that contributspeed and retrieval performance
improvements in a multi-feature matching system. We find:tig using ranks to
measure the cost of a feature correspondence is more e#febtt using., differences
directly; 2) matching features at different scales indelgenly and then adding the re-
sulting costs is an effective way to combine shape inforomaftiom multiple scales; and
3) selecting target features based on how distinctive theyatheir object’s class can
improve both search speed and retrieval performance signily beyond other selection
techniques.

Perhaps the most interesting question for further studyp isuvestigate how best to
recognize 3D objects from their parts. Of course, this is etiva topic in computer
vision, but the issues for 3D shapes are different than theyoa 2D images. Our study
seems to suggest that just a few shape features are suffecieebgnize most 3D objects.
It will be interesting to see whether other object typesdwlithis pattern and whether
effective algorithms can be developed using even feweufeat
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Updating Distinction

Introduction

Calculating shape distinction can be a time consuming psps@se our main method of
using the Discounted Cumulative Gain metric requires compgaavery shape descriptor
against every other descriptor in a database@éan?) operation forn descriptors in a
database). Also, as new models and classes of models arttadaldatabase, distinctive
features may change because of the relationship betwemctizn scores and feature
similarity/dissimilarity. With a naive implementationjstinction scores for the entire
database would have to be entirely recalculated as new madelinserted. While
this may be a reasonable preprocessing step for moderaie dstabases, as databases
continue to grow, calculating distinction could become riagtical.

There are numerous fields where databases of 3D meshes atedimh a regular
basis. The Google Earth tool has been downloaded by over dB0musers, and there
is a community of designers submitting new models regulaflye Protein Data Bank
has grown at an increasing rate since the 1970’s, and du@i6@ alone, there were over
7,200 new structures submitted. With the increasing nurob8D models available on
the Internet, 3D search engines [107, 90] need to be peatigiagpdated so users can
find new content, and shape distinction scores need to belatdd for new models.
Importantly, current models need to be be updated as watiedilistinctive regions are
those that match meshes of the correct class, and newly adestes may cause a ripple-
effect, changing distinction scores throughout the dateba
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Our goal is to design an efficient distinction algorithm thandles both static and
growing databases. We pursue two methods for achievinggttas First, besides the
DCG evaluation metric, which requires a full retrieval liste investigate alternative
metrics that only require a fixed length retrieval list to eppmate distinction. Second,
we use an index structure to quickly find a fixed number of retameighbors for each
descriptor without searching the entire database. Foethpproaches, there is a trade-off
between calculation time and resulting retrieval perfanoea

The remainder of this chapter is organized as follows: The section describes our
methods for approximating shape distinction. Sectionlécbnsiders evaluation metrics
besides DCG, and Section 6.1.2 describes a spatial indexirajuge that is effective with
shape descriptors. In Section 6.2, we present results aamgghe retrieval performance
of approximate distinction in relation to calculation timé&inally, we summarize the
conclusions and limitations of our approach in Section 6.3.

6.1 Method

Our method to create an efficient shape distinction algarigito approximate distinction
with an evaluation metric that only requires a fixed numbemnedrest-neighbor retrieval
results for each descriptor. We consider several metriesncon in the field, and also
introduce a modification to Discounted Cumulative Gain. Tetadvantage of metrics
that only require a short retrieval list, we present an inflaxshape descriptors that
supports nearest neighbor search efficiently for databhasgsrgoing dynamic changes.

6.1.1 Retrieval Measures for Defining Distinction

When calculating distinction values, the choice of retrigwatric can impact the quality
of results. Metrics vary by whether they use a fixed portioraaktrieval list or the
entire retrieval list and how the position of correct reswte weighted when calculating
a score. While retrieval metrics may have different rangesasisible scores, generally,
all metrics can be converted to fit within the range of zerorte and are compatible with
our definition of distinction.
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Besides the standard retrieval metrics described in Sedtib.3 (NN, First Tier, Sec-
ond Tier, E Measure, and DCG), we considered several otherasielN 3 is similar to
NN but considers the nearest three neighbors weighted byirpity. Top Ten is similar
to First and Second Tier but uses only the first ten retriessliits. A limitation of many
of these approaches (except NN 3 and DCG) is that any retriesalt within the portion
of the list considered has equal weight in calculating arttiibn score. As an example,
for Top Ten, the distinction score is the same if the retiiesault consists of either one
correct match followed by nine incorrect matches or nin@inect matches followed by
one correct match.

Intuitively, correct results near the front of the retrielist should have a larger value
when calculating a distinction score. The DCG metric matdihés intuition with a
correct retrieval result at positiox having Weight@%( in the final score. Logarithmic
functions decrease rather slowly, so to increase the weigtdrrect results near the front
of the list, we adjust the DCG metric to be weightedhy5, %, . or -1, which places
increasing emphasis towards the front of the retrieval IMte refer to these function
as DCGIg(x), DCG x, DCG ¥?, ... , and DCGx!®. The normalization terms for the
augmented DCG functions are updated accordingly to dividhbymaximum possible

Scores.

A key observation about the various versions of the DCG médrihat DCG is a
summation over a fixed rangedivided by a normalization term,

R Q)

x=1 x)

SX1 ﬁ
whereQ(x) has value one if the mesh at retrieval positiois of the same class as the
guery and zero otherwise. The bottom summation from 1 tesd&eC normalizes the
result to be within the range zero to one. Ignoring the noizatibn term, wherf (x) is
of the formx¥, then the summation is of the same form as the Riemann zettidaror
p-series, though over a limited range. The Riemann zetaiimts known to converge
whenk > 1, so we can approximate the true value with arbitrary aayysettingR based
on the value ok. The modified DCG metrics can be approximated by the same giyope
We show that using an index structure that fiRdtsearest neighbors efficiently will allow
us to approximate distinction and maintain high qualityiestl results.
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Figure 6.1 shows a visualization of distinction scores gisivelve different evaluation
metrics on a dolphin model from the test set of the PSB. Thendison scores were
calculated using 128 descriptors per mesh at the 0.5 scal¢ha scores were normalized
in the visualization to fall evenly between zero and one smtemesh. Distinction scores
close to one are visualized with larger, reddish sphered,distinction scores close to
zero are visualized with smaller, bluish spheres. The fingt tows of results (NN
through E Measure) tend to show a lack of continuity in theimiision function with
high distinction regions (red spheres) near low distinctiegions (blue spheres), such
as in the bottom-front flipper region. Since our shape dptms$ tend to change in a
gradual manner, distinction scores might be expected togghgradually as well, which
is generally true in the bottom two rows of examples (DIg() through DCGx!9). The
distinction scores also appear to change between examples first two rows (tip of the
dorsal fin varies between red and yellow) and have fewer cdhmbgtween examples in
the bottom two rows, likely because of the similarity of thegmented DCG functions.

Figure 6.1: Twelve different evaluation metrics are shoana single model with high
distinction values colored red. Techniques that considegér retrieval results (unlike
NN) and weight results by position (such as DCG), tend to henaoghly changing scores
that are more consistent. We also consider modified weiglfitinctions for DCG besides
the defaulig(x) function.

While this is only an anecdotal example of different retrieweetrics, it provides
intuition about important properties needed when caltuatlistinction. A retrieval
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metric should place more weight on correct results nearrtird bf the retrieval list than
on correct results near the end of the retrieval list, andélalting scores should change
smoothly across the surface of a mesh in the same way thatnégised descriptors
change smoothly. We provide a more quantitative analysieobus retrieval metrics in
Section 6.2.

6.1.2 Nearest Neighbors with a Cover Tree Index

Calculating approximate distinction can be performed dyicising an index structure
that finds a small set of nearest neighbors without resottrogpnsidering all descriptors
in the database. The definition of DCG and many alternativienditon metrics can be
augmented to only consider a partial list (e[@CGGR) consisting of calculating a retrieval
metric for the besR matches to the query descriptors. The definition of NN, NNd&y T
Ten, First Tier, Second Tier, and E Measure all use a fixedexetr list by definition.
Then, when calculating approximate distinction, instebslearching the entire database
for matches, only the subset of the database that closelghesthe query needs to be
considered. Depending on the time to fiRadhearest neighbors, this approximation can
be an efficient technique for calculating distinction. Atsglandex that supports a quick
nearest neighbor search can also be effective when updadistigction in a dynamic
database.

There are numerous techniques for finding nearest neiglisorg spatial index struc-
tures that allow neighbor search to focus on the best matéesigning indexing tech-
niques is an active area of research that is improving ouityalbd perform similarity
gueries in high dimensional spaces. For an overview of thd, fieee [4, 18, 135].
Selecting the best technique for shape descriptors is loey@nscope of this dissertation,
but we investigat the cover tree index and demonstrate adhi® trade-off between
distinction accuracy and processing time.

We provide a brief overview of the cover tree index structiioe more details, see
Beygelzimer et al. [12]. The cover tree builds an index basethe intrinsic dimension-
ality c of the data, where high dimensional data sets often effggtreside in a lower
dimensional subspace. Consider a bounding sp&gseirrounding a high dimensional
point and a small set of its nearby neighbors in the data setloBing bounding spheres
S1,...Sn each have a radius a constant size larger than that of thdesraphere such
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that the radius of spher§; is larger than the radius of sphe@_;. If the intrinsic
dimensionality of the data set is low, then the number of tsaiithin a sphere will be less
than twice that of the next smaller sphere. A cover tree istanted with a hierarchy
of spheres of increasing radius, and similarity queriesklmhandled by moving through
the hierarchy to the data closest to the query. Many dataisgigctice expand at a
slow rate (where the expansion constant of the spheres dester than the number of
neighbors), so a cover tree is effective at spatial indexihpen a data set with points
has expansion constaata cover tree can be constructed@ic®nlogn) time, support
insertions and removals i®(c®logn) time, queried inO(c*?logn) time, and stored in
O(n) space. These properties allow approximate distinctioretagrated efficiently for
a rapidly changing database.

6.2 Results

In this section, we present results of our technique for tipdalistinction. We investigate
several retrieval metrics to calculate distinction andvslioe effect on overall retrieval
performance. Using a cover tree index, we compare retrigggbrmance with metrics
that requireR neighbors in relation to the time to filRineighbors.

6.2.1 Alternative Retrieval Metrics

In Section 6.1.1, we provided a qualitative analysis of sharieval metrics suggesting
that more weight should be placed on correct results nedraheof the retrieval list, and
using more retrieval results leads to greater accuracy (NI wses one match, which is
probably too sensitive). Using the priority-driven seastgorithm, we can perform a
guantitative analysis of each retrieval metric.

Our experimental method is largely similar to previous egées for the preprocessing
phase. We calculate descriptors at multiple scales andeceeaetrieval list for each
descriptor. We then evaluate the distinction of each dp&urusing a variety of retrieval
metrics that convert from a retrieval list into a score bedsweero and one and select a
subset of descriptors with high distinction scores thatvas# spread-out across a mesh.
Then, the PDS algorithm is performed with each type of disiim score.
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PSB Training Set PSB Test Set

Descriptor || K || NN | 1-Tier | 2-Tier | E | DCG || NN | 1-Tier | 2-Tier| E | DCG
Selection %) | (%) | ) | (%) | (%) | 0) | (%) | () | (%) | (%)
Random || 3 || 68.2| 39.0 | 50.0 | 27.3| 65.8 || 66.5| 36.0 | 47.7 | 27.5| 63.4
NN-1 3| 66.0| 38.2 | 49.8 | 27.0| 65.1 | 66.0| 36.1 | 47.1 | 27.1| 63.3
NN-3 3| 656| 380 | 49.8 | 27.0| 65.1 | 66.3| 36.3 | 47.2 | 27.1| 63.4
Top Ten 31| 662 39.4 | 51.1 | 276| 65.9 | 66.0| 37.6 | 49.0 | 28.2| 64.2
First Tier 31| 66.6| 412 | 52.8 | 285| 67.0 | 64.9| 37.2 | 48.7 | 27.7| 63.8
Second Tier|| 3 || 67.0| 39.5 | 51.8 | 27.4| 66.0 || 65.8| 37.9 | 49.7 | 28.2| 64.3
E Measure || 3 || 66.8| 41.3 | 534 | 28.9| 67.2 || 65.3| 37.8 | 499 | 28.4| 64.2
DCGIlg(x) || 3 || 68.3| 42.1 | 54.2 | 29.3| 67.6 | 62.8| 40.2 | 51.7 | 29.7| 65.6
DCG x 31| 682 416 | 54.0 | 29.3| 67.4 | 65.4| 39.9 | 51.4 | 295| 65.4
DCGx? 3| 67.0| 41.7 | 535 | 29.0| 67.4 | 649| 395 | 51.1 | 29.3| 64.9
DCGx* 3| 658 419 | 535 |29.0| 675 | 64.5| 39.7 | 50.8 | 29.2| 65.2
DCGx® 3| 675| 418 | 535 | 29.0| 675 | 65.7| 39.4 | 509 | 29.4| 65.2
DCGx!® | 3| 68.0| 416 | 52.8 | 29.0| 67.5| 64.6| 39.1 | 50.1 | 29.0| 64.8

Table 6.1: Twelve retrieval metrics are investigated ad ash baseline Random metric.
Generally, using a larger portion of the retrieval list imapes accuracy as well as placing
weight on the first results. Increasing the weight functiorextreme values® andx'®
tends to cause little change.

Table 6.1 shows the retrieval results on the PSB TrainingTas sets using twelve
retrieval metrics as well as a Random metric that providesszline for comparison. For
the Random metric, scores were assigned to each descrgotdomly, without consid-
ering a retrieval list. The first column shows the metric ugadcalculating distinction
scores during preprocessing, the second column shows timeabmpumber of feature
matchesk), and the retrieval results of running our PDS algorithméaiven distinction
metric are shown in the remaining columns. Note that the flastversions of DCG
increase the weight of results near the front of the rettidga There are a number
of parameters to the PDS algorithm, so we optimized the algorfor each evaluation
metric independently, and these results represent thedtest/al scores for each metric.

We generally see that increasing the number of retrievalltesonsidered by the
metric during the preprocessing phase improves retriegsalguPDS. DCG scores in-
creased from 63.4 for NN-1 to 65.6 when using the full retaidist with the DCGIg(x)
metric. The metrics NN-1, Top Ten, First Tier, Second Tiewl & Measure use only a
fixed portion of the retrieval list and weight any result withhat region equally, which
likely explains their performance. In all examples, a vensof DCG that weights results
based on position leads to better results. Among the ves®bDCG considered in this
study, the results are fairly similar, though scores desgeath extremely high weighting
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values. These results are generally higher than the bas&andom metric, though they
are slower to calculate.

6.2.2 Time for K-Nearest Neighbors

We slightly modified code provided by the authors of the caxesz [75] to support shape
descriptors. In our experiments, we built a cover tree fahescale of the descriptors
independently, so we could separate the timing analysia thee number of scales. We
used the PSB with 128 descriptors per model, consideredraadel as a query into the
cover tree, and averaged the query times.

Figure 6.2 shows the timing results for the 1.0 scale as thmbeu of neighbors
increases. First, we notice that to perform a full searcthef307 Training set models
in the database takes 35 seconds without any index stryetudethe cover tree can only
find 512 models with closest descriptors in that time becafisgerhead associated with
the structure. 32 neighbors can be found in less than fivensiscand 128 neighbors can
be found in less than ten seconds. We also merged the TranmhJest sets of the PSB
to perform a larger experiment with 1,814 models. 32 neigbloan be found in under
20 seconds and 128 neighbors in approximately 60 secondbkobYian index structure,
finding neighbors by scanning 1,814 models would take apprately 70 seconds, and
when searching for more than 128 neighbors, scanning pesviaster results. If calcu-
lating distinction with up to 128 neighbors gives a reastygbod approximation to the
true distinction values, then approximate distinction barcalculated for the 907 meshes
in the Training set in approximately 2.5 hours per scale amndhiours for four scales as
compared to 37 hours without the index.

6.2.3 Approximate Distinction versus Calculation Time

An efficient approximate version of distinction is usefut improving the preprocessing
time of calculating distinction. To evaluate our approxiia technique, we found a
small set of neighbors using a cover tree index, calculdtecapproximated version of
distinction, selected a small set of descriptors for eagietanodel based on distinction
scores, and performed a retrieval experiment. Table 6.@slseveral retrieval statistics
with a fixed size retrieval list for both the PSB Training aresfsets using 128 descriptors
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K Nearest Neighbor Search with Cover Tree Index
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Figure 6.2: Calculating distinction for a new model can befqrened efficiently using
a cover tree indexing structure on the descriptors in thaliege. Times are shown for
the 1.0 scale and 128 descriptors per model in the trainin@8& models) and full PSB
(1,1814 models), though timing results are consistentlacales. Up to 128 neighbors
can be found per model within 10 seconds when searching tBet@fhing set, and 64
neighbors can be found in approximately 32 seconds wheglsegrthe full PSB.

per model at four scales. Both the standard D@) and augmented DC& distinction
metrics are shown with the number of neighb&g¢second column) varying from two
through the full retrieval list of 906. The third column shethe time to findR neighbors
using the cover tree. For comparison, using a Random digtméunction (randomly
assigning distinction scores between zero and one) and asiy the first retrieval result
(NN) for distinction are also shown.

There are several important results shown in this experimEimst, retrieval perfor-
mance only improves slightly as R increases from zero to 30&.DCG score increases
slowly asR increases and is fairly flat, which suggests that there tie lddvantage to
using more than 64 or 128 neighbors when calculating distinc While calculating
distinction with DCGx? has slightly worse performance than DCG, ustAgan provably
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PSB Training Set PSB Test Set
Descriptor R Time NN | 1-Tier | 2-Tier E DCG NN | 1-Tier | 2-Tier E DCG
Selection sec. (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Random 0 0 68.2 | 39.0 50.0 | 27.3 | 65.8 || 66.5| 36.0 477 | 275 | 63.4
NN-1 1 3.4 66.0 | 38.2 498 | 27.0| 65.1 || 66.0 | 36.1 471 | 271 | 63.3
DCG Ig(x) 2 3.6 68.5| 40.3 518 | 28.0 | 66.8 || 658 | 37.4 48.9 | 284 | 643
DCG lg(x) 4 3.7 64.3 | 40.8 524 | 28.4| 66.,5 || 65.0 | 36.2 478 | 27.5 | 63.2
DCG Ig(x) 8 3.8 65.3 | 40.9 528 | 2855 | 66.5 || 63.7| 36.9 48.1 | 274 | 63.4
DCG lg(x) 16 4.0 645 | 411 53.0 | 28.7 | 66.7 || 63.8 | 38.6 50.7 | 28.9 | 64.7
DCG Ig(x) 32 4.5 64.8 | 414 536 | 289 | 67.1 || 63.7| 37.9 495 | 28.6 | 64.2
DCG lg(x) 64 5.8 67.0 | 421 544 | 29.3 | 67.6 || 63.6 | 38.2 50.0 | 28.8 | 64.4
DCGlg(x) || 128 | 9.3 65.7 | 422 543 | 29.3| 674 || 641 | 39.8 515 | 29.7 | 65.2
DCGlg(x) || 256 | 24.0 || 66.2 | 42.3 544 | 29.4| 67.9 || 63.7 | 40.0 51.8 | 29.7 | 65.3
DCGlg(x) || 906 | 35.0 || 68.3 | 42.1 542 | 29.3 | 67.6 || 62.8 | 40.2 51.7 | 29.7 | 65.6
DCG*? 2 3.6 68.5 | 40.3 518 | 28.0| 66.8 || 658 | 37.4 48.9 | 284 | 643
DCGXx? 4 3.7 65.0 | 40.6 52.3 | 28.4 | 66.4 || 645 | 37.7 49.6 | 28.6 | 64.2
DCGx? 8 3.8 64.7 | 40.6 525 | 284 | 66.2 || 639 | 38.1 49.8 | 28.6 | 64.3
DCG X2 16 4.0 64.8 | 40.7 529 | 284 | 66.4 || 648 | 38.1 50.3 | 28.7 | 645
DCGx? 32 4.5 65.7 | 41.0 53.1 | 28.6 | 66.7 || 645 | 38.8 50.7 | 28.8 | 64.6
DCG X2 64 5.8 66.4 | 414 53.3 | 28.8| 67.1 || 64.6 | 38.9 50.5 | 29.0 | 64.6
DCGx? 128 | 9.3 67.1 | 417 534 | 289 | 67.3 || 649 | 39.2 50.8 | 29.1 | 64.7
DCG*? 256 | 24.0 || 66.8 | 41.7 535 | 29.0| 67.3 || 64.1| 39.3 50.9 | 29.2 | 64.8
DCGx? 906 | 35.0 || 67.0 | 41.7 535 | 29.0 | 674 || 649 | 395 51.1 | 29.3 | 64.9

Table 6.2: Up to 128 nearest neighbors can be found in undesetOnds using a
cover tree index, which provides a good approximation tartiion and retrieval results
similar to using the full retrieval list.

be approximated with a shorter retrieval list, which pr@sd theoretical justification for
this approximation technique as the database size growisgldscover tree index, 128
neighbors can be found in under ten seconds per model wiibvatperformance that is
similar to the baseline technique of calculating distioctwith a full search through the
database, which requires 35 seconds. Using a descriptex,iath approximated version
of distinction can be calculated for new meshes in a few sggowhile maintaining
retrieval performance.

6.2.4 Updating Distinction when Inserting Models

Besides calculating distinction for newly inserted meshesshes in the database need to
be updated as well. If a distinction score requires a fuligeal list such as the original
version of DCG, then the entire database would need to be egdaben inserting
meshM. Using anR approximation to distinction, the only meshes in the databa
that need to be updated are those with descriptors that wavd mesiM within their
first R neighbors. We present a simple technique for updating thessary meshes and
descriptors of the database after an insertion.
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Our method is to record in an index structure all of the dedors based on the
distance to th&th neighbor needed for approximate distinction, find theest?N (N >
R) neighbors for a new mesil, and then update those meshes in the index that have
R-distance greater than the distancé\toWhen finding theN neighbors using an index
structure, distinction can be calculated fdr and distinction could be updated for those
N neighbors as well.

The main observation of our technique is that models in theldee that need to be
updated are those that havewithin their respective list oR neighbors, which we refer
to as the reverse neighbor distance. Any descriptor wittadee to their respectivie
neighbors greater than the distance from descriptors ohrives$o their Nth neighbors
potentially need to be updated. Otherwise, if their disésnwere less, they would be
within the theN neighbors oM’s descriptors. This holds because thedistance metric
on descriptors is symmetrigx; — Xo|| = ||[X2 — X1||. As an example, consider a sorted list
of Rdistanceg0.1,0.2,0.25, ...,0.4,0.41) and theN distance for a new descriptor added
to the database is 0.39. Distinction needs to be updatetidatdscriptors that constitute
theN distance as well as the descriptors in Bwdistance list that correspond to the values
0.4 and 041.

We performed an experiment to evaluate how many descripieesl to be updated
when inserting meshes. We used the PSB training set with @28rightors, considered
each model as a new query, and present timing results avkage the four scales.
For each new mesh insertel, neighbors were found using a cover tree index. The
distance to theNth neighbor was then used to index into a Red-Black tree that h
every descriptor entered by its distance toRtseighbor (creating alR approximation
for distinction). Figure 6.3 shows the results of the expemt. The horizontal axis
shows the results for various values®fvhenN is either 128 or 256, and the vertical
axis shows the percent of the database that has to be catiterupdate. If there is
sufficient time to find 256 neighbors for a new mesh, therRaagpproximation of up
to 32 can be achieved while updating less than 10% of the dsgablf 32 neighbors
provides sufficently accurate distinction, then the databzan be updated reasonably
quickly. When finding 128 neighbors for newly inserted meshe& accuracy of 16 can
be achieved while updating less than 20% of the databaske Mdrst case, nearly every
descriptor in the database may need to be updated, but wehfihéhtpractice it is only
a reasonably small percentage of the database. Of coursés tinly one technique for
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Updating the DB on Insertions
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Figure 6.3: When inserting new meshes into a database, distinscores for other
models need to be updated. Using an index structure, 128Imaig are found for each
inserted mesh, and based on the distance to the last nejghbarumber of descriptors
that need updating (to dR approximations) is plotted.

updating a dynamic database, and there are likely otheregftimethods such as batch
updating and improved indexing structures that may profudier speedup.

We have shown that there is a trade-off between the time tulzé distinction and
the resulting retrieval accuracy. High retrieval accuraey be achieved in a dynamic
database while limiting the update overhead using a cortibmaf techniques. For new
meshes added to the database, distinction can be appreximvéh a small set of nearest
neighbors found using a cover tree index. Distinction ssaan then be updated for the
rest of the database by considering the reverse neares$thwidistance.
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6.3 Conclusion

While we have not implemented an end-to-end system to updgteaddion scores while
performing retrievals in a dynamic database, we have ptedea plan for such a sys-
tem and trade-offs between time to approximate distincéind the resulting retrieval
accuracy. Good retrieval accuracy can be achieved in a dgmdatabase while limiting
the update overhead using a combination of techniques. &ermeshes added to the
database, distinction can be approximated with a small fseearest neighbors found
using a cover tree index. The approximation has a provaite bound with a modified
version of the DCG function. Distinction scores can also beatgd for the rest of the
database by considering the reverse nearest neighboncksta

Our technique of approximating distinction and using a caree index to find near-
est neighbors is a first approach to this problem. There areraklimitations of our
technique that deserve further research. While the coverttas an update time that is
logarithmic in the number of entries, shape descriptors/éoy large databases may not
meet the intrinsic dimensionality requirement. Also, oppebach for updating models
in a database using the reverse nearest neighbor distamaeasupdates to 10-20% of
the database.
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Predicting Distinction

Introduction

Performing shape-similarity retrieval with local des¢os can be quite slow when com-
paring every descriptor from the query against every dpsariof every shape in a data-
base. Previously, we demonstrated a technique for reddlsengumber of comparisons
by preprocessing a database to select distinctive desgifiir each target shape. An
alternative technique is to filter the query shape to a snetlb&distinctive descriptors,

but calculating distinction for query models is not possjldince the classification is
generally unknown.

Our goal is to predict which query shape features are distm@nd focus similarity
retrieval on those features. Our approach is to computeesdapcriptors for several
regions of each shape, map them into a space parameterizédiblikelihood, predict
their distinction based on a training set of labeled desarip and then select only the
most distinctive descriptors to be used during retrievailé®e and Funkhouser [112]).

In this chapter, we address the research problem of pradistiape distinction. Specif-
ically, we make the following contributions: 1) the defioiti of a mapping function for
shape descriptor likelihood that separates descriptdahsgoiod retrieval performance and
2) an algorithm for learning the retrieval performance oagtors from a training set.

The remainder of this chapter is organized as follows: Thet section gives an
overview of how shape distinction can be used to improvel lmadching for retrieval. In
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Section 7.1.1, we define a mapping function based on theHikedl of shape descriptors.
In Section 7.1.2, we show how to predict the retrieval perfance of each descriptor
from a training set. We review how to select a subset of dptus from a query

in Section 7.1.3. In Section 7.2, we provide empirical ressdiemonstrating that our
definition of predicted shape distinction is useful for i@tal, and we summarize our
results in Section 7.3.

7.1 Overview of the Approach

The organization of our system is shown in Figure 7.1. Dumngraining phase, a
distinction function is learned. First, a shape descrip#re created for numerous regions
of a shape. Then, the likelihood of each descriptor is evatlialong with its retrieval
performance in the classified training database. A histagoé retrieval performance
scores is built for different descriptor likelihood values

Training

>
Shape
DB

Distinction,
Function
Classification

Query
o Evaluate Select
Likelihood

Likelihood

Retrieval
valuatio

Retrieval
List

Figure 7.1: Diagram of training and query phases.

When a user presents a query shape to the system, distinetioaesvare predicted
for local descriptors on the query shape. First, local dpsms are generated across
the surface in a manner similar to the training phase. Thadilikod of each descriptor
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relative to the training database is calculated. Then, dasethe likelihood of each
descriptor and the distinction function, a distinctionuals predicted. A small set of the
k most distinctive descriptors is then selected for the quEach selected descriptor is
matched against all descriptors in the database, and tkeaybjhcts with the best sum of
match scores for ak selected query descriptors are returned as the retriesaltre

The key step in this process is the method to predict distinébr every shape descrip-
tor based on the average retrieval performance of descsiptith the same likelihood in
a training set. More formally, predicted distinction fuioct D maps descriptod with
likelihood functionmapinto a bin representing descriptors from a training databeith
the same likelihood value at We represent these training descriptors with the same
likelihood as the seE. The predicted distinction value fat is the average retrieval
performance of the descriptofse F.

D(mapd)) ZP RetrievalPerf f)

R
There are several advantages to this approach. The maimtadeais that our pre-
dicted distinction functiom is based on the retrieval performance of descriptors fran th
training database. Another advantage is ih& independent of the type of descriptor, so
it can be applied to many real-valued descriptors. Also,définthg a predicted distinction
function in terms of descriptors mapped by likelihood, weédereated a one-dimensional
parameterization. This allows for a compact represematigpredicted distinction as a
table of average retrieval scores computed from a traingtg®he query descriptor with
likelihood mapping to the highest predicted distinction t& used as the query into the

database. If multiple descriptors for the query shape wilibed for retrieval) provides
an ordering of the descriptors. Alternatively, while degtors are being calculated for the
guery shape, predicted distinction can be determined fdn dascriptor, and the process
can end when a descriptor with a sufficiently high distinctalue is found. As such, we
have a quick way to select the most distinctive descriptarafquery.

In the following sections, we investigate several resegmciblems for creating the
distinction function. We first define a likelihood model fdragpe descriptors and show
how to use a training set to evaluate retrieval performawe.then select a subset of
the most distinctive descriptors for a query shape and wseuhset during retrieval. For
comparison, we evaluate prediction functidragainst other common alternatives.
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7.1.1 Mapping from Descriptors to Likelihood

The firstissue in implementing our approach is to define a nmggpnction that clusters
shape descriptors based on their retrieval performancee challenge is to define a
mapping such that descriptors near each other in the mapgsesk swill have similar
retrieval scores and be well separated from descriptors #ifferent scores. There are
many options for a mapping function. One approach is to usdithdimensionality of
descriptors directly, though this could be a slow preditfienction. Other mapping func-
tions could use the local curvature or the descriptors’ fomss relative to a coordinate
system such as the shape’s center of mass.

We define a mapping function of shape descriptors usinghietl based on the work
of [20, 62]. A rationale for this approach is that rare featif{such as the wing-tips
and tail of the plane in Figure 7.2) may be discriminating rietrieval, while common
areas (such as the flat portions of the wings) may match numee@ategories of shapes.
Likelihood mapping has the advantage of being independéhéanderlying real-valued
feature vector used as a shape descriptor. Also, afterigescstatistics are estimated
from the training set, the likelihood function can be evédalquickly for queries.

A key question is then how to map descriptors to likelihoddgrevious work, John-
son et al. [62] used a mixture of Gaussian distributions tionede descriptor likelihoods.
However, if the distribution of our descriptors is normdien perhaps we can use a
single Gaussian distribution to achieve the same perfocenan less cost. Based on
the assumption of a normal distribution of shape descrgptibre probability density of
descriptorx can be modeled by a multivariate normal distribution [27]:

density(x) = %e‘%(x‘“)tzfl(x‘“)
(2m)2|Z|2
with meanu and covarianc& estimated from a training set adaequal to the dimension-
ality of the shape descriptor. Descriptois treated as a vector for this calculation.

Under floating point arithmetic, the exponential functionmnds to zero for descriptors
far from 1, so we work with the natural log of the density function. Wgaadirop the nor-
malization term since we are interested in the relative ijg$ descriptors as opposed
to their exact values. We refer to this functign,as the likelihood of a descriptor:
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pooyI[oIT

Figure 7.2: The likelihood of the descriptors is color coaeéth red indicating the most
likely descriptors. Notice that the likelihood of the daptors changes with the scale of
the descriptor.

p(X) O In(densityx))

() = —5 (- W'z L

In practice, we calculate distinction functidh from the training set withp as the
mapping function, thereforsmap= p. Bins partitioning the likelihood space hold the
average retrieval performance of the training set desmsptSince the distribution has a
long tail of low likelihood, a threshold is selected and atgpresents all descriptors with
likelihood below the threshold.

To evaluate this normality hypothesis, we generated 2@@¢al descriptors on 100
shapes from the Princeton Shape Benchmark (PSB). For theviexent we used a ver-
sion of the Harmonic Shape Descriptor representing a l@gabn of each shape with 512
values. We compared the distribution of these descripgasat 200,000 feature vectors
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randomly generated with distributidd(0, 1) and 512 dimensions. Since our definition
of likelihood incorporates a covariance matrix that acdsuor correlated features, we
evaluated the shape descriptors with a diagonal covariaratex for this experiment.
Figure 7.3 shows a quantile-quantile plot [51] comparirgghape descriptor distribution
against the randomly generated feature vectors. A quantidatile plot is a visualization
of the relationship between two distributions of data. Faeche+ marker, the horizontal
position indicates the likelihood value for a quantile of tandomly generated data, and
the vertical position for the maker indicates the likeliddor an equal quantile of the
measured shape descriptor data. The straight line indi¢heline of best fit between
the distributions, which corresponds to a normal distidoutwith different mean and
variance. While the shape descriptor distribution variestthe line of best fit, a normal
distribution is a reasonable model for the majority of shdescriptors.
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Figure 7.3: Quantile-Quantile plot of the likelihood of HSizscriptors against a
randomly generatel (0, 1) distribution. Ther markers indicate the relationship between
the measured and randomly generated data. A normal distnib(dashed line) provides
a good model of the shape descriptor distribution.
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7.1.2 Mapping from Likelihood to Distinction

The second issue is to define a distinction function that ndagsriptor likelihood to an
expected retrieval score. For this step, we evaluate thevat performance of every local
shape descriptor in a training set and build a histogram efame retrieval performance
as a function of likelihood.

During a training phase, each query shape is presented toevat system, and local
descriptors are calculated over the shape. As in our preweark, a retrieval list is
generated for each descriptor. Then, the quality of théeetl list can be evaluated with
any standard retrieval metric (Chapter 4,1.3). In our experits, we use the Discounted
Cumulative Gain (DCG).

For every query descriptor in the training set, we evaluaiih lits likelihood and its
DCG retrieval performance. Then, we cluster descriptors iagular bins by likelihood
and average the DCG scores for all descriptors in the saménliiosl bin. The resultis a
histogram of average DCG scores indexed by likelihood thatbsaused as a map from
likelihood to distinction.

7.1.3 Selecting Distinctive Descriptors

The next issue is to select tikemost distinctive descriptors from each query shape to
use during retrieval. Given a query shape, we compute thedihidod of every local
descriptor and map likelihood scores to distinction, drepa predicted distinction score
for each descriptor. We can then select a subset of des&ipsing the same algorithm
described in Section 5.1.2, that maintains a minimum degtanstraint while selecting
the k descriptors with the hightest predicted distincton. Anragée of our selection
technigue for a biplane query model is shown in Figure 7.4.
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Mesh Descriptors Distinction 3 Selected
Scores Descriptors

Figure 7.4: When a new query mesh is presented, shape dessapé created at random
positions, the predicted distinction scores are calcdlatesed on the likelihood of each
descriptor, and a subset of distinctive descriptors iscseteto be used during retrieval.

7.2 Results

In this section, we evaluate the utility of selecting dgstonis with predicted distinc-
tion based on likelihood and learned retrieval performange first describe the shape
database and set of shape descriptors used for our expésina@d then we address the
following research questions with empirical results.

e How well does a likelihood mapping predict distinction?
e Is predicted distinction useful for retrieval?

¢ Is our method of predicting distinction for a query shapddyathan other alterna-
tive approaches?

7.2.1 Shape Database

In this experiment, we evaluated 100 mo@eﬂsm the Princeton Shape Benchmark. We
focused on this small subset of the PSB so that we could edécal large number of
local descriptors and thoroughly evaluate a likelihoodction. The 100 shapes, evenly
divided into ten classes, represent classes that are areliff branches of the hierarchical
classification, so a diverse set of classes was included.

During the preprocessing phase, 2,000 shape descriptoescomputed over the sur-
face of the mesh across four scales (0.25, 0.5, 1.0, and2sbijcavn in Figure 7.5. Unless

1The shape classes include: biplane, spider, human with auhsdome church, dining chair,
rectangular table, ice cream, potted plant, sedan, and tank
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otherwise noted, all of the reported experiments are foradesaf 10, which generally
includes about 30% of the surface area when positioned onxtaenaty. Though our
technique is independent of the type of shape descriptogxperimented with the Har-
monic Shape Descriptor (HSD) and Shells Descriptor (SDabse these descriptors are
simple to compute, invariant to rotations (which simplifireatching), quick to compare,
and showed good performance in our previous studies.

Figure 7.5: The distinction scores for local descriptorsrahe surface is shown with red
indicating the best performance. Across multiple desoriptales, the tail region of the
plane has distinctive descriptors.

7.2.2 Mapping Functions

We first evaluated whether mapping descriptors based onm likelihood effectively
groups descriptors with similar retrieval performance.r Eeery shape descriptor, we
performed a query into the database of descriptors for tllesh@pes and evaluated the
likelihood of the descriptor and its retrieval performan&ggure 7.6 shows the resulting
average retrieval performance as vertical bars for eadlitikod value. The horizontal
axis shows the likelihood. The left vertical axis is retaéperformance as measured by
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Figure 7.6: Using a likelihood mapping of HSD descriptohg tajority of descriptors
fall within a poor retrieval group to the right. An area betmethe least likely and most
likely descriptors tends to be better for retrieval.

DCG, with 1 standard deviation error bars shown in cyan. Thgenta line indicates the
percentage of descriptors that falls within each likelithdin. Note that the axis for the
magenta line is on the right side of the plot.

The most likely bin of the histogram (with 40% of the desaig) contained descrip-
tors with nearly the worst retrieval performance. We alsonfd that grouping shape
descriptors based on their likelihood effectively clustéescriptors with similar retrieval
performances. Using a t-test, there is 99% confidence tledbith with the best perfor-
mance varies significantly from the most common bin.

For comparison, we considered alternative mappings, ssitheaamount of surface
area within the descriptor’s radius, as well as the positibtihe descriptor relative to the
shape’s center of mass, in studies explained in SectioB.4Hbwever, both alternatives
failed to group descriptors with similar retrieval scorasagell as likelihood.
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7.2.3 Retrieval Results

We next evaluated whether using distinctive local desorgptan improve retrieval per-
formance over competing methods. We performed a leavesah@xperiment where
we held out one model as a query and trained the distinctioctiion over the remaining
models (this maximizes the size of our training and test setse each of the 100 models
serves as a query once and the training set has the remaimg®els). For each query,
we matched itk most distinctive descriptors to all the descriptors of ttieeo 99 models,
and then we returned the models in a ranked retrieval list.

We adjust our shape matching algorithm to focus on shapeigscsimilarity and
neglect deformation since we are interested in inveshgatie value of predicting dis-
tinction. We take a simple approach in this study: we meatgesum of distances
between alk descriptors from quer¥ (represented a%) and the closest descriptors of
modelY:

XE-Y|= Y CXY)

whereC(XXY) is the minimalL, difference betweeXX and all descriptors of .

Although this distance function does not consider the arhotideformation neces-
sary to bring the corresponding regions of the shape ingmaient, it is fast to compute,
and it can be considered a lower-bound on more complex geignaittance functions
such as the cost function used in the priority-driven seatatly.

Comparison to Global Shape Descriptors:Figure 7.7 shows a precision recall plot
comparing retrieval with a single global descriptor veraamg 10 descriptors with high
distinction values. Higher lines indicate better retriegarformance. Also consider
Table/ 7.1 that shows timing results and DCG scores for varamgigurations. For
this experiment, ten descriptors were used from the quesindJthese ten distinctive
descriptors improves retrieval performance beyond a simgbbal descriptor. To be
fair, shape matching with a global descriptor is faster thatih local descriptors, but
the improved retrieval accuracy may be worth the extra tiorecértain applications.

Effect of selecting fewer descriptors:We also considered how retrieval performance
varies withk, the number of descriptors selected for each query modgur€i7.8 shows
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Figure 7.7: Using ten distinctive HSD descriptors improxetsieval compared to using
a single global descriptor.

Timing Results

Generate | Calculate | Compare Retrieval
Descriptors || Descriptors| Likelihood | Descriptors DCG
Global HSD 0.35s NA 0.000009s| 0.762
3 HSD 81.5s 3.7s 0.0057s 0.785
10 HSD 81.5s 3.7s 0.018s 0.794
2,000 HSD 81.5s NA 2.18s 0.796
Global SD 0.35s NA 0.000001s| 0.638
3SD 68.7s 0.1s 0.0007s 0.679
10 SD 68.7s 0.1s 0.0016s 0.718
2,000 SD 68.7s NA 0.56s 0.735

Table 7.1: Using a few distinctive features provides bettatching results than a global
descriptor and is faster than using the full set of local dptars, with a modest decrease
in retrieval accuracy. All timing results are for experint®ion a computer running the
Windows XP operating system on an Intel Pentium 4 processoring at 3 GHz with 1
GB of RAM.
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Figure 7.8: Performance decreases gradually as the numibelistinctive HSD
descriptors is reduced.

the retrieval performance when using different numbersusryg descriptors. For most
values ofk > 3, retrieval performance remains almost as high as wherguaii2,000
descriptors. This result shows that using a small numbeistindtive descriptors can
approximate the retrieval result of using the full set. Mehite, Table 7.1 shows that
comparing a query shape against a shape in the databasehesihgee most distinctive
descriptors takes onlg% of the time for using all 2,000. This combination provides a
significant time savings with minimal loss of retrieval pson.

Comparison to other selection methodsWe next evaluated how well our predicted
distinction function compared to previous techniques &esting local descriptors. We
compared against three alternative approaches:

Least Likely DB For each model, the descriptors are sorted based on thelihidod as
calculated from the distribution for the entire database.

Least Likely Model For each model, the descriptors are sorted based on thelihiod
as calculated based on the distribution of descriptorgfemntodel.
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Random The descriptors are randomly sorted, providing a basetinedmparison.

Figure 7.9 shows the retrieval performance when combiniegcdptors withk = 3.
In this plot, the vertical axis shows the percentage impmoset over Random. Results
for both SD and HSD descriptors are shown. Selectingktldescriptors with highest
predicted distinction scores outperforms Global as welRasdom, Least Likely DB,
and Least Likely Model for most recall values. It should beedothat ak increases,
the difference between all of the techniques decreases siach shape becomes fully
represented with the local descriptors.

This result demonstrates that distinctive features areigdly better for retrieval than
other approaches that focus on likelihood without consitien of how likelihood relates
to retrieval performance. While this is the only retrievadut shown for the SD descrip-
tor, our results on other experiments are consistent fdr et SD and HSD descriptors.

7.3 Conclusion

The main contribution of our work is a method for selectinguiaset of local shape de-
scriptors for each query shape to use during matching. Wedwesagriptors based on their
likelihood and calculate the average distinction for eaebctiptor within a likelihood
bin. From training data, we can efficiently predict distinatscores for descriptors from
a query through a likelihood mapping.

During our experiments, we have demonstrated several it@pigproperties of distinc-
tive descriptors. Descriptors with similar likelihoodsvieasimilar retrieval performance.
However, the least likely descriptors do not have the béseral performance — although
they are rarest, they are not the most distinctive. Rathesciibtors with intermediate
likelihoods provide the best retrieval performance, andgstiit is valuable to store a
mapping from likelihood to retrieval performance and to tis® mapping for selecting
guery descriptors during shape matching. We find that diste descriptors from the
guery can be combined to improve retrieval over using a siggpbal descriptor, and a
small subset of distinctive descriptors can approximagerétrieval performance of the
full set while decreasing retrieval times. We also find thatidctive descriptors are better
for retrieval than alternative approaches such as eitHectseg descriptors randomly or
selecting those that are least likely.
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Figure 7.9: Distinctive descriptors have better retrigpaiformance than using randomly
selected descriptors, least likely (LL) descriptors, otabgl descriptor. Precision values
are shown as improvement over randomly selected desciptor
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Chapter 8
Applications of Distinction

Finding distinctive regions on a mesh is potentially usdéul numerous graphics ap-
plications beyond shape matching. With mesh processingritigns, an importance
score over the surface of a mesh can often provide usefulnv#tion to guide which
regions should be processed/retained most fully. For el@mpgemeshing process may
allocate more polygons for important regions, and an alignimalgorithm may use a cost
function that places more weight on aligning distinctivgioas of similar meshes. In this
chapter, we consider two applications: mesh simplificatind icon generation (Shilane
and Funkhouser [113]).

8.1 Mesh Simplification

Creating a simplified version of a complex mesh is importantdany applications. For
example, consider an online parts catalog where images of/ nwls are shown on-
screen at the same time. To improve rendering times, the megghsenting each tool
might be simplified, since rendering time is related to thenhar of polygons represent-
ing a shape. However, to preserve object recognition andhasipe differences within a
large collection of meshes, the distinctive features oheaol should be simplified less
than the rest of the mesh.

Most techniques for mesh simplification have focused on mmiring the geometric
error in a simplified mesh (e.g., [41]), while others havespted to minimize errors
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in the rendered images. In particular, Lee et al. [77] usedr tBstimation of mesh
saliency to weight vertices in a quadrics-based simplificascheme. We follow this
work by weighting vertices instead with mesh distinctioorss. Since surface distinction
identifies parts that are consistent within a class andngjstsh from other classes, we
expect the simplification algorithm to preserve distinetfeatures better than other ap-
proaches. While features that are salient to the human vsysé¢m may not necessarily
be preserved with our shape-matching approach, distihgugdeatures will be preserved
while common features are simplified, which, under extremmgpbfication, will produce

a mesh caricature.

To review, quadric error simplification works by contragfian edge of a mesh with
the least quadric error. The quadric error for each vertex measure of how far that
vertex has moved during simplification. Consider all plamesdent to vertex/, where
each plang is represented by normal vect(a, b, c) and offsetd as augmented vector
(a,b,c,d). The quadric error fow is the squared distance to the set of all such incident
planespe P, E, = Vt(Zpep pp)v, and the error for an edge is the sum of the error for the
two vertices on the edge. When an edge is selected for coninatte optimal position
for the new vertex/ is selected that minimizes the error. Then, the errovfdas the sum
of the errors for the two removed vertices.

We augment this basic algorithm by adjusting the error faheedge based on how
distinctive its two vertices are. Dy is the distinction of mesh regions mapped onto vertex
v as described in Section 4.1.4, then the new error for evege eds E. = Dy, Q,, +
Dy,Qv,. To accentuate the difference between distinctive anddistmctive regions,
however, the distinction scores for the lower 65% of veligeas set to the minimal
distinction value. After each edge is collapsed, the nevexes assigned an error that
is the maximum of the two vertices collapsed so that distieategions preserve their
scores without being averaged with nearby areas.

Simplification results achieved with this method are shawfigures 8.1 and 8.2. For
the hammer example shown in Figure 8.1, descriptors wereputed for 1024 regions
at scale 0.25, and distinction was computed within the cortea database containing
four hammers among nineteen meshes representing otheeslaktools (screwdrivers,
wrenches, and shovels). For a database of tools, the digtimgg features are generally
at the functional end of the object away from the handle. Tkshfor this hammer was
then simplified from 1,700 triangles to 300 triangles (Fg8c1) using the distinction-
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Garland Mesh Saliency  Distinct Regions

Figure 8.1: Simplification results using Garland’s methoésh saliency, and distinctive

regions. Notice that more detail is preserved in the heati@hiammer by focusing on
distinctive regions.

weighted error metric. Note that the head of the hammer igribst distinctive region
of the mesh and remains well-preserved. For comparison sakshow simplifications
to the same triangle count achieved using Garland’s stdngiaadric error in the first
column and using Lee’s method of weighting the quadric dosomesh saliency in the
third column. Note that our method preserves the head ofaheer, the most distinctive
part, better than these other methods.

Figure 8.2 shows similar results achieved when simplifgimgmesh of a horse. In this
case, the head was found to be most distinctive in the confextdatabase containing
four horses among five other classes of quadrupeds (raldgt, féline, and pig). So,
when the mesh was simplified from 97K triangles to 2K triasgtiee fine details in and
around the horse’s head are well-preserved, while the bedydatly simplified. Since
the competing methods do not identify these important regmf the horse as strongly,

they provide more simplification to the head, while preseguletail in the creases of the
body.
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97K tri 2K tri 2K tri zoom

Distinct Region Simplification

Figure 8.2: Simplification results using Garland’s methoésh saliency, and distinctive
regions. Notice that details of the eyes and nose are betsepved using our method,
while using mesh saliency, areas are preserved throughetdrse’s body.
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8.2 Icon Generation

With the increasing size of 3D model collections, quicklggenting models to a user is
an ongoing problem. Whether the application is viewing alogtaf objects or presenting
retrieval results in a search engine, the important featofghapes must be shown clearly
to the user, perhaps with icons. Focusing an icon on therestbat distinguish different
classes of shapes could help increase comprehension.

Most previous work on icon generation has focused on thel@nolof viewpoint
selection, that is, positioning a camera oriented towdrdsenter of the object. azquez
et al. [126] selected the position that maximized the entithe viewed mesh, where
the optimal view would see all of the faces of the mesh withddme relative projected
area. Blanz et al. [13] studied the preferences of usersanttifthat views at an angle to
the major axis were selected. Using their own definition osimgaliency, Lee et al. [77]
selected views that maximized the visibly salient regions.

We have developed a method for generating icons that disjplaly the most distinc-
tive region of a mesh. Our algorithm is quite simple. Aftengmuting shape descriptors at
the 0.25 scale for many points on the mesh, we select theesngst distinctive position
with respect to a chosen database. We then produce an imdpge ofesh zoomed in
such that the view frustum exactly covers that most distieaegion. The rotation of the
camera is chosen by the computer automatically with one ofyrpassible heuristics or
by interactive user control.

We find that this simple method produces useful icons for nwdeses of objects. For
example, Figure 8.3 shows automatically generated icansixashapes in the Princeton
Shape Benchmark. For many meshes (such as the turtle, wrandhcar), large and
recognizable features are visible in the icon. Showing dtditilon of our approach, the
biplane icon is focused on the tail region because that redistinguished planes from
many other classes of shapes, but perhaps the tail is notdbesamantically important
feature to humans. However, it should be clearly stateddhameasure of distinction is
based on 3D shape matching not 2D image matching, and thaisdt iguaranteed that
the regions determined to be most distinctive by our methdldmatch the ones most
visually recognizable by a human. Nonetheless, we find thiasionple method based on
mesh distinction produces good icons in most cases.
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Figure 8.3: Icons showing the most distinctive surfaceaedor each mesh.

8.3 Conclusion

We have demonstrated that shape distinction can be inaigzbinto computer graphics
applications by focusing an algorithm on the distinctivgioas of a mesh. During mesh
simplification, important regions are preserved that dgtish an object from others in
the database even at greatly reduced polygon counts. Whatingrécons of numerous
models in a database, we have shown how to produce reasomages by positioning

the camera to focus on distinctive features.

Our definition of distinction has focused on shape simyaaihong 3D surface regions
and directly improves shape matching. Other approachesdbas distinction in 2D
images of 3D shapes would likely be better for visualizatamplications. Even with
these limitations, we have shown that shape distinctiondes mesh simplification and
icon generation on important regions of shapes. Our apits of distinction are first
steps — we believe that there is a wealth of new ways to utifiesh distinction in these
and other applications in computer graphics.
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Princeton Shape Benchmark

Introduction

To analyze shape distinction and perform the type of shapieval experiments shown
throughout this dissertation, a standardized benchmadiasisified shapes is needed.
Despite decades of research on 3D shape representatiomsadcling algorithms [81,
127], there still are no standard ways of comparing the tesadhieved with different
methods. Usually, computed match results are evaluateor@ding to how well they
correlate with human-generated classifications. Howaveseems that each research
group has its own database of 3D models, own classificatmms,suites of tests, and
own metrics of success. Moreover, few publications contegults of tests comparing
several approaches on the same data [19, 36, 78, 131].

In this chapter, we describe the Princeton Shape BenchrR&RY, a publicly-available
database of 3D models, software tools, and a standardizexf sgperiments for com-
paring 3D shape matching algorithms (Shilane et al. [114The database contains
1,814 polygonal models collected from the World Wide Web alagsified by humans
according to function and form. It includes a set of hieraahclassifications, separate
training and test sets, annotations for each model, andta sfiisoftware tools for
generation, analysis, and visualization of shape matat@sglts. The PSB classification
and tools were used throughout this dissertation.
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The main contribution of the Princeton Shape Benchmark eésptoposed frame-
work for comparison of shape matching algorithms. We dernrates its use by ex-
posing the differences between fourteen shape descrjpbatading D2 shape distribu-
tions [98], Extended Gaussian Images [52, 64], Shape Hetagl [3], Spherical Extent
Functions [109, 130], Gaussian Euclidean Distance Tramsf9], Spherical Harmonic
Descriptors [69], Light Field Descriptors [19], and Deptbfter Descriptors [48].

In short, we find that no single shape descriptor performs foesall classifications,
and no single classification provides the best evaluatioallathape descriptors. From
this result, we conclude that it is only possible to underdtthe differences between
shape descriptors by looking at the results of several @xeerts aimed at testing specific
properties. The Princeton Shape Benchmark provides aatadizdd framework for this
type of experimentation.

9.1 Related Work

The benefits of benchmarks have been well-demonstrated iy frelds. For example,
in computer architecture, the SPEC benchmarks [117] haee beed successfully to
compare processor performance. In text document retrifvalSmart Collection [108]
and TREC database [123] provide standard benchmarks. Ipu@mvision, benchmarks
are available for handwriting recognition (e.g., [76])céarecognition (e.g., [22]), and
several other image analysis tasks [25]. There are evebalsta for specific types of 3D
data — e.g., computer-aided design parts[31, 61] and pretaictures [10].

Unfortunately, no standard benchmarks are available fdcimag of 3D polygonal
models representing a wide variety of objects. Insteaders¢vesearch groups have
independently gathered databases of 3D models, generfiez@mt classifications, run
different sets of tests, employed different metrics to diyaperformance, and compared
different shape descriptors.

Table 9.1 shows statistics for several 3D model databasesntly in use for shape
matching experiments. For each database, the table shewstéhnumber of 3D models
in the database, the number of classes, the number of mddelbdave been classified,
and the percentage of classified models in the largest clas, estimates of what
percentage of classified models belong to different objgoed (vehicle, household,

100



Chapter 9. Princeton Shape Benchmark

animal, plant, architecture) appear in Table 9.2. The bottow of each table shows
statistics for the Princeton Shape Benchmark for comparis@om these statistics, we
make several observations.

Num Num Num Largest

Database Models | Classes Classified| Class
Osada [98] 133 25 133 20%
MPEG-7 [139]|| 1,300 15 227 15%
Hilaga [49] 230 32 230 15%
Technion [78] | 1,068 17 258 10%
Zaharia [140] 1,300 23 362 14%
CCCC[130] 1,841 54 416 13%
Utrecht [122] 684 6 512 47%
Taiwan [19] 1,833 47 549 12%
Viewpoint [36] | 1,890 85 1,280 12%
PSB 6,670 161 1,814 6%

Table 9.1: Summary of previous 3D model databases.
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Osada[98] || 47% | 12% | 12%| 0% | 24% | 0%
MPEG-7 [139] | 12% | 0% | 14% | 13%| 0% | 7%
Hilaga [49] 12% | 0% | 23% | 2% | 12% | 0%
Zaharia[140] || 35% | 0% | 7% | 7% | 11%| 0%
CCCC[130] | 33%| 13% | 21%| 5% | 25% | 0%
Utrecht [122] || 73% | 0% | 0% | 0% | 0% | 0%
Taiwan [19] || 44%| 13% | 0% | 0% | 36% | 0%
Viewpoint [36] | 0% | 42% | 1% | 0% | 50% | 0%
PSB 26% | 11% | 16%| 8% | 22%| 6%

Table 9.2: Types of objects found in previous 3D model databgshown as percentages
of classified models).

First, most previous databases contain a small number s$ifiled models. For ex-
ample, the Osada database [98], which has been used inreepesiby several research
groups (e.g., [122]), contains only 133 models. Some of tlapmpear in classes with
only 2 other models, which makes it difficult to acquire gttially significant results in
classification experiments. In other cases, the total nuwib@D models in the database
is quite large £ 1800), but only a small fraction of them are included in thaesslfication.
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For instance, the MPEG-7 database [139] contains 1,300 VRiddels in all. But, only
227 (18%) of them are included in labeled classes, while #s majority of models are
lumped into a “miscellaneous” class that provides only Kggound noise” during shape
matching experiments. To our knowledge, the only set of nlwa@ 1000 classified 3D
polygonal models used for shape matching experiments igihvepoint database [128],
as described in [36]. However, it is not available to the gahgublic, and it is expensive
to purchase, which makes its use as a standard benchmaikpiatic.

Second, most 3D model databases contain a limited rangg@étdigpes and/or are
dominated by a small set of object classes (see Table 9.2)example, the Viewpoint
database [36] contains only household objects, and thechitdatabase [122] contains
mainly vehicles among its classified models. Even databisd¢have a wide variety
of objects often contain a few classes with a disproportegdarge number of models.
For example, the MPEG-7 database contains 50 (22%) modaiesenting letters of
the alphabet among its 227 classified objects, and the Osddbake contains 27 (20%)
airplanes out of 133 objects. Of course, these large clasgasicantly bias (micro-)
averaged retrieval results.

Third, current 3D model classifications have significantffedent granularities. Some
databases have classes with large, diverse sets of olgegts'Kitchenware” [49]), while
others have very small and specific classes (e.g., “mottasydth 3 wheels” [140]). For
example, the National Taiwan University database [19] haim@le class containing all
types of seats (dining room chairs, desk chairs, patio shawofas, recliners, benches,
and stools), while the Viewpoint database [36] has a sepaiatss for each specific
type. This difference in classification granularity can éan impact on retrieval and
classification results, as significant differences betwe#rteval methods may be masked
by classifications that are too coarse or too fine.

Finally, many 3D databases have classifications that mixtfom and form. For
example, the MPEG-7 database contains several classeagrtlgi objects with similar
semantics (e.g., “buildings”), while others group objebtsed solely on their shapes
(e.g., the “aerodynamic” class contains fish, helicoptarg airplanes). Similarly, the
Hilaga database [49] contains some classes correspondisglgto functions (e.g., “Ma-
chine”) and others corresponding directly to shapes (&tjck”, “Donut”, “Sphere”, and
“Many Holes”). Results achieved over these disparate ¢lgess are averaged together,
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making it difficult to draw specific conclusions about why amden a shape matching
method works well.

9.2 Overview

The Princeton Shape Benchmark provides a repository of 3Defs@and software tools
for comparing shape matching algorithms. The motivatiomoigromote the use of
standardized data sets and evaluation methods for resgarmhtching, classification,
clustering, and recognition of 3D models.

Version 1 of the benchmark contains a database of 1,814ifa@as8D models col-
lected from 293 different Web domains. For each 3D modelrethe an Object File
Format (.off) file with the polygonal surface geometry of thedel, a textual information
file containing meta-data for the model (e.g., the URL fronewte it came), and a JPEG
image file containing a thumbnail view of the model. We expaiger databases to be
available in future versions.

In addition to the database of 3D models, the benchmark ges\guidelines regarding
its use. For instance, the 3D models are partitioned equabytraining and test sets. The
benchmark requires that algorithms be trained only on thieitrg set (without influence
of the test set); and then, after all exploration has beenpteted and all algorithmic
parameters have been frozen, results should be reporteaperiments with the test set.

In order to enable evaluation of shape matching algorithongdtrieval and classi-
fication tasks, the benchmark includes a simple mechanisspéeoify partitions of the
3D models into classes. In Version 1, we provide a hieraattulassification for 1,814
models (907 from the training set and 907 from the test set)itsAfinest granularity,
this classification provides a tight grouping of objectsdshen both function and form.
For example, there is a class for “birds in a flying pose” in test database. Yet, it
also includes a hierarchy of classes that reflects prim#réyfunction of each object and
secondarily its form. Continuing with the example, there @dasses for “birds”, “flying
creatures,” and “animals” at coarser levels of the hienardtiote that every level of the
hierarchy is useful for a different type of evaluation.

Since arbitrarily many semantic groupings are plausibteafgiven set of 3D models,
the benchmark provides a flexible mechanism for specifyindfipie classifications. It
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also includes a method for averaging over queries for moadls certain geometric
properties (e.g., “roughly spherical”). The differencesnatching results achieved with
respect to these different classifications and queriesl yrgeresting insights into the
properties of the shape retrieval algorithms being testegl (algorithm X works better
on round objects, but worse on elongated ones), and the oechlbesults of multiple
classifications provide a much more complete view of theed#fiices between competing
algorithms.

To standardize analysis of shape matching experimentisegiué benchmark includes
free source code for evaluation and visualization of 3D rhatsching scores. For in-
stance, there are programs for: 1) generating precisioalrplots, 2) computing several
retrieval statistics (e.g., nearest neighbor, 1st and Brddiscounted cumulative gain,
etc.), 3) producing color-coded similarity matrices, anddnstructing web pages with
thumbnails of the best ranked matches for a given query maddhelse programs provide
a standard toolbox with which researchers can comparetsasihdependently run tests
in a consistent manner.

In summary, the benchmark provides a flexible framework émnparing shape match-
ing algorithms. The remainder of the chapter describes métiye design decisions and
issues that were addressed during its construction. Sgebyfidetailed descriptions of
how our database was acquired, classifications were catetiuand models were anno-
tated appear in Sections 9.3-9.5. Section 9.6 describesaftware tools for evaluating
matching results, and Section 9.7 presents experimersidltseobtained during tests with
several different shape descriptors, classifications, datdbases. Finally, Section 9.8
summarizes our finding.

9.3 Acquisition

The 3D models in the PSB were acquired from the World Wide Wethtee automated
crawls over a two year period. This section describes hoywwere found, processed to
remove duplicates, converted to a common file format, androrgd to form a database.

The first crawl was performed in October 2001 and targeted \ RMs only. It began
with the results of search engine queries for web pagesnignko files with extension
“.wrl” and “.wrz” and then crawled outward from those pagesaibreadth-first fashion.
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The crawl ran for 48 hours and downloaded 22,243 VRML fileafy185 different Web
sites [87].

The second crawl was executed in August 2002 and targeted VR Studio,
Autocad, Wavefront, and Lightwave objects, both in plamk$ as well as in compressed
archive files (“.tar” and “.zip”). Unlike VRML, the other fonats were not designed to
be used on the web and often are contained within compressieies, so they typically
cannot be located simply by file name extension. Insteadebend crawler searched for
them using a focusing method, where web sites were crawlpdarnty order according
to the number of pages already downloaded from that siteag@ing 3D models. The
crawl ran for 2 days and 16 hours and resulted in 13,217 3D inidde and 5,539
compressed archive files containing 3D models. After expansf archive files, there
were 20,084 model files retrieved from 455 different siteg [8

The third crawl was executed in August 2003 and targeted mmddam known 3D
model repositories (e.g., 3dcafe.com and avalon.viewmam). The crawl ran for ap-
proximately 5 hours and resulted in 1,908 3D models in a tyaaéformats, downloaded
from 16 different web domains.

These three crawls provided 44,235 model files. We ignor@83pf the models
found in the second crawl because they had URLs in common aniés found in the
first crawl. Another 6,863 models were thrown out becausg tioatained no geometry
or could not be parsed by our conversion software [97]. Wéedul5,035 more models
because their shapes were exact-duplicates or near-dtgdiof some other model in
the database. For example, we found multiple copies of theesaodel at different
URLs (e.g., 483 spheres), multiple levels of detail for tlane object, and different
colors/textures for models with the same geometry. Findlly904 models were elim-
inated manually because they came from application donwitsde the scope of our
benchmark. Specifically, we kept only models of “every-déyeots,” and threw out
molecular structures, CAD parts, data visualizations, dsdract geometric shapes. The
remaining 3D models form the database for our shape benéhrmeall, there are 6,670
unique models acquired from 661 distinct Web domains.

All of the remaining models were converted to the Object Fidemat (.off), a simple-
to-parse polygonal format designed by the University of Misota Geometry Center [124].
During the conversion process, all color, texture, and sggaph information was elim-
inated, leaving a single indexed face set comprising a fisedices (x,y,z) and a list of
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polygons (v1, v2,...). We chose to make only these simpls &lailable in the first ver-
sion of the benchmark to focus matching experiments on geanseirface information
only.

9.4 Classification

The PSB benchmark splits the 3D model database into traamddest sets and partitions
both test sets into classes (e.g., telephones, dogs, dtat)céan be used as labels in
shape matching, retrieval, and classification experiméntthis section, we first explain
how the models are partitioned into classes. Then, we dishaw training and test
sets were formed. Finally, we describe the mechanisms ¢geadvior creating alternative
classifications.

9.4.1 Base Classification

We manually partitioned the models of the benchmark datalvas a fine-grained set of
classes. During this process, our goal was to create ctustesbjects primarily based
on semantic and functional concepts (e.g., furniture abte}aand secondarily based
on shape attributes (e.g., round tables). We use the hiecaimature of this grouping
strategy to form classifications at multiple granularities

The steps used to produce doeise classificatioproceeded as follows. First, we
rendered thumbnail images for all 6,670 3D models and sttirech in a single direc-
tory of a file system. Then, two students used Windows Expltwrereate directories
representing object classes and to move the thumbnail irfiilggeinto the directories
to indicate membership in the class. This process was ex@dtdratively until each
class represented an atomic concept (e.g., a noun in thergicg) and could not be
partitioned further. Then, where appropriate, a few clasgere further partitioned based
on geometric attributes (e.g., “humans with arms out” vefswmans with arms down”).
No textual information besides an integer model ID was a#d to the students (e.qg., file
names were hidden). So, we believe the students were netldigsauxiliary information
during the formation of classes. The result of this proceas @& set of 1,271 classes
partitioning the 6,670 models.
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Many of the classes contained too few models to be includedaaningful experi-
ments. For example, there were only two drill presses arektfire hydrants. So, we
manually selected 161 classes, each containing at leastrfodels, to be included in
the first version of the benchmark (the other classes willnoduded in later versions).
We also eliminated models from the largest classes (e.tefigets and humans) so that
every class contains at most 100 member8% of the classified models). The net result
is our base classification, a set of 161 classes containiot@bdf 1,814 models.

9.4.2 Training and Test Sets

We then partitioned the models of the base classificatiantnaining and test sets. Our
goal was to split the models as evenly as possible, produgiogets with similar types
of classes, yet without splitting small classes, and withmasing either set with a large
number of models of the same type. To meet these goals, wedplpé following steps.
First, all classes with 20 or more models were split equadileen the training and test
sets (models downloaded from the same domain were evertfibdied). Then, smaller
classes were alternately placed in the training and testiset manner that ensured that
both had a balanced number of classes for every object typatép animals, vehicles,
etc.). Finally, we manually swapped a few small classes athie training and test sets
have an equal number of models. The final result is two set$astified 3D models,
one with 907 models partitioned into 90 classes to be usetldiming the parameters of
shape matching algorithms, and the other with a differeitr@@dels partitioned into 92
classes to be used for comparison with other algorithmsail@et lists of the classes in
both sets appear in Table 9.3.
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Training Test
aircraft/airplane/F117 4 aircraft/airplane/biplane 14
aircraft/airplane/biplane 14 || aircraft/airplane/commercial 11
aircraft/airplane/commercial 10 || aircraft/airplane/fightefjet 50
aircraft/airplane/fightejet 50 || aircraft/airplane/glider 19
aircraft/airplane/multifuselage 7 aircraft/airplane/stealtbhomber 5
aircraft/balloonvehicle/dirigible 7 aircraft/balloonvehicle/hotair_balloon | 9
aircraft/helicopter 17 || aircraft/helicopter 18
aircraft/spaceship/enterpridi&e 11 || aircraft/spaceship/enterpridié&e 11
aircraft/spaceship/spachuttie 6 aircraft/spaceship/flyingaucer 13
aircraft/spaceship/xving 5 aircraft/spaceship/satellite 7
animal/arthropod/insect/bee 4 aircraft/spaceship/tiéighter 5
animal/arthropod/spider 11 || animal/arthropod/insect/ant 5
animal/biped/human 50 || animal/arthropod/insect/butterfly 7
animal/biped/human/armsut 21 || animal/biped/human 50
animal/biped/trex 6 animal/biped/human/armsut 20
animal/flying creature/bird/duck 5 animal/biped/human/walking 8
animal/quadruped/apatosaurus 4 animal/flying creature/bird/flying 14
animal/quadruped/feline 6 || animall/flyingcreature/bird/standing 7
animal/quadruped/pig 4 || animal/quadruped/dog 7
animal/underwatecreature/dolphin | 5 animal/quadruped/horse 6
animal/underwatecreature/shark 7 animal/quadruped/rabbit 4
blade/butcheknife 4 animal/snake 4
blade/sword 15 || animal/underwatecreature/fish 17
body part/brain 7 animal/underwatecreature/seaurtle 6
body part/face 17 || blade/axe 4
body part/head 16 || blade/knife 7
body part/skeleton 5 blade/sword 16
body._part/torso 4 body_part/face 16
bridge 10 || bodypart/hand 17
building/castle 7 body part/head 16
building/domechurch 13 || body part/skull 6
building/lighthouse 5 book 4
building/romanbuilding 12 || building/barn 5
building/tent/multiple_peaktent 5 building/church 4
building/two_story_home 11 || building/gazebo 5
chesspiece 17 || building/onestory_home 14
chest 7 building/skyscraper 5
city 10 || building/tent/onepeaktent 4
computer/laptop 4 building/twa_story_home 10

Continued on next pag
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Table 9.3 — continued from previous page

Training Test
display.device/tv 12 || chessset 9
door/doubledoors 10 || city 10
fantasyanimal/dragon 6 computer/desktop 11
furniture/bed 8 display device/computemonitor 13
furniture/desk/deskvith_hutch 7 door 18
furniture/seat/chair/dining 11 || eyeglasses 7
furniture/seat/chair/stool 7 fireplace 6
furniture/seat/couch 15 || furniture/cabinet 9
furniture/shelves 13 || furniture/desk/school 4
furniture/table/rectangular 26 || furniture/seat/bench 11
furniture/table/round 12 || furniture/seat/chair/dining 11
furniture/tableand.chairs 5 || furniture/seat/chair/desk 15
gun/handgun 10 || furniture/shelves 13
gun/rifle 19 || furniture/table/rectangular 25
hat/helmet 10 || furniture/table/round/singléeg 6
ice_.cream 12 || geographicmap 12
lamp/desk 14 || gun/handgun 10
liquid_container/bottle 12 || hat 6
liquid_container/mug 7 hourglass 6
liquid_container/tank 5 ladder 4
liquid_container/vase 11 || lampl/streetlight 8
microchip 7 liquid_container/glassvith_stem 9
microscope 5 liquid_container/pail 4
musicalinstrument/guitar/acoustic | 4 liquid_container/vase 11
musicalinstrument/piano 6 mailbox 7
phonehandle 4 musicalinstrument/guitar/electric 13
plant/flowerwith_stem 15 || newtoniantoy 4
plant/pottedplant 25 || plant/bush 9
plant/tree 17 || plant/flowers 4
plant/tree/barren 11 || plant/pottedplant 26
plant/tree/palm 10 || plant/tree/barren 11
seavessel/sailboat 5 plant/tree/conical 10
seavessel/sailboat/sailboatith oars| 4 | satellitedish 4
seavessel/ship 10 || seavessel/sailboat/largsail boat 6
shoe 8 || seavessel/ship 11
sign/streetsign 12 || seavessel/submarine 9
skateboard 5 sign/billboard 4
snowman 6 sink 4

Continued on next page
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Table 9.3 — continued from previous page

Training Test
swingset 4 slot machine 4
tool/screwdriver 5 staircase 7
tool/wrench 4 tool/lhammer 4
vehicle/car/antique 5 tool/shovel 6
vehicle/car/sedan 10 || umbrella 6
vehicle/car/sports 19 || vehicle/car/race 14
vehicle/cycle/bicycle 7 || vehicle/car/sedan 10
vehicle/military tank 16 || vehicle/coveredvagon 5
vehicle/pickuptruck 8 vehicle/cycle/motorcycle 6
vehicle/suv 4 vehicle/monstetruck 5
vehicle/train 7 vehicle/semi 7
watch 5 vehicle/suv/jeep 5
wheell/tire 4 vehicle/train/traincar 5
wheel 4
wheel/gear 9
Total 907 | Total 907
Overall Total = 1,814

Table 9.3:The PSB base classification.

9.4.3 Alternative Classifications

There are many possible classifications for a given set of 8dats. For instance, one
person might group models based primarily on function (ékg our base classification),
while another might group them according to how the objesanstructed (e.g., man-
made versus natural), where they are used (e.g., office vé@me versus outdoors), or
who uses them (e.g., adults versus children). We believdtibaesults of shape retrieval
experiments for multiple classifications are interestasgthey provide information about
the circumstances in which each shape matching algorithfiorpes well/poorly. The
cumulative results of experiments with multiple classtii@as can provide a more com-
plete picture of the differences between competing shapgehmg algorithms than does
any single classification alone.
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To support multiple classifications, the benchmark incbuaesimple language in which
researchers can define new classifications. Briefly, an ASfellidiused to specify a
hierarchy of class names and to indicate which models bedoregch class. We have
used this language to create three alternatives to the bessafication, each representing
a different granularity of grouping. For instance, a coalsasification merges all types
of tables into a single class, a coarser classification nseatjéurniture into one class, and
the coarsest partitions objects based only whether thepmaremade or appear naturally
in the real world. We use these alternative classificationsompare shape matching
algorithms in Section 9.7.

In the future, we expect that other researchers will use @nguage to define new
classifications that we did not anticipate, thereby addintipé suite of experiments that
can be used to compare shape matching algorithms.

9.5 Annotation

The benchmark includes several types of auxiliary infororafor each model in the
database. For instance, the following meta-data is providenelp identify the source
and object type for each model:

e Model URL: the Web address where the model was found on the Web. The last
part of the URL provides the model’s file name, which may bdulder semantic
labeling. More importantly, the URL can be used to deterniiveeowner of the
model for assigning credit and attribution.

e Referring URL: the address of the Web page containing a link to the model. The
textual anchor and context on this page may be useful foaetxry information
about the model (if the Web page still exists).

e Thumbnail image: an image of the model rendered with colors and textures as
seen from a plausible viewpoint. This view of the model withis surface
attributes is useful for seeing what the model looked likésroriginal form.

In addition, the benchmark lists several geometric attebdor each 3D model (e.g.,
number of polygons, average dihedral angle, averaged deptiplexity over all views,
etc.), which are useful for identifying interesting sulsset the database. While these
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attributes could be derived from the models, and thus areestrat redundant, they
provide a standardized set of values that can be used to #weidsk that differences
in implementations can cause differences in matching t&skbr instance, the following
attributes provide useful data for normalizing 3D modelsdiferences in translation,
scale, and orientation:

e Center of mass:the averagéx,y, z) coordinates for all points on the surfaces of
all polygons. These values can be used to normalize moddisafeslations.

e Scale: the average distance from all points on the surfaces of &igons to the
center of mass. This value can be used to normalize modeisdivopic scales.

e Principal axes: the eigenvectors (and associated eigenvalues) of theiaoear
matrix obtained by integrating the quadratic polynomiqls¢;, with x; € {x,y, z},
over all points on the surfaces of all polygons. These axedeaised to normalize
models for rotations.

9.6 Evaluation

The benchmark includes several tools for evaluating andpewoimg how well shape
matching algorithms work. These tools assume that evenyi#thgn being evaluated can
compute the “distance” between any pair of 3D models, prodygositive values that are
small if the models are similar and larger for pairs with dezahape differences. So, for
a given shape matching algorithm and database of 3D modelsawcompute distance
matrix, where elementi, j) represents the computed distance between modeisd |.
Similarly, for any given modeQ, we can rank the others from best to worst according to
their computed distances fro@ Thisranked listcorresponds to the retrieval result that
would be returned ifQ were provided as a query to a shape-based search engine.

Given a classification and a distance matrix computed withstwape matching algo-
rithm, a suite of PSB benchmark tools produces statistids/esualizations that facilitate
evaluation of the match results (i.e., how many of the togkednmodels are from the
same class as the query). We include detailed descriptmisas the reader can get a
feel for the tools available in the benchmark and can undedsthe results presented in
Section 9.7.
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e Best matches:a web page for each model displaying images of its best maitohe
rank order. The associated rank and distance value appelakg bach image, and
images of models in the query model’s class (hits) are hyhitdid with a thickened
frame. This simple visualization provides a qualitativaletion tool emulating
the output of many 3D model search engines (e.qg., [19, 29786102, 120, 130,
133, 142)).

e Precision-recall plot: a plot describing the relationship between precision and
recall in a ranked list of matches. For each query model isstlaand any number
K of top matches, “recall” (the horizontal axis) represemis tatio of models in
classC returned within the tog matches, while “precision” (the vertical axis)
indicates the ratio of the tod matches that are members of cl&s A perfect
retrieval result produces a horizontal line across the fajhe plot (at precision =
1.0), indicating that all the models within the query obfectass are returned as
the top ranked matches. Otherwise, curves that appeagdhift represent superior
retrieval results (see Figure 9.2).

e Distance image: an image of the distance matrix where the lightness of each
pixel (i, j) is proportional to the magnitude of the distance betweeneaisodand
j [98]. Models are grouped by class along each axis, and lireesddled to separate
classes, which makes it easy to evaluate patterns in thenmegalts qualitatively
—i.e., the optimal result is a set of darkest, class-sizedWsl of pixels along the
diagonal indicating that every model matches the modelsimits class better than
ones in other classes. Otherwise, the reasons for poor medcitts can often be
seen in the image — e.g., off-diagonal blocks of dark pixaiisdate that two classes
match each other well.

e Tierimage: an image visualizing nearest neighbor, first tier, and sétien match-
es [98]. Specifically, for each row representing a query withdel j in a class with
|IC| members, pixeli, j) is: (a) black if model is modelj or its nearest neighbor,
(b) red if model is among theC| — 1 top matches (the first tier), and blue if model
is among the 2 (|C| — 1) top matches (the second tier). As with the distance image,
models are grouped by class along each axis, and lines aed &mldeparate classes.
This image is often more useful than the distance image Isecte best matches
are clearly shown for every model, regardless of the magdeitof their distance
values. The optimal result is a set of black/red, classdsitecks of pixels along
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the diagonal indicating that every model matches the maoalighsn its class better
than ones in other classes. Otherwise, more colored pixéfeiclass-sized blocks
along the diagonal represents a better result (see Figliye 9.
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Figure 9.1: Tier image visualizing nearest neighbor (b)adkst tier (red), and second
tier (blue) computed by matching every model (rows) withrgwaher model (columns)
in the base classification of the test set using the LFD dlgori- separating lines and
labels indicate classes. Note that the full image is 907X@@els,” and only a small
portion is shown.

In addition to these qualitative visualizations, the benalk includes tools for com-
puting quantitative statistics for evaluation of matchutess Usually, the statistics are
summarized by averaging over all query models (micro-ay&y,awith the query model
removed from the matching results. However, our tools alggpert output of separate
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statistics for each query model, averages for each clasayenage of the averages for
each class (macro-average), and averages over any usgiesust of query models.
As will be shown in Section 9.7.4, this last feature is patacly useful for studying the
guality of matches for models having specific propertiesecHrally, our tools compute
Nearest Neighbor, First Tier, Second Tier, E-Measure, aisddinted Cumulative Gain,
which are described in Section 4.1.3.

The Discounted Cumulative Gain [78] metric incorporatesehgre query result list
in an intuitive manner, so we typically use it to summarizeutess when comparing
algorithms. More specifically, we usually look at the “notimad DCG,” which scales
the DCG values down by the average over all algorithms testddhifts the average to
zero:

NormalizedCGp = &
DCG-1
where DCG, is the DCG value computed for algorithdy, and DCG is the average
DCG value for all algorithms being compared in the same erpamt. Positive/negative
normalized DCG scores represent above/below average perfme, and higher numbers

are better (see the rightmost column of Table 9.4).

9.7 Results

In order to investigate the utility of the proposed benchHmave used it to compare
fourteen shape matching algorithms recently describeldatiterature. While the results
of these experiments are interesting in their own right,ftes of our investigation is
whether the database, classifications, annotations, aldaton tools provided by the
benchmark are useful for understanding the differencewdst the algorithms. Our
hypothesis is that we might learn something about the dlgos that would have been
difficult to discover without the benchmark tools.

For precision-recall plots, the precision for each modeic(o) or class (macro) is averaged using
linear interpolation over the recall rane/|C|, 1], if there areC models in a class.
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9.7.1 Shape Descriptors

The fourteen shape matching algorithms are all similar &t they proceed in three steps:
the first step normalizes models for differences in scale possibly translation and
rotation; the second step generateshape descriptofor each model; and the third step

computes the distance between every pair of shape desstipting theil, difference
unless otherwise noted. The differences between the #igwilie mainly in the details
of their shape descriptors:

D2 Shape Distribution (D2). a histogram of distances between pairs of points on
the surface [98].

Extended Gaussian Image (EGI)a spherical function giving the distribution of
surface normals [52].

Complex Extended Gaussian Image (CEGl)a complex-valued spherical func-
tion giving the distribution of normals and associated ralrdistances of points on
the surface [64].

Shape Histogram (SHELLS) a histogram of distances from the center of mass
to points on the surface [3]. This is similar to the Shells &gxor used in other
chapters.

Shape Histogram (SECTORS) a spherical function giving the distribution of
model area as a function of spherical angle [3].

Shape Histogram (SECSHEL) a collection of spherical functions that give the
distribution of model area as a function of radius and spgla¢angle [3].

Voxel: a binary rasterization of the model boundary into a voxed.gr

Spherical Extent Function (EXT): a spherical function giving the maximal dis-
tance from center of mass as a function of spherical angie][10

Radialized Spherical Extent Function (REXT). a collection of spherical func-
tions giving the maximal distance from center of mass as atfon of spherical
angle and radius [130].

Gaussian Euclidean Distance Transform (GEDT) a 3D function whose value
at each point is given by composition of a Gaussian with thelie@an Distance
Transform of the surface [69].
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e Harmonic Shape Descriptor (HSD) a rotation invariant representation of the
GEDT obtained by computing the restriction of the functiorcbncentric spheres
and storing the norm of each (harmonic) frequency [69].

e Fourier Shape Descriptor (FSD)[69]: similar to the HSD, but the amplitude of
every spherical harmonic coefficient is stored — it is simitathe Harmonic Shape
Contexts of [34].

e Light Field Descriptor (LFD) : a representation of a model as a collection of
images rendered from uniformly sampled positions on a vighese. The distance
between two descriptors is defined as the minimupdifference, taken over all
rotations and all pairings of vertices on two dodecaheds@). [We use the original
implementation provided by Chen et al. without modification.

e Depth Buffer Descriptor DSR740 (DBD) a collection of depth buffer images
captured from orthogonal parallel projections. Imagesstoeed as Fourier co-
efficients of the lowest frequencies, and differences betweourier coefficients
provide a measure of object dissimilarity [48]. We use Défaanic’s implemen-
tation of this method [129] without modification.

All computations were performed on a Windows PC with a Pent#uCPU running
at 2.00 GHz and 512 MB of memory, except the LFD and FSD contiputa The LFD
was executed on a Windows PC with Pentium 4 CPU running at 2.2 th 256 MB
RAM and an NVIDIA GeForce 2 MX graphics card, and the FSD wawngated on a
x86.64 Linux server running at 2.2 GHz with 16 GB RA[M

2 Every model was normalized for size by isotropically reBait so that the average distance from
points on its surface to the center of mass is 0.5. Then, fdesktriptors except D2 and EGI, the model was
normalized for translation by moving its center of mass ®dhigin. Next, for all descriptors except D2,
SHELLS, HSD, and LFD, the model was normalized for rotatigraligning its principal axes to the, y-,
andz-axes. The FSD only required alignment of thaxis. The ambiguity between positive and negative
axes was resolved by choosing the direction of the axes str#harea of the model on the positive side of
thex-, y-, andz-axes was greater than the area on the negative side [28].

Every spherical descriptor (EGI, CEGI, Sectors, etc.) wamputed on a 64 64 spherical grid and
then represented by its harmonic coefficients up to orderSifilarly, every 3D descriptor (e.g., Voxel
and GEDT) was computed on a 6464 x 64 axial grid, translated so that the origin is at the point
(32,32,32), scaled by a factor of 32, and then represented by thirtysp¥eerical descriptors representing
the intersection of the voxel grid with concentric sphelrafzells. Values within each shell were scaled by
the square-root of the corresponding area and represegtdtels spherical harmonic coefficients up to
order 16. Histograms of distances (D2 and Shells) were dtwith 64 bins representing distances in the
range[0, 2]. All descriptors, except LFD and DBD, were scaled to hayéorm equal to 1.

The LFD comprises 100 images encoded with 35, 8-bit, coeffisito describe Zernike moments and
10, 8-hit, coefficients to represent Fourier descriptors.
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9.7.2 Base Classification Results

In our first experiment, we used each of the fourteen shapemmagt algorithms to
compute the distances between all pairs of models in thesttsand analyzed them
with the benchmark evaluation tools to quantify the matgtperformance with respect
to the base classification (the training set was not useddoring any of the algorithms).
Figure| 9.2 shows a precision-recall plot showing the maveraged retrieval results
achieved for this experiment, and Table 9.4 shows microemes storage requirements,
processing times, and retrieval statistics for each algari We found that the micro
and macro-average gave consistent results, and we de@dae@sent micro-averaged

statistics.
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Figure 9.2: Precision-recall curves computed for fourtelespe descriptors for tests with

the PSB base classification.

The Depth Buffer Descriptor encodes six images with 8-kygralues encoding depth from the viewing
plane. The Fourier transform is applied to the images andtlogv-frequency values are recorded as a

feature vectork=73 by default).
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Storage Timing Discrimination

Shape Size Generate| Compare Nearest First | Second E- Normalized
Descriptor || (bytes) || Time(s) | Time (s) Neighbor |  Tier Tier Measure| DCG DCG
DBD 1,752 0.55 0.000018 66.5% | 40.3% | 51.2% | 29.5% | 66.3% 21.3%
LFD 4,700 3.25* 0.001300* 65.7% | 38.0% | 48.7% | 28.0% | 64.3% 17.7%
FSD 32,768 1.82* 0.000450* 63.1% | 35.6% | 455% | 26.7% | 62.6% 14.6%
REXT 17,416 2.22 0.000229 60.2% | 32.7% | 43.2% | 25.4% | 60.1% 10.0%
HSD 2,184 1.69 0.000027 55.6% | 30.9% | 41.1% | 24.1% | 58.4% 6.9%
GEDT 32,776 1.69 0.000450 60.3% | 31.3% | 40.7% | 23.7% | 58.4% 6.9%
EXT 552 117 0.000008 54.9% | 28.6% | 37.9% | 21.9% | 56.2% 2.8%
SECSHEL || 32,776 1.38 0.000451 54.6% | 26.7% | 35.0% | 20.9% | 54.5% -0.3%
VOXEL 32,776 1.34 0.000450 54.0% | 26.7% | 35.3% | 20.7% | 54.3% -0.6%
SECTORS 552 0.90 0.000014 50.4% | 24.9% | 33.4% | 19.8% | 52.9% -3.2%
CEGI 2,056 0.37 0.000027 42.0% | 21.1% | 28.7% | 17.0% | 47.9% -12.4%
EGI 1,032 0.41 0.000014 37.7% | 19.7% | 27.7% | 16.5% | 47.2% -13.6%
D2 136 1.12 0.000002 31.1% | 158% | 23.5% | 13.9% | 43.4% -20.6%
SHELLS 136 0.66 0.000002 22.7% | 11.1% | 17.3% | 10.2% | 38.6% -29.4%

Table 9.4: Comparing fourteen shape descriptors using the R8e classification.
(*Times were approximated by normalizing for processorespe

Surprisingly, we find that the top two shape descriptors (D&id LFD) in this ex-
periment were image-based. While the DBD uses depth inféeemathe LFD uses only
2D projections to achieve high retrieval performance. TH&DDnot only has the best
retrieval performance, itis among the fastest to computieuse for comparisons. Among
the other descriptors, FSD, REXT, HSD, GEDT, and EXT prouide best matching
performance. While FSD provides slightly better discrintioa than the others, HSD
and EXT are smaller and quicker to compare, suggesting tteeyde more “bang for the
buck.” The least discriminating descriptors are D2 and SHELHowever, they are also
the smallest and fastest to compare, which may be usefuttaicapplications.

Overall, we conclude that there is a quality-cost traderothe choice between shape
descriptors, and no one descriptor beats the others insgects.

9.7.3 Multi-Classification Results

In our second experiment, we investigated the impact ofredteve classifications on the

analysis of retrieval results. Specifically, we createdémew classifications representing
increasingly coarser groupings for the 907 models in thecberark test set, and then

we tested how these different classifications affect théuatian of the fourteen shape

matching algorithms.

The base classification provides the grouping with finestgexity in this experiment.
It contains the 92 classes listed in Table 9.3. Most classeam all the objects with a
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particular function (e.g., microscopes). Yet, there asdaases where objects with the
same function are partitioned into different classes basdtieir forms (e.g., round tables
versus rectangular tables). In the alternative classifinaf we recursively merge classes
to form coarser granularity groups. Specifically, the “Cearslassification merges ob-
jects with similar overall function to form 44 classes, tl&oarser” classification merges
groups further to form the 6 classes listed in Table 9.1, plusiscellaneous class not
included in averaged retrieval results. Finally, the “Ceat%classification merges those
classes until just two classes remain: one with man-madectspnd the other with
naturally occurring objects.

Table 9.5 lists the normalized DCG scores achieved by thedenrshape match-
ing algorithms (rows) when evaluated with respect to the fifferent classifications
(columns). From this table, we make two observations. JFastyou might expect,
the differences between shape matching algorithms arengih@d when evaluated with
coarser granularity classifications - i.e., the normalil¥dG scores, which measure
differences from the average, become less in columns futthehe right. Second,
we observe that the relative rankings of algorithms can wgyificantly for different
classifications. In particular, the EGI algorithm performelfth best with respect to the
base classification (13.6% below the average). Howevegrfopms best of all for the
coarsest classification (3.0% above the average). Appgrénis very good at deter-
mining the difference between man-made and natural ohjeatsot that good at telling
apart the differences between specific classes. We congabtat man-made objects have
a narrower distribution of normals, making detection eagf ®Gls. Similar behavior is
shown by CEGI, which is a closely related algorithm.

These results provide a simple example of the value of usinigpte classifications
when evaluating shape matching algorithms. The informeadivailable in multiple clas-
sifications is more than in any one classification alone. Weeeikthat many alternative
semantic classifications will be made for these models infalere, exposing further
differences between algorithms.

9.7.4 Query List Results

In our third experiment, we studied the properties of thertieen shape matching al-
gorithms further by looking at retrieval results with respéo the base classification
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Shape Base | Coarse| Coarser| Coarsest
Descriptor (92) (44) (6) (2)
DBD 21.3% | 11.4% | 2.8% 0.3%
LFD 17.7% | 8.8% 3.0% 0.3%
FSD 14.6% | 7.0% 1.2% 0.0%
REXT 10.0% | 5.3% 1.7% 0.2%
HSD 6.9% 4.4% 0.5% -0.6%
GEDT 6.9% 3.4% 0.8% -0.4%
EXT 2.8% 0.6% 0.3% -0.6%
SECSHEL|| -0.3% | -1.7% | -0.3% -0.4%
VOXEL -0.6% | -1.3% | -0.4% -0.4%
SECTORS|| -3.2% | -2.9% | -1.1% -0.7%
CEGI -12.4% | -2.6% | -0.2% 2.6%
EGI -13.6% | -3.5% | -0.1% 3.0%
D2 -20.6% | -11.7% | -3.6% -1.6%
SHELLS -29.4% | -17.1% | -4.9% -1.5%

Table 9.5: Evaluating fourteen shape descriptors usingsiflaations of different
granularity. The columns represent different classifaradi (with the number of classes
listed in parenthesis), and the rows represent differeapstdescriptors. The numbers
show normalized DCG scores averaged over all models.

averaged over sets of models with specific properties. Sdimtbeoproperties were
semantic (e.g., is a piece of furniture), others were pracade.g., aligned well with
other members of its class), and the rest were geometric (ewghly linear in shape).
Our hope is that we can infer the conditions under which eaepes matching algorithm
performs best by comparing the retrieval results of thiseexpent.

Table 9.6 lists normalized DCG scores achieved by the fongsbape matching algo-
rithms (rows) with respect to the base classification whesrayed over all models with
specific properties (columns). The first column of numbe#dl (Models”) shows the
average for all models, as a reference for comparison. Thesitecolumns (“Animal”-
“Vehicle”) correspond to averages over the sets of modeth@same object type. The
next column (“Rotation Aligned”) shows the average overrathdels for which our
normalization steps were successfully able to align the ehodnsistently with other
members of is class. The following column (“Stick Shape&jdiaverages over the 200
models whose shape is most stick-like (as determined byatie of the largest and
second largest eigenvalues of the covariance matrix ofrgeoader moments). Finally,
the right-most column (“Complex Shape”) shows averages twer200 models with
the most “complex shapes” (as estimated by the average geph complexity when
the model is rendered with parallel projection from viewpsi at the vertices of an
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Shape All Furni- | House-| Tree & Rotation Stick Complex
Descriptor || Models || Animal | Building ture hold Plant | Vehicle || Aligned Shape Shape
DBD 21.3% 22.5% 21.3% | 19.1% | 21.2% | 31.5% | 20.5% 20.9% 19.3% 20.0%
LFD 17.7% 8.6% 38.2% | 31.8% | 22.0% | 19.1% | 11.7% 14.1% 5.8% 23.2%
FSD 14.5% 12.5% 4.4% 14.2% | 12.7% | 23.4% | 17.3% 11.5% 12.0% 20.4%
REXT 10.0% 5.8% 2.1% 8.2% 10.5% | 3.1% 12.5% 9.3% 7.7% 10.8%
HSD 6.9% 7.4% -10.0% 7.2% 10.1% | 14.2% | 3.6% 4.8% 2.8% 5.4%
GEDT 6.9% 7.0% 1.2% 4.5% 7.9% 1.4% 7.1% 10.1% 6.2% 9.3%
EXT 2.8% 3.8% 9.3% 1.9% 52% | -11.1% | 4.5% 2.4% 4.4% 2.3%
SECSHEL || -0.3% -1.7% -0.5% -7.8% 3.8% | -15.2% | 4.0% 2.6% 1.9% -1.2%
VOXEL -0.6% 1.1% -1.2% -4.5% 1.1% -7.3% 2.2% 2.2% 3.3% -3.2%
SECTORS|| -3.2% -4.8% 0.1% -8.9% 0.9% | -25.2% | 0.2% -0.7% 2.3% -5.1%
CEGI -12.4 -6.6% -248% | -1.9% | -21.8% | 6.3% | -16.1% || -11.0% -9.9% -15.8%
EGI -13.6% || -12.1% | -13.8% | -2.8% | -23.3% | 6.8% | -15.4% || -13.4% || -11.7% | -12.3%
D2 -20.6% || -18.0% | -4.2% | -27.2% | -18.2% | -25.3% | -21.7% || -21.9% || -13.9% | -20.2%
SHELLS -29.4% || -25.4% | -22.0% | -34.1% | -32.3% | -21.5% | -30.6% || -31.0% || -30.3% | -33.6%

Table 9.6: Evaluating retrieval performance for fourtebapge descriptors on query lists
with specific object types and geometric properties usirggRI$SB base classification.

Numbers represent normalized DCG value averaged over mattblghe property listed
in the column heading.

icosahedron). These latter properties are derived dyréaim the annotations provided
with the benchmark.

With these results, we confirm that shape matching algosttionnot perform equally
well on all object types. Although the ranking of algorithmdairly consistent, there is
sometimes a big difference in the relative performance gbdtthms when focusing on
models with specific properties. For instance, we note tlEEEBORS does better than
EGI on household objects (0.9% above average versus 23.B# beerage), while the
opposite is true for trees and plants (25.2% below averaguse5.8% above average).
Also, we see that the top ranked algorithms (DBD, LFD, FSDXREnd HSD) do worse
on stick-shaped objects relative to other algorithms (threnalized DCG scores averaged
for stick shaped objects are worse than the average ovepdilsaby 2.0%, 11.9%, 2.5%,
and 2.3%, respectively), probably because the principas axX sticks align well and/or
the descriptors eliminate high-frequency informatiomadfly, we note that queries with
“Rotation Aligned” models produce significantly differaetrieval results, indicating that
misalignment of models during normalization significardlfects the results achieved
with some algorithms (GEDT, SECSHEL, VOXEL, and SECTORS).
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9.7.5 Comparison with Other Databases

In our final experiment, we compared results of the Princ&loape Benchmark database
versus those achieved with other databases previouslyiblegan the literature [36, 98,
130, 139]. Our goal in this experiment was to validate whethe benchmark produces
results consistent with those previously reported.

Table/ 9.7 shows the normalized DCG scores computed for twaiege matching
algorithms on six different databases. Note that the FSDCEBID descriptors were not
available when analyzing these databases. We see thatdikésreomputed with the
Osada [98] and MPEG-7 [139] databases are less consistenttta others. We conjec-
ture that the reason is that they are relatively small (138 227 models, respectively)
and have less variation of object types. The categorizedeiaanf the Utrecht [122]
database are entirely airplanes, which probably explaimgtive descriptors clustered to
a few values. Meanwhile, the relative performance of thewtigms on the other three
databases appear fairly consistent. We expect that therrdifierences between the
databases can be explained by the differences in theirtayjees.

Shape Osada| MPEG-7| CCCC | Utrecht| VP PSB

Descriptor | [98] [139] [130] | [122] [36] [ours]
LFD 14.9% 5.8% 20.3% | 54% | 17.7% | 21.3%
REXT 8.6% 3.6% | 11.3% | 2.4% | 8.5% | 13.3%
HSD 12.1% | 55% | 125% | 2.3% | 10.6% | 10.2%
GEDT 5.2% 2.5% 55% | 4.3% | 6.3% | 10.1%
EXT 2.9% 0.4% 55% | 2.4% | 5.6% | 6.0%

SECSHEL| -0.7% | -02% | -0.8% | 2.2% | 0.7% | 2.8%
VOXEL 2.2% 1.3% -0.5% | 2.5% | 0.4% | 2.4%
SECTORS|| -0.8% | -2.3% | -1.9% | 2.3% | -1.6% | -0.3%

CEGI -13.9%| -1.8% | -4.7% | -6.9% | -7.6% | -9.6%
EGI -10.7%| -1.0% | -7.3% | -7.0% | -9.5% | -10.9%
D2 -1.1% | -4.3% | -16.6%| -3.1% | -12.8%| -18.2%

SHELLS | -18.7%| -9.6% |-23.2%/| -6.8% | -18.2% | -27.3%

Table 9.7: Evaluating shape descriptors using differetattiises. Numbers represent
normalized DCG averaged over all models in each database.
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9.8 Conclusion

In summary, this chapter describes the Princeton ShapehBear&, a publicly avail-
able framework for comparing shape matching algorithmse banchmark includes a
database of annotated 3D polygonal models, multiple dleasons, and software tools
for evaluating the results of shape matching experiment$.da#a and source code is
freely available on the Web (http://shape.cs.princetuleenchmark). As of December,
2007, the PSB has had 20,000 unique visitors and been dosdedaaver 8,500 times.

Since the original publication of the Princeton Shape Bematk, there has been
ongoing interest in comparing 3D shape retrieval techrsqii@e Network of Excellence
AIM@SHAPE has organized the Shape Retrieval Contest (SHREZ;)93] in 2006
and 2007, which has included new shape matching techniquiesewveral databases of
models with specialized characteristics. Contestants framy countries compared their
shape matching algorithms using standardized data sefseaftdmance measures.

The main research contribution of this work is the methodgglproposed for com-
paring shape matching algorithms. In particular, we adigmeaperimenting with several
different classifications and query lists targeted at exppspecific differences between
shape matching algorithms. Using this methodology, fomgXa, we were able to
discover that EGIs are good at discriminating between maderand natural objects,
but not that good at making detailed class distinctions. VWe &nd that the Depth
Buffer Descriptor [48], which is computed from multiple dbeuffer images of a 3D
model, is the most discriminating among the shape descsiggsted, with relatively
low storage and computational requirements. We hope tbattseof this type encourage
shape matching researchers to use the benchmark in fujpegieents, possibly creating
new classifications and query lists of their own. In time, wpext that a common set of
tests will emerge to form a de-facto standard for shape nregatxperiments.
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Conclusion and Future Work

Conclusion

In this dissertation, we explored techniques for retrig8 models from large databases.
Our main focus has been on identifying the important, disiwe regions of 3D shapes
and methods for focusing retrieval on those regions. We lhaen guided by the twin
goals of improving the accuracy of shape retrieval and exmicthe properties of shape
distinction. There are six main contributions of this drsston.

First, we have defined distinctive regions of 3D surface$asd regions that provide
the best retrieval performance relative to a classifiedata. Unlike previous techniques
that have focused on inherent properties of a mesh (cuevatulikelihood), shape dis-
tinction analyzes meshes in relation to an entire datat&tsspe distinction adjusts to the
classes in the database, shape descriptors used for agtsesle of the descriptors, and
even the retrieval metric used during analysis of the da@bBy visualizing distinction
scores within a database, properties that define classemeaeadily apparent.

Second, we developed an algorithm for multi-feature maiglof 3D shapes that can
efficiently search a database for results within a few sesomtle main contribution is a
priority-driven search algorithm that focuses on the besididates without considering
all possible combinations of matches. By focusing on thérdisve regions of shapes
in the database, search speed and retrieval performansggarBcantly improved. Us-
ing the framework of priority-driven search, the effectsmafmerous parameters were
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explored including: filtering the database based on shagigndiion or other properties,
the scale of shape descriptors, number of features usedtohing, and a cost function
for combining feature correspondences.

Third, we developed an efficient algorithm for calculatingtehction for large data-
bases undergoing additions. We compared several shamyaétnetrics and found that
metrics that weight correct results near the front of theeeal list more heavily than later
results produce distinction scores that improve retripeaformance. We approximated
distinction by modifying the DCG retrieval metric to use a $nmumber of nearest
neighbors that can be found with an index structure for sligseriptors and showed
that retrieval performance improved with the accuracy efdpproximation.

Fourth, we predicted distinction for the query model (as pared to target models)
using a function that maps descriptor likelihood to didiime scores learned from a
training set. Compared to several common selection tecbsigselecting descriptors
randomly or based directly on likelihood), using a likeldftbmapping leads to better
retrieval performance. The improvement is because ddscsigrouped by their likeli-
hood values have similar distinction scores, and we fouatidascriptors with likelihood
values between the most rare and most common provide thediasval performance.
Selecting a small set of descriptors with high predictedintion not only improves
retrieval performance, but filtering query descriptorsataproves retrieval time.

Fifth, we demonstrated that shape distinction is usefubfaphics applications that
benefit from importance scores across the surface of a mefarddces within a database
can be visualized since distinction directly relates taageg that are similar within a
class and differ from shapes of other classes. Also, icodsvaash simplifications were
generated by focusing on distinctive regions. Our methaglpbf learning importance
scores directly from a training set can likely be applied tonerous other graphics
applications.

Sixth, we introduced the Princeton Shape Benchmark: imctud classified data set,
tools for evaluating shape retrieval, and a methodologyctonparing shape-matching
techniques. Using the PSB, we were able to directly compgapesmatching techniques
from the literature and show that visual-based descripgach as the Depth Buffer De-
scriptor and Light Field Descriptor are among the best at®ior many retrieval tasks.
We also showed that for specific types of queries, the relggerformance of descriptors
can change dramatically, and a generally poor performirggrifgtor such as EGI has
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the best performance on man-made versus natural objecess PEB has become a de-
facto standard in the computer graphics shape matching cartynand has hopefully
improved the methodology of experiments in the field.

Future Work

There are several promising venues for future researchekl®d shape distinction, re-
trieval from large databases, and the Princeton Shape Bear&h

Defining Distinction

There are several strengths and weaknesses of our defipitidistinction that should
be considered and addressed in future work. First, the stieperiptor (HSD) used in
our implementation is not the most descriptive possiblepdfinments with the PSB have
shown that the Depth Buffer Descriptor has better retrigpeaformance than the HSD,
though using image-based descriptors for local matchirsgrioé been explored. How-
ever, a strength of our approach is that it is independentpafracular shape descriptor.
So, in future work, we intend to investigate more descrgpthape representations to
define mesh distinction.

Matching with Distinction

Results with the priority-driven search algorithm suggesteral areas for improvement
and future work. In particular, there are three main comgpotal bottlenecks in the
system: 1) constructing shape descriptors, 2) determittiegdistinction of shape de-
scriptors, and 3) generating pairwise feature correspocee There are many simple
ways to speed up these steps, including random samplingpression, and indexing.
For example, the time required to establish the best paratsrespondences between
features could be improved with standard multi-dimendiomdexing schemes. We have
focused our efforts on utilizing distinction with the prity=driven search algorithm, and
thus we have not yet investigated these options in detalil.

Another interesting option is to compute the cost of feattwerespondences in a
weighted manner that more fully takes advantage of disancscores. Currently, we
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filter the set of descriptors to the most distinctkzéhat meet a separation threshold and
use those during matching. The seledtatbscriptors have distinction scores that reflect
their relative importance from a retrieval perspective andld be used as weights when
calculating the cost of feature correspondences. Theaigdl of this approach is how
to normalize the distinction weights since the weights ardle target models instead
of on the query, so normalization would be across the entitatthse. Also, while more
emphasis should be placed on correct matches in highlyndiste regions, our current
priority-driven search algorithm focuses on low cost cep@ndences, which would be
areas of low distinction.

Updating Distinction

The retrieval measure (DCG) used in most of our experimemseaslow to compute.
While we have shown one method for improving the scalabilityapproximating DCG
with a small set of neighbors and a cover tree index structhie may only be practical
for a few thousand models. Specifically, our method for hismgdh dynamic database
is only a first solution to the problem. In future work, we wddike to improve the
scalability of our algorithm. Techniques to consider imtdthierarchical distinction on
the surface of a mesh, updating distinction scores for etasbf similar regions, and
further indexing techniques.

Predicting Distinction

Our prediction model for distinction can be extended in saveays. We assumed a
normal distribution as an initial mapping, which also sugjgea range of alternatives.
Other distribution models may more accurately reflect the tikelihood, but all likeli-
hood mappings condense the descriptors to one dimensiampéerized by likelihood.
Any likelihood model has the drawback of grouping all dgsimis within a shell of
equal likelihood, even if there is a large variation of rewal performance within each
shell. Other groupings of descriptors may better clusteséhwith similar distinction
scores, though increasing the dimensionality of the magpede can adversely affect
the calculation time. The feature space of descriptorsccbalused directly by making
a prediction based on similar descriptors (measured by th&istance). Using nearby
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descriptors is likely to provide a better clustering of i@tal scores, though a combination
of indexing and compression techniques would be neededrivmzie the lookup time.

Applications of Distinction

While we have shown that shape distinction provides a goodsuneaf surface impor-
tance for icon generation and mesh simplification, anatyiistinction of 2D images of
3D shapes would likely provide higher quality results. Hiave feel that extending
our methodology of calculating an importance score from H labkeled training set can
improve numerous graphics tasks beyond retrieval such ab algnment and 2D image
retrieval.

Princeton Shape Benchmark

From experiences using the PSB, we suggest several arestdoe research. First,
the benchmark should be expanded to support other shapgsantasks. Annotations
for human-generated alignment transformations wouldifat? evaluation of automatic
registration algorithms, and consistent segmentationd&sses of objects would provide
training data for automatic techniques. Second, the resfiSection 9.7.4 suggest that it
is possible to build an adaptive multi-classifier that fitsecks the geometric properties
of a given query model and then dynamically weights the dista computed by several
shape matching algorithms to produce more discriminatsglts (e.g., [15, 43]). Third,
as more and more data gets added to the benchmark, it wilhbepossible to consider
multi-classifiers that take into account both geometricraolgeometric attributes of 3D
models (e.g., color, texture, scene graph structure, &xtunotation, etc.).

Finally, while the PSB has helped standardize shape ratresgperiments, after five
years it has begun to show its age. The shape-matching coityrhas always had
diverse interests because of the wide range of problemseiri¢td, and a benchmark
or multiple benchmarks should reflect the needs of the contsnuiew benchmarks
should be created with a larger number of classified meshkeaneed annotations, and
subdivisions focusing on specific shape matching tasks asicpartial versus complete
objects, manifold versus polygon-soup meshes, and donpaEoif&c meshes such as
proteins, CAD models, and architectural objects. Hopefudgsons learned from the
PSB will provide guidance as the shape-matching field cae8rio mature.
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