
Approximation Algorithms for

Constraint Satisfaction Problems

Yury Makarychev

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

April 2008



c© Copyright by Yury Makarychev, 2008.



Abstract

Constraint satisfaction problems (CSP) are very basic and natural combinatorial

optimization problems. Given a set of variables and constraints on them, our goal

is to satisfy as many constraints as possible.

In this dissertation, we study two constraint satisfaction problems, the Unique

Games Problem and MAX 2CSP Problem. Both problems behave very differently

depending on what fraction of all constraints (as a function of other parameters) is

satisfiable. Thus we design different algorithms for different ranges of parameters.

In the first part of the thesis, we study approximation algorithms for Unique

Games. Our algorithms satisfy (roughly)

k−ε/(2−ε), 1−O(
√
ε log n), and 1−O(ε

√
log n log k)

fraction of all constraints if a 1 − ε fraction of all constraints is satisfiable (where

n is the number of variables, k is the domain size). The first two algorithms are

near optimal assuming the Unique Games Conjecture. Our algorithms have better

approximation guarantees than the previously best known algorithms in all ranges

of parameters.

In the second part of the thesis, we present approximation algorithms for MAX

2CSP that satisfy 1−O(
√
ε) and 1−O(ε

√
log n) fraction of all constraints if a 1−ε

fraction of all constraints is satisfiable. Our first algorithm is near optimal assuming

the Unique Games Conjecture.

iii



Acknowledgments

First and foremost, I want to thank my advisor Moses Charikar for his support

and guidance during my PhD study. I am very grateful to Moses for everything I

learned from him. This dissertation would not have been possible without his help.

I would like to thank the members of my PhD committee, Boaz Barak, Bernard

Chazelle, Assaf Naor and Robert Schapire for their time and for their helpful com-

ments and suggestions.

I thank my coauthors Amit Agarwal, Noga Alon, Eden Chlamtac, Konstantin

Makarychev, Assaf Naor and, of course, Moses Charikar. I benefited greatly from

working with them.

I thank faculty and staff of the Department of Computer Science at Princeton

University. I thank Melissa Lawson and Mitra Kelly for their administrative help.

I am grateful to my teachers at Moscow Math High School 57: Lev D. Altshuler,

Boris M. Davidovich, Sergey Dorichenko, Arkadiy Skopenkov, Yevgeniy A. Vyrodov,

and Ivan V. Yashchenko. I thank my undergraduate advisors at Moscow University,

Alexander Shen and Nikolai K. Vereshchagin.

I was fortunate to spend two wonderful summers at Microsoft Research. I thank

the members of the Theory Group and especially my mentor Assaf Naor.

I gratefully acknowledge a Gordon Wu Fellowship and Moses Charikar’s grants

CCR-0205594, NSF CAREER award CCR-0237113, MSPA-MCS award 0528414

that supported my research at Princeton.

My special thanks are due to my brother and best friend Konstantin. Most

of my research has been done together with him. Finally, I would like to thank

my parents, Marina and Sergey, for their love, support and encouragement. This

dissertation is dedicated to them.

iv



To my parents, Marina and Sergey.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1

1.1 Unique Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 MAX 2CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Unique Games 11

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Semidefinite Programming . . . . . . . . . . . . . . . . . . . 11

2.1.2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Semidefinite Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 First Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Analysis: Technical Details . . . . . . . . . . . . . . . . . . . 26

2.4 Second Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Analysis: Technical Details . . . . . . . . . . . . . . . . . . . 37

vi



2.5 Third Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.1 Overview: Orthogonal Separators . . . . . . . . . . . . . . . 50

2.5.2 Approximation Algorithm . . . . . . . . . . . . . . . . . . . 51

2.6 Producing Orthogonal Separators . . . . . . . . . . . . . . . . . . . 55

2.6.1 Normalization: Embedding into L2[0,∞] . . . . . . . . . . . 56

2.6.2 Embedding into `1 and `2 . . . . . . . . . . . . . . . . . . . 58

2.6.3 Generating Orthogonal Separators via `1 . . . . . . . . . . . 62

2.6.4 Generating Orthogonal Separators via `2 . . . . . . . . . . . 65

2.7 d to 1 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 MAX 2 CSP 75

3.1 Semidefinite Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 First Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Second Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 Separation Theorem . . . . . . . . . . . . . . . . . . . . . . 84

3.3.3 Algorithm and Analysis . . . . . . . . . . . . . . . . . . . . 88

4 Conclusion and Future Work 92

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A Properties of Normal Distribution 99

A.1 Bounds on Normal Distribution Function . . . . . . . . . . . . . . . 99

A.2 Šidák Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



List of Figures

1.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Previously Known Results for MAX 2CSP . . . . . . . . . . . . . . 9

2.1 Comparison of Approximation Guarantees for Unique Games . . . . 15

2.2 First Algorithm for Unique Games . . . . . . . . . . . . . . . . . . 21

2.3 Second Algorithm for Unique Games . . . . . . . . . . . . . . . . . 32

2.4 Third Algorithm for Unique Games . . . . . . . . . . . . . . . . . . 52

2.5 Generating Orthogonal Separators via `1 . . . . . . . . . . . . . . . 64

2.6 Generating Orthogonal Separators via `2 . . . . . . . . . . . . . . . 66

3.1 First Algorithm for MAX 2SAT . . . . . . . . . . . . . . . . . . . . 78

3.2 Finding (S,R,−S) Partitioning . . . . . . . . . . . . . . . . . . . . 88

3.3 Second Algorithm for MAX 2SAT . . . . . . . . . . . . . . . . . . . 90

viii



Chapter 1

Introduction

In this dissertation, we study approximation algorithms for constraint satisfaction

problems. In a constraint satisfaction problem we have a set of variables and con-

straints on them, and our goal is to find an assignment that satisfies as many

constraints as possible.

Our interest in constraint satisfaction problems is two-fold. First of all, CSPs

are good model problems: they are well suited for developing new algorithmic tech-

niques, which can potentially be applied to other problems of interest. Another

reason to study CSPs is their importance to complexity theory. Many problems

arising in complexity theory such as 3SAT, Unique Games, and Label Cover (which

is closely related to PCPs) are constraint satisfaction problems. Despite significant

progress, many important problems are still open.

The general problem — when we consider arbitrary constraints that depend on at

most k boolean variables — is very hard: the optimal approximation algorithm gives

only Θ(k/2k) approximation. (The upper bound was proved assuming the Unique

Games Conjecture by Samorodnitsky and Trevisan [29], and the lower bound was

1



proved by Charikar, Makarychev, and Makarychev [7].) In this dissertation, we

focus our attention on two constraint satisfaction problems for which much better

approximation guarantees exist: Unique Games and MAX 2SAT. Both problems

generalize MAX CUT. Recall that MAX CUT asks to partition vertices of a given

graph into two parts so as to maximize the number of cut edges, i.e. edges going

from one to part to the other. The problem can be also phrased as a CSP.

Definition 1.0.1 (MAX CUT as a CSP). We are given a graph G = (V,E). For

every vertex u ∈ V , we have a variable xu ∈ {0, 1}; for every edge (u, v) ∈ E, we

have the constraint xu + xv = 1. Our goal is to find an assignment that maximizes

the number of satisfied constraints.

Note that every assignment of variables corresponds to a partitioning of vertices:

V = {u : xu = 0} ∪ {u : xu = 1} (and vice versa).

MAX CUT has two properties that distinguish it from other CSPs:

Binary Domain. The domain size is two (every variable takes two

values).

Uniqueness Property. Every constraint (edge) defines a permutation

between two variables. That is, for every edge (u, v) the value of xu

uniquely determines the value of xv (assuming that the constraint is

satisfied).

Each of the problems we study has only one of these two properties: in MAX 2SAT,

the domain size is two but constraints can be arbitrary predicates of two variables;

in Unique Games, the domain size can be arbitrary, but all the constraints have the

uniqueness property.

2



Range of Parameters Unique Games MAX 2CSP

ε ≥ Ω(1/ log k) ∼ k−
ε

2−ε ?

Ω(1/ log n) ≤ ε ≤ O(1/ log k) 1−O(
√
ε log k) ? 1−O(

√
ε) ?

ε ≤ O(1/ log n) 1−O(ε
√

log n log k) 1−O(ε
√

log n)

Figure 1.1: Summary of results. The guarantee represents the fraction of constraints
satisfied for instances where OPT = 1 − ε, n is the number of variables, k is the
domain size of the unique game. The results marked with ? are near optimal
assuming the Unique Games Conjecture.

Our results are presented in Figure 1.1. Remarkably the approximation guaran-

tees for the problems are very similar to each other and the approximation guaran-

tees for MAX 2CSP match the best known approximation guarantees for MAX CUT

up to a constant factor in the O notation. (The approximation algorithm for MAX

CUT with the guarantee 1−O(
√
ε) was developed by Goemans and Williamson [17];

the approximation 1 − O(ε
√

log n) for MAX CUT follows from our general result

for MAX 2CSP.)

Note that if almost all constraints are satisfiable, it is also possible to satisfy

almost all constraints in polynomial time. However, Unique Games and MAX 2CSP

are apparently the only generalizations of MAX CUT with this property. For ex-

ample, even if the domain size is 3 and every constraint is of the form xi 6= xj then

satisfying all the constraints in a satisfiable instance is NP-hard [31] (this CSP is

just another formulation of the Graph 3-Coloring Problem).

The results presented in this dissertation appeared in the following publications:

• A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

log n)

approximation algorithms for MIN UnCut, MIN 2CNF Deletion, and directed

cut problems. In Proceedings of the 37th ACM Symposium on Theory of

Computing, pp. 573–581, 2005.

3



• M. Charikar, K. Makarychev, and Y. Makarychev. Near-Optimal Algorithms

for Unique Games. In Proceedings of the 38th ACM Symposium on Theory

of Computing, pp. 205–214, 2006.

• M. Charikar, K. Makarychev, and Y. Makarychev. Near-Optimal Algorithms

for Maximum Constraint Satisfaction Problems. In Proceedings of the 18th

ACM-SIAM Symposium on Discrete Algorithms, pp. 62–68, 2007.

• E. Chlamtac, K. Makarychev, and Y. Makarychev. How to Play Unique

Games Using Embeddings. In Proceedings of the 47th IEEE Symposium on

Foundations of Computer Science pp. 687–696, 2006.

1.1 Unique Games

The first problem we study is the Unique Games Problem. It is a generalization

of many constraint satisfaction problems. Particularly important special cases are

MAX CUT and MAX 2-LIN (systems of linear equations mod p with at most two

equations in each equation).

Definition 1.1.1 (Unique Games Problem). Given a constraint graph G = (V,E)

and a set of permutations πuv on [k] ≡ {1, . . . , k} (for all edges (u, v)), assign a

value (state) xu from the set [k] to each vertex u so as to satisfy the maximum

number of constraints of the form πuv(xu) = xv.

Remark 1.1.2. Let us explain why the problem is called “a game”. The problem

was first introduced by Feige and Lovász [15] as a two-prover one round game. Two

“provers” play the following cooperative game. The “verifier” (the referee) selects

an edge (u, v) of G uniformly at random and sends u to one prover and v to the

4



other prover (provers cannot communicate with each other). Each prover has to

reply with a number in [k]. The provers win (the verifier accepts their answers) if

πuv(number the 1st prover replied with) = number the 2nd prover replied with.

It turns out that the value of this game equals the fraction of the constraints satisfied

by the optimal solution of the unique game. We refer the reader to [15] for more

background on multi-prover games and proof systems.

In any instance of Unique Games if all constraints are satisfiable then it is easy to

find a satisfying assignment. However, even if almost all constraints are satisfiable,

it is NP-hard to find the optimal solution. Moreover, Khot [20] conjectured that

for every positive ε and δ, there exists k such that it is NP-hard to distinguish

between the case where a (1 − ε) fraction of all constraints is satisfiable and the

case where at most a δ fraction of all constraints is satisfiable. This conjecture,

known as the Unique Games Conjecture, implies many inapproximability results

for fundamental problems — MAX CUT [23, 28], MIN 2CSP [11, 20], MultiCut

and Sparsest Cut [11, 22], Vertex Cover [21] — which are not known to follow from

more standard complexity assumptions. Thus it is interesting to determine what

fraction of constraints can be satisfied for such instances as a function of ε, k and

n (where n is the number of vertices, and there exists an assignment satisfying a

(1− ε) fraction of all constraints).

Note that a random assignment satisfies a 1/k fraction of the constraints in

a unique game. Andersson, Engebretsen, and H̊astad [2] considered semidefinite

program (SDP) based algorithms for systems of linear equations mod p (with two

variables per equation) and gave an algorithm that performs (very slightly) better

than a random assignment. The first approximation algorithm for general Unique

5



Games was given by Khot [20], and satisfies a 1−O(k2ε1/5
√

log(1/ε)) fraction of all

constraints if a 1− ε fraction of all constraints is satisfiable. Recently Trevisan [32]

developed an algorithm that satisfies a 1 − O( 3
√
ε log n) fraction of all constraints

(this can be improved to 1−O(
√
ε log n) [19]), and Gupta and Talwar [19] developed

an algorithm that satisfies a 1−O(ε log n) fraction of all constraints. The result of

[19] is based on rounding an LP relaxation for the problem, while previous results

use SDP relaxations for Unique Games.

There are very few results that show hardness of Unique Games. Feige and

Reichman [13] showed that for every positive ε there is c s.t. it is NP-hard to

distinguish between the case where a c fraction of all constraints is satisfiable and

the case where only an εc fraction is satisfiable.

1.1.1 Our Results

We present three new approximation algorithms for Unique Games. We state our

guarantees for instances where a 1− ε fraction of constraints is satisfiable. The first

algorithm satisfies an

Ω

(
min(1,

1√
ε log k

) · (1− ε)2 ·
(

k√
log k

)−ε/(2−ε))
(1.1)

fraction of all constraints; the second algorithm satisfies a 1−O(
√
ε log k) fraction

of all constraints; and the third algorithm satisfies a 1 − O(ε
√

log n log k) fraction

of all constraints. We also present an approximation algorithm (based on the same

techniques) for d-to-1 games1.

1Constraints in d-to-1 games can be more general than in unique games. Specifically, for every
value of u there can be up to d values of v that satisfy the constraint between u and v; but for
every value of v there should be only one value of u that satisfies the constraint. See Section 2.7

6



In order to understand the complexity theoretic implications of our results, it

is useful to keep in mind that inapproximability reductions from Unique Games

typically use the “Long Code”, which increases the size of the instance by a 2k factor.

Thus, such applications of Unique Games usually have domain size k = O(log n).

Our results show limitations on the hardness bounds achievable using the UGC

and stronger versions of it. Chawla, Krauthgamer, Kumar, Rabani, and Sivaku-

mar [11] proposed a strengthened form of the UGC, conjecturing that it holds for

k = log n and ε = δ = 1
(logn)Ω(1) . This was used to obtain an Ω(log log n) hardness

for Sparsest Cut. Our results refute this strengthened conjecture2.

The performance of our algorithms is naturally constrained by the integrality

gap of the SDP relaxation, i.e. the smallest possible value of an integer solution for

an instance with SDP solution of value (1−ε)|E|. Khot and Vishnoi [22] constructed

a gap instance for the semidefinite relaxation3 for the Unique Games Problem where

the SDP satisfies a (1−ε) fraction of constraints, but the optimal solution can satisfy

at most O(k−ε/9) (one may show that their analysis can yield O(k−ε/4+o(ε))). This

shows that our results are almost optimal for the standard semidefinite program.

Khot, Kindler, Mossel and O’Donnell [23] proved lower bounds for Unique

Games that almost match the upper bounds we obtain in the first and second

algorithms. Specifically, they established the following hardness results:

Theorem 1.1.3 ([23], Corollary 13). The Unique Games Conjecture implies that

for every fixed ε > 0, for all k > k(ε), it is NP-hard to distinguish between instances

for the formal definition.
2An updated version of [11] proposes a different strengthened form of the UGC, which is still

plausible given our algorithms. They use a modified analysis to account for the asymmetry in ε
and δ to obtain an Ω(

√
log log n) hardness for sparsest cut based on this.

3We use a slightly stronger SDP than they used, but their integrality gap construction works
for our SDP as well.

7



of Unique Games with domain size k where at least 1− ε fraction of constraints are

satisfiable and those where 1/kε/(2−ε) fraction of constraints are satisfiable.

Theorem 1.1.4 ([23], Corollary 14). The Unique Games Conjecture implies that for

every fixed ε > 0, for all k, it is NP-hard to distinguish between instances of Unique

Games with domain size k where at least 1− ε fraction of constraints are satisfiable

and those where 1−
√

2/π
√
ε log k + o(1) fraction of constraints are satisfiable.

Thus, two of our bounds are near optimal if the UGC is true — even a slight

improvement of the results 1/kε/(2−ε) or 1− O(
√
ε log k) (beyond low order terms)

would disprove the Unique Games Conjecture!

1.2 MAX 2CSP

In the second part of the dissertation, we study the MAX 2CSP problem.

Definition 1.2.1 (MAX 2CSP). We are given a set of boolean variables {xi} and

a set of predicates (constraints), each predicate depends on at most two variables.

Our goal is to assign a value to each xi so as to satisfy the maximum number of

predicates.

MAX 2CSP is a very basic constraint satisfaction problem, which generalizes

several important graph partitioning problems such as MAX CUT or MAX DICUT

(the directed version of MAX CUT).

The problem and its variants have been well studied in the literature (see Fig-

ure 1.2). In particular, current lower and upper bounds for the approximation

ratio are almost tight. Lewin, Livnat and Zwick [26] developed an algorithm

with approximation ratio 0.87401 (improving the previous results of Goemans and

8



Approximation
Guarantee

Hardness Result

Approximation ratio 0.87401 [26] 0.87435 [6]
Almost satisfiable in-
stances, OPT = 1− ε
• ε > 1/ log3/2 n 1−O(ε1/3) [34] 1−O(

√
ε) [23]

• ε < 1/ log3/2 n 1− Õ(ε log n) [24] 1−O(ε
√

log log n) [11]

Figure 1.2: Previously Known Approximation Results for MAX 2CSP. Note that
the approximation ratio almost matches the hardness result from [6]. The hardness
results in [6] and [23] are based on the Unique Games Conjecture; the hardness
result in [11] is based on a stronger version of the Unique Games Conjecture.

Williamson [17], Feige and Goemans [14], Zwick [33], Matuura and Matsui [27]).

Recently Austrin [6] proved an almost matching upper bound of 0.87435 assuming

the Unique Games Conjecture (improving the result of Khot, Kindler, Mossel and

O’Donnell [23]).

However, the tight bounds are still not known for almost satisfiable instances.

Note that even if all constraints are satisfiable the result of [26] only guarantees

that the algorithm satisfies a 0.874 fraction of all constraints. The best previously

known lower bounds for almost satisfiable instances of MAX 2SAT were proved by

Zwick [34] and Klein, Plotkin, Rao, Tardos [24]. If the optimal solution satisfies

an OPT = 1 − ε fraction of all constraints, the algorithm by Zwick [34] satisfies a

1 − O(ε1/3) fraction of all constraints; the algorithm by Klein, Plotkin, Rao, and

Tardos [24] satisfies a 1 − O(ε log n log log n) fraction of all constraints. The latter

algorithm gives a better approximation when ε is very small.

Interestingly, algorithms with better approximation guarantees were known for

MAX CUT. The algorithm of Goemans and Williamson [17] satisfied 1 − O(
√
ε)

fraction of all constraints; the algorithm of Garg, Vazirani, and Yannakakis satisfied

9



1−O(ε log n) fraction of all constraints.

We present new approximation algorithms for MAX 2CSP that satisfy 1−O(
√
ε)

and 1 − O(ε
√

log n) fraction of all constraints. Our first guarantee for arbitrary

MAX 2CSP matches the guarantee of Goemans and Williamson for MAX CUT. It

is optimal assuming the Unique Games Conjecture [23]. Our second result improves

the approximation guarantee not only for MAX 2CSP but also for MAX CUT.

10



Chapter 2

Unique Games

2.1 Overview

2.1.1 Semidefinite Programming

Our algorithms for Unique Games are based on Semidefinite Programming (SDP).

Semidefinite Programming is a powerful technique, which has been recently used to

construct many combinatorial optimization algorithms. SDP solves the following

problem:

minimize (or maximize) f(X) (2.1)

subject to

∀i ∈ {1, . . . ,m} Ai(X) ≥ bi

X � 0

11



where X ∈ Mn(R) is an n× n matrix; f , A1, . . . , Am are linear functionals on the

linear space Mn(R); X � 0 denotes that the matrix X is positive semidefinite.

Every positive semidefinite matrix X = (xij) is a Gram matrix (the matrix of

pairwise inner products) of some n vectors v1, . . . vn in Euclidean space Rn−1:

xij = 〈vi, vj〉.

Moreover, the matrix X determines the vectors vi up to isometry. Similarly, the

Gram matrix of any n vectors is positive semidefinite. Thus we can write semidefi-

nite program (2.1) as an equivalent vector program.

minimize (or maximize)
n∑
j=1

n∑
k=1

f jk〈vj, vk〉

subject to

∀i ∈ {1, . . . ,m}
n∑
j=1

n∑
k=1

Ajki 〈vj, vk〉 ≥ bi

v1, . . . , vn ∈ Rn−1

where Ajki = Ai(ej ⊗ ek), f jk = f(ej ⊗ ek), and e1, . . . , en is the standard basis of

Rn. The now-standard approach to solving combinatorial optimization problems is

as follows.

1. We write the problem as an equivalent integer quadratic problem with 0-1

variables.

2. We relax the integer problem. For every 0-1 variable xi we introduce a vector

valued variable vi; we replace each product xi · xj with the inner product

12



〈vi, vj〉 in the objective function and constraints of the integer program. We

obtain a semidefinite relaxation of the problem. Note that for every feasible

solution xi of the original quadratic problem there is a corresponding feasible

solution (intended solution) vi = xie (where e is a fixed unit vector) of the

relaxation, which has the same value. Thus the cost of the optimal solution

of the semidefinite program (SDP value) is a lower bound on the cost of the

combinatorial solution if the problem is a minimization problem; and it is

an upper bound if the problem is a maximization problem. We describe the

semidefinite relaxation for Unique Games in Section 2.2.

3. We solve the semidefinite relaxation. This can be done efficiently (in polyno-

mial time) with an arbitrary precision as was first shown by Grötschel, Lovász,

and Schrijver[18]. The solution is a set of vectors {vi}

4. Finally, we need to round (transform) the semidefinite solution to a feasible

solution of the original combinatorial problem and then estimate the cost of

the obtained solution. Rounding is the most interesting step of the algorithm.

There is often no easy way to round an SDP solution to a good combinatorial

solution.

This approach is well suited for solving Constraint Satisfaction Problems with

boolean variables since such problems are naturally cast as integer quadratic pro-

grams. Every 0-1 assignment of variables xi corresponds to a feasible solution to the

boolean CSP. Thus the rounding algorithm, roughly speaking, can process vectors

vi one by one and “round” them to zeros and ones. However, developing rounding

techniques for problems with large domain size is more challenging. For each vari-

able xu that takes k values 1,. . . , k, we have to introduce k indicator variables for

13



the events “xu = 1”, . . . , “xu = k”. These variables are not independent: exactly

one of them must be equal to 1 and the remaining must be equal to 0. We de-

note vector variables corresponding to these indicator variables by u1,. . . , uk. The

rounding algorithm has to assign a value to xu based on the spatial configuration

of the vectors u1,. . . , uk. It makes the algorithm and analysis considerably more

complex.

In this dissertation, we develop new rounding techniques that enable us to get

near optimal algorithms for Unique Games (assuming UGC). We hope that these

techniques would be useful for rounding other CSPs and assignment problems with

large domain.

2.1.2 Techniques

In this section, we briefly overview how we round the solution of the SDP relaxation

for Unique Games in each of our three algorithms.

The SDP solution is a set of vectors. For every vertex u, we have k vectors: u1,

. . . , uk. Our SDP program (see Section 2.2) enforces that vectors corresponding to

one vertex are orthogonal.

We interpret the SDP solution as a probability distribution on assignments of

values to variables and the goal of our rounding algorithm is to pick an assignment to

variables by sampling from this distribution such that values of variables connected

by constraints are strongly correlated.

The rough idea of our first and second algorithms is to pick a random vector

and examine the projections of this vector on ui, picking a value i for u for which ui

has a large projection. (In fact, this is exactly the algorithm of Khot [20]). We have

to modify this basic idea to obtain our results since the ui’s could have different

14



0

1

1c1
log n

c2
log k

Θ(1)

1/k

III

II

I

ε

approximation
guarantee

Range of ε Approximation Guarantee

I ε ≥ c2/ log k ∼ k−
ε

2−ε

II c1/ log n ≤ ε ≤ c2/ log k 1−O(
√
ε log k)

III ε ≤ c1/ log n 1−O(ε
√

log n log k)

Figure 2.1: Comparison of Approximation Guarantees for Unique Games. The
figure shows the approximation guarantee of each algorithm and the range of ε
where each algorithm performs better then the others.

lengths and other complications arise. Instead of picking one random vector, we pick

several Gaussian random vectors. Our first algorithm (suitable for large ε) picks a

small set of candidate assignments for each variable and chooses randomly amongst

them (independently for every variable). It is interesting to note that such a mul-

tiple assignment is often encountered in algorithms implicit in hardness reductions

involving label cover. This algorithm has a non-trivial guarantee even for very large

ε. In contrast, the previous results have non-trivial guarantees only when ε is small;

specifically, the algorithm of Khot [20] is applicable only when ε = o(1/k10); the re-

sult of Gupta and Talwar is applicable only when ε = O(1/ log n). As ε approaches

1 (i.e. for instances where the optimal solution satisfies only a small fraction of

the constraints), the performance guarantee of our algorithm approaches that of

a random assignment. Our second algorithm (suitable for ε ∈ (c1/log n, c2/log k))

carefully picks a single assignment so that almost all constraints are satisfied.

15



To construct our third algorithm, we introduce a new type of random partition-

ing scheme, which we call an m-orthogonal separator (where m is a parameter).

Specifically, we design an algorithm that, given a set of vectors in an `2
2 space (see

Definition 2.5.2), produces a random subset S such that the probability that two

orthogonal vectors belong to S is equal to 1/m (we assume that 1/m is very small);

and the distribution over corresponding cuts (S, S̄) is a low distortion embedding

from `2
2 into `1. In other words, for two orthogonal vectors u and v the events

“u ∈ S” and “v ∈ S” are “almost” disjoint. This property is crucial for our algo-

rithm: it essentially guarantees that we assign only one value to each vertex in a

unique game. We stress that no previously known embedding satisfies this property.

In order to construct orthogonal separators we extend the methods developed

for the first two algorithms and combine them with powerful metric embedding

techniques developed in the works of Arora, Rao, and Vazirani [4], of Lee [25],

of Chawla, Gupta, and Räcke [10], and of Arora, Lee, and Naor [3] using a new

transformation of the space `2
2, which we call “normalization”.

We present two constructions: one using embeddings from `2
2 into `1 and the

other using embeddings from `2
2 into `2. While the second construction gives a

slightly better guarantee, the first construction would be improved even if better

embedding techniques from `2
2 into `1 at one scale are found (this cannot happen

for embedding into `2, for which current guarantees are essentially tight).

2.2 Semidefinite Relaxation

First we reduce a unique game to an integer quadratic program. We denote the set

of states by [k] ≡ {1, . . . , k}. For each vertex u we introduce k indicator variables

16



ui ∈ {0, 1} (i ∈ [k]) for the events xu = i. For every u, the intended solution

has ui = 1 for exactly one i. The constraint πuv(xu) = xv can be restated in the

following form:

for all i ui = vπuv(i).

The unique game instance is equivalent to the following integer quadratic program:

minimize
1

2

∑
(u,v)∈E

(
k∑
i=1

‖ui − vπuv(i)‖2

)

subject to ∀u ∈ V ∀i ∈ [k] ui ∈ {0, 1}

∀u ∈ V ∀i, j ∈ [k], i 6= j ui · uj = 0

∀u ∈ V
k∑
i=1

u2
i = 1

Note that the objective function measures the number of unsatisfied constraints.

The contribution of edge (u, v) to the objective function is equal to 0 if the constraint

πuv is satisfied, and 1 otherwise. The last two equations say that exactly one ui is

equal to 1.

We now replace each integer variable ui with a vector variable and get a semidef-

inite program (SDP):

minimize
1

2

∑
(u,v)∈E

k∑
i=1

‖ui − vπuv(i)‖2

17



subject to

∀u ∈ V ∀i, j ∈ [k], i 6= j 〈ui, uj〉 = 0 (2.2)

∀u ∈ V
k∑
i=1

‖ui‖2 = 1 (2.3)

∀u, v, w ∈ V ∀i, j, l ∈ [k] ‖ui − wl‖2 ≤ ‖ui − vj‖2 + ‖vj − wl‖2 (2.4)

∀u, v ∈ V i, j ∈ [k] 〈ui, vj〉 ≥ 0 (2.5)

∀u, v ∈ V i, j ∈ [k] 〈ui, vj〉 ≤ ‖ui‖2 (2.6)

The last two constraints are triangle inequality constraints1 for the squared Eu-

clidean distance: inequality (2.5) is equivalent to ‖ui− 0‖2 +‖vj− 0‖2 ≥ ‖ui− vj‖2,

and inequality (2.6) is equivalent to ‖ui − vj‖2 + ‖ui − 0‖2 ≥ ‖vj − 0‖2. A very

important constraint is that for i 6= j the vectors ui and uj are orthogonal. This

SDP was studied by Khot [20], and by Trevisan [32].

Here is an intuitive interpretation of the vector solution: Think of the elements

of the set [k] as states of the vertices. In the integer case, if ui = 1, the vertex is in

the state i. In the vector case, each vertex is in a mixed state, and the probability

that xu = i is equal to ‖ui‖2. The inner product 〈ui, vj〉 can be thought of as

the joint probability that xu = i and xv = j. The directions of vectors determine

whether two states are correlated or not: If the angle between ui and vj is small

it is likely that both events “u is in the state i” and “v is in the state j” occur

simultaneously. In some sense later we will treat the lengths and the directions of

vectors separately.

1We will use constraint 2.5 only in the second algorithm.

18



2.3 First Algorithm

2.3.1 Algorithm

We first describe a high level idea for the first algorithm. Pick a random Gaussian

vector g (with standard normal independent components). For every vertex u add

those vectors ui whose inner product with g are above some threshold τ to the

set Su; we choose the threshold τ in such a way that the set Su contains only one

element in expectation. Then pick a random state from Su and assign it to the

vertex u (if Su is empty do not assign any states to u). What is the probability that

the algorithm satisfies a constraint between vertices u and v? Loosely speaking,

this probability is equal to

E
[
|Su ∩ πuv(Sv)|
|Su| · |Sv|

]
≈ E [|Su ∩ πuv(Sv)|] .

Assume for a moment that the SDP solution is symmetric: the lengths of all

vectors ui are the same and the squared Euclidean distance between every ui and

vπuv(i) is equal to 2ε. (In fact, we can add to SDP the condition that |ui| = 1/
√
k (for

all u and i) in the special case of systems of linear equations of the form xi−xj = cij

(mod p).) Since we want the expected size of Su to be 1, we pick threshold τ such

that the probability that 〈g, ui〉 ≥ τ equals 1/k. The random variables 〈g,
√
k · ui〉

and 〈g,
√
k · vπuv(i)〉 are standard normal random variables with covariance 1 − ε

(note that we multiplied the inner products by a normalization factor of
√
k). For

such random variables if the probability of the event 〈g,
√
k · ui〉 ≥ t ≡

√
kτ equals

1/k, then roughly speaking the probability of the event 〈g,
√
k · ui〉 ≥ t ≡

√
k · τ

and 〈g,
√
k · vπuv(i)〉 ≥ t ≡

√
k · τ equals k−ε/2 · 1/k. Thus the expected size of the

19



intersection of the sets Su and πuv(Sv) is approximately k−ε/2.

Unfortunately this no longer works if the lengths of vectors are different. The

main problem is that if, say, u1 is two times longer than u2, then Pr (u1 ∈ Su) is

much larger than Pr (u2 ∈ Su).

One of the possible solutions is to normalize all vectors first. In order to take

into account original lengths of vectors we repeat the procedure of adding vectors

to the sets Su many times, but each vector ui has a chance to be selected in the set

Su only in the first su,i trials, where su,i is some integer number proportional to the

original squared Euclidean length of ui.

We now formally present a rounding algorithm for the SDP described in the

previous section.

Theorem 2.3.1. There is a polynomial time algorithm that finds an assignment of

variables which satisfies a

Ω

(
min(1,

1√
ε log k

) · (1− ε)2 ·
(

k√
log k

)−ε/(2−ε))

fraction of all constraints if the optimal solution satisfies (1 − ε) fraction of all

constraints.

The algorithm is presented in Figure 2.2. We introduce some notation.

Definition 2.3.2. Define the distance between two vertices u and v as:

εuv =
1

2

k∑
i=1

‖ui − vπuv(i)‖2

and let

εiuv =
1

2
‖ũi − ṽπuv(i)‖2.

20



Input: A solution of the SDP, with the objective value ε · |E|.
Output: An assignment of variables xu.

1. Define ũi = ui/‖ui‖ if ui 6= 0, 0 otherwise.

Note that vectors ũ1, . . . , ũk are orthogonal unit vectors (except for those
vectors that are equal to zero).

2. Pick random independent Gaussian vectors g1, . . . , gk with independent com-
ponents distributed as N (0, 1).

3. For each vertex u:

(a) Set sui = d‖ui‖2 · ke.
(b) For each i project sui vectors g1, . . . , gsui to ũi:

ξui,s = 〈gs, ũi〉, 1 ≤ s ≤ sui .

Note that ξu1,1, ξu1,2, . . . , ξu1,su1
, . . . , ξuk,1, . . . , ξuk,suk are independent

standard normal random variables. (Since ui and uj are orthogonal if
i 6= j, their projections onto a random Gaussian vector are independent).
The number of random variables corresponding to each ui is proportional
to ‖ui‖2.

(c) Fix a threshold t s.t. Pr (ξ ≥ t) = 1/k, where ξ ∼ N (0, 1) (i.e. t is
the (1− 1/k)-quantile of the standard normal distribution; note that by
Lemma 2.6.11, part 2, t = Θ

(√
log k

)
).

(d) Pick those ξui that are larger than the threshold t:

Su = {(i, s) : ξui,s ≥ t} .

(e) For each vertex u, pick at random a pair (i, s) from Su and assign xu = i.

If the set Su is empty do not assign any value to the vertex: this means
that all the constraints containing the vertex are not satisfied.

Figure 2.2: First Algorithm for Unique Games

If ui and vπuv(i) are nonzero vectors and αi is the angle between them, then εiuv =

1− cosαi. For consistency, if one of the vectors is equal to zero we set εiuv = 1 and

21



αi = π/2.

We need several estimates on the joint distribution of gaussian variables in our

analysis of this algorithm. We defer the proofs of these estimates to Section 2.3.2.

Lemma 2.3.3. For every edge (u, v), state i in [k] and s ≤ min(sui , svπuv(i)
) the

probability that the algorithm picks (i, s) for the vertex u and (πuv(i), s) for v at the

step 3.e is

Ω

(
min(1,

1√
εiuv log k

) · 1√
log k

·
(√

log k

k

)2/(2−εiuv)
)
. (2.7)

Proof. First let us observe that ξui,s and ξvπuv(i),s are standard normal random vari-

ables with covariance cosαi = 1− εiuv. We prove in Section 2.3.2 (Corollary 2.3.10)

that the probability that ξui,s ≥ t and ξvπuv(i),s ≥ t is equal to (2.7).

Note that the expected number of elements in Su is equal to (su1 + . . .+ suk)/k

which is at most 2. Moreover, as we will prove in Lemma 2.3.11, the conditional

expected number of elements in Su given the event ξui,s ≥ t and ξvπuv(i),s ≥ t

is also a constant. Thus by the Markov inequality the following event happens

with probability (2.7): The sets Su and Sv contain the pairs (i, s) and (πuv(i), s)

respectively and the sizes of these sets are bounded by a constant. The lemma

follows.

Definition 2.3.4. For brevity, denote
(√

log k/k
)2/(2−x)

by fk(x).

Remark 2.3.5. It is instructive to consider the case when the SDP solution is

uniform in the following sense:

1. The lengths of all vectors ui are the same and are equal to 1/
√
k.

22



2. All εiuv are equal to ε.

In this case all sui are equal to 1. And thus the probability that a constraint is

satisfied is k times the probability (2.7) which is equal, up to a logarithmic factor, to

k−ε/(2−ε). Multiplying this probability by the number of edges we get that the expected

number of satisfied constraints is k−ε/(2−ε)|E|.

In the general case, however, we need to do some extra work to average the

probabilities among all states i and edges (u, v).

Recall that we interpret ‖ui‖2 as the probability that the vertex u is in the

state i. Suppose now that the constraint between u and v is satisfied, what is the

conditional probability that u is in the state i and v is in the state πuv(i)? Roughly

speaking, it should be equal to (‖ui‖2 + ‖vπuv(i)‖2)/2. This motivates the following

definition.

Definition 2.3.6. Define a measure µuv on the set [k]:

µuv(T ) =
∑
i∈T

‖ui‖2 + ‖vπuv(i)‖2

2
, where T ⊂ [k].

Note that µuv([k]) = 1. This follows from constraint (2.3).

The following lemma shows why this measure is useful.

Lemma 2.3.7. For every edge (u, v) the following statements hold.

1. The average value of εiuv w.r.t. the measure µuv is less than or equal to εuv:

k∑
i=1

µuv(i)ε
i
uv ≤ εuv.

23



2. For every i,

min(sui , svπuv(i)
) ≥ (1− εiuv)2µuv(i)k.

Proof. 1. Indeed,

k∑
i=1

µuv(i) · εiuv =
k∑
i=1

‖ui‖2 + ‖vπuv(i)‖2 − (‖ui‖2 + ‖vπuv(i)‖2) · cosαi
2

≤
k∑
i=1

‖ui‖2 + ‖vπuv(i)‖2 − 2 · ‖ui‖ · ‖vπuv(i)‖ · cosαi
2

=
k∑
i=1

‖ui − vπuv(i)‖2

2
= εuv

Note that here we used the fact that 〈ui, vπuv(i)〉 ≥ 0 and, therefore, cosαi ≥ 0.

2. Without loss of generality assume that ‖ui‖ ≤ ‖vπuv(i)‖, and hence

min(sui , svπuv(i)
) = sui .

Due to the triangle inequality constraint (2.6) in the SDP ‖vπuv(i)‖ cosαi ≤ ‖ui‖.

Thus

(1− εiuv)2µuv(i) = cos2 αi ·
‖ui‖2 + ‖vπuv(i)‖2

2
≤ ‖ui‖2 ≤ sui/k.

Lemma 2.3.8. For every edge (u, v) the probability that an assignment found by

the algorithm satisfies the constraint πuv(xu) = xv is

Ω

(
k√

log k
·min(1,

1√
εuv log k

) · fk(εuv)
)
. (2.8)

Proof. Denote the desired probability by Puv. It is equal to the sum of the proba-

24



bilities obtained in Lemma 2.3.3 over all i ∈ [k] and s ≤ min (sui , svπuv(i)
). In other

words,

Puv = Ω

(
k∑
i=1

min (sui , svπuv(i)
)

1√
log k

min(1,
1√

εiuv log k
)fk(ε

i
uv)

)
.

Replacing min (sui , svπuv(i)
) with (1− εiuv)2µuv(i) · k we get

Puv = Ω

(
k√

log k

k∑
i=1

µuv(i) min(1,
1√

εiuv log k
)(1− εiuv)2fk(ε

i
uv)

)
.

Consider the set M = {i ∈ [k] : εiuv ≤ 2εuv}. For i in M the term
√
εiuv log k is

bounded from above by
√

2εuv log k. Thus

Puv = Ω

(
k√

log k
min(1,

1√
εuv log k

)
∑
i∈M

µuv(i)(1− εiuv)2fk(ε
i
uv)

)
.

The function (1−x)2fk(x) is convex on [0, 1] (see Lemma 2.3.12). The average value

of εiuv among i in M (w.r.t. the measure µuv) is at most the average value of εiuv

among all i, which in turn is less than εuv according to Lemma 2.3.7. Finally, by

the Markov inequality µuv(M) ≥ 1/2. Thus by Jensen’s inequality

Puv = Ω

(
k√

log k
min(1,

1√
εuv log k

)µuv(M)(1− εuv)2 · fk(εuv)
)

= Ω

(
k√

log k
min(1,

1√
εuv log k

)(1− εuv)2 · fk(εuv)
)
.

This finishes the proof.

We are now in position to prove the main theorem.

Theorem 2.3.1. There is a polynomial time algorithm that finds an assignment of

25



variables which satisfies a

Ω

(
min(1,

1√
ε log k

) · (1− ε)2 ·
(

k√
log k

)−ε/(2−ε))

fraction of all constraints if the optimal solution satisfies (1 − ε) fraction of all

constraints.

Proof. Let us restrict our attention to a subset of edges E ′ = {(u, v) ∈ E : εuv ≤ 2ε}.

For (u, v) in E ′, since εuv log k ≤ 2ε log k, we have

Puv = Ω

(
k√

log k
min(1,

1√
ε log k

)(1− εuv)2 · fk(εuv)
)
.

Summing this probability over all edges (u, v) in E ′ and using convexity of the

function (1− x)2fk(x) we get the statement of the theorem.

2.3.2 Analysis: Technical Details

In this section we will prove some technical lemmas we used in the analysis of

the first algorithm. Let us denote the probability that a standard normal random

variable is greater than t ∈ R by Φ̃(t). We prove standard estimates for Φ̃(t), which

we use in this section, in the Appendix.

Lemma 2.3.9. Let ξ and η be correlated standard normal random variables, 0 <

ε < 1, t ≥ 1. If cov(ξ, η) ≥ 1− ε, then

Pr (ξ ≥ t and η ≥ t) ≥ C ·min(1, (
√
εt)−1) · t−1 · (t · Φ̃(t))

2
2−ε . (2.9)

for some positive constant C.

26



Proof. Let us represent ξ and η as follows:

ξ = σX +
√

1− σ2 · Y ; η = σX −
√

1− σ2 · Y,

where

σ2 = Var

[
ξ + η

2

]
; X =

ξ + η

2σ
; Y =

ξ − η
2
√

1− σ2
.

Note that X and Y are independent standard normal random variables; and

σ2 = Var

[
ξ + η

2

]
=

1

4
[2 + 2 cov(ξ, η) ] ≥ 1− ε

2
. (2.10)

Notice that 1/2 ≤ σ2 ≤ 1. We now estimate the probability (2.9) as follows

Pr
(
ξ ≥ t and η ≥ t

)
= Pr

(
σX ≥ t+

√
1− σ2 · |Y |

)
≥ Pr

(
X ≥ t

σ
+
σ

t

)
· Pr

(
|Y | ≤ σ2

√
1− σ2 · t

)

By Lemma A.1.1 (part 3) from the Appendix (with ρ = 1/σ) we get

Pr
(
ξ ≥ t and η ≥ t

)
≥ C ·

(
t−1 · (tΦ̃(t))1/σ2

)
·min

(
1,

σ2

√
1− σ2 · t

)
≥ C ′ ·min((

√
ε · t)−1, 1) · t−1 · (t · Φ̃(t))

2
2−ε .

Corollary 2.3.10. Let ξ and η be standard normal random variables with covari-

27



ance greater than or equal to 1− ε; let Φ̃(t) = 1/k. Then

Pr (ξ ≥ t and η ≥ t) ≥ Ω

(
min

(
1,

1√
ε log k

)
· 1√

log k
·
(

k√
log k

)− 2
2−ε
)
.

(If k > 6 then t > 1, so this corollary follows from Lemma 2.3.9. If k ≤ 6

then the expression in the right hand side (inside Ω(·)) is at most 1/k2 ≤ 1/36; the

probability in the left hand side is at most 1. Therefore, the bound holds when the

constant in the omega notation is greater than 36. )

Lemma 2.3.11. Let ξ, η, ε, k and t be as in Corollary 2.3.10, and let ξ1, . . . , ξm

be i.i.d. standard normal random variables and m ≤ 2k, then

E

[
m∑
i=1

I{ξi≥t} | ξ ≥ t and η ≥ t

]
= O(1),

where I{ξi≥t} is the indicator of the event {ξi ≥ t}.

Proof. Let X and Y be as in the proof of Lemma 2.3.9. Put αi = cov(X, ξi) and

express each ξi as ξi = αiX+
√

1− α2
i ·Zi. By Bessel’s Inequality α2

1 + · · ·+α2
m ≤ 1

(since random variables ξi are orthogonal). Let Bt,x be the event

Bt,x =
{
σx ≥ t+

√
1− σ2|Y |

}
.

Then

Bt,X = {ξ ≥ t and η ≥ t} .

28



We now estimate the value of E
[
I{ξi≥t} | ξ ≥ t, η ≥ t

]
= Pr(ξi ≥ t | Bt,X),

Pr(ξi ≥ t | Bt,X) = Pr (ξi ≥ t | Bt,X and X ≤ 4t) Pr (X ≤ 4t | Bt,X)

+ Pr (ξi ≥ t | Bt,X and X > 4t) Pr (X > 4t | Bt,X)

≤ Pr (ξi ≥ t | Bt,X and X ≤ 4t) + Pr (X > 4t | Bt,X) . (2.11)

Let us bound the first term.

Pr
(
ξi ≥ t | Bt,X and X ≤ 4t

)
= Pr

(
αiX +

√
1− α2

i · Zi ≥ t | Bt,X and X < 4t
)

≤ max
x∈[t/σ,4t]

Pr

(√
1− α2

i · Zi ≥ t− αix | Bt,x

)
A.2.2

≤ max
x∈[t/σ,4t]

Pr

(√
1− α2

i · Zi ≥ t− αix
)

≤ Pr (Zi ≥ (1− 4αi)t) = Φ̃((1− 4αi)t).

Here, first we used that X ≥ t/σ when Bt,X happens; then we used Corollary A.2.2.

Now we bound the second term in (2.11).

Pr (X > 4t | Bt,X) ≤ Pr (X > 4t)

Pr (Bt,X)
≤ Φ̃(4t)

Pr (X ≥ t/σ + 1) Pr (|Y | ≤ 1)

≤ Φ̃(4t)

Φ̃(
√

2t+ 1)Ω(1)
= O(e−8t2+(

√
2t+1)2/2) = O(1/m).

We have,

E

[
m∑
i=1

I{ξi≥t} | ξ ≥ t and η ≥ t

]
≤ O(1) +

m∑
i=1

Φ̃((1− 4αi)t).

Fix a sufficiently large constant c, the number of αi that are greater than 1/c

is at most c2. The number of αi such that log−1 k ≤ αi ≤ 1/c is O(log2 k) and for

29



them Φ̃((1 − 4αi)t) = O(k−1/2) (since c is a sufficiently large constant). Finally, if

αi < 1/ log k, then Φ̃((1− 4αi)t) = O(k−1). We get the bound

O

(
c2 +

log2 k√
k

+
m

k

)
= O(1).

This finishes the proof.

Lemma 2.3.12. The function (1− x)2fk(x) is convex on the interval [0, 1].

Proof. Let m = k/
√

log k. Compute the first and the second derivatives of fk:

f ′′k (x) =
(
m−

2
2−x

)′′
= −2 logm ·

(
m−

2
2−x

(2− x)2

)′

= 4 logm · m
− 2

2−x

(2− x)3
·
(

logm

2− x
− 1

)
.

Now ((1− x)2 · fk(x))
′′

= (1 − x)2 · f ′′k (x) − 4(1 − x)f ′k(x) + 2fk(x). Observe

that fk(x) is always positive, and f ′k(x) is always negative. Therefore, if f ′′k (x) is

positive, we are done: ((1− x)2 · fk(x))
′′ ≥ 0. Otherwise, we have

(
(1− x)2 · fk(x)

)′′
= (1− x)2 · f ′′k (x)− 4(1− x)f ′k(x) + 2fk(x)

≥ f ′′k (x) + 2fk(x) ≥ 4 logm ·m−
2

2−x

(
logm

2
− 1

)
+ 2m−

2
2−x

= 2m−
2

2−x (logm− 1)2 ≥ 0.

30



2.4 Second Algorithm

Suppose that ε is O(1/ log k). In the previous section we presented an algorithm

that in this case finds an assignment of variables satisfying a constant fraction

of constraints. But can we do better? In this section we show how to find an

assignment satisfying 1−O(
√
ε log k) fraction of constraints.

2.4.1 Algorithm

We present the algorithm in Figure 2.3. The main issue we need to take care of is to

guarantee that the algorithm always picks only one element in the set Su (otherwise

we loose a constant factor). This can be done by selecting the largest in absolute

value ξui,s (at step 3.c). We will also change the way we set sui .

Denote by [x]r the function that rounds x up or down depending on whether

the fractional part of x is greater or less than r. Note that if r is a random variable

uniformly distributed in the interval [0, 1], then the expected value of [x]r is equal

to x.

We first elaborate on the difference between the choice of sui in the algorithm

above and that in Algorithm 1 presented earlier. Consider a constraint πuv(xu) = xv.

Projection ξui,s generated by ui and ξvπuv(i),s generated by vπuv(i) are considered to be

matched. On the other hand, a projection ξui,s such that the corresponding ξvπuv(i),s

does not exist (or vice versa) is considered to be unmatched. Unmatched projections

arise when sui 6= svπuv(i)
and the fraction of such projections limits the probability

of satisfying the constraint. Recall that in Algorithm 1, we set sui = d‖ui‖2 · ke.

Even if ui and vπuv(i) are infinitesimally close, it may turn out that sui and svπuv(i)

differ by 1, yielding an unmatched projection. As a result, some constraints that

31



Input: A solution of the SDP, with the objective value ε · |E|.
Output: An assignment of variables xu.

1. Pick a number r in the interval [0, 1] uniformly at random.

2. Pick random independent Gaussian vectors g1, . . . , g2k with independent com-
ponents distributed as N (0, 1).

3. For each vertex u:

(a) Set sui = [2k · ‖ui‖2]r.

(b) For each i project sui vectors g1, . . . , gsui to ũi:

ξui,s = 〈gs, ũi〉, 1 ≤ s ≤ sui .

(c) Select ξui,s with the largest absolute value, where i ∈ [k] and s ≤ sui .
Assign xu = i.

Figure 2.3: Second Algorithm for Unique Games

are almost satisfied by the SDP solution (i.e εuv is close to 0) could be satisfied

with low probability (by the first rounding algorithm). In Algorithm 2, we set

sui = [2k · ‖ui‖2]r. This serves two purposes: Firstly, Er

[
|sui − svπuv(i)

|
]

can be

bounded by 2k · ‖ui − vπuv(i)‖2, giving a small number of unmatched projections in

expectation. Secondly, the number of matched projections is always at least k/2.

These two properties are established in Lemma 2.4.3 and ensure that the expected

fraction of unmatched projections is small.

Our analysis of Rounding Algorithm 2 is based on the following theorem.

Theorem 2.4.1. Let ξ1, · · · , ξm and η1, · · · , ηm be two sequences of standard nor-

mal random variables. Suppose that the random variables in each of the sequences

are independent, the covariance of every ξi and ηj is nonnegative, and the average

32



covariance of ξi and ηi is at least 1− ε:

cov(ξ1, η1) + · · ·+ cov(ξm, ηm)

m
≥ 1− ε.

Then the probability that the largest r.v. in absolute value in the first sequence

has the same index as the largest r.v. in absolute value in the second sequence is

1−O(
√
ε logm).

Now we informally sketch the proof. We will give the complete proof in Sec-

tion 2.4.2. It is instructive to consider the case when cov(ξi, ηi) = 1 − ε for all i.

Assume that the first variable ξ1 is the largest in absolute value among ξ1, . . . , ξm

and its absolute value is a positive number t. Note that the typical value of t is

approximately
√

2 logm− log logm (i.e t is the (1− 1/m)-quantile of N (0, 1)). We

want to show that η1 is the largest in absolute value among η1, . . . , ηm with proba-

bility 1−O(
√
ε logm), specifically that the probability that any (fixed) ηi is larger

than η1 is O(
√
ε logm/m). Let us compute this probability for η2.

Since cov(η1, ξ1) = 1− ε and cov(ξ2, η2) = 1− ε, the random variable η1 is equal

to (1−ε)ξ1 +ζ1; and η2 is equal to (1−ε)ξ2 +ζ2, where ζ1 and ζ2 are normal random

variables with variance, roughly speaking, 2ε. We need to estimate the probability

of the event

{η2 ≥ η1} = {(1− ε)ξ2 + ζ2 ≥ (1− ε)ξ1 + ζ1} = {(1− ε)ξ2 + ζ2 − ζ1 ≥ (1− ε)t}

conditional on ξ1 = t and ξ2 ≤ t. For typical t this probability is almost equal to

the probability of the event:

{ξ2 + ζ ≥ t and ξ2 ≤ t} = {t− ζ ≤ ξ2 ≤ t} (2.12)

33



where ζ = ζ2 − ζ1.

Since the variance of the random variable ζ is O(ε), we can think that ζ ≈ O(
√
ε).

The density of ξ2 on the interval [t − ζ, t] is approximately e−t
2/2
√

2π
≈ O(

√
logm/m)

(for typical t). Thus probability (2.12) is equal to O(
√
ε logm/m). This finishes

our informal “proof”.

Now we are ready to prove the main lemma.

Lemma 2.4.2. The probability that the algorithm finds an assignment of variables

satisfying the constraint πuv(xu) = xv is 1−O(
√
εuv log k).

Proof. If εuv ≥ 1/8 the statement of the lemma follows trivially. So we assume that

εuv ≤ 1/8.

Let

M =
{

(i, s) : i ∈ [k] and s ≤ min(sui , svπuv(i)
)
}

;

Mc =
{

(i, s) : i ∈ [k] and min(sui , svπuv(i)
) < s ≤ max(sui , svπuv(i)

)
}
.

The set M contains those pairs (i, s) for which both ξui,s and ξvπuv(i),s are defined

(i.e the matched projections); the set Mc contains those pairs for which only one of

the variables ξui,s and ξvπuv(i),s is defined (i.e the unmatched projections). We will

need the following lemmas.

Lemma 2.4.3. 1. The expected size of Mc is at most 4εuvk:

E [|Mc|] ≤ 4εuvk.

2. The set M always contains at least k/2 elements: |M | ≥ k/2.

34



Proof. 1. First we find the expected value of |sui − svπuv(i)
| for a fixed i. This value

is equal to

Er

[∣∣[2k · ‖ui‖2]r − [2k · ‖vπuv(i)‖2]r
∣∣] = 2k ·

∣∣‖ui‖2 − ‖vπuv(i)‖2
∣∣ .

Now by the triangle inequality constraint (2.6),

2k ·
∣∣‖ui‖2 − ‖vπuv(i)‖2

∣∣ ≤ 2k · ‖ui − vπuv(i)‖2.

Summing over all i in [k] we finish the proof.

2. Observe that

min(sui , svπuv(i)
) ≥ 2k ·min(‖ui‖2, ‖vπuv(i)‖2)− 1

and

min(‖ui‖2, ‖vπuv(i)‖2) ≥ ‖ui‖2 − |‖ui‖2 − ‖vπuv(i)‖2| ≥ ‖ui‖2 − ‖ui − vπuv(i)‖2.

Summing over all i we get

|M | =
∑
i∈[k]

min(sui , svπuv(i)
) ≥

∑
i∈[k]

(
2k · ‖ui‖2 − 2k · ‖ui − vπuv(i)‖2 − 1

)
≥ 2k − 4kεuv − k ≥ k/2.

35



Lemma 2.4.4. The following inequality holds:

Er

 1

|M |
∑

(i,s)∈M

εiuv

 ≤ 4εuv.

Proof. Recall that M always contains at least k/2 elements. The expected value

of min(sui , svπuv(i)
) is equal to 2k ·min(‖ui‖2, ‖vπuv(i)‖2) and is less than or equal to

2k · µuv(i). Thus we have

Er

 1

|M |
∑

(i,s)∈M

εiuv

 = Er

[
1

|M |

k∑
i=1

min(sui , svπuv(i)
) · εiuv

]

≤ 2

k

k∑
i=1

2k · µuv(i) · εiuv ≤ 4
k∑
i=1

µuv(i) · εiuv ≤ 4εuv.

Proof of Lemma 2.4.2

Applying Theorem 2.4.1 to the sequences ξui,s ((i, s) ∈M) and ξvπuv(i),s ((i, s) ∈M)

we get that for given r the probability that the largest in absolute value random

variables in the first sequence ξui,s and the second sequence ξvπuv(i),s have the same

index (i, s) is

1−O

√log |M | · 1

|M |
∑

(i,s)∈M

εiuv

 .

Now by Lemma 2.4.4, and by the concavity of the function
√
x, we have

Er

1−O

√√√√ log |M |
|M |

∑
(i,s)∈M

εiuv

 ≥ 1−O
(√

εuv log k
)
.

36



The probability that there is a larger ξui,s or ξvπuv(i),s in Mc is at most

Er

[
|Mc|
|M |

]
≤ 4εuvk

k/2
= 8εuv.

Using the union bound we get that the probability of satisfying the constraint

πuv(xu) = xv is at least

1−O(
√
εuv log k)− 8εuv = 1−O(

√
εuv log k).

Theorem 2.4.5. There is a polynomial time algorithm that finds an assignment

of variables which satisfies 1−O(
√
ε log k) fraction of all constraints if the optimal

solution satisfies (1− ε) fraction of all constraints.

Proof. Summing the probabilities obtained in Lemma 2.4.2 over all edges (u, v) and

using the concavity of the function
√
x we get that the expected number of satisfied

constraints is 1−O(
√
ε log k)|E|.

2.4.2 Analysis: Technical Details

In this section, we present the formal proof of Theorem 2.4.1. We will follow the

informal outline of the proof sketched in Section 2.4.1. We start with estimating

probability (2.12).

Lemma 2.4.6. Let ξ and ζ be two independent random normal variables with vari-

ance 1 and σ2 respectively (0 < σ < 1). Then for every positive t

Pr (ξ ≤ t and ξ + ζ ≥ t) = O(σe
(σt+1)2

2 · e−
t2

2 ).

37



Remark 2.4.7. In the “typical” case e(σt+1)2/2 is a constant.

Proof. We have

Pr
(
ξ ≤ t and ξ + ζ ≥ t

)
=

∫ ∞
0

Pr (ξ ≤ t and ξ + x ≥ t) dFζ(x)

=
1√
2πσ

∫ ∞
0

Pr (ξ ≤ t and ξ + x ≥ t) e−
x2

2σ2 dx

=
1√
2π

∫ ∞
0

Pr (ξ ≤ t and ξ + σ y ≥ t) e−
y2

2 dy

=
1√
2π

∫ t/σ

0

Pr (t− σ y ≤ ξ ≤ t) e−
y2

2 dy +
1√
2π

∫ ∞
t/σ

Pr (t− σ y ≤ ξ ≤ t) e−
y2

2 dy.

Let us bound the first integral. Since the density of the random variable ξ on the

interval (t− σy, t) is at most 1√
2π
e
−(t−σy)2

2 and y ≤ ey, we have

Pr (t− σ y ≤ ξ ≤ t) ≤ σy · 1√
2π

e
−(t−σy)2

2 ≤ σ√
2π
· e
−t2

2 · e(σt+1)y.

Therefore,

1√
2π

∫ t/σ

0

Pr (t− σ y ≤ ξ ≤ t) e−
y2

2 dy ≤ σe
−t2

2

2π

∫ t/σ

0

e(σt+1)y · e−
y2

2 dy

≤ σe
−t2

2

2π

∫ ∞
−∞

e−
(y−(σt+1))2

2 · e
(σt+1)2

2 dy

= O

(
σe
−t2

2 · e
(σt+1)2

2

)
.

38



We now upper bound the second integral. If t ≥ 1, then

1√
2π

∫ ∞
t/σ

Pr (t− σ y ≤ ξ ≤ t) e−
y2

2 dy ≤ 1√
2π

∫ ∞
t/σ

e−
y2

2 dy = Φ̃(t/σ)

by Lemma A.1.1
= O

 e−
t2

2σ2

t/σ + 1

 = O

(
σ e−

t2

2

t+ σ

)
= O

(
σ e−

t2

2

)
.

If t ≤ 1, then

1√
2π

∫ ∞
t/σ

Pr (t− σ y ≤ ξ ≤ t) e−
y2

2 dy ≤
∫ ∞

0

σy · e− y
2

2

2π
dy =

σ

2π
≤ σe−

t2

2 .

The desired inequality follows from the upper bounds on the first and second inte-

grals.

We need a slight generalization of the lemma.

Corollary 2.4.8. Let ξ and ζ be two independent random normal variables with

variance 1 and σ2 respectively (0 < σ < 1). Then for every t > 0 and 0 ≤ ε̄ < 1

Pr (ξ + ζ ≥ (1− ε̄)t | |ξ| ≤ t) = O

(
(σ + ε̄t) · c(ε̄, σ, t) · e−t2/2

1− 2Φ̃(t)

)
,

where

c(ε̄, σ, t) = e
(σt+1)2

2
+ε̄t2 .

Remark 2.4.9. As in the previous lemma, in the “typical” case c(ε̄, σ, t) is a con-

stant.

39



Proof. First note that

Pr (ξ + ζ ≥ (1− ε̄)t | |ξ| ≤ t) ≤ Pr (ξ + ζ ≥ (1− ε̄)t and ξ ≤ t)

Pr (|ξ| ≤ t)

=
Pr (ξ + ζ ≥ (1− ε̄)t and ξ ≤ t)

1− 2Φ̃(t)
.

Now,

Pr (ξ + ζ ≥ (1− ε̄)t and ξ ≤ t) ≤Pr (ξ + ζ ≥ t and ξ ≤ t)

+ Pr ((1− ε̄)t ≤ ξ + ζ ≤ t) .

By Lemma 2.4.6, the first probability is bounded as follows:

Pr (ξ + ζ ≥ t and ξ ≤ t) ≤ O

(
σe

(σt+1)2

2 · e−
t2

2

)
.

Since Var [ξ + ζ] ≤ 1 + σ2, the second probability is at most

Pr ((1− ε̄)t ≤ ξ + ζ ≤ t) ≤ ε̄t · e−
((1−ε̄)t)2

2(1+σ2) ≤ ε̄t · e
(2ε̄+σ2)t2

2 · e−
t2

2 ,

here we used the following inequality

(1− ε̄)2t2

2(1 + σ2)
=

(1− ε̄)2(1− σ2)t2

2(1− σ4)
≥ (1− 2ε̄− σ2)t2

2
≥ t2

2
− (2ε̄+ σ2)t2

2
.

The corollary follows.

In the following lemma we formally define the random variables ζ1 and ζ2.

Lemma 2.4.10. Let ξ1, ξ2, η1 and η2 be standard normal random variables such

that ξ1 and ξ2 are independent; η1 and η2 are independent; and

40



• cov(ξ1, η1) ≥ 1− ε̄ ≥ 0 and cov(ξ2, η2) ≥ 1− ε̄ ≥ 0 (for some positive ε̄);

• cov(ξ1, η2) ≥ 0 and cov(ξ2, η1) ≥ 0.

Then there exist normal random variables ζ1 and ζ2 independent of ξ1 and ξ2 with

variance at most 2ε̄ such that

|η1| − |η2| ≥ (1− 4ε̄)|ξ1| − (1 + 3ε̄)|ξ2| − |ζ1| − |ζ2|.

Proof. Express η1 as a linear combination of ξ1, ξ2, and a normal r.v. ζ1 independent

of ξ1 and ξ2:

η1 = α1ξ1 + β1ξ2 + ζ1,

similarly,

η2 = α2ξ1 + β2ξ2 + ζ2.

Note that α1 = cov(η1, ξ1) ≥ 1− ε̄ and β1 = cov(η1, ξ2) ≥ 0. Thus

Var [ζ1] ≤ Var [η1]− α2
1 ≤ 1− (1− ε̄)2 ≤ 2ε̄.

Similarly, α2 ≥ 0, β2 ≥ 1 − ε̄, and Var[ζ2] ≤ 2ε̄. Since η1 and η2 are independent,

we have

α1α2 + β1β2 + cov(ζ1, ζ2) = cov(η1, η2) = 0.

Therefore (note that cov(ζ1, ζ2) ≤ 0; α1α2 ≥ 0; β1β2 ≥ 0),

α2 =
−β1β2 − cov(ζ1, ζ2)

α1

≤
√

Var[ζ1] Var[ζ2]

1− ε̄
≤ 2ε̄

1− ε̄
.

Taking into account that α2 ≤ 1, we get α2 ≤ min(1, 2ε̄
1−ε̄) ≤ 3ε̄. Similarly, β1 ≤ 3ε̄.

41



Finally, we have

|η1| − |η2| ≥ (α1 − α2)|ξ1| − (β1 + β2)|ξ2| − |ζ1| − |ζ2|

≥ (1− 4ε̄)|ξ1| − (1 + 3ε̄)|ξ2| − |ζ1| − |ζ2|.

In what follows we assume that ξ1 is the largest r.v. in absolute value among

ξ1, . . . , ξm and its absolute value is t. For convenience we define three events:

At = {|ξi| ≤ t for all 3 ≤ i ≤ m} ;

Et = At ∩ {|ξ1| = t and |ξ2| ≤ t} ;

E = {|ξ1| ≥ |ξi| for all i} =
⋃
t≥0

Et.

Now we are ready to combine Corollary 2.4.8 and Lemma 2.4.10.

Lemma 2.4.11. Let ξ1, · · · , ξm and η1, · · · , ηm be two sequences of standard normal

random variables. Suppose that

1. the random variables in each of the sequences are independent,

2. the covariance of every ξi and ηj is nonnegative,

3. cov(ξ1, η1) ≥ 1− ε̄ and cov(ξ2, η2) ≥ 1− ε̄, where ε̄ ≤ 1/7.

Then

Pr (|η1| ≤ |η2| | Et) = O

(
(
√
ε̄+ ε̄t) · e−t2/2 · c(7ε̄,

√
8ε̄, t)

1− 2Φ̃(t)

)
, (2.13)

42



where c(ε̄, σ, t) is from Corollary 2.4.8.

Proof. By Lemma 2.4.10, we have

|η1| − |η2| ≥ (1− 4ε̄)|ξ1| − (1 + 3ε̄)|ξ2| − |ζ1| − |ζ2|.

Therefore,

Pr (|η1| ≤ |η2| | Et) ≤ Pr ((1 + 3ε̄)|ξ2|+ |ζ1|+ |ζ2| ≥ (1− 4ε̄)|ξ1| | Et)

≤ Pr (|ξ2|+ |ζ1|+ |ζ2| ≥ (1− 7ε̄)t | Et)

≤
∑

s,s1,s2∈{±1}

Pr (sξ2 + s1ζ1 + s2ζ2 ≥ (1− 7ε̄)t | Et)

Let us fix signs s, s1, s2 ∈ {±1} and denote ξ = sξ2, ζ = s1ζ1 + s2ζ2, then we

need to show that

Pr (ξ + ζ ≥ (1− 7ε̄)t | Et) = O

(
(
√
ε̄+ ε̄t) · e

−t2/2 · c(7ε̄,
√

8ε̄, t)

1− 2Φ̃(t)

)
.

Observe that the random variables ξ, ζ and the event At are independent of ξ1, thus

Pr (ξ + ζ ≥ (1− 7ε̄)t | Et)

= Pr (ξ + ζ ≥ (1− 7ε̄) t | At and |ξ1| = t and |ξ| ≤ t)

= Pr (ξ + ζ ≥ (1− 7ε̄) t | At and |ξ| ≤ t)

= Pr (ζ ≥ (1− 7ε̄) t− ξ | At and |ξ| ≤ t) .

Since ξ and At are independent, for every fixed value of ξ we can apply Corol-

43



lary A.2.2. We have

Pr (ζ ≥ (1− 7ε̄)t− ξ | At and |ξ| ≤ t) ≤ Pr (ζ ≥ (1− 7ε̄)t− ξ | |ξ| ≤ t)

= Pr (ξ + ζ ≥ (1− 7ε̄)t | |ξ| ≤ t) .

Finally, by Corollary 2.4.8 (where σ2 = Var [ζ] ≤ 8ε̄),

Pr (ξ + ζ ≥ (1− 7ε̄)t | |ξ| ≤ t) = O

(
(
√
ε̄+ ε̄t) · e−t2/2 · c(7ε̄,

√
8ε̄, t)

1− 2Φ̃(t)

)
.

Corollary 2.4.12. Under assumptions of Lemma 2.4.11,

1. if ε̄t2 ≤ 1, then

Pr (|η1| ≤ |η2| | Et) = O

(
√
ε̄

(t+ 1) · Φ̃(t)

1− 2Φ̃(t)

)
;

2. if t > 1, then

Pr (|η1| ≤ |η2| | Et) = O
(√

ε̄
)
.

Proof. 1. If ε̄t2 ≤ 1, then ε̄t ≤
√
ε̄ and

c(7ε̄,
√

8ε̄, t) = e
(
√

8ε̄t+1)2

2
+7ε̄t2 = O(1).

Notice that

(
√
ε̄+ ε̄t) · e−t2/2

1− 2Φ̃(t)
= O

(
(
√
ε̄+ ε̄t) · (t+ 1) · Φ̃(t)

1− 2Φ̃(t)

)
,

44



since (see Lemma A.1.1)

Φ̃(t) = Θ

(
e−t

2/2

t+ 1

)
.

2. If ε̄ > 1/32 the statement holds trivially. So assume that ε̄ ≤ 1/32. Then

(
√

8ε̄t+ 1)2

2
+ 7ε̄t2 ≤ 3t2

8
+O(t).

Thus t ·e− t
2

2 ·c(7ε̄,
√

8ε̄, t) is upper bounded by some absolute constant. Since t ≥ 1,

the denominator 1− 2Φ̃(t) of the expression (2.13) is bounded away from 0.

We now give a bound on the “typical” absolute value of the largest random

variable.

Lemma 2.4.13. The following inequality holds:

Pr
(
|ξ1| ≥ 2

√
logm | E

)
≤ 1

m
.

Proof. Note that the probability of the event E is 1/m, since all random variables

ξ1, . . . , ξm are equally likely to be the largest in absolute value. Thus we have (see

Lemma A.1.1)

Pr
(
|ξ1| ≥ 2

√
logm | E

)
≤

Pr
(
|ξ1| ≥ 2

√
logm

)
Pr (E)

≤ 1

m2

/
1

m
=

1

m
.

Lemma 2.4.14. Let ξ1, · · · , ξm and η1, · · · , ηm be two sequences of standard nor-

mal random variables as in Theorem 2.4.1. Assume that cov(ξ1, η1) ≥ 1 − ε̄ and

45



cov(ξ2, η2) ≥ 1− ε̄, where ε̄ < min(1/(4 logm), 1/7). Then

Pr (|η1| ≤ |η2| | E) = O

(√
ε̄ logm

m

)
.

Proof. Write the desired probability as follows:

Pr (|η1| ≤ |η2| | E) = Pr
(
|η1| ≤ |η2| and |ξ1| ≤ 2

√
logm | E

)
+ Pr

(
|η1| ≤ |η2| and |ξ1| ≥ 2

√
logm | E

)
.

First consider the case |ξ1| ≤ 2
√

logm. Denote by dF|ξ1| the density of |ξ1| condi-

tional on E. Then

Pr
(
|η1| ≤ |η2| and |ξ1| ≤ 2

√
logm | E

)
=

∫ 2
√

logm

0

Pr (|η1| ≤ |η2| | E and |ξ1| = t) dF|ξ1|(t)

=

∫ 2
√

logm

0

Pr (|η1| ≤ |η2| | Et) dF|ξ1|(t).

Now by Corollary 2.4.12,

∫ 2
√

logm

0

Pr (|η1| ≤ |η2| | Et) dF|ξ1|(t) =

∫ 2
√

logm

0

O

(
2
√
ε̄ logm Φ̃(t)

1− 2Φ̃(t)

)
dF|ξ1|(t).

Let us change the variable to x = 1−2Φ̃(t). What is the probability density function

of 1− 2Φ̃(|ξ1|) given E? For each i the r.v. 1− 2Φ̃(|ξi|) is uniformly distributed on

the interval [0, 1]. Now |ξi| > |ξj| if and only if 1− 2Φ̃(|ξi|) > 1− 2Φ̃(|ξj|), therefore

1− 2Φ̃(|ξ1|) is distributed as the maximum of m independent random variables on

46



[0, 1] given E. Its density function is (xm)′ = mxm−1 (for x ∈ [0, 1]). We have

∫ 2
√

logm

0

2
√
ε̄ logm Φ̃(t)

1− 2Φ̃(t)
dF|ξ1|(t) ≤

∫ ∞
0

2
√
ε̄ logm Φ̃(t)

1− 2Φ̃(t)
dF|ξ1|(t)

=

∫ 1

0

2
√
ε̄ logm · (1− x)/2

x
·mxm−1dx = m

√
ε̄ logm

∫ 1

0

(1− x)xm−2dx

= m
√
ε̄ logm

(
1

m− 1
− 1

m

)
=

√
ε̄ logm

m− 1
.

Now consider the case |ξ1| ≥ 2
√

logm, by Corollary 2.4.12,

Pr
(
|η1| ≤ |η2| | E and |ξ1| ≥ 2

√
logm

)
= O

(√
ε̄
)
.

By Lemma 2.4.13,

Pr
(
|ξ1| ≥ 2

√
logm | E

)
≤ 1

m
.

This concludes the proof.

Now we will prove a lemma, which differs from Theorem 2.4.1 only by one

additional condition (4).

Lemma 2.4.15. Let ξ1, · · · , ξm and η1, · · · , ηm be two sequences of standard normal

random variables. Let εi = cov(ξi, ηi). Suppose that

1. the random variables in each of the sequences are independent,

2. the covariance of every ξi and ηj is nonnegative,

3. 1
m

∑m
i=1 ε

i = ε,

4. εi ≤ min(1/(4 logm), 1/7).

47



Then the probability that the largest r.v. in absolute value in the first sequence

has the same index as the largest r.v. in absolute value in the second sequence is

1−O(
√
ε logm).

Proof. By Lemma 2.4.14,

Pr

(
|η1| ≤ |η2| | |ξ1| ≥ max

j≥2
|ξj|
)

= O

(√
logm

m

√
max (ε1, ε2)

)
.

Applying the union bound, we get

Pr(|η1| ≤ max
i≥2
|ηj| | |ξ1| ≥ max

j≥2
|ξj|) = O

(√
logm

m

m∑
i=2

√
max (ε1, εi)

)

= O

(√
logm

m
·

(
m
√
ε1 +

m∑
i=1

√
εi

))
by Jensen’s inequality

≤ O
(√

logm(
√
ε1 +

√
ε)
)
.

Since the probability that |ξi| = maxj |ξj| equals 1/m for each i, the probability

that the largest r.v. in absolute value among ξi, and the largest r.v. in absolute

value among ηj have different indexes is at most

O

(
1

m

m∑
i=1

√
logm · (

√
εi +
√
ε)

)
≤ O

(√
logm · (

√
ε+
√
ε)
)

= O
(√

ε logm
)
.

Proof of Theorem 2.4.1. Denote εi = 1 − cov(ξi, ηi). Then (ε1 + · · · + εm) ≤ mε.

We may assume that ε < min(1/(4 logm), 1/7) — otherwise, the theorem fol-

lows trivially. Consider the set I = {i : εi < min(1/(4 logm), 1/7)}. Since ε <

min(1/(4 logm), 1/7), the set I is not empty. Applying Lemma 2.4.15 to random

48



variables {ξi}i∈I and {ηi}i∈I , we conclude that the largest r.v. in absolute value

among {ξi}i∈I has the same index as the largest r.v. in absolute value among

{ξi}i∈I with probability

1−O

(√
log |I| · 1

|I|
∑
i∈I

εi

)
= 1−O

(√
ε logm

)
.

Since each ξi is the largest r.v. among ξ1,. . . , ξm in absolute value with proba-

bility 1/m, the probability that the largest r.v. among ξ1,. . . , ξm does not belong

to {ξi}i∈I is m−|I|
m

. Similarly, the probability that the largest r.v. among η1,. . . , ηm

does not belong to {ηi}i∈I is m−|I|
m

. Therefore, by the union bound, the probability

that the largest r.v. in absolute value among ξi, and the largest r.v. in absolute

value among ηj have different indexes is at most

1−O(
√
ε logm)− 2

m− |I|
m

. (2.14)

We now upper bound the last term.

2
m− |I|
m

by the Markov inequality

≤ 2
ε

min(1/(4 logm), 1/7)

≤ 2 (4 logm+ 7)ε = O(ε logm) = O(
√
ε logm).

(Here we use that ε logm < 1.)

Plugging this bound into (2.14) we get that the desired probability is 1 −

O(
√
ε logm). This finishes the proof.

49



2.5 Third Algorithm

In this section we present our third approximation algorithm for Unique Games and

prove the following theorem.

Theorem 2.5.1. There exists a polynomial time algorithm that finds an assignment

of values to vertices satisfying a (1 − O(ε
√

log n log k)) fraction of all constraints,

for any instance of Unique Games for which a (1− ε) fraction of all constraints is

satisfiable.

2.5.1 Overview: Orthogonal Separators

In this section we introduce a new type of embeddings from `2
2 into `1: embeddings

separating orthogonal vectors.

Definition 2.5.2. A set of vectors X ⊂ Rd is an `2
2 space (or `2 squared space)2 if

for every u,v, and w in X the following inequality holds

‖u− v‖2 + ‖v − w‖2 ≥ ‖u− w‖2.

This inequality is called an `2
2 triangle inequality. The `2

2-distance between two points

u and v equals ‖u− v‖2.

Note that the vectors in any feasible solution to the SDP for Unique Games,

together with the zero vector, form an `2
2 space.

Definition 2.5.3. Let X be an `2
2 space. We say that a distribution over subsets

of X is an m-orthogonal separator of X with distortion D and probability scale α if

the following conditions hold for S ⊂ X chosen according to this distribution:

2Some authors use the term “an `22 space” (e.g. [4]) while others prefer an alternative term, “a
space of negative type” (e.g. [3]). In this dissertation, we stick with the former term.

50



1. For all u in X, Pr (u ∈ S) = α ‖u‖2.

2. For all orthogonal vectors u and v in X,

Pr (u ∈ S and v ∈ S) ≤ min (Pr (u ∈ S) ,Pr (v ∈ S))

m
.

Note that the right hand side is at most α · ‖u‖
2+‖v‖2
2m

.

3. For all u and v in X,

Pr (IS(u) 6= IS(v)) ≤ αD ‖u− v‖2,

where IS is the indicator function of the set S.

The novelty of Definition 2.5.3 is in property 2. It says that for every orthogonal

vectors u and v the events “u ∈ S” and “v ∈ S” are almost disjoint. Let us state

the main technical result needed for the third algorithm.

Theorem 2.5.4. There exists a randomized polynomial time algorithm that, given

an `2
2 space X containing 0 and a parameter m, returns an m-orthogonal separator

of X with distortion D = O(
√

log |X| logm) and probability scale α ≥ 1/poly(m).

In the next section we show how using this theorem we obtain an approximation

algorithm for Unique Games. We shall prove Theorem 2.5.4 in Section 2.6.

2.5.2 Approximation Algorithm

Lemma 2.5.5. The third algorithm presented in Figure 2.4 satisfies the constraint

between vertices u and v with probability 1−O(Dεuv), where εuv is the SDP contri-

51



Input: An instance of Unique Games.
Output: An assignment of states to vertices.

1. Solve the SDP.

2. Mark all vertices as unprocessed.

3. while (there are unprocessed vertices)

(a) Produce an m-orthogonal separator S with distortion D and probability
scale α as in Theorem 2.5.4, where m = 4k and D = O(

√
log n logm).

(b) For all unprocessed vertices u :

• Let Su = {i : ui ∈ S} .
• If Su contains exactly one element i, then assign the state i to u, and

mark the vertex u as processed.

4. If the algorithm performs more than n/α iterations, assign arbitrary values to
any remaining vertices (note that α ≥ 1/poly(k)).

Figure 2.4: Third Algorithm for Unique Games

bution of the term corresponding to the edge (u, v):

εuv =
1

2

k∑
i=1

‖ui − vπuv(i)‖2.

Proof. If Dεuv ≥ 1/8, then the statement holds trivially, so we assume that Dεuv <

1/8. For the sake of analysis we also assume that πuv is the identity permutation

(this is without loss of generality, since we can just rename the states of the vertex

v).

At the end of an iteration in which at least one of the vertices u or v assigned

a value we mark the constraint as satisfied or not: the constraint is satisfied, if

the same state i is assigned to the vertices u and v; otherwise, the constraint is

52



not satisfied (here we conservatively count the number of satisfied constraints: a

constraint marked as not satisfied in the analysis may potentially be satisfied in the

future).

Consider one iteration of the algorithm. There are three possible cases:

1. Both sets Su and Sv are equal and contain only one element, then the con-

straint is satisfied.

2. The sets Su and Sv are equal, but are empty or contain more than one element,

then no values are assigned at this iteration to u and v.

3. The sets Su and Sv are not equal, then the constraint is not satisfied (a

conservative assumption).

Let us estimate the probabilities of each of these events. Using the fact that for

all i 6= j the vectors ui and uj are orthogonal, and the first and second properties

of orthogonal separators we get (below α is the probability scale):

Pr (|Su| = 1) ≥
∑
i∈[k]

Pr (i ∈ Su)−
∑
i,j∈[k]
i 6=j

Pr (i ∈ Su and j ∈ Su)

=
∑
i∈[k]

Pr (ui ∈ S)−
∑
i,j∈[k]
i 6=j

Pr (ui ∈ S and uj ∈ S)

≥
∑
i∈[k]

α ‖ui‖2 − α

m

∑
i,j∈[k]

‖ui‖2 + ‖uj‖2

2

= α− 1

4
α =

3

4
α.

53



The probability that the constraint is not satisfied is at most

Pr (Su 6= Sv) ≤
∑
i∈[k]

Pr (IS(ui) 6= IS(vi)) ≤ αD
∑
i∈[k]

‖ui − vi‖2 = 2αDεuv.

Finally the probability of satisfying the constraint is at least

Pr (|Su| = 1 and Su = Sv) ≥
3

4
α− 2αDεuv ≥

1

2
α.

Since the algorithm performs n/α iterations, the probability that it does not

assign any value to u or v before step 4 is exponentially small. At each iteration

the probability of failure is at most O(Dεuv) times the probability of success, thus

the probability that the constraint is not satisfied is O(Dεuv).

We now show that the approximation algorithm satisfies 1 − O(ε
√

log n log k)

fraction of all constraints.

Proof of Theorem 2.5.1. By Lemma 2.5.5, the expected number of unsatisfied con-

straints is equal to

∑
(u,v)∈E

O(D × εuv) = O(
√

log n log k)× SDP,

where SDP is the SDP value. Since SDP ≤ ε|E|, the algorithm satisfies 1 −

O(ε
√

log n log k) fraction of all constraints with high probability.

54



2.6 Producing Orthogonal Separators

In this section we present two algorithms that generate m-orthogonal separators

with distortions D1 = O(
√

log |X| logm) and D2 = O(
√

log |X| logm). The main

difference between the algorithms is that the first algorithm uses embeddings into

`1 as an intermediate step, while the second one uses embeddings into `2. Thus any

improvements in embeddings into `1 will result in a better distortion for the first

algorithm. We also believe that the first algorithm is simpler than the second one.

The algorithms generate orthogonal separators in three steps. First we normalize

all vectors in a special way. Namely, we transform the set X into a set of functions in

L2[0,∞], so that the image of every non-zero vector is a function with L2 norm 1; the

images of orthogonal vectors are orthogonal; the distance between the images of u

and v is roughly equal to ‖u−v‖/max(‖u‖, ‖v‖); and the new configuration satisfies

L2
2 triangle inequalities. This normalizes vectors while ensuring that orthogonal

vectors are mapped to vectors that are far apart.

Next, we embed the transformed set into the unit sphere in `1 or `2 using slightly

modified previously known algorithms. After this step, the distance between the

images of any two vectors u and v is at most

O
(√

log |X|
)
× ‖u− v‖

max(‖u|, ‖v‖)
. (2.15)

On the other hand the distances between the images of orthogonal vectors are larger

than an absolute constant. In terms of cuts this means that any two orthogonal

vectors are separated with a constant probability.

Finally, we boost the probability that orthogonal vectors are separated. Then

we recover the original lengths of all vectors and get rid of the 1/max(‖u|, ‖v‖)

55



term in the distortion (2.15).

2.6.1 Normalization: Embedding into L2[0,∞]

The space L2[0,∞] is the space of square integrable functions f : [0,∞) → Rd

equipped with the following inner product:

〈f1, f2〉 =

∫ +∞

0

〈f1(t), f2(t)〉 dt;

and norm:

‖f‖2 =
√
〈f, f〉 ≡

√∫ +∞

0

‖f(t)‖2 dt.

We construct a mapping ϕ from Rd into L2[0,∞] as follows

ϕ(u)(t) =


u, if t ≤ 1/‖u‖2;

0, otherwise.

We map the zero vector to 0. Let us see what properties the embedding ϕ has.

Lemma 2.6.1. Let X ⊂ Rd be an `2
2 metric space containing the zero vector. Then

1. The image ϕ(X) satisfies triangle inequalities in L2
2:

∀u, v, w ∈ X ‖ϕ(u)− ϕ(v)‖2
2 + ‖ϕ(v)− ϕ(w)‖2

2 ≥ ‖ϕ(u)− ϕ(w)‖2
2.

2. For all vectors u and v in X,

〈ϕ(u), ϕ(v)〉 =
〈u, v〉

max(‖u‖2, ‖v‖2)
.

56



3. For all non-zero vectors u in X, ‖ϕ(u)‖2
2 = 1.

4. For all orthogonal u and v in X, the images ϕ(u) and ϕ(v) are also orthogonal.

5. For all non-zero vectors u and v in X,

‖ϕ(v)− ϕ(u)‖2
2 ≤

2 ‖v − u‖2

max(‖u‖2, ‖v‖2)
.

Proof. 1. The triangle inequality for the functions ϕ(u), ϕ(v) and ϕ(w) is equivalent

to the following inequality:

∫ ∞
0

‖ϕ(u)(t)− ϕ(v)(t)‖2 + ‖ϕ(v)(t)− ϕ(w)(t)‖2 − ‖ϕ(u)(t)− ϕ(w)(t)‖2 dt ≥ 0.

This inequality holds for every t, since the vectors ϕ(u)(t), ϕ(v)(t) and ϕ(w)(t) lie

in the set {0, u, v, w} ⊂ X and vectors in X satisfy `2
2 triangle inequalities.

2. Without loss of generality assume that ‖u‖ ≤ ‖v‖, then

〈ϕ(u), ϕ(v)〉 =

∫ ∞
0

〈ϕ(u)(t), ϕ(v)(t)〉 dt =

∫ 1/‖v‖2

0

〈u, v〉 dt =
〈u, v〉
‖v‖2

.

Parts 3 and 4 follow from part 2.

5. Assume without loss of generality that ‖u‖ ≤ ‖v‖, then

‖ϕ(v)− ϕ(u)‖2
2 = 2− 〈ϕ(u), ϕ(v)〉

=
1

‖v‖2
·
(
‖v − u‖2 + ‖v‖2 − ‖u‖2

)
≤ 2

‖v‖2
·
(
‖v − u‖2

)
.

Here we used the triangle inequality ‖v − 0‖2 ≤ ‖v − u‖2 + ‖u− 0‖2.

57



Remark 2.6.2. The embedding into L2
2[0,∞] can be represented efficiently. Note

that L2[0,∞] is a Hilbert space (and thus isometric to `2), so the metric on every

finite subset of L2
2[0,∞] is uniquely determined by its Gram matrix3. Hence we just

need to compute the Gram matrix for the vectors/functions from ϕ(X). This can be

done using the formula from Lemma 2.6.1 (item 2). Hence, we have the following

corollary.

Corollary 2.6.3. There exists a polynomial time algorithm that, given an `2
2 space

X, computes the Gram matrix of the set of vectors ϕ(X).

2.6.2 Embedding into `1 and `2

We use the following theorem of Arora, Lee, and Naor [3], which is based on the

results of Arora, Rao and Vazirani [4], Lee [25], and Chawla, Gupta and Räcke [10].

Theorem 2.6.4 ([3], Theorem 3.1). There exist constants C ≥ 1 and 0 < p < 1/2

such that for every finite `2
2 space X with distance d(u, v) = ‖u − v‖2 and every

∆ > 0, the following holds. There exists a distribution µ over subsets U ⊂ X such

that for every u, v ∈ X with d(u, v) ≥ ∆,

µ

{
U : u ∈ U and d(v, U) ≥ ∆

C
√

log |X|

}
≥ p.

Note that we can efficiently sample from the distribution µ. We need the fol-

lowing easy corollaries.

Corollary 2.6.5. There exists an efficient algorithm that, given an `2
2 space X,

generates random subsets Y such that the following conditions hold.

3The Gram matrix of a set of vectors is the matrix, where (ij)-th element is equal to the inner
product of i-th and j-th vectors.

58



1. For every u and v in X,

Pr (IY (u) 6= IY (v)) ≤ D ‖u− v‖2.

2. For every u and v s.t. ‖u− v‖ ≥ 1,

Pr (IY (u) 6= IY (v)) ≥ β,

where β is a universal constant, D = O(
√

log |X|).

Proof. We apply Theorem 2.6.4 to the space X with d(u, v) = ‖u− v‖2 and ∆ = 1.

Let r be a random variable uniformly distributed in [0, 1

C
√

log |X|
], where C is the

constant from Theorem 2.6.4. Let Y be the r-neighborhood of U . Then

Pr (IY (u) 6= IY (v)) = Pr (d(u, U) < r ≤ d(v, U) or d(v, U) < r ≤ d(u, U))

≤ C
√

log |X| · E [|d(u, U)− d(v, U)|] ≤ C
√

log |X| · ‖u− v‖2.

We verified condition 1 for D = C
√

log |X|. Now if ‖u− v‖2 ≥ 1 by Theorem 2.6.4

we have

Pr (u ∈ Y, v /∈ Y ) ≥ Pr

(
u ∈ U and d(v, U) ≥ 1

C
√

log |X|

)
≥ p.

Therefore, Pr (IY (u) 6= IY (v)) = Pr (u ∈ Y, v /∈ Y ) + Pr (u /∈ Y, v ∈ Y ) ≥ 2p. Thus

condition 2 holds for β = 2p.

Corollary 2.6.6 (cf. [3], Lemma 3.5). There exists an efficient algorithm, that

constructs an embedding h of an `2
2 space X into L2 such that the following conditions

59



hold.

1. For all u and v in X,

‖h(u)− h(v)‖ ≤ D ‖u− v‖2.

2. For every u and v s.t. ‖u− v‖ ≥ 1,

‖h(u)− h(v)‖ ≥ 2γ.

3. The set h(X) lies in the unit ball:

∀u ∈ X ‖h(u)‖ ≤ 1.

where γ is a universal constant; D = O(
√

log |X|).

Proof. We apply Theorem 2.6.4 to the space X with d(u, v) = ‖u− v‖2 and ∆ = 1.

Let L2(µ) be the space of functions from {U : U ⊂ X} to R equipped with the inner

product 〈f, g〉 = E [f(U)g(U)], where U is distributed according to the distribution

µ from Theorem 2.6.4. Define an embedding h of X into L2(µ) as follows:

h(u) = min(C
√

log |X| · d(u, U), 1).

We verify that all conditions 1–3 are satisfied.

60



1. We prove that the expansion of h is at most D ≡ C
√

log |X|.

‖h(u)− h(v)‖2
L2(µ) = E

[
|h(u)− h(v)|2

]
= E|min(D · d(u, U), 1)−min(D · d(v, U), 1)|2

≤ E
[(
D · ‖u− v‖2

)2
]

= (D · ‖u− v‖2)2.

2. Now if ‖u− v‖2 ≥ 1 by Theorem 2.6.4 we have

Pr

(
u ∈ U and d(v, U) ≥ 1

C
√

log |X|

)
≥ p.

Therefore, Pr (h(u) = 0, h(v) = 1) ≥ p. Hence

‖h(u)− h(v)‖2
L2(µ) ≥ Pr (h(u) = 0, h(v) = 1) + Pr (h(u) = 1, h(v) = 0) ≥ 2p.

We verified condition 2 for γ =
√
p/2.

3. We have

‖h(u)‖2 = E
[
min(C

√
log |X| · d(u, U), 1)2

]
≤ 1.

Corollary 2.6.7. There exists an efficient algorithm, that constructs an embedding

ψ of an `2
2 space X into `2 such that the following conditions hold.

1. For all u and v in X,

‖ψ(u)− ψ(v)‖ ≤ D ‖u− v‖2.

61



2. For every u and v s.t. ‖u− v‖ ≥ 1,

‖ψ(u)− ψ(v)‖ ≥ 2γ.

3. The set ψ(X) lies on the unit sphere: ∀u ∈ X

‖ψ(u)‖ = 1,

where γ is a universal constant; D = O(
√

log |X|).

Proof. Construct an embedding h(u) from Corollary 2.6.6. We can assume that

h(u) is an embedding into `2 since it is isometric to L2. Define a new embedding as

follows:

ψ(u) = h(u)/2 +
√

1− ‖h(u)‖2/4 · e,

where e is a unit vector orthogonal to all vectors in h(X). It is easy to see that the

embedding ψ satisfies conditions 2 and 3. Let us check condition 1:

‖ψ(u)− ψ(v)‖ ≤ ‖h(u)− h(v)‖/2 + |
√

1− ‖h(u)‖2/4−
√

1− ‖h(v)‖2/4|

≤ C1‖h(u)− h(v)‖ ≤ C1D‖u− v‖2,

since 0 ≤ ‖h(u)‖/2 ≤ 1/2, and the function
√

1− x2 is a Lipschitz function on the

interval [0, 1/2].

2.6.3 Generating Orthogonal Separators via `1

In this section we present an algorithm to generate orthogonal separators with

distortion O(
√

log |X| logm). This result is not as strong as the one given in the

62



next section, but is arguably simpler, and demonstrates a number of the same ideas.

Using this algorithm, in conjunction with Lemma 2.5.5, implies the following result:

Theorem 2.6.8. There exists a polynomial time algorithm that finds an assignment

of values to vertices satisfying a (1 − O(ε
√

log n log k)) fraction of all constraints,

for any instance of Unique Games for which a (1− ε) fraction of all constraints is

satisfiable.

The algorithm presented in Figure 2.5 generates orthogonal separators as spec-

ified above.

Lemma 2.6.9. The algorithm generates an m-orthogonal separator of X with dis-

tortion O(
√

log |X| logm) and probability scale α = 1/|X|.

Proof. Let us verify that all the conditions of Definition 2.5.3 hold.

1. Fix an arbitrary u. Conditional on the event r ≤ ‖u‖2 the probability of picking

u in S is equal to 1/|X|. Thus

Pr (u ∈ S) =
1

|X|
· Pr

(
r ≤ ‖u‖2

)
=

1

|X|
· ‖u‖2.

2. Fix orthogonal vectors u and v from X. By Lemma 2.6.1 (parts 3 and 4),

‖ϕ(u)− ϕ(v)‖2
2 = 2, hence by Corollary 2.6.5,

Pr (IYi(u) = IYi(v)) ≤ 1− β.

Thus the probability that W (u) = W (v) is at most (1 − β)l ≤ 1
m
. The probability

63



Input: An `2
2 set of vectors X (containing 0), a parameter m.

Output: A random set S.

1. Set l = dlnm/βe (where β is as in Corollary 2.6.5).

2. Obtain ϕ(X), a normalization of X, as described in Section 2.6.1.

3. Apply the algorithm from Corollary 2.6.5 to the set ϕ(X), to generate l ran-
dom independent subsets Y1, . . . , Yl ⊂ ϕ(X).

4. For every vector u ∈ X, construct a word W (u) of length l corresponding to
inclusion or exclusion of ϕ(u) from the sets Yi:

W (u) = IY1(ϕ(u)) . . . IYl(ϕ(u)).

5. Pick a random word W in {0, 1}l s.t. the probability that W = W (u) (for each
u) equals 1/|X|. This is feasible since the number of distinct words constructed
in step 4 is at most |X| (possibly we may pick a word not corresponding to
any W (u)).

6. Pick a random uniform value r in the interval (0, 1).

7. Find all vectors u of `2
2-length at least r such that W (u) = W :

S =
{
u ∈ X : ‖u‖2 ≥ r and W (u) = W

}
.

8. Return S.

Figure 2.5: Generating Orthogonal Separators via `1

that u and v are in S is as follows:

Pr (u, v ∈ S) = Pr
(
W (u) = W (v) and W = W (u) and r ≤ min(‖u‖2, ‖v‖2)

)
= Pr (W (u) = W (v)) · Pr (W = W (u)) · Pr

(
r ≤ min(‖u‖2, ‖v‖2)

)
≤ 1

|X|
· min(‖u‖2, ‖v‖2)

m
=

min(Pr (u ∈ S) ,Pr (v ∈ S))

m
.

64



3. Fix u and v from X and assume ‖u‖ ≤ ‖v‖. Similarly to part 2, we have

Pr (IS(u) 6= IS(v)) = Pr(W (u) 6= W (v) and (W = W (u) or W = W (v))

and r ≤ ‖u‖2) + Pr
(
W = W (v) and ‖u‖2 ≤ r ≤ ‖v‖2

)
≤ 2‖u‖2

|X|
· Pr (W (u) 6= W (v)) +

1

|X|
(
‖v‖2 − ‖u‖2

)
.

Now, by Corollary 2.6.5 (part 1) and Lemma 2.6.1 (part 5),

Pr (W (u) 6= W (v)) ≤
l∑

i=1

Pr (IYi(ϕ(u)) 6= IYi(ϕ(v)))

≤ l
√

log |X| · ‖ϕ(u)− ϕ(v)‖2
2 ≤

2l
√

log |X| · ‖u− v‖2

‖v‖2
.

Using the `2
2 triangle inequality ‖v‖2 − ‖u‖2 ≤ ‖u− v‖2 we get

Pr (IS(u) 6= IS(v)) ≤ 1

|X|

(
4‖u‖2

‖v‖2
· l
√

log |X|+ 1

)
‖u− v‖2

=
1

|X|
‖u− v‖2 ·O(

√
log |X| logm).

2.6.4 Generating Orthogonal Separators via `2

In this section we prove Theorem 2.5.4, which in turn implies Theorem 2.5.1 (using

Lemma 2.5.5). We present an algorithm to generate orthogonal separators using

embeddings into `2.

Theorem 2.6.10. The algorithm generates an m-orthogonal separator of X with

distortion O(
√

log |X| logm) and probability scale α = 1/m′.

65



Input: An `2
2 set of vectors X (containing 0), a parameter m.

Output: A random set S.

1. Fix m′ = p(m), where p(x) is a polynomial we specify later.

2. Obtain ϕ(X), a normalization of X, as described in Section 2.6.1.

3. Embed ϕ(X) into the unit sphere in `2 (see Corollary 2.6.7). Denote the image
of the vector ϕ(u) by ψ(u).

4. Generate a random Gaussian vector g with independent components dis-
tributed as N (0, 1).

5. Fix a threshold t s.t. Pr (ξ ≥ t) = 1/m′, where ξ ∼ N (0, 1) (i.e. t is (1−1/m′)-
quantile of the standard normal distribution).

6. Pick a random uniform value r in the interval (0, 1).

7. Find all vectors u of `2
2-length at least r such that 〈ψ(u), g〉 ≥ t:

S =
{
u ∈ X : ‖u‖2 ≥ r and 〈ψ(u), g〉 ≥ t

}
.

8. Return S.

Figure 2.6: Generating Orthogonal Separators via `2

Proof. Let us verify that all the conditions of Definition 2.5.3 hold.

1. Fix an arbitrary u. Conditional on the event r ≤ ‖u‖2 the probability of picking

u in S is equal to 1/m′. Thus

Pr (u ∈ S) =
1

m′
· Pr

(
r ≤ ‖u‖2

)
=

1

m′
· ‖u‖2.

2. Fix orthogonal vectors u and v from X. Similarly to Lemma 2.6.9 (part 2), we

66



have

Pr(u ∈ S and v ∈ S)

= Pr
(
〈ψ(u), g〉 ≥ t and 〈ψ(v), g〉 ≥ t and r ≤ min(‖u‖2, ‖v‖2)

)
= Pr (〈ψ(u), g〉 ≥ t and 〈ψ(v), g〉 ≥ t) ·min(‖u‖2, ‖v‖2)

≤ Pr (〈(ψ(u) + ψ(v))/2, g〉 ≥ t) ·min(‖u‖2, ‖v‖2)

= m′ Pr (〈(ψ(u) + ψ(v))/2, g〉 ≥ t) ·min(Pr (u ∈ S) ,Pr (v ∈ S)).

We need to show that

Pr (〈(ψ(u) + ψ(v))/2, g〉 ≥ t) ≤ 1/(m ·m′).

By Lemma 2.6.1 (parts 3 and 4), ‖ϕ(u) − ϕ(v)‖2
2 = 2. Thus by Corollary 2.6.7,

‖ψ(u)− ψ(v)‖ ≥ 2γ, where γ is a positive constant. Hence

Var [〈(ψ(u) + ψ(v))/2, g〉] =

∥∥∥∥ψ(u) + ψ(v)

2

∥∥∥∥2

≤ 1− γ2.

Now by Lemma A.1.1 (part 3) from the Appendix (we assume that the polynomial

p(x) is chosen so that m′ > 6 and thus t > 1)

Pr

(〈
ψ(u) + ψ(v)

2
, g

〉
≥ t

)
≤ Φ̃

(
t√

1− γ2

)
≤ 1

t

(
C · t

m′

) 1
1−γ2

=
1

m′
·O

((
logm′

m′

) 1
1−γ2−1

)
.

(here Φ̃(x) denotes the probability that a standard normal random variable is greater

than x). Recall that we fixed m′ to be p(m), where p(x) is a polynomial. It is easy to

67



see that for an appropriate p(x) (that depends only on the constant γ) the expression

O

((
logm′

m′

)1/(1−γ2)−1
)

is less than 1/m, therefore the value of the right hand side

is less than 1/(m ·m′).

3. Before we proceed with the proof, let us first prove the following lemma about

normal variables.

Lemma 2.6.11. Let X and Y be two standard normal random variables with co-

variance 1− 2ε2; and let Φ̃(t) = 1/m, t > 1. Then

Pr (X ≥ t and Y ≤ t) = O(ε
√

logm/m).

Proof. If εt ≥ 1 or ε ≥ 1/2, then we are done, since ε
√

logm = Ω(εt) = Ω(1) and

Pr (X ≥ t and Y ≤ t) ≤ Pr (X ≥ t) =
1

m
.

So assume that εt ≤ 1 and ε < 1/2. We apply Lemma 2.4.6 to random variables Y

and X/(1− 2ε2)−Y ). Note that the covariance of the random variables is 0, hence

they are independent. Note that σ2 ≡ Var[X/(1− 2ε2)− Y ] = O(ε2). We have

Pr (X ≥ t and Y ≤ t) = Pr
(
Y ≤ t and Y + (X/(1− 2ε2)− Y ) ≥ t/(1− 2ε2)

)
≤ Pr

(
Y ≤ t and Y + (X/(1− 2ε2)− Y ) ≥ t

)
= O

(
σe

(σt+1)2

2 e
−t2

2

)
= O(εΦ̃(t)t) = O(ε

√
logm/m).

68



Now we verify the third condition. For all u and v from X,

Pr(u ∈ S and v /∈ S)

= Pr
(
〈ψ(u), g〉 ≥ t and 〈ψ(v), g〉 ≤ t and r ≤ min(‖u‖2, ‖v‖2)

)
+ Pr

(
〈ψ(u), g〉 ≥ t and ‖v‖2 ≤ r ≤ ‖u‖2

)
≤ Pr (〈ψ(u), g〉 ≥ t and 〈ψ(v), g〉 ≤ t) ·min(‖u‖2, ‖v‖2)

+ 1/m′ · |‖u‖2 − ‖v‖2|.

By Lemma 2.6.11,

Pr (() 〈ψ(u), g〉 ≥ t and 〈ψ(v), g〉 ≤ t) ≤ O(‖ψ(v)− ψ(u)‖
√

logm′/m′)

≤ O
(
‖ϕ(v)− ϕ(u)‖2

2 ·
√

log |X| ·
√

logm′/m′
)

≤ O

(
‖v − u‖2

max(‖u‖2, ‖v‖2)
·
√

log |X| ·
√

logm′/m′
)
.

Therefore,

Pr(IS(u) 6= IS(v)) = Pr (u ∈ S and v /∈ S) + Pr (u /∈ S and v ∈ S)

≤ O

(
‖v − u‖2

max(‖u‖2, ‖v‖2)
·
√

log |X| ·
√

logm′/m′
)

×min(‖u‖2, ‖v‖2) + 2/m′ · |‖u‖2 − ‖v‖2|

≤ O
(
‖v − u‖2

√
log |X| ·

√
logm′/m′

)
.

This completes the proof.

69



2.7 d to 1 Games

In this section we extend our results to d-to-1 games.

Definition 2.7.1. We say that Π ⊂ [k] × [k] is a d-to-1 predicate, if for every i

there are at most d different values j such that (i, j) ∈ Π, and for every j there is

at most one i such that (i, j) ∈ Π.

Definition 2.7.2 (d to 1 Games). We are given a directed constraint graph G =

(V,E), a set of variables xu (for all vertices u) and d-to-1 predicates Πuv ⊂ [k]× [k]

for all edges (u, v). Our goal is to assign a value from the set [k] to each variable

xu, so that the maximum number of the constraints (xu, xv) ∈ Πuv is satisfied.

Note that even if all constraints of a d-to-1 game are satisfiable it is hard to find

an assignment of variables satisfying all constraints. We will show how to satisfy

Ω

 1√
log k

· (1− ε)4 ·
(

k√
log k

)−√d−1+ε√
d+1−ε


fraction of all constraints (the multiplicative constant in the Ω notation depends

on d). Notice that this value can be obtained by replacing ε in formula (1.1) with

ε′ = 1− (1− ε)/
√
d (and changing (1− ε)2 to (1− ε)4).

Even though we do not require that for a constraint Πuv each i in [k] belongs to

some pair (i, j) ∈ Πuv, let us assume that for each i there exists j s.t. (i, j) ∈ Πuv;

and for each j there exists i s.t. (i, j) ∈ Πuv. As we see later this assumption is not

important.

In order to write a relaxation for d-to-1 games, we introduce the following no-

70



tation:

wiuv =
∑

j:(i,j)∈Πuv

vj.

The SDP is as follows:

minimize
1

2

∑
(u,v)∈E

(
k∑
i=1

∥∥ ui − wiuv ∥∥2

)

subject to

∀u ∈ V ∀i, j ∈ [k], i 6= j 〈ui, uj〉 = 0 (2.16)

∀u ∈ V
k∑
i=1

‖ui‖2 = 1 (2.17)

∀(u, v) ∈ V i, j ∈ [k] 〈ui, vj〉 ≥ 0 (2.18)

∀(u, v) ∈ V i ∈ [k] 0 ≤ 〈ui, wiuv〉 ≤ min(‖ui‖2, ‖wiuv‖2) (2.19)

An important observation is that ‖w1
uv‖2 + . . . + ‖wkuv‖2 = 1, here we use the

fact that for a fixed edge (u, v) each vj is a summand in one and only one wiuv.

We use the first algorithm for Unique Games (described in Section 2.3, see

Figure 2.2) for rounding a vector solution. For analysis we will need to change some

notation:

w̃iuv =


wiuv/‖wiuv‖, if wiuv 6= 0;

0, otherwise

εiuv =
‖ũi − w̃iuv‖2

2

εiuv
′ = 1− 1− εiuv√

d

71



µuv(i) =
‖ui‖2 + ‖wiuv‖2

2

The following lemma explains why we get the new dependency on ε.

Lemma 2.7.3. For every edge (u, v) and state i there exists j′ s.t. (i, j′) ∈ Πuv and

‖ũi − ṽj′‖2/2 ≤ εiuv
′.

Proof. Let u′i be the projection of the vector ũi to the linear span of the vectors

vj (where (i, j) ∈ Πuv). Let αi be the angle between ũi and wiuv; and let βi be the

angle between ũi and u′i. Clearly, ‖u′i‖ = cos βi ≥ cosαi = 1 − εiuv. Since all ṽj

((i, j) ∈ Πuv) are orthogonal unit vectors, there exists ṽj′ s.t. 〈ṽj′ , u′i〉 ≥ ‖u′i‖/
√
d.

Hence, 〈ṽj′ , ũi〉 = 〈ṽj′ , u′i〉 ≥ (1− εiuv)/
√
d.

For every edge (u, v) and state i, find j′ as in the previous lemma and define a

function4 πuv(i) = j′. Then replace every constraint (xu, xv) ∈ Πuv with a stronger

constraint πuv(xu) = xv. Now we can apply the original analysis of Algorithm 1 to

the new problem. In the proof we need to substitute εiuv
′ for εiuv, 1− (1− εuv)/

√
d

for εuv, and 1− (1− ε)/
√
d for ε. The only missing step is the following lemma.

Lemma 2.3.7′. For every edge (u, v) the following statements hold.

1. The average value of εiuv w.r.t. the measure µuv is less than or equal to εuv.

2. The average value of εiuv
′ w.r.t. the measure µuv is less than or equal to

1− 1−εuv√
d

.

3. min(sui , svπuv(i)
) ≥ d(1− εiuv ′)4µuv(i)k.

Proof. Let αi be the angle between ui and wiuv and let α′i be the angle between ui

and vπuv(i).

4The function πuv is not necessarily a permutation.

72



1. Indeed,

k∑
i=1

µuv(i) · εiuv =
k∑
i=1

‖ui‖2 + ‖wiuv‖2 − (‖ui‖2 + ‖wiuv‖2) · cosαi
2

≤
k∑
i=1

‖ui‖2 + ‖wiuv‖2 − 2 · ‖ui‖ · ‖wiuv‖ · cosαi
2

=
k∑
i=1

‖ui − wiuv‖2

2
= εuv.

2. This follows from part 1 and the definition of εiuv
′.

3. Due to the triangle inequality constraint, ‖wiuv‖ cosαi ≤ ‖ui‖. Thus

(1− εiuv)2µuv(i) = cos2 αi ·
‖ui‖2 + ‖wiuv‖2

2
≤ ‖ui‖2.

Similarly ‖vπuv(i)‖ cosα′i ≤ ‖ui‖ and

(1− εiuv ′)2‖ui‖2 ≤ cos2 α′i · ‖ui‖2 ≤ ‖vπuv(i)‖2.

Combining these two inequalities and noting that (1− εiuv ′) = (1− εiuv)/
√
d, we get

d(1− εiuv ′)4µuv(i) ≤ (1− εiuv ′)2‖ui‖2 ≤ ‖vπuv(i)‖2.

The lemma follows.

We now address the issue that for some edges (u, v) and states j there may

not necessarily exist i s.t. (i, j) ∈ Πuv. We call such j a state of degree 0. The

key observation is that in our algorithms we may enforce additional constraints like

xu = i or xu 6= i by setting ui = 1 or ui = 0 respectfully. Thus we can add extra

73



states and enforce that the vertices are not in these states. Then we add pairs (i, j)

where i is a new state, and j is a state of degree 0 (or vice-versa). Alternatively we

can rewrite the objective function by adding an extra term:

minimize
1

2

∑
(u,v)∈E

(
k∑
i=1

∥∥ ui − wiuv ∥∥2
+ ‖w0

uv‖2

)
,

where w0
uv is the sum of vj over j of degree 0.

74



Chapter 3

MAX 2 CSP

3.1 Semidefinite Relaxation

In this section, we describe the vector program (SDP) for MAX 2CSP/MAX 2SAT.

For convenience we replace each negation x̄i with a new variable x−i that is equal

by the definition to x̄i. First, we transform our problem to a MAX 2SAT formula:

we replace

• each constraint of the form xi ∧ xj with two clauses xi and xj;

• each constraint of the form xi ⊕ xj with two clauses xi ∨ xj and x−i ∨ x−j;

• finally, each constraint xi with xi ∨ xi.

It is easy to see that the fraction of unsatisfied constraints in the formula is equal, up

to a factor of 2, to the number of unsatisfied constraints in the original MAX 2CSP

instance. Therefore, if we satisfy 1−O(min(
√
ε, ε
√

log n)) fraction of all constraints

in the 2SAT formula, we will also satisfy 1 − O(min(
√
ε, ε
√

log n)) fraction of all

constraints in MAX 2CSP. In what follows, we will consider only 2SAT formulas.

75



To avoid confusion between 2SAT and SDP constraints we will refer to them as

clauses and constraints respectively.

We now rewrite all clauses in the form xi → xj, where i, j ∈ {±1,±2, . . . ,±n}.

For each xi, we introduce a vector variable vi in the SDP. We also define a special

unit vector v0 that corresponds to the value 1: in the intended (integral) solution

vi = v0, if xi = 1; and vi = −v0, if xi = 0. The SDP contains the constraints that

all vectors are unit vectors; vi and v−i are opposite; and `2
2-triangle inequalities.

For each clause xi → xj we add the term

1

8

(
‖vj − vi‖2 − 2〈vj − vi, v0〉

)
to the objective function. In the intended solution this expression equals to 1, if the

clause is not satisfied; and 0, if it is satisfied. Therefore, our SDP is a relaxation of

MAX 2SAT (the objective function measures how many clauses are not satisfied).

We get an SDP relaxation for MAX 2SAT:

minimize
1

8

∑
clauses xi→xj

‖vj − vi‖2 − 2〈vj − vi, v0〉

subject to

‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2 for all i, j, k ∈ {0,±1, . . . ,±n}

‖vi‖2 = 1 for all i ∈ {0,±1, . . . ,±n}

vi = −v−i for all i ∈ {±1, . . . ,±n}

76



In a slightly different form, this semidefinite program was introduced by Feige and

Goemans [14]. Later, Zwick [34] used this SDP in his algorithm.

Note that since all vectors vi are unit vectors, triangle inequalities can be written

as

‖vi − vj‖2 + 〈vi − vj, vk〉 ≥ 0.

In particular, triangle inequalities imply that the contribution of each clause xi → xj

to the SDP objective function is nonnegative:

‖vj − vi‖2 − 2〈vj − vi, v0〉 ≥ 0 for each clause xi → xj. (3.1)

In fact, our first algorithm (which satisfies 1 − O(
√
ε) fraction of all constraints)

requires only triangle inequalities of type (3.1).

3.2 First Algorithm

In this section, we present an approximation algorithm that finds a solution satis-

fying 1 − O(
√
ε) fraction of all constraints given a 1 − ε satisfiable instance. The

approximation algorithm is shown in Figure 3.1. We interpret the inner product

〈vi, v0〉 as the bias towards rounding vi to 1. The algorithm rounds vectors orthogo-

nal to v0 (“unbiased” vectors) using the random hyperplane technique. If, however,

the inner product 〈vi, v0〉 is positive, the algorithm shifts the random hyperplane;

and it is more likely to round vi to 1 than to 0.

It is easy to see that the algorithm always obtains a valid assignment to variables:

if xi = 1, then x−i = 0 and vice versa.

A clause xi → xj is not satisfied by the algorithm if ξi ≥ ti and ξj ≤ tj (i.e. xi

77



Input: An instance of MAX 2SAT.
Output: An assignment of variables xi.

1. Solve the SDP for MAX 2SAT. Denote by SDP the objective value of the
solution and by ε the fraction of the constraints “unsatisfied” by the vector
solution, that is,

ε =
SDP

#constraints
.

2. Pick a random Gaussian vector g with independent components distributed
as N (0, 1).

3. For every i,

(a) Project the vector g to vi:

ξi = 〈g, vi〉.

Note, that ξi is a standard normal random variable, since vi is a unit
vector.

(b) Pick a threshold ti as follows:

ti = −〈vi, v0〉
/√

ε .

(c) If ξi ≥ ti, set xi = 1, otherwise set xi = 0.

Figure 3.1: First Algorithm for MAX 2SAT

is set to 1; and xj is set to 0). The following lemma bounds the probability of this

event.

Lemma 3.2.1. Let ξi and ξj be two standard normal random variables with covari-

ance 1− 2∆2 (where ∆ ≥ 0). For all real numbers ti, tj and δ = (tj − ti)/2 we have

(for some absolute constant C)

78



1. If tj ≤ ti,

Pr (ξi ≥ ti and ξj ≤ tj) ≤ C min(∆2/|δ|,∆).

2. If tj ≥ ti,

Pr (ξi ≥ ti and ξj ≤ tj) ≤ C(∆ + 2δ).

Proof. 1. First note that if ∆ = 0, then the above inequality holds, since ξi = ξj

almost surely. If ∆ ≥ 1/2, then the right hand side of the inequality becomes

Ω(1) × min(1/|δ|, 1). Since max(ti,−tj) ≥ |δ|/2, the inequality follows from the

bound Φ̃(|δ|/2) ≤ O(1/|δ|). So we assume 0 < ∆ < 1/2.

Let ξ = (ξi+ξj)/2 and η = (ξi−ξj)/2. Notice that Var [ξ] = 1−∆2, Var [η] = ∆2;

and random variables ξ and η are independent. We estimate the desired probability

as follows:

Pr (ξj ≤ tj and ξi ≥ ti) = Pr

(
η ≥

∣∣∣∣ξ − ti + tj
2

∣∣∣∣+
ti − tj

2

)

=

+∞∫
−∞

Pr

(
η ≥

∣∣∣∣t− ti + tj
2

∣∣∣∣+
ti − tj

2

)
dFξ(t).

Note that the density of the normal distribution with variance 1−∆2 is always less

than 1/
√

2π(1−∆2) < 1, thus we can replace dFξ(t) with dt.

79



Pr(ξj ≤ tj and ξi ≥ ti) ≤
∫ +∞

−∞
Φ̃


∣∣∣t− ti+tj

2

∣∣∣+
ti−tj

2

∆

 dt

=

∫ +∞

−∞
Φ̃

(
|t|+ |δ|

∆

)
dt

= ∆

∫ +∞

−∞
Φ̃ (|s|+ |δ| /∆) ds (by Lemma A.1.1)

≤ C ′∆ · 1√
2π

∫ +∞

−∞
e−

(|s|+|δ|/∆ )2

2 ds

= 2C ′∆ · Φ̃(|δ| /∆) (by Lemma A.1.1)

≤ 2C ′min(∆2 /|δ| ,∆).

2. We have

Pr (ξj ≤ tj and ξi ≥ ti) ≤ Pr (ξj ≤ tj and ξi ≥ tj) + Pr (ti ≤ ξi ≤ tj)

≤ C(∆ + 2δ).

For estimating the probability Pr (ξj ≤ tj and ξi ≥ tj) we used part 1 with ti =

tj.

Theorem 3.2.2. The approximation algorithm finds an assignment satisfying a

1−O(
√
ε) fraction of all constraints, if a 1− ε fraction of all constraints is satisfied

in the optimal solution.

Proof. We shall estimate the probability of satisfying a clause xi → xj. Set ∆ij =

‖vj − vi‖/2 (so that cov(ξi, ξj) = 〈vi, vj〉 = 1 − 2∆2
ij) and δij = (tj − ti)/2 ≡

−〈vj − vi, v0〉/(2
√
ε). The contribution of the term to the SDP is equal to cij =

(∆2
ij + δij

√
ε)/2.

80



Consider the following cases (we use Lemma 3.2.1 in all of them):

1. If δij ≥ 0, then the probability that the clause is not satisfied (i.e. ξi ≥ ti and

xj ≤ tj) is at most

C(∆ij + 2δij) ≤ C(
√

2cij + 4cij/
√
ε).

2. If δij < 0 and ∆2
ij ≤ 4cij, then the probability that the clause is not satisfied

is at most

C∆ij ≤ 2C
√
cij.

3. If δij < 0 and ∆2
ij > 4cij, then the probability that the constraint is not

satisfied is at most

C∆2
ij

|δij|
=

C∆2
ij

(∆2
ij − 2cij)/

√
ε
≤

C
√
ε∆2

ij

∆2
ij −∆2

ij/2
= 2C

√
ε.

Combining these cases we get that the probability that the clause is not satisfied is

at most

4C(
√
cij + cij/

√
ε+
√
ε).

The expected fraction of unsatisfied clauses is equal to the average of such

probabilities over all clauses. Recall, that ε is equal, by the definition, to the

average value of cij. Therefore, the expected number of unsatisfied constraints is

O(
√
ε+ ε/

√
ε+
√
ε) (here we used Jensen’s inequality for the function

√
· ).

81



3.3 Second Algorithm

3.3.1 Preliminaries

For every instance of MAX 2SAT we consider a corresponding directed graph G =

(V,E): the set of vertices equals V = {±1,±2, . . . ,±n}; two vertices i and j are

connected by a directed edge (i, j) if there is a clause xi → xj or a clause x−j → x−i

(note that these two clauses are equivalent) in the MAX 2SAT instance. The graph

G is symmetric in the following sense: if (i, j) is an edge then (−j,−i) is an edge

as well.

Definition 3.3.1. Given a set of vertices S, denote the set of edges outgoing from

S by δout(S); the set of edges incoming to S by δin(S). Denote by δoutM (S) [δinM(S)]

the set of edges outgoing from [incoming to] S in the subgraph G[M ] of G induced

by a vertex set M .

Consider a feasible solution {vi}i∈V to the semidefinite relaxation for MAX

2SAT. We introduce a directed distance function d : V × V → R+ ∪ {0} as fol-

lows

d(i, j) = ‖vi − vj‖2 − 〈v0, vj − vi〉 ≡ ‖vi − vj‖2 − ‖v0 − vi‖2 + ‖v0 − vj‖2.

82



Lemma 3.3.2. The function d(·, ·) satisfies the following four properties:

∀i ∈ X d(i, i) = 0

∀i, j ∈ X d(i, j) ≥ 0

∀i, j, k ∈ X d(i, j) + d(j, k) ≥ d(i, k)

∀i, j ∈ X d(i, j) = d(−j,−i).

Remark 3.3.3. We will call a distance function that satisfies the first three prop-

erties a directed semimetric1; if additionally a function satisfies the fourth property

we will call it symmetric directed semimetric.

Proof. Clearly, d(i, i) = 0. The fact that d is nonnegative trivially follows from the

triangle inequality constraint of the semidefinite relaxation. Now we verify the third

condition (the triangle inequality for d):

d(i, j) + d(j, k) = ‖vi − vj‖2 − ‖v0 − vi‖2 + ‖v0 − vj‖2

+ ‖vj − vk‖2 − ‖v0 − vj‖2 + ‖v0 − vk‖2

= ‖vi − vj‖2 + ‖vj − vk‖2 − ‖v0 − vi‖2 + ‖v0 − vk‖2

≥ ‖vi − vj‖2 − ‖v0 − vi‖2 + ‖v0 − vk‖2 = d(i, k)

We define the distance between sets and points in the natural way:

• d(S, T ) = mini∈S;j∈T d(i, j);

• d(i, S) = d({i}, S);

1Directed semimetrics are sometimes called quasi-semimetrics.

83



• d(S, i) = d(S, {i});

Definition 3.3.4. Given a set of vertices M ⊂ V , we define its volume as follows:

vol(M) =
∑

(i,j)∈E
i,j∈M

d(i, j).

Definition 3.3.5. We say that two sets of vertices, S and T , are ∆-separated with

respect to d if d(S, T ) ≥ ∆. Similarly, we say that two sets of vectors in Euclidean

space, S and T , are ∆-separated with respect to `2
2 if for every u ∈ S and v ∈ T

‖u− v‖2 ≥ ∆.

3.3.2 Separation Theorem

In this section, we remind the reader the separation theorem of Arora, Rao and

Vazirani [4]. Then we prove a variant of this theorem for the directed semimetric d.

We will use the algorithm of Arora, Rao, Vazirani [4] with the separation guar-

antee of Lee [25].

Theorem 3.3.6 (Arora, Rao, Vazirani [4], Lee [25]). Consider a set X of points in

Euclidean space. Assume that it satisfies `2
2 triangle inequalities:

∀u, v, w ∈ X ‖u− v‖2 + ‖v − w‖2 ≥ ‖u− w‖2,

and that it is spread: ∑
u,v∈X

‖u− v‖2 ≥ c|X|2,

where c is a constant that does not depend on X. Then there exist two sets S, T ⊂ X

84



that are Ω(1/
√

log n)-separated with respect to `2
2 and such that each of them contains

a constant fraction of all points in X.

Furthermore, there is a randomized polynomial-time algorithm for finding these

subsets S, T .

Note that a feasible SDP solution {vi} for MAX 2SAT is spread. Indeed,

∑
i,j∈V

‖vi − vj‖2

=
∑

i∈V, j∈V
i>0, j>0

(
‖vi − vj‖2 + ‖vi − v−j‖2 + ‖v−i − vj‖2 + ‖v−i − v−j‖2

)
=

∑
i∈V, j∈V
i>0, j>0

8 = 8n2 = 2|V |2.

Therefore, we can apply Theorem 3.3.6 to it. Moreover, we may assume that the

algorithm returns sets S and T that are symmetric: S = −T (Indeed, the first step

of the ARV algorithm partitions V into symmetric sets S ′ and T ′: S ′ = −T ′. At the

deletion step we have some freedom in choosing matchings. We should always choose

symmetric matchings, that is if (i, j) belongs to the matching, (−i,−j) should also

belong to the matching. See also [25, Corollary 4.10].).

Corollary 3.3.7. Let {vi}i∈V be a feasible solution of the semidefinite relaxation

for MAX 2SAT. Then there exists a set S ⊂ V such that |S| = Ω(n) and sets

{vi : i ∈ S} and {−vi : i ∈ S} are Ω(1/
√

log n)-separated with respect to `2
2.

Furthermore, there is a randomized polynomial-time algorithm for finding S.

Now we prove a variant of this corollary for weighted graphs. Our proof is based

on the approach of Chawla, Gupta and Räcke [10]: we introduce many duplicate

85



vertices for every vertex of the weighted graph; the number of duplicates is (roughly)

proportional to the weight of the vertex.

Assume that every vertex i has a weight wi and that wi = w−i. Denote the

weight of all vertices in a set M by W (M).

Corollary 3.3.8. There exists a set S ⊂ V such that W (S) = Ω(W (V )) and sets

{vi : i ∈ S} and {−vi : i ∈ S} are Ω(1/
√

log n)-separated with respect to `2
2. Fur-

thermore, there is a randomized polynomial-time algorithm for finding S.

Proof. Denote W = W (V ). For every vertex i, we introduce

mi =

⌊
wi

/
W

n2

⌋
.

duplicate vertices (i, 1), . . . , (i,mi) and let v(i,j) = vi. Clearly, the set
{
v(i,j)

}
satisfies

the SDP constraints since v(i,j) = v(−i,j) and all vectors v(i,j) lie in the set {vi}. Since

mi ≤ n2 there are at most 2n3 new vertices.

We apply Corollary 3.3.7 to vectors
{
v(i,j)

}
. We obtain a set Sdup such that

sets {vi,j ≡ vi : (i, j) ∈ Sdup} and {−vi,j ≡ −vi : (i, j) ∈ Sdup} are ∆-separated with

respect to `2
2 distance, and Sdup contains a constant fraction of duplicate vertices.

Let S be the set of vertices i such that at least one duplicate of i belongs to Sdup.

First, sets {vi : i ∈ S} and {−vi : i ∈ S} are ∆-separated. Then

W (S) =
∑
i∈S

wi ≥
∑
i∈S

miW

n2
=
W

n2

∑
i∈S

mi ≥
W

n2
|Sdup|.

On the other hand,

|Sdup| = Ω

(∑
i∈V

mi

)
≥ Ω

(∑
i∈V

(
win

2

W
− 1

))
= Ω

(
n2 − |V |

)
= Ω(n2).

86



Therefore, W (S) = Ω(W ).

We are ready to prove a separation theorem for the directed semimetric d(·, ·).

Theorem 3.3.9. There exists a polynomial-time randomized algorithm that given a

graph G = (V,E), a feasible solution vi, and a set of non-negative weights {wi}i∈V

(wi = w−i) finds a set S ⊂ V such that

• sets S and −S ≡ {−i : i ∈ S} are ∆-separated with respect to d;

• W (S) = Ω(W (V )).

Proof. We apply the algorithm from Corollary 3.3.8. The algorithm returns a set

of vertices Ŝ such that the sets
{
vi : i ∈ Ŝ

}
and

{
−vi : i ∈ Ŝ

}
are Ω(1/

√
log n)-

separated with respect to `2
2. Let

S+ = {i ∈ Ŝ : 〈v0, vi〉 ≥ 0}

S− = {i ∈ Ŝ : 〈v0, vi〉 ≤ 0}.

Note that sets S+ and −S− ≡ {−i : i ∈ S−} are Ω(1/
√

log n)-separated with respect

to d: If i ∈ S+, j ∈ −S−, then

d(i, j) = ‖vi − vj‖2 + 2〈v0, vi − vj〉 ≥ ‖vi − vj‖2 ≥ Ω(1/
√

log n).

Similarly sets −S− and S+ are Ω(1/
√

log n)-separated. Since Ŝ = S+ ∪ S−, one of

the sets S+ or S− contains a constant fraction of the total weight. Therefore, either

S = S+ or S = −S− satisfies the condition of the theorem.

87



Input: A directed graph G = (V,E); a feasible solution {vi}i∈V .
Output: A partitioning of V into three sets S, R, and −S.

1. Let
wi =

∑
j:(i,j)∈E

d(i, j) +
∑

j:(j,i)∈E

d(j, i).

(Note that wi = w−i.)

2. Run the separation algorithm from Theorem 3.3.9 with weights wi. Denote
its output by S∗. Denote the distance between sets S∗ and −S∗ by ∆.

3. Define a level cut Et (t ∈ (0,∆)):

Et = {(i, j) ∈ E : d(S∗, i) ≤ t and d(S∗, j) ≥ t} ∪
{(i, j) ∈ E : d(j,−S∗) ≤ t and d(i,−S∗) ≥ t}.

4. Find t0 ∈ (0,∆/2) which minimizes the size of Et.

5. Let S be the set of vertices that are reachable from S∗ in the graph G− Et0 .

6. Let R = M \ (S ∪ −S).

7. Return S, R and −S.

Figure 3.2: Finding (S,R,−S) Partitioning

3.3.3 Algorithm and Analysis

Theorem 3.3.10. Given a directed graph G = (V,E) such that V = −V and a

feasible solution {vi}i∈V , the algorithm presented in Figure 3.2 finds a partitioning

of V into three sets S, R, and −S such that

1.

|δout(S)|+ |δin(−S)| = O
(√

log |V | vol(M)
)
.

88



2. The volume of R is at most a constant fraction of the volume of the graph:

vol(R) ≤ c vol(M), where c < 1 is a constant.

Proof. First, we prove that sets S and −S are disjoint. Note that for every i ∈ S,

d(S∗, i) < ∆/2; similarly, for every j ∈ −S, d(j,−S∗) < ∆/2. Therefore, for every

i ∈ S, j ∈ −S, we have

d(i, j) ≥ d(S∗,−S∗)− d(S∗, i)− d(j,−S∗) > 0.

Hence i 6= j.

By the definition of S, δout(S) ⊂ Et0 ; δin(−S) ⊂ Et0 . Using standard arguments

we get

vol(V ) =
∑

(i,j)∈E

d(i, j) ≥
∑

(i,j)∈E
d(S∗,j)≥d(S∗,i)

(
d(S∗, j)− d(S∗, i)

)

=
∑

(i,j)∈E
d(S∗,j)≥d(S∗,i)

∫ d(S∗,j)

d(S∗,i)

dt ≥
∫ ∆/2

0

|Et|dt.

hence |Et0| ≤ 2
∆

vol(V ) and

|δout(S)|+ |δin(−S)| ≤ 2

∆
vol(M) = O

(√
log |V | vol(V )

)
.

Now let us estimate the volume of R. Since W (S) = Ω(W (V )), W (R) ≤ cW (G)

89



for some constant c < 1. On the other hand,

vol(R) =
∑

(i,j)∈E
i,j∈R

d(i, j) ≤ 1

2

∑
i∈R

wi =
W (R)

2
;

vol(V ) =
1

2

∑
i∈V

wi =
W (V )

2
.

Therefore, vol(R) ≤ cW (G).

Applying this algorithm recursively, we get an algorithm for the MAX 2SAT

problem.

Input: An instance of MAX 2SAT.
Output: An assignment of variables xi.

1. Let G = (V,E) be the graph corresponding to the MAX 2SAT instance.

2. Solve the semidefinite relaxation for MAX 2SAT. Obtain a solution {vi}i∈V .

3. Let k = 0, R0 = V .

4. while Rk is not empty

(a) Find (S,R,−S) partitioning of G[Rk] (the graph induced on G by Ri).

(b) Let Sk+1 = S, Rk+1 = R, k = k + 1.

5. Let S = S1 ∪ · · · ∪ Sk.

6. For every i ∈ V , let

xi =

{
true, if i ∈ S;

false, otherwise.

Figure 3.3: Second Algorithm for MAX 2SAT

Theorem 3.3.11. Given an instance of MAX 2SAT where 1 − ε fraction of all

90



constraints are satisfiable, the algorithm presented in Figure 3.3 finds a solution

that satisfies a 1 − O(ε
√

log n) fraction of all constraints. The algorithm runs in

randomized polynomial time.

Proof. Note that at each iteration k, V is a disjoint union of sets S1∪ . . . Sk, Rk, and

−(S1 ∪ . . . Sk). Since when the algorithm stops Rk = ∅, sets S and −S partition

V . Therefore, our assignment to xi is valid: if xi is true then x−i is false and vice

versa.

Note that a clause xi → xj is not satisfied if and only if i ∈ S and j ∈ −S, that

is, when the edge (i, j) goes from S to −S. We use the following estimate on the

number of such edges:

|δout(S1)|+ |δin(−S1)|+ |δoutR1
(S2)|+ |δinR1

(−S2)|+ . . .

= O
(√

log n
)
· (vol(V ) + vol(R1) + . . .) .

The key observation is that the volume of Ri decreases geometrically, so the number

of unsatisfied clauses is O(
√

log n) · vol(V ).

91



Chapter 4

Conclusion and Future Work

4.1 Conclusions

In this dissertation, we presented approximation algorithms for two Constraint Sat-

isfaction Problems, Unique Games and MAX 2CSP. Our algorithms have better

approximation guarantees than previously known algorithms in all ranges of pa-

rameters. Moreover, three our algorithms are nearly optimal (assuming the Unique

Games Conjecture).

Our results for Unique Games have interesting complexity implications. They

show that when the fraction of unsatisfiable constraints ε is less than c/ log k almost

all constraints can be satisfied in polynomial time, which exponentially improves

the previous bound of ∼ 1/k10. In particular, our bound disproves some stronger

versions of the Unique Games Conjecture considered in the literature before.

We developed new techniques for rounding SDP solutions. In particular, in

Section 2.3, we showed how to deal with SDP solutions in which different vectors

have different lengths; in Sections 2.3.2 and 2.4.2, we proved several useful bounds

92



for the joint distribution of normal variables; in Section 2.6, we introduced and

constructed a new type of metric embeddings, m-orthogonal separators; finally, in

Section 3.3.2, we proved a separation theorem for directed metric spaces. These

techniques are of interest on their own. We hope that they will prove useful for

solving other combinatorial problems.

4.2 Future Work

Many known approximation results and several results presented in this dissertation

are optimal or near optimal assuming the Unique Games Conjecture. It is therefore

a very interesting question whether the Unique Conjecture is true, and these results

are indeed optimal; or whether it is false, and we just need more powerful methods

to obtain better approximation guarantees, and thus disprove the Unique Games

Conjecture.

One promising avenue for future research is to study stronger SDP relaxations

(e.g. relaxations from the Lasserre hierarchy) for combinatorial optimization prob-

lems such as MAX CUT, Vertex Cover, and Unique Games. Of course, it would

be great if this research led to improved approximation guarantees to these prob-

lems. However, even negative results, that is, integrality gap examples for Lasserre

hierarchy, would be interesting, and they would be a strong evidence in favor of the

Unique Games Conjecture.

93



Bibliography

[1] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

log n)

approximation algorithms for Min UnCut, Min 2CNF Deletion, and directed

cut problems. In Proceedings of the 37th ACM Symposium on Theory of

Computing, pp. 573–581, 2005.

[2] G. Andersson, L. Engebretsen, and J. H̊astad. A new way to use semidef-

inite programming with applications to linear equations mod p. Journal of

Algorithms, Vol. 39, pp. 162–204, 2001.

[3] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. In

Proceedings of the 37th ACM Symposium on Theory of Computing, pp. 553–

562, 2005.

[4] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and

graph partitioning. In Proceedings of the 36th ACM Symposium on Theory

of Computing, pp. 222–231, 2004.

[5] P. Austrin Balanced Max 2-Sat might not be the hardest. In Proceedings of

the 39th ACM Symposium on Theory of Computing, pp. 189–197, 2007.

94



[6] P. Austrin Towards Sharp Inapproximability For Any 2-CSP. In Proceedings

of the 48th IEEE Symposium on Foundations of Computer Science, pp. 307–

317,2007.

[7] M. Charikar, K. Makarychev, and Y. Makarychev. Near-Optimal Algorithms

for Maximum Constraint Satisfaction Problems. In Proceedings of the 18th

ACM-SIAM Symposium on Discrete Algorithms, pp. 62–68, 2007.

[8] M. Charikar, K. Makarychev, and Y. Makarychev. Near-Optimal Algorithms

for Unique Games. In Proceedings of the 38th ACM Symposium on Theory

of Computing, pp. 205–214, 2006.

[9] E. Chlamtac, K. Makarychev, and Y. Makarychev. How to Play Unique Games

Using Embeddings. In Proceedings of the 47th IEEE Symposium on Founda-

tions of Computer Science, pp. 687–696, 2006.

[10] S. Chawla, A. Gupta, and H. Räcke. Approximations for generalized sparsest

cut and embeddings of `2 into `1. In Proceedings of the 16th ACM-SIAM

Symposium on Discrete Algorithms, pp. 102–111, 2005.

[11] S. Chawla, R. Krauthgamer, R. Kumar,Y. Rabani, and D. Sivakumar. On

the hardness of approximating multicut and sparsest-cut. In Proceedings of

the 20th IEEE Conference on Computational Complexity, pp. 144–153, 2005.

[12] I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate

coloring. ECCC Technical Report TR05-039, 2005.

[13] U. Feige and D. Reichman. On systems of linear equations with two variables

per equation. In Proceedings of the 7th International Workshop on Approxi-

95



mation Algorithms for Combinatorial Optimization, vol. 3122 of Lecture Notes

in Computer Science, pp. 117–127, 2004.

[14] U. Feige and M. Goemans. Approximating the value of two prover proof sys-

tems, with applications to MAX 2SAT and MAX DICUT. In Proceedings of

the 3rd IEEE Israel Symposium on the Theory of Computing and Systems,

pp. 182–189, 1995.

[15] U. Feige and L. Lovász. Two-prover one round proof systems: Their power

and their problems. In Proceedings of the 24th ACM Symposium on Theory

of Computing, pp. 733–741, 1992.

[16] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-

(multi)cut theorems and their applications. In Proceedings of the 25th ACM

Symposium on Theory of Computing, pp. 698–707, 1993.

[17] M. Goemans and D. Williamson. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal

of the ACM, vol. 42, no. 6, pp. 1115–1145, Nov. 1995.

[18] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Com-

binatorial Optimization. Springer Verlag, 1988.

[19] A. Gupta and K. Talwar. Approximating Unique Games. In Proceedings of

the 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 99–106, 2006.

[20] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of

the 34th ACM Symposium on Theory of Computing, pp. 767–775, 2002.

96



[21] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2−

ε. In Proceedings of the 18th IEEE Conference on Computational Complexity,

pp. 379–386, 2003.

[22] S. Khot and N. Vishnoi. The unique games conjecture, integrality gap for cut

problems and the embeddability of negative type metrics into `1. In Proceedings

of the 46th IEEE Symposium on Foundations of Computer Science, pp. 53–62,

2005.

[23] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability

results for MAX-CUT and other 2-variable CSPs? ECCC Report TR05-101,

2005.

[24] P. Klein, S. Plotkin, S. Rao, and E. Tardos. Approximation algorithms for

Steiner and directed multicuts. Journal of Algorithms, vol. 22 n. 2, pp. 241–

269, 1997.

[25] J. R. Lee. On distance scales, embeddings, and efficient relaxations of the

cut cone. In Proceedings of the 16th ACM-SIAM Symposium on Discrete

Algorithms, pp. 92–101, 2005.

[26] M. Lewin, D. Livnat, and U. Zwick. Improved Rounding Techniques for the

MAX 2-SAT and MAX DI-CUT Problems. In Proceedings of the 9th Inter-

national IPCO Conference on Integer Programming and Combinatorial Opti-

mization, pp. 67–82, 2002.

[27] S. Matuura and T. Matsui. New approximation algorithms for MAX 2SAT

and MAX DICUT. Journal of Operations Research Society of Japan, vol. 46,

pp. 178–188, 2003.

97



[28] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions

with low influences: invariance and optimality. In Proceedings of the 46th

IEEE Symposium on Foundations of Computer Science, pp. 21–40, 2005.

[29] A. Samorodnitsky and L. Trevisan. Gowers Uniformity, Influence of Vari-

ables, and PCPs. In Proceedings of the 38th ACM symposium on Theory of

computing, pp. 11–20, 2006.

[30] Z. Šidák. Rectangular Confidence Regions for the Means of Multivariate Nor-

mal Distributions. Journal of the American Statistical Association, vol. 62,

no. 318, pp. 626–633, Jun. 1967.

[31] L. Stockmeyer. Planar 3-colorability is polynomial complete. ACM SIGACT

News, Vol. 5, Issue 3, pp. 19–25, July 1973.

[32] L. Trevisan. Approximation Algorithms for Unique Games. In Proceedings of

the 46th IEEE Symposium on Foundations of Computer Science, pp. 197–205,

2005.

[33] U. Zwick. Analyzing the MAX 2-SAT and MAX DI-CUT approximation al-

gorithms of Feige and Goemans. Manuscript.

Available at www.cs.tau.ac.il/~zwick/my-online-papers.html.

[34] U. Zwick. Finding almost satisfying assignments. In Proceedings of the 30th

ACM Symposium on Theory of Computing, pp. 551–560, 1998.

98



Appendix A

Properties of Normal Distribution

A.1 Bounds on Normal Distribution Function

For completeness we prove some standard results about the normal distribution in

this section. Denote the probability that a standard normal random variable is

greater than t ∈ R by Φ̃(t), in other words

Φ̃(t) ≡ 1− Φ0,1(t) = Φ0,1(−t),

where Φ0,1 is the normal distribution function.

Lemma A.1.1. 1. For every t > 0,

t√
2π(t2 + 1)

e−
t2

2 < Φ̃(t) <
1√
2πt

e−
t2

2 .

2. There exist constants c1, C1, c2, C2 such that for every t > 0 and 0 < p < 1/3

99



the following bounds hold

c1√
2π(t+ 1)

e−
t2

2 ≤ Φ̃(t) ≤ C1√
2π(t+ 1)

e−
t2

2 ;

c2

√
log (1/p) ≤ Φ̃−1(p) ≤ C2

√
log (1/p);

3. There exist constants c3 and C3 such that for every t > 1, ρ ≥ 1 the following

inequality holds

(c3tΦ̃(t))ρ
2 ≤ tΦ̃(ρt+

1

ρt
) ≤ tΦ̃(ρt) ≤ (C3tΦ̃(t))ρ

2

Proof. 1. Observe, that in the limit t → ∞ all three expressions are equal to 0.

Hence the lemma follows from the following inequalities on the derivatives:

(
t√

2π(t2 + 1)
e−

t2

2

)′
= − e

− t
2

2

√
2π

+
2e−

t2

2

√
2π(t2 + 1)2

> − 1√
2π
e−

t2

2 = Φ̃(t)′,(
1√
2πt

e−
t2

2

)′
= − e

− t
2

2

√
2π
− e−

t2

2

√
2πt2

< − 1√
2π
e−

t2

2 = Φ̃(t)′

2. This trivially follows from (1).

3. Using(2) we get

tΦ̃(ρt) ≤ C1te
− (ρt)2

2

ρt+ 1
= C1

(
t+ 1

(ρt+ 1)1/ρ2t1−1/ρ2 ·
te−t

2/2

t+ 1

)ρ2

≤ C1

((
t+ 1

t

)1−1/ρ2 (
t · Φ̃(t)

))ρ2

≤
(

2C1 tΦ̃(t)
)ρ2

.

100



Similarly,

tΦ̃(ρt+
1

ρt
) ≥ c1te

− (ρt+1/(ρt))2

2

ρt+ 1
= c1

(
(t+ 1)e−1/ρ2−1/(2t2)

(ρt+ 1)1/ρ2t1−1/ρ2 ·
te−t

2/2

t+ 1

)ρ2

≥ c1

(
1

e3/2ρ1/ρ2

(
t+ 1

t

)1−1/ρ2 (
t · Φ̃(t)

))ρ2

≥
(c1

e2
tΦ̃(t)

)ρ2

.

Here we used that ρ1/ρ2 ≤ e1/(2e) <
√
e.

A.2 Šidák Theorem

In Section 2.3.2 and Section 2.4.2, we use a corollary of the following result of

Šidák [30]:

Theorem A.2.1 (Šidák). Let ξ1, . . . , ξk be normal random variables with mean

zero, then for any positive t1, . . . , tk,

Pr (|ξ1| ≤ t1, |ξ2| ≤ t2, . . . , |ξk| ≤ tk) ≥ Pr (|ξ1| ≤ t1) Pr (|ξ2| ≤ t2, . . . , |ξk| ≤ tk) .

Note that these random variable do not have to be independent.

Corollary A.2.2. Let ξ1, . . . , ξk be normal random variables with mean zero, then

for any positive t1, . . . , tk,

Pr (ξ1 ≥ t1 | |ξ2| ≤ t2, . . . , |ξk| ≤ tk) ≤ Pr (ξ1 ≥ t1) .

Proof. By Theorem A.2.1,

Pr (|ξ1| ≤ t1 | |ξ2| ≤ t2, . . . , |ξk| ≤ tk) ≥ Pr (|ξ1| ≤ t1) .

101



Thus

Pr(ξ1 ≥ t1 | |ξ2| ≤ t2, . . . , |ξk| ≤ tk)

=
1

2
− 1

2
Pr (|ξ1| ≤ t1 | |ξ2| ≤ t2, . . . , |ξk| ≤ tk)

≤ 1

2
− 1

2
Pr (|ξ1| ≤ t1) = Pr (ξ1 ≥ t1) .

102


	Abstract
	List of Figures
	Introduction
	Unique Games
	Our Results

	MAX 2CSP

	Unique Games
	Overview
	Semidefinite Programming
	Techniques

	Semidefinite Relaxation
	First Algorithm
	Algorithm
	Analysis: Technical Details

	Second Algorithm
	Algorithm
	Analysis: Technical Details

	Third Algorithm
	Overview: Orthogonal Separators
	Approximation Algorithm

	Producing Orthogonal Separators
	Normalization: Embedding into L2[0, infinity]
	Embedding into l1 and l2
	Generating Orthogonal Separators via l1
	Generating Orthogonal Separators via l2

	d to 1 Games

	MAX 2 CSP
	Semidefinite Relaxation
	First Algorithm
	Second Algorithm
	Preliminaries
	Separation Theorem
	Algorithm and Analysis


	Conclusion and Future Work
	Conclusions
	Future Work

	Properties of Normal Distribution
	Bounds on Normal Distribution Function
	Šidák Theorem


