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Abstract
Peer-assisted content distribution matches user demand for
content with available supply at other peers in the network.
Inspired by this supply-and-demand interpretation of the na-
ture of content sharing, we employ price theory to study
peer-assisted content distribution. In this approach, the
market-clearing prices are those which exactly align supply
and demand, and the system is studied through the charac-
terization of price equilibria.

Our work provides two separate steps forward. First,
we rigorously analyze the efficiency and robustness gains
that are enabled by price-based multilateral exchange. We
show that multilateral exchanges satisfy several desirable ef-
ficiency and robustness properties that bilateral exchanges
such as BitTorrent do not, particularly when considering
multiple files. Second, we propose and evaluate a system de-
sign that realizes many of the benefits of a price-based multi-
lateral exchange; our design encourages sharing of desirable
content and network-friendly resource utilization.

Bilateral barter-based systems such as BitTorrent have
been attractive in large part because of their simplicity; how-
ever, little attention has been devoted to studying the effi-
ciency and robustness lost in return for this simplicity. Our
research takes a significant step in filling this gap, both
through formal analysis and system design.

1 Introduction
Peer-to-peer systems have been wildly successful as a dis-
ruptive technology for content distribution. Varying accounts
place peer-to-peer (P2P) traffic as comprising anywhere be-
tween 35% and 90% of “all” Internet traffic, with BitTor-
rent accounting for its large majority [3]. Perhaps BitTor-
rent’s biggest technical contribution is its content-exchange
mechanisms—rate-based tit-for-tat [6], or bilateral barter—
that users widely view as incentivizing uploads.

While BitTorrent’s usage numbers are certainly impres-
sive, there are some fundamental problems with its resource
allocation and incentive mechanisms, even beyond poten-
tial “free-riding” attacks already observed [13, 17, 25, 22].
Namely, the system can only perform bilateral barter by
matching up well-suited pairs of nodes that have disjoint sub-
sets of a file (or, more generally, files). Yet the discovery of
stable peering relationships is slow in practice—measured in
the tens of minutes [5] or, at least for high-bandwidth peers,
requiring a linear brute-force search of other participants to
find similar reciprocation rates [22]—if such reciprocation
exists at all. In the end, altruistic uploading often turns out to
be critical for providing continued content availability [10].

From an economics perspective, many of these problems
ultimately have to do with “market failure” in the system:
it’s hard to find good reciprocation with bilateral barter
alone. But economics also offers an alternative—market-
based multilateral exchange—where the system matches
user demand for content to available supply at other peers
in the network. Multilateral exchange becomes especially
efficient and incentive-compatible when combined with cur-
rency: Peers accrue revenue over time by uploading content,
and they spend that revenue to download content. Given the
potential for currency-backed exchange, we turn to price the-
ory to study peer-assisted content distribution. Prices can
help identify which files are “most useful” to disseminate,
where resource congestion is occurring, and who is provid-
ing useful content to the system.

Our paper makes two main contributions. First, we
provide a rigorous theoretical analysis of price-based ex-
changes, providing a foundation to compare the efficiency
and robustness of the resource allocation achieved by these
schemes. We show how one can model peer-to-peer file-
sharing systems—such as BitTorrent and variants like Bit-
Tyrant [22]—in terms of exchange ratios, then use these ab-
stractions to show that a multilateral price-based exchange
scheme satisfies a number of desirable properties lacking in
bilateral exchange, e.g., equilibria in bilateral exchange may
fail to exist, be inefficient if they do exist, and fail to remain
robust to collusive deviations even if they are efficient. We
analyze a range of pricing schemes, and conclude that sim-
ply maintaining a single price per peer suffices to achieve
the benefits of price-based multilateral exchange. We also
demonstrate the impact of currency on system dynamics.
These results help clarify the tradeoffs inherent in choosing
between bilateral and multilateral exchanges: simplicity in
the former, and efficiency and robustness gains in the latter.

Our second contribution is a system design—PACE (Price-
Assisted Content Exchange)—that effectively and practically
realizes multilateral exchange. Its centerpiece is a market-
based mechanism for exchanging currency for desired con-
tent, with a single price per peer as advocated by our the-
oretical analysis. The system fully specifies the algorith-
mic buy-and-sell behavior of users’ clients: Honest users are
completely shielded from any notion of prices, budgeting,
allocation, or other market issues, yet strategic or malicious
clients cannot unduly damage the system’s efficient opera-
tion. Still, users are incentivized to contribute resources, as
each user’s performance is affected by his (hidden) budget.
PACE introduces a hierarchical network model that captures
the congestion points in a network for resource pricing, yet
also supports the ability for ISPs to express preferences for

1



long-haul traffic carriage. This model ensures that P2P traf-
fic has a strong incentive to remain local when possible, or
at least traverse wide-area links that yield more efficient net-
work usage—a strong form of network friendliness. Through
simulations we validate that our system design provides in-
centives for participation and efficient network usage.

Finally, we complete PACE’s design by proposing crypto-
graphic protocols that ensure the security and ε-fairness of
peer exchanges, and we discuss how to scale and even fed-
erate PACE’s rendezvous and currency services, which pro-
vide discovery and banking for collections of files. Much
like an ecosystem of tracker sites has arisen around BitTor-
rent’s logically-centralized trackers [21], we envision a sim-
ilar ecosystem around PACE’s components as well.

The paper is organized as follows. Section §2 presents the-
oretical comparisons of bilateral and multilateral exchange,
as well as various pricing schemes. Section §3 discusses the
user incentives provided by our exchange model, while §4
presents our network model. Section §5 details the algo-
rithmic mechanisms at the heart of our buy and sell clients,
while §6 describes the associated system services and secu-
rity mechanisms. Section §7 evaluates the resulting system
in simulation, §8 discusses related work, and §9 concludes.

2 Prices in Peer-to-Peer Systems
This section provides a formal comparison of P2P system de-
signs with bilateral barter, such as BitTorrent, and a market-
based exchange of content enabled by a price mechanism to
match supply and demand.

We start in Section §2.1 with a fundamental abstraction
of content exchange in systems like BitTorrent: exchange
ratios. The exchange ratio from one peer to another gives
the download rate received per unit upload rate. We show
that the rates achieved by existing protocols, such as BitTor-
rent and BitTyrant [22], can be naturally modeled through
exchange ratios.

Exchange ratios are a useful formal tool because they di-
rectly allow us to compare bilateral P2P systems with price-
based P2P systems. We carry out such a comparison in §2.2.
We compare bilateral and multilateral P2P systems through
the allocations that arise at equilibria. In particular, we show
that bilateral equilibria may fail to exist, may be inefficient if
they do exist, and correspond to multilateral equilibria if and
only if they are robust to deviations by coalitions of users.
These results provide formal justification of the efficiency
and robustness benefits of multilateral equilibria.

We provide a comparative study of a range of price-based
multilateral exchange mechanisms in §2.3. We compare sys-
tems that set one price per peer, one price per file, and one
price per file per peer. We show that a system with one price
per peer suffices to achieve the benefits of a price-based mul-
tilateral exchange. We conclude with a discussion of system
dynamics in §2.4.

2.1 Exchange Ratios in Bilateral Protocols
Many P2P protocols enable exchange on a bilateral basis
between peers: a peer i uploads to a peer j if and only if
peer j uploads to peer i in return. Of course, such an ex-
change is only possible if each peer has something the other
wants. The foremost examples of such a protocol are BitTor-
rent and its variants. While such protocols are traditionally
studied solely through the rates that peers obtain, in this sec-
tion we provide an interpretation of these protocols through
exchange ratios. As exchange ratios can be interpreted in
terms of prices, these ratios will allow us to compare bilat-
eral barter-based P2P systems with multilateral price-based
P2P systems in the following section.

Let ri j denote the rate sent from peer i to peer j in an
instantiation of a BitTorrent swarm. We define the exchange
ratio between peer i and peer j as the ratio γi j = r ji/ri j; this
is the download rate received by i from j, per unit of rate
uploaded to j. By definition, γi j = 1/γ ji. Clearly, a rational
peer i would prefer to download from peers with which he
has higher exchange ratios.

The exchange ratio has a natural interpretation in terms of
prices. An equivalent story emerges if we assume that peers
charge each other for content in a common monetary unit,
but that all transactions are settlement-free, i.e., no money
ever changes hands. In this case, if peer i charged peer j a
price pi j per unit rate, the exchange of content between peers
i and j must satisfy:

pi jri j = p jir ji

We refer to pi j as the bilateral price from i to j. Note that the
preceding condition thus shows the exchange ratio is equiv-
alent to the ratio of bilateral prices: γi j = pi j/p ji (as long as
the prices and rates are nonzero).

What is the exchange ratio for BitTorrent? A peer splits
its upload capacity equally among those peers in its active
set from which it gets the highest download rates. Let α be
the size of the active set. Suppose all rates rk j that peer j
receives from peers k 6= i are fixed and let Rα

j be the α-th
highest rate that j receives. Let B j be the upload capacity of
peer j. Then, r ji depends on ri j. In particular,

r ji =
{

B j/α if ri j > Rα
j

0 otherwise

Thus for BitTorrent, the exchange ratio is γi j = B j/(α · ri j)
if peer i is in the active set, and zero otherwise. Note that the
exchange ratios γi1, j and γi2, j may be different for two peers
i1, i2 in j’s active set.

The exchange ratio γi j decreases with ri j as long as peer
i is in peer j’s active set (in which case r ji is constant).
Hence, a strategic peer i would prefer to choose ri j as small
as possible while remaining in j’s active set. This behavior
is exactly the approach taken by the BitTyrant [22] variation
on BitTorrent. In fact, if all peers follow this policy, then
ri j = Rα

j for all peers i in j’s active set. Note that in this case,
γi j = B j/(α ·Rα

i ). Thus, peer j has the same exchange ratio
to all peers i with which he bilaterally exchanges content.
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Bilateral Peer Optimization:
maximize Vi(di)
subject to di f = ∑ j r ji f for all f

ri j f = 0 if f 6∈ Fi
∑ j, f ri j f ≤ Bi
∑ f r ji f = γi j ∑ f ri j f for all j
r ≥ 0.

Multilateral Peer Optimization:
maximize Vi(di)
subject to di f = ∑ j r ji f for all f ∈ Ti

ri j f = 0 if f 6∈ Fi
∑ j, f ri j f ≤ Bi
∑ j, f p jr ji f = pi ∑ j, f ri j f
r ≥ 0.

Figure 1: Optimization problems for price-based exchange.

The preceding discussion highlights the fact that the rates
in a bilateral P2P system can be interpreted via exchange ra-
tios. Thus far we have assumed that transfer rates are given,
and exchange ratios are computed from these rates. In the
next section, we turn this relationship around: we explicitly
consider an abstraction of bilateral P2P systems where peers
react to given exchange ratios, and compare the resulting out-
comes to price-based multilateral exchange.

2.2 Bilateral vs. Multilateral Exchange

Motivated by the discussion in the preceding section, this
section rigorously analyzes the efficiency properties of price-
based bilateral and multilateral mechanisms. Peers explicitly
react to prices, and we compare the schemes through their
resulting price equilibria. All proofs for this section can be
found in the paper’s appendix.

In the formal model we consider, a set of peers N shares a
set of files F . Peer i has a subset of the files Fi ⊆ F , and is
interested in downloading files in Ti ⊆ F −Fi. Throughout,
we use ri j f to denote the rate at which user i uploads file f
to user j. We then let di f = ∑ j r ji f be the rate at which user
i downloads file f , respectively. We use sans serif to denote
vectors, e.g., di = (di f , f ∈ Ti) is the vector of download rates
for user i.

We measure the desirability of a download vector to peer i
by a utility function Vi(di) that is nondecreasing in every di f
for f ∈ Ti. We temporarily ignore any resource constraints
within the network; we assume that transfers are only con-
strained by the upload capacities of peers. The upload ca-
pacity of peer i is denoted Bi.

We start by considering peers’ behavior in bilateral
schemes, given a vector of exchange ratios (γi j). Peer i
solves the bilateral optimization problem given in Figure 1.
Note that we allow peers to bilaterally exchange content over
multiple files, even though this is not typically supported by
swarming systems like BitTorrent.

By contrast, in a multilateral price-based exchange, the
system maintains one price per peer, and peers optimize with

respect to these prices. In a slight abuse of notation, we de-
note the price of a peer i by pi. Figure 1 also gives the peer
optimization problem in multilateral price-based exchange.
Note that the first three constraints (giving download rates,
ensuring peers only upload files they possess, and meeting
the bandwidth constraint) are identical to the bilateral peer
optimization. While the bilateral exchange implicitly re-
quires peer i to download only from those peers to whom
he uploads, no such constraint is imposed on multilateral ex-
changes: peer i accrues capital for uploading, and he can
spend this capital however he wishes for downloading.

For bilateral (resp., multilateral) exchange, an equilibrium
is a combination of a rate allocation vector and an exchange
ratio vector (resp., price vector) such that all peers have
solved their corresponding optimization problems. In this
case, the exchange ratios (resp., prices) have exactly aligned
supply and demand: for any i, j, f , the transfer rate ri j f is
simultaneously an optimal choice for both the uploader i and
downloader j.

Definition 1 The rate allocation r∗ and the exchange ratios
(γ∗i j, i, j ∈N) with γ∗i j > 0 for all i, j ∈N constitute a bilateral
equilibrium if for each peer i, r∗ solves the Bilateral Peer
Optimization problem given exchange ratios (γ∗i j, j ∈ N).

Definition 2 The rate allocation r∗ and the peer prices
(p∗i , i ∈ N) with p∗i > 0 for all i ∈ N constitute a multilat-
eral equilibrium if for each peer i, r∗ solves the Multilateral
Peer Optimization problem given prices (p∗j , j ∈ N).

This latter definition is the traditional notion of competitive
equilibrium in economics [19]. A multilateral equilibrium
can be shown to exist under general conditions in our set-
ting [2]. Moreover, the corresponding allocation is Pareto
efficient, i.e., there is no way to increase the utility of some
peer without decreasing the utility of some other peer. A bi-
lateral equilibrium, on the other hand, does not always exist,
and, even when it exists, the allocation may not be efficient.

Example 1 Consider a system with n peers and n files, for
n > 2. Each peer i has file fi and wants f(i mod n)+1. With
these utilities, no bilateral exchange can satisfy all peers,
and a bilateral equilibrium does not exist.

This observation is not particularly surprising: after all,
exchange is far more restricted in a bilateral equilibrium than
in a multilateral equilibrium. We focus instead on determin-
ing conditions under which a bilateral equilibrium yields a
multilateral equilibrium. The following is a key step in es-
tablishing the relationship between bilateral and multilateral
equilibrium.

Proposition 2 Consider a bilateral equilibrium with ex-
change ratios γi j for every pair of peers i, j. If there exist
prices pi for all i ∈ N such that γi j = pi/p j for all i, j ∈ N,
then the bilateral equilibrium allocation is also a multilat-
eral equilibrium allocation.
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Figure 2: Bilateral equilibrium for Ex.3. Peers {1,2} have file f , peers
{3,4} have file g and peers {5,6} have file h. Solid arrows are drawn
from a peer to its desired file, e.g., 1 and 4 want h. Heavy dotted lines are
drawn between peers that barter at the unique bilateral equilibrium.

The proof shows that the constraints in the Bilateral Peer
Optimization problem are equivalent to the constraints in the
Multilateral Peer Optimization problem when γi j = pi/p j for
all i, j ∈ N. This proposition is quite revealing: it shows that
if exchange ratios are “fair,” in the sense that they yield a
unique price per peer, then the bilateral equilibrium alloca-
tion is also a multilateral equilibrium allocation.

We have already seen that a bilateral equilibrium need not
exist, whereas multilateral equilibria always exist; thus, the
two concepts are not equivalent (in general). We now show
that even if a bilateral equilibrium exists, it does not neces-
sarily yield one price per peer, and thus is not always equiv-
alent to a multilateral equilibrium.

Example 3 There are 6 peers ({1,2,3,4,5,6}) and 3 files
({ f ,g,h}) in the system, with file allocation and demand as
shown in Figure 2. The upload capacities of peers are B1 =
2, B j = 1,∀ j 6= 1. At the unique bilateral equilibrium, the
following pairs exchange: {1,6}, {2,3} and {4,5}. Thus for
these pairs, the equilibrium exchange ratios must be γ16 =
1/2, γ32 = 1 and γ54 = 1.

The optimality conditions in the bilateral equilibrium must
ensure that peer 1 does not wish to download from peer 5
instead of peer 6, which implies that we must have γ15 ≤
γ16 = 1/2. Similarly, we must have γ53 ≤ γ54 = 1, and
γ31 ≤ γ32 = 1. Note that we thus have γ15γ53γ31 ≤ 1/2.
However, this implies there do not exist prices per peer pi
such that γi j = pi/p j, since such a price vector would im-
ply γ15γ53γ31 = 1. Thus the bilateral equilibrium cannot be a
multilateral equilibrium.

The problem in this example is that given the exchange ra-
tios, peers {1,3,5} can benefit by deviating together. If
this set chooses upload rates r′13 = 1/3,r′35 = 1/4,r′51 = 1/5,
while reducing upload rates to their original trading partners
accordingly, then each peer in {1,3,5} obtains a resulting
download rate strictly larger than 1 (the download rate each
of these peers gets at the bilateral equilibrium). For example,
user 1 obtains a total download rate of 1/5 (from user 5) plus
5/6 (from user 6, who in turn gets r′16 = 5/3), which results
in a rate greater than 1.

Inspired by this observation, we show next that if a bi-
lateral equilibrium satisfies an additional robustness to joint
deviation by a coalition of peers, and if each peer is only in-

terested in one file, then it must be a multilateral equilibrium.
We formalize this result using the notion of the core [19].
An allocation has the core property with respect to given ex-
change ratios if no coalition of peers can strictly improve the
utility of all its members by bartering with peers outside the
coalition, subject to the given exchange ratios. Inside the
coalition, peers do not need to follow the exchange ratios,
and they may allocate rates in any way subject to bandwidth
constraints.

Definition 3 Given exchange ratios (γi j, i, j ∈N), an alloca-
tion r is feasible for a set of peers S with respect to γ if:

(i) ri j f = 0 if f 6∈ Fi;

(ii) ∑ j, f ri j f ≤ Bi for all i ∈ S;

(iii) ∑i∈S ∑ f r ji f = ∑i∈S γi j ∑ f ri j f , for all j 6∈ S.

The first condition ensures that all peers only upload files
they have. The second condition ensures that all peers in S
do not exceed their upload constraints. The third ensures that
any exchanges from peers in S to peers outside S take place
at the given exchange ratios. Both bilateral and multilateral
equilibrium allocations are trivially feasible for any set of
peers with respect to the equilibrium exchange ratios.

Definition 4 Given fixed exchange ratios for every pair of
files, a coalition S blocks a feasible allocation r∗ if there ex-
ists a feasible allocation r for S such that Vi(∑ j r ji f , f ∈ Ti) >
Vi(∑ j r∗ji f , f ∈ Ti) for all i ∈ S.

Definition 5 The feasible allocation r has the core property
with respect to exchange ratios γ if it cannot be blocked by
any coalition of peers.1

We first show that the core property is satisfied by any
multilateral equilibrium. A multilateral equilibrium alloca-
tion cannot be blocked by any coalition of peers, because
essentially all peers have already optimized with respect to
the same prices.

Proposition 4 Any multilateral equilibrium allocation has
the core property with respect to the equilibrium exchange
ratios γi j = pi/p j.

We next show that, when each user is uploading one file,
a bilateral equilibrium with the core property is a multi-
lateral equilibrium. The insight is similar to Example 3:
it can be shown that if no price vector exists such that
γi j = pi/p j, then there must exist users i1, i2, ..., ik such that
∏

k
i=1 γi,(i mod k)+1 < 1. In that case, there is a coalition of k

peers that can block the allocation.

Proposition 5 Suppose |Fi| = 1 for all i ∈ N. If a bilateral
equilibrium allocation r∗ with exchange ratios γ has the core
property, then it is also a multilateral equilibrium allocation.

1Note that our definition of the core is distinct from the usual definition
in game theory, as it depends on the exchange ratios.
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Figure 3: Completion times for PACE and BitTorrent exchanges. File
F1 started at 10% of the nodes; file F2 at a single node.

The results in this section provide a rigorous comparison
of bilateral and multilateral exchange in terms of equilibria.
Figure 3 provides a comparison of dynamic behavior. The
figure shows the completion times of peers under multilat-
eral exchange (PACE) and rate-based tit-for-tat (BitTorrent).
We see that peers complete significantly faster in multilateral
exchange, demonstrating that it behaves well in dynamic set-
tings. Section §7 describes our simulations in greater depth.

2.3 Comparing Pricing Schemes
This section compares three pricing schemes for multilateral
exchange: (1) one price per peer (denoted PP); (2) one price
per file (denoted PF); and (3) one price per file per peer (de-
noted PFP). We compare the schemes through their equilib-
ria. First, we show that all three are equivalent when trans-
fers are only constrained by peer upload capacity. However,
we then demonstrate that PF may be strictly worse than PP if
the network topology is non-trivial. Finally, we show that PP
and PFP yield equivalent equilibria, even when the network
topology is non-trivial. Since explicitly pricing every file of
every peer is much more complicated than only maintaining
a single price per peer, our analysis suggests PP is the most
desirable scheme.

Our first goal is to compare the PP and PF schemes. Note
that the multilateral exchange in the preceding section used
the PP scheme. The PF scheme is similar, but peers opti-
mize with respect to per file prices instead, (p f , f ∈ F). That
is, the last constraint in the Multilateral Peer Optimization
problem becomes ∑ j, f p f r ji f ≤ ∑ j, f p f ri j f .

We first show that if transfers are only constrained by the
upload capacity of peers, then the PF and PP schemes are
equivalent, in the sense that an equilibrium for one scheme
exists if and only if an equilibrium for the other exists, and
the rate allocations are the same in both equilibria. Let
(p∗f , f ∈F) be an equilibrium price vector for the PF scheme.
Setting p∗i = max f∈Fi{p∗f }, we get an equilibrium for the PP
scheme, since the optimization problem of each peer does
not change. Conversely, let (p∗i , i ∈ F) be an equilibrium
price vector for the PP scheme. Setting p∗f = mini: f∈Fi{p∗i },
we also get an equilibrium for the PF scheme.

Given a non-trivial network topology, however, links other
than peer access links may be congested. These links need

Figure 4: System with peers {1,2,3,4} and files { f ,g}. Peers are
located in two clusters; transfers are constrained by bandwidth con-
straints of peers and the inter-cluster link.

to be priced as well to ensure efficient network usage. Again
abusing notation, we denote the price of link ` by p`. For
this example, we assume that we can price every link in the
network, an assumption we waive in §4. When peer i is
downloading from peer j, i pays j, but also all links that i’s
traffic traverses. Finally, we assume that whatever is paid to
traverse links in the network is rebated equally to all users;
our results also hold for other rebating schemes. (We return
briefly to these network payments in §6.5.) The following
example shows that when the network is non-trivial, equilib-
ria may fail to exist under the PF scheme, even though they
exist for the PP scheme.

Example 6 There are four peers and two files, with file al-
location and demand as shown in Figure 4. The network
has two clusters, consisting of peers {1,2} and {3,4}, with
a bidirectional link ` of capacity 1 connecting them. Peers
{1,3} have file f and want file g; peers {2,4} have file g and
want file f . The peers’ upload capacities are B1 = B4 = 8
and B2 = B3 = 2.

This system has no equilibrium under the PF scheme. If
p` = 0, peers demand d1 = p f

pg
B1, d2 = pg

p f
B2, d3 = p f

pg
B3

and d4 = pg
p f

B4 when optimizing. The market clears only if
d1 +d3 = B2 +B4, which implies p f /pg = 1. But then d1 = 8,
which is not feasible, since the maximum total rate at which
peer 1 can download is 3. If p` > 0 and there is a single
price per file, then peers only download locally and, from the
market clearing condition, we get p f /pg = 4 in one cluster
and p f /pg = 1/4 in the other, which is a contradiction.

On the other hand, under the PP scheme, there is an equi-
librium with prices (p1, p2, p3, p4) = (1,3,3,1) and p` = 2.
The download rates of peers are d1 = d4 = 3, d2 = d3 = 7.
Peers 1 and 4 download at rate 2 locally and at rate 1 re-
motely from each other. The revenue collected from the link `
is rebated equally to all peers, which allows peer 2 to down-
load more than (pg/p f )B2.

The preceding example shows that for general network
topologies, the existence of a multilateral equilibrium for the
PP scheme does not imply the existence of an equilibrium
for the PF scheme. Because of the network topology, a file
may be uploaded at different prices at different parts of the
network. On the other hand, the existence of a multilateral
equilibrium for the PF scheme yields an equilibrium for the
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PP scheme. A much stronger result holds if we compare the
PP and PFP schemes, where prices pi f are set on a per-user-
per-file basis:

Proposition 7 For any network topology, there exists a mul-
tilateral equilibrium for the PP scheme if and only if there
exists a multilateral equilibrium for the PFP scheme.

We conclude that one price per peer is sufficient to identify
heterogeneity in the system. Intuitively, the upload capac-
ity of a peer’s access link is the local resource that becomes
congested; hence one price per peer suffices for multilateral
equilibrium.

The PP scheme provides many practical benefits as well.
First, it greatly reduces the number of prices that need be
maintained, compared to PFP pricing. Further, price discov-
ery is simplified, especially for unpopular files for which re-
quests are relatively rare. Finally, PP pricing leads to a nat-
ural service discipline for uploading files, well-aligned with
a peer’s incentives: serve requests sequentially and without
preemption. The service discipline for PFP pricing is less
clear, however: Serving requests only for the highest-priced
file may not fully utilize a peer’s available resources, while
serving requests sequentially is not profit maximizing.

2.4 Dynamics
The preceding section showed that per-peer pricing and per-
file-per-peer pricing are equivalent in a static setting in terms
of equilibrium (Proposition 7). However, since it is hard to
know a system’s equilibrium prices or allocation in advance,
we need to consider both how downloaders and uploaders are
matched (peer discovery), as well as convergence of prices
(price discovery). We also briefly discuss the role of the cur-
rency in aiding dynamics.

A significant advantage of explicit per-peer prices is that
they enable fast peer discovery. This short discovery time
significantly improves on that needed by systems with im-
plicit prices, e.g., such as BitTorrent’s rate-based exchange
ratios, which have long discovery times. These implicitly-
priced systems effectively need to perform a brute-force
search across their peers; this has been found in practice to
sometimes take tens of minutes [5], and, at least for high-
bandwidth peers, requires an asymptotically-linear search to
find similar reciprocation rates.

For price discovery, a simple mechanism is to update the
prices of peers and links according to the corresponding ex-
cess demand. In particular, a price should increase if demand
exceeds supply, and decrease if demand trails. But how to
define supply and demand for a peer? If the PP scheme is
employed, a peer’s observed demand is the sum of all re-
ceived rate requests within a fixed time period, and his sup-
ply is equal to the upload capacity of his access link. If the
PFP scheme is used, excess demand is more complex: a peer
calculates demand for each file separately, while his supply
for a file is equal to the access-link capacity only if it is his
most expensive file, and zero otherwise (as it is optimal for

each peer to only upload his most expensive file). Thus the
PP scheme leads to simpler price dynamics.

We conclude by briefly discussing the impact of currency
on system dynamics. Allowing users to store and exchange
currency over time has significant benefits for a system in
a dynamic setting. First, peers can engage in trade before
equilibrium prices are reached. Second, peers can reach a
rate allocation by trading in a decentralized fashion, without
requiring a central authority to clear the market by match-
ing uploaders and downloaders. However, incorporating cur-
rency into a system introduces its own complications, since
the user experience could potentially be complicated, and
peer exchanges and credit balances need to be secured. We
demonstrate how these issues can be handled in §5 and §6,
respectively.

3 User Incentives
In this section we argue that the use of prices and currency
largely provides the correct incentives to users. We begin by
noting that, in particular, it encourages efficient use of re-
sources in a large P2P system. If the system is large, users
cannot accurately anticipate how their actions affect prices,
i.e., users have difficulty in predicting the evolution of de-
mand, supply, and prices.

Users are implicitly incentivized both to contribute a high
percentage of their upload capacities and to share high-value
content, since high-value files will typically increase a user’s
price. Moreover, with currency stored over time, users are in-
centivized to contribute even if they are not currently down-
loading. We also note that a user is paid for delivered, not ad-
vertised, rate. (Buyer payments are equal to price · delivered
rate · duration.) Thus, a user does not profit by advertising a
higher upload capacity than the one he has.

Network prices align user incentives with efficient net-
work usage. If network links are priced correctly, we expect
network prices to reflect congestion. Then users internalize
their effect on the network, since they have to pay for all net-
work links they use to download. For instance, among peers
with the same price, a user prefers to download from the peer
with the smallest total network cost, which we expect to cor-
respond to the least congested route. On the other hand, sell-
ers do not benefit from network-cost-related payments, and
so the system does not create a perverse incentive for sellers
to prefer remote transfers.

One potential concern in a market-based system is the phe-
nomenon of market power: Users, either individually or in
small cliques, may try to manipulate prices higher than the
laws of supply and demand dictate. This effect is mitigated
significantly in a market with many sellers, where market
manipulation cannot significantly increase profit [19]. To
illustrate this, suppose k peers have a file desired by other
users in the system. Let d(p) be the demand for the file
at price p. Then the equilibrium price p∗ satisfies d(p∗) =
∑

k
j=1 B j. Now suppose user i considers increasing his price
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Figure 5: Completion time grows O(log(|network|)). Each data point
shows the average performance over five runs—error bars show stan-
dard deviation—with 10 peers per cluster.

to pi > p∗ in order to increase his profit. This is beneficial for
i only if p · (Bi− (d(p∗)−d(p))) > p∗ ·Bi, or equivalently,

Bi

d(p)
≥ −d(p)−d(p∗)

p− p∗
· p

d(p)

Note that d(p)−d(p∗)
p−p∗ < 0, since as the price increases, the to-

tal demand decreases. Assuming pi = p∗+ε for some small
ε , the right-hand side represents the demand elasticity. De-
mand elasticity measures price sensitivity and is defined as
the percentage change in quantity demanded, divided by the
percentage change in price. Thus, user i will not be able to
exert market power if demand elasticity > Bi/∑

k
j=1 B j, i.e.,

as long as enough sellers compete to upload the file relative
to the elasticity of demand.

Market power may still be an issue if only a few users
have a file, yet any system can suffer if such users choose
to dictate terms to the remainder. In our setting, such users
are often the “seeders” of files and want to see their content
disseminated. Many peers in existing P2P systems exhibit
such altruistic behavior.

More generally, sellers create other uploaders in the very
act of uploading; thus, market power is at best a transient
phenomenon, since other sellers quickly emerge as competi-
tors. Further, the number of competitors grows exponentially
in time: if a file chunk is always transfered from one user to
another in one time period, then after t time periods, O(2t)-
times more users will have it. Indeed, this asymptotic behav-
ior is supported by our simulation results (more in §7); Fig-
ure 5 shows that the completion time of all nodes to down-
load a file appears to grow logarithmically with network size,
as expected.

4 Hierarchical Network Model
Although much of the discussion in §2 assumes that the only
resource constraints are the upload capacities of peers, in re-
ality of course other network resources may be congested.
As briefly discussed in §2.3, our model can be extended to
include one price per link in the network. Downloaders pay
the sum of all link prices along a path for content, includ-
ing the upstream link of the uploading peer; link prices are
increased in response to congestion.
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Figure 6: Network Model. Clusters of well-connected peers connect
across wide-area links. To download file f from sell client s, local buy
client b′ pays Pb′s and remote b pays Pbs to s.

However, this approach is probably infeasible in practice,
given a lack of network topology and routing information, in-
accurate bandwidth capacity estimations, and computational
complexity. Thus, we propose a hierarchical network model,
outlined in Figure 6, that separately prices most of the bot-
tlenecks that lead to supply constraints.

We observe that, to a first approximation, we can view the
entire network as composed of local clusters, connected to-
gether by the wide-area core. Our model assumes that most
bottlenecks—especially those due to transient congestion—
are at access links, where we can accurately estimate capac-
ity and adapt prices accordingly. Rare bottlenecks in the core
are captured via slowly-changing network prices, which act
as “shadow prices” for resource constraints in the core. Dif-
ferent network prices may be associated with different pairs
of clusters. Section §6 discusses how these network prices
can be set, potentially promoting cooperation between ISPs
and P2P systems. While less expressive than a price per link,
our design compares favorably to typical AS-level clustering
approaches [14, 1], which statically restrict peers to their lo-
cal neighbors. These topological approaches do not capture
any dynamic resource constraints at these local peers.

Our system design does not specify precise capacity re-
quirements for local clusters and the wide-area network.
Rather, we anticipate that nodes in the same local cluster
share relatively high-capacity links to each other (such as
within a LAN or a switched university network) and that
transmission across the wide area will involve shared, lower-
capacity access links to the Internet (e.g., a DSL connection
or a university’s external link).

To capture these clusters, a peer s therefore maintains two
prices, p0

s and p1
s , corresponding to the immediate upstream

link at s and the access link shared by all nodes in the same
cluster as s, respectively. One could extend this hierarchi-
cal model to capture additional choke-points at the network’s
edge if needed and price these links separately and accord-
ingly. In fact, different peers could maintain different num-
bers of prices, based on their local network conditions (and
this would be largely transparent to buyers). For simplicity,
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we restrict our further consideration to these two prices.
If peer b′ is within the same local cluster as s, b′ pays

Pb′s = p0
s · r · t to s for a transfer of duration t at rate r. Such

a payment is shown by the red dotted arrow in Figure 6.
If peer b is not within the same local cluster, the traffic

must also traverse the access link for s’s cluster and the wide-
area core. Peer b pays Pbs = (λbs + p0

s + p1
s ) ·r ·t to download

from s (the blue dashed arrow),2 where λbs is the network
price between the clusters of b and s. Of this, only(p0

s + p1
s ) ·

r · t is paid to s; the remainder is collected by the system for
future rebate (see §6.5).

5 PACE Client Mechanisms
In the preceding sections, we showed how currency-based
multilateral exchanges can lead to more efficient systems.
One typical complaint against explicit pricing and currency,
however, is that the process of setting prices and bidding for
goods becomes a usability hurdle. Indeed, this hurdle is seen
by the designers of systems such as MojoNation [28] as their
major reason for failing to be widely adopted.

We argue that pricing mechanisms, rather than being di-
rectly exposed to end-users, can serve as algorithmic devices
to ensure efficient exchange: We can expose a very sim-
ple interface to users—basically, listing their uploadable files
and desired downloads—while having users’ software opti-
mally compute their buy and sell behavior. However, as we
argued earlier in §3, we expect that even strategic users can-
not gain any significant benefit from operating in a manner
other than that specified by our algorithms.

This section describes the design and algorithmic mech-
anisms of buy and sell clients in our system, which we call
PACE (Price-Assisted Content Exchange). PACE clients in-
teract with each other across both local- and wide-area net-
works; when chunks of a file are downloaded by a buy client
from a sell client, (virtual) currency flows in the opposite di-
rection. We present the accompanying system services and
protocols to support their secure interaction next in §6.

5.1 Sell Client
The sell client interface allows the user to declare (1) the
files he is willing to upload and (2) the total upload capacity
he is willing to commit (either as absolute numbers or as a
percentage). The sell client s maintains prices p0

s and p1
s ,

corresponding to the two edge resources being priced (per
§4). This section details the price update rules and service
discipline used by the sell client.

The sell client s follows a very simple price update
rule in principle. Prices increase if demand exceeds sup-

2Note that any remote b that downloads from s pays to traverse the ac-
cess link for s’s cluster, but not for its own access link. This asymmetry
means that congestion on the downstream link from the wide-area core to
b’s cluster may not be correctly priced. This congestion applies to all remote
files, however, and since local prices are typically lower than remote prices,
buy clients will generally prefer local sources anyway.

ply and fall if the opposite; we use a multiplicative in-
crease/multiplicative decrease rule, so that convergence is
insensitive to the units in which prices are measured. A dif-
ficulty arises because there are two scarce resources that are
being priced, which are complements for peers outside the
cluster of s.

Sell client s estimates demand and supply over a fixed
time interval. To update p1

s , demand is estimated as the total
requested download rate originating at remote buy clients,
provided they offer at least p1

s . A request is counted re-
gardless of whether sufficient capacity existed to serve it.3

Supply is estimated as the sell client’s upload capacity on
its access link, B1

s . Estimating B1
s may be done by tracking

the maximum aggregate throughput ever seen across all up-
loads. (Note that systems such as BitTorrent similarly use
edge-capacity estimation, e.g., to set its active set size [22].)

The approach to update p0
s is similar. Demand is estimated

by aggregating the rates of all download requests from both
local and remote buy clients, taking the access-link band-
width constraint into consideration. In particular, demand is
equal to the sum of local requests and the minimum of re-
mote requests and B1

s . Supply is the upload bandwidth on
the sell client’s immediate link, B0

s .
Finally, we consider the sell client’s service discipline.

Incoming download requests are served in the order of ar-
rival; they can be immediately notified of acceptance, sub-
ject to available capacity constraints (B0|1

s − u0|1
i ). (Recall

that per-peer pricing gives the seller no real incentive to
queue requests.) This greatly simplifies system design: If
we queued requests, then buy clients would need to main-
tain a large number of outstanding requests, forcing them to
reason about spending over a long time horizon.

5.2 Buy Client
The buy client’s interface allows the user to choose (1) the
files he is interested in (denoted by Ti for user i) and (2) a sav-
ings rate, i.e., the percentage η of the user’s current budget
that should be saved for the future. During each fixed time
interval, our buy client sets aside a fraction η of the user’s
bank-account balance,4 and divides the remainder equally
among all files the user wishes to download. For each such
file f , the buy client follows a simple algorithm: First, given
a set of sell clients that have f , order these clients j by the in-
creasing total price the buy client has to pay for downloading
from j (including network prices and remote access prices, if
applicable). Ties are broken in order of increasing network
prices. Then, at each seller j in this order, the buy client
spends as much of its budget committed to f as possible. If
j’s upload capacity is exhausted, the buy client moves to the

3In practice, demand might be somewhat overestimated, as a buy client
can issue several sequential requests to different sell clients until a success-
ful download. However, demand is overestimated only when there already
is excess system-wide demand, so prices would have increased anyway.

4This balance excludes any potential revenues from anticipated uploads,
since it may not be known what such potential revenues are.
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next sell client in the list. The buy client stops when it ex-
hausts its budget for f . Any unused budget is split evenly
between files in Ti−{ f}.

This algorithm, though quite simple, can be interpreted
through a foundational utility model for the user. In partic-
ular, the buy client behaves as if a user’s utility for down-
loading is ∑ f∈Ti logd f , where d f is the total download rate
obtained for file f . Let M be the user’s current bank account
balance and p̄ f be the average price he has to pay for file f
over available sellers (in the order described above). Given
that the user wants to reserve η percentage of his current
budget, the client solves the following maximization prob-
lem on the user’s behalf:

maximize ∑
f∈Ti

logd f

subject to ∑
f∈Ti

p̄ f ·d f ≤ (1−η)M

d f ≥ 0, ∀ f ∈ Ti

The optimal solution recovers exactly the above algorithm: It
is optimal to divide (1−η)M—the budget allocated to this
period—equally among all files in Ti. Note that this does
not depend on the relative average prices of files. (Note that
although our interpretation is in terms of per file prices, our
implementation is in terms of per peer prices.)

There is a tradeoff between simplifying the user’s expe-
rience and allowing the user to personalize his utility func-
tion. The above mechanism favors simplicity over descrip-
tive power; other approaches can prefer the opposite.

6 PACE System Design
This section describes the services and protocols that com-
plete the PACE system. To enable users to act as both buyers
and sellers in currency-backed content distribution, PACE
should support the following functionality:

1. Resource discovery. A buy client should learn a set of
low cost sell clients from whom to download content.

2. Network friendliness. Service or network operators can
express preferences for peer download behavior across
the wide area; buy clients are incentivized to follow
these preferences.

3. Transaction security. Exchanges between two parties
should be ε-fair: sell clients should receive payment
within an ε of the content transmitted for the agreed
price; and buy clients should only pay for what they
receive.

4. Currency security. Clients cannot forge system cur-
rency nor spend more money than their current bal-
ance allows. With online credit checks, attempting such
transactions will fail; with offline credit checks, such
buy client behavior will be detected promptly.

5. User and money management. The system concerns it-
self with user registration and collusion, bootstrapping,
and managing the money supply over the long term.

The remainder of this section describes our design for
achieving these five properties, organized as above.

System overview. At a high level, PACE is composed of
five main components. First, users run both buy and sell
clients to trade content for virtual currency. Sell clients ad-
vertise their existence (liveness), shared files, and current
price to a rendezvous service, where buy clients also connect
to discover nearby instances of sell clients offering desired
content. A network price service specifies the network prices
to accommodate network operator preferences, while a bank
securely tracks each users’ accrued capital for a particular
currency.

We envision many rendezvous, bank, and network price
services to exist simultaneously, run by providers seeking to
disseminate collections of files. These collections may range
from large multimedia libraries (e.g., iTunes and YouTube),
to aggregates of user-hosted files (e.g., the PirateBay Bit-
Torrent tracker [21]), to a corpus spanning the entire web
(e.g., CoralCDN [8]). We logically separate these services
because we envision different ecosystems to arise around all
three: rendezvous is file-specific; banks are currency-specific
(attached to one or more file collections); and yet network
prices are independent of files or currencies.

While some logical centralization may be considered un-
desirable, it is common to many of today’s deployed peer-
to-peer systems. Virtually all known P2P systems, from
Gnutella through Tor, use servers for bootstrapping. Skype
uses centralized servers for registration, rendezvous, and
accounting. BitTorrent uses a centralized tracker for ren-
dezvous, and its “private trackers” provide (albeit insecure)
upload/download ratio accounting for long-term incentives.
Even so-called “trackerless” BitTorrent uses a distributed
hash table merely to partition responsibility for files across
peers, much as one could federate our services. These
logically-centralized services can be made scalable: the Pi-
rateBay BitTorrent site was, as of January 2008, tracking
over one million files and 10 million peers [21]. That said,
this section also discusses how some system services may be
federated between existing network providers.

Trust requirements. Most of this paper has been focused
on deploying peer-assisted content distribution in strategic or
mutually-distrustful settings i.e., where peers may run their
own buy and sell client implementations. The additional
system components we now introduce require stronger, al-
though still common, trust assumptions. We assume some
trusted one-of-band mechanism by which clients learn a
file’s meta-data for later chunk-based integrity verification—
much like BitTorrent’s need for .torrent files. We trust the
rendezvous service to properly return sell client identities,
which otherwise would affect content availability—as would
faulty BitTorrent trackers. Finally, we assume that the bank
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performs currency accounting—much as private trackers are
assumed to do ratio accounting.

There may exist compelling settings where end-clients
may be trusted to obey the protocol, however, such as with
set-top boxes. In these cases, in being able to assume client
altruism, the system can avoid the use of currency and banks;
even then, however, our explicit prices would serve as a
mechanism for efficient resource discovery and allocation.
While this paper does not consider this setting further, it may
become the dominant deployment platform for video-on-
demand. These dedicated hardware/software platforms are
becoming increasingly popular—e.g., Comcast On-Demand,
Verizon FiOS TV, Microsoft Xbox Live, AppleTV, the Net-
flix/LG partnership, and so on—with peer-assisted delivery
on the horizon.

6.1 Resource and Price Discovery
We do not fully prescribe how buy clients efficiently discover
sell clients. In practice, there are a number of feasible engi-
neering designs that PACE implementations could use, from
logically-centralized trackers (a la BitTorrent), to a federated
application-level anycast service (e.g., OASIS [9]), to dis-
tributed hash tables indexing clients’ addresses [8]. Because
each user only needs to publish a single price (or one per
hierarchical access link, given our network model), prices
can be stored within the rendezvous service without signif-
icant communication overhead for updating. Thus, a query
to the rendezvous service—which takes a file identifier and
buy client information as input—can immediately return a
randomized set of IP addresses with minimal published cost,
potentially biased by network cluster locality or inflated by
additional network prices, which we discuss next.

Upon discovering a set of sell clients with chunks of in-
terest, the buy client determines their latest prices, allocates
its budget across desired files, and prioritizes transfers which
cost less, per §5.

6.2 Network Friendliness
Beyond leveraging users’ prices to minimize resource con-
gestion, PACE benefits network operators by having clients
avoid expensive network links whenever possible. For a
transfer traversing the wide-area Internet, the network price
λ is added to the sell client’s file price ps, per §4. Thus,
to calculate the total price for downloading from a specific
sell client, a buy client needs to discover the network price
between the clients’ clusters.

PACE implementations and deployments have various de-
sign choices here as well. Well-suited for immediate deploy-
ment, a third-party service could independently determine
network prices via network measurements [9, 18] or explicit
ISP input. Alternatively, a buy client’s network provider
could run a lookup service itself (as with DNS and DHCP)
and use these network prices to perform policy-based traffic
engineering on its intra-ISP and egress traffic, taking its AS
peering and transit relationships into account. In the longer

term, we could imagine such network prices may be prop-
agated between ASes, perhaps alongside BGP announce-
ments, and thus enable ISPs to better express their prefer-
ences for P2P data transfers. This inter-ISP final proposal
introduces interesting incentive questions when coupled with
current billing practices—e.g., customer ASes trying to of-
fload traffic and providers attempting to attract traffic to their
customers—so we leave this to future work.

Network prices should not be too high, however. Other-
wise, a large fraction of a transfer’s costs would go to the
network, which would need special care by some subsequent
money management task (per §6.5). Thus, a stand-alone ser-
vice should choose network prices from a limited range.

In the preceding section, we proposed that the rendezvous
service could take sell clients’ prices into account when de-
termining which clients to return. There are various design
choices to be made, however, when incorporating network
prices into this model. For a loose coupling between the two
services, the rendezvous service may only incorporate peers’
file prices or coarse-grained clustering information in its
selection—the latter akin to coarse-grained locality propos-
als for peer-assisted CDNs [14, 1]—after which buy clients
would subsequently lookup network prices themselves. This
is well-suited for federated deployments in which ISPs pro-
vide network price services. On the other hand, if ren-
dezvous and network price services are more tightly coupled,
the exact network price could be considered in the selection
criteria, leading to greater efficiency.

6.3 Securing Transactions
Exchanges between buy and sell clients should be ε-fair in
that the goods they ultimately exchange are equal (within
some small ε factor) with respect to the agreed-upon pay-
ment P. That is, if one party fails during the transaction after
only i

k th of the content is transferred, and ε =1/k, then the
buy client should pay i−1

k P≤ P′ ≤ i
k P.

We achieve this property through the following. At the
start of an exchange for a chunk, the buy client b crypto-
graphically commits to a payment, which includes the final
output of a cryptographic hash chain of length k. Then, as the
sell client s begins uploading content to b, b responds with
a stream of micropayments (akin to [24]), each a successive
pre-image of the hash chain. The buy client only sends a
micropayment after receiving another 1/k-th of the chunk,5

while s stops transmitting data soon after b stops responding
with micropayments. The buy client can thus “steal” band-
width from at most a small transmission window before it is
detected (and blacklisted locally by s).

The ε-fair protocol. More formally, to initiate a chunk

5If file meta-data only specifies the hashes of chunks, then a malicious
(as opposed to a strategic) s could send a bad chunk, but b could only detect
this—and subsequently blacklist s—after downloading the chunk. If this
is a concern, to strictly achieve the ε-fair definition, s could send hashes
corresponding to (1/k)-range subchunks at the transfer’s inception, which
are incrementally verified by b before he responds with micropayments.
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transfer, sell client s sends a counter ct and the agreed-upon
price p to buy client b, who generates a commitment to s:

σ ← signb(b, s, P, Λ, k, h0, ĥ, ct)

where sign is a cryptographic signature with message recov-
ery in the “hash-then-sign” paradigm [4]. P=prt=p·|chunk|
is the full payment for the chunk, of which Λ is the net-
work cost. This payment P can be split across k micropay-
ments. h0 and ĥ are outputs of a cryptographic hash func-
tion, generated as follows. The buy client first selects some
random string hk, then recursively computes a hash chain:
hi−1← hash(hi) for i = k . . .1. The buy client also creates a
“shortcut” ĥ← hash(S,hk) for global constant S.

At the beginning of a transfer, the buy client sends σ and
its certified public key (per §6.4) to s. s verifies both b’s pub-
lic key and σ ’s contents and signature. The sell client contin-
ues to transmit only if it receives a successive pre-image of
the hash chain hi = hash−1(hi−1) every 1

k -th of the transfer.
To deposit a payment at a bank (discussed next), b pro-

vides the tuple 〈h′i, i,σ〉. The bank verifies σ and that the
statement is not being replayed (using the counter ct , also
discussed next). If these checks succeed, the bank deter-
mines whether i = k, in which case the bank checks ĥ ?=
hash(S,h′i). If 0 < i < k, the bank verifies h0

?= hashi(h′i), i.e.,
recursively applies the hash function i times. If this check
passes, the bank executes the transaction for an amount
P′ = i

k P; that is, it debits b with the amount P′, credits s with
P′− i

k Λ, and reserves the (potentially zero) payment i
k Λ for

network costs.
Thus, we see that the bank’s computational overhead is

one “double-entry book-keeping” transaction, one signature
verification, and one cryptographic hash in the normal case.
In the case of truncated transfers, this overhead increases to
at most k hashes, instead of one. (This use of ĥ is a pure
computational optimization.)

Aggregating buyer payments. To further reduce the load
at a bank, sell clients can aggregate multiple payments from
the same buy client before depositing them as one trans-
action. Repetitive behavior is especially likely once two
well-located peers discover one another and transfer many
chunks, e.g., those belonging to the same network cluster.

Specifically, upon initiating a subsequent transfer, s can
send any yet-to-be-deposited σ ’s to the buy client, to have
information from these messages 〈P, Λ, ĥ, ct〉 included in
the latest commitment. Note that the inclusion of the counter
ct for replay protection protects the buy client from double
counting. In this case, when depositing ` transfers, the bank
still performs a single transaction, one signature verification,
and ` hashes. If b omits these previous payments in its latest
commitment, s can deposit them separately.

6.4 Securing Currency and Balances
To broker the exchange of files belonging to some collection,
a content provider both runs a bank which manages currency

used by the collection, and acts as a user registration author-
ity for peers seeking to download files from the collection.
The set of files that belong to a collection can be dynamic;
banking/registration providers could thus offer their services
to multiple publishers of collections.

Users are identified by public/private key pairs. When reg-
istering a new user, the bank issues a signed certificate to the
user (with a short expiry time) attesting to its membership.
This certificate is used by sell clients to verify the mem-
bership of buy clients without online checks. Banks must
therefore refresh the certificate of active clients every expiry
period; these updates can be piggy-backed on other control
traffic, e.g., deposits.

For each registered user, the bank stores, at a mini-
mum, a hash of its public key, its current balance, and a
monotonically-increasing counter clast of its last deposit. To
prevent sell clients from replaying deposits, the counter ct
included in a deposited payment must be strictly greater than
the buy client’s clast . If the deposit succeeds, clast is set to ct .

On the other hand, the bank must also prevent buy clients
from issuing payments for money they do not have. For in-
creased scalability, we have suggested a model by which in-
dividual sell clients can aggregate payments over short time
horizons into single deposits. Of course, there then exists
some window of vulnerability during which buy clients may
overdraw on their accounts. Thus, if the bank ever detects
that a client maintains a negative balance in its account, it
should suitably punish or evict that client—by not renewing
its membership certificate—from its network.

One could, of course, reduce this potential fraud by min-
imizing both sell clients’ aggregation of payments and buy
clients’ certificate expiry times. In the limit, sell clients could
perform an online check at the start of a transfer (escrowing
P for some duration), and avoid any potential for overspend-
ing, at the cost of greater bank load and client latency.

We believe that these logically-centralized banks can
be easily scaled via traditional replication and partition-
ing strategies; indeed, the systems community has several
decades of experience building highly-scalable and available
transaction-processing systems. Further, given that currency
is only virtual, one may be able to slightly weaken con-
sistency or freshness guarantees. Finally, as PACE’s net-
work model specifically encodes the hierarchical network
structure for ISP-friendliness, network providers may deploy
(currency-agnostic) local banks to aggregate local transac-
tions to reduce load, especially given the extent to which
transactions in PACE are executed locally. This layer of fed-
eration adds additional complexity, so we leave its full con-
sideration to future work.

6.5 Managing Users and Money
We conclude by discussing several issues with managing
user identities and money as a long-term stored value.

Until now, we have assumed that clients do not collude
with one another, either as cliques of multiple real-world
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users or as part of a Sybil attack [7]. While we might
cite the traditional techniques to limit the scale of such
attacks—such as analyzing “introduction” networks (e.g.,
SybilGuard [30]), leveraging real-world scarce resources
(e.g., phone numbers as in Google’s GMail), or even link-
ing membership to real-world money (e.g., for subscription-
based services)—the limited benefit of collusion in our set-
ting bears some additional comments.

In PACE, a clique of clients cannot increase its aggregate
wealth by combining trade amongst themselves with service
to non-colluding clients at market rates; this is a consequence
of the core property discussed in §2.2, together with Propo-
sition 4. This differs greatly from many reputation systems
or systems based on download/upload rates, where shilling
reputation announcements or faking content transfers [16],
respectively, can increase a clique’s aggregate balance.

We now briefly discuss the management of PACE’s money
supply. As users join and leave, and the network size
changes, a bank must ensure that an appropriate amount of
currency remains in the system. While the MIMD adapta-
tion of prices makes the system somewhat robust to mod-
erate inflation and deflation, excessive inflation may cause
price convergence to take too long, while excessive deflation
can lead to insufficient liquidity. However, our logically-
centralized bank is in a prime position to control the money
supply. We are already assuming that the banks rebates net-
work cost payments to peers. We currently suggest a pro-
portional “tax” on client’s balances to prevent hoarding, and
reinjecting money into the system via equal rebates to all par-
ties. We leave a careful analysis of money management and
rebating schemes to future work.

Finally, we note that the system must have a method by
which to bootstrap new users. If Sybil attacks are less of a
concern, new users can be granted money upon joining the
system as a bootstrapping method. Alternatively, a new user
can be offered the ability to download content for free from
the bank’s operator: The redistribution of this in-demand
content—not necessarily desired by the new user itself—can
enable the system to provide better quality-of-service for its
published content, while allowing users to earn initial capital
by contributing upstream resources.

We conclude by noting that while these “free money”
approaches may be susceptible to strategic Sybils—unless
Sybil attacks are adequately protected by the registration
process—-these same problems exist when bootstrapping
most other incentive schemes of which we are aware, even
if these systems do not explicitly use currency. Indeed,
BitTorrent’s performance reliance on seeders and its price-
discovery mechanism (optimistic unchoking) are precisely
“free money” and have been attacked as such [17, 25]. But
because PACE maintains currency as stored value, this boot-
strapping phase only occurs when new users join the system,
not for every file being distributed and every bilateral ex-
change being transacted.

7 Simulation Analysis
In this section, we wish to evaluate the following hypothe-
ses through simulation. (1) File prices reflect resource con-
straints. (2) Contributing upstream capacity improves a
user’s performance (and thus incentivizes such behavior). (3)
File prices yield efficient dissemination across multiple files.
(4) Buy clients prefer more efficient network links.

Simulator design and configuration. We model net-
work connectivity and capacities using a hierarchical topol-
ogy generated by BRITE [20], with clusters of nodes con-
nected by AS-level links. In the following experiments, ca-
pacity between local hosts is all 100 units/round, while that
across wide-area links follows a heavy-tailed distribution on
(10,1024). Each file is comprised of 50 chunks, each of fixed
size (25 units). We use these generated graphs to compute
end-to-end network capacities; for simplicity, however, we
model all pairs of nodes as having independent links, i.e., we
do not model cross-traffic congestion. We also assume sim-
ple fixed transmission rates (e.g., no TCP slow start). Net-
work prices are static and computed as an inverse logarith-
mic function of capacity, ranging [0,5). Money collected
from network prices are rebated equally to all peers.

The 6,000-line Python simulator operates in synchronous
time steps, with PACE buy and sell clients behaving as spec-
ified in §5. Our BitTorrent-like implementation, used for
some comparisons with PACE (e.g., in Fig.3), captures the
main aspects of the BitTorrent protocol: optimistic unchok-
ing (with 2 slots), active set sizing (with max(4,∼

√
B1)

slots), and rate-based tit-for-tat with equal-split bandwidth
allocation (all per [22]). Both protocols use a local-rarest-
first policy for chunk selection.

We first evaluate how the system handles a flash-crowd
for a single file: All users simultaneously become interested
in the same file, initially published at a single, random sell
client (with an initial price of 1). The following results are
for a network of 500 peers, comprised of 50 clusters of 10
nodes each. All nodes begin with 1,000 currency units. A
randomly-chosen 50% of nodes are “freeloaders,” i.e., they
never upload content. Non-freeloaders upload—and thus ac-
crue capital—even after finishing to download their file(s).
We later consider the multiple file case.

The system behaved similarly when nodes’ initial cur-
rency varied from 100 to 10,000 units: the equilibrium price
just shifts accordingly. However, too little initial currency
(10 units) led to liquidity problems, in that many exchanges
executed at a 0 price, which led to indistinguishable perfor-
mance between freeloaders and non-freeloaders; too much
currency (1M units) took too long for price convergence,
leading to the same result.

Experimental results. We now seek to demonstrate that
our system fulfills the above four hypotheses.

Figure 7 plots the prices of sell clients’ local (top) and re-
mote (bottom) links. Given their smaller capacity, remote
link prices remain higher for longer. Once chunks are dis-
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Figure 7: Local links (top) are cheaper than remote (bottom).
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Figure 8: Non-freeloaders (dashed green on left) download chunks ear-
lier than freeloaders (dotted blue), leading to earlier completion times
for non-freeloaders (solid red) than freeloaders (dotted black).

seminated to a few peers per cluster, local supply can largely
satisfy local demand, and local prices drop. We can observe
convergence around the remote equilibrium price between
time 25 and 85 (the jagged edge corresponds to the MIMD
oscillations around the equilibrium price).

Figure 8 gives these prices’ performance implications.
There are three distinct regions: In the first ∼10 time slots,
the rate of chunk transmissions for both non-freeloaders and
freeloaders greatly increases, as prices are still low (see
Figure 7) and every node still has starting capital. Be-
tween time 10–40, non-freeloaders download significantly
more chunks than freeloaders: As prices are non-zero, only
non-freeloaders accrue capital to afford such. Finally, non-
freeloaders begin to finish, and prices drop towards zero
given the enlarged supply; freeloaders take advantage of this
excess capacity (as is socially efficient) and their transmis-
sions increase again. The result: non-freeloaders complete
in about 70% of the time.

Figure 9 demonstrates the system dynamics for multiple
files. Here, we initiate our 500-node network (no freeload-
ers) with two files, F1 and F2. Given increased supply of
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Figure 9: Transfer rates for two files in the same network. File 1 starts
at 50 nodes; file 2 at 1 node.
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Figure 10: PACE downloaders prefer local (loc) to remote (rem) trans-
missions, but BitTorrent peers (BT) makes poor use of locality.

F1 exists—it starts on 10% of nodes—its transmission rate
initially shoots up. While the nodes initiated with F1 start
downloading F2 immediately (F2’s initial bump in “chunks
in transit”), most nodes delay while they download F1: F1’s
supply and lower available prices have led to saturated down-
stream links. As individual nodes finish downloading F1,
they begin to download F2. Resource allocation thus prop-
erly adapts to constraints, yielding a median completion time
for F1 that is 50% of F2.

Finally, Figure 10 shows that buy clients prefer to down-
load locally. We return to the single-file case, again with no
freeloaders. The graph plots a CDF of chunk transmission
frequency (i.e., how many times each chunk traverses local
and remote links). The minimum number that each chunk
needs to be remotely transfered is 49, which would lead to
450 local transfers (given 50 clusters, 500 users, and 1 ini-
tial publisher). Our graph shows a median number of remote
transfers 131% greater, primarily caused when chunks sent
at low rates (and hence multiple rounds) are concurrently
downloaded by multiple peers in the same cluster. Con-
versely, median local transfers occur at 86% of optimal.

Our BitTorrent simulation, however, performed signifi-
cantly worse. Figure 10 shows BitTorrent’s remote trans-
missions were 702% greater than optimal, or 26% of the op-
timal for local. One could add some static locality to Bit-
Torrent [5, 1], but these do not capture dynamic constraints.
Adapting to these dynamic constraints is useful; recall that
Figure 3 shows PACE outperforming BitTorrent when it had
to allocate resources across files. We omit further compar-
isons between PACE and BitTorrent due to space limitations.
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8 Related Work
Early P2P systems did not provide any incentives for partic-
ipation, leading to extensive freeloading. According to [12],
85% of Gnutella users were sharing no files. The P2P com-
munity responded with mechanisms to prevent freeloading
by incentivizing sharing.

One approach is to design a system based on bilateral
barter, as used by BitTorrent [6] and its variants [22, 29],
where users can achieve better download performance from
peers to which they are simultaneously uploading. Not only
are there no network considerations, but users are also not in-
centivized to continue uploading a file after they finish down-
loading it, making such systems ill-suited for anything but
flash crowds for very large files. Our system encourages up-
loading, as this builds a user’s budget for future downloads.
Finally, [23] proposes a volume-based tit-for-tat that is coor-
dinated through a relatively small set of intermediaries, but
these peers were not observed to generate adequate demand
to create sufficient liquidity.

Another option is monetary incentives [11, 27]: A user’s
budget decreases when downloading a file and increases
when uploading. MojoNation allowed users to price indi-
vidual transactions in a centralized auction, but the usability
hurdle for doing so—which is instead hidden from users in
our design—was seen as its downfall [28]. Dandelion [26]
describes currency-backed exchanges that use an online cen-
tralized bank, but gives no consideration about the resulting
market, i.e., how prices are set or adapt. Kash et al. stud-
ies performance as a function of the total amount of internal
currency available [15], but does not consider heterogeneity
in the system. While the market-theoretic formulation of [2]
considers files with different prices, it does not propose a
system design. Further, none of these approaches consider
efficient resource utilization; in particular, no pricing is used
for communication constraints between peers.

9 Conclusions
This paper studies the role of prices in peer-assisted content
distribution. Our novel theoretical results provide insight
into the gap between bilateral and multilateral exchange,
and demonstrates how relatively simple pricing mechanisms
are sufficient for efficient allocations. Given these results,
we present PACE, a system for currency-backed content ex-
change. Beyond efficient use of network resources, PACE’s
algorithmic mechanisms are promising to hide complexity
from users, provide robustness to strategic deviations, incor-
porate network friendliness, and prevent cheating.

Beyond a more in-depth consideration of ISP-propagated
network prices and long-term money management, one other
aspect for future work is interesting: the role prices could
play in server provisioning. Content providers seek to use
peer-assisted content distribution to cut costs, yet they also
seek a certain quality-of-service. In PACE, providers can

use prices, much like users do, to allocate their server re-
sources near optimally. An interesting question remains how
providers can use these prices to determine the level of pro-
visioning sufficient to achieve desired QoS guarantees.
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A Proofs of Pricing Results

Proof of Proposition 2: Substituting γi j = pi/p j in the Bi-
lateral Peer Optimization problem, we get the constraints

p j ∑
f

r ji f = pi ∑
f

ri j f for all j.

We observe that if r is feasible for the Multilateral Optimiza-
tion problem of peer i, then we can construct r̄ such that (i)
r̄ is feasible for the Bilateral Optimization problem of peer i,
and (ii) r̄ gives the same utility as r to user i. In particular,
we can achieve this by setting r̄ ji f = r ji f for all j, f and then
choosing r̄i j f for each j such that ∑ f r̄i j f = (p j/pi)∑ f r̄ ji f .

The previous observation holds for any feasible solution of
the Multilateral Optimization problem, and thus it also holds
for an optimal solution. This implies that an optimal solution
for the Bilateral Peer Optimization problem is also optimal
for the Multilateral Peer Optimization problem. We conclude
that a bilateral equilibrium allocation with exchange ratios
γi j that satisfy γi j = pi/p j for all i, j ∈N is also a multilateral
equilibrium allocation.

Proof of Proposition 4: Consider a competitive equilibrium
and suppose that there exists a coalition S that blocks it and
let r be the corresponding rate allocation. Then by Definition
4 and the Multilateral Optimization problem, ∑ j, f p j ·r ji f >
pi·Bi,∀i ∈ S. Summing over all i ∈ S,

∑
i∈S

∑
j∈S

p j ·∑
f

r ji f +∑
i∈S

∑
j 6∈S

p j ·∑
f

r ji f > ∑
i∈S

pi·Bi. (1)

Since γi j = pi/p j, condition (iii) of Definition 3 becomes p j·
∑i∈S ∑ f r ji f = ∑i∈S pi·∑ f ri j f for all i∈ S, j 6∈ S. Substituting
in (1)

∑
i∈S

∑
j∈S

p j ·∑
f

r ji f +∑
i∈S

∑
j 6∈S

pi·∑
f

ri j f > ∑
i∈S

pi·Bi.

By condition (ii) of Definition 3, ∑ f , j∈S ri j f ≤ Bi −
∑ f , j 6∈S ri j f , thus ∑i∈S pi ·∑ f , j∈S ri j f > ∑i∈S pi ·∑ f , j∈S ri j f ,
which is a contradiction.

Proof of Proposition 5: We first show that in a bilateral
equilibrium, the exchange ratios only depend on the files be-
ing exchanged, not on the peers’ identities. Suppose that
f ∈ Fi1 , f ∈ Fi2 , g ∈ Fj1 and g ∈ Fj2 and at the bilateral equi-
librium, peers i1 and j1 exchange f and g, and i2 and j2
exchange f and g. At an equilibrium, each peer chooses to
exchange only with peers to whom he has the best exchange
ratio. This yields the following inequalities:

γi1, j1 ≥ γi1, j2 ; γ j1,i1 ≥ γ j1,i2 ; γi2, j2 ≥ γi2, j1 ; γ j2,i2 ≥ γ j2,i1 ,

since i1 exchanges with j1 at equilibrium, not j2; j1 ex-
changes with i1, not i2; etc. Combining these inequalities
with the fact γi j = 1/γ ji,

γi1, j1 = γi1, j2 = γi2, j1 = γi2, j2 .

In a slight abuse of notation, when there is exchange be-
tween files f and g in a bilateral equilibrium we define γ f g to
be the unique value of the exchange ratio between any two
peers i and j, such that i uploads file f to j and downloads
file g from j; again, we obviously have γ f g = 1/γg f . We use
exchange ratios for files in this proof. Given exchange ra-
tios for files, it is straightforward to define the optimization
problem for each peer.

For exchanges that occur at the bilateral equilibrium we
set γ f g according to the ratio at which files f and g are ex-
changed. Suppose there is a way to set exchange ratios γ f g
for files not exchanged at equilibrium, so that (a) for every
peer, the set of optimal rate allocations under (γ f g, f ,g ∈
F) coincides with the set of optimal rate allocations under
(γ∗i j, i, j ∈N), and (b) for every sequence of files f1, f2, ..., fk,(
∏

k−1
i=1 γ fi, fi+1

)
γ fk, f1 = 1. Then we get a unique price for each

file in the following way. We start from a file (say f1) whose
price we set equal to 1 and then take a minimum spanning
tree of the graph. We move along the edges of this tree and
set prices for other files, so that the exchange ratios are sat-
isfied. In this way we get prices p f for each file f . Then
we can derive prices per peer by setting pi = p f for f ∈ Fi
(since we are assuming that each peer is uploading one file).
These prices satisfy γ∗i j = pi/p j whenever i and j exchange
at the bilateral equilibrium. Hence, there exist prices pi for
all i ∈ N and exchange ratios γi j for i, j ∈ N such that the
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bilateral optimization problem for each peer is the same un-
der γ∗ and γ , and γi j = pi/p j for all i, j ∈ N. By Proposition
2, the bilateral equilibrium allocation is also a multilateral
equilibrium allocation.

The remainder of the proof shows that if there is no way to
set exchange ratios γ f g for files not exchanged at the bilateral
equilibrium so that (a) and (b) hold, then there is a coalition
of users that blocks the bilateral equilibrium allocation with
respect to exchange ratios γ∗, and thus r∗ is not in the core
with respect to γ∗.

We first show that if (a) and (b) can not hold, then there
must exist files f1, f2, ..., fk and a way to set exchange ratios
for exchanges that do not occur at the bilateral equilibrium so
that (i) ∏

k
i=1 γ fi, fi+1 < 1, and (ii) for any pair of files fi, fi+1

that are not exchanged at the bilateral equilibrium there is a
user uploading file fi+1 who wants to download file fi with
the new exchange ratios6. We define the bilateral equilib-
rium exchange graph to have a node for every file, and an
edge between two files if those files are exchanged at the bi-
lateral equilibrium.

There are three cases to consider. First, there may be a
cycle f1, f2, ..., fk, f1 in the bilateral equilibrium exchange
graph such that ∏

k
i=1 γ fi, fi+1 < 1, so conditions (i) and (ii)

trivially hold. Second, suppose that the product of exchange
ratios is equal to one on all cycles of the bilateral equilibrium
exchange graph and consider a connected component of this
graph. For files that are not connected with an edge we set
an exchange ratio that is consistent with the exchange ratios
of the edges, i.e., so that the product on cycles is equal to
one. If the optimal solutions of peers do not change, then
we can have consistent prices within this connected compo-
nent. If the optimal solution of some peer changes, it must be
that the peer is willing to download some file that it was not
downloading at the bilateral equilibrium. Since we have set
ratios consistently, ∏

k
i=1 γ fi, fi+1 = 1. However, by continuity

we can choose γ such that ∏
k
i=1 γ fi, fi+1 < 1, so that conditions

(i) and (ii) are satisfied.
Finally, we assume that it is possible to set ratios consis-

tently for each pair of files in a connected component, and
consider the graph of preferences between components. That
is, we have a node for each component and an directed edge
from component Ci to component C j, if there exist l ∈ N and
f ,g∈ F such that f ∈ Fl , g∈ Tl , f ∈Ci and g∈C j. In words,
a peer from component Ci is interested in a file in C j. If there
is no directed cycle in the preference graph, then there is a
way to set consistent prices across components by scaling
appropriately, so (a) and (b) can be satisfied. Assume there
is a cycle on some connected components C0,C1, ...,Cn with
a directed edge between Ci and Ci−1. Since exchange ratios
are consistent within components, we can set prices per file
for each component. To get consistent prices across compo-
nents, we need to multiply the prices in component Ci by ρi
so that no peer wishes to exchange across components. To

6We denote by fi+1 and fi−1 the files after and before file fi with respect
to the cycle f1, f2, ..., fk, f1.

ensure this we need, ρi ≤ Ai for i = 1, ...,n and ∏i ρi ≥ A, for
some Ai’s and A that depend on the utilities of peers. Since
we know that it is not possible to set consistent prices, it must
be that A > ∏

n
i=1 Ai. Thus, by choosing ρi = Ai +ε for some

small ε , we can have ∏ρi < A, so that for each i there is a
user that wishes to upload a file in Ci for a file in Ci−1. With
these exchange ratios, conditions (i) and (ii) are satisfied.

The last part of the proof shows that if files f1, ..., fk satisfy
(i) and (ii), then there is a coalition that blocks the bilateral
equilibrium allocation. Let i be a peer that uploads file fi,
and either downloads file fi+1 at the bilateral equilibrium or
wants to download file fi+1 with the new exchange ratios. In
the latter case, there was no exchange between fi and fi+1
at the bilateral equilibrium. Note that peer i may be down-
loading both fi−1 and fi+1, or fi+1 but not fi−1, or neither
fi−1 nor fi+1 at the bilateral equilibrium. We say that i has
two links, one link or zero links in the cycle respectively. Let
S = {1, ...,k} be the coalition of peers.

We will demonstrate that all peers in S can strictly increase
their utilities by increasing the rates ri,i−1, fi . We keep all
rates r j,i, f constant for f 6= fi+1, fi−1. To simplify notation,
let αi be the amount by which rate ri,i−1, fi is increased with
respect to the bilateral equilibrium allocation. We now iden-
tify the conditions that αi’s need to satisfy, so that the utilities
of all peers in S strictly increase.

If both peers i and i+1 have one link in the cycle, then at
the bilateral equilibrium peer i is exchanging file fi for file
fi+1 with a peer that is not in S. By sending αi to peer i−1,
peer i reduces the rate he gets from outside S by γ fi, fi+1 ·αi.
So, the coalition increases i’s utility if and only if αi+1/αi >
γ fi, fi+1 .

A peer i that has no links in the cycle is better off if
αi+1/αi−1 = γ fi−1, fiγ fi, fi+1 . Thus, making peer i better off
when i has zero links, is weaker than the condition of mak-
ing i and i− 1 better off when they both have one link. We
will thus show that the coalition blocks the allocation when
all peers have one or two links, and the general case will
follow.

Now assume that peer i has one link and peer i+1 has two
links in the cycle. Then peer i is strictly better off if αi+1 > 0,
since no effect reduces the rate it gets.

If peer i has two links in the cycle, then Ti contains both
fi−1 and fi+1. The optimality conditions for peer i show
that if the rate at which i is downloading fi+1 ( fi−1) in-
creases (decreases) by wi+1 (wi−1), then peer i is better off
if wi+1/wi−1 > γ fi−1, fi/γ fi+1, fi . If both i and i + 1 have two
links, then i is better off if αi+1/αi−1 > γ fi−1, fi/γ fi+1, fi . If
i has two links, but i + 1 has one, then i is better off if
(αi+1− γ fi, fi+1 ·αi)/αi−1 > γ fi−1, fi/γ fi+1, fi .

Using the conditions we derived to make peers better off,
we show that there is a way to choose αi for i∈ S and increase
the utilities of all peers in S. First assume that all peers in S
have one link. To show that S blocks r∗, it suffices to find

αi ≤ Bi,∀i ∈ S (2)

such that
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αi+1

αi
> γ fi, fi+1 ,∀i ∈ S. (3)

For δ ,ε > 0, we set α1 = δ and αi+1 = γ fi, fi+1 ·αi +ε , ∀i∈ S.
Since ∏i γ fi, fi+1 < 1, it is possible to choose δ and ε small
enough so that conditions (2) and (3) are satisfied.
Now assume that all peers in S have two links. To show that
S blocks r∗, it suffices to find αi’s such that

αi+1

αi−1
>

γ fi−1, fi

γ fi+1, fi
,∀i ∈ S,

which is possible since ∏i
αi+1
αi−1

= 1, while ∏i
γ fi−1 , fi
γ fi+1 , fi

=

(∏i γ fi−1, fi)
2 < 1.

We finally consider the general case where some nodes
have one and some have two links. Let i be a peer with one
link such that i + 1 has two links. (If no such peer exists,
then we are in one of the cases considered before). Let j
be the next node in the cycle that has one node. Node i is
better off if αi+1 > 0. Nodes l such that i < l < j− 1 have
2 links and l + 1 also has two links, so they are better off
if, αl+1/αl−1 > γ fl−1, fl /γ fl+1, fl . Node j− 1 is better off if
(α j−γ f j−1, f j ·α j−1)/α j−2 > γ f j−2, f j−1/γ f j , f j−1 . To prove that
it is possible to make everyone in the coalition better off we
take advantage of the fact that αi+1 can be arbitrarily small
(as long as it is positive). But then, we can also choose αi+3
arbitrarily small and in general αi+1+2n with i + 1 + 2n ≤
j−1.

We consider the following cases. If j− i is even, then we
can choose α j−1 arbitrarily small, and peer j−1 is better off
if α j/α j−2 > γ f j−2, f j−1/γ f j , f j−1 = γ f j−2, f j−1γ f j−1, f j . Combin-
ing this with the conditions for l such that i < l < j−1 and
l− i is odd α j/αi > ∏

j−1
l=i γ fl , fl+1 . If j− i is odd, Then we can

choose α j−2 arbitrarily small. Then, peer j−1 is better off if
α j/α j−1 > γ f j−1, f j . Combining this with the conditions for l

such that i < l < j−1 and l− i is odd α j/αi > ∏
j−1
l=i γ fl , fl+1 .

Thus, every time we have nodes with two links between
nodes i and j that have one link it suffices to have α j/αi >

∏
j−1
l=i γ fl , fl+1 . This inequality generalizes the inequality for

the case that there are no nodes with two links between i and
j, i.e., if i = j−1. Again, it is possible to find αi’s that make
everyone in the coalition better off, because ∏i γ fi, fi+1 < 1.

This shows that if the product of exchange ratios is less
than one on some cycle, then there is a coalition of peers that
blocks the allocation.

Proof of Proposition 7: First suppose that there exists a
multilateral equilibrium for the PP scheme with equilibrium
prices (p∗i , i ∈ N) for peers and the (p∗`) for links in the net-
work. Then, the peer price vector (p∗i f , i ∈ N, f ∈ Fi) with
p∗i f = p∗i ∀ f ∈ Fi and the link price vector (p∗`) constitute
a multilateral equilibrium price vector for the PFP scheme.
This holds because it gives rise to the same demand and sup-
ply as (p∗i , i ∈ N) and (p∗`).

Now suppose that there exists a multilateral equilibrium
for the PFP scheme with prices (p∗i f , i ∈ N, f ∈ Fi) and (p∗`).

For each peer i, set p∗i = max f∈Fi . Peer i only “supplies” his
most expensive files at equilibrium. Hence, the prices (p∗i )
and (p∗`) yield the same demand and supply as (p∗i f ) and (p∗`)
for each peer.
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