
Rational ASes and Traffic Attraction:
Incentives for honestly announcing paths in BGP

.
This is the full version from February 1, 2008

Sharon Goldberg
Princeton University

Shai Halevi
IBM T.J. Watson Research

ABSTRACT
Prior work on modeling interdomain routing assumed that
autonomous systems (ASes) are interested only in obtaining
the best possible outgoing path for their traffic to a destina-
tion. In reality, many more factors can influence the “ratio-
nal behavior” of an AS; here we consider a natural model in
which ASes are also interested in attracting incoming traf-
fic, either out of greed (since other ASes pay it to carry their
traffic), or malice (so it can drop, modify, or spoof packets).
This model of rationality induces situations where an AS has
an incentive to send Border Gateway Protocol (BGP) an-
nouncements that do not correspond to the AS-level paths
that packets traverse in the data plane. In this work, we ask
what enhancements to BGP and/or restricted classes of rout-
ing policies can ensure that ASes will have no incentive to
lie about data-plane paths. We find that while protocols like
Secure BGP [20] are necessary, they are in general not suf-
ficient unless ASes are only interested in the next hop that
their traffic takes to its destination. Our game-theoretic anal-
ysis highlights the high cost of ensuring that BGP path an-
nouncements match data-plane forwarding paths.

1. INTRODUCTION
Interdomain routing on the Internet consists of a con-

trol plane, where Autonomous Systems (ASes) discover
and establish routes, and a data plane, where they ac-
tually forward packets along these routes. The control-
plane protocol used in the Internet today is the Border
Gateway Protocol (BGP). BGP is a path-vector pro-
tocol that allows ASes to discover routes through the
Internet via path announcements from their neighbor-
ing ASes. In BGP, each AS has some private routing
policies that may depend arbitrarily on economic, busi-
ness, or performance considerations. Each AS applies
its routing policies to the path announcements adver-
tised by its neighbors, and uses them to select a neigh-
bor to which it will forward traffic in the data plane.

Traditional work on securing interdomain routing (e.g.,
Secure BGP [20], and the like [5, 15, 29]) has, with few
exceptions [27], focused on the control plane; the goal
of these works was loosely described as ensuring “cor-

rect operation of BGP” [20]. However, focusing on the
control plane in isolation ignores the more important
issue of how packets are actually forwarded in the data
plane. While the basic goal of interdomain routing is
reliable packet delivery, here we explicitly consider an
additional goal that has been implicit in many previ-
ous works, e.g., [15, 20, 27, 29]; namely, ensuring that
the paths announced in the control plane match the
AS-level forwarding paths that are used the data plane.
This way, an AS can rely on BGP messages, say, to
choose a high performance AS-level path for its traffic,
or to avoid ASes that are perceived to be unreliable or
adversarial [3, 18,26].

In this paper we look for mechanisms that give ra-
tional ASes an incentive to honestly announce packet-
forwarding paths in their BGP messages. One plausible
way to do this is to deploy secure hop-by-hop data-
plane protocols that verify and enforce AS-level paths,
e.g., [1, 22, 24, 30]. However, because secure data-plane
protocols are expensive (Section 1.1), here we limit our-
selves to mechanisms that run only in the control plane.
We find that while protocols like Secure BGP [20] can
help remove the incentive for ASes to lie about their
forwarding paths, they are generally not sufficient; we
also need to assume that routing policies of certain ASes
depend only on the first AS that their traffic traverses
on its route to its destination. Our results emphasize
the high cost of ensuring that control- and data-plane
paths match, even when we assume that every AS obeys
a realistic, well-defined model of rationality.

Below we motivate our approach, overview our re-
sults, and discuss their implications; technical details
are in Sections 2-5.

1.1 Matching the control and data planes.
One way to ensure that ASes honestly announce paths

in the control plane is to deploy AS-path measurement
and enforcement protocols that run in the data plane.
However, determining AS-level paths in the data plane
is a nontrivial task even in the absence of adversarial
behavior (e.g., [31] discusses the difficulty of determin-
ing AS-level paths from traceroute data). Moreover,

1

when ASes have an incentive to dishonestly announce
forwarding paths in the control plane, we also need to
ensure that these protocols cannot be ’gamed’. Thus,
secure protocols must also make measurement packets
indistinguishable from regular traffic e.g., [22, 24, 30].
While this prevents ASes from hiding control- and data-
plane mismatches (e.g., by sending measurement pack-
ets over the path advertised in the control plane, while
sending regular traffic over a different path), it also
means that the overhead for these protocols is usually
proportional to the amount of traffic sent in the data
plane. Finally, while secure end-to-end data-plane pro-
tocols can robustly monitor performance and reacha-
bility e.g., [2, 14, 27], these protocols do not trace the
identities of the ASes on data-plane path; securely trac-
ing AS paths requires the participation of every AS on
the path [1, 22,24,30].

Since data-plane protocols are expensive, one can in-
stead hope to ensure that control- and data-plane paths
match by using Secure BGP [20] and the like [5]. These
protocols, if ubiquitously deployed in the Internet, would
ensure a property we call path verification; namely no AS
can announce a path to its neighbors unless that path
was announced to it by its neighbors. While path ver-
ification defends against many practical attacks (e.g.,
announcement of paths that do not exist in the Inter-
net topology [20]), a closer look reveals that by itself
it can never ensure that control- and data-plane paths
match. For example, even when Secure BGP is fully
deployed, an AS a with two different paths announced
by two different neighbors can lie in the control plane —
announcing one path in the control plane, while sending
traffic over the other path in the data plane.

While it is tempting to argue that ASes are unlikely
to lie about their forwarding paths because they either
fear getting caught or creating routing loops, this sim-
plistic argument fails in many situations. Firstly, the
hierarchy in the Internet topology often prevents such
routing loops from forming (e.g., if the lie is told to a
stub AS, or see [4]). Also, empirical results indicate that
catching such lies can be difficult, since even tracing the
paths that packets take in the data plane is prone to er-
ror [31]. Finally, to minimize the likelihood of getting
caught, an AS could lie only when it has a good idea
about where its announcement will propagate.

1.2 Our game-theoretic approach.
In this paper we explore a space of control-plane en-

hancements to BGP, restrictions on routing policies and
assumptions on AS behavior to understand the extent
to which we can use only control plane mechanisms
to find incentives for ASes to honestly announce data-
plane paths in their BGP messages. To do this, we
adopt the paradigm of distributed algorithmic mecha-
nism design [6–10, 21, 23, 25], which is rooted in game

theory. This paradigm assumes that ASes are rational
players, rather than (potentially) arbitrarily malicious,
and that they participate in interdomain routing be-
cause they derive utility from establishing routes and
forwarding packets. Each AS will take whatever strate-
gic actions it can to maximize its own utility. The task
of mechanism-design is to develop mechanisms that en-
sure that rational players have no incentive to deviate
from the behavior prescribed by the mechanism.

In our case, the mechanism that we consider is BGP
(and the additional control plane mechanisms that we
add to it, e.g., Secure BGP [20]). The behavior pre-
scribed by the mechanism is that each AS a should an-
nounce a path abP only if the path abP was announced
to a by the neighbor b to which AS a forwards traf-
fic in the data plane. If every AS adheres to this pre-
scribed behavior, then control- and data-plane paths
will match.1 From now on, we follow the literature and
say that a network is incentive compatible if, when all
ASes are rational, then they all have no incentive to
deviate from “correct operation of BGP”. We remark
that, in contrast to previous work on incentive compat-
ibility, our model (Section 2) explicitly addresses the
distinction between the control and data planes.

1.3 Modeling rationality & traffic attraction.
A recent result of Levin, Schapira and Zohar [21]

showed that path verification (e.g., Secure BGP) is suf-
ficient for incentive compatibility even when ASes have
arbitrary routing policies. Their encouraging result [21]
improves on earlier works [7–10] that instead explored
restricted classes of routing policies that can ensure in-
centive compatibility. Specifically, Feigenbaum et. al
[8, 10] found that policy consistency is sufficient; policy
consistency is a generalization of shortest-path routing
that requires that the preferences of neighboring ASes
regarding different paths always agree.

However, all prior results on incentive compatibility
of BGP were obtained under a very restricted model
of “AS rationality”. Specifically, they assume that the
utility that an AS derives is uniquely determined by the
outgoing path that traffic takes to the destination. In
reality, the utility of an AS is likely to be influenced by
many other factors. For example, the utility of a com-
mercial ISP may increase when it carries more traffic
from its customers [19]. As another example, a nefari-
ous AS might want to attract traffic so it can eavesdrop,
degrade performance, or spoof packets [3, 18,26].

Thus, in this paper we extend the notion of “ratio-
1We do not consider situations when the control and data
plane do not match due to malfunction or misconfigura-
tion; we consider this to be irrational behavior. We also
do not consider control- and data-plane mismatches caused
by route aggregation [31], since here, typically, only last hop
of the (data-plane) AS-path is omitted from the BGP path
announcement (See also the note in Section 2.1).

2

Control-Plane Model of ‘rational’ behavior at an AS
Integrity Checks No traffic attraction Attract customer traffic on a direct link Attract any traffic

None Policy consistency
[8, 10]

No known restrictions on policy guarantee incentive compatibility

Loop Verification Policy consistency
[8, 10]

Gao-Rexford conditions AND every AS uses
next-hop policy with providers and peers

Next-hop policy

Path Verification Arbitrary policy [21] Gao-Rexford conditions AND every attractee
uses next-hop policy with providers and peers

Next-hop policy

Table 1: Restrictions on routing policies3 that, for a given model of AS rationality and type of
control-plane integrity check, guarantee incentive compatibility of BGP.

nality”, focusing in particular on the the effect of traffic
attraction, where the utility of one AS increases when
it transits incoming traffic from another AS (the at-
tractee). We consider two models of traffic attraction;
our first (generic) model encompasses all forms of traffic
attraction; here we assume that the utility of an AS can
increase if it attracts traffic from any AS in the network
over any link (Section 2.2). Our second models cap-
tures a realistic form of economically-motivated traffic
attraction. Because service contracts in the Internet are
typically made between pairs of neighboring ASes [19],
we assume that the utility of an AS will increase only if
it attracts traffic from a neighboring customer AS that
routes on the direct link between them (Section 3.3).2

Unfortunately, we find that even applying this second
restricted form of traffic attraction means that previous
results no longer apply; both path verification [21] and
policy consistency [8,10] are not sufficient for incentive
compatibility. (See Figure 3.) This disappointing result
motivates our search for new conditions that suffice to
guarantee incentive compatibility.

1.4 Overview of our results.
On the bright side, we demonstrate that certain com-

binations of control-plane integrity checks and policy re-
strictions from the set below are sufficient to guarantee
incentive compatibility. Table 1 sketches our results.3

In addition to path verification (e.g., Secure BGP [20]),
we introduce a weaker control-plane integrity check called
loop verification, which roughly captures the setting where
an AS falsely announces a routing loop, and is then
caught and punished. Loop verification can be thought
of a formalization of “the fear to get caught”, and it may
be easier to deploy than path verification (Section 4.4).

We consider policy restrictions (Section 3) that in-
clude policy consistency, as well as a more restricted
class of routing policies called next-hop policy. Next-hop
policy roughly requires that an AS selects routes to a
destination based only on the immediate neighbor that
advertises the route. We also consider the Gao-Rexford
conditions [12]. These conditions, which are believed
2Other restricted models of traffic attraction may be possi-
ble; we leave analyzing those to future work.
3All the results in Table 1 also require an additional techni-
cal condition called ‘no dispute wheel’, see Appendix A.

to reflect the economic landscape of the Internet [19],
assume that neighboring nodes either have a customer-
provider relationship (customer pays the provider for
service) or peer-to-peer relationships (ASes freely tran-
sit each other’s traffic), and that these business rela-
tionships induce restrictions on the policies at each AS.

When exhibiting a positive result for a certain set of
conditions, we prove that BGP is incentive compatible
in every network that satisfies these conditions. On the
other hand, to exhibit a negative result, it suffices to
show a counterexample network that satisfies all these
conditions where BGP is not incentive compatible. Our
results, detailed in Table 2, are ‘tight’ — for any pos-
itive result, weakening any condition (from the set we
considered) allows us to find a counterexample.

1.5 Implications of our results.
Our results show that achieving incentive compatibil-

ity using only control-plane mechanisms require a very
strong conditions: At the very least we need both (1)
full deployment of either path or loop verification, and
(2) next-hop policy between all pairs of nodes with cer-
tain business relationships (Section 5). And if we do
not assume business relationships then we need stronger
still conditions (Section 4). Furthermore, incentive com-
patibility is achieved only if these conditions are re-
spected by every node in the network (Section 4.7).
Thus, our results point to a negative answer to the
question that we set out to investigate — practically
speaking, it is unlikely that we could use only control-
plane mechanisms to remove the incentives for ASes to
dishonestly announce AS-paths in the BGP.

This leaves us with the choice of either employing ex-
pensive data-plane AS-path enforcement techniques [1,
22,24,30] when it is absolutely necessary to ensure that
packets are forwarded on AS-level paths that match an
AS’s routing policies, or dismiss this idea altogether
and instead content ourselves with some weaker set of
goals for interdomain routing. It is certainly possible
to formulate weaker but meaningful security goals and
show that certain control-plane mechanisms or data-
plane protocols meet these goals. However, doing this
begs the question: if we are not interested in ensuring
that AS paths announced in BGP are really used in the
data plane, then why use a path-vector protocol at all?

3

abRd
ad
abQdabQd

Attract a
bQd b

a

R

bQd
bRd

Q
b

dd

Figure 1: AS graph with traffic attraction.

2. OUR MODEL
We present our model of the BGP protocol here,

in support of our results in Section 4-5. Because we
consider traffic attraction, our model differs from the
standard model (formulated by Griffin, Shepherd, and
Wilfong in [16] and used by all subsequent works) in a
few significant ways. Firstly, our model of interdomain
routing in Section 2.1 makes explicit the separation be-
tween actions taken in the data plane (i.e., choosing to
forward packets to a neighbor) and the actions taken
in the control plane (i.e., sending and receiving path
announcements). Furthermore, our work explicitly dis-
tinguishes between the preferences an AS uses in the
BGP decision process, and the utility it obtains from a
path assignment. Our new model of utility with traffic
attraction is in Section 2.2. In Section 2.3 we discuss
how to map between our notion of utility and the BGP
decision process. Finally, we formally discuss our notion
of incentive compatibility in Section 2.4.

2.1 Modeling interdomain routing with BGP.
The inter-domain routing system is modeled as an

AS graph (see Figure 1). For simplicity, we model each
AS as a single node, and edges represent direct (phys-
ical) communication links between ASes. Nodes with
an edge between them are called neighbors. Below we
denote nodes by lowercase letters, typically a, b, c, d,
m and n. Because in practice BGP assigns routes to
each destination separately, we follow [16] and assume
that there is a unique destination node d to which all
other nodes attempt to establish a path. (Thus, like
most previous work, we ignore the issue of route ag-
gregation [31]). Below we denote paths by upper-case
letter, typically P,Q and R.

Each AS node in the graph has a set of permitted
paths along which it is willing to route outgoing traffic
to the destination. (In Figure 1 node b has permitted
paths bQd and bRd.) Only simple paths are permit-
ted. Paths with cycles are never permitted, since they
would cause routing loops (where packets endlessly cy-
cle between a set of nodes, and never reach the desti-
nation). For each permitted path P at each node n,
node n has a set of neighbors from whom it is willing
to accept incoming traffic and transit this traffic along
P to the destination. (This models the fact that BGP-

export policies at node n may be based on the outgoing
path that n is using.) A path P = a0a1 . . . a` in the AS
graph is called a permissible path if for each i, the suffix
ai . . . a` is one of the permitted paths for node ai, and
moreover ai is willing to transit the traffic of ai−1 over
this path.

To model the BGP decision process, we assume that
each node a has an algorithmic ranking function ra(·) that
ranks its permitted outgoing paths to the destination,4

and acts on BGP path announcements. Then, in an ex-
ecution of the BGP protocol, node a receives announce-
ments of paths from its neighbors, chooses the permit-
ted path that ranks highest by its ranking function, and
“commits” to using that path in the data plane by an-
nouncing it back to all the neighbors for which it is
willing to transit traffic over this chosen path. This
sequence is repeated by all the nodes in a distributed
manner.

When BGP is used to establish routes on the Inter-
net, every node a is expected to send all its traffic to
the destination along the first link in the path that it
announced to its neighbors in the control plane. We
call this first link the next hop for node a. (Thus, one of
the many ways that a node can deviate from BGP is by
sending data plane traffic over a different next hop than
the one that is advertised in its path announcement, see
Section 2.4.)

In this work we assume that ASes that follow the
BGP protocol route all their traffic on a single AS path.
(We leave the interesting question of modeling multi-
path routing to future work.) When modeling BGP,
we imagine stopping the protocol at some point in time
and considering the link that a node uses for routing in
the data plane as the ‘output link’ of that node. Then
the (data-plane) path assignment T that results from an
execution of BGP consists of all the output links of all
the nodes. Since each node only chooses a single output
link to which it sends all its traffic, when all nodes be-
have honestly, the path assignment is necessarily a tree
rooted at d. Consider a path P that was announced
by node a in the control plane during the execution of
BGP. We say that P is a true path if it is part of the
(data-plane) path assignment T that results from this
execution (so that the control plane matches the data
plane for path P), and a false path otherwise.

In this work, we always assume that control plane
messages sent between two neighbors on direct link can-
not be tampered with (by a node not on the direct
link). This can be enforced with the BGP TTL Security
Hack [13] or via a pairwise security association between
nodes using the TCP MD5 security options [17].

4As in prior work, we require a strict ranking: for any
two paths with different next hops, say anP with next hop
node n and an′P ′ with next hop node n′, if n 6= n′ then
ra(anP) 6= ra(an′P ′).

4

2.2 Utility, Valuation, and Attraction.
We model the ASes as “rational players” whose ac-

tions are dictated by a desire to maximize their utility
from the resulting data-plane path assignment. Namely,
each node a has a utility function ua(·), and it tries to
obtain a path assignment T such that ua(T) is as high
as possible. Thus, while the algorithmic ranking func-
tion acts on control-plane messages, in our model, the
utility function acts on the data-plane path assignment.

The utility functions that we consider in this work
have two components: a valuation function that depends
only on the path(s) from b to the destination, and an
attraction function that depends only on the paths of
nodes that route traffic via b. Namely, we assume that
every node in the graph as a utility function of the form

ub(T) = vb(T) + αb(T) (1)

where vb(T) depends only on simple paths from b to d
in T , and αb(T) depends only on simple paths from
other nodes to b in T .5 The valuation function va(·) is
the same as was considered in previous work [6–10, 21,
23, 25], and it is meant to capture the intrinsic value
of each outgoing path (as related, e.g., to the cost of
sending traffic on a particular path, to the reliability
of the path, or to the presence of undesirable entities
on that path). For example, in Figure 1, the valuation
function of node b prefers the path bQd over path bRd.
While we assume that all honest ASes choose a single
outgoing link for all their traffic, a misbehaving node m
might send its outgoing traffic on more than one out-
going link. In this case, we will assume that if m uses
more than one path to d in T , then the valuation vm(T)
is at most as high as the most valuable simple m-to-d
path in the path assignment T .6

We add the attraction component αb(T) in this work.
Since in this work we are interested in situations where
nodes want to attract traffic (and not deflect it), our
most general form of the attraction function only re-
quires that the α component does not increase when
edges leading to b are removed from the path assign-
ment. More formally, for a path assignment T and
node b, let T (b) be the set of edges along simple paths
from other nodes to b in T (e.g., if T is a tree then
5The only exception to Equation 1 is that if there is no path
from a to the destination in T , then we assume that ua(T) =
0, regardless of the attraction component αa(T). Also, while
we wrote the utility function as a sum of the valuation and
attraction functions, all we require is that utility increases
monotonically with both valuation and attraction.
6We remark that this assumption was implicitly used also
in prior work on incentive compatibility, and it ensures that
even for a manipulator m “the optimal strategy” is to also
send its outgoing traffic over a single link. This is because
the valuation of the path can only increase if it uses only the
“best outgoing link” instead of using a few of them, and the
attraction function does not depend on the outgoing links
that m uses.

T (b) is the subtree rooted at b). We assume that for
every two path assignments T, T ′ and every node b, if
T ′(b) ⊆ T (b) then αb(T ′) ≤ αb(T). Notice that this
general condition covers many forms of traffic attrac-
tion, including when a nefarious AS wants to attract
traffic so it can eavesdrop or tamper with packets [3].

We sometimes (see Section 3.3) consider more re-
stricted forms of the attraction functions, where there is
a specific subset of nodes from which a tried to attract
traffic. When considering these restricted forms, we say
that two nodes, a and b, have an attraction relationship
if the attractor b increases its utility whenever the at-
tractee a routes traffic through it (e.g., as in Figure 1).

2.3 From utility to ranking.
In previous work, the utility of each AS was the same

as its valuation function, and that utility directly de-
termined the algorithmic ranking of paths the AS uses
in the BGP decision process: the larger the valuation
of a path, the highest its rank. In our model this direct
translation does not necessarily hold: an outgoing path
with low valuation could be preferred because it brings
incoming traffic from attractees. (In Figure 1, node b’s
valuation function ranks path bQd over path bRd, but
b has has higher utility when it routes on bRd, since in
this case he attracts traffic from node a.)

Still, the BGP decision process as implemented in
practice depends only on the outgoing paths. Hence, in
our model, we assume that each node needs to “com-
pile” its utility function into this ranking function. This
means that we now have four functions associated with
each node a: utility ua(·), valuation va(·), and attrac-
tion αa(·) as described in Equation 1, and the algo-
rithmic ranking ra(·), which is the ordering of outgo-
ing paths as installed in the routers of this AS. (Us-
ing this terminology, all prior work has αa(·) ≡ 0 and
ra(·) ≡ ua(·) ≡ va(·).)

The notion of “compilation” may model an ongoing
process where an AS reacts to changes in network con-
ditions, contractual agreements, new information that
ASes learn about each other, and so on to set up its
ranking function, in a way that maximizes its utility.
(For example, an AS may periodically change its rank-
ing in order to test what outgoing link draws more traf-
fic from attractees.) However, since the time scale for
compilation is usually much longer than the time scale
for BGP itself (say, hours versus seconds), for the pur-
pose of our analysis, we model the compilation process
as being done “once and for all”, and to analyze BGP
with respect to a fixed algorithmic ranking function.

There are many conceivable ways of compiling the
utility into ranking. It may make sense to set ra(T) =
va(T) by default, and to deviate from this default only
when such deviation demonstrates an advantage in terms
of traffic attraction. For example, if there is a service-

5

level agreement that obliges b to carry a’s traffic via
path bRd in return for monetary compensation α, then
b might decide to set rb(bRd) = vb(bRd) + α. In this
work we mostly sidestep the question of how to com-
pile the utility into ranking. Our counterexamples work
“for any reasonable compilation” derived from the util-
ity function, and our in positive results we state explicit
conditions that the utility, valuation, and ranking func-
tions should satisfy for the results to hold. In particular,
all our theorems hold for the default rb(T) = vb(T).

2.4 Defining incentive compatibility.
Incentive compatibility of a mechanism (with respect

to some utility function) means that no participant can
increase its utility by unilaterally deviating from the
prescribed mechanism. That is, if a participant knows
that everyone else is abiding by the rules, then it has
no incentive to deviate from them.7

We assume that each AS knows the outgoing link on
which it routes traffic (and the next AS at the end of
that link), but may not know for certain the AS-path
that the traffic takes further downstream. (We justified
this assumption in Section 1.1.) This is a crucial as-
sumption, since it implies that an AS may try to lie to
its upstream neighbors about the path on which it sends
its traffic. Similarly, we assume that ASes typically do
not know the topology of the network except for their
immediate neighborhood, and therefore must rely on
path announcements by their neighbors for information
about the full paths traversed by their traffic. This
means that an AS may try to lie to its neighbors about
the existence of paths in the network.

The “prescribed mechanism” that we consider for in-
centive compatibility is the usual BGP protocol, where,
in a setup phase, each AS compiles its utility function
into an algorithmic ranking function. After that, each
AS repeatedly gets BGP path announcements from its
immediate neighbors, uses its algorithmic ranking func-
tion to choose one of these paths, announces that path
to its neighbors, and sends its outgoing (data-plane)
traffic on the link to the next-hop neighbor on that path.
However, in our model ASes are rational, so an AS may
deviate from the “prescribed mechanism” above in or-
der to increase its own utility. For example, a manipu-
lating AS could announce a path with next-hop that is
different from the one that it actually uses in the data
plane, or announce different, arbitrary paths to each
of its neighbors. Or, in Figure 1, manipulating AS b
could deviate from BGP by announcing the path bRd
in order to attract traffic from node a, while actually

7In the mechanism-design literature, this notion is called
an ex-post Nash equilibrium, and is weaker than dominant
strategy (or strategyproofness) where participants have no
incentive to deviate no matter what the others do. See [25]
for more discussion.

sending traffic over the path bQd.
The notion of incentive compatibility in our context

means that if all the ASes but b follow the prescribed
mechanism as above, then no strategy that b can use
would give it a higher utility than following the same
mechanism. Namely, there must exist a specific algo-
rithmic ranking function (which can be derived from
b’s utility function), such that following that ranking
function yields the highest achievable utility for b.

3. DEFINITIONS: ROUTING POLICY
This section presents the necessary formal definitions

for the routing policies we consider in Section 4-5. We
also define our restricted form of economically-motivated
attraction in Section 3.3.

3.1 Policy consistency
This class of policies was defined in [8, 10] as a gen-

eralization of ‘lowest-cost’ or ‘shortest-path’ routing.
Roughly, we say that two neighboring nodes a and b
are policy consistent if there are two permissible paths
abQd, abRd from a to the destination d, such that if b
prefers path bQd over bRd, then a also prefers abQd
over abRd. Referring to Figure 1, we can see that node
a is not policy consistent with node b. We remark that
policy inconsistencies can occur quite naturally in prac-
tice. For example, in Figure 1 AS a could prefer path R
because it is more reliable, while AS b could prefer path
Q because it is cheaper to use. (A complete definition
of policy consistency is in Appendix B.)

3.2 Next-hop policy
Next-hop policy requires that a node only cares about

the next hop that its traffic takes. This class of rout-
ing policies is more restrictive than policy consistency;
e.g., node c in Figure 3 is policy consistent but does
not use next-hop policy with node n. Formally, we say
that node a uses next-hop policy in the valuation with a
neighbor node b, if for every two paths abQd, abRd from
a to the destination, it holds that b is willing to tran-
sit a’s traffic on both paths, and moreover va(abQd) =
va(abRd). Next-hop in the ranking is defined similarly
with r(·) replacing v(·). While next-hop policy is the
most restrictive class of policies we consider here, empir-
ical evidence [28] suggests that these policies are quite
prevalent in the Internet.

3.3 The Gao-Rexford conditions and
economically-motivated attractions.

In [12], Gao and Rexford gave a set of conditions, in-
duced by business relationships between ASes that are
widely believed to reflect the economic landscape of the
current Internet [19]. These conditions, which much be
followed by each node in the network, guarantee that
the BGP protocol converges (more discussion is in Ap-

6

Generic Gao-Rexford Loop Path Policy Restrictions Incentive Pointer to Result
Network & Attractions Verification Compatible?

X X X X policy-consistency No False Loop
X X X X next-hop policy No False Loop
X X X X policy-consistency No Bowtie
X X X X next-hop policy Yes Theorem 4.4
X X X X attractees use next-hop

with their attractors
No Little Dipper

X X X attractees use next-hop
with all their neighbors

No Big Dipper

X X X attractees use next-hop
with peers and providers

Yes Theorem 5.2

X X X attractees use next-hop
with peers and providers

No Result from [21]
in Figure 7

X X X all nodes use next-hop
with peers and providers

Yes Theorem 5.4

X X X all nodes use next-hop
with their providers

No Little Dipper

Table 2: Summary of our results for incentive compatibility of BGP with traffic attraction. We
require that our generic networks have ‘no dispute wheel’ (Appendix A).

pendix A). There are two kinds of edges in Gao-Rexford
networks: customer-provider relationships (where typ-
ically the customer pays the provider for connectivity)
and peer-to-peer relationships (where two nodes agree
to transit each other’s traffic for free). We restate the
three Gao-Rexford conditions (GR1 - GR3) below.

GR1. Topology. There are no customer-provider
cycles in the AS graph.

GR2. Transit. A node b provides transit to traffic
from node a to node c only if at least one of nodes a
and c are customers of node b.

GR3. Preferences. Node b prefers outgoing paths
where the next hop is a customer over outgoing paths
where the next hop is a peer or a provider, and prefers
peer links over provider links.8 GR3 can apply to either
the valuation function or the algorithmic ranking.

Because the Gao-Rexford conditions are meant to model
economic relationships, in this work we add a fourth
condition that deals with traffic attraction by economically-
motivated ASes (AT4) to our description of Gao-Rexford
networks. This condition models the fact that in the
Internet, service contracts are made between pairs of
neighboring nodes such that the customer pays its provider
for transit when it sends traffic over their shared link
[19]. AT4 restricts the set of traffic attraction relation-
ships that we allow in the AS graph, and thus does not
model generic attraction relationships, e.g., when an AS
wants to attract (and say, snoop on) traffic from ASes
that are a few hops away, or a peer wants to attract
more traffic from its peer in order to pressure it to start

8The original version [12] of the Gao-Rexford conditions
does not require nodes to prefer peer links over provider
links. To make our results as general as possible, we use
this weaker version of GR3 in all our theorems, while our
counterexamples do satisfy the stronger version of GR3.

paying for transit.

AT4. Attractions. A node b may only have an
attraction relationship with its own direct customer.
Furthermore, node b only increases its utility if the at-
tractee customer node a routes through node a via the
direct (a, b) link.

In the sequel, whenever we refer to a network that obeys
Gao-Rexford, we always mean that it satisfies all four
conditions, GR1-GR3 and AT4. When we draw Gao-
Rexford networks we represent a customer-provider re-
lationships by a directed edge with an arrow from cus-
tomer to provider, and peer-to-peer relationships by an
undirected edge. We represent an attraction relation-
ship with a bold arrow from attractee to attractor.

4. RESULTS: GENERIC ATTRACTIONS
We now present our results for generic networks and

a model of rationality that encompasses all possible at-
traction relationships, as we discussed in Section 2.2.
The bottom line is that we prove that in networks with
generic attraction relationships, BGP is incentive com-
patible if all nodes use next-hop policy and loop ver-
ification. (This result, presented in Section 4.5, also
requires that the network have ‘no dispute wheel’ (a
condition defined in Appendix A). We discuss loop ver-
ification in Section 4.4.)

To show the tightness our result, we present a series
of counterexamples that show that weakening the (very
strong) conditions described above means that BGP is
no longer incentive compatible. While our focus here
is on generic networks, our counterexamples will some-
time be Gao-Rexford networks (see Section 3.3). This
only strengthens our negative results, since if the neg-
ative results hold for Gao-Rexford networks, then they
hold for generic (non-Gao-Rexford) networks as well.

7

m

Attract c
m1d
md m

Attract c
m1d
md

c1
cmd
cd
cm1d

1d c1
cmd
cd
cm1d

1d

d d

Attract c
m1d

Attract c
m1d

Customer Provider

m

1
cmd
cd

m1d
md m

1
cmd
cd

m1d
md

c
d

cd
cm1d

c

1
d

cd
cm1d

Figure 2: Inconsistent Policy

The theorems and counterexamples in this section are
summarized in the first six rows of Table 2.

4.1 Path verification is not enough.
Recently, Levin, Schapira, and Zohar [21] found that

path verification is sufficient for incentive compatibility
when there is no traffic attraction.

Path Verification is the focus of most traditional
work on securing BGP [5]; roughly, it ensures that nodes
cannot announce paths that are not in the network.
More formally, path verification is a control-plane in-
tegrity check that ensures that no node a in the network
can announces a path abP to its neighbors, unless a
neighbor node b announced the path bP to a. Path ver-
ification can be guaranteed when SBGP [20] or IRV [15]
is fully deployed in the network; we note, however, that
soBGP [29] does not provide path verification.9

We restate the result of Levin et. al. here, which also re-
quires an additional restriction on routing policy called
‘no dispute wheel’ that we discuss in Appendix A:

Theorem 4.1 (From [21]). Consider an AS graph with-
out traffic attraction where there is path verification,
and let m be a node such that there is no dispute wheel
between the valuation of m and the ranking of all other
nodes. Then it follows that the optimal strategy for m is
to set its ranking to its valuation, and follow the BGP
protocol without deviation.

This encouraging result follows from the fact path ver-
ification restricts the set of false paths that can be an-
nounced by an AS a to the small set of paths that were
announced to a by a’s neighbors. Then, by restricting
the rational behavior of AS a such that it is only inter-
ested in improving the outgoing path its traffic takes to
the destination, [21] proves that AS a has no incentive
to announce false paths from this small set. However,
we now show that, even with path verification, traffic
attraction can cause an AS to strategically announce a
false path:

Figure 2: Inconsistent Policy is a network that
obeys the Gao-Rexford conditions and where node m
9soBGP only provides a topology of the AS graph, not infor-
mation about the announcements made by nodes, and thus
does not provide path verification.

wants to attract traffic from node c. The unique stable
assignment T1 (where the ranking function is equal the
valuation function at each node) when all nodes act hon-
estly is shown on the left. The manipulated outcome T2

is shown on the right. Here the manipulator m has an
incentive announce a false path “md” to node c while
actually using path m1d in order attract c’s traffic. No-
tice that this false path can be announced even if the
network has path verification, since node 1 announced
“1d” to m. Thus, Inconsistent Policy shows that
path verification is not sufficient for incentive compati-
bility, even for restricted traffic attraction relationships
(that obey AT4).

We remark that the situation in Inconsistent Pol-
icy could arise quite naturally in practice. As an ex-
ample, while c is a customer of both m and d, c could
have a service contracts with m and d such that usage-
based billing on the m-c link is lower than billing on
the d-c link. Then, c could prefer a route through m
over the direct route to d as long as this route only in-
creases AS-path length by a single hop. On the other
hand, m could prefer to send traffic via 1 because 1 is
geographically closer to m than d.

4.2 Policy consistency is not enough.
Notice that in Inconsistent Policy, node c has a

policy inconsistency with node m. It is natural to ask if
disallowing policy inconsistencies is sufficient for incen-
tive compatibility. Indeed, Feigenbaum et. al. asked a
similar question in [8,10], and obtained a positive result
for the setting of no traffic attraction. We reproduce
their result using our own terminology:
Theorem 4.2. Consider an AS graph without traffic
attraction, in which the ranking function at all nodes
are policy consistent with all their neighbors. Assume
further that m is a node satisfying (1) there is no dis-
pute wheel between the valuation of m and the ranking
of all other nodes, and (2) the valuation of m is policy
consistent with the ranking of its neighbors. Then it fol-
lows that the optimal strategy for m is to set its ranking
to its valuation, and follow the BGP protocol without
deviation.
They prove this by showing that the unique stable path
assignment that results when every node behaves hon-
estly and uses policy consistency, is locally optimal at
every node (see Lemma B.3). The theorem follows since
no node has an incentive to deviate from honest behav-
ior (since honest behavior is already locally optimal).

However, we now show that in networks with traffic
attraction, policy consistency at all nodes is still not
sufficient for incentive compatibility, even if the network
has path verification:
Figure 3: Bowtie is a Gao-Rexford network with
policy consistency everywhere. The unique stable as-
signment T1, when each node sets it algorithmic ranking

8

nm*dn

cn*d“md”

nm*dn

cn*d
cm

cn*d
cm*d
cd

md
cm

cn*d
cm*d
cd

Attract c
md

Attract c
md

dd

Attract c
Attract n

Attract c
Attract n

m
n

Attract n
md
m1d

1 *d
m

Attract n
md
m1d

1 *dn1 nm*d n1 nm*d

c
cnmd
cm*d
cnm1d

d c
cnmd
cm*d
cnm1d

d

Figure 3: Bowtie

nm*dn

cn*d“md”

nm*dn

cn*d
cm

cn*d
cm*d
cd

md
cm

cn*d
cm*d
cd

Attract c
md

Attract c
md

dd

Attract c
Attract n

Attract c
Attract n

m
n

Attract n
md
m1d

1 *d
m

Attract n
md
m1d

1 *dn1 nm*d n1 nm*d

c
cnmd
cm*d
cnm1d

d c
cnmd
cm*d
cnm1d

d

Figure 4: False Loop

equal to its valuation function, is shown on the left. The
manipulated outcome T2 is shown on the right, where
each node except m is honest and sets its algorithmic
ranking equal to its valuation function. Here m has an
incentive to announce a false outgoing path “m1d” to
all of its neighbors in order to attract traffic from the
attractee c on the direct m-c link. Furthermore, m can
announce this false path even in networks with path
verification, since node 1 announced the path 1d to m.

We remark that even though c’s traffic is routed via m
in both T1 and T2, the manipulation in Bowtie is quite
reasonable in practice. For example, m might prefer the
outcome in T2 over the outcome in T1 for load-balancing
purposes, since in T2 incoming traffic from c and n is
spread over two links. As another example, suppose c is
a small stub AS, n is a local ISP, and m is large Tier-1
ISP. Then, m might prefer the T2 outcome because it
has a usage-based billing contract with c on the m-c
link and a lump-sum payment agreement on the m-n
link. Or, perhaps m wants to put his competitor n out
of business by attracting traffic from n’s customers who
are small stub ASes like c.

4.3 Next-hop alone is not enough.
From Bowtie we learn that even requiring both path

verification and policy consistency is not sufficient for
incentive compatibility, even in Gao-Rexford networks
where attraction relationships obey AT4. So we throw-
up our hands and ask if we can at least guarantee incen-
tive compatibility when everyone uses next-hop policy.
Intuitively, it seems requiring next-hop policy at each
should be sufficient; since each node cares only about
the next hop that its traffic takes, it is tempting to con-
clude that lying about its outgoing path will not help
an attractor convince its attractee to ‘change its mind’
and route through it in a manipulated outcome. (Notice
that the manipulations in both Inconsistent Policy

and Bowtie were of this form.)
Quite surprisingly, this intuition fails. We show that

even requiring next-hop policy at every node is not suf-
ficient. More precisely, we show that if the network does
not have path verification, then even requiring the every
node uses next-hop policy and follows the Gao-Rexford
conditions is not sufficient for incentive compatibility.
Figure 4: False Loop is a Gao-Rexford network
where all nodes use next-policy with all of their neigh-
bors. The unique stable assignment T1, when each node
sets it algorithmic ranking equal to its valuation func-
tion, is on the left. The manipulated outcome T2 is on
the right, where each node except m is honest and set
its algorithmic ranking equal to its valuation function.
The manipulator m has an incentive announce a false
outgoing path “mcd” to n in order to attract traffic
from its attractee c. Notice that the outcome T2 results
whenever there is no path or loop verification, since the
“false loop” will either cause node n not to announce
any path to node c or cause node c to filter that path.

4.4 Introducing loop verification.
To deal with the manipulation in False Loop, we

introduce a new control-plane integrity check that we
call loop verification, that deals with detecting and pre-
venting “false loops”.

BGP uses two different approaches for detecting and
preventing routing loops. One is sender-side loop de-
tection, where a node a will not announce a path aR to
node b if b happens to be on the path R, and the other
is receiver-side loop detection where a will announce the
path aR to all its neighbors, but b will detect the loop
and discard that announcement. The advantage of us-
ing receiver-side loop detection, is that it allows a node b
to hear announcements that falsely includes b in a path
that b did not announce. Notice that for b to detect
a ‘false loop’, b need only perform a local check to see
if the path he receives matches the one that b actually
announced. (This local check is much less onerous than
the one that is required for path verification, which re-
quires participation from all nodes on the AS path.)

At a high level, loop verification formalizes the idea
that an AS will avoid lying in a BGP announcements
because it fears getting caught by receiver-side loop de-
tection. More formally, we require that if a node b re-
ceives an announcement of a path P = QbR, such that b
never announced the route bR to its neighbors, then b
“raises an alarm” and the first node who announced
a path that includes bR will be punished, reducing its
utility (say, to zero). This punishment process mod-
els the idea that b can catch and shame the AS that
announced the false loop, e.g., by broadcasting to the
NANOG list.

The properties of loop verification are strictly weaker
than those of path verification:

9

Theorem 4.3. If a network has path verification, then
no node will raise an alarm in loop verification.

Proof. Follows immediately, since no node can announce
a path that includes bR unless b announces bR.

4.5 Next-hop & loop verification is enough!
Now that we have loop verification, we are ready to

present the main result of this section. If we add loop
verification to the network, we can eliminate the ma-
nipulation preformed by m in False Loop, and guar-
antee incentive compatibility if all nodes use next-hop
policy. The following theorem applies even to networks
that do not obey the Gao-Rexford conditions, even with
the most general attraction functions as defined in Sec-
tion 2.2. (The theorem also requires an additional con-
dition called ‘no dispute wheel’ that we discuss in Ap-
pendix A.)

Theorem 4.4. Consider an AS graph with loop verifi-
cation, where the ranking function of each node uses
next-hop policy with each of its neighbors. Further,
let m be a node satisfying (1) the valuation of m and
the ranking of all other nodes do not include a dispute
wheel, and (2) the valuation of m is policy consistent
with the ranking of its neighbors. Then it follows that
the optimal strategy for m is to set its ranking to its val-
uation, and follow the BGP protocol without deviation.

As a corollary of Theorem 4.4, if the valuations of
all the nodes are next-hop (and have no dispute wheel),
then the mechanism where every node sets its ranking
function to equal its valuation function and follows BGP
is incentive compatible. We remark here that since path
verification is strictly stronger than loop verification, by
Theorem 4.3, it follows that Theorem 4.4 also holds in
networks with path verification.

The proof of Theorem 4.4 is quite technically in-
volved, so we present it in Appendix B. Roughly, the
proof amounts to showing that when all nodes use next-
hop policy, the only strategically useful lie available to
the manipulator is to announce a false loop. Then, we
show that if the network has loop verification, some
node detects the false loop and punishes the manipula-
tor for its lie; thus, since the utility of the manipulator
drops down to zero when it gets caught, it no longer
has an incentive to announce a false loop, and incentive
compatibility follows.

4.6 Cannot relax restrictions to attractees only.
The requirement in Theorem 4.4 that every node in

the network uses a next-hop policy with all of its neigh-
bors is very strong indeed. We would like to relax it
somewhat. Ideally, we would have preferred to require
that only attractees use next-hop policy with their at-
tractors. Unfortunately, we argue below that this is not
the case:

12d
1m

m1d 12d
1m

m1d
1d

2md

dm12d 1d

2md

dm12d

2d2 2d2

n nm* n nm*

New counterexample C, not incentive comptabile because node c filters the route cnm1d

cm
cnmd
cm*d

Attract c
md

m1d cm
cnmd
cm*d

Attract c
md

m1d
“m1d”

1 1

d d

Figure 5: The Little Dipper.

bamd
b *dc bcb*d

*d
bamd
b *dc bcb*d

*dAttract c

bc*dc bcm*d

*dAttract c

bc*dc bcm*d

“m1d”

“m
1d”

am*dAttract c
md

m1d
m a

am*dAttract c
md

m1d
m a

m1d

1

d

1

d d

Figure 6: The Big Dipper.

Figure 5: The Little Dipper is a Gao-Rexford
network where all nodes use next-hop policy with their
providers, and the only attraction relation is between c
and its attractor m, over the direct link between them
(notice that this relationship obeys AT4). In The Lit-
tle Dipper, node c does not use next-hop policy with
its peer n by filtering the route cnm1d. The unique
stable assignment T1, when each node sets it algorith-
mic ranking equal to its valuation function, is shown
on the left. The manipulated outcome T2 is shown on
the right, where each node except m is honest and set
its algorithmic ranking equal to its valuation function.
Here m has an incentive announce a false outgoing path
“m1d” to all of its neighbors in order to attract traffic
from the attractee c. Notice that this lie is possible even
with path or loop verification, since node 1 announced
the path “1d” to m.
Suppose instead that we required attractees to use next-
hop policy with all their neighbors. It turns out that, in
general, this is still not enough for incentive compati-
bility, as demonstrated in The Big Dipper (Figure 6).
(However, we show that this is enough in Gao-Rexford
networks with path verification, see Theorem 5.2.)
Figure 6: The Big Dipper is not a Gao-Rexford
network. However, the network does not have a dis-
pute wheel (see Appendix A) and all attractees (node
c) use next-hop policy with all their neighbors. Notice
also that all neighbors of the attractor also use next-hop
policy with the attractor. Only node b — who is not a
neighbor of the attractor — fails to use next hop policy
by filtering the route bam1d. Again, the unique stable
assignment T1, when each node sets it algorithmic rank-
ing equal to its valuation function, is shown on the left,

10

and the manipulated outcome T2 is shown on the right,
where each node except m is honest and set its algorith-
mic ranking equal to its valuation function. Again m
has an incentive announce a false outgoing path “m1d”
to all of its neighbors in order to attract traffic from the
attractee c, and this false path can be announced even
in networks with path or loop verification.

4.7 The need for ubiquitous participation.
Bowtie, The Little Dipper, and The Big Dip-

per highlight another important point; namely, that
even if a node follows the specified conditions for in-
centive compatibility, e.g., next-hop policy, it is still
possible for that node to learn a false path when some
other node in the network fails to follow the specified
conditions. For example, in Bowtie (Figure 3), even
though attractee node n uses next-hop policy with all
its neighbors, n still learns a false path because node
c fails to use next-hop policy. Similarly, in The Big
Dipper (Figure 6) only the ‘distant’ node b (who is not
even a neighbor of the attractor) fails to use next-hop
policy, and both nodes a and c, who use next hop policy
learn false paths as a result. One can construct other
counterexamples like The Big Dipper where the single
node that fails to use next-hop policy is arbitrarily far
away from the nodes that learn false paths as a result.
Thus, we emphasize that all the theorems in this paper
only guarantee incentive compatibility if every node in
the network follows the specified set of conditions. This
need for ubiquitous participation mirrors the fact that
the Gao-Rexford conditions only guarantee that BGP
will converge if they are followed by every node [11], and
the fact that SBGP only provides full path verification
if it is deployed at each node.

5. RESULTS: GAO-REXFORD NETWORKS
& ECONOMIC ATTRACTIONS

We now focus our attention on the setting where traf-
fic attraction is economically-motivated, so that an at-
tractor can only increase its utility when a customer
routes on the link between them (per AT4 in Section 3.3).
Since our focus here is on business relationships between
nodes, we will also assume that the network obeys the
Gao-Rexford conditions. It turns out that when we con-
sider these more restricted networks (that obey GR1-
GR3 and AT4, see Section 3.3) we can weaken next-hop
policy restrictions required for incentive compatibility.

We already saw that even in this setting we must
have either path or loop verification (False Loop in
Figure 4), policy consistency is not enough (Bowtie
in Figure 3), and having next-hop between customers
and providers is not enough (The Little Dipper in
Figure 5). However, we show below that there are two
cases in which weaker notions of next-hop policy (in
conjunction with some control plane integrity checks)

suffice for incentive compatibility. Our results for this
setting are summarized in the last four rows of Table 2.

5.1 It’s best to be honest to your customers.
All of our results in this section hinge on the following

lemma, which tells us that in Gao-Rexford networks
with AT4 and either loop or path verification, where
each attractee uses next-hop policy with all its providers
and peers, then the optimal strategy to attract traffic
is to behave honestly:

Lemma 5.1. Consider an AS graph with path or loop
verification, where the ranking functions of nodes obey
the Gao-Rexford conditions GR1-GR3, and assume that
each attractee in this graph uses next-hop policy with all
its providers and peers. Let m be a node in the network,
let T1 be the unique stable assignment when m does not
deviate from the BGP protocol, and let c be a customer
attractee of m that does not route directly through m
in T1. Then there is no strategy that m can use to
attract traffic from c over the direct link between them.

The proof of this lemma, which is highly technical, is de-
ferred to Appendix C. We prove this by contradiction.
At a very high level, we use a series of arguments that
use the Gao-Rexford conditions (GR1-GR3) to show
that if m manages to attract traffic from c in T2 but
not in T1, then it follows that the network must have a
customer-provider loop.

5.2 With Gao-Rexford, next-hop at attractees
can be enough!

When Gao-Rexford networks use path verification, it
is sufficient for each attractee to have next-hop policy
with all its providers and peers.

Theorem 5.2. Consider an AS graph where there is
path verification, and (1) the rankings of all nodes obey
the Gao-Rexford conditions GR1-GR3, and (2) the rank-
ings of every attractee are next-hop policy with all its
neighboring providers and peers. Let m be any node
with valuation and attraction functions that obey the
Gao-Rexford conditions GR1-GR3 and AT4. Then it
follows that the optimal strategy for m is to set its rank-
ing to its valuation, and follow the BGP protocol without
deviation.

This theorem implies, as a corollary, that BGP is incen-
tive compatible if each node sends its ranking function
equal to its valuation function in a network that (1)
uses path verification, (2) obeys the Gao-Rexford con-
ditions (GR1-GR3) and the attraction condition AT4,
and (3) where each attractee uses next-hop policy with
his providers and peers.

Proof of Theorem 5.2. Let m be a “manipulator node”,
and let T1 be the unique stable assignment when m sets

11

12d
1m

m1d 12d
1m

m1d
1d

2md

dm12d 1d

2md

dm12d

2d2 2d2

n m* n m*

New counterexample C, not incentive comptabile because node c filters the route cnm1d

cm
cnmd
m*

Attract c
md

m1d cm
cnmd
m*

Attract c
md

m1d
“m1d”

1 1

d d

Figure 7: Counterexample from [21].

its ranking to equal its valuations (and all other nodes
use their usual ranking as before).

Observe that the network satisfies the conditions of
Levin, Schapira and Zohar’s Theorem 4.1, since the val-
uation of m and ranking of the other nodes obey Gao-
Rexford (and hence there is no dispute wheel) and the
network uses path verification. Hence there is no strat-
egy that m can use to get a path assignment T2 with
higher valuation than in T1. On the other hand, our
technical Lemma 5.1 says that m also cannot get any
attractee that does not route through it in T1. It follows
that there is no strategy that m can use to get better
utility than m had in T1.

5.3 All next-hop with peers & providers.
Unfortunately, replacing path verification with loop

verification fails when only attractees use next-hop pol-
icy (c.f., Theorem 5.2). To see why, consider the coun-
terexample of Levin et al. [21] in Figure 7:10

Figure 7: In this Gao-Rexford network, there is
no traffic attraction, and therefore no attractees. The
unique stable assignment T1 (where the ranking func-
tion is equal the valuation function at each node) is
shown on the left. The manipulated outcome T2 is
shown on the right. Here the manipulator m has an
incentive announce a false outgoing path “md” to node
1 in order to obtain the higher valued outgoing path
m1d. Notice that m’s manipulation would not cause
an loop verification alarm, since it does not involve an-
nouncing a false loop.

Instead, we show below that when a Gao-Rexford net-
work uses loop verification, it is sufficient for every node
(not only attractees) to use next-hop policy with its
providers and peers. To do this, we first need to prove
a lemma similar to Theorem 4.1 and Theorem 4.2. This
result, that tells us that without traffic attraction, Gao-
Rexford networks with loop verification are incentive
compatible when all nodes use next-hop policy with
their provides and peers, may be somewhat interesting
in its own right. The proof is in Appendix C.

Lemma 5.3. Consider an AS graph without traffic at-
traction, in which the ranking functions at all nodes

10Levin et al. used this counterexample to demonstrate that
a network that obeys the Gao-Rexford conditions but does
not have path verification is not necessarily incentive com-
patible.

obey Gao-Rexford conditions GR1-GR3. Assume fur-
ther that m is a node satisfying (1) the valuations of
m obey GR1-GR3, and (2) m uses next-hop policy with
all of m’s neighboring peers and providers. Then it fol-
lows that the optimal strategy for m is to set its ranking
to its valuation, and follow the BGP protocol without
deviation.

Then, we have the theorem below, which as a corol-
lary implies BGP is incentive compatible when each
node sets it ranking equal to its valuation:

Theorem 5.4. Consider an AS graph with loop or path
verification where the rankings of each node a (1) obey
the Gao-Rexford conditions GR1-GR3 as well as the
additional Attraction condition AT4, (2) uses next-hop
policy with all a’s neighboring providers and peers. Let
m be any node with valuation and attraction functions
that (1) obey the Gao-Rexford conditions GR1-GR3 and
AT4, and (2) use next-hop policy with all m’s neighbor-
ing peers and providers. Then it follows that the optimal
strategy for m is to set its ranking to its valuation, and
follow the BGP protocol without deviation.

Proof. We can use Lemma 5.1 to argue that there is no
strategy that m can use get traffic from an attractee
that does not route through it in the unique stable as-
signment, and Lemma 5.3 to show that there is no strat-
egy that m can use to get a path assignment with higher
valuation than the unique stable path assignment.

Next-hop at attractees, policy consistency ev-
erywhere else. We remark here that we can also
combine Lemma 5.1 and the results of Feigenbaum et.
al. [8,10] in Theorem 4.2. Then, we have that next-hop
policy at all attractees and policy consistency every-
where else in a Gao-Rexford network with loop verifi-
cation is sufficient for incentive compatibility.

6. CONCLUSIONS
In this work we considered control-plane mechanisms

that provide incentives for rational ASes to honestly
announce data-plane forwarding paths in their BGP
messages (i.e., incentive compatibility). We find that
conditions that were previously shown to be sufficient
to guarantee incentive compatibility no longer suffice
if we assume that rational ASes can benefit by attract-
ing incoming traffic from other ASes. We demonstrated
that, in the absence of data-plane enforcement, incen-
tive compatibility in the face of traffic attraction re-
quires very strong restrictions on routing policy (i.e.,
next-hop policy), as well as control-plane integrity checks
(i.e., loop verification or path verification protocols like
Secure BGP [20]). Thus, our results suggest that in
practice, it will be difficult to achieve incentive compat-
ibility without resorting to expensive data-plane pro-

12

tocols that verify and enforce AS-level paths. By high-
lighting the difficulty of matching the control- and data-
planes, even under the assumption that ASes are ratio-
nal (and not arbitrarily malicious), our results can also
help inform decisions about whether security protocols
should be deployed in the control-plane, in the data
plane, or in both.

Acknowledgments
We thank Jennifer Rexford, Michael Schapira and Boaz
Barak for useful discussions, and Matthew Caesar, An-
dreas Haeberlen, Martin Suchara and Gordon Wilfong
for comments that improved the presentation.

7. REFERENCES
[1] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker.

Providing packet obituaries. ACM HotNets-III, 2004.
[2] I. Avramopoulos and J. Rexford. Stealth probing:

Data-plane security for IP routing. USENIX, 2006.
[3] H. Ballani, P. Francis, and X. Zhang. A study of prefix

hijacking and interception in the internet. In ACM
SIGCOMM, 2007.

[4] S. Balon and G. Leduc. Can forwarding loops appear when
activating ibgp multipath load sharing? In AINTEC, 2007.

[5] K. Butler, T. Farley, P. McDaniel, and J. Rexford. A
survey of BGP security issues and solutions. Technical
report, ATT Labs-Research, 2004.

[6] J. Feigenbaum, D. R. Karger, V. S.Mirrokni, and R. Sami.
Subjective-cost policy routing. In X. Deng and Y. Ye,
editors, First Workshop on Internet and Network
Economics, 2005.

[7] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker.
A BGP-based mechanism for lowest-cost routing.
Distributed Computing, 18(1), July 2005.

[8] J. Feigenbaum, V. Ramachandran, and M. Schapira.
Incentive-compatible interdomain routing. In Conference
on Electronic Commerce, page 130139, 2006.

[9] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism design
for policy routing. Distributed Computing, 18(4):293–305,
2006.

[10] J. Feigenbaum, M. Schapira, and S. Shenker. Algorithmic
Game Theory, chapter Distributed Algorithmic Mechanism
Design. Cambridge University Press, 2007.

[11] L. Gao, T. Griffin, and R. Rexford. Inherently safe backup
routing with BGP. IEEE Infocomm, 2001.

[12] L. Gao and R. Rexford. Stable internet routing without
global coordination. IEEE/ACM Trans. on Network., 2001.

[13] V. Gill, J. Heasley, and D. Meyer. The generalized ttl
security mechanism (gtsm). RFC 3682, 2004.

[14] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.
Path quality monitoring in the presence of adversaries. In
SIGMETRICS, June 2008.

[15] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis,
P. McDaniel, and A. Rubin. Working around BGP: An
incremental approach to improving security and accuracy
of interdomain routing. In Network and Distributed System
Security Symposium, 2003.

[16] T. Griffin, F. B. Shepherd, and G. Wilfong. The stable
paths problem and interdomain routing. IEEE/ACM
Trans. on Network., April 2002.

[17] A. Heffernan. Protection of bgp sessions via the tcp md5
signature option. RFC 2385, 1998.

[18] K. J. Houle and G. M. Weaver. Trends in denial of service
attack technology. Technical report, CERT Coordination
Center, October 2001.

[19] G. Huston. Interconnection, peering, and settlements. In
Internet Global Summit (INET), The Internet Society,
June 1999.

[20] S. Kent, C. Lynn, and K. Seo. Secure border gateway
protocol (S-BGP). J. Selected Areas in Communications,
18(4):582–592, April 2000.

[21] H. Levin, M. Schapira, and A. Zohar. Interdomain routing
and games. In ACM STOC, May 2008.

[22] X. Liu, X. Yang, D. Wetherall, and T. Anderson. Efficient
and secure source authentication with packet passports. In
SRUTI’06: Steps to Reducing Unwanted Traffic on the
Internet, pages 2–2. USENIX, 2006.

[23] N. Nisan and A. Ronen. Algorithmic mechanism design.
Games and Economic Behavior, 35(1-2):166–196, 2001.

[24] V. Padmanabhan and D. Simon. Secure traceroute to
detect faulty or malicious routing. HotNets-I, 2002.

[25] D. C. Parkes and J. Shneidman. Specification faithfulness
in networks with rational nodes. In Symposium on
Principles of Distributed Computing, 2004.

[26] A. Ramachandran and N. Feamster. Understanding the
network-level behavior of spammers. ACM SIGCOMM,
2006.

[27] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H.
Katz. Listen and Whisper: Security mechanisms for BGP.
In NSDI, March 2004.

[28] F. Wang and L. Gao. On inferring and characterizing
internet routing policies. In ACM IMC ’03.

[29] R. White. Deployment considerations for secure origin bgp
(sobgp), draft, internet engineering task force.
draft-white-sobgp-bgp-deployment-01.txt, June 2003.

[30] E. L. Wong, P. Balasubramanian, L. Alvisi, M. G. Gouda,
and V. Shmatikov. Truth in advertising: Lightweight
verification of route integrity. In PODC, 2007.

[31] J. Z. Mao, J. Rexford and R. H. Katz. Towards an accurate
AS-level traceroure tool. In ACM SIGCOMM, 2003.

APPENDIX
A. A CONDITION FOR STABILITY

Because BGP is a distributed protocol, earlier works
[11, 12, 16] considered technical conditions that ensure
that BGP converges to a unique stable path assignment.
A path assignment T is stable if for every node a, the
path that a uses to the destination in T is a’s highest
ranked path among all the paths that were advertised
to a by its neighbors [16]. In our setting, we think of
this “highest ranked path” as defined by a’s algorith-
mic ranking function. Then, if ASes are ‘honest’ (i.e.,
they follow the prescribed BGP mechanism), then once
the protocol converges to a stable path assignment, this
path assignment will be used by all nodes from then on.

Griffin et al. [16] described a global condition on the
routing policies in the AS graph, called ‘no dispute
wheel’, that ensures that a network has a unique stable
path assignment, and moreover that BGP will converge
to that path assignment. Roughly, a dispute wheel is
essentially a set of nodes and their routing policies that
can induce a routing anomalies like oscillations or non-
convergence of BGP. While the exact definition of a
dispute wheel is not important for the current work,
we use several results from the literature [8,10,21] that
only hold for networks with no dispute wheels. Thus,
in this paper, every network we consider always has
‘no dispute wheel’. Focusing on networks that have ‘no
dispute wheel’ has practical advantages (instability can

13

wreck havoc on routing performance), and theoretical
ones (we need to have a single path assignment in order
to define the utility of a node). We can also feel com-
fortable with this assumption because the Gao-Rexford
conditions are known to imply the no dispute wheel con-
dition [11], and the Gao-Rexford conditions are believed
to hold in most places in the current Internet [19,28].

B. PROOFS: GENERIC ATTRACTIONS
We prove Theorem 4.4. Our proof uses the following

lemma about unilateral manipulations in the AS graph.
(We also use it later in the proofs of Lemma 5.1 and
Lemma 5.3):

Lemma B.1 (False path lemma). Consider an AS graph
where all the nodes in the graph except perhaps a single
manipulator node m follow the BGP protocol, and let
T be the unique path assignment that results. Suppose
node n announces a false path P (i.e., P differs from
the path that n uses in T). It follows that P must be
of the form P = nRmQd where nRm a true path and
mQd is a false path.

Proof. We first prove by contradiction that if n an-
nounces a path P that differs from the path that n
uses in T , then m must be on the path that n uses in
T . Let the path n uses in T be n = ar → ar−1 → ...→
a1 → a0 = d and assume toward contradiction that m
is not on this path. In this case, each node on the path
n uses is honest, thus each node ai announces to ai+1 a
path aiai−1R where R is the path that ai−1 announced
to ai. Thus, a simple induction starting at node a0

shows that node n announces a path P = nar−1...a1d,
which matches n’s path in T . This contradicts the fact
that n announces a false path, so we have that m must
be on n’s path in T . Suppose m occupies node aj on
n’s path in T and announces a path Qd to node aj+1.
Since all the other nodes in the AS graph are honest, a
similar induction starting at node m shows that n an-
nounces an path P = nar−1...aj+1mQd. Thus, letting
path R = ar−1 → ... → aj+1 we have that nRm is
a true path. Since by assumption n announces a false
path, it follows that path mQd must therefore be a false
path.

We also need a lemma of Feigenbaum et. al [8, 10],
that says that policy-consistent networks are incentive
compatible when there is no traffic attraction. Before
we state their lemma, we first formally define policy
consistency:

Definition B.2 (Policy consistency). Two neighbor-
ing nodes a and b are said to have an inconsistent pol-
icy in their valuations if there are two permissible paths
abQd, abRd from a to the destination such that vb(bQd) ≥
vb(bRd) but va(abQd) < va(abRd) (see e.g., Figure 1).

Then, nodes a and b are policy consistent in their val-
uation if they do not have an inconsistent policy, and
moreover for every two paths abQd, abRd, if b is willing
to transit a’s traffic on abQd and vb(bQd) ≤ vb(bRd)
then b is also willing to transit a’s traffic on abRd.
(In other words, if abQd and bRd are permissible and
vb(bQd) ≤ vb(bRd) then also abRd is permissible.)11

The notion of policy consistency in the ranking func-
tion is defined similarly, with r(·) replacing v(·).

Lemma B.3 (From [10, Lemma 14.8]). Consider an
AS graph with no dispute wheel, in which the ranking
functions at all nodes are policy consistent with all their
neighbors. Then, the unique stable path assignment T1

is locally optimal for all nodes. That is, for every node
m in the AS graph, then rm(T1) ≥ rm(T2) for any path
assignment T2 6= T1.

We are now ready to prove Theorem 4.4, that tells us a
network with loop verification and (general) attraction
relationships is incentive compatible if each node uses
next-hop policy:

Proof of Theorem 4.4. First observe that if m sets its
ranking to equal its valuation and every node honestly
follows the protocol, then the network has a unique sta-
ble path assignment, which is a tree that we denote T1.

Assume toward contradiction that node m is able to
induce another assignment T2 6= T1 (called the manip-
ulated assignment) by unilaterally deviating from the
protocol, and um(T1) < um(T2).

By the discussion in Section 2.2 we can assume with-
out loss of generality that m has a single outgoing link
in T2. We then prove that some other node b must have
raised an alarm because it receives a path announce-
ment of the form QbR where b did not announce the
path R, and where m is on path Q. This contradicts ei-
ther path verification (since b receive an announcement
containing path through b that b did not announce) or
loop verification (where the utility of m is set to zero
when such an alarm is raised).

Since T1 is the unique stable assignment that is ob-
tained when m uses its valuation as ranking, since this
valuation is policy consistent with the ranking of all
other nodes, and since all other nodes use next-hop pol-
icy in their ranking (and thus are also policy consistent),
then Lemma B.3 implies that vm(T1) ≥ vm(T2). But we
know that m’s utility is higher in T2 than in T1, so m
must have gained utility from traffic attraction in T2

that it did not have in T1, namely αm(T2) > αm(T1),
which implies that T2(m) 6⊆ T1(m). (Recall from Sec-

11We remark that the definition of policy consistency from
[10] does not explicitly include the transit condition stated
here, but their proofs appear to implicitly rely on it. The
“consistent filtering” condition from [8] is similar, but not
exactly the same, as the one we use here.

14

T1T2

c=no ……

“n
i Q

ni-1c1T2

Q
m
Rn

i-1 Sd

…
m=co ni

T

“mRni-1Sd”

d”

d=nt
T1

T2

Figure 8: The proof of Theorem 4.4

tion 2.2 that T (m) is the set of all edges in simple paths
from other nodes to m in T .)

Hence there must exist some node that routes through
m in T2 and uses a different outgoing link in T2 than
in T1. Denoting m = c0, we continue to find nodes
ci(i ≥ 1) as follows: For each node ci, if there are nodes
that route through ci in T2 and use a different outgoing
link in T2 than in T1, then we let ci+1 be the “closest to
ci among all these nodes. Namely, ci+1 uses a different
outgoing link in T2 than in T1, but all the other nodes
on the path from ci+1 to ci in T2 (if any) use the same
outgoing link in T1 and T2.

We repeat this process until we reach a “last node” c,
such that every other node that routes through it in T2

(if any) uses the same outgoing edge in T1 and T2. Ob-
serve that since we must reach such “last node” since
otherwise we will eventually repeat a node, say node cr.
But, if we repeat a node, then it must follow that cr is
a part of routing loop in T2. Since by construction cr
routes through m, it follows that m is part of a routing
loop as well. However, if m is part of a routing loop in
T2, it follows that um(T2) = 0 which contradicts our as-
sumption that um(T2) > um(T1) > 0 (where the second
inequality follows because m has a path to d in T1).)

Let c be the ‘last node’ in the sequence above. That
is, c is a node that (1) routes through m in T2, (2) uses
a different outgoing edge in T2 than in T1, and (3) every
node that routes through c in T2 uses the same outgo-
ing link in T1 and T2 (and therefore must also routes
through c in T1). We now again invoke Lemma B.3 to
conclude that rc(T1) > rc(T2) > 0 (where we know that
rc(T2) > 0 because by construction c has a path to the
destination through m in T2), which in particular im-
plies that c can reach the destination in T1. Denote the
path of c in T1 by c = n0 → n1 → · · · → nt = d. Let ni

be the node closest to c on this path (but not c itself)
that has any path available to the destination in T2.
(We know that such a ni exists, because in particular
node nt−1 is one hop away from d.)

Now we observe that ni does not route in T2 through
ni−1, since:

(i) If i = 1 (so ni−1 = c) then by construction n1

does not route through c in T1, and so it also does
not route through in in T2 (because of the way we
chose c).

(ii) If i > 1, then ni has a path to the destination in
T2 but ni−1 does not, so in particular ni does not
route through ni−1 in T2.

Denote the path of ni to d in T1 by niP1d, and its path
to d in T2 by niP2d. We know that neither path goes
through ni−1, so the next-hop assumption implies that
rni−1(ni−1niP2d) = rni−1(ni−1niP1d) = rni−1(T1), and
that ni is willing to transit ni−1’s traffic over the path
niP2d. On the other hand, Lemma B.3 implies that
rni−1(T2) < rni−1(T1) = rni−1(ni−1niP2d). Namely,
ni−1 has an available path through ni in T2 with ranking
higher than what ni−1 actually uses in T2. But ni−1

does not use the link to ni in T2, so it must be that the
path that ni announces to ni−1 does go through ni−1

(even though the actual path that ni uses does not).
Since all nodes but m are honest, it follows from the

false path lemma (Lemma B.1) that the path that ni

announces has the form P = niQmRni−1Sd (for some
paths Q,R, S). But ni−1 could not have announced the
path ni−1Sd, since:
(i) If i = 1 (so ni−1 = c) then c routes through m, and

therefore it must announce a path that includes
m (since m is the only manipulator in the graph),
which would make the path P include a loop, con-
tradicting the fact that ni chose it.

(ii) If i > 1, then ni−1 has no path to the destination
in T2, so in particular it did not announce the path
ni−1Sd.

Hence ni−1 would raise an alarm for a path containing
m, which is what we needed to prove.

C. PROOFS: GAO-REXFORD NETWORKS
In this section, we prove Lemma 5.1 (Appendix C.1)

and Lemma 5.3 (Appendix C.2) for Gao-Rexford net-
works with customer attractions. But first, we need the
following useful concept:
Transitive customers. We refer to a node c as
a strict transitive customer of node a if node c is con-
nected to node a via a path consisting of only customer-
provider links as in the right half of Figure 9. We also
restate here a simple, useful lemma of the Gao-Rexford
conditions proved by Gao, Griffin and Rexford in [11].

Lemma C.1 (Transitive customers [11, Theorem VII.4]).
If either the path P = abRc or the path P ′ = cR′ba is
permissible, and if node a is not a customer of node b,
then node c is a strict transitive customer of node b over
the permissible path.

We also need to prove the following helper lemma
that we shall use to derive contradictions in several
places below:

15

a b a bc c

Traffic Traffic

⇒

R0Q

Traffic Traffic

a0
R0Q0 Q

Rk-1

0Q
1
Q0

a1dak-1

Q0 Q1

Qk-1

R1Q
2
Q

Rk-1Q0
Qk-1

Q1

Attract c

c n p d
c p dc

p d
n p d
n c p dp nd

Figure 9: Lemma C.1.

amam

b a'
T

⇒

dT1

T1T2

dT1

nm
R

nm

a0

T

T1
T2

a0

TT

d

T1

d

T1T2

Figure 10: Proof of Lemma C.2

Lemma C.2. Consider an AS graph where the rank-
ing functions of nodes obey the Gao-Rexford conditions
(GR1-GR3), and assume that all the nodes in the graph
except perhaps a single manipulator node m follow the
BGP protocol. Let T1 be the unique stable assignment
when m follows the BGP protocol, and let T2 be a path
assignment that results from some other arbitrary strat-
egy of m.

If there is a node a in the network such that (1) a is
a strict transitive customer of the manipulator m, (2)
a uses a different path in T2 than in T1, and (3) the
destination d is a strict transitive customer of a along
a’s path in T1. Then there is a different node a′ 6= a
which is a strict transitive customer of a, such that a′

also satisfies the conditions (1)-(3).

Proof. Since a is a strict transitive customer of m, and
the destination d is a strict transitive customer of a on
a’s T1 path, then the Topology condition GR1 implies
that m cannot be on the path of a in T1. Denote by b
the node closest to the destination along ai’s path in
T1 that uses a different path in T2 than in T1 (we know
that such a b exists since in particular node a is such a
node), and denote the paths of b in T1 and T2 by bQ1d
and bQ2d, respectively. It follows that the path Q1d is
available to b in T2, and from the Topology condition
GR1 we know that m is not on that path.

Since all the nodes on the path Q1d are honest and
they all use that path in T2, then b must have received
an announcement Q1d from the first hop on that path,
and yet it chose a different path in T2. We conclude
that b’s ranking has rb(T2) > rb(T1). And since b’s next
hop in T1 is a customer, the Preferences condition GR3
implies that b’s next hop in T2 must also be a customer,
and applying Lemma C.1 we get that the destination is
a strict transitive customer of b along the path bQ2d.

Let node a′ be the node closest to the destination

along the path bQ2d that uses a different path in T2

than in T1, and denote the paths of a′ in T1 and T2 by
a′R1d and a′R2d, respectively. It follows that the path
R2d is available to a′ also in T1. Notice that a′ is also
a strict transitive customer of the manipulator m, and
that that destination d is a strict transitive customer
of a′ along the path R2d. Since all the nodes on the
path R2d uses it also in T1, then a′ must have received
an announcement R2d from the first hop on that path,
and yet it chose a different path in T1. We conclude
that the ranking of a′ has ra′(T1) > rb(T2), which also
implies that a′ 6= b.

Since ra′(T1) > ra′(T2) and since the next hop after
a′ on the path a′R2d in T2 is a customer of a′, the Pref-
erences condition GR3 implies that the next hop after
a′ on the path a′R1d in T1 must also be a customer.
Then, we can apply Lemma C.1 to find that the des-
tination is a strict transitive customer of a′ along the
path a′R1d in T1.

We established that a′ satisfies the conditions (1)-(3),
and we also know that b is a transitive customer of a
(or a itself), a′ is a strict transitive customer of b, and
a′ 6= b. It follows that a′ 6= a, since otherwise we would
have a customer-provider loop in the graph.

C.1 It’s best to be honest to your customers.
We now prove Lemma 5.1, that tells us that the opti-

mal strategy to attract an attractee that uses next-hop
policy with all its providers and peers in a Gao-Rexford
network is to behave honestly.

Proof of Lemma 5.1. Letm, c and T1 be as in the lemma
statement. Assume toward contradiction that there is
some strategy that the “manipulator” m can use, that
results in a different path assignment T2 in which c
routes directly through m. We derive a contradiction by
proving a sequence of claims that together imply that
the conditions of Lemma C.2 must hold in this graph,
and then repeatedly apply Lemma C.2 to show that the
graph contains a customer-provider cycle, violating the
Topology condition GR1.

Denote the paths of m to the destination in T1 and T2

by mR1d and mR2d, respectively. Also denote the path
of c to the destination in T1 by cnQd (where n is the first
node after c on that path, and we know that n 6= m).

Claim C.3. The ranking of c satisfies rc(T1) > rc(T2).

(We comment that this claim does not follow from
Lemma B.3, since we do not assume to have policy con-
sistency everywhere.)

Proof. Assume toward contradiction that rc(cmR2d) >
rc(cnQd). Since c is an attractee of m (and therefore
its customer), then c must use next-hop policy with m.
It follows that the path R1 must go through c, or else
we would have rc(cmR1d) = rc(cmR2d) > rc(cnQd)

16

T1

gr-clm2

R’ Q
T2

n mc

1

T

n mc
R’1

Q1

T2T1

d

T2
R2

Q
d

Q2

21

Gr-clm3

Gr-clm3

T2
Q1

n mc

RQT
“mQ1 cmR’d”

d
R2

QT1

(a) Claim C.3

T1

gr-clm2

R’ Q
T2

n mc
1

T

n mc
R’1

Q1

T2T1

d

T2
R2

Q
d

Q2

21

Gr-clm3

Gr-clm3

T2
Q1

n mc

RQT
“mQ1 cmR’d”

d
R2

QT1

(b) Claim C.4

T1

gr-clm2

R’ Q
T2

n mc

1

T

n mc
R’1

Q1

T2T1

d

T2
R2

Q
d

Q2

21

Gr-clm3

Gr-clm3

T2
Q1

n mc

RQT
“mQ1 cmR’d”

d
R2

QT1

(c) Claim C.5

Figure 11: Pictorial representation of the proof of Lemma 5.1

(where the equality follows from the fact that c uses
next-hop policy withm) and c would have routed throughm
also in T1. Hence we can re-write the path that m takes
in T1 as R1 = R′1cnQ, as depicted in Figure 11(a).

Since c is a customer of m, it follows from the Topol-
ogy condition GR1 that m cannot be a strict transitive
customer of c along the path mR′1c. Hence there are
adjacent nodes between m and c on the path R′1 (call
them a, b) such that a is not a customer of b. Since
the path mR′1cnQd is permissible (because it is actu-
ally used in T1), we can apply Lemma C.1 to conclude
that d is a transitive customer of b along this path.
In particular it means that n is a customer of c. No-
tice that this is true even if n = d. But this violates
the Preferences condition GR3, since we assumed that
rc(cmR2d) > rc(cnQd) where m is a provider of c and n
is its customer.

From Claim C.3 we can also conclude that n 6= d
(otherwise, c would have a path available through d in
T2, and since rc(cd) = rc(T1) > rc(T2) = rc(cmR2d), c
would not route through m in T2.)

Claim C.4. The node n uses a different path for its
traffic in T2 than in T1.

Proof. Assume toward contradiction that n uses the
same path nQd from T1 also in T2.

From Claim C.3 we know that rc(cmR2d) < rc(cnQd),
so if n would have announced to c its true path to the
destination then c would have routed through n also in
in T2. Hence n must have announced a false path in
T2. On the other hand we know that n is honest (since
n 6= m), and so from the false path lemma (Lemma B.1)
we can write path that n uses in T2 as Q = Q1mQ2

and the false path that n announces to c as nQ′d for
Q′ = Q1mQ

′
2, where Q′2 6= Q2. (Note that both Q and

Q′ begin with the true path nQ1m.) We now distin-
guish between two cases: either n is a customer of c, or
it is not.

1. If n is a customer of c, then applying Lemma C.1
to the permissible path cnQd = cnQ1mQ2d, we
conclude that dmust be a strict transitive customer
of c on this path, and therefore also m must be a

strict transitive customer of c. But c is a customer
of m, so we have a customer-provider loop in the
graph, violating the Topology condition GR1.

2. If n is not a customer of c, then c must use next-hop
policy with n. (This follows since c is an attractee
of m, so it must use next-hop policy with all its
providers and peers, including with n.)
Therefore the false path nQ1mQ

′
2d that n announces

to c must include c itself, or else we would have
rc(cnQ′d) = rc(cnQd) > rc(cmR2d) (where the
equality follows from the fact that c uses next hop
policy with n and the inequality from Claim C.3)
and c would not have routed on cmR2d in T2. But
the path nQ1mQ2d that n uses in T2 does not go
through c (because c uses the path cnQ1mQ2d in
T1, and if c was on either Q1 or Q2 we would have
a routing loop in T1). It follows that the false path
mQ′2d that n announces to c in T2 must include c.
We now re-write the path nQ′d as nQ1mQ

′′
2cQ

′′
3d.

(Note that Q′′3 cannot include the node m, or else
this path would have included a routing loop and
n would not have chosen it in T2.)
However, c could not have announced the path
cQ′′3d in T2, since c routes through m in T2 and Q′′3
does not include the node m. This contradicts our
assumption that the network uses path or loop ver-
ification: if we had path verification then no node
could have announced a path that includes cQ′′3d,
and if we only have loop verification then c would
have seen this announcement from n and raised an
alarm, and in particular it would not have routed
through m.

With both these cases leading to contradictions, we
conclude that the node n cannot use the path nQd
in T2.

Claim C.5. The node n is a strict transitive customer
of m, and the destination d is a strict transitive cus-
tomer of n over the T1 path nQd.

Proof. If n is a direct customer of c then the first part of
the lemma follow trivially (since c is a customer of m),

17

and the second part follows by applying Lemma C.1 to
the permissible path cnQd.

If n is not a customer of c, then c must use next hop
policy with n. Let nQ′d be that path that n announces
to c in the manipulated outcome. Then it must be
that c is somewhere on the path Q′, or else we would
have rc(cnQd) = rc(cnQ′d) > rc(cmR2d) (where the
equality due to the fact that c uses next-hop policy with
n and the last inequality due to Claim C.3), and c would
not have chosen to route through m in T2.

Since c routes through m in T2, then it also announces
a path that goes through m. Denote by cmR′d the
path announced by c. As before, we use path or loop
verification at c to conclude that the path nQ′d that
is announced by n to c must have cmR′d as a suffix
(otherwise c would raise an alarm when it receives the
announcement nQ′d from n). Therefore re-write the
path nQ′d as nQ′1cmR

′d. We know that Q′1 does not
include m (or else n wouldn’t have chosen this path
since it would contain a routing loop through m). Hence
the partial path nQ′1cm must be the one that is actually
used to route traffic in T2 (and in particular it must be
a permissible path). Applying Lemma C.1 to this path,
we conclude that n is a strict transitive customer of c
(and therefore also of m).

Moreover, since n is a strict transitive customer of c
then the Topology condition GR1 says that it cannot
be a provider of c. We assumed that n is also not a
customer of c, so they must be peers. We can now apply
Lemma C.1 to the permissible path cnQd, to conclude
that the destination d is a strict transitive customer of n
over this path.

Claims C.4 and C.5 established the existence of a
node n which is (1) a strict transitive customer of the
manipulator m, and where (2) n uses a different path in
T2 than in T1, and (3) the destination d is a strict tran-
sitive customer of n along n’s path in T1. Lemma C.2
asserts that there must be another node n1 6= n which
is a strict transitive customer of n, where n1 also sat-
isfies the conditions (1)-(3). Repeated applications of
this lemma thus give us a sequence of nodes n1, n2, . . .
such that for all i ni 6= ni−1 and ni is a strict transitive
customer of ni−1 (and they all satisfy the same condi-
tions). Since there are a finite number of nodes in the
AS graph, eventually one of the nodes in the sequence
will repeat, resulting in a customer-provider cycle and
violating the Topology condition GR1.

We see that our assumption that c routes through m
in T2 leads to a contradiction, this concluding the proof
of Lemma 5.1.

C.2 All next-hop with peers & providers.
We now prove Lemma 5.3, that tells us that networks

without traffic attraction where all nodes use next-hop

amam

b a'
T

⇒

dT1

T1T2

dT1

nm
R

nm

a0

T

T1
T2

a0

TT

d

T1

d

T1T2

Figure 12: The proof of Lemma 5.3. Left, n is a
customer of m. Right, n is not.

policy with all their providers and peers are incentive
compatible.

Proof of Lemma 5.3. Let m be a “manipulator node”,
and let T1 be the unique path assignment when m sets
its ranking to equal its valuations (and all other nodes
use their ranking as before).

Assume to the contrary, that m can bring about a dif-
ferent path assignment T2 such that vm(T2) > vm(T1).
We use Lemma C.2 to show that this assumption im-
plies a customer-provider loop, violating the Topology
condition GR1. Denote the T2 path of m by mnQd (i.e.,
n is the next hop in the T2 path of m). We distinguish
two cases: either n is a customer of m, or it is not:

1. If n is a customer of m — that provides transit to
m’s traffic along the path mnQd — then we can
apply Lemma C.1 to see that the destination must
be a strict transitive customer of m (and n) along
this path. Since vm(T2) > vm(T1) and in T1 we
know that m sets its algorithmic ranking to equal
its valuation function, then it must be that n uses a
different paths in T2 and T1 (or else m would have
chosen n also in T1, which means that it was using
the same path in both T1 and T2).

2. If n not is a customer of m, then m must use next
hop policy with n in its valuation function. This
means that for every path nQ′d that does not go
through m, we have vm(mnQ′d) = vm(mnQd) =
vm(T2) > vm(T1). So it must be that n routes
through m in T1 (or else m would have routed
thought n in T1 and we would get vm(T2) = vm(T1)).
Denote the path that n takes in T1 by nRmR′d.
Since n is not a customer of m and since vm(T2) =
vm(mnQd) > vm(mR′d) = vm(T1), the Prefer-
ences condition GR3 implies that m’s next hop on
the path mR′d in T1 cannot be m’s customer. But
since m transits n’s traffic on the path nRmR′d
in T1, then applying Lemma C.1 to this path (upto
m’s next hop on mR′d) we get that n must be a
strict transitive customer of m along R. This, in
turn, implies that n cannot be a provider of m (be-
cause of the Topology condition GR1), so it must

18

be a peer of m.
Since n is a peer of m, then applying Lemma C.1 to
the path mnQd in T2 implies that the destination
d is a strict transitive customer of n along path Q.

In both cases we concluded that the node n satisfies
(i) n is a strict transitive customer of m, (ii) n uses a
different path in T1 and in T2, and (iii) the destination
d is a strict transitive customer of n along n’s T2 path.

From items 1 and 3, it follows that node m cannot
be on the path nQd in T2 (otherwise we would have
a customer-provider cycle). Since all nodes except the
manipulator act honestly, it follows that all nodes on
the path nQd in T2 announce this true path to their
neighbors.

Let a0 be the node closest to the destination on the
path nQd that uses a different path in T2 than in T1

(we know that such a node exists since in particular n
is such a node). It follows that a0’s T2 path is available
to a0 in T1, and that a0 receives the announcement of
this path in both T1 and T2. Since a0 chooses a different
path in T1, it follows that ra0(T1) > ra0(T2).

Now, if we apply the Preferences condition GR3 to
a0’s algorithmic ranking, we must have that a0’s next
hop in T1 is a customer. Then, applying Lemma C.1 to
a0’s T1 path, we have that the destination d must be a
strict transitive customer of a0 along a0’s T1 path.

We established the existence of a node a0 such that
(1) a0 is a strict transitive customer of n (and there-
fore also of m), (2) a0 uses a different path in T1 than
in T2, and (3) the destination d is a strict transitive
customer of a0 along a0’s T1 path. These are the con-
ditions needed for Lemma C.2, and we can now repeat-
edly apply this lemma to obtain a sequence of nodes
a0, a1, a2, ... connected by customer-provider edges. Since
there are a finite number of nodes in the AS graph,
eventually one of the nodes in the sequence will repeat,
resulting in a customer-provider cycle and violating the
Topology condition GR1).

19

