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1. Introduction

Enterprise networks are medium-to-large networks which connect a few hundred or a few thousand end hosts to 

each other and to other networks, such as the Internet.  The networks of a typical college campus and a large business would 

qualify as examples of enterprise networks.  Providing reliable and efficient networking service while minimizing the need 

for network administration is a critical need in today's world where availability is a priority but the time and artifice of 

human network administrators is often at a premium.  Some protocol must be used to serve as the foundation for these 

networks.  However, the most obvious choices for this task (Internet Protocol and Ethernet) are both inappropriate; Ethernet 

cannot scale to large networks, and IP scales well but is overly difficult to configure effectively.  The method that is used in 

practice (connecting small Ethernet segments with a core of IP routers) is better than either standalone protocol, but it still 

leaves plenty of room for improvement.  A new Scalable and Efficient Zero-configuration Enterprise network architecture 

(SEIZE) has been designed to improve upon the current hybrid scheme by incorporating the best aspects of IP and Ethernet 

into a single unified protocol.  During the course of this semester, I re-engineered SEIZE to use a faster packet forwarder 

that runs inside each switch's operating system kernel.  This replacement combined with various other code-level 

optimizations resulted in a switch's unidirectional throughput increasing from 300 Mbps to 916 Mbps.  This enhancement in 

processing speed makes the architecture much more feasible for the traffic demands of high-bandwidth enterprise networks.

1.1. Ethernet

Ethernet is a data link layer protocol in the networking protocol stack.  It is practically ubiquitous – it has been very 

popular in various incarnations since its creation in the 1970s by researchers at Xerox Palo Alto Research Center.1  Ethernet 

is a shared-medium data transmission protocol in which multiple hosts are connected to a common bus and packetized 

messages from one host to another are broadcast over this shared bus.  Unsurprisingly, this very basic scheme is extremely 

inefficient, in that two hosts who try to send data simultaneously cause a collision on the shared line and both packets are 

lost and must be retransmitted.  For this reason, pure Ethernet is only usable on small segments of a few dozen 

communicating hosts at most, when the probability of collisions caused by simultaneous transmission is low.  

Ethernet is much more efficient when such small segments are connected by simple switches which forward traffic 

between segments.  The switches perform fairly minimal processing – the only appreciable work that they do is accumulate 

address information about the sources of the messages that they receive into a forwarding table.  This table is then is used to 

reduce the size of the broadcast domain for messages later sent to these known sources: in this case, packets are only 

broadcast on the destination host's subnet, rather than the entire Ethernet network.  One convenient aspect of the Ethernet 
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design is that the network as a whole is self-learning; that is, the network devices (switches and end-hosts) do not need to be 

explicitly configured with any information about the network topology or addressing in order to function.  Rather, the 

protocol functions correctly due to this simple but clever knowledge accumulation system on the switches.  

In fact, Ethernet's self-learning capabilities are sufficiently well-designed such that the network itself requires no 

explicit configuration of any kind.  It is a plug-and-play protocol – a user can connect any network device which 

implements the Ethernet protocol to the appropriate physical medium on an Ethernet segment and the existing network will 

self-learn so that the host and the network devices can communicate with each other.  This is an incredibly convenient 

system: adding a host to the network requires no intervention or setup on the part of a system administrator.  Installing the 

network infrastructure (switches) is also quite simple, since a switch requires no explicit configuration – its forwarding 

tables will be automatically populated by the accumulation system once traffic starts flowing through it.  

A final aspect of Ethernet which enables this simplicity and convenience is the use of MAC (Media Access 

Control) addresses for host identification.  MAC addresses are 48-bit globally unique addresses burned into virtually every 

network-capable device at  time of manufacture (Peterson 119).  The global uniqueness of MAC addresses ensures that no 

two network devices in the world share the same address, meaning that it is certainly safe to depend on these addresses as 

unique identifiers in a local enterprise network.  The permanence of each machine's address is extremely desirable in terms 

of positive and persistent identification of each host.  This greatly simplifies various aspects of network management, such 

as mobility, troubleshooting, and long-lived access control policies, because there is no way that a host can ever change its 

identity.2  

The downside of Ethernet is that this significant convenience comes at the price of a serious compromise to 

network efficiency.  Ethernet inherently relies on small-scale broadcasting (within segments) and also makes heavy use of 

whole-network broadcasting for common services like Address Resolution Protocol (ARP) and Dynamic Host 

Configuration Protocol (DHCP) to enable host bootstrapping.  These messages are generally intended for only a single 

recipient, but because the communicating network devices do not have a complete view of the network topology, the 

messages must be flooded to all connected devices in order to ensure delivery to the single targeted device.  Obviously, this 

is inefficient in many ways: an inordinate amount of (finite) network bandwidth is used, and each network device wastes 

clock cycles while responding to interrupts for arriving packets which are not intended for them.  

Ethernet also has the disadvantage of using spanning trees to construct forwarding paths, and the resulting paths are 

generally a few hops longer than they ought to be.  That is, use of the Ethernet protocol results in packet delivery over a path 
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which is not the shortest in existence between the source and the destination.  Obviously, this constitutes another waste of 

network bandwidth and CPU time.  In summary, Ethernet is an extremely convenient protocol due to its zero-configuration 

nature.  However, largely due to the mechanisms which enable this convenience, the protocol cannot scale to networks of 

more than a few hundred hosts (Peterson 119).  Therefore, it is not a viable solution for an enterprise network consisting of 

thousands of communicating computers.  

1.2. Internet Protocol

Internet Protocol (IP) implements the network layer of the protocol stack, sitting above some data link layer 

protocol (usually Ethernet).  Like Ethernet, IP can be used to deliver packets containing arbitrary data between different end 

hosts connected to IP routers.  IP is a richer and more complex protocol, though, and this complexity allows for greater 

performance and efficiency at the expense of higher amounts of human network administration.  This greater efficiency is 

exemplified, for example, by the lessened amount of broadcasting of packets as compared to Ethernet, and the fact that the 

packet delivery path for IP between two arbitrary end hosts is designed to be the shortest path available for the given 

network topology.  

This efficiency comes at a price of increased demand on network administrators.  In contrast to Ethernet's design 

principle of zero-configuration, IP is fairly demanding on network administrators – for example, it is up to the 

administrators to manually assign a 32-bit IP address to identify each host or to designate some protocol (usually DHCP) to 

automate this assignment process.  Even with the help of DHCP for individual host assignations, network administrators are 

still forced to manually divide the addresses allocated to the entire network among its various subnets.  This is not a trivial 

process, especially in cases of high host mobility between subnets (for example, mobile hosts commonly move between 

subnets in a wireless local area network (LAN)).  In these situations, administrators must allocate IP address blocks based 

on worst case load, which is often much more demanding than the average case.  This is a necessary step, though, or else the 

network administrators risk denying service to a network newcomer due to a lack of IP addresses on his subnet.  Ultimately, 

IP's demand for static allocation of hierarchical IP addresses among subnets places a heavy burden on network 

administrators and leads to some degree of addressing fragmentation and inefficiency (Kim 1).   Ethernet's use of the MAC 

address permanently assigned to each network interface card (NIC) in the network for routing purposes is much more 

attractive from the standpoint of minimizing the amount of network administration.  

The transient nature of IP addressing also complicates the implementation of persistent access control policies 

throughout different parts of the network.  In other words, it is hard to keep track of a host whose identity is constantly 
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changing (which is a very real possibility, especially in high-mobility networks such as wireless LANs).  IP is an efficient 

protocol, but it is not feasible for a network of thousands of users – the high degree of human administration required (even 

with the help of DHCP and other tools and protocols) is prohibitive, due to the high degree of work required to simply keep 

the network running and also due to the probability (which rises with the size of the network) that some human 

configuration error will result in an interruption of service.  

1.3. An IP/Ethernet Hybrid: Connecting Ethernet Segments with IP Routers

As described above, neither IP nor Ethernet is a perfect solution as the single network protocol for an enterprise 

network.  For this reason, today's enterprise networks use a combination of these two schemes.  This hybrid implementation 

connects Ethernet-based subnets with IP routers.  Then, simple broadcasting Ethernet is used for host-to-host traffic internal 

to each subnet, and IP routers are used for shortest path routing for communication between different subnets (Figure 1). 

This hybrid scheme is a reasonable plan, because Ethernet's inherent inefficiency is acceptable within small subnets of no 

more than a few dozen hosts, especially when this inefficiency allows for convenient plug-and-play behavior.  Meanwhile, 

the use of IP on a macroscopic scale between Ethernet subnets ensures that inter-segment traffic is sent over shortest paths, 

which is an efficient use of network bandwidth.  
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Figure 1: Ethernet segments connected by IP routers
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It is by no means an ideal solution, though: host  configuration required at the IP level can be automatically handled 

by DHCP, but coordinating this service between different subnets across the network is still a cumbersome task that a 

human network administrator must perform manually.   This architecture also does not address IP's problem of addressing 

inefficiencies brought about by the need to split up the network's addresses among subnets whose user bases can grow and 

shrink dynamically as users move throughout the network.  Fundamentally, this scheme is still undesirable because it uses 

transient IP addresses for the purposes of routing – there is no concept of a “permanent” identity of a particular host as that 

computer moves between different physical subnets of the network.  This lack of positive, permanent identification 

complicates the challenge of maintaining consistent access control policies throughout the network.  Certain protocols such 

as ARP and DHCP still make heavy use of broadcasting, but it is only over individual subnets rather than the entire network, 

so this is less wasteful than pure Ethernet in terms of bandwidth.  The combination of the two protocols is preferable to a 

scheme of pure Ethernet or pure IP, but there is clearly room for improvement in terms of both efficiency and scalability.  

2. SEIZE

SEIZE is a new network architecture designed to replace the imperfect Ethernet-IP hybrid currently used for 

enterprise networks.  It was originally designed by Changhoon Kim and Jennifer Rexford at Princeton University.  It can be 

viewed largely as an enhancement to Ethernet which mitigates the inefficiencies of that protocol while retaining the 

attractive simplicity of zero-configuration plug-and-play.  

2.1. Principles

The goal of SEIZE is to combine the best properties of IP and Ethernet into a single protocol for use in an 

enterprise network.  The key objectives of the protocol are efficiency and simplicity.  Efficiency refers to minimizing the 

amount of wasted resources within the network; this can include everything from wasted clock cycles on individual hosts to 

link bandwidth wasted by sending a packet intended for a single recipient to multiple destinations.  SEIZE also strives for 

simplicity in presenting a zero-configuration, plug-and-play scheme for the network – in other words, there should be no 

manual intercession by network administrators for regular events such as addition of end hosts to the network.  Ultimately, 

SEIZE aims to combine the efficiency of IP with the convenience of Ethernet while remaining backwards-compatible with 

end hosts – a user should not need to install special software or drivers to make use of a SEIZE network.  

2.2. Architecture and Mechanisms
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SEIZE's design is largely dictated by its goals of efficiency and simplicity.  For efficiency, SEIZE minimizes the 

extensive use of flooding and broadcasting which is utilized by Ethernet to enable communication with hosts whose 

network locations are unknown by the sender.  Instead, SEIZE utilizes a clever scheme which reactively resolves the 

locations of unknown hosts using a distributed hash table as a directory system.  This innovation obviates the need to flood 

packets to all neighbors to reach unknown destinations – an inefficient system that is found in pure Ethernet.  Rather, SEIZE 

guarantees that unicast traffic is only actually sent to one host, even if this represents the first communication between those 

two hosts.  Additionally, SEIZE eliminates the network-wide broadcasting that is used by Ethernet to bootstrap a new host 

into the network.  Instead, a new host simply registers its MAC address with a special ingress switch and the ingress switch 

updates a hash ring that is shared between all switches in the network (Kim 4).  Then, using the shared ring as a directory 

service, any switch in the network can locate the switch which services the newly-added host, and traffic can be sent to this 

ingress switch to be delivered directly to the host.  

SEIZE's mechanisms to reduce broadcasting as compared to Ethernet helps SEIZE scale to huge networks much 

more effectively than Ethernet.  At the same time, SEIZE retains Ethernet's convenient simplicity by using permanent and 

unchanging MAC addresses for routing.  Network administrators can choose to assign an IP address to each host for 

application-level compatibility and reachability from external networks, but it is not necessary for routing purposes, and 

they need not be assigned in the hierarchical manner which complicates the hybrid IP/Ethernet implementation used in 

today's enterprise networks.  The use of MAC addresses for identification also helps network administrators maintain 

consistent access control policies on a per-host basis throughout the entire network.  

SEIZE retains the shortest-path routing of IP by using Open Shortest Path First (OSPF) routing between switches. 

This represents another design choice which borrows from IP in order to optimize efficiency.  It represents an improvement 

over Ethernet, which is generally configured to forward packets across a single spanning tree which touches each switch in 

the network and does not contain any loops.  Spanning trees are used for simplicity and to prevent packets from being 

endlessly duplicated through forwarding loops in the network, but they generally result in overly-long paths (e.g., too many 

hops) between any two switches in the tree.  Shortest-path routing is a much more efficient scheme, in that it minimizes the 

number of switches involved in sending a given packet between a source and a destination, and it conserves the network 

bandwidth used for this transfer.  

A final design goal for SEIZE was to avoid necessitating any changes to the end-host – in other words, no new 

programs or protocols should be needed on a computer that wishes to join the network.  To this effect, SEIZE runs within 
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the existing network protocol stack and can be easily deployed on networks that support any Ethernet standard, such as 

IEEE 802.3 Ethernet and IEEE 802.11 Wireless LAN (Kim 2).      

2.3. Implementation

SEIZE was first implemented by Changhoon Kim as a software router built from several different open source 

networking components and proprietary code written as extensions to these components.  The entire network (consisting of 

a few hosts and special SEIZE switches connecting them) runs on general purpose desktop computer hardware: the hosts are 

completely unmodified and run the normal TCP/IP networking protocol stack, and the switches are configured with the 

routing tools depicted in Figure 2.

2.3.1. XORP

XORP (eXtensible Open Router Platform) is an open source software router that allows developers to utilize 

existing routing protocols or develop and test new algorithms for networking research.3  It is implemented in C++ and is 

Figure 2: A SEIZE switch consists of a XORP router which uses a Click packet forwarding engine.  
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focused on providing a stable and complete routing platform that is simultaneously open and accessible for developers who 

wish to change any aspect of its behavior.  In this sense, it is very useful as a research tool for prototyping new networking 

technology, as it allows researchers to utilize regular desktop computers as customized routers, without necessitating 

specialized (and often costly) dedicated routing hardware.  

XORP coordinates the higher-level aspects of a router, such as implementing routing algorithms (including 

common standards such as OSPF and RIP, or custom policies written by the developer) while leaving the actual low-level 

mechanics of forwarding packets with the switch's network interface cards to some other piece of software.  This software is 

usually either the internal packet forwarding engine of the underlying operating system or some other hardware- or 

software-based forwarder.  For example, XORP can use the Linux kernel itself as its packet forwarding component, or it can 

use a third-party software package such as Click.    

The main purpose of XORP within the current SEIZE implementation is to execute Open Shortest Path First 

(OSPF) link-state routing between the different switches within the network.  OSPF is a shortest-path routing algorithm 

commonly used with IP routers, and the benefit here is the same – no packets are sent over overly-long paths, thus 

conserving clock cycles of the networks' switches and bandwidth on the networks' links.  For our project, we didn't write 

any extensions to XORP; rather, we simply used the basic XORP code with a customized Click forwarding engine.  

2.3.2. Click

Click is an open source modular router project primarily developed at MIT and UCLA.4  Like XORP, it is 

developed in C++ and is designed to be extensible and customizable by any developer who wishes to deploy his own code 

on the system.  Click differs from XORP in that XORP focuses on implementing high-level routing protocols, but Click is 

used (by XORP or as a standalone module) to actually forward data at the packet level according to one of these routing 

policies.  A Click router is composed of one or more different “elements”, which are pieced together in a directed graph 

which emulates packet flow through the router system.  There are dozens of default elements included with the standard 

Click distribution; some examples include modules traffic-control algorithms, priority traffic schedulers, round robin 

schedulers, multiplexers and demultiplexers, and so on.  By arranging these elements in different configurations, Click is 

flexible enough to simulate many different types of network devices, such as IP routers, Ethernet switches, and innumerable 

variations of each of these devices with various customizations and behaviors.5  Click developers also have the option of 

adding custom elements to the Click library to create specialized routing behaviors in networking projects.  This is exactly 

how SEIZE is implemented – as a custom Click element called SeizeSwitch which is combined with a standard set of Click 
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elements inside a standard XORP software router.  

The Click package consists of two distinct components: a user-space engine and a kernel module, each of which 

serve to interpret a user's routing configuration into an actual executing program which forwards packets according to the 

structure of the configuration and the definitions of the Click elements that it utilizes.  The packet forwarding behavior 

generated by each engine is identical (that is, given the same router configuration, packets are routed in exactly the same 

manner by both the user-space program and the kernel module).  The sole difference is that the user-space engine runs on a 

computer as a normal, unprivileged program, while the kernel module is dynamically linked into the kernel and therefore 

runs inside the operating system itself. 

The kernel module is designed to forward packets at a significantly higher rate than the user-space program.  This 

is due to the method that an operating system uses to write a data packet to the attached network (Figure 3).  A user-level 

program has the packet in memory (RAM) and performs some system call, which traps to the kernel and copies the packet 

to some reserved buffer in the kernel's memory (also in RAM).  The kernel then copies the packet over the system bus to 

some dedicated fast memory buffer located directly on the network interface card, which finally sends the bytes out onto the 

physical wire of the network.6   This packet gets copied three separate times just to make it out onto the network once (that 

Figure 3: A packet is copied many times between different parts of memory when a user-space packet 

forwarder is used.  Image from Tanenbaum (2001) page 296.  
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is, we are assuming that the transmission occurs successfully and there are no retransmissions required).  For a switch to 

actually forward a packet, it must be copied from the network card up to the forwarding engine in user-space (three copies) 

where it is examined and a routing decision is made – then the packet must be copied three more times to get back out to the 

network for further delivery.  

A packet forwarder running in the kernel helps reduce forwarding latency by eliminating the copy operations 

between user memory and kernel memory.  Moving the Click engine to the kernel reduces the number of packet copy 

operations necessary to forward a single packet from six to four.  In today's computing environment where fast memory is 

often the limiting factor in computation speed, the opportunity to reduce dependence on system memory by reducing the 

number of times that the same data is copied cannot be ignored as an opportunity for optimization.  Considering that a 

typical switch in a congested enterprise network might receive a few hundred thousand packets every second, it is clear that 

the use of a kernel-level packet forwarding engine might dramatically improve the performance of each switch.  Therefore, 

my primary goal this semester was to replace the user-space Click engine with the kernel module, in hopes of improving the 

switch's packet throughput and making SEIZE more appropriate for a large-scale enterprise deployment.  

2.4. Evaluation Settings 

To get a sense of how SEIZE will perform in a real world situation, it is necessary to deploy the system on a 

physical network of computers and benchmark its performance in terms of  data throughput.  

2.4.1. Emulab

Emulab is a time-shared network testbed hosted by the University of Utah and usable free of charge for university 

researchers around the world.  It is an extremely flexible and powerful testing resource, allowing users to essentially lease 

an arbitrary number of computers for a few hours, connect them to construct virtually any sort of network topology, and 

then test any experiment on these connected nodes.  It was an ideal solution for testing SEIZE: it is simple to create 

switch/host topologies as simple or complex as desired and monitor traffic speeds and levels throughout the entire network. 

A particularly useful feature of Emulab for my work this semester was the option which allows users to create and 

deploy customized operating systems on test nodes.  Researchers can customize a particular computer with a modified 

operating system or a new suite of software and then run an Emulab process which essentially collects all of the information 

about that machine into a specially-formatted disk image.  Then, this disk image can be automatically loaded onto clean 

machines in the future, without any further configuration necessary.  This obviates the need to configure each machine 

individually for experiments.  I used this feature of Emulab to create a customized version of the Linux operating system 
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kernel which was compatible with the Click kernel module necessary for high-speed packet forwarding.  

2.4.2. Testing

The actual network architecture of SEIZE is analogous to that of Ethernet.  Hosts are connected to switches via 

Ethernet cables, and the switches are in turn connected to each other to form a wired local area network.  For my tests in 

Emulab, the topology was specified in a text file that used a simple configuration language to declare the existence of 

different nodes and connect them in a point-to-point manner.  Below are two examples of simple network topologies that I 

used during the semester (Figure 4).  

An Emulab experiment is “swapped in” and mapped to an appropriate set of connected nodes as defined by the 

experiment configuration file.  Once each machine's boot sequence is complete, a sequence of setup scripts is run in order to 

prepare all hosts and switches for the experiment.  At this point, the XORP router is invoked on each switch, which in turn 

instantiates the Click forwarding engine, and hosts are then able to send data to each other with any program that utilizes the 

TCP/IP networking stack.  For testing purposes, this includes tools such as ping, iperf, and tcpreplay.7, 8

Each host is identified by its network adapter's 48-bit MAC address, just as in Ethernet.  IP addresses are assigned 

to each host for convenience and usability during the testing process.  The hosts are configured by the initial setup script so 

Figure 4: Two separate network topologies.  Nodes named with an "h" indicate hosts (end-users),  

and nodes named with "sw" indicate SEIZE switches.  All links have a capacity of 1 Gbps.  
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that they are on the same subnet.  As a result, each host tries to resolve the addresses of other hosts with local ARP requests, 

rather than sending packets to an external gateway, like a switch or router.  These ARP requests initiate the SEIZE routing 

mechanisms, and SEIZE takes care of packet forwarding (replacing Ethernet) from this point onward.  

3. SEIZE packet forwarding in the Linux kernel

The original SEIZE prototype was an effective demonstration of the potential of the architecture – each switch 

routed packets correctly and demonstrated a reasonably high packet throughput of 300 Mbps over a gigabit network. 

However, this throughput is insufficient to meet the traffic demands of a large enterprise setting.  Furthermore, the 

prototype's data bandwidth of only 300 Mbps on a network whose maximum bandwidth is 1 Gbps was indicative of an 

inefficient use of network resources.  For my work this semester, I replaced the user-level Click engine inside each switch 

with the Click kernel module.  My hope was that shifting a significant portion of the SEIZE architecture into the kernel 

would result in a speedup that would enable the architecture's use in larger networks with higher bandwidth requirements.  

3.1. Porting SEIZE from FreeBSD to Linux

My overall goal this semester was to replace the user-level Click forwarding engine inside the existing SEIZE 

switch prototype with an equivalent kernel module.  However, the original SEIZE prototype ran on the FreeBSD operating 

system, and the kernel-level Click module for FreeBSD is somewhat embryonic at this point in time.  Support for kernel-

mode packet forwarding in Linux is much more mature and more widely utilized than the analogous FreeBSD package.  For 

this reason, my advisors and I decided that porting the existing SEIZE architecture from FreeBSD to Linux was a critical 

step in improving SEIZE's performance with kernel-level Click.  It also seemed like a generally good idea to move the 

software to Linux, in light of Linux's more sizable user base (both generally and particularly with respect to Click usage). 

This operating system port was not trivial, though: some of the challenges that I had to address are described below.  

3.1.1. Recompiling Click and XORP

The existing Click executables were compiled for FreeBSD, so I had to replace them with Linux executables.  I 

decided to upgrade from version 1.5 of the Click software to the recently released version 1.6 to take advantage of various 

optimizations and bug fixes completed in the new version.  In addition to generally compiling a Linux version of the user-

space packet forwarder, I had to take special steps to compile and use the Linux kernel module, including a patch of the 

Linux kernel with a special Click modification package.  This patch mostly fixes a few header files so that the C++ compiler 

accepts them, adds certain additional network functionality, and redefines “struct device” within the kernel to make it 
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compatible with Click.9  

The patch itself was fairly minimal, but for its functionality to be recognized, the kernel had to be recompiled.  This 

was a fairly complex process, due largely to the fact that my test network was located at a remote location at the University 

of Utah's Emulab network testbed.  I eventually had to use a TTY program to gain direct serial-line access to the booting 

machine to enable the newly-installed modified kernel, as normal SSH access was only available after boot time.  I used the 

disk image utility provided by the Emulab testbed to create a reusable image of the newly-created  operating system with 

kernel-Click compatibility compiled into the kernel.10  The final result was essentially a normal copy of Fedora Core 6 

running the Linux 2.6.19.2 kernel with modified headers to allow kernel-Click to be dynamically loaded into the kernel at 

runtime.  This operating system image has proven extremely useful during later testing, as it has alleviated the need to 

engage in the time-consuming process of  repeatedly recompiling and reinstalling Click-enabled kernels on different nodes.  

Compiling XORP for Linux was a much easier task in comparison.  Unlike the kernel recompilation required for 

Click, I didn't need to take any special steps for XORP – a time-consuming but simple compilation at user level on the 

Linux platform was sufficient.  I decided to upgrade from version 1.3 of the software to version 1.4 for the same reasons 

that I upgraded Click – the newer version was recommended by the developers as being more stable than version 1.3.  

3.1.2. Rewriting Configuration Scripts

SEIZE uses a set of shell and AWK scripts to set up each machine for network communication.  The scripts 

generally perform the roles of setting up each machine's interfaces and configuring the XORP router and Click forwarding 

engine in each switch.   I had to rewrite significant portions of these scripts to accommodate the move from FreeBSD to 

Linux, mainly because these two operating systems utilize different directories for common networking resources and 

different commands to access this information.  In these cases, the modifications I made were mostly changes of syntax – 

the functionality was retained in the FreeBSD to Linux switch, but the language necessary to enable that behavior 

underwent significant changes.  

 custom_init: custom_init is a shell script which is run upon startup on each switch and host.  It executes all of its 

commands as the root user, as this is necessary to perform most meaningful networking tasks in Unix-like systems. 

One example of a task performed by custom_init is disabling each machine's capability to route packets using its 

own internal kernel code (we want to route packets with the kernel, but using different code to do so – namely, the 

Click software).  custom_init also creates a group called “xorp” for use by the XORP router processes, and it 

creates a mount point at /click which is eventually used to mount a virtual filesystem corresponding to the Click 
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router running on the switch.  This virtual filesystem is analogous to the /proc filesystem found in Unix variants – 

it is written by the router itself and can be read by other users to get a sense of the router's performance at as it 

runs.  The configuration can also be rewritten while the router runs, which enables dynamic reconfiguration of the 

router's behavior.  Finally, custom_init sets some environment variables in anticipation of calling init_config if the 

current machine is defined as a switch and h_init if the machine is defined as a host.  

 init_config: init_config is an AWK script called by custom_init that is only run on SEIZE switches.  The input to 

the script is a description of the emulation network topology and a generator for the Click forwarding engine 

abstraction.  The script generates a XORP router configuration and a configuration-generating script for the Click 

forwarding engine used by the XORP router.  Essentially, this script inserts the address information about the 

machine and its interfaces (sent from the custom_init script) into a template for each of these configuration files.  

 h_init: h_init is a shell script called by custom_init that is only run on hosts and not switches.  It sets the host's 

maximum transmission unit (MTU) to 1466 bytes.  This value is used because SEIZE switches encapsulate all 

packets inside an extra Ethernet frame and IP packet, which combine to require 34 bytes of header space, so the 

total maximum packet size in a SEIZE-enabled network is 1466 + 34 = 1500 bytes, which is the maximum MTU 

supported by an Ethernet-based network.  This script also reconfigures its machine's interfaces to be compatible 

with the experiment.  

3.2. Replacing user-level Click with kernel-level Click

Once the move from FreeBSD to Linux was complete, I had to take steps to add the kernel-mode packet forwarder 

to the SEIZE architecture to enable higher switch performance. A related secondary goal was to compile the Linux user-

level Click module for comparison against both the FreeBSD user-level module and the Linux kernel module.  

3.2.1. Modifying Click configuration generator script and XORP configuration file

One problem that arose during the upgrade from user-level Click to the kernel module involved a difference in the 

way that the two forwarding engines handled control-plane packets for the OSPF routing protocol.  SEIZE's network traffic 

can be divided into two categories: data-plane traffic (arbitrary messages between hosts, passing through one or more 

switches during the transit) and control-plane traffic (messages between switches which are used to update each switch's 

OSPF routing tables).  For the system to function properly, Click must receive copies of all packets and forward them to 

other machines as appropriate, and the XORP process (which handles all OSPF routing) must receive copies of the control-

plane packets only.  When user-level Click was used as the switch's forwarding engine, each switch was configured so that 
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control-plane packets were echoed automatically to XORP (another user-level process).  When the Click kernel module was 

substituted, however, it “intercepted” all packets – control-plane and data-plane – and did not forward the control-plane 

OSPF messages to XORP.  To work around this problem, it was necessary to explicitly configure the Click engine to inspect 

the IP_PROTOCOL field of every incoming IP packet header.  A value of 0x59 at this position indicates that the packet is an 

OSPF control message.  The Click configuration was rewritten to include this check and send all OSPF control messages to 

the XORP process in user memory.  

One relatively minor task that I had to perform was to update the XORP router configuration file so that it invokes 

kernel-mode Click instead of the user-space version.  I added kernel-mode Click as the option enabled by default, because 

its performance is demonstrably superior than the user-level equivalent.  For simplicity, future users can revert to user-level 

Click if desired simply by changing two lines of the file to enable user Click and disable kernel Click.  

3.2.2. Removing user-level libraries from custom SEIZE code

A significant challenge in my effort to replace user-space Click with kernel-mode Click was the elimination of all 

user-space libraries from the Click code of the SeizeSwitch.  It is illegal to utilize user-space library functions in code that 

runs in the kernel (the result is link-time and run-time errors), so I had to enact several workaround solutions which 

achieved the same results as the original user-space libraries without actually resorting to any user-level code.  

MD5 hashing libraries

MD5 is a secure hash commonly used for encryption purposes and to fingerprint files for equivalence testing.  It is 

considered a fairly strong hash and is often used for security purposes; its output space is a sizable 128 bits and collisions 

involving different hash arguments are minimal.11  The SEIZE prototype used MD5 hashing with a switch's 48-bit MAC 

address as its argument.  The result of this hash is utilized as a unique identifier – a fingerprint for that particular switch – 

which determines the switch's position on the distributed hash ring.  Then, each SEIZE switch in the LAN can use this ring 

(which acts as a kind of directory service) to find the switch directly connected to a destination host whose location is 

unresolved.  Finally, the lookup process is completed when this discovered switch reports the MAC address of the unknown 

host to the original requesting switch.  This clever SEIZE lookup mechanism helps eliminate one of Ethernet's most glaring 

faults – the flooding of packets throughout the network when the destination host's address is unrecognized.  

MD5's nature as a fairly powerful and cryptographically secure hash was not strictly necessary for its usage in 

SEIZE.  Rather, the prototype basically needed a method of mapping a 48-bit MAC address onto a larger (128 bit) result 

space to be used as a directory service that could be utilized by each switch.  In other words, SEIZE (using user-level Click 
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or kernel Click) requires nothing more than a decently random hash function which will consistently map MAC addresses 

onto the shared ring – not necessarily MD5.  In fact, SEIZE's creators note that the use of MD5 is essentially overkill in this 

situation and that SEIZE would benefit from its replacement with a more lightweight hash which uses fewer CPU cycles 

during each invocation.12

The prototype used the MD5 package defined in md5.h and implemented in the lmd library in FreeBSD.  Its 

inclusion in the Linux version of SEIZE with user-level Click (an intermediate step in my port) required the openssl/md5.h 

header file and the lssl library, since Linux uses the MD5 implementation used by the OpenSSL program.  When I tried to 

use the same function for kernel-level Click in Linux, the kernel rejected the compiled module, since the OpenSSL library 

code was user-level and therefore inappropriate for the kernel.  I was forced to examine alternate strategies for using this 

hash or a similar hash within the confines of the kernel.  

On the advice of my advisor, I decided to move away from the secure MD5 hash and use a simpler, light-weight 

hash implementation.  After examining some open-source hash functions, we settled on the Jenkins one-bit-at-a-time hash, 

which displays low collision rates and an effective avalanche effect, meaning that, on average, flipping a single bit in the 

hash input will change about half of the output bits.13  Despite the fact that its implementation is extremely short (less than 

twenty lines in total), its effectiveness as a hash function is not substantially lessened compared to a more industrial-strength 

hash such as MD5.  I was able to simply copy this function in its entirety as an inlined function in the SeizeSwitch 

implementation file.  After adjusting the sections of the SeizeSwitch code that called these hash functions to reflect the new 

structure of the hash, the code was updated and ready for usage in the Click kernel module.  There were no problems with 

compiling or linking against illegal libraries, since I eliminated outside linking completely by inlining the hash function.  

atoi( ): Array to Integer function 

atoi( ) is a widely-used library function utilized by the SeizeSwitch element to convert a number stored digit-by-

digit in an array into an integer value that is more easily usable for common arithmetic and logical operations.  For example, 

atoi( ) would return the value 398 if it was passed as an argument an integer array with elements [3] [9] [8].  atoi( ) is 

defined on most systems as a standard C library function in stdlib.h.  However, the library in which the function is actually 

defined runs at the user level (just as with the MD5 implementation), so it is unavailable for the Click kernel module.  

Rather than searching for a kernel-level implementation of atoi( ), I just decided to implement it within the 

SeizeSwitch implementation file, just as I had previously done with the Jenkins hash function.  atoi( ) is a very simple 

function, and I was able to find a short and clean implementation of it on a code examples website.  Again, this method of 
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inlining a function that was previously contained in a user-level library was a perfectly effective replacement policy.  

STL sort function 

The SeizeSwitch Click module utilizes the sort( ) function of the C++ Standard Template Library (STL) during the 

switch registration process (e.g., when a switch is added to the distributed hash ring).  This is a very widely-utilized sorting 

method which encodes an optimized quicksort algorithm.  sort( ) can be used to sort an array filled with virtually any type of 

C++ object using any comparison function which is passed to sort( ) via a function pointer.  Once again, my efforts to 

compile kernel-mode Click with this function in place were unsuccessful.  The code for sort( ) is significantly longer and 

more complicated than that of the atoi( ) function or the Jenkins hash, though, so I looked for an alternative to accommodate 

general-purpose sorting rather than simply inlining a copy of the code within the SeizeSwitch module.  

I consulted the Click mailing list for guidance, and some Click users pointed me to the click_qsort( ) function 

defined in lib/glue.cc within the Click distribution.  Essentially, click_qsort( ) is a re-implementation of STL sort( ) which is 

usable in Click projects both at the user-level and within the kernel.  click_qsort( ) uses a different parameter structure than 

STL sort( ), but otherwise, the functionality provided is identical.  Therefore, replacing STL sort( ) within the SeizeSwitch 

code was as simple as shifting around some of the arguments and calling click_qsort( ) instead of sort( ).  

3.2.3. Modifying the basic Click code for compatibility with SEIZE

Adding the new SeizeSwitch element to the Click code base required that about 10 other Click source files be 

changed to reflect the new semantics of a SEIZE switch.  These changes had already been made for SEIZE with user-level 

Click, so in some sense, there was already an existing patch for the Click 1.5 code base.  But the job was complicated by the 

fact that I upgraded from Click 1.5 to Click 1.6 during the course of the semester, and patching the code for kernel-mode 

Click raised more challenges than did the original patch for user-level Click.  

4. Results

The upgrades to SEIZE that I implemented this semester (namely, the usage of the Click kernel module and the 

lightweight Jenkins hash function) resulted in a significant increase in switch throughput compared to the performance of 

the previous SEIZE prototype, which utilized the user-level Click engine and the slower MD5 hash.  

4.1. Hardware Configuration

Each switch and host in the experiment used identical hardware.  Emulab's pc3000 nodes are fairly powerful 

workstations equipped with a 3.0 GHz Intel Xeon processor, 2 GB of DDR2 RAM, and a high-speed 64-bit / 100 MHz PCI-
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X bus for communication between the CPU and the network card.  Each machine also has several Intel E1000 Gigabit 

Ethernet network interface cards.14  I used these network cards to connect switches and hosts with 1 Gbps links to create a 

network whose maximum one-way throughput between any two nodes was 1 Gbps.  I used the two-switch, two-host linear 

topology shown earlier (Figure 4) to make experimental measurements, because most of Emulab's pc3000 machines have 

too few gigabit networking cards to support a full gigabit network using the four-switch, four-host topology.  My use of a 

very simple network topology for these tests is reasonable because my tests focused purely on the maximum data-plane 

throughput of each SEIZE switch, rather than an aspect of its behavior such as control-plane scalability or response time to 

various network dynamics, measurements of which would require a more complex topology to deliver meaningful results. 

The ability to create a more complex, realistic topology would have been helpful for the SEIZE versus Ethernet test, but 

unfortunately Emulab simply did not have the necessary hardware necessary for a larger emulation.  

4.2. Testing switch throughput with iperf

iperf is a networking utility maintained by the University of Illinois which helps measure maximum TCP 

bandwidth between two different hosts on a network.  It is very convenient for the purposes of testing the maximum 

throughput of a SEIZE switch, because it essentially measures an arbitrary point-to-point bandwidth by sending massive 

amounts of data between the two machines (and thus through SEIZE switches) at a variable rate until it finds the highest 

such rate that is supported between the two hosts.  The use of TCP ensures reliable delivery of messages, so the bandwidth 

results indicate the amount of throughput for SEIZE switches without any packet loss.  I used a 256 KB window size and 

tested bandwidth over 10 second transmission periods after the TCP connection was established.  For the simple linear 

topology, we ran iperf on the end hosts h0 and h1, so that each packet passes through two SEIZE switches sw0 and sw1.    

4.3. Comparing different versions of SEIZE: FreeBSD vs. Linux and User-Click vs. Kernel-Click

The original SEIZE prototype (which runs on FreeBSD, uses MD5 hashing, and employs a user-level Click process 

as its packet forwarder inside XORP) yields a unidirectional throughput between h0 and h1 of 300 Mbps.  A  bidirectional 

test (e.g., a TCP stream between h0 and h1, and an identical, simultaneous stream sent from h1 to h0) resulted in a total 

throughput of 420 Mbps.  These results are reasonable: the bidirectional test utilizes the network's potential bandwidth more 

effectively than the unidirectional test, but the improvement falls short of a full throughput doubling because the switches 

must share hardware resources such as CPU time and control of the I/O bus and the network interface card between two 

TCP streams rather than remaining dedicated to a single data stream.  

Under the same conditions in Linux, SEIZE with user-level Click achieved much more impressive throughput 
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numbers: 495 Mbps for the unidirectional test and 605 Mbps for the bidirectional test.  The reason for Linux's superiority is 

not immediately clear, but I hypothesize that it is due to the underlying TCP implementation of each operating system – 

Linux's implementation is probably more aggressive in trying to attain higher data rates than that of FreeBSD.  This is likely 

due to the fact that the SEIZE prototype used an older version of FreeBSD (version 4.10-stable, released in May 2004) and 

the new platform used a comparatively newer release of the Linux kernel (version 2.6.19.2, released in January 2007).15,16 

This improvement gained by moving user-level Click from FreeBSD to a recent version of Linux was a pleasant surprise.   

With user-level Click on FreeBSD established as the slowest implementation, a purely Linux-based comparison of 

SEIZE with user-level Click versus SEIZE running in the kernel was necessary.  I tested the bandwidth with various packet 

sizes by limiting the MTU of each host machine and then running an iperf TCP test.  The results were very satisfying: in 

terms of data throughput, SEIZE with kernel-mode Click vastly outperformed its user-level equivalent at every tested packet 

size (Figure A1).  The bidirectional tests provided even stronger support in favor of permanently moving Click from user-

level to the kernel – the gap in throughput between the two Linux versions of SEIZE was even greater when the network 

was more heavily loaded with two streams of traffic (Figure A2).  This bodes well for future deployments of SEIZE in 

networks with greater numbers of hosts – it indicates that SEIZE with kernel Click is faster and more scalable than the 

version which uses user-level Click.  

4.4. SEIZE Bottlenecks

We can gain further insight into the performance differences between user-level Click and kernel-mode Click by 

examining the same bandwidth numbers expressed as packets per second sent between hosts.  The unidirectional and 

bidirectional packet throughput results are given in Figures A3 and A4.  The plots are extremely revealing: user Click has a 

maximum packet throughput of about 42 kilopackets per second (Kpps), independent of both packet size and the number of 

streams passing through a particular switch.  This firm limit indicates that there is some bottleneck in user-level Click's 

packet forwarding pipeline.  The bottleneck might be the result of some hardware limit (such as CPU time, physical 

memory, I/O bus availability, or I/O interrupt rate) or a particularly time-consuming software operation within the SEIZE 

code (such as a slow and heavily-utilized hash function).  

In Linux, user-level Click calls the same lightweight Jenkins hash as kernel Click and each Click engine runs on 

the same hardware.  Therefore, this limit on each switch's packet forwarding rate in user-space Click (which was not 

reflected in the throughput results for kernel-mode Click) is probably not related to one of these factors.  Rather, the user-

level Click limit of 42 Kpps is possibly related to a limit on the speed of the copy operations that move packet data from the 
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kernel to the user-level Click process and back (as illustrated previously in Figure 3 in Section 2.3.2.).  This operation 

(which is necessary for user-level Click but not performed in the kernel module) stands as the main functional difference 

between the two engines.  Therefore, it seems reasonable that major differences in behavior between the two packet 

forwarders (such as this limit on packet forwarding rate) might be attributed to the extra copies between user memory and 

kernel memory present in the user-level Click program.  The bottleneck also might be related to differences in the ways that 

I/O interrupts are generated and handled in kernel space and in user memory in Linux.  Since the operations of sending and 

receiving single packets from the network card each generally require the use of interrupts (communication between the 

network card and the CPU), it seems reasonable that limits on interrupt generation or handling for user programs (not 

imposed on kernel modules) might result in this type of packets-per-second throughput limit.  

To further examine this packet throughput limit experienced by SEIZE on user-level Click, I plotted unidirectional 

and bidirectional packet throughput results for simple Ethernet bridging (Figure A5).  My use of Ethernet for this test has no 

particular motivation; rather, I simply wanted to test a different router configuration in user-level Click in order to determine 

if the limit on packets forwarded per second was unique to SEIZE or whether it might be observed for another 

configuration.  The plot shows that a similar limit on packet throughput (again, independent of packet size or number of data 

streams) exists for a user-Click Ethernet switch, albeit at a different limit (about 68 Kpps, rather than SEIZE's limit of 42 

Kpps).  This result lends support to the possibility that the user-level SEIZE's packet forwarding rate limit is not the result of 

any SEIZE-specific software bottleneck, but rather that the limit is simply a result of the system architecture of user-level 

Click, which appears to be very vulnerable to a data-copying bottleneck.  

Based on this packet forwarding rate limit experienced by user-level Click and its inferior data throughput as 

compared to the kernel module, it is inevitable that kernel-mode Click will serve as the core of SEIZE in future versions of 

the architecture.  Therefore, a careful examination of the kernel module's performance and possible performance bottlenecks 

is in order.  Currently, data throughput does not appear to be bound currently by CPU speed, I/O bus bandwidth, or 

availability of physical memory.  Examination of the switch's run-time CPU statistics (using the Unix “top” command) 

shows that CPU utilization during a long-lived bidirectional TCP test is about 30 percent for large 1466-byte packets and 

only 11 percent for smaller 128-byte packets.  This is a reasonably heavy load on the CPU, but the switches are by no means 

CPU-bound at this point, and a move to multi-core processing could further lessen the load on the CPU.  Our test hardware 

used an extremely fast PCI-X bus for communication between the CPU and the network card on each switch – the total 

throughput for the bus was at least 6.4 Gbps, so this bus speed was not the limiting factor either, given our test network 
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network throughputs of less than 2 Gbps.17  Physical memory can also be eliminated as a bottleneck, as it was virtually 

untaxed by the tests (less than 1 percent usage, according to “top”).  Finally, our method of generating packets on hosts 

(using the user-level iperf program) does not presently appear to be a bottleneck either; still, as SEIZE matures and strives 

for higher speeds in the future, its testing mechanism should evolve to keep pace, perhaps by using a kernel module like 

pktgen for higher-speed packet generation.18  

Since these components of the system seem unlikely to be the current bottlenecks for the kernel module, it seems 

possible that the currently bottleneck is the network resources of our testbed – specifically, the gigabit links between 

machines and the gigabit network cards that connect each switch and host to the network.  The current results point to 

network utilization of over 91 percent (just short of total network utilization), which means that SEIZE might very possibly 

display improved performance if deployed on a higher-speed network.  A careful examination of the data throughput and 

packet throughput results for kernel-mode SEIZE can help explain why link bandwidth is probably the current bottleneck.  

For kernel-mode Click, packet throughput seems to be limited by two factors.  The best packet forwarding rate 

(over 200 Kpps) is attained for packet sizes between 384 bytes and 768 bytes.  Here, the bottleneck is probably related to 

hardware – it is possible that the interrupt rate for kernel module code is being taken to its maximum limit.  For larger 

packet sizes between 896 bytes and 1466 bytes, the packets-per-second throughput graph becomes linear with a negative 

slope; this is indicative of a connection limited by link bandwidth.  This hypothesis is strengthened by the observation that 

the data throughput at these packet sizes in Mbps (Figures A1 and A2) is basically constant at about 900 Mbps.  Notably, 

though, within this large-packet range, the data throughput does rise slightly but steadily with packet size.  This is due to the 

fact that the per-packet overhead becomes fractionally lower as packet size increases – that is, packet headers remain 

constant in size, while the data payload of each packet increases by 128 bytes at each test increment.  This increasing data-

to-header ratio results in higher data throughput at the highest packet sizes.  

4.5. Comparing SEIZE and Ethernet bridging

For our test topology and configuration, SEIZE performed slightly worse than simple Ethernet bridging for both 

unidirectional and bidirectional streams as shown in Figures A6 and A7.  At first gloss, this is a somewhat troubling result, 

as SEIZE is designed to offer higher aggregate throughputs than a simple Ethernet solution in a large enterprise network. 

However, it must be noted that our test environment hardly qualified as an enterprise network: it involved only two static 

hosts and one or two TCP streams, while a real network would encompass hundreds or thousands of hosts and likely 

thousands or tens of thousands of connections.  This difference is critical in analyzing total throughput numbers, because 
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SEIZE gains a huge advantage over Ethernet by cutting down on broadcasting and flooding of control-plane packets – 

something that happens very often in networks with real-world network dynamics, but not at all in our static simulation.  

SEIZE enjoys another significant advantage over Ethernet by using shortest paths for routing.  This is a much more 

efficient use of link bandwidth and switch processing time than the single spanning tree used for packet forwarding by 

Ethernet bridging, because average host traffic passes through fewer switches and links en route to its destination, resulting 

a more efficient use of network resources and less per-packet latency.  However, this advantage was not present in my 

experiments due to my use of a linear network topology whose spanning tree was identical to the shortest path between test 

hosts.  In other words, the experimental topology was too simple to take advantage of one of SEIZE's main efficiency 

upgrades over Ethernet bridging.  In a more complex and realistic network topology (specifically, one whose spanning tree 

encompassed one or more overly-long paths between switches), SEIZE would likely outperform Ethernet bridging.  

In the absence of extensive control-plane traffic and a complex network topology, SEIZE is bested by Ethernet due 

to SEIZE's method of encapsulating all data packets within other packets for inter-switch transmission.  While this 

mechanism is important for the system to function correctly, it also results in an extra per-packet overhead of 34 bytes that is 

used to encode the header data of each encapsulating packet.  These extra headers result in SEIZE experiencing slightly 

higher loads on the network's physical resources (such as links and switch I/O buses and network cards) compared to 

Ethernet, which results in slightly lessened throughput.  

With these limitations in mind, SEIZE's performance compared to that of Ethernet is quite respectable.  At large 

packet sizes, SEIZE's throughput was over 95% of the equivalent Ethernet throughput for both unidirectional and 

bidirectional tests.  This essentially tells us that, even in a linear network which is in some sense ideal for Ethernet bridging 

and too simple for SEIZE, our system still performs about as well as simple Ethernet bridges.  Further tests should be 

designed to better simulate real-world enterprise networks: they should involve more switches in complex topologies and 

higher numbers of simultaneously-communicating hosts.  These higher-complexity simulations would serve to better 

illustrate SEIZE's efficiency-oriented advantages over Ethernet – namely, superior control-plane mechanisms and shortest-

path routing between switches.  The likely result of these experiments would be a serious degradation in Ethernet's 

aggregate throughput and a much smaller hit to SEIZE's performance.  

4.6. Conclusions

Moving the Click forwarding engine from user-level to the kernel resulted in a tremendous performance leap for 

the SEIZE networking architecture.  In a 1 Gbps network, the unidirectional data bandwidth of 916 Mbps represents a 
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bandwidth utilization of over 91 percent, meaning that SEIZE is very efficiently using the network resources (gigabit links 

and network cards) at its disposal.  In fact, the current limit on kernel SEIZE's throughput is probably the speed of these 

network adapters and links.  The user-level SEIZE module is limited to forwarding about 42,000 packets per second based 

on some bottleneck probably related to user-Click's architecture and its need to constantly copy packets between user 

memory and kernel memory.  Therefore, the user-level Click program seems to hold little potential for future versions of 

SEIZE.  The Click kernel module is demonstrably more efficient and more convenient in practice, and it will serve as the 

core of SEIZE as the architecture evolves.  An intriguing next step would be to deploy the current version of SEIZE on a 

network with 10 Gbps links and network adapters to try to determine if SEIZE would still be limited by link capacity or 

whether some other bottleneck would arise.  

A final minor conclusion involves the new lightweight hash function and its effect on switch performance. 

Replacing the SEIZE prototype's MD5 hash function with the shorter and simpler Jenkins hash was viewed as an important 

step in removing a portion of the program which consumed an inordinate number of clock cycles considering its relatively 

simple task of mild randomization.  The exact impact of this replacement was hard to measure, especially in light of the 

major change from user-level to kernel-level for the Click forwarding engine at the core of the SEIZE architecture. 

However, I did execute some tests which incorporated SEIZE's feature of ingress caching to compare with my large body of 

tests which did not incorporate caching.  When caching is enabled, SEIZE's hash function is only invoked for the first few 

packets of a stream, rather than for every packet in turn, so these comparisons effectively helped me judge the effect that 

hashing has on a switch's performance.  I noticed that the throughput numbers were identical for SEIZE when caching (and, 

by extension, hashing) was enabled and disabled.  This leads me to conclude that the new Jenkins hash is certainly not 

slowing down the switches (since its utilization does not affect throughput numbers at all).  This is a good indicator that the 

new hash function is successful in its attempt to use fewer clock cycles on each switch while preserving correct 

functionality; it is certainly not a bottleneck of the SEIZE system.  

5. Future Work

Porting the SEIZE platform from a normal user-level program in FreeBSD to a kernel module within the Linux 

operating system represents a significant maturation of the architecture.  Future researchers might explore many different 

avenues to further my goal of increasing switch throughput and reducing packet latency.  

5.1. Multi-core processing
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It would be interesting to try to take advantage of recent advances in multiprocessing to try to gain a speedup for 

each switch's routing process.  Within the past few years, multi-core processors have become standard on almost all new 

computers, but we have not yet utilized anything other than uniprocessor machines for the SEIZE project.  Running 

switches on multiprocessors without even modifying the SEIZE code base might gain significant performance boosts 

(namely, decreased CPU load and latency) due to better memory cache utilization and more clock cycles per second.  

Another intriguing idea to get more out of multi-core is to experiment with multiprocessing optimization tools 

developed by Intel and other CPU makers.  These tools are intended to help software developers design their programs to 

better take advantage of multi-core processors.  This is usually achieved by explicitly dividing programs into independent 

threads of execution and then deploying different subsets of threads on each processing core.  Intel also releases tools 

designed to profile the execution of multi-threaded programs – for example, such a tool can discover which segments of a 

large program are the using the most CPU time.  Then, a developer might try to optimize this heavily-utilized code in order 

to gain an appreciable speedup in total execution time.19  

SEIZE seems to naturally adapt to the multiprocessing philosophy.  It is easy to envision, for example, a 

multiprocessing solution for SEIZE which assigns the handling of control-plane packets (like periodic OSPF routing 

updates) and the handling of data packets (regular host-host traffic) to different threads of execution, or even different 

dedicated CPUs.  This separation of duties could be set up with minimal effort by inspecting each incoming packet and then 

routing it to one of several threads, and if set up properly with the help of the profiling tools mentioned above, it might 

result in some significant performance gains.  

5.2. Onboard Network Interface Card processing

One particularly intriguing development route would be to explore the possibility of moving some of the 

processing of the forwarding engine onto the network interface card (NIC) itself.  Locating microprocessors and some high-

speed memory (such as DRAM and a few registers) on NICs is a growing trend in peripheral development (Tanenbaum 

530-531).  The reasoning behind this addition of computing power to the network card is to reduce the latency of constantly 

copying data back and forth between the adapter and the main CPU and memory unit of the computer.  If some amount of 

processing can be performed on the network card itself, the switch will waste less time waiting for packet data to be 

transported between the adapter and the CPU.  Therefore, a greater fraction of execution time would be used for actual 

processing and forwarding rather than simply waiting for copy operations to complete, and the overall throughput of the 

switch would potentially increase appreciably.  
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In some sense, this strategy is an extension of my work this semester: by moving the forwarding engine from user-

level to kernel-level, I cut down on the number of times that an individual packet is copied while it travels through a SEIZE 

switch.  Moving more processing out to the network card would further reduce the number of extraneous copies (from the 

NIC to the CPU), and potentially result in another speedup.  One drawback is that the onboard memory and CPU on a NIC 

generally operate at a lower speed and capacity than a computer's main CPU and memory unit, so there is no guarantee that 

the overall performance would improve with heavier NIC computing utilization.  Another route to explore would be the use 

of field-programmable gate arrays (rather than CPU and RAM) to perform this on-card processing; the use of FPGAs would 

probably alleviate speed concerns at the expense of slightly greater development complexity in moving the system to an 

FPGA-compatible implementation language.  

5.3. Using PollDevice elements in Click

The Click distribution includes an element called PollDevice which is only compatible with the Linux kernel 

module.  It is an optimized, hardware-specific version of the commonly-used ToHost element, which pulls packets off of the 

network card and pushes them to the other modules of the Click router.  A PollDevice element is only compatible with 

switch hardware equipped with NICs that utilize the DEC Tulip fast Ethernet drivers or Intel E1000 gigabit Ethernet drivers 

(the element is designed to enhance NIC performance by utilizing driver-specific optimizations for these two drivers). 

Essentially, use of the PollDevice causes Click to check the network card for incoming packets more often than a similar 

Click configuration using a ToHost.  Rather than depending on the NIC to send an interrupt to the CPU whenever incoming 

information is available from the network (interrupt-driven I/O), a PollDevice “polls” the card repeatedly, checking the card 

over and over on a very short interval to see if new any new data has arrived.  The result is that individual packets lie idle on 

the NIC's memory for shorter time periods, there are fewer problems with packet overload and subsequent backup during 

routing, and each switch performs with higher throughput and less latency.  

Currently, SEIZE does not utilize PollDevice elements, but it is clearly the next logical step in optimizing the 

performance of SEIZE with the Click kernel module.  Conveniently, a portion of Emulab's available hardware actually uses 

the Intel E1000 gigabit Ethernet adapters for which PollDevice is designed.  Therefore, experimenting with the PollDevice 

element should be as simple as replacing every instance of “ToHost” in the current Click configuration with “PollDevice.” 

After SEIZE with kernel-level Click is more rigorously tested and benchmarked, the results should be compared against an 

identical version of SEIZE which uses PollDevice elements rather than ToHost elements.  It would be very interesting to see 

the degree to which hardware-specific optimization affects the overall throughput of the forwarding engine.  
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Figure A1: Kernel-mode SEIZE outperforms the user-level version at every 

packet size.  
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Figure A2: Kernel-mode SEIZE scales to multiple streams of traffic effectively.  

than the user-level version.  
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Figure A3: User-level Click displays a throughput limit of 42 Kpps,  

independent of packet size.  

128 256 384 512 640 768 896 10241152 1280 1408 1466
0

50

100

150

200

250

SEIZE: User Click vs. Kernel Click
(bidirectional tests)

SEIZE with user 
Click
SEIZE with kernel 
Click

Packet size (bytes)

Th
ro

ug
hp

ut
 (k

ilo
pa

ck
et

s 
pe

r s
ec

on
d)

Figure A4: The user-level SEIZE limit of 42 Kpps is still in effect, even with  

twice as much traffic.   
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Figure A5: A Click user-level engine configured to run the Ethernet bridging 

protocol displays an analogous packet rate limit of about 68 Kpps.  
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Figure A6: For unidirectional and bidirectional tests, SEIZE demonstrates slightly worse performance 

than simple Ethernet bridging.  This is largely due to the extremely simplistic test topology and lack of  

network dynamics.  
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Figure A7: When running in the Click kernel module, both SEIZE and Ethernet appear to be limited 

only by the link bandwidth of the network.  
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