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Abstract 
Over the past decade, gene expression microarray data has become one 

of the most important tools available for biologists to understand molecular 

processes and mechanisms on the whole-genome scale. Microarray data 

provides a window into the inner workings of the transcriptional process that is 

vital for cellular maintenance, development, biological regulation, and disease 

progression. While an exponentially increasing amount of microarray data is 

being generated for a wide variety of organisms, there is a severe lack of 

methods designed to utilize the vast amount of data currently available. In my 

work, I explore several techniques to meaningfully harness large-scale 

collections of microarray data both to provide biologists with a greater ability to 

explore data repositories, and to computationally utilize these repositories to 

discover novel biology. 

First, effective search and analysis techniques are required to guide 

researchers and enable their effective use of large-scale compendia. I will 

present a user-driven similarity search algorithm designed to both quickly locate 

relevant datasets in a collection and to then identify novel players related to the 

user’s query.  Second, I will discuss techniques for visualization-based analysis 

of microarray data that incorporate statistical measures into visualization 

schemes and utilize alternative views of data to reveal previously obscure 

patterns.  Third, I will focus on novel methods that allow users to simultaneously 

view multiple datasets with the goal of providing a larger biological context within 

which to understand these data.  Finally, I will discuss how we have successfully 
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used these approaches to discover novel biology, including successfully directing 

a large-scale experimental investigation of S. cerevisiae mitochondrial 

organization and biogenesis. 

The combination of visualization-based analysis methods and exploratory 

algorithms such as those presented here are vital to future systems biology 

research. As data collections continue to grow and as new forms of data are 

generated, it will become increasingly important to develop methods and 

techniques that will allow experts to intelligently sift through the available 

information to make new discoveries. 
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Chapter 1 

Introduction 
Biology is currently experiencing a period of transition from a study of 

small-scale, specific phenomenon to the understanding of entire systems and 

genomes.  This transition is enabled by the development of many new 

technologies, including whole genome sequencing, gene expression microarrays, 

physical protein interaction assays, genetic interaction assays, and tandem mass 

spectrometry.  These experimental techniques can be utilized to generate data 

on an immense scale, which holds the promise of elucidating the functions of 

genes and proteins, their regulatory mechanisms, and their modes of interaction 

[36, 47]. 

However, this wealth of data remains largely underutilized.  Over the past 

10 years we have experienced an exponential increase in the amount of 

functional genomics data generated, but the rate at which novel gene functions 

are discovered has remained fairly constant [67] (Figure 1.1).  There are several 

difficult challenges for bridging this gap between data and knowledge.  In 

particular, the sheer scale of newly generated datasets prevents traditional 

biological analysis from performing comprehensive evaluations of individual 

studies.  Moreover, it is increasingly clear that these data are best understood 

within the greater context of other available data.  While a single study may shed 

light on a particular specific question, the conjunction of many studies can be 

much more powerful with the ability to address more general biological concerns.  
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Computational methods have the ability to address several of these challenges to 

data analysis and to provide insight into many biological questions. 

 
Figure 1.1:  The growing data-knowledge gap.  While the amount of data 
generated to investigate gene and protein function grows at increasing rates 
each year, the rate at which we gain knowledge of specific functions has 
remained constant.  Here (a) shows the number of publications each year that 
mention gene expression microarrays and (b) shows the number of publicly 
available microarray conditions added each year to the National Center for 
Biotechnology Information (NCBI) microarray repository, the Gene Expression 
Omnibus (GEO) [22].  While both of these measures of data generation exhibit 
increasing rates of growth from year to year, (c) shows the number of genes in S. 
cerevisiae with a known function as determined by the Saccharomyces Genome 
Database (SGD) [18], which demonstrates a constant growth rate of biological 
knowledge.  
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1.1  The promise of computational biology 
For several years, bioinformatics and computational biology have broadly 

promised to increase our biological understanding of gene function through the 

application of machine learning, data mining, visualization, and statistical 

analysis methods.  Despite this effort, the majority of new discoveries of gene 

and protein function continue to be generated by laboratories without the aid of 

computational prediction methods.  This failure of computational biology is the 

result of several factors, the largest of which is a disconnection between 

computational predictions of gene function and large-scale laboratory studies of 

the roles of genes in biological processes. 

In general, computational function prediction methods are based on the 

premise of “guilt by association,” meaning that given partial knowledge of gene 

functions, they infer the function of other genes.  Typically these methods utilize 

collections of biological data to identify characteristic patterns associated with 

known functions, to discriminate classes of gene function, or to search for similar 

profiles of data.  Thus, given collections of data and a “gold standard” of prior 

knowledge of gene function, these methods computationally predict the novel 

involvement of genes in biological processes.  Several machine learning and 

data mining approaches have been utilized for this task in computational biology, 

including Bayesian networks [38, 42, 44, 52, 61, 92], support vector machines [9, 

50, 66], feature selection methods [65], and others [59, 63]. 

While these methods often produce biologically interesting and sensible 

results, the predictions occur with varying rates of accuracy, false positives (FPs, 
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i.e. genes incorrectly predicted to a function), and false negatives (FNs, i.e. 

genes incorrectly omitted from a function).  As such, follow-up laboratory work is 

required to confirm or deny these predictions.  However, while individual 

predictions of these methods have been verified through further experiments, the 

vast majority of these predictions remain unconfirmed.  This lack of follow-up is 

problematic both for computationalists, whose work remains unverified, and for 

traditional biologists, whose work could be guided to promising experimental 

targets to greatly accelerate discoveries. 

Ideally, computational prediction methods integrated with laboratory 

investigations would complete a cycle of prediction, experimentation, and 

verification, where newly generated data and confirmed gene functions would 

become additional inputs to further iterations of the cycle (Figure 1.2).  However, 

as few large-scale validation studies are performed, this cycle is often broken 

shortly after the generation of new predictions. 

A further problem encountered by several computational techniques is the 

reliance on a “gold standard” or a set of curated, known assignments of genes to 

specific biological functions or pathways, such as those provided by the Gene 

Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and 

the Munich Information Center for Protein Sequences (MIPS).  While these 

repositories contain a great deal of our collective knowledge of biology, individual 

experts still retain superior knowledge, particularly for their domain of study.  

However, the majority of computational function prediction methods do not 

leverage this expert knowledge. 
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Figure 1.2:  Iterative cycle of computational biology.  Computational 
techniques can be used to augment traditional biology and speed the rate of 
novel discoveries.  Given existing data and knowledge, computational 
approaches can formulate new predictions of gene function.  These predictions 
can drive laboratory experiments, which generate data either confirming or 
denying the predictions.  Armed with this new data and knowledge, the process 
can iteratively progress leading to further discovery. 

The work presented here begins to address many of these shortcomings 

of modern computational biology.  This work focuses on user-driven search 

methods and exploratory visualization techniques designed for gene expression 

microarray data that incorporate expert biologists into the earliest stages of 

computational analysis.  Further, we validated these approaches with large-scale 

laboratory experiments that demonstrate the utility of these methods to 

accelerate real-world biological discoveries. 
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1.2 Gene expression microarrays 
1.2.1  Biological motivation 

While the genetic code, in the form of DNA, contains all of the instructions 

necessary to build a working cell or organism, proteins are the workhorses that 

comprise the building blocks of cells and perform the functions necessary for life.  

Portions of DNA, called genes, encode the amino acid sequences needed to 

create all of the proteins in an organism.  In the simplest case, proteins are 

created by a two-step process of transcription and translation.  During 

transcription, a gene’s sequence is copied from the nuclear DNA to an mRNA, 

which is free to leave the nucleus.  This mRNA is later translated by ribosomes in 

the cytoplasm to create the specific sequence of amino acids that form the coded 

protein. 

Specific proteins are not produced at all times.  The amount of each 

protein required by a cell can change dramatically from virtually none to a very 

large number of copies depending on cellular and environmental factors.  As 

such, transcription and translation both play a regulatory role in determining 

which proteins are produced in what quantities at which times.  Thus, 

understanding the timings and quantities of protein production can provide 

indications about the potential roles of proteins within cells.  For example, if a 

protein is produced only when a cell is exposed to conditions of unusually high 

heat, that protein may be involved in a cell’s response to a hotter environment, 

perhaps by maintaining the proper fold of other proteins or catalyzing a heat-

specific metabolic reaction.  Further, if two proteins are regulated and produced 
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with similar timings and/or quantities, they may perform the same or related 

functional roles.  For these reasons, understanding protein production and 

regulation is vital for our understanding of gene/protein function.  While both 

transcription and translation are important for the regulation of protein production, 

the transcriptional response of many genes is both strong and easily measurable 

using modern technology. 

1.2.2  Technology 

Gene expression microarrays provide a quantitative measure of the 

transcription levels of thousands of genes in a genome simultaneously [12].  In 

general, microarray technology relies on the chemical nature of mRNA to 

hybridize to its complementary nucleotide sequence.  Microarrays typically place 

known complementary sequences for large numbers of genes in a genome at 

specific positions on slides.  These slides are then exposed to pools of mRNA (or 

cDNA) isolated from samples and labeled with a measurable dye.  The mRNA 

binds to the slide location containing its complementary sequence, and the 

amount of dye present at each position on the slide is used to quantify the 

amount of hybridization that occurred, which is used as a measure for the level of 

transcription for each gene.  A schematic overview of a microarray experiment is 

shown in Figure 1.3. 

While all gene expression microarrays share the goal of quantifying the 

transcription level of genes, there are several variations in specific technologies 

employed.  Microarray techniques such as that shown in Figure 1.3 are often 

referred to as “two-color” microarray experiments because they utilize two 
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differently labeled samples – a reference sample and a test sample.  Typically 

the test sample is drawn from a population of interest (e.g. cells exposed to a 

chemical, growing in an altered environmental state, or containing a genetic 

mutation), while the reference sample is often drawn from a population of wild 

type or normal cells.  Thus, the transcription level of a gene under a condition of 

interest can be quantified by its change from a normal condition.  Many of the 

original microarray experiments, such as those performed at Stanford, as well as 

some modern commercial platforms, such as Agilent, employ a two-color 

approach. 

Several other commercial platforms are currently available that employ 

variations of this basic approach.  For example, Affymetrix produces a “one-

color” microarray platform utilizing highly calibrated “perfect match” (PM) and 

“mis-match” (MM) probes to quantify expression.  In this case a PM probe 

contains the proper complementary sequence for an mRNA, while a MM probe 

contains an incorrect nucleotide in its sequence.  Thus if a PM probe and paired 

MM probe achieve a similar level of hybridization, the probe can be discarded 

since the mRNA binding was not specific for the PM probe’s sequence.  While 

this does not allow a gene’s transcriptional levels to be directly measured as 

changes from a baseline in the manner of a two-color array, it does ensure that 

the reported hybridization levels are specific.  Often, additional one-color 

microarrays are used to establish such a baseline, and the resulting data can be 

treated in a similar manner to two-color approaches. 
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Figure 1.3: Schematic of microarray methodology.  Gene expression 
microarrays simultaneously quantify the transcriptional activity of many genes.  
This schematic shows the basic methodology of a “two-color” microarray 
platform.  First, slides are spotted with known, complementary sequences.  Then 
mRNA is harvested from two samples, a test sample of interest and a reference 
sample.  The mRNA is differentially dyed, and then the samples are hybridized to 
the slide.  The amounts of dye at each spot on the resulting slide are measured 
to determine transcription levels for each gene. 

While the particulars of downstream microarray analysis must consider the 

source platform used to generate the data, there are several common important 

properties of microarray data for analysis.  Foremost, microarray data contains 

high levels of noise, stemming from biological, chemical, and experimental 

sources.  While some noise sources can be minimized through careful usage of 



Chapter 1 – Introduction 

10 

protocols and normalizing the environment where experiments are conducted, 

transcription is an inherently noisy proxy of protein abundance.  Post-

transcriptional modifications of mRNA as well as post-translational regulation of 

proteins limit the amount of information that can be represented by measures of 

transcriptional levels of genes.  Thus, any microarray analysis method must take 

into account the inherent large levels of noise. 

1.2.3  Analysis challenges 

The end results of most microarray experiments are very large matrices of 

numbers representing the expression level of many genes under a variety of 

experimental conditions.  Most studies perform between 5 and several hundred 

hybridizations to measure transcriptional responses in a variety of related 

conditions.  The resulting datasets are often represented with rows 

corresponding to genes and columns corresponding to the conditions examined. 

Typical analyses of microarray datasets are based on the “guilt by 

association” principle of observing common patterns between genes and groups 

of genes.  As such, clustering techniques are particularly popular for the initial 

phases of analysis [23].  Most clustering approaches attempt to reorder rows 

and/or columns of a data matrix to place similar genes and/or conditions closer to 

one another.  An example of a simple hierarchically clustered dataset is shown in 

Figure 1.4.  Additional analysis methods, as well as their benefits and 

shortcomings, are discussed in the next several chapters. 
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Figure 1.4:  Example of microarray clustering.  The same data is shown un-
clustered and clustered.  On the left the data is not clustered (rows in genome 
order, columns in random order), and on the right both rows and columns have 
been hierarchically clustered.  Several major “guilt by association” patterns are 
already evident using this simple clustering technique. 

1.3  Contributions and Overview 
This work describes algorithms and methods for the analysis, exploration, 

and visualization of microarray data with the goal of elucidating patterns and 

structure that are important to characterize novel functions of genes and proteins.  

Our approach differs from previous methods in several key manners in order to 

address many of the biological and computational concerns described above.  

First, these methods incorporate user input into the earliest phases of analysis, 
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which allows researchers to discover patterns and information related to their 

specific area of expertise.  Second, these methods are executable at interactive 

rates, which allows users to further refine and direct their research in an 

exploratory fashion.  Third, these methods utilize novel visualization interfaces to 

present the actual underlying data rather than simply reporting summary 

statistics or gene lists.  Finally, these methods have been extensively validated 

by using them to predict and experimentally confirm novel biology, which strongly 

affirms their biological utility. 

The remainder of this dissertation describes these methods and 

approaches in detail.  Chapter 2 describes a query-driven similarity search 

method for utilizing large collections of microarray data to robustly locate 

meaningful “guilt by association” patterns.  In this chapter the method is validated 

on a small scale using specific examples, but a more comprehensive evaluation 

appears later.  Chapter 3 focuses on visualization-based analysis methods of 

clustering techniques that incorporate statistical measures used during the 

clustering process into the visualization scheme.  Chapter 4 introduces a 

visualization approach for simultaneously exploring multiple gene expression 

microarray datasets.  Chapter 5 incorporates aspects of the previous three 

chapters into a unified platform for more comprehensive analysis and 

visualization of large microarray compendia.  Chapter 6 describes a large-scale 

approach integrating the computational function prediction methodology 

described in chapter 2 with rigorous experimental laboratory methods to 
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iteratively explore the role of genes in mitochondrial function in S. cerevisiae.  

Finally, chapter 7 summarizes and concludes this work. 

 

 



 

14 

Chapter 2 

Exploring the functional landscape of 
gene expression: directed search of 
large microarray compendia 
2.1  Introduction 

The recent, rapid expansion in the amount of functional genomics data 

created by the biology community promises to provide broad understanding of 

protein function and regulation on a systems level.  In particular, the increased 

accessibility and lower cost of gene expression microarrays has led to the 

publication of hundreds of studies in a variety of organisms.  However, these 

data have thus far remained vastly underutilized.  While much work has been 

done investigating individual datasets, advancement of knowledge in the field 

requires intuitive methods for biology researchers to quickly and easily explore 

the totality of existing data, to identify the datasets and publications relevant to 

their area of interest, and to locate the important information within those 

datasets.  For example, a biologist interested in DNA damage repair should not 

be limited to analysis of a single dataset concerned with exposure to DNA 

damaging agents, but rather should be able to quickly determine which published 

microarray experiments elicit a DNA damage response, find the relevant portions 

of those datasets, and then be able to examine that data to draw conclusions and 

form hypotheses. 
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No existing approach for microarray analysis allows for fast, intuitive 

exploration of the large, diverse collection of published gene expression data.  

The utility and necessity of exploration-based techniques has been demonstrated 

for microarray data on the much smaller scale of one or a few datasets.  General 

clustering techniques and bi-clustering methods have been successfully used to 

allow biologists to find relevant information in this small-scale setting.  However, 

these methods are not appropriate for application to very large-scale microarray 

compendia due to sensitivity to noise that is compounded when aggregating 

data, an inability to work with data generated under diverse conditions, and/or 

prohibitively slow running times. 

Typical clustering approaches group genes together to minimize a 

distance function between genes.  While these distances can be quickly 

calculated across the concatenation of many datasets, their biological accuracy 

greatly decreases when taken over heterogeneous conditions.  This approach is 

sometimes referred to as “mega-clustering” in the literature [8, 27, 74] and while 

appropriate in limited experimental settings involving small numbers of 

biologically related datasets, it is not appropriate for analysis of large-scale, 

heterogeneous collections of gene expression data [55].  Signals present in only 

a few of the datasets in a compendium are lost when the total data collection is 

large, causing clustering techniques to capture only the global signals in the 

compendium and miss more specific signals.  Thus, clustering is best limited to 

initial exploratory analysis of single datasets. 
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Bi-clustering methods seek gene similarity in only a subset of available 

conditions, which is more appropriate for functionally heterogeneous data [17, 

55].  However, the most basic formulations of bi-clustering allow for the selection 

of any subset of conditions, which is often not biologically meaningful when the 

selected conditions bear no relationship to each other.  As data compendia 

increase in size, it becomes more conceivable for these bi-clustering formulations 

to find patterns in the noise, as finding arbitrary subsets of conditions where 

genes exhibit similar levels of expression becomes easier by pure chance as the 

number of conditions increases.  Further, the general bi-clustering problem is 

NP-complete [55], meaning that these methods can require unreasonable 

running times to find complete solutions, particularly on large data collections. 

As the general bi-clustering problem is often intractable, a variety of 

heuristics and normalization steps are utilized in practice.  For example, some 

approaches obtain faster running times by limiting the types of bi-clusters they 

can identify [89], or by focusing on specific types of data, such as time courses 

[54].  Other bi-clustering methods achieve tractable complexity by starting with a 

query set of related seed genes and iteratively growing out maximal bi-clusters 

around the seed [39]. 

Another approach for microarray data exploration is a query-driven search 

process, such as the feature selection-based Gene Recommender algorithm 

[65].  This approach has proven very useful on the scale of smaller data 

compendia, however it is not as effective when applied to very large-scale 

collections.  As with some formulations of bi-clustering, feature selection 
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techniques may find noisy patterns among unrelated conditions, and can require 

lengthy computation times for complete analysis. 

To address all of these shortcomings, we propose a more scalable, 

context-specific search methodology that enables biology researchers to explore 

the entirety of very large microarray compendia in a biologically meaningful 

manner.  Our approach offers many fold higher biological accuracy and running 

speeds many times faster than current techniques.  We have also categorized 

the functional coverage and biases of this collection to assess which biological 

areas are well characterized in the current microarray compendium and which 

areas are open to further study.  Based on this compendium of data we 

demonstrate the effectiveness and usefulness of our approach for information 

exploration and hypothesis formulation.  We have implemented our algorithm in 

an interactive, web-based search engine available at 

http://function.princeton.edu/SPELL. 

2.2  Methods 
In this section we briefly discuss our collection of microarray data and our 

functional coverage analysis of this compendium.  We then discuss in detail our 

fast, context-sensitive search procedure, called SPELL. 

2.2.1  Creation of the S. cerevisiae gene expression data 
compendium 

We collected 117 microarray datasets from 81 publications totaling 2394 

array hybridizations from a variety of sources [15, 18, 22, 51, 81].  Missing values 

were imputed using the KNN impute algorithm with K=10 using Euclidean 

distance [91] and technical replicates (i.e. spot repeats and dye swaps) were 
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averaged together, resulting in data files of complete matrices with one entry per 

gene appearing in the dataset (see Appendix A for further details and the 

complete list of datasets). 

Gene similarities are calculated within a dataset containing n conditions 

using the Pearson correlation coefficient, ρ, as defined by: 
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where x and y are expression level data vectors for two genes, µx and µy are 

means, and σx and σy are standard deviations.  However, the distribution of all 

pair-wise Pearson correlations varies greatly from one dataset to the next.  This 

is a function of several factors, including the number of experimental conditions 

in a dataset, the biological process targeted, and the microarray technology 

employed.  In order to better compare correlations between datasets, we apply 

Fisher’s z-transform to improve comparability [24].  The Fisher z-transformed 

correlations, z, are defined as: 
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where ρ is defined as above.  As a final step, we standardize these quantities by 

subtracting the mean correlation within each dataset and dividing by the 

corresponding standard deviation which results in approximately normal 

distributions [~N(0,1)] of correlations within each dataset under the assumption, 
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based on empirical observation, that the true underlying distribution of the data is 

approximately normal (Figure 2.1). 

 
Figure 2.1:  Example results of Fisher Z-transformation. The distribution of 
Pearson correlations between all pairs of genes within each dataset varies 
greatly depending on the number of conditions in each dataset, the process 
targeted, and the array platform used. In order to ensure comparable measures 
of correlation from one dataset to the next, we employ the Fisher z-
transformation. Here we see the distribution of all pair-wise correlations for two 
datasets before and after applying the z-transformation.  After the transform, the 
distributions are approximately normal for all datasets. 
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2.2.2  Functional coverage analysis 

As motivation for our search algorithm presented in the next section, and 

in order to characterize which biological processes are represented in the 

compendium, we analyzed the functional coverage of each dataset over a variety 

of Gene Ontology (GO) terms [4] using the z-test for significance.  Given the 

background of all pair-wise z-scores within a dataset, d, for each GO term, g, we 

calculated all pair-wise correlations for the ng genes annotated to the term and 

find the mean sample correlation, µg.  The z-test statistic for each GO 

term/dataset pair, ζg,d, was calculated as: 
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where µb is the mean of the background distribution and σb is the background 

standard deviation.  Approximate significance of these z-statistics was computed 

based on an upper-tailed hypothesis test [58].  The calculated p-values are 

approximate due to the assumption of underlying normality in the data and 

because correlations among genes annotated to the same GO term are not 

necessarily independent.  For display in Figure 2.6, the resulting matrix of 

pseudo p-values was hierarchically clustered in both dimensions.  In addition to 

the z-test presented here, we have calculated significance using the non-

parametric Kolmogorov-Smirnov test (see Appendix B for details). 

2.2.3  Search algorithm details 

Motivated by our characterization of the functional coverage of the 

compendium, we have devised a search procedure to leverage the 
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compendium’s diversity.  Our search algorithm is based on two components: a 

signal balancing technique that enhances biological information; and dataset 

relevance weighting to identify functional patterns within datasets that are 

meaningful given a set of user-provided query genes. (Note that this algorithm is 

independent of the functional coverage analysis presented in section 2.2.2.)  We 

refer to this algorithm as SPELL (Serial Patterns of Expression Levels Locator).  

A schematic overview of this method is shown in Figure 2.2. 

 
Figure 2.2: Schematic view of the SPELL search engine framework.  Our 
system consists of several key components and phases shown here.  Input to the 
main algorithm consists of a collection of normalized gene expression datasets 
and a set of researcher-provided query genes of interest.  Our algorithm relies on 
signal balancing coupled with a method to select datasets relevant to the 
specified query.  The algorithm identifies additional genes highly co-expressed 
with the query set and returns that list to the researcher. 
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2.2.3.1 Identification of functional patterns through signal balancing 

While correlations between the original data vectors in microarray 

datasets are biologically meaningful, the high levels of noise in these datasets 

can lead to spurious results, particularly in the context of very large compendia.  

Singular value decomposition (SVD) has been applied to several other problems 

in microarray analysis, and it has been shown that this process can lead to 

substantial noise reduction [1, 95].  We apply SVD in a novel way to re-balance 

the signals present in datasets. 

Briefly, SVD factors an original m×n data matrix, X, into 3 component 

matrices of the form: 

! 

X
m"n =U
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 , 

such that Σ contains the singular values of X along its diagonal in decreasing 

order and U and VT contain the left- and right- singular vectors, respectively.  In 

practice, VT defines an orthonormal basis for the columns of X in decreasing 

order of corresponding singular values, while U defines the projection of each 

original data vector in this new basis. 

In contrast to typical applications of SVD for microarray analysis, we 

calculate correlations between genes’ coefficients in U rather than re-project to 

an approximation of X.  In this case, U can be interpreted as the “balanced” 

projection of X onto its right singular basis, where the balancing weights are 

inversely proportional to the singular values defined by Σ, i.e. U=XVΣ 
-1. 

Correlations between genes in U equally weight each dimension of the 

orthonormal basis and balance their contributions such that the least prominent 
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patterns are amplified and more dominant patterns are dampened.  This process 

helps reveal biological signals, as some of the dominant patterns in many 

microarray datasets are not biologically meaningful. 

We have quantitatively found that our application of SVD to microarray 

data for the purpose of signal balancing performs much more accurately than the 

traditional use of SVD for noise reduction.  In the traditional use of SVD, low 

singular values and their corresponding singular vectors are removed from the 

decomposed matrices (UΣVT), then the matrices are multiplied back together to 

reconstruct a version of the original data matrix (X).  Often, enough singular 

values are retained to account for some percentage of the variation of the original 

data.  However, in our analysis we find that performance generally degrades 

when using this traditional application of SVD.  Rather, by calculating correlations 

within the left singular vectors (U) we perform our analysis in a space where the 

more dominant patterns are dampened and the less dominant patterns are 

magnified, which produces better results (Figure 2.3).  Note that this process is 

related to some applications of SVD to microarray data, such as the work by Alter 

et al. [1], which found that dominant eigengenes are sometimes highly correlated 

with systematic effects in the data. 

We apply this signal balancing approach to each dataset in our 

compendium separately.  All correlations calculated during our search procedure 

in the next section are calculated in the resulting signal balanced U matrices 

rather than the original data matrices. 
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Figure 2.3: Results of SVD-based signal balancing.  This graph evaluates our 
method in the manner described in section 2.2.4.  In all four cases the same 
evaluation is applied, however different input matrices are used corresponding to 
our use of SVD for signal balancing, the original data matrix, and retaining 90% 
and 50% of data variance and reconstructing the original data matrix.  Our use of 
SVD-based signal balancing outperforms both the original data and traditional 
applications of SVD. 

2.2.3.2 Query-based search 

Given a compendium of signal balanced microarray datasets, D, and a 

query set of genes of interest, Q, our approach assigns a relevance weight to 

every dataset in the compendium.  We then identify additional genes closely 

related to the query set within the weighted datasets.  Given a set of query 

genes, qi ∈ Q, we determine a relevance weight, w, for each dataset, d, in our 

compendium as the mean of all pair-wise z-transformed correlations, z, among 

the query genes: 
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where the function f is used to control the contribution of the correlations to the 

dataset relevance weights.  Empirically, we have found that a quadratic function 

of the z-transformed correlations produces more accurate results (as compared 

to linear, cubic, or exponential functions) by giving relatively more weight to 

higher correlations.  Also, we find that negative correlations are generally less 

biologically meaningful than positive correlations (Figure 2.4).  Therefore we also 

limit the influence of negative correlations by disregarding z-transformed 

correlations less than one standard deviation away from the mean, resulting in 

the following: 
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Given these weights for each dataset, we calculate a per-gene score, s, 

as the mean of weighted correlations to the query set for each gene x, across all 

D datasets in the compendium as: 
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Once scores are calculated for all genes, the results are sorted, and the top 

results are returned. The effect of this process is to select those datasets most 

relevant to the biological context defined by the query and identify additional 

genes related in these datasets. 
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Figure 2.4:  Positive vs. negative correlation performance.  We have found 
that negative correlations tend to not be functionally informative in many cases. 
As an example of this effect we have examined the precision-recall plot of 
positive correlations across all microarray data and negative correlations across 
all data. The following graph was created using the GRIFn system [60]. Several 
reference datasets are included for comparison. 

2.2.4  Performance evaluation methodology 

In order to evaluate our method’s performance, we assessed the ability of 

our approach to recapitulate known biology by examining a set of 126 

functionally distinct GO terms selected by an expert curation of the hierarchy 

performed by [60].  These GO terms were identified as both specific enough such 

that predicted annotations could be validated through laboratory testing, but also 

general enough to reasonably expect high-throughput data to be informative.  We 

excluded very small terms (less than 10 annotated genes), as results can be 

misleading with such small numbers of positive examples. 

We estimated precision-recall characteristics of our method through 

extensive cross-validation.  For each GO term examined, we executed a 

separate search with each possible pair of annotated genes as the query set (i.e. 

“leave-two-in” cross-validation).  Each of these queries resulted in an ordered list 
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of all genes in the genome as ranked by the algorithm tested.  We combined 

these lists by calculating the average rank of each gene across all lists (excluding 

the query genes) and producing an ordered master list for each GO term from 

best average rank to worst.  Precision-recall curves were generated based on the 

master list’s performance over the GO term examined, and average precision 

was used as a summary statistic for comparisons. To create precision-recall 

graphs averaged across GO terms, mean precisions were calculated at the scale 

of the smallest recall step examined (i.e. the inverse of the number of genes 

annotated to the largest GO term tested).  The average precision, AP, for each 

GO term, G, is calculated as: 
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where ranki is the rank placement of the ith gene annotated to the term in the 

ordered list of results.  Note that this metric is a quantized form of the area under 

the precision-recall curve. 

In addition to testing the performance of our SPELL algorithm, we 

compare our results with commonly used mega-clustering techniques based on 

both raw Pearson correlation and Fisher z-transformed, standardized z-scores.  

For Pearson correlation, results were calculated across the concatenation of all 

data into a single large matrix.  For z-scores, results were calculated in individual 

datasets and the z-scores were averaged together.  We also compared SPELL 

with another unsupervised, query-driven search technique, the Gene 

Recommender algorithm [65].  However, as this algorithm was not designed for 
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analysis on this scale over such a large collection of data, the running time 

limited this comparison to the 82 smallest of the 126 GO terms used in other 

comparisons.  In all cases, the same cross-validation and bootstrapping 

procedure was used.  Several results of these comparisons are shown in Figures 

2.7 and 2.8 (see Appendix C for further results). 

 
Figure 2.5:  Example result page from the SPELL search engine.  This is a 
screenshot of the results page from a query performed using the web-accessible 
search engine of our SPELL algorithm.  In this example, the user specified a 
query of 2 genes related to transcription, CTR9 and MED2.  The resulting list of 
related genes is significantly enriched for the GO biological process “transcription 
from RNA polymerase II promoter” as expected.  The un-annotated gene ARP8 
is also in this list (highlighted), and subsequent investigation confirms that this 
gene likely plays a role in this process. 
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2.3  Implementation 
Our SPELL methodology is implemented in a web-accessible search 

engine at http://function.princeton.edu/SPELL.  Our interface allows a researcher 

to provide a list of query genes, then the search engine reports which datasets 

are most relevant to that query, lists additional genes related to the query within 

the relevant conditions, and displays the expression levels of these genes.  Links 

to extra information about each dataset, the original publications, and gene 

information are also provided.  Queries are processed in seconds, which allows 

researchers to quickly locate and observe the relevant portions of the data 

compendium. 

In addition to processing initial searches, users can refine and direct their 

search in a serial fashion, which allows researchers to more fully explore the data 

compendium by observing which biological conditions induce stronger or weaker 

correlations among varying sets of query genes.  Thus a user can target the 

query to particular biological processes, which is especially valuable when 

investigating genes that are involved in multiple functions.  A screenshot of this 

search engine is shown in Figure 2.5. 

2.4  Results and Discussion 
2.4.1  Functional coverage analysis of the microarray 

compendium 

To map out the functional landscape of existing gene expression 

microarray data in S. cerevisiae, we have collected a large data compendium 

and examined it for coverage of known pathways and biological processes.  Our 
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collection contains 117 distinct datasets spanning 2394 array hybridizations. To 

our knowledge, this is the largest single microarray data compendium for S. 

cerevisiae. 

In general, we expect different datasets to activate different pathways 

depending on the experimental condition studied.  For example, stress response 

datasets should show a strong signal for ribosomal processes, but not 

necessarily meiosis, for which a sporulation time course may be better suited.  

We quantified this effect for our S. cerevisiae microarray compendium over a 

broad selection of biological processes as defined by GO and the 

Saccharomyces Genome Database (SGD) annotations [18].  For each GO term 

and dataset combination, we examined the statistical difference between the 

expression correlation among annotated genes and the background correlation 

among all genes within the dataset (see Methods for details).  The results of this 

evaluation are summarized in Figure 2.6 (see Appendix B for further information). 

This analysis illustrates both which datasets are informative of each 

biological area and which biological areas are represented in the compendium at 

large.  Some subsets of GO terms are significant in nearly all datasets, such as 

ribosomal processes (Figure 2.6b).  In contrast, many biological processes are 

active in only a few datasets, generally those where experimental conditions 

were specifically targeting the process in question.  An example of this is GO 

terms that relate to the process of meiosis (Figure 2.6c), which are significant in 

only a few, targeted datasets. 
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Figure 2.6:  Functional coverage within the S. cerevisiae microarray 
compendium.  We examined the functional coverage of the datasets from our 
yeast microarray collection in a very broad selection of 403 biological pathways 
and processes defined by GO.  We measured the approximate significance of 
the differences in distributions of pair-wise correlations between genes annotated 
to a GO term and the background distribution of all genes within each dataset.  
A) shows the full result plotting every dataset in columns versus GO terms in 
rows.  Dataset/GO term pairs with significant signal enrichment are colored red 
(p-value < 10-4, Bonferroni corrected).  B) shows a detail of a group of ribosome 
related processes that are significantly enriched in almost all datasets.  C) shows 
detailed results for a group of meiosis related processes that are enriched in only 
a subset of datasets, including the highlighted sporulation time course [68].  This 
analysis demonstrates both which functional areas are represented in each 
dataset as well as which areas remain to be studied through gene expression 
assays (see Appendix B for additional results). 

Finally, our analysis identifies several functional groups not significantly 

represented in our compendium, and thus likely not covered by currently 

available microarray data.  These fall into several categories:  pathways not 

believed to be transcriptionally regulated, functions that do not occur in many lab 

strains, and finally, functional areas which may not have been targeted by a 

specific assay to induce co-regulation (see Appendix B for details). 
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2.4.2  Query-driven search 

Our approach to analysis relies on signal balancing coupled with context-

sensitive search to provide fast, accurate performance.  Given a set of query 

genes from a user, we weight the relevance of each dataset based on the query 

genes’ correlation within that dataset.  We then calculate the context-weighted 

correlation of every other gene back to the query set to identify the genes most 

related to the query set to report as results.  Note that this approach is 

unsupervised in that the search process is independent of the functional 

coverage analysis discussed above. 

By considering correlations only in entire logical datasets (e.g. a heat 

shock time course), we harness the biological diversity in the collection in a 

meaningful way.  As we know that different datasets contain signals from 

different biological processes, it is vital to examine signals in those subsets of the 

compendium that are relevant to a particular area.  By determining dataset 

relevance based on the query sets’ correlation, our method uses the data itself to 

determine which datasets are important for a specific query, rather than relying 

on a literature search or curation.  This approach allows specific signals that may 

be present in only a few datasets in the compendium to be found without explicit 

prior knowledge of what the compendium contains.  Another important benefit of 

examining correlations only in functionally coherent units is that this approach is 

able to compare and combine information from datasets generated using diverse 

technologies.  Regardless of inter-dataset differences in signal or noise, our 

method is able to isolate and identify the most important information. 
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Figure 2.7:  SPELL vs. mega-clustering performance.  This figure compares 
the biological performance between the SPELL search engine and mega-
clustering approaches.  These graphs show the tradeoff between precision (the 
fraction of genes correctly identified) versus recall (the number of genes found).  
Results are shown for our methodology (SPELL), Pearson correlation calculated 
over all data concatenated together (Pearson), and average z-scores across all 
datasets (Z-score).  The top left graph displays results averaged over all 126 GO 
terms examined.  The remaining five graphs are a sample of the terms 
examined.  On average, our method shows a more than 250% improvement in 
performance over Pearson correlation on concatenated data (see Appendix C for 
further details). 
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2.4.3  Performance evaluation in 126 biological areas 

We have evaluated the ability of SPELL and other methods to reconstruct 

a known pathway given only a subset of genes in that pathway as input (see 

Methods for details).  We find that SPELL recovers known process proteins with 

substantially higher accuracy than other commonly used approaches (see 

Figures 2.7 and 2.8).  For instance, measured in average precision, SPELL 

improves by a mean of 273% over the typical Pearson correlation concatenation 

approach.  In 35 of the 126 GO terms examined, performance increases by more 

than 200%, in 71 cases performance increases by more than 100%, and in a 

total of 101 cases performance increases by more than 50%.  We find a 

performance decrease in only 5 GO terms, each of which has no biological signal 

in our gene expression compendium.  Specifically, 4 of these 5 GO terms were 

identified as underrepresented in the collection during our functional coverage 

analysis, meaning no datasets in the compendium can be confidently deemed 

relevant to these processes.  The remaining GO term where performance 

decreased is “DNA recombination” which contains many genes with very high 

sequence similarity (transposons), causing cross-hybridization effects that make 

dataset co-expression not biologically meaningful.  Thus, for all GO terms 

examined where a biologically meaningful signal is present in the microarray 

compendium, our approach leads to an increase in biological accuracy over 

mega-clustering. 

We also compared the performance of SPELL with another unsupervised 

search approach, Gene Recommender [65].  On average, SPELL exhibits a 67% 
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performance increase over this approach and is dramatically faster (Figure 2.8).  

In this analysis using a very large data collection, SPELL demonstrates a 

substantial improvement in biological accuracy over both simple mega-clustering 

techniques and the sophisticated feature selection-based Gene Recommender 

algorithm. 

 
Figure 2.8:  SPELL vs. Gene Recommender performance.  This graph 
compares the biological performance of SPELL and the feature selection based 
search method, Gene Recommender [65].  This analysis is similar to that of Fig. 
2.7, except that due to run time limitations of the Gene Recommender algorithm, 
this comparison was conducted on a subset of 82 GO terms.  SPELL exhibits an 
average performance increase of 67% over Gene Recommender. (See Appendix 
C for further details.) 

2.4.4  Novel biological predictions and confirmation 

The results of our cross-validation and bootstrapping analysis can also be 

used to make novel gene function predictions.  We examined the high-precision, 
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low-recall area of the SPELL results to identify potential functions for genes 

currently lacking any annotations to the GO biological process branch.  In many 

cases we have found supporting evidence for these predictions in the literature, 

and/or conducted laboratory experiments that support the hypotheses. 

2.4.4.1 Multiple functions of un-annotated gene ARP8 are predicted 
by SPELL 

SPELL makes 13 novel functional predictions for the gene, ARP8, which 

fall into 3 categories: processes related to the cell cycle, processes related to 

transcription by RNA polymerase II, and processes related to cellular 

morphogenesis and structure (see Appendix D for complete list).  Although this 

gene is not annotated to the GO biological process branch, several studies have 

been conducted that support these predictions. 

Arp8 is a component of the 12 protein complex INO80.  INO80 is a 

chromatin remodeling complex that is involved in regulation of transcription and 

in DNA damage response [80].  The role of ATP-dependent chromatin 

remodeling complexes in transcriptional regulation is well documented [16], and 

thus it comes as no surprise that an important component of the INO80 complex 

was predicted to the GO terms involved in transcriptional regulation.  Perhaps 

more interesting, SPELL also predicted a recently characterized function of 

INO80—its role in both repairing double stranded DNA breaks and homologous 

recombination [94].  Mutants that cripple INO80 function have been shown to be 

sensitive to DNA damaging agents, and temperature sensitive alleles of INO80 

arrest at G2/M [80].  Thus the series of GO terms related to progress through the 

cell cycle are extremely relevant to the function of Arp8 in the INO80 complex. 
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Figure 2.9:  Cell morphology defect of arp8Δ.  Our system, SPELL, predicted 
that the gene ARP8 is involved in cellular morphology.  Subsequent laboratory 
testing shows that an arp8Δ strain exhibits an abnormal growth phenotype.  Wild-
type cells (left) have a cell volume much less than the arp8Δ strain (right).  
Further, the arp8Δ cells have an irregular, elongated morphology when 
compared to the wild-type cells.  This is strong confirmation of our system’s 
prediction that ARP8 is related to cell morphology. 

A novel predicted function for the ARP8 gene was a role in cellular 

morphogenesis and cytoskeleton organization.  Using a complete deletion of the 

ARP8 gene from the yeast deletion set [29], we grew four independent colonies 

of both wild-type yeast and an arp8Δ in rich media.  We measured the cell 

volume for these cultures and found a dramatic increase in cell volume to 

66.7±2.1 fl for arp8Δ, up from 36.9±0.7 fl for wild-type.  Furthermore, by 

observing these cultures with microscopy we discovered that arp8Δ cells had an 

abnormal, enlarged ellipsoid shape compared to the rounded shape of wild-type 

yeast as shown in Figure 2.9.  These data verify that the ARP8 gene plays a 
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critical role in maintaining normal cellular shape and size, which supports these 

predictions of our system. 

The ability of SPELL to identify several distinct functions of ARP8 

demonstrates the effectiveness of our methodology.  By searching through the 

available data in a context-sensitive manner, our approach has the ability to 

identify signals in biologically diverse subsets of the compendium in a meaningful 

way. 

2.4.4.2 SPELL predicts YDL089W is involved in sporulation 

Another biological prediction made by our system is that the previously 

uncharacterized ORF YDL089W is involved in sporulation.  Several lines of 

evidence strongly support this prediction.  First, overexpression of YDL089W 

suppresses the sporulation defect of a csm1Δ strain [99].  Csm1 is involved in 

chromosome segregation during meiosis and Csm1 was demonstrated to have a 

physical interaction with YDL089W.  Furthermore, a protein chip screen for 

targets of the Cdc28 kinase (an important regulator of chromosome segregation 

at G2/M) found YDL089W as a target [93].  These results experimentally support 

our prediction that YDL089W plays a role in sporulation. 

2.4.4.3 Support for other novel GO biological process annotation 
predictions by SPELL 

SPELL predicts that the un-annotated protein SET7 is involved with 

protein amino acid alkylation.  The most common alkylation event in cells is the 

transfer of a methyl group to an amino acid.  The SET domain has been shown 

to catalyze the methylation of lysine residues [100].  The assignment of the 
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process amino acid alkylation to SET7 is consistent with the lysine methylation 

function of the Set7 protein. 

Another novel annotation prediction that is consistent with recently 

published data is the assignment of TVP38 to glycoprotein metabolism.  The 

Tvp38 protein was recently identified as one of nine novel components in the 

Golgi apparatus where much of protein glycosylation occurs [40].   Furthermore, 

the copurification with glycosylation proteins found in this study strongly supports 

this functional prediction. 

2.4.4.4 Effectiveness of SPELL for novel biological process 
annotations 

The biological diversity of these verified predictions of our system 

demonstrate the effectiveness of our approach.  Novel functions for genes as 

diverse as double stranded break repair, sporulation, glycosylation, and 

transcriptional regulation have been correctly predicted by our approach using 

only publicly available gene expression microarray data.  We believe systems 

such as SPELL that can enable fast generation of meaningful hypotheses given 

existing data will play a key role in directing future laboratory work. 

2.5  Conclusions  

As the biology community is producing a very large amount of gene 

expression data, it is critical to develop fast, biologically relevant search methods 

to enable researchers to leverage all of the available data in their own analyses.  

To this end, we have gathered the largest single collection of S. cerevisiae 

microarray data and studied the representation of various pathways and 

functions within the datasets contained in this collection.  Our study exhibits the 
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biological diversity of publicly available data and also points to several biological 

areas that are not yet covered by the gene expression collection. 

We propose a general, effective search method for harnessing very large 

gene expression data compendia.  We have implemented this method, called 

SPELL, in a web-based, context-sensitive search engine for the large scale S. 

cerevisiae data collection.  The accuracy of our approach is on average more 

than 250% improved over existing mega-clustering techniques when 

recapitulating known biology.  Further, our system makes several novel biological 

predictions that we have verified through recent publications in the literature and 

additional laboratory tests.  While we believe that our system will be very useful 

for biologists, there is still room for the development of additional methods for 

query-driven data exploration.  For example, modifications to bi-clustering 

algorithms or the further development of feature selection techniques may also 

be useful paths for future research.  These types of approaches will prove 

invaluable for the research community by providing an easy, direct link to 

biologically relevant information that exists within published gene expression 

data. 
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Chapter 3 

Visualization methods for statistical 
analysis of microarray clusters 
3.1  Introduction 

Recent high-throughput and whole-genome experimental methods create 

new challenges in data analysis and visualization.  Gene expression and protein 

microarrays output hundreds of thousands of data points that can be used for 

prediction of gene function over the entire genome.  However, there are serious 

and fundamental challenges in the analysis of these data. Microarray data 

contain substantial experimental noise and as our knowledge of biology is 

incomplete, no perfect gold standard exists for verification of microarray analysis 

methods. 

In order to determine gene/protein relationships and functions from 

microarray data, methods must be robust to noise and must identify groups of 

genes that may be functionally related.  Statistical methods, such as clustering, 

attempt to identify data patterns and group genes together based on various 

distance metrics and algorithms.  The lack of a true gold standard makes it 

impossible to verify the absolute accuracy of any clustering method.  Several 

statistical approaches have been presented for assessing cluster quality [20, 46, 

57, 101], but these are all either internal validation methods or methods that rely 

on incomplete external standards such as MIPS [56] or Gene Ontology [4] 

functional protein classifications.  Further, these methods do not address the 
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issue of identifying specific problems within clusters of microarray profiles or 

assessing the relationships between clusters of genes.  Well designed 

visualization methods are capable of aiding in these tasks by helping to bridge 

the gap between raw data and the analysis of that data [2].  To perform more 

comprehensive cluster analysis, statistically integrative, dynamic, noise-robust 

data visualizations are required to complement purely analytical evaluation 

methods. 

Existing visualization tools do not include methods to statistically and 

dynamically evaluate clusterings of genes.  Several tools can display expression 

data in various static ways suitable for publication [79] or provide useful dynamic 

views of tabular data [45], but are not specifically intended for cluster analysis.  

JavaTreeView [75] and the HierarchicalClusteringExplorer [78] dynamically 

display hierarchically clustered data for analysis and VxInsight [98] displays the 

result of a built-in clustering algorithm in an interactive 3D topology, but none are 

able to display results of other clustering methods for analysis.  TreeMap [6] 

provides an innovative way to visualize hierarchically clustered data as well as 

data organized in the context of the GO hierarchy, but is not intended for cluster 

analysis.  New tools such as GeneXplorer [72] provide an interactive method for 

visualization and analysis of microarray data on websites, but do not focus on the 

task of cluster analysis.  Several tools, including the MultiExperimentViewer [73] 

and Genesis [88], provide multiple methods of performing clustering as well as 

some visualization methods to analyze the resulting clusters.  Commercial tools, 

such as GeneSpring [28] and SpotFire [86], offer various statistical and 
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visualization tools for general analysis, but neither offer visual methods specific 

to analyzing the results of clustering algorithms.  Therefore, there is a need for 

visualization-based methodologies designed specifically to statistically and 

dynamically evaluate clusters produced by the variety of available algorithms and 

software tools. 

Here we present a suite of interactive microarray analysis methods that 

integrate relevant statistical information into visualizations for the purpose of 

assessing the quality and relationships of clusters in a noise-robust fashion.  Our 

methodology is general and can be used to analyze the results of most clustering 

algorithms performed on either protein or gene expression microarray datasets. 

3.2  Results and discussion 
3.2.1  Noise robust visualization 

Microarray data contain a substantial amount of noise; therefore, 

visualizations must facilitate tasks like pattern identification and outlier detection 

in a noise-robust fashion.  Microarray data span a rather large and noisy 

numerical range, so traditional microarray visualizations use a cutoff value that 

specifies where maximum saturation occurs.  While this is necessary in order to 

see variation around zero, it obscures variation in highly over or under expressed 

areas (Figure 3.1a-c).  At a minimum this cutoff value should be dynamically 

controlled by the user so that they have the ability to see both types of variation.  

Several currently available tools include this ability, as does our method, but 

while the ability to change the cutoff value helps to increase dynamic range and 

decrease the effects of noise in visualizations, it fails to address the entire 
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problem.  Traditional visualization methods essentially display the Euclidean 

distance between gene expression profiles, a measure that is not robust to 

outliers.  Distance metrics more robust to noise, such as a rank-based Spearman 

correlation coefficient, can be used for numerical analysis of microarray data.  

We propose a rank-based visualization method to serve as the complement to 

these noise robust distance metrics (Figure 3.1d). 

 
Figure 3.1: Example of noise in microarray visualization.  Four views of the 
same data displayed in different ways.  (a-c) show a traditional display using 
different cutoff values. Note that in (a) variation in the highly over and under 
expressed regions cannot be seen due to saturation, while in (c) variation in the 
highly expressed regions can be seen, but variation near zero cannot.  (d) uses 
our rank-based visualization method.  In this rank-based view (d), the experiment 
with the lowest expression for each gene is colored black, the experiment with 
the highest expression is colored white, and the other experiments interpolate 
between in grayscale.  Using this method, users can see the overall pattern of 
variation in the data, which makes it clear that heterogeneity in the traditional 
view is mostly the result of noise.  (Data from [26]) 
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Our method performs a rank transform on each gene by sorting the gene’s 

expression levels, then ranking the experiment for each gene with the lowest 

expression 0, the next lowest 1, and so on to the highest expression which is 

ranked N-1, where N is the number of experiments.  Each experiment is then 

displayed as a grayscale percentage of rank/(N-1).  In this display, the 

experiment with lowest expression for each gene is colored black, the experiment 

with the highest expression is colored white, and the intermediate experiments 

gradate between them in shades of gray. 

 
Figure 3.2:  Rank-based visualization of synthetic data.  Synthetic data 
displayed (a) traditionally and (b) using our rank-based method.  This data was 
generated by creating a single sinusoidal expression profile and for each gene 
(row) randomly shifting that profile up or down and introducing small amounts of 
Gaussian random noise throughout.  The result is that the genes generally follow 
the same shape/trend over experiments, but the shapes are shifted up/down 
from one another.  Traditional view (a) masks the similarity between genes, but 
their relationship is clear in the rank-based view (b). 

In addition to being more robust to noise, this rank-based visualization 

allows users to easily see patterns of shape/trend that are not apparent in 

traditional visualizations.  Clustering algorithms that use a rank-based distance 

metric will group together genes based on their pattern of expression, which can 

result in clusters that look very non-uniform when traditionally displayed (Figure 

3.2).  However, in our rank-based visualization it is clear that these genes do 
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belong together because they share expression profiles with the same 

shape/trend. 

While the example in Figure 3.2 is an extreme case, this rank-based 

visualization approach is useful in a variety of biological settings.  For example, in 

many time series data sets it is useful to observe changes in expression over 

time in response to some process such as environmental changes, drug 

introduction, or cell cycle phase.  In particular, a group of genes which all rise in 

expression over a period of samples in a cell cycle experiment, but whose 

absolute expression levels are not the same will appear heterogeneous when 

displayed traditionally.  However, when displayed using our rank-based method, 

the pattern of expression is much clearer, which can aid users to identify 

biologically meaningful trends of expression (Figure 3.3).  Genes exhibiting a 

coherent progression of shape/trend over time may be co-regulated.  Thus, it is 

important to identify trends and not just examine similarities of absolute 

expression level. 

 
Figure 3.3: Rank-based visualization of time series data.  Yeast cell cycle 
data displayed (a) traditionally and (b) using our rank-based method.  In the 
traditional visualization the top 4 genes (within the purple box) appear to be very 
different from the rest of the genes in this cluster.  However, using the rank-
based method it becomes clear that these genes follow the same general pattern 
of the entire cluster, with initially low expression building up to highest expression 
in the central time points and then falling to roughly middle values.  (Data from 
[85]) 
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3.2.2  Assessing cluster quality 

While multiple statistical methods have been developed for assessing the 

quality of clusters produced by different algorithms [20, 46, 57] the most 

appropriate clustering algorithm choice depends on the dataset, distance metric, 

and goal of the analysis [101].  Due to the limitations of these methods, it is 

important to effectively display clustered data in a manner that allows 

researchers to examine the variation and consistency of the results of different 

clustering algorithms.  We propose two new visualization techniques that can be 

used to assess overall cluster quality, and also identify individual outliers and 

other anomalies in the data quickly and efficiently. 

First, to analyze the overall cohesion of each cluster, we developed a 

“difference display” method.  For each cluster, we display the cluster average bar 

to show the general expression of the cluster as a whole.  We calculate the 

vector of the cluster average g  from the vectors of expression profiles of each 

gene, 
i
g , for each cluster containing M genes with expressions measured over N 

experiments using the standard formula: 
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Each gene’s expression is displayed as a difference, id , from the cluster 

average, g : 
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Thus if a gene is shaded green in an experiment, it is expressed lower than the 

cluster average for this experiment, and if shaded red it is expressed more in an 

experiment than the cluster average for that experiment.  In this visualization a 

cluster that is relatively dark is more uniform since the genes are generally close 

to the average (Figure 3.4a).  Individual genes that differ from the average more 

than others will stand out as brighter than their neighbors, which allows for easy 

visual detection of outliers (Figure 3.4b).  Thus, this visualization allows 

researcher to easily identify genes that do not fit well with the cluster’s 

expression profile, and thus may be functionally distinct from the rest of the 

cluster. 

 
Figure 3.4:  Difference display visualization.  Three clusters displayed 
traditionally on the left and in our difference image visualization on the right.  In 
the difference display, the large top bar on each cluster shows the cluster 
average, each gene is displayed as its difference from that average (green 
indicates expressed less than the cluster average, red shows more expressed, 
and black means equally expressed with the cluster average).  Cluster (a) is a 
coherent cluster of genes and appears very dark because of its homogeneity.  
Cluster (b) is another dark, uniform cluster, but it also contains one randomly 
inserted gene, which can be easily identified in our difference display.  Cluster (c) 
contains a random selection of genes, and its randomness is clear from the 
brightness of the difference display.  This difference display allows for quick 
assessment of overall cluster homogeneity and facilitates quick outlier detection. 
(Data and clusters a & b from [23]) 
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Second, in addition to assessing overall cluster quality and identifying 

gene outliers, it is important to look at variation of individual experiments within 

each cluster.  We calculate the standard deviation, s, of each experiment, j, 

within a cluster in the normal manner: 
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Where M is the number of genes in the cluster, j
g  is the cluster average for 

experiment j, and ji
g
,

 is the expression level of gene i in experiment j.  We 

display the standard deviation of each experiment within the cluster below the 

cluster average bar.  Here black indicates a standard deviation of zero and white 

indicates higher standard deviations, saturating at a user defined cutoff value.  

This allows a user to quickly identify high and low variation experiments on a per-

cluster basis (Figure 3.5).  High variation experiments may imply that the genes 

in this cluster were less related under those particular experimental conditions. 

Visualizing clusters in this difference display method allows users to see 

variations in expression level that may be biologically significant that are not 

visible in traditional visualization methods.  For example, the data shown in 

Figure 3.5 is the glycolysis cluster (2E) from [23].  When viewed traditionally this 

cluster appears very homogenous and consistent.  However, when viewed as a 

difference from the cluster average, we can observe that in the region of highly 

under-expressed experiments some genes are more expressed than the average 

while others are less expressed than average (red and green boxes are shown in 
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this area).  This suggests that the cluster could be split into two smaller clusters 

that would be even more homogenous. 

 
Figure 3.5:  Experiment variation display.  A cluster displayed traditionally on 
the left and in our difference image visualization on the right also showing the 
standard deviation within the cluster for each experiment.  Black on the standard 
deviation bar indicates a standard deviation of zero, while white indicates a 
higher value.  Purple arrows point to several experiments in this cluster that show 
high variance.  In general, the high variance among some experiments may 
indicate that this cluster is unregulated under those conditions.  In this example, 
we can inspect the differences from the cluster average in the high variance 
experiments and see that for these conditions the upper group of genes 
(indicated by a red box) is less under expressed than the lower group of genes 
(indicated by a green box) which suggests that the cluster could be split into two 
sub-clusters to reduce this variation as shown in Figure 3.6. 

In this example 8 of the 9 genes indicated by the red box in Figure 3.6 are 

annotated to glycolysis (TPI1, GPM1, PGK1, TDH3, TDH2, ENO2, TDH1, and 

FBA1), but only 3 of the 8 genes indicated by the green box have this annotation 

(CDC19, TYE7, PFK1).  The red grouping of genes is significantly enriched for 

the glycolysis biological process (p-value = 9x10-20).  However, the genes in the 

green box are significantly enriched for the more general process of alcohol 

metabolism (p-value = 1.7x10-11) as 7 of these 8 genes are involved in this 

process (PDC5, PDC6, PDC1, CDC19, HXK2, TYE7, PFK1).  Thus, there is a 

sound biological basis to draw a distinction between these two groups, but 

traditional visualization is unable to show this type of biologically meaningful 

variation in highly over or under expressed regions. 
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Figure 3.6:  Experiment variation example detail.  This figure shows further 
detail of the cluster seen in Figure 3.5.  The genes in the red box are less under-
expressed than the genes in the green box, which is evident in the difference 
display visualization.  These groups are biologically different, as the red genes 
are best characterized as specifically related to glycolysis, while the genes in the 
green box are better characterized as more generally related to alcohol 
metabolism. 

3.2.3  Assessing cluster relationships 

In addition to assessing the quality of clusters produced by an algorithm, it 

is also important to understand how the clusters and genes in different clusters 

relate to each other.  Clusters with similar overall expression profiles may 

functionally interact with one another.  One method to show high level cluster-to-

cluster relationships is to calculate a hierarchical clustering using only the 

averages of each cluster.  We can then hierarchically arrange the cluster 

averages and display the dendrogram relating the averages to each other (Figure 

3.7).  As this method only creates a hierarchy for the cluster averages, rather 

than for individual genes as in the case of hierarchical clustering of the entire 
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dataset, it allows us to show cluster relationships for arbitrary clustering 

algorithms. 

 
Figure 3.7:  Dendrogram of averages.  A dendrogram created from cluster 
averages with the genes in a cluster displayed below each average.  The length 
of each branch of the tree is proportional to the distance between the averages.  
We create the hierarchy from the cluster averages, which allows us to show high 
level relationships between clusters generated by arbitrary clustering algorithms. 
(Data and clusters from [23]) 

However, this dendrogram of averages fails to show the relationships 

between genes in different clusters.  It is important to examine gene-to-gene and 

gene-to-cluster relationships to assess whether or not genes are included in the 

most appropriate cluster.  In order to view the lower level relationships among 

genes in clusters we can project high dimensional microarray data into a lower 

dimensional space such that genes with similar expression profiles are spatially 

closer to each other than genes with different expression profiles.  We use 

Principal Component Analysis (PCA) to define the axes of a three-dimensional 

space to project the genes and clusters onto.  PCA has been used previously in 
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microarray data analysis for dimensionality reduction to facilitate easier analysis 

and comparisons [20, 71] and to identify patterns of noise [1].  Our method is 

interactive and navigable which allows users to examine individual genes and 

view relationships between clusters as they separate out spatially. 

To perform PCA on the microarray datasets, we use Singular Value 

Decomposition (SVD).  SVD decomposes an nm! matrix of the full microarray 

data, X, into three additional matrices: 

T

nnnnnmnm
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Where M is the number of genes and corresponds to rows of the matrix, and N in 

the number of experimental conditions and corresponds to the columns of the 

matrix.  We use the eigengenes, or Principal Components (PCs), defined in the 

rows of T
V  as the axes for our PCA visualization.  The position of each gene in 

that space is determined by the corresponding column of !U .  The square of the 

singular values, contained on the diagonal of ! , correspond to the variance 

included by each PC such that the percent of variation, p, captured by the kth PC 

is determined by: 
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In this formulation, the singular values are in decreasing order, meaning 

that the first PC includes more variation than the second, and so on.  Thus, using 

the top 3 PCs includes the most variation possible in a three dimensional 

projection.  We would expect that well-formed clusters would separate out the 
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most when using the top PCs as the axes of projection.  However, in some data 

sets the top PCs are not the most appropriate space for projection.  For example, 

in the Spellman et al. cell cycle data set [85] using our tool we can see that the 

first PC does not show the “banded” pattern typical of ordered cell cycle data, 

which the second, third, and fourth PCs do display (Figure 3.8a).  Accordingly, a 

projection into the first two PCs does not separate out cell cycle regulated 

genes/clusters spatially (Figure 3.8b). 

This is consistent with previous PCA analysis done by Alter et al. [1], 

which identified the first PC of this data as highly correlated to noise rather than 

meaningful information.  Our method allows the user to dynamically specify 

which PCs define each axis, which allows exploration of which PCs are most 

appropriate for analysis and identification of potential noise-correlated patterns in 

the data.  In the case of Spellman et al. cell cycle data, we can use the 2nd, 3rd, 

and 4th PCs for projection, which leads to much better spatial separation (Figure 

3.8c).  In this projection, we can see that each phase of the cell cycle spatially 

separates in temporal order around the origin and that the G1 and M phases 

appear opposite each other, which is consistent with the underlying patterns of 

expression for cell cycle genes.  Our projection of genes and clusters into a 

space defined by user selected PCs allows the user to view and analyze 

relationships on both a cluster-to-cluster basis and a gene-to-gene basis. 
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Figure 3.8:  Principal component projection visualization.  A projection of 
genes from a cell cycle data set into a 3D space defined by user selected 
Principal Components.  Genes in each cluster are colored by phase (Red-G1, 
Green-S, Blue-G2, Yellow-M, and Cyan-M/G1).  Cluster averages are displayed 
by larger solid spheres.  The much larger transparent spheres show the region 
included by one standard deviation away from the average.  (a) shows the top 
ten PCs of this data set and the percent of variance accounted for by each PC.  
(b) is a projection of cell cycle genes onto a space defined by the 1st and 2nd 
PCs.  The separation is poor due to the first PC being highly correlated to noise 
in this data set.  (c) shows the same data projected into a space defined by the 
2nd, 3rd, and 4th PCs.  These PCs are highlighted in (a) corresponding to the 
axis colors in (c).  Notice that the cell cycle phases are separated in order around 
the origin, and that G1 and M phase genes are opposite each other, which is 
consistent with their opposing expression profiles.  (Data and clusters from [85]). 

3.2.4  Multiple simultaneous views and scaleable 
architecture 

In our system each of the visualizations described above are dynamically 

linked to each other, so that selections, colorations, etc. are shared among 

views.  This allows users to perform tasks in conjunction with one another.  For 

example, using the difference image visualization and the PC projection, users 
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can assess the quality of a clustering as well as the relationship between clusters 

very easily (Figure 3.9). 

 
Figure 3.9:  Multiple simultaneous views.  A screenshot of GeneVAnD 
displaying clustered data.  The panels shown are the expression level window on 
the left, which can toggle between traditional, difference, and rank-based 
displays, and the PC projection window on the right.  A selected gene is 
highlighted in blue in all views. 

Our implementation of these methods is both modular and scalable.  

Although all of the visualizations share a common data structure for dynamic 

linking, each visualization is displayed in its own panel, allowing for easy addition 

or removal of new visualization components.  Each of the panels is fully scalable 

for use on both desktop/laptop size displays as well as large display walls.  The 

ability to use these visualizations on large, high-resolution displays facilitates 
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collaboration among researchers and allows users to view greater portions of 

their datasets simultaneously (Figure 3.10). 

 
Figure 3.10:  Large scale display.  GeneVAnD in use on a large-scale display 
wall.  The high resolution enables display of more information simultaneously and 
the large scale creates an environment conducive for collaboration between 
multiple researchers. 

3.3  Implementation 
Our methodology has been implemented in GeneVAnD (Genomic Visual 

Analysis of Datasets).  GeneVAnD is written in Java and is cross platform for use 

on Windows, Linux/Unix, and Macintosh operating systems.  We use Java3D [41] 

to display the PC projections and Piccolo [10] to display the expression profiles.  

The JAva MAtrix Library (JAMA) [43] is used to perform the SVD calculation.  

The package is designed in a modular way to allow future extensions and 

inclusion of additional information and visualizations.  The executables and 
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source code of GeneVAnD can be found at http://function.princeton.edu 

/GeneVAnD. 

3.4  Conclusions  
Statistical clustering of microarray data is vital for identifying groups of 

genes that may be functionally related.  However the high level of noise in 

microarray data and the lack of a gold-standard for comparison deeply 

complicate the evaluation of clustering algorithms.  Here we have presented a 

set of visualization methods geared specifically toward evaluating clustering of 

microarray datasets.  Our rank-based method allows for more noise-robust 

visualizations of expression levels, our difference display method facilitates visual 

assessments of general cluster quality as well as outlier detection, and our PC 

projection method allows for visual assessments of cluster relationships.  Our 

methodology integrates meaningful statistics into an interactive and noise-robust 

data visualization package for use in analyzing the results of clustering 

algorithms.  Through several examples we have demonstrated the effectiveness 

of these methods to aid researchers in the analysis of the results of clustering 

algorithms by facilitating noise-robust assessments of cluster quality and cluster 

relationships.  We believe that more statistically integrative and targeted 

visualization methods can benefit not only cluster analysis, but also many other 

important data analysis problems in genomics. 
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Chapter 4 

Viewing the Larger Context of 
Genomic Data through Horizontal 
Integration 
4.1  Introduction 

Scientifically meaningful data visualization is vital for the advancement of 

knowledge in many fields, particularly molecular biology.  Genomics is one of the 

fastest growing modern scientific disciplines, as it promises a better 

understanding of the inner workings of cells, is vital to understand diseases, 

elaborates our understanding of evolution, moves towards the era of 

personalized medicine, and reveals the root causes of cancer.  One of the most 

powerful new tools molecular biologists wield to solve these problems are gene 

expression microarrays, and the majority of microarray analysis is done through 

visualization techniques[23, 70]. 

Gene expression microarrays simultaneously measure the activation or 

suppression of every gene in a genome at a particular point in time.  These 

studies result in data matrices containing hundreds of thousands to millions of 

observations, and the majority of researchers rely on visualization tools to mine 

these data to discover new biological information.  Biologists face the challenges 

of understanding not only the data that they generate, but also of comprehending 

their results in the broader context of previous studies. As microarray technology 

matures, decreases in cost, and becomes more accessible, the number of 
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microarray studies produced is growing exponentially, which further complicates 

thorough analysis. 

No existing method for microarray visualization enables researchers to 

directly understand and analyze their data within the greater context of previously 

published findings.  This severely limits research capabilities by forcing users to 

focus on their own data during the initial analysis phase and to compare with 

other studies only at later stages to confirm or contradict their conclusions.  

Integrating the vast amount of available data into the analysis phase as early and 

seamlessly as possible will allow researchers to build upon previous results, 

observe inconsistencies, and form more powerful conclusions. 

We propose a novel methodology for the analysis and exploration of 

multiple microarray datasets simultaneously.  By leveraging visual paradigms 

that are commonly used for small-scale microarray analysis, our approach 

remains easily interpretable by researchers.  Due to the sheer size of these 

datasets, we employ an “overview + detail” approach on a per-dataset basis to 

allow users to view specific genes as well as their context within the whole 

genome.  However, we extend this paradigm to include the larger context of 

additional available datasets as well, which we call an “overview + detail + 

setting” paradigm. 

We have implemented our approach into a system called HIDRA 

(Horizontally Integrated Dataset Relationship Analysis), and we have deployed 

this system to experimental genomics researchers both for individual use and for 

collaborative use on a large-format display device.  In the next section we 
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discuss existing microarray visualization approaches in more detail.  We then 

outline our specific visualization goals and what techniques we use to achieve 

those goals.  And finally we show two case studies where meaningful biological 

observations have been made by researchers using our system. 

4.2  Related Work 
Existing microarray visualization tools focus on the analysis of single 

datasets, and many of these tools are used on a daily basis by the research 

community[76].  The majority of visual displays of microarray data fall into two 

major categories:  heat maps [73, 75, 78] and parallel coordinates[34].  Other 

approaches are also used, such as scatterplots, histograms, and spreadsheets, 

but these are generally complementary techniques used in conjunction with a 

heat map and/or parallel coordinate display[28, 31, 73, 86]. 

Heat map displays traditionally show a clustered data matrix of values 

represented as colors interpolated from red to green.  This type of display allows 

a user to quickly identify prevalent patterns among genes in a dataset by looking 

for bands of data with similar profiles.  These displays are often accompanied by 

a dendrogram created from hierarchical clustering, which dictates the order in 

which genes are displayed and visually encodes a distance metric relationship 

between genes. 

Heat maps have seen near universal adoption amongst biologists, and 

their results are the canonical representation of gene expression used in the 

majority of microarray publications.  While these displays allow the full matrix of 

data values to be viewed, the patterns and labels of individual genes are only 
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visible by zooming into more detailed portions of the map.  Many tools support 

this type of exploration by using an “overview + detail” paradigm[7], where users 

see the entire dataset, but can then select a smaller region to see in greater 

detail. 

Parallel coordinate systems display genes as a collection of segmented 

lines overlaid on a measurement grid.  These displays have the ability to show all 

of the available data in a relatively small area.  This approach is also well suited 

for the identification of desired patterns, as users are able to select only those 

genes that pass through defined portions of the grid. 

While parallel coordinate views show all of the available data, the results 

can be difficult to interpret.  When viewing a large number of genes 

simultaneously, it is difficult to distinguish one expression profile from another.  

As with heat maps, this approach suffers from not being able to label individual 

genes within the total plot.  The absence of a dendrogram created from 

hierarchical clustering presents both benefits and complications.  The 

dendrogram visually indicates a quantitative distance metric between two genes 

in a dataset, but it also enforces an ordering and structure on the data that may 

be somewhat artificial.  Parallel coordinate displays do not suffer from this 

imposition of ordering, but do not visually quantify arbitrary distances between 

profiles. 

Many of the most successful microarray visualization approaches combine 

both heat map displays and parallel coordinates views, along with several other 

views of the same data[76].  We refer to these approaches as “vertically 
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integrated” as they allow researchers to see the same data from many 

complementary angles.  These methods have been very successful and have 

gained wide use among the microarray analysis community. 

We propose extending the power of multiple simultaneous views in an 

orthogonal direction.  Rather than displaying multiple viewpoints of the same 

data, our approach displays the same type of viewpoint on multiple datasets at 

the same time -- we refer to this paradigm as a “horizontally integrated” 

approach.  This expansion of the amount of visualized data enables researchers 

to view a broader setting of known biology and place their own results within this 

larger context. 

4.3  Design & Implementation 
We established several goals for the design of our microarray visualization 

methodology that incorporates broader context.  The following goals are a 

combination of our initial aspirations and the desires of our research 

collaborators that used our system: 

• Ease of use.  A successful system must be usable and intuitive for 

the target audience, in this case biology researchers. 

• Dynamic, consistent interaction.  The approach must be adaptive to 

user input as their desire to explore and observe information 

changes over time, but these adaptations must feel natural to the 

user. 

• Scalability.  Our approach must scale both with the amount of data 

visualized, and with available screen space. 
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• Biologically meaningful.  Perhaps the most important criterion is 

that a microarray visualization system must enable researchers to 

explore their data in a way that facilitates biological observations 

and insights. 

4.3.1  Single dataset visualization 

In order to maintain a baseline of usability and comfort with the microarray 

analysis community, we have chosen to adopt the use of heat maps 

accompanied by dendrograms as the basis for our methodology.  This approach 

is by far the most common presentation format for microarray data in biology 

literature.  For individual dataset display we leveraged the codebase of the 

commonly used, open-source tool, JavaTreeView[75], which we then modified for 

our purposes.  This provides the immediate advantage of utilizing pre-existing 

abilities and biases of the microarray research community.  On the level of a 

single dataset we also utilize the “overview + detail” paradigm to allow users to 

view both the entire dataset, as well as a more detailed view of a subset of that 

data.  An example of this visualization for a single dataset is shown in Figure 4.1. 

Users have several options for interacting with this display of information.  

Subsets of genes to view in the detail portion can be selected by dragging a box 

on the heat map, or by choosing branches of the dendrogram.  These selections 

can be refined by traversing up or down the dendrogram using the keyboard.  

This allows users to isolate particular desired areas of the larger dataset to view 

with greater scrutiny. 
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Figure 4.1:  Individual dataset display.  A single dataset displayed using a heat 
map and dendrogram in an overview + detail format.  Rows correspond to genes 
and columns to experimental conditions.  Each intersection is colored on a 
continuous scale from green through black to red.  The data was hierarchically 
clustered in both dimensions.  A region of the dataset was selected in the 
overview and the corresponding section is shown in greater detail below. 

Due to differences in experimental technologies and personal 

preferences/abilities, it is also important for users to maintain control regarding 

the parameters of the heat map coloration.  In general, microarray data lies in a 

broad, noisy range of values that depends on several laboratory factors.  For this 

reason, values above/below a cutoff are saturated out to a maximum intensity, 

but this cutoff is not universal, and should thus default to a reasonable value, but 
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be in the control of the user.  Additionally, the color scheme used for display must 

be adjustable by the user.  The red/green gradient is commonly employed 

because it has a direct link to the chemical dyes used in microarray experiments, 

however such a scheme is clearly unacceptable for color-blind researchers. 

4.3.2  Multiple dataset visualization 

Several factors are important to consider when incorporating additional 

datasets into microarray visualization.  The common features of microarray 

datasets are genes, while the experimental conditions vary between datasets, 

which indicates that between dataset comparisons should be visible on a per-

gene basis.  However, microarray datasets are often created using disparate 

technologies or experimental practices, and individual datasets are generally 

targeted to investigate a specific area or process, which indicates that 

information such as clustering and normalization are appropriate only on a per-

dataset basis. 

In order to address these biological requirements, we have developed an 

approach we refer to as “overview + detail + setting”.  On the level of each 

dataset it is vital to observe both the entire dataset (overview) as well as more 

specific information (detail).  However, for the larger goal of placing an individual 

researcher’s data in the greater context of available data, datasets must be 

linked together (setting).  In particular, we applied this approach to microarray 

data with the goal of making comparisons between datasets as intuitive as 

possible, while maintaining important per-dataset information. 
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The most common paradigm in microarray literature is for the expression 

of genes to correspond to rows of a visualized data matrix.  As genes are the 

common element of interest between datasets, we place the datasets next to 

each other horizontally to preserve gene-row orientation across all data.  

However, the ordering of genes is determined by clustering, and the clustering 

process is biologically meaningful on the level of individual datasets.  To address 

these issues, we have synchronized the detail views across all datasets to 

facilitate comparisons, while preserving the cluster order of individual datasets in 

the overviews. 

By synchronizing the detail views, we preserve the expectation that gene 

measurements are aligned along rows, even across multiple datasets.  The order 

of the genes shown in the detail views corresponds to the order of those genes in 

the dataset where the selection was made.  To provide information about the per-

dataset context of the selected genes, a thin line is displayed in each dataset’s 

overview to indicate where each selected gene falls within that dataset.  An 

example of this multiple dataset visualization is shown in Figure 4.2.  The gene-

level synchronization of the detail views enables low-level comparisons of a 

gene’s specific behavior in different datasets; while in the overviews, the 

selection highlights indicate a higher-level comparison of gene group 

relationships between datasets. 

For example, a user can select a tight group of genes in one dataset, and 

immediately observe how those genes cluster together in every other dataset at 

a general level.  A researcher can then examine the detail views to investigate 
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the specific expression levels that led to the observed global patterns.  This type 

of exploratory analysis across a large amount of diverse datasets is impossible 

with existing tools, but is vital for experimental microarray analysis, as we 

demonstrate in our validation. 

 
Figure 4.2:  Multiple disparate datasets viewed in HIDRA.  Six different 
datasets are shown here tiled horizontally.  Each dataset was individually 
hierarchically clustered in both dimensions.  A selection has been made in the 
rightmost dataset (from a nutrient limitation study [74]) and the thin light blue 
lines in the left five datasets (from a stress response study [27]) indicate where 
these genes are located in their overviews.  A user can quickly observe that the 
selected genes are non-randomly grouped in the clustering of the other datasets.  
Further inspection of the aligned genes in the detail views shows cases where 
these genes are behaving similarly/differently. 

4.3.3  Scalability, interactions, and interfaces 

The inclusion of multiple datasets also requires addressing scalability, 

interaction and user interface concerns[64].  First, as more data is viewed 
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simultaneously, screen space quickly becomes an issue.  While several datasets 

can be viewed at once on even the smallest desktop/laptop displays, users may 

be in situations where they still feel limited.  By default, when enough datasets 

are loaded to overflow the available display space, a scrollbar becomes active to 

pan between datasets.  We also provide the ability to dynamically re-order, 

remove, and/or add new datasets as the researcher explores their data.  In this 

manner users can choose the most relevant datasets to occupy the visible area 

as their needs change over time. 

 
Figure 4.3:  Scalability of HIDRA.  A group of collaborators are using HIDRA on 
the large-scale display wall at the Lewis-Sigler Institute for Integrative Genomics.  
This display is capable of simultaneously showing an order of magnitude more 
data than traditional desktop/laptop displays, which is helpful when dealing with 
very large data repositories. 
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Another option to see more data is to move to large-scale display devices 

if they are available to the user[53, 96, 97].  Our approach scales very well to 

large-format devices by providing control over text size, column widths, row 

heights, etc (Figure 4.3).  Using displays of this magnitude allows users to see as 

much as an order of magnitude more data at once.  These very high-resolution 

displays are also helpful for collaboration, which is very common among 

microarray analysts. 

Regarding the user interface, several visualization choices must be made 

on a per-dataset basis.  In particular, the desired color scale, saturation cutoffs, 

dendrogram widths, etc. often vary greatly from one dataset to another, due to 

technological and experimental differences.  We provide controls to alter all of 

these parameters for any selected subset of datasets, including the individual 

level.  Further, we store these choices on a per-dataset basis, so that as users 

re-order, remove, and/or re-load data these per-dataset choices remain intact. 

Further, some interactions should be consistent from one dataset to the 

next.  In order to preserve the gene-row alignment of the detail views, the heights 

of each panel are slaved to any panel being resized, such that all detail views 

maintain the same height.  Additionally, scrolling in any detail view causes 

synchronous scrolls in all detail views to maintain consistency. 

4.3.4  Implementation 

We have implemented these methods into a Java-based system called 

HIDRA. The use of Java as a development language allows us to more easily 

produce a cross-platform result, which is of particular importance to the biology 
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community, who use a variety of operating system platforms.  Among our 

immediate collaborators, individuals use Windows, Macintosh, and Linux 

operating systems to perform their analysis.  The Java language also easily 

permits future expansion of our approach to include additional features, which is 

vital as genomic research is rapidly evolving. 

4.4  Validation 
The ultimate validation of a scientific data visualization approach is its 

usefulness and adoption within the research community.  In particular, a 

successful approach should aid in the discovery of novel biology.  We are 

working with many collaborators spread across five laboratories to assess how 

our multiple dataset visualization approach aids their research as well as how to 

improve HIDRA.  We have deployed our system for these users both on their 

own desktop/laptop machines and on the large-scale shared display wall at the 

Lewis-Sigler Institute for Integrative Genomics at Princeton.  While we are still 

receiving feedback from these users, here we discuss two of the user 

experiences that led to biological insights made using our approach.  These 

examples demonstrate the power of our technique as these observations could 

not be easily made using any previously existing methodology. 

4.4.1  User experience #1 – Stress response effects in yeast 

One scientist using our system is interested in studying stress response 

and growth rate effects in yeast.  By utilizing our multi-dataset visualization 

capabilities applied to several existing datasets, she was able to draw several 

novel, biologically meaningful conclusions.  She was able to simultaneously 
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examine the expression levels of genes in a set of standard stress response 

datasets[27] as well as results from a nutrient limitation study[74] and a collection 

of gene knockout experiments[35].  The biological question this user wished to 

examine is whether or not the traditional global stress response signal is present 

in other types of data. 

Using our approach, she was able to easily find and select clusters of 

genes in the nutrient limitation and knockout studies that she suspected may be 

the result of a stress response effect, and then examine how those genes related 

to each other within the standard collection of stress datasets (see Figure 4.2).  

Performing this type of analysis is simple in our multiple dataset approach; 

however, using previously existing techniques we would need to launch over a 

dozen independent instances of a program and continually cut and paste 

selections between instances, rendering such analysis practically impossible. 

Our collaborator identified several groups of genes in these datasets that 

exhibited a strong pattern of correlation within the stress response datasets as 

well.  This suggests that the effect on gene expression of various nutrient 

limitations and gene knockouts may be superceded by the more general stress 

response effect.  Our collaborators are currently performing further analysis, both 

in the lab and with our visualization system to better characterize this 

phenomenon.  Thus, by observing the relationships between these very different 

datasets in HIDRA, this scientist quickly identified unexpected commonalities that 

may prove biologically interesting. 
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4.4.2  User experience #2 – Cell cycle synchronization 
effects 

A second example of an important observation was made by another 

biologist using HIDRA to investigate disparities among related datasets.  In this 

case the scientist was examining several datasets all purportedly studying the 

same phenomenon, the yeast cell cycle.  In particular, two studies used a variety 

of means to synchronize cell populations to create time courses of gene 

expression throughout the phases of the cell cycle[19, 85]. 

A group of genes in one of these time courses were tightly clustered with 

very high over-expression at early points of the time course.  However, using 

HIDRA we could quickly see that these genes were largely unrelated in the other 

time courses, and during the early time points they were not over-expressed in 

the datasets produced from other means of synchronization (see Figure 4.4). 

Upon further inspection, a significant number of these genes are known to 

be involved in cell conjugation and mating.  The time course where these genes 

are tightly clustered was synchronized by exposing the cell population to a 

pheromone that induces a mating response, which halts cell cycle progression.  

Our collaborator quickly realized that the expression response seen in these 

early time points was an artifact of the synchronization method, rather than a 

change caused by the cell cycle.  In this case, observing differences between 

datasets studying the same phenomenon helped focus efforts on important 

portions of the datasets. 
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Figure 4.4:  Exploration of differences between multiple similar datasets. In 
this case, three time courses studying the same phenomenon (the yeast cell 
cycle) from two studies [19, 85] are shown.  A group of genes with very high 
over-expression at early time points is selected in the leftmost dataset, but these 
genes show little relationship to one another in the other two time courses.  
Further study revealed that the over-expression of these genes in the left dataset 
was an experimental artifact. 
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4.4.3  Discussion 

The two examples described above are representative of the types of 

interactions users have had with HIDRA.  By quickly observing commonalities 

among disparate datasets collaborators have been able to identify common 

trends that could indicate meaningful relationships between experimental 

conditions.  Conversely, by finding key differences between related datasets 

users can explore phenomena unique to particular assays.  This type of 

exploration allows microarray researchers to quickly make key insights and form 

hypotheses that would be difficult to make viewing the data independently. 

4.5  Conclusions 
We have presented a novel methodology for the concurrent analysis of 

multiple gene expression microarray datasets.  Our approach allows researchers 

to understand how their own data relates to data previously published in the 

literature, which is vital for continued analysis.  By exploring the larger context of 

available data, users can overcome the limitations of existing approaches for 

higher-level analysis of their own data.  Observing a more global view of 

expression data allows biologists to make more insights and formulate novel 

hypotheses. 

Our approach to the inclusion of greater data context is based on 

expanding common visualization practices to create an “overview + detail + 

setting” system.  We include the concept of the greater information setting by 

horizontally integrating and linking separate overview and detail views for 

individual datasets.  This type of data integration – inclusion of multiple parallel 
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views – is in contrast to the integration of a variety of viewpoints based on the 

same underlying data, which we call a vertically integrated approach. 

Although we apply the concepts of including a broader setting of 

information through horizontal integration to a specific solution for microarray 

visualization, these principles are much more general.  For example, a system 

similar to HIDRA for microarray analysis could be created based on parallel 

coordinates, rather than heat maps.  Horizontally incorporating additional 

datasets into a system based on vertically integrated multiple views could 

potentially provide both the benefits of more complete understanding of single 

datasets and the benefits of understanding the greater information context. 

The concept of visualizing the broader setting of available data is vital for 

future analysis and comparisons within the biology community.  We have shown 

real-world examples of insights that can be made using our approach for 

microarray visualization that are difficult or impossible to discover using existing 

techniques.  We believe integrating additional datasets into visualization systems 

is a powerful paradigm not only for genomics data, but potentially for many other 

disciplines as well. 
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Chapter 5 

A Platform for Integrated, Scalable 
Analysis and Visualization of Gene 
Expression Microarray Data 
Compendia 
5.1  Introduction 

The previous three chapters of this dissertation describe algorithms and 

approaches that can be utilized by biologists to aid their own research by 

identifying the portions of available microarray data that are relevant to their area 

of interest (chapter 2), by incorporating statistical choices made during 

microarray analysis into visualization schemes (chapter 3), and by providing a 

simultaneous, interactive view of multiple datasets to explore the broader context 

of other available data.  These methods are very complimentary, and combined 

together they create an excellent platform for meaningful biological analysis and 

visualization of large gene expression data compendia. 

For example, a researcher interested in studying breast cancer treatment 

may have performed laboratory work to collect gene expression time points while 

exposing a cell line to a chemotherapy drug.  They will likely cluster this dataset 

using a distance metric such as centered Pearson correlation to perform their 

initial analysis within a visualization system.  Currently available tools, including 

integrated analysis and visualization packages[28, 73, 79, 86], end their 

applicability to this type of research at this point, as they are only designed to 
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work with one dataset at a time.  However, the next natural questions for this 

study revolve around comparing the transcriptional response of this particular 

chemotherapy treatment time course with other studies to find important 

commonalities and differences. 

To this end, a researcher could select a cluster of interest from their own 

data and perform a SPELL similarity search (as described in chapter 2) to identify 

additional datasets where these genes are behaving in a similar manner [32].  It 

would then be useful to simultaneously view these related datasets in a 

visualization system such HIDRA (described in chapter 4) to explore the 

relationships between these data [33].  Most likely, these related datasets will be 

independently clustered for visualization and the principles used in GeneVAnD 

(described in chapter 3) could be used to ensure that the data is shown in a 

statistically truthful fashion [31].  Further, additional common analysis 

capabilities, such as gene function enrichment analysis could be performed. 

In order facilitate this type of comprehensive data analysis and 

visualization, we have integrated each of the techniques discussed in the 

previous chapters, as well as other approaches, into a single microarray analysis 

platform, called bioHIDRA (Biological Holistically Integrated Dataset Relationship 

Analysis).  The remainder of this chapter describes this software platform, and 

outlines real-world examples where this system can be used to explore novel 

biology. 
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5.2 The integrated platform 
Beginning with the visualization capabilities of the HIDRA system, we 

have incorporated additional analysis functionality to provide users with the tools 

needed to broadly explore large gene expression compendia.  The HIDRA 

system incorporates hierarchically clustered views of multiple datasets aligned 

using an “overview + detail + context” paradigm.  Each dataset is shown in its 

entirety within an overview panel, while a selection of genes can be viewed in 

more detail in a zoom panel.  Datasets are tiled next to each other, and the gene 

selections and detail panels are synchronized between all datasets to display the 

greater context that can be seen by exploring multiple datasets simultaneously 

(Figure 5.1). 

 
Figure 5.1:  Screenshot of the bioHIDRA system.  Based on the visualization 
paradigm described in chapter 4, multiple datasets are shown tiled next to each 
other.  Selections and iterations are synchronized across all datasets. 
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5.2.1  Finding relevant datasets and genes with SPELL 

While HIDRA has the ability to comfortably display between 6 and 10 

average sized datasets simultaneously on a typical laptop or desktop monitor, 

many more datasets exist in the public domain.  For S. cerevisiae, we have 

collected roughly 120 datasets spanning 2400 experimental conditions, while for 

human we have collected nearly 600 datasets spanning more than 14,000 

conditions.  Thus, given the limitations of available screen space, it is important 

to optimally choose which of the available datasets are worth exploring. 

 
Figure 5.2:  The SPELL search dialog.  Users can specify a set of query genes 
either by manually entering the gene names, or by selecting a cluster from an 
open dataset.  A search can be performed either in open datasets, or in all 
datasets in a directory.  Also, SVD-based signal balancing can be employed if 
desired. 

The SPELL similarity search algorithm has the ability to identify datasets 

relevant to a set of query genes very quickly and efficiently.  We have 

incorporated this search algorithm into this software platform with two different 

modes:  searching through an entire compendium, or searching through only 

selected datasets (Figure 5.2).  In either case, a user provides a set of query 

genes, either by manually specifying the genes, or by selecting a cluster of genes 

within an open dataset.  When searching through a large compendium, the 

software then loads each of the datasets of the compendia into memory, 
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calculates the SPELL dataset relevance weight for each dataset, and displays 

the results back to the user in a list.  The user can then select which datasets 

they would like to explore, and then those datasets are displayed in decreasing 

order of the calculated relevance weight. 

The process is similar when searching through only selected datasets, 

except that the relevance weight calculations are limited to those datasets that 

have already been opened.  While the SPELL search algorithm runs very quickly, 

loading several hundred datasets into memory can take quite some time, so this 

option is more appropriate when a researcher knows beforehand which datasets 

are generally relevant to their area of interest.  Further, the SPELL relevance 

weights can be used as a robust measure of cluster coherence.  While a user 

can select a set of genes in one cluster and observe their expression patterns 

and visually assess their co-clustering in other datasets, using the SPELL search 

algorithm assigns a statistical measure of co-expression among the query genes 

for each dataset. 

In addition to identifying and selecting relevant datasets from large 

compendia, the SPELL similarity search analysis option can be used to identify 

additional genes related to a query set.  This can be useful in several ways, both 

in the context of individual datasets and large compendia.  When performing a 

search through a single dataset, a SPELL search is essentially performing a 

targeted clustering seeded with a set of query genes.  Whereas most clustering 

algorithms start from scratch to group co-expressed genes together, this process 

allows a user to effectively force a set of genes to co-cluster, and then expands 
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that cluster to include additional closely related expression profiles.  When 

searching through a large compendium, users gain the benefit of the additional 

signal available in the collection at large to refine their search results and locate 

genes related to the query set. 

In either case, after performing a SPELL search, the user is presented 

with a list of all genes in the genome, ranked by search score from most related 

to the query set to least related to the query set.  The user can select which of 

these genes they would like to see in more detail, then those genes are selected 

in all of the open datasets.  As the detail views shown for each dataset are 

synchronized by selection, the expression profiles for the selected genes are 

easily viewable for all open datasets at once.  

5.2.2  Assessing functional enrichments among clusters 

We have also included the ability to quickly perform Gene Ontology (GO) 

enrichment analysis from within this software platform.  Given a set of co-

clustered genes it is common practice to determine if the cluster is over-

represented for genes involved in a particular process or molecular function, or 

localized to the same cellular compartment.  To this end, GO term enrichment 

analysis is often performed using available tools[14, 18, 77].  However, none of 

these tools are integrated into a microarray visualization platform. 

We have incorporated GO term enrichment analysis into this software 

platform based on the hypergeometric distribution [14].  Given a set of n query 

genes where k of these genes belong a GO term of interest, in an organism with 
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N genes where M of those genes are annotated a that GO term, a p-value for the 

significance of this overlap can be calculated using the summation 
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We calculate this statistic for all GO terms, and then correct these p-values for 

multiple hypothesis testing using either a very conservative Bonferroni correction 

[11] or a less stringent false discovery rate (FDR) correction [11]. 

 
Figure 5.3:  GO term enrichment dialogs.  (a) Go term enrichment can be 
performed by either selected a cluster of genes from an open dataset, or by 
specifying genes manually.  Several options are available for multiple hypothesis 
correction.  (b) Results of the enrichment analysis are displayed in a table. 

This software platform provides an option to perform GO term enrichment 

analysis either by selecting a cluster from an open dataset, or by providing a list 

of genes manually.  The full table of statistically significant results is displayed to 
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the user (Figure 5.3).  Performing this type of analysis can very quickly direct 

researchers to interesting phenomenon within datasets, as demonstrated in the 

next section. 

5.3 Example usage scenarios 
5.3.1  Sporulation specific expression effects 

Beginning with the Primig et al. [68] sporulation time course dataset, we 

can use bioHIDRA to identify signals unique to this dataset as well as signals 

common between this time course and other available datasets.  While the 

functional coverage analysis presented in chapter 2 indicated that this dataset 

contained a largely unique signal specific to the processes of meiosis and 

sporulation, using bioHIDRA allows us to directly identify this specific 

transcriptional pattern.  We can select the most closely related cluster by 

choosing the section of the dendrogram with the shortest branches (Figure 5.4a).  

Performing GO term enrichment analysis on this selection reveals that this group 

of genes is strongly enriched for processes such as ‘spore wall assembly,’ 

‘sporulation,’ and ‘reproductive process’ which is consistent with the goal of the 

study that produced this dataset (Figure 5.4b).  We can then perform a SPELL 

search using this set of genes as the query to identify other datasets within our 

compendia where these genes are also co-expressed.  The results of this search 

indicate that this cluster is largely unique to the Primig dataset, as no other 

dataset achieves a very high SPELL relevance score (Figure 5.4c). 
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Figure 5.4:  Unique sporulation signal example.  (a) A coherent cluster was 
selected from a sporulation time course.  (b) GO term enrichment performed on 
this cluster shows that these genes are significantly enriched for processes 
related to sporulation and meiosis.  (c) A SPELL search using these genes 
reveals that no other dataset induces a high level of co-expression among these 
genes. 

While this sporulation signal is specific to the Primig dataset, other signals 

are common between this dataset and many others.  We can select the next 

most tightly clustered group of genes and perform a similar analysis process 

(Figure 5.5a).  In this case these genes are strongly enriched for GO terms such 

as ‘cytosolic ribosome,’ ‘ribonucleoprotein complex,’ and ‘translation.’  As such, 

this cluster appears to be generally related to ribosomal processes in yeast 
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(Figure 5.5b).  Performing a SPELL search, we can see that many other datasets 

within this selection also induce strong co-expression between this group of 

genes (Figure 5.5c), which is consistent with our knowledge of global ribosomal 

translation responses from the functional coverage analysis in chapter 2.  Thus, 

beginning with just one dataset, we were able to quickly identify important 

specific and global signals and characterize their biological meanings. 

 
Figure 5.5: General ribosomal signal example.  (a) Another coherent cluster 
was selected from the same dataset as in Figure 5.4.  (b) GO term enrichment 
analysis shows that this cluster is mostly comprised of ribosomal genes.  (c) A 
SPELL search using these genes shows that a large number of datasets induce 
co-expression of this group of genes. 
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5.3.2  Expression diversity among stress response studies 

As a second demonstration of the bioHIDRA software platform, we 

examined several datasets produced by the Gasch et al. [27] stress response 

study.  This investigation perturbed yeast cultures in a wide variety of ways, 

including various levels of heat shock, exposure to drugs, deprivation of 

nutrients, etc.  In the original study, the authors observed a large class of genes 

with a common transcriptional response across nearly all of the perturbations 

examined.  They refer to this collection of genes as the “generalized stress 

response” (GSR) group.  By examining this data using bioHIDRA we can identify 

not only members of the GSR, but also signals that more specific to only some 

perturbations. 

We started by loading 17 of the perturbations from this study and began to 

select groups of genes, assess their enrichment for GO terms, and identify other 

perturbations where the genes were also co-expressed.  Many of the strongest 

clusters in these datasets belong to the GSR group, including many ribosomal 

proteins and general stress response proteins.  However, we were able to quickly 

identify an interesting group of highly over-expressed genes within the hydrogen 

peroxide (H2O2) exposure time course (Figure 5.6a).  Beginning with this small 

set of genes, we performed a SPELL search and found that the other 

perturbations where these genes were strongly co-expressed were the 

menadione and diamide exposure time courses (Figure 5.6c).  All three of these 

compounds are known causes of oxidative stress [83], and the set of genes 

resulting from the SPELL search were significantly enriched for GO oxidation 
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related terms such as ‘response to oxidative stress,’ ‘antioxidant activity,’ and 

‘cell redox homeostasis’ (Figure 5.6b). 

 
Figure 5.6:  Oxidative stress effects among many perturbations.  (a) A 
cluster of very highly expressed genes was selected in a hydrogen peroxide 
exposure time course.  (c) A SPELL search using these genes as a query found 
that these genes were also co-expressed in other oxidative stress conditions.  (b) 
GO term enrichment performed on the genes resulting from the SPELL search 
are enriched for areas related to cellular redox. 

For each of these three perturbations the genes found by the search are 

highly over-expressed.  While the remaining perturbations did not induce the 

same level of co-expression, we can still examine the expression patterns of 

these genes within the other datasets.  Interestingly, between the two hyper- and 
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hypo- osmotic datasets we can observe very different patterns of expression for 

this set of genes.  In the hyper-osmotic case the genes are also over-expressed 

(though not to the same degree as in the oxidative stress conditions), but in the 

hypo-osmotic case these genes are severely under-expressed. 

 
Figure 5.7:  Oxidative and osmotic stresses.  Based on a SPELL search 
performed as in Figure 5.6, the resulting genes are highly over-expressed in the 
three datasets receiving the largest relevance weight (shown on top).  By 
examining other stress perturbations we can see that these genes are also over-
expressed in hyper-osmotic stress conditions, and under-expressed in hypo-
osmotic stress conditions.  This observation is consistent with recent publications 
indicating that oxidative stress and osmotic stress share important response 
pathway components. 
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This observation is also consistent with recent studies that have 

determined that several genes and regulatory pathways are shared between the 

response to oxidative stress and the response to hyper-osmotic shock [49].  As 

such, under hyper-osmotic conditions these genes related to oxidative stress are 

induced, while in hypo-osmotic conditions the transcription of these genes is 

repressed (Figure 5.7). 

5.4 Conclusion 
The integration of analysis and visualization methods for the exploration of 

large-scale microarray compendia is very valuable for biology researchers.  By 

providing a single, unified platform for gene expression analysis it is much easier 

for investigators to compare their own findings with other available data to draw 

novel conclusions and form new hypotheses.  While the examples discussed 

above find previously known information, the clusters observed also contain 

additional genes not known to be involved in these functions.  Thus, these genes 

may be excellent targets for future studies. 

As the majority of microarray analysis performed by biologists is done 

within the context of visualization tools, it is vital for these tools to be able to 

answer the questions that are important to these biologists.  Incorporating the 

ability to view additional relevant datasets, discover genes with a common signal 

across many experiments, and evaluate the functional enrichment of clusters are 

excellent advances that enable researchers to gain a better understanding of 

transcriptional responses. 

 



 

91 

Chapter 6 

A Computationally Driven System for 
Iterative Experimental Discovery of 
Novel Biology 
6.1  Introduction 

Machine learning and data mining techniques have been applied to a 

wealth of genome-scale data to produce meaningful predictions of gene/protein 

involvement in biological processes or pathways.  As we attempt to discover 

novel biology in a wide range of organisms with limited experimental resources, 

these approaches have promised to direct investigations toward the most 

promising targets first, with the hope of greatly accelerating the discovery 

process [36, 47].  However, computational prediction methods and novel 

laboratory investigations remain largely disconnected.  Perhaps as a result, the 

rate at which gene functions are characterized has not kept pace with the rate at 

which data are generated [67]. 

Surprisingly few studies of gene function have been performed on the 

basis of computational predictions, despite their great potential to inform and 

guide such investigations.  While individual predictions have been confirmed in 

the lab, no studies have been performed on a large-scale that truly integrate 

computational and laboratory aspects to fully explore novel gene functions.  This 

lack of follow-up has led to several concerns and challenges within the 

computational biology community.  Foremost, it remains unproven how 
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effectively computational methods can be utilized by biologists in the context of 

their own research goals.  It also remains unclear which classes of computational 

prediction methods are appropriate for specific laboratory use to find novel 

biological discoveries.  Lastly, it is generally unknown how computational 

methods and laboratory testing should interact in order to best advance our 

knowledge of biology. 

We have performed a large systematic study of gene/protein function 

predictions made by computational methods in order to address these concerns, 

to clarify the potential role of computation in biological laboratories, and to 

discover novel biology in a particular area.  We have used an ensemble of 

computation methods, including both supervised and unsupervised techniques 

based on diverse underlying data, to predict genes/proteins involved in the 

process of mitochondrial organization and biogenesis in S. cerevisiae.  

Mitochondria and their mechanisms of proliferation and inheritance are an 

excellent area for this type of study for several reasons.  Mitochondrial defects 

are implicated in a variety of human diseases [25, 87], including 

neurodegenerative disorders [5, 48] and muscular diseases [21].  Also, the 

biological mechanisms of mitochondrial organization are largely conserved from 

yeast through humans (60% of mitochondrial yeast genes have a human 

ortholog), and as many as 1 in 5 mitochondrial proteins are known to be involved 

in human disease [3, 21].  Finally, this process is understood well enough to 

provide a reasonable number of training examples for prediction methods, but 

still, it is thought that at least a quarter of the genes/proteins involved have not 
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yet been identified [69, 82].  Thus, mitochondrial organization and biogenesis is 

an important, relevant, and tractable area where computational methods can 

demonstrate their utility. 

Our approach combines these computational predictions with a rigorous 

set of experimental tests designed to confidently assess if each gene is involved 

in this process.  These assays are specific and reliable enough to convincingly 

confirm a gene’s involvement in mitochondrial maintenance.  As such, these 

assays are much more time consuming than high-throughput assays, but we 

have been able to scale up these methods in order to test 150-200 genes in a 4-

6 month time frame, which is significantly faster than traditional low-throughput 

approaches.  We refer to this level of experimental testing as “medium-

throughput” biology, and we demonstrate that these types of assays are excellent 

for integration with computational approaches.  By maintaining a high level of 

reliability while also testing a moderately large number of genes this data is able 

to meaningfully identify gene/protein function as well as produce enough novel 

information to inform the computational prediction methods.  By combining these 

assays and computational predictions we have begun to iterate the cycle of 

prediction and experimentation to further explore mitochondrial pathways. 

The results of our study identify and verify 98 novel genes involved in 

mitochondrial organization, over half of which have a human ortholog, including 

several disease genes.  Our predictions were experimentally confirmed at a rate 

of 59%, which demonstrates the utility of computational approaches to guide 

laboratory work.  Further, we have examined the nature of these predictions and 
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their relationship to the ensemble of computational methods.  From this analysis 

we draw several conclusions vital for computationalists to consider when 

designing and using computational prediction methods.  Finally, we demonstrate 

that by deeply incorporating computation and biology in an iterative fashion that 

we can greatly expand our knowledge of gene functions. 

6.2  Results 
6.2.1  Overview of study and results 

We employed an ensemble of three diverse computational methods[32, 

37, 62] to predict novel genes/proteins involved in the process of mitochondrial 

organization and biogenesis.  Each of these methods integrated high-throughput 

data sources and utilized existing biological knowledge from the Gene Ontology 

(GO) [4] and Saccharomyces Genome Database (SGD) [18] to identify 

candidates for involvement.  Our computational predictions of gene function were 

validated using two rigorous laboratory assays, each of which can indicate 

involvement in mitochondrial proliferation.  The first round of prediction and 

evaluation used only annotations to GO as a training set.  We then performed a 

second iteration of this process after updating our training set to include genes 

confirmed in the first iteration.  A schematic view of our system for prediction, 

verification, and iteration is shown in Figure 6.1. 
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Figure 6.1:  An overview of our iterative approach integrating 
computational and experimental methodologies.  Our study uses an 
ensemble of computational gene function prediction methods (bioPIXIE, MEFIT, 
and SPELL) trained and/or evaluated on known biology to predict novel 
annotations to the GO term ‘mitochondrial organization and biogenesis.’  We 
selected test candidates based on these computational approaches, and then 
validated the predictions experimentally using two rigorous, quantitative 
biological assays.  Upon evaluating the results of these tests, the verified 
predictions were added to existing knowledge, and the process was repeated to 
further explore this biological process. 

When the study was undertaken, 106 genes were annotated by SGD to 

the “mitochondrial organization and biogenesis” GO term (GO:0007005, as of 

4/15/2007); these 106 genes were used as input to the computational methods 

during the first iteration of testing.  We initially evaluated our 186 most confident 
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computational predictions, and 122 (66%) were validated as exhibiting a 

significant phenotype indicative of involvement in organization.  Upon further 

inspection of these confirmed predictions, we found existing literature evidence 

for 41 of these genes.  By following this literature, we identified an additional 69 

genes with strong evidence that have not yet been annotated as such by SGD.  

We have presented this list of “under-annotations” to SGD and they are in the 

process of updating the annotations to these genes. 

Our second iteration of prediction and validation used a set of 297 genes 

as input to the computational methods (106 original annotations, 122 newly 

confirmed genes, and 69 “under-annotated” genes).  We evaluated the 48 most 

confident predictions that were not previously tested, and 17 (35%) were 

validated.  All together, our study identified 208 new annotations to the process 

of mitochondrial organization and biogenesis, which nearly triples the number of 

genes previously known to be involved in this area (Figure 6.2a).  While this 

biological result is striking and important, it also has significant ramifications in 

the application of computational techniques as a whole and in their integration 

with experimental biology, which we discuss in detail below. 

6.2.2  Guiding laboratory experiments with computation 
greatly increases discovery rates 

Among our 234 laboratory evaluated computational predictions, 139 were 

confirmed, resulting in an overall true positive rate of 59%, which is excellent 

confirmation that computational predictions can successfully direct laboratory 

experiments.  Further, our rate of discovery is much improved over the 

background rate of observing the same phenotypic classes.  In addition to the 
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predicted genes tested, we also chose 48 genes at random to establish baseline 

rates of phenotypes.  Of these 48 genes, 12 (25%) exhibited a phenotype 

consistent with involvement in mitochondrial organization.  Based on these 

results, the use of computational methods to guide our investigation increased 

our discovery rate by 236%. 

 
Figure 6.2:  Annotations and phenotypic results for mitochondrion 
organization and biogenesis.  Our study began with the 106 genes annotated 
to the GO term, ‘mitochondrion organization and biogenesis.’  Though the first 
round of our iterative computational prediction and laboratory experimentation, 
we confirmed 122 additional genes.  Upon further investigation, 41 of these 
confirmations have previously existing literature evidence for involvement in this 
process, leaving 81 entirely novel discoveries during the first iteration.  Based on 
continued literature searches we found an additional 69 genes with previous 
strong literature evidence for inclusion in this term.  During our second iteration of 
testing, we confirmed an additional 17 predictions.  (a) shows the sources of our 
current knowledge of associations.  (b) shows the results of our petite frequency 
assay for genes with previous literature evidence (left) and our entirely novel first 
iteration predictions (right).  Note that the majority of novel confirmations 
exhibited the more modest phenotype of “altered mitochondrial inheritance,” 
whereas the majority of previously known genes exhibit the easier to find 
phenotype of “respiratory deficient.” 
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In addition to a greatly increased discovery rate, our confirmed 

computational predictions are more integral to mitochondrial maintenance than 

the rare positives resulting from our random screen.  Many of the genes involved 

in mitochondrial organization will localize either to the mitochondrion itself or to 

the actin cytoskeleton, as mitochondria associate with actin cables during 

inheritance [13].  Among phenotypically positive genes where localization data is 

available, 80% of our computational predictions are localized to either the 

mitochondrion or to actin, while only 36% from the random screen are localized.  

The increased enrichment of our computational confirmations with localization 

data is likely due to secondary effects among some of the genes in the random 

screen.  As mitochondrion are vital for cellular respiration, our assays focused on 

discovering respiratory defects in single gene knockouts which is a strong 

indicator that the gene tested plays a role in mitochondrial processes.  However, 

it is possible for secondary effects of mutations to result in similar phenotypes.  

For example, one of the randomly selected genes tested, HTA1, is a histone 

whose deletion is known to cause pleiotropic effects on transcriptional regulation 

of carbon metabolism [30].  Consequently our testing of an hta1Δ knockout strain 

resulted in a phenotype indicating involvement in mitochondrial organization and 

biogenesis, even though the true cause of this phenotype is likely a secondary 

effect due to a gross perturbation of carbon metabolism. 

While enrichment for localization to the mitochondrion is an excellent 

indicator that our computational predictions are directly involved in mitochondrial 

maintenance, it is important to note that such localization is not a precondition for 
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involvement.  Among all of our tested computational predictions, 65% are known 

to localize to the mitochondrion or actin cytoskeleton, and of these, 67% were 

confirmed.  However, among the predictions not known to localize the accuracy 

is still quite high, at 45%.  Thus, if a study examined only genes known to localize 

to the mitochondrion, it would fail to discover many of the verified genes that 

resulted from our use of computational predictions. By utilizing computational 

data integration techniques, we can leverage not only localization data, but also a 

wealth of other available knowledge to successfully direct our experimental 

efforts to the most promising targets. 

6.2.3  Novel computationally-aided discoveries are likely to 
exhibit modest phenotypes 

Another important finding in this study is the observation that many of the 

proteins we newly identified as related to mitochondrial organization exhibit a 

much more modest phenotypes than the previously known genes.  Classic 

genetic screens and whole genome screens easily identify strong phenotypes, 

thus most of the single gene knockouts exhibiting a dramatic phenotype have 

already been discovered.  However, characterizing genes with modest 

phenotypes will be central to our understanding of diseases, as it is often the 

case that mutations causing modest effects can be tolerated by the organism and 

present as diseases; whereas mutations causing severe defects in essential 

processes tend to be embryonic lethal.  Identifying genes responsible for modest 

phenotypic effects requires robust, and time-consuming laboratory assays. 

Specifically, based on our petite frequency assay, we classified single 

gene knockout mutants into three classes:  respiratory deficient, altered 
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mitochondrial inheritance, and unaffected.  Mutants classified as respiratory 

deficient were unable to grow on non-fermentable carbon sources, indicating that 

they completely lack functional mitochondria; while mutants exhibiting an altered 

mitochondrial inheritance rate produced some colonies capable of normal 

respiration, but at a rate significantly different than wild type.  This second class 

is a more modest phenotype that could easily be overlooked by genetic screens.  

Among the 52 gene with prior literature evidence examined in this study, 45 

exhibited a significant phenotype in the petite frequency assay, and of these, 

62% were respiratory deficient, while 38% displayed altered mitochondrial 

inheritance.  However, among our novel predictions that exhibited a significant 

phenotype, only 20% were respiratory deficient, while 80% had altered rates of 

mitochondrial inheritance (Figure 6.2b). 

Thus, the majority of previously characterized genes exhibit a strong 

phenotype that could be found in a genetic screen, whereas nearly all of our 

novel discoveries exhibit a more modest phenotypic variance.  As time-

consuming laboratory assays are required to measure modest effects, it is 

unlikely that whole-genome screens for modest phenotypes can be performed in 

the near future.  However, our results demonstrate that utilizing computational 

approaches can direct experimental efforts toward promising targets in order to 

discover modest effects within reasonable time frames. 

6.2.4  Diverse, accurate predictions are made by different 
computational approaches 

This study also demonstrates several important biological concerns that 

should be taken into account by computational biologists attempting to predict 



Chapter 6 – A Computationally Driven System for Discovery of Novel Biology  

101 

gene/protein function.  Each of the three function prediction methods used in this 

study achieved similarly high rates of phenotypic positives (Figure 6.3a).  

However, there was relatively small overlap between the most confident 

predictions of each method (Figure 6.3b).  High true positive rates were achieved 

both among genes predicted by multiple methods, as well as genes predicted by 

just one method, indicating that each computational approach was accurately 

predicting disparate aspects of mitochondrial organization and biogenesis.  This 

variation can be accounted for by differences in the underlying data as well as 

algorithmic differences among the computational approaches, and these 

differences are highly informative for computational biologists to consider when 

developing new methods or applying their methods to biological situations. 

 
Figure 6.3:  Individual method accuracy and overlap.  Three computational 
methods and an ensemble of those methods were used to select candidates for 
evaluation.  Of the 186 predictions evaluated in our first iteration, 89 were chosen 
from the top results of at least one individual method, while the remaining 97 
were selected from the ensemble of all three. (a) shows the accuracy of the 
predictions chosen from each method, from genes selected by the ensemble, 
and the overall accuracy for all candidates.  (b) shows the overlap between the 
candidates selected from the individual methods. 
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6.2.4.1  Underlying data affects the broad biological nature of 
predictions 

Two of the methods used are based entirely on microarray data (MEFIT 

[37] and SPELL [32]), while the third method (bioPIXIE [61, 62]) utilizes not only 

microarray data, but also a wide variety of additional sources of information such 

as affinity precipitation, two-hybrid screens, sequence information, synthetic 

genetic interactions, etc.  As such, the types of predictions made by the 

microarray-based methods were very different from the predictions produced by 

the method based on more diverse data.  However, both sets of predictions 

achieved similar true positive rates during laboratory validation. 

bioPIXIE SPELL MEFIT 
mitochondrial part 

(GO:0044429) 
mitochondrial part 

(GO:0044429) 
mitochondrial part 

(GO:0044429) 
actin cytoskeleton 

(GO:0015629) 
-- -- 

mitochondrial distribution 
(GO:0048311) 

-- -- 

-- mitochondrial ribosome 
(GO:0005761) 

mitochondrial ribosome 
(GO:0005761) 

-- translation 
(GO:0006412) 

translation 
(GO:0006412) 

Table 6.1:  GO term enrichment among top predictions of each method.  We 
evaluated the statistical enrichment of GO terms for the 50 most confident 
predictions of each computational method used in this study.  This table shows 
significant, characteristic results from this analysis.  GO terms common across 
methods are highlighted. 

We examined the most confident predictions from each method and 

performed GO term enrichment analysis to classify the types of proteins each 

method was focused upon (Table 6.1).  While all of the methods’ predictions 

were enriched for GO terms such as ‘mitochondrial part,’ there were significant 

differences as well.  The microarray-based methods were uniquely enriched for 
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categories related to the mitochondrial ribosome and translation, which reflects 

the ability of microarray data to easily capture ribosomal variation.  However, the 

method based on more diverse data, including physical binding data, was 

uniquely enriched for genes related to the actin cytoskeleton and mitochondrial 

distribution, which is a direct result of the data used to generate these 

predictions. 

We have further characterized the importance of underlying data by 

looking at sub-groups of genes known to be involved in mitochondrial 

organization and determining which groups are best captured through the 

computational prediction methods (Figure 6.4).  The microarray-based methods 

clearly best capture information regarding ‘mitochondrial ribosome and 

translation’ which is consistent with other studies that have observed a strong 

ribosomal bias among microarray data [60].  The method based on diverse data 

best captured information about ‘mitochondrial distribution’ and ‘mitochondrial 

fission and fusion.’  This is likely due to the use of physical binding data, which 

allows this method to discover proteins involved in mitochondrial structure and 

motility. Another significant difference occurs in the area of ‘mitochondrial 

complex assembly,’ where the microarray-based methods are more successful 

than the method based on diverse data.  This is likely due to the fact that many of 

the proteins involved in this process are membrane bound, which many sources 

of physical interaction data (e.g. yeast two-hybrid, affinity precipitation) are 

unable to assay due to technological limitations.  However, as mitochondrial 

number strongly responds to environmental conditions, there is a transcriptional 
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signal associated with these proteins, which can explain the utility of microarray 

data for this area.  

 
Figure 6.4:  Biological differences between the three computational 
prediction methods.  We evaluated which aspect of mitochondrial biology each 
computational function prediction method was targeting.  Even though all three 
methods were trained and/or evaluated using the same training set of genes, the 
methods differ in which sub-group of mitochondrial biology they focused on.  
SPELL and MEFIT are both based solely on gene expression microarray data, 
which explains their strong coverage of the mitochondrial ribosome and 
translation sub-group.  bioPIXIE is based on diverse data, including physical 
binding data, which explains its strong coverage of sub-groups involving 
mitochondrial motility and physical interactions. 

Clearly, the types of predictions made by each of these methods are 

highly dependent on the data underlying each of the methods.  It is important for 

computational biologists to understand what processes and functions data can 

be reasonably expected to capture, and to utilize that information in their 
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methods.  Further, when evaluating the results of computational prediction 

methods, it is important to consider the specific aspects of biology captured, 

rather than simply rely on aggregate measures such as raw precision calculated 

over all biological classes [60]. 

6.2.4.2  Algorithmic differences affect specific computational 
predictions 

Even among methods based on the same underlying data, very different 

predictions can be made depending on the computational approach used to 

analyze the data.  We observed significant differences between the two 

microarray-based methods used in this study, even though they are based on the 

same input data and each method achieved similarly high levels of biological 

accuracy (Figure 6.3a).  While the biological aspects of the predictions made by 

each of these methods are similar, the particular genes selected as top 

predictions differ. 

There are several potential reasons for algorithms utilizing the same data 

to generate disparate predictions.  Data normalization, distance metrics, training 

sets, evaluation metrics, algorithm type, and parameter choices can greatly affect 

the predictions generated by a computational approach.  For this study we used 

the same set of roughly 120 microarray datasets normalized in the same manner, 

using the same distance metric, and evaluated on the same training set.  Despite 

these similarities, we still observed several differences. 

Each of the two microarray-based methods utilized in this study effectively 

assign a reliability weight to each dataset based on the biological context 

examined (in this case, mitochondrial organization and biogenesis).  However, 
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their algorithmic aims and methodologies are quite different.  MEFIT performs a 

Bayesian integration of microarray data trained on known genes.  During the 

training process, the ability of each dataset to predict all known mitochondrial 

organization genes is assessed; then during evaluation of other genes, more 

reliable datasets are given greater weight.  Predictions are obtained by 

examining the connectivity of other genes to a graph centered on the known 

players.  Contrastingly, SPELL is an unsupervised search algorithm that obtains 

predictions by searching for candidates that behave similarly to known 

mitochondrial organization genes in the datasets where the set of known genes 

co-express.  This algorithm was evaluated using many subsets of known genes 

as queries, and the results were averaged together.  While MEFIT trusts datasets 

based on their ability to classify known mitochondrial organization genes as a 

whole, SPELL makes local decisions about the reliability of datasets for each of 

the queries utilized.  Thus, MEFIT is likely to gain a better sense of the global 

transcriptional response of this process, while SPELL is more likely to find 

smaller groups of co-regulated genes. 

The dataset reliability weights obtained by each method are significantly 

correlated (r=0.55, p-value=6x10-10), however there are also large differences.  

These differences can be accounted for by the details of each method’s 

algorithm and their separate focuses on global or local patterns.  Largely due to 

these differences in dataset reliability, each method generated very different 

specific predictions (Figure 6.3b), yet each method performed with roughly the 

same degree of precision.  As both global and local perspectives achieved 
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impressive results in this case, it may be beneficial to utilize both types of 

approaches. 

6.2.4.3  An ensemble of diverse prediction methods broadens the 
scope of results 

Our study greatly benefited from the use of multiple, complementary 

functional prediction techniques.  As described above, the three methods utilized 

in this study produced diverse, yet uniformly accurate, predictions spanning 

many biological aspects of mitochondrial organization and biogenesis.  In 

addition to testing the most confident predictions of each method individually, we 

also combined the results of each method together into an ensemble predictor.  

We selected additional test candidates from this ensemble where moderately 

confident predictions made by multiple methods resulted in much higher 

aggregate confidence. 

Approximately half (97) of the predictions tested in this study did not occur 

among the highest confidence predictions of any individual method, but were 

selected on the basis of the ensemble of all three methods.  The accuracy of 

these ensemble predictions is roughly the same (65%) as the predictions made 

by any of the individual methods (Figure 6.3a).  Thus by harnessing the diversity 

and complementarity of our computational prediction methods we were able to 

expand the biological breadth and scope of our investigation. 

6.2.5  Iterative approaches converge on comprehensive 
prediction sets 

In addition to predicting and validating novel functions for genes based on 

the current state of biological knowledge, we have begun to iterate the 
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prediction/validation process.  Initially, we selected 186 testing candidates, 122 of 

which were verified through laboratory testing as likely involved in mitochondrial 

organization and biogenesis.  In addition, we found that 41 of our verified 

candidates had strong existing support in the literature, which led us to identify 

69 further genes with previously published literature evidence for inclusion in this 

process.  After this first round of testing, we created a new training and 

evaluation standard for the computational methods including the original 106 

annotated genes, the 69 genes with strong literature support, and the 122 

experimentally verified players.  Using this updated training set, we selected an 

additional 48 novel testing candidates with no previous literature evidence, 35% 

of which demonstrated a significant phenotype in the lab, resulting in our total of 

139 gene function associations.  Additionally, we made several important 

observations through the iteration process. 

While the prediction methods differ with regard to which aspects of 

mitochondrial biology they best cover, the methods are beginning to converge 

after just one round of re-training.  The correlation between the predictions of 

each method increased greatly (Figure 6.5), and the dataset weights used by the 

two microarray-based methods also became more correlated after one round of 

iteration.  The convergence of the results of our computational prediction 

methods indicates that we are both expanding our knowledge of this area 

enough such that different approaches can arrive at the same conclusions, and 

that by cross-training the methods we are avoiding bias toward any one 
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functional aspect of the mitochondria, which often results from the application of 

an individual method. 

 
Figure 6.5:  Convergence of computational predictions during iteration.  We 
calculated the Pearson correlation between the estimated precisions of all genes 
between each of the three computational prediction methods and the ensemble 
predictor.  These values are shown for the first iteration results (left) and after 
one round of retraining (right).  After just one iteration of our prediction and 
evaluation cycle, the methods are beginning to converge. 

This type of iterative learning is especially important as we move to less 

well-studied areas of biology and to less well understood organisms.  By 

beginning with relatively little information, iterative applications of computational 

analysis and directed experimentation can enable the accurate annotation of a 

significant number of novel players by alternately refining the set of novel 

predictions and increasing the amount of information used for training. 

6.3  Methods 
A high level overview of our iterative prediction/experimentation/validation 

approach is shown in Figure 6.1.  This section briefly details each of the steps 

involved in this process. 
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6.3.1 Computational prediction methodologies 

We utilized three complementary, diverse computational gene function 

prediction methods in this study (bioPIXIE[61, 62], MEFIT[37], and SPELL[32]).  

Each of the methods generated predictions of genes involved in the GO 

biological process ‘mitochondrion organization and biogenesis’ (GO:0007005).  

All methods were initially trained and/or evaluated using the 106 annotations to 

this process as of April 15th, 2007. Full details of these methods can be found in 

their respective publications.  Here we present a brief summary of each approach 

and a description of how each method was used to produce computational 

function predictions. 

bioPIXIE utilizes a suite of context-specific Bayesian networks to predict 

pair-wise functional relationships between genes, which are then used to create 

fully, connected graphs weighted by confidence of functional interaction.  This 

method integrates a wide variety of data sources, including physical interaction 

data (e.g. yeast two-hybrid, affinity precipitation, etc.), genetic interaction data 

(e.g. synthetic lethality, SLAM, etc.), gene expression data, and sequence data 

(e.g. coding and regulatory sequence similarity).  One Bayesian classifier was 

trained per biological context of interest, where in this case, each context was an 

individual GO term.  A positive standard generated from GO was used to learn 

conditional probability tables specific to mitochondrial organization and 

biogenesis. Predicted annotations to this term were derived from the resulting 

weighted interaction network by finding the significance of each gene's 

connectivity to known mitochondrial genes: 
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where ci is gene i's confidence of mitochondrial function, M is the set of genes 

known to be involved in mitochondrial organization, G is the set of all genes in 

the genome, w(i, j) is the predicted probability of functional relationship between 

genes i and j, HG(w, x, y, z) denotes the hypergeometric cumulative distribution 

function (CDF), and {x} indicates that x is rounded to the nearest integer. 

MEFIT also predicts pair-wise functional relationships using a collection of 

GO-trained naïve Bayesian classifiers; however, it is based entirely on gene 

expression data.  Both MEFIT and SPELL (below) integrate roughly 2400 

microarray conditions which are grouped into ~120 datasets by publication and 

further sub-divided by biological process examined.  A ranked list of predictions 

was derived from the mitochondrial organization and biogenesis-specific network 

by calculating each gene's ratio of connectivity to known mitochondrial genes: 

!

!

"

"
=

||

),(||

),(||

Gj

Mj

i
jiwM

jiwG

c

 
where ci, M, G, and w(i, j) are as above. 

SPELL utilizes the same gene expression microarray data as MEFIT, but 

uses a query-driven search algorithm to identify novel players.  While SPELL is 

not trained in a supervised fashion, it assigns a reliability weight to each dataset 

based on the co-regulation of a specified set of query genes and then orders the 
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rest of the genome based on their weighted co-expression with the query set.  

SPELL generated predictions by using all possible subset pairs of known 

mitochondrial organization and biogenesis genes as queries, and then averaged 

these rank orders together to produce a final prediction list. 

Each of these methods generated a ranked list of the genome in order of 

confidence of involvement in mitochondrial organization and biogenesis.  We 

assigned an estimated precision level to each gene in each list by calculating the 

fraction of genes with a higher confidence level that were already annotated to 

this GO term (disregarding genes with no biological process annotation or with 

annotations to the mitochondrial ribosome due to unusually strong expression co-

regulation).  We created a simple ensemble of the three methods by averaging 

these estimated precision levels for each gene.  In this way each prediction 

method contributed to the ensemble based on its reliability to recapitulate known 

biology.  Further, this ensemble allows a gene with moderate confidence from 

multiple methods to rise in the overall rankings. 

6.3.2  Identification of “under-annotated” genes 

Our initial evaluation of the computational predictions led us to discover 

that 41 of our experimentally confirmed predictions were “under-annotated” – 

meaning that they already had strong literature evidence for their involvement in 

mitochondrial organization and biogenesis, but were not yet annotated to the 

corresponding GO term.  In most of these cases the information was already 

curated by SGD in the form of annotations to other GO terms, such as ‘integral to 

the mitochondrial membrane’ or ‘mitochondrial protein import.’  However, due to 
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the structure of the GO hierarchy, these terms are not directly linked to our 

process of interest, ‘mitochondrial organization and biogenesis.’  Beginning with 

these 41 genes, we identified an additional 69 genes that we believe have 

enough literature evidence to warrant their inclusion in this process without 

further laboratory testing.  We have notified SGD of all 110 of these genes, and 

they are in the process of restructuring the GO hierarchy and making additional 

annotations.  As of submission of this manuscript, SGD has already updated the 

annotations for 54 of these genes. 

6.3.3  Selection of candidates for experimental testing 

Novel candidates for laboratory evaluation were chosen on the basis of 

both the three individual computational approaches as well as the ensemble of 

their predictions.  As our experimental methodologies (described below) are 

based on assessing phenotypes exhibited by single gene knockout mutants, we 

limited ourselves to consider only those genes with viable knockouts available in 

the heterozygous deletion collection.  Additionally, we chose to evaluate both 

genes with no previously known association to a biological process as well as 

genes known to be involved in an area other than mitochondrial organization and 

biogenesis.  Thus, we divided the predictions into genes of entirely unknown 

function and genes with existing biological process annotations. 

We selected the 20 most confident genes of unknown function and the 20 

most confident genes with existing annotations from each of the three individual 

methods for testing.  Due to overlaps between the methods, this resulted in the 

selection of 89 genes as novel candidates (the overlap between methods is 
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shown in Figure 6.3b).  We then chose an additional 97 genes from the 

ensemble list of predictions (38 from genes of unknown function and 59 from 

genes with known non-mitochondrial function) to arrive at our total of 186 test 

candidates in our first round of laboratory evaluation. 

Of these predictions chosen for testing, we identified 46 as “under-

annotated” (the remaining 140 predictions have no previous literature evidence 

for involvement in mitochondrial maintenance).  We selected 6 additional test 

candidates from the existing annotations to mitochondrial organization and 

biogenesis, resulting in a total of 52 genes with prior literature evidence for 

involvement in this process.  We also chose 48 genes at random from the set of 

all viable single gene knockouts in order to establish baseline rates of phenotypic 

positives.  It should also be noted that by chance we would expect some overlap 

between our random selection of genes and our novel candidates; in our case, 3 

genes are in common between these two groups. 

6.3.4  Experimental methodologies and evaluation of results 

We utilized two experimental approaches to assess a gene’s involvement 

in mitochondrial organization and biogenesis.  Both of these methods 

quantitatively measure a single gene knockout phenotype in comparison to the 

same phenotype for matched with type strains.  Also, these methods were 

performed in replicate for each candidate examined such that robust statistical 

analysis could be performed on the results. 
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6.3.4.1  Strain preparation 

For all of the genes examined, eight independent isolates of complete 

ORF deletions were obtained from freshly sporulated strains from the yeast 

heterozygous deletion collection [29, 90].  These isolates were catalogued and 

frozen until needed for testing. 

6.3.4.2  Petite frequency assay 

Yeast is able to grow and proliferate even without functional mitochondria 

on fermentable carbon sources.  As such, yeast cells occasionally fail to pass 

working mitochondria on to daughter cells, but these cells can continue to 

proliferate.  Cells lacking functional mitochondria are called petite cells.  In this 

assay we assessed the rate at which single gene knockout strains produced 

petite offspring. 

For each mutant strain tested, we grew several replicates of the strain for 

48 hours using glycerol as a carbon source.  Strains severely deficient in their 

ability to maintain functional mitochondrial cannot grow on glycerol as a carbon 

source.  Strains unable to grow on glycerol were classified as respiration 

deficient in this first stage.  Strains able to grow on glycerol were diluted and 

plated for single colonies on rich media, which releases the requirement for 

functional mitochondria.  Thus, as colonies formed, cells without functional 

mitochondria were generated.  When the colony is fully formed it is a mixture 

cells with functional mitochondria and cells without functional mitochondria.  We 

measured this ratio by re-suspending a colony and plating a dilution of this re-

suspension such that 100-300 colonies are formed on a plate.  By overlaying with 
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soft agar containing tetrazolium, cells with functional mitochondria were stained 

red, while cells without functional mitochondria remained white.  The ratio of 

white cells to total cells gives the petite frequency.  Eight independent petite 

frequencies were measured for each strain tested.  The distribution of these 

frequencies was compared to the frequency of petite generation in wild-type 

yeast.  Strains identified as having the altered mitochondrial inheritance 

phenotype in this assay exhibit at least a 20% change in petite frequency from 

wild type, and have a p-value of less than 0.05 when comparing the petite 

frequency distributions of that strain to the wild-type petite frequency distribution, 

using a Mann-Whitney U test. 

6.3.4.3  Growth rate assay 

This assay measured the growth rate of mutant strains both in rich media 

as a control and in a non-fermentable carbon source (glycerol) to assess the 

ability of the mutants to perform respiration.  Growth curves were performed in a 

96-well plate format that tests 12 genes per run.  For each gene tested, 6 

independent deletion mutants of that gene were grown in separate wells.  

Twenty-four replicate wild-type strains were also present in each 96-well plate 

format.  Plates were grown and measured using a Tecan GENios plate incubator 

and reader, which recorded densities every 15 minutes for 42 hours to generate 

growth curves. 

Growth rates were derived from these curves by using Matlab to fit an 

exponential model: 
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For each well, this model was fit over the entire curve, the first 2/3, and the first 

half; whichever yielded the best fit was used in downstream analysis (to avoid 

plateau effects and to model only exponential growth). Wells with an adjusted 

R2<0.9 were marked as non-growing, and growth rates for the remaining wells 

were determined by subtracting the row, column, and plate means for each well 

from the exponential parameter b, yielding a rate b' for each well.  These b' 

parameters were tested for significance against the wild type population using a 

Mann-Whitney U test. 

 To detect colonies growing exponentially but with significant differences in 

fitness, smoothed maximum densities d were calculated for all wells deemed 

exponential. From these, plate, row, and column averages were subtracted from 

each well, generating adjusted maxima d'.  These d' values for each mutant were 

again compared with the wild type values using a Mann-Whitney U test. 

Combined with the exponential rate tests, this assigned each mutant phenotypes 

in rich media and glycerol of no effect, no growth, or significant sickness.  For, a 

mutant to be classified as having a respiratory growth defect, that defect was 

required to be specific to the glycerol media.  If the mutant grew slowly in both 

glycerol and rich media then it was not considered to have a defect in respiration. 

6.3.5  Assessing the comparative accuracy of the 
computational methods 

In order to compare which aspect of mitochondrial biology was best 

captured by each of the computational methods, we created a breakdown of 

known mitochondrial biology into several sub-groups.  Based on the 106 original 

annotations and the literature evidence for the 110 “under-annotations” we 
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created 7 more specific groups of genes shown in Figure 6.4.  Given the 

prediction ordering of each computational method from our first iteration (i.e. 

using the original 106 genes as the training set) we calculated the average 

precision for each of the 7 more specific groups for each of the three 

computational approaches.  The average precision was calculated for each sub-

group, G, as 
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where ranki is the rank order of the ith gene appearing from the sub-group in the 

ordered prediction list.  For display in Figure 4, the average precisions were 

normalized by the expected average precision if the genome were ordered 

randomly, which corresponds to the number of genes in each sub-group divided 

by the number of genes in the genome. 

6.3.6  Iterative re-training, prediction, and verification 

After our first round of testing, 122 of the 186 predictions were found to 

have a significant phenotype strongly indicating involvement in mitochondrial 

organization and biogenesis.  Combined with the original 106 annotated genes 

and the 69 genes identified as “under-annotated,” this results in a total of 297 

genes.  Each of the three computational methods was re-applied using this 

updated training set of 297 genes and the same procedure was used to form an 

updated ensemble list of predictions.  We selected 48 of the genes with the 

highest confidence from the updated results that were not previously tested for a 

second round of laboratory investigation.  The same experimental assays and 
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evaluation procedures were used, and an additional 17 genes demonstrated a 

significant phenotype, resulting in a total of 139 out of 234 total predictions 

indicating involvement. 

6.4  Conclusion 
In order to fulfill the broad promise of computational functional genomics, 

we must undertake large-scale, iterative efforts to predict, evaluate, and verify 

novel gene functions through computationally directed experimentation.  Our 

study demonstrates the potential utility of these types of approaches and in doing 

so has nearly tripled the number of genes annotated to the process of 

mitochondrial organization and biogenesis in S. cerevisiae.  Additionally, our 

results demonstrate that computational methods must be designed and utilized 

on the basis of the biological nature of the data they consume and the types of 

interactions a particular algorithm is able to predict.  Further, careful and rigorous 

experimental methods are required in order to confidently measure modest 

phenotypes.  Finally, the iterative use of complementary computational methods 

combined with solid laboratory testing are able to greatly expand our knowledge 

of biology. 

Methodologies such as ours are especially important given that the 

amount of functional genomics data generated is outpacing the amount of novel 

biological knowledge that is gained from these experiments.  By directing 

experimental efforts to more promising targets, we can reduce the amount of 

laboratory effort required to discover new biology, including functional discoveries 

of unknown proteins.  Of the genes this study newly identifies as involved in 
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mitochondrial organization and biogenesis, 60 had no previously known function.  

Thus, through the course of this single study, we have discovered a functional 

annotation for roughly 4% of the remaining genes of unknown function in S. 

cerevisiae.  The intelligent combination and iteration of computational and 

experimental work can significantly speed our rates of discovery, not only in 

yeast mitochondrial biology, but also in a broad range of processes and 

organisms. 
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Chapter 7 

Conclusions and Future Work 
Understanding the functions and roles of genes and proteins within cells 

and within organisms is a vital step towards the larger goal of understanding and 

treating disease.  Recent years have seen a dramatic increase in the amount of 

data generated to attempt to solve this problem.  In particular, billions of gene 

expression measurements have been taken in a variety of organisms, from 

bacteria to humans, studying a wide range of experimental, environmental, and 

clinical perturbations.  However, the information contained within this data 

remains largely obscure from most researchers. 

We have introduced several new approaches for exploring and 

understanding the myriad of expression data available to biologists.  Each of 

these methods addresses key concerns in modern computational biology.  The 

incorporation of expert biological knowledge in the early phases of analysis, the 

meaningful presentation of available data to researchers, and the deep 

integration between computational and laboratory methods are all techniques 

that are vital to discovering novel biology. 

Specifically, first, we have developed a query-driven similarity search 

algorithm for use with large collections of microarray data.  This approach utilizes 

the biological diversity of published expression studies to identify novel genes 

involved in process or pathways.  Additionally, through this work we have 

characterized the current state of available gene expression data for S. 
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cerevisiae, including a catalogue of biological areas that remain to be studied 

using microarray technology.  This methodology reveals important information 

that was previously hidden within expression databases quickly and accurately.  

Further, this context-specific, user-driven search paradigm is very powerful and is 

applicable to higher organisms and additional types of data. 

Second, we developed several novel visualization schemes aimed at 

incorporating statistical information into the visual representation of expression 

data.  This work allows researchers to more accurately assess the results of 

analysis methods, such as clustering.  These types of methods are especially 

important for examining microarray data, as so much analysis is performed in a 

visual manner.  This work demonstrates the general necessity and utility of 

tailoring visualization approaches to the desired task. 

Third, we have designed a new visualization paradigm that enables the 

simultaneous exploration of multiple expression datasets in a biologically 

meaningful fashion.  This technique provides researchers with the ability to 

understand their own datasets within the broader biological context of other 

available data.  As the amount of available biological data continues to grow, it 

will become increasingly important to comprehend the relationships between 

datasets, rather than considering each study within a vacuum. 

Fourth, we have integrated our analysis and visualization approaches 

together into a unified platform for comprehensive exploration of large collections 

of gene expression microarray data.  This platform demonstrates the value of 

fusing powerful analysis methodologies within the context of a meaningful 
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visualization interface.  As the majority of researchers analyze expression data 

visually, the ability to perform multiple analyses interactively greatly increases the 

amount and quality of information that can be discovered.  Further, the unification 

of statistical analysis methods and targeted visualizations is a compelling 

paradigm for the exploration of many other types of data. 

Last, and perhaps most important, we have validated these approaches in 

a large-scale collaboration with laboratory biologists that is the first of its kind.  

This unique project based on our computational function prediction methods 

revealed a novel involvement in mitochondrial organization for nearly 100 

proteins, including 5% of all the remaining proteins of unknown function in yeast.  

Of these genes, more than half are conserved through human, and more than 1 

in 5 of these orthologous proteins are known to be involved in human diseases.  

Novel discoveries of this scale are rare in molecular biology, and this result 

strongly confirms the validity and usefulness of our computational analysis 

approaches.  Further, this study led to many important observations concerning 

the role and applicability of computational predictions for functional 

investigations.  Our results affirm that both laboratory biology and computational 

biology must inform and guide each other in order to solve important problems. 

While the majority of this work has been focused on functional discovery in 

S. cerevisiae through the analysis of gene expression microarray data, these 

methods and algorithms are foundational for future work in analyzing additional 

data sources and in studying higher eukaryotes, especially human.  Extending 

these methods to include additional organisms will range from trivial to very 
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complex.  Many of the visualization-based paradigms presented here have 

already been used in a variety of organisms with great success.  However, 

methods such as our query-driven similarity search will need to take into account 

developmental phases, tissue-specific variations, and the increased genetic 

complexity of higher organisms in order to be successful.  While there are many 

new challenges that must be addressed, the basic principles of this work – 

incorporating expert knowledge with analysis of large data compendia, creating 

statistically meaningful visual exploration approaches, and integrating 

computational and laboratory analyses – will endure. 

Although there is still a great deal of work to be done in functional 

genomics, understanding and treating human diseases will require further 

development of the field of computational biology.  In the coming years, 

bioinformatics will expand its focus beyond understanding specific gene functions 

to a more comprehensive study of systems level biology, disease pathways, and 

clinical treatment options.  This transition will require methods incorporating not 

only high-throughput genomic data, but also metabolomics, proteomics, and 

clinical data.  Analysis of these data sources to achieve these new goals will bear 

many similarities to the work presented here.  The general paradigm of 

statistically robust, scalable, and integrated analysis and visualization techniques 

for data exploration will remain a cornerstone of successful bioinformatics 

approaches. 
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Appendix A 

Datasets used in the SPELL search 
engine 

Microarray data was collected from a variety of sources to create our 

compendium, including NCBI's Gene Expression Omnibus [22], EBI's 

ArrayExpress [15], the Stanford Microarray Database [81], and several other 

publication and laboratory web pages. These data from 81 publications, totaling 

2394 array hybridizations, were broken down into their smallest logical groupings 

of conditions. For example, the stress response dataset from Gasch et al., 2000 

[27] originally consisted of 142 hybridizations corresponding to several different 

types of induced stress and growth phases. We have separated this dataset in a 

manner similar to the authors' analyses, resulting in 21 logical datasets such as 

"hydrogen peroxide exposure," "osmotic shock," and "heat shock from 25° to 

37°." 

In order to make valid comparisons between the datasets collected, all 

data was normalized in a similar manner. First, suspect values were removed 

(i.e. missing values were inserted) in all data based on the information available 

in the original publication where possible, or in a manner appropriate to the 

microarray platform used. After identifying missing values, any genes present in 

less than 50% of the conditions in a dataset were removed from that dataset. 

Remaining missing values were imputed using the KNN impute algorithm [91] 

with K=10 using Euclidean distance to identify nearest neighbors. After the 
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imputation process, technical replicates were averaged together, resulting in data 

files of complete matrices with one entry per gene appearing in the dataset. 

Most of the data collected falls into two main categories: dual-color 

competitive hybridization data and single-channel data. Dual-color data was 

typically found in log ratio format or was transformed into this format. Single-

channel data was typically from Affymetrix platforms and was log transformed as 

a final step in normalization. Other types of data were transformed into a format 

as close as possible to these sources. 

Table A.1:  SPELL microarray data collection list.  This table contains the full 
list of publications and datasets collected, and the subsequent breakdown of 
datasets into logical units for our functional coverage analysis and search engine. 

Brief Description 

# of 
Cond-
itions First Author 

PubMed 
ID 

rsc3/rsc30 knockouts 8 Angus-Hill ML 11336698 
slt2/swi4/swi6/bck1 knockouts 5 Baetz K 11533240 
splitomicin exposure and sir2 mutants 7 Bedalov A 11752457 
Oxidative stress and glutaredoxin 5-
deficient mutant 

9 Belli G 14722110 

Histone deacetylase (rpd3/sin3/hda1 
deletions) 

6 Bernstein BE 11095743 

Histone deacetylase 
(sin3/sap30/ume6/hda1/hos2/hos3 
deletions) 

7 Bernstein BE 11095743 

Trichostatin A treatment time course 5 Bernstein BE 11095743 
leu3 mutant expression profiles 12 Boer VM 15949974 
Diauxic shift time course (Batch1) 13 Brauer MJ 15758028 
Diauxic shift time course (Batch2) 7 Brauer MJ 15758028 
Transcriptional regulation (I) 40 Brem RB 11923494 
Transcriptional regulation (I)(dye swap) 40 Brem RB 11923494 
Transcriptional regulation (II) 12 Brem RB 11923494 
Transcriptional regulation (II)(dye swap) 11 Brem RB 11923494 
Genetic variation in gene expression 
among parents and progenies (dye-
swap) 

131 Brem RB 15659551 

Genetic variation in gene expression 
among parents and progenies 

131 Brem RB 15659551 

Lithium response 7 Bro C 12791685 
Chitin synthesis 11 Bulik DA 14555471 
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Genotoxic stress 24 Caba E 15878181 
H2O2 exposure to wt and Deltatrr1 
knockout 

15 Carmel-Harel O 11169101 

pho85 inhibition 12 Carroll AS 11675494 
Unfolded protein response 2 Casagrande R 10882108 
acid response 11 Causton HC 11179418 
alkali response 8 Causton HC 11179418 
heat response 7 Causton HC 11179418 
NaCl response 6 Causton HC 11179418 
peroxide response 7 Causton HC 11179418 
Sorbitol response 6 Causton HC 11179418 
TBP inhibition 20 Chitikila C 12419230 
mitotic cell cycle 17 Cho RJ 9702192 
Sporulation time course 7 Chu S 9784122 
mRNA processing factors and splicing 
(dye swap) 

17 Clark TA 11988574 

mRNA processing factors and splicing 17 Clark TA 11988574 
yap1 and yap2 knockouts with peroxide 
and cadmium added 

11 Cohen BA 12006656 

Osmotic stress 12 De Nadal E 14737171 
Diauxic shift time course 7 DeRisi JL 9381177 
post heat shock, delayed rapamycin 
exposure time course 

20 Duvel K 12820961 

post heat shock, immediate rapamycin 
exposure time course 

10 Duvel K 12820961 

Mitochondrial dysfunction 11 Epstein CB 11179416 
SPT10 global transcription regulator null 
mutant 

6 Eriksson PR 16199888 

Evolved strains 4 Ferea TL 10449761 
Hydrostatic pressure response 2 Fernandes PM 14706843 
proteasome inhibition with exposure to 
PS-341 

30 Fleming JA 11830665 

Aging in yeast 8 Fry RC 12875747 
Amino acid, adenine starvation  5 Gasch AP 11102521 
Carbon sources 6 Gasch AP 11102521 
Diamide treatment time course 8 Gasch AP 11102521 
Dithiothrietol exposure time course 
(y13) 

8 Gasch AP 11102521 

Dithiothrietol exposure time course 
(y14) 

7 Gasch AP 11102521 

Hydrogen peroxide response 2 Gasch AP 11102521 
Hydrogen peroxide response time 
course 

9 Gasch AP 11102521 

Heat Shock 25C to 37C time course 8 Gasch AP 11102521 
Heat Shock 29C to 33C time course 4 Gasch AP 11102521 
Heat Shock 30C to 37C time course 5 Gasch AP 11102521 
Heat Shock 37C to 25C 5 Gasch AP 11102521 
Mild Heat Shock 6 Gasch AP 11102521 
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Heat Shock from various temp to 37C 6 Gasch AP 11102521 
Hyper-osmotic shock time course 6 Gasch AP 11102521 
Hypo-osmotic shock time course 5 Gasch AP 11102521 
Menadione exposure time course 9 Gasch AP 11102521 
Nitrogen depletion time course 9 Gasch AP 11102521 
Stationary phase time course (y12) 10 Gasch AP 11102521 
Stationary phase time course (y14) 9 Gasch AP 11102521 
Steady-state temperature (y13) 5 Gasch AP 11102521 
Steady-state temperature (y14) 8 Gasch AP 11102521 
Copper regulon 6 Gross C 10922376 
rapamycin exposure 14 Hardwick JS 10611304 
pho85 related knockouts 20 Huang D 12077337 
diverse knockout mutants 300 Hughes TR 10929718 
GAL mutants 21 Ideker T 11340206 
SBF-MBF genomic distribution 
(ORF_intergenic_v1.0) (I) 

2 Iyer VR 11206552 

SBF-MBF genomic distribution 
(ORF_intergenic_v1.0) (II) 

2 Iyer VR 11206552 

SBF-MBF genomic distribution 
(intergenic_v1.0) (I) 

6 Iyer VR 11206552 

SBF-MBF genomic distribution 
(intergenic_v1.0) (II) 

5 Iyer VR 11206552 

Exposure to alkylating, oxidizing agents, 
ionizing radiation 

28 Jelinsky SA 11027285 

Xylose metabolism 6 Jin YS 15528549 
Ras/cAMP signal transduction pathway 
(dye swap) 

5 Jones DL 14570984 

Ras/cAMP signal transduction pathway 5 Jones DL 14570984 
Haa1 analysis 4 Keller G 11504737 
Carbon source shift 3 Kuhn KM 11154278 
Unfolded protein response and HAC1 
transcription 

13 Leber JH 15314654 

rnt1 null mutant expression profile 9 Lee A 15989963 
gcr1 mutant, glucose exposure 17 Lopez MC 10940042 
Zinc homeostatis, zap1 9 Lyons TJ 10884426 
MAPK mutants 11 Madhani HD 10535956 
TOR2-controlled transcription 12 Martin DE 15476558 
immunosuppressant response 7 Marton MJ 9809554 
abf1-1 mutant at 36C 4 Miyake T 15192094 
Phosphate-regulated pathway (I) 5 Ogawa N 11102525 
Phosphate-regulated pathway (II) 3 Ogawa N 11102525 
Fermentation time course 12 Olesen K 12702272 
Deubiquitinating enzyme UBP10 
inactivation 

4 Orlandi I 14623890 

HOG MAPK pathway 133 O'Rourke SM 14595107 
Phosphomannose isomerase PMI40 
deletion strain response to excess 
mannose 

15 Pitkanen JP 15520001 
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Sporulation of two strains 24 Primig M 11101837 
Filamentous-form growth on solid media 
time course 

10 Prinz S 14993204 

Iron concentration and AFT1 
overexpression 

4 Protchenko O 11673473 

Pheremone response 56 Roberts CJ 10657304 
TPK1, TPK2, TPK3 mutants 12 Robertson LS 10811893 
sus1 mutant 6 Rodriguez-Navarro 

S 
14718168 

fhl1 and ifh1 deletion mutants 6 Rudra D 15692568 
Iron homeostasis 2 Rutherford JC 11734641 
Histone deacetylase RPD3 deletion and 
histone mutations 

18 Sabet N 15456858 

limitation by Leucine 29 Saldanha AJ 15240820 
limitation by Phosphate 30 Saldanha AJ 15240820 
limitation by Sulfate 21 Saldanha AJ 15240820 
limitation by Uracil 20 Saldanha AJ 15240820 
comparison of limitation by Ura, Sul, 
Pho, and Leu 

24 Saldanha AJ 15240820 

Pre-mRNA splicing factor mutants at 
restrictive temperature time course 

24 Sapra AK 15452114 

IFH1 overexpression: time course 24 Schawalder SB 15616569 
Heat Shock, kin82 mutant 10 Segal E 12740579 
Hypo-osmotic shock, ppt1 mutant 10 Segal E 12740579 
Stationary phase, ypl230w mutant 12 Segal E 12740579 
Iron deprivation 6 Shakoury-Elizeh M 14668481 
oxidative stress responses 70 Shapira M 15371544 
Cell cycle, alpha-factor block-release 16 Spellman PT 9843569 
Cell cycle, cdc15 block-release 25 Spellman PT 9843569 
Cyclin overexpression 2 Spellman PT 9843569 
Cell cycle, elutriation 14 Spellman PT 9843569 
Snf/Swi mutants (v1_2.2) 2 Sudarsanam P 10725359 
Snf/Swi mutants (384_F_v1.0) 8 Sudarsanam P 10725359 
Nutrient limitation under aerobic and 
anaerobic conditions 

24 Tai SL 15496405 

Ssl1 mutant for a subunit of TFIIH 
response to methyl methanesulfonate 

12 Takagi Y 15837426 

Ume6 regulon (Ye6100subA) 8 Williams RM 12370439 
Ume6 regulon (Ye6100subB) 8 Williams RM 12370439 
Ume6 regulon (Ye6100subC) 8 Williams RM 12370439 
Ume6 regulon (Ye6100subD) 8 Williams RM 12370439 
Heat shock transcription factor 1 mutant 
response to heat stress 

4 Yamamoto A 15647283 

Transcription factor deletions 7 Yeang CH 15998451 
Ca(2+) exposure 24 Yoshimoto H 12058033 
Na(+) exposure 16 Yoshimoto H 12058033 
Iron uptake 4 Yun CW 10744769 
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Trans-acting regulatory variation (dye 
swap) 

90 Yvert G 12897782 

Trans-acting regulatory variation 90 Yvert G 12897782 
Pseudohyphal Growth 26 Zhu G 10894548 
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Appendix B 

Details of the functional coverage 
analysis of the S. cerevisiae 
microarray compendium 

Full functional coverage results are available in the online supplement to 

the SPELL search engine[84].  The full table of functional coverage consists of a 

matrix containing pseudo p-values (based on the z-test for significance) for each 

combination of dataset and GO biological process examined. These files are 

available as a tab-delimited text file of p-values, a (very large) image, and a 

hierarchically clustered version compatible with JavaTreeView for browsing. Note 

that a p-value of ~10-10 corresponds to the Bonferroni corrected p-value of 10-4 

which was used for significance testing in Figure 2.6. 

In addition to the z-test results, we have also calculated significance 

based on the non-parametric two-sample Kolmogorov-Smirnov test. The results 

of the KS-test show significance for generally the same GO term/dataset 

pairings, however several more pairs are also found to be significant. This is due 

to the fact that the KS-test can judge distributions significantly different if the 

shapes are sufficiently different, while the means are very similar. As the z-test is 

based on differences in means, it would not consider such distributions to be 

significantly different. The full results of the KS-test are also available at the 

supplementary website in a tab-delimited text file. 
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Highly-represented 
(significant in >15 
datasets) 

Moderately-represented 
(significant in <15 but 
>3 datasets) 

Under-represented 
(significant in <3 
datasets) 

tricarboxylic acid cycle response to oxidative 
stress 

MAPKKK cascade (A) 

DNA repair amino acid transport protein kinase cascade 
(A) 

glycolysis exocytosis Ras protein signal 
transduction (A) 

phosphate metabolism vesicle fusion mating type switching (B) 
chromosome segregation meiotic recombination invasive growth (B) 
DNA replication arginine biosynthesis pseudohyphal growth (B) 
electron transport steroid metabolism response to salt stress 

(C) 
ubiquitin-dependent 
protein catabolism 

alcohol metabolism heme biosynthesis (C) 

ribosome assembly double-strand break 
repair 

mitochondrial genome 
maintenance (C) 

amino acid metabolism filamentous growth telomerase-dependent 
telomere maintenance 
(C) 

 

Table B.1:  Functional coverage classes.  Our analysis of the functional 
coverage of existing gene expression microarray data for S. cerevisiae 
characterizes both which biological processes are represented in each dataset 
and which biological processes are represented in existing data as a whole. This 
table shows a selection of processes that are significant in many datasets (left 
column), significant in some, but not many datasets (center column), and 
significant in very few datasets (right column). Of those processes under-
represented in the compendium, there are three major explanations identified: 
(A) non-transcriptionally regulated processes, (B) processes not occurring in 
many common laboratory strains, and (C) specific processes not yet targeted by 
existing gene expression microarray data. Biological processes in the later 
category may be areas that warrant further investigation. 
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Appendix C 

Details of SPELL Biological 
Performance Evaluation 

Precision-recall curves were created by traversing the ordered list of 

results for each method for each GO term examined and calculating precision, 

recall pairs at each step. Precision is calculated as the ratio of true positive (TP) 

predictions to the sum of TP and false positive (FP) predictions. Recall is 

measured as the number of TPs recovered for individual GO terms, or as the 

proportion of TPs to the total number of possible TPs (TP + FN [false negatives]) 

for results averaged over multiple GO terms.  Average precision was used as a 

summary statistic for comparing the performance of different methods in a more 

straightforward way.  In addition to the summary comparison available in Figure 

2.7 of chapter 2, the individual results for all 126 GO terms analyzed are 

available at the SPELL supplementary website [84]. 

Table C.1:  List of 126 GO terms used in SPELL evaluation.  These GO terms 
were used for comparative evaluations of the SPELL search algorithm.

GOID Term Name 

GO:0000074 
regulation of 
progression through 
cell cycle 

GO:0000160 
two-component 
signal transduction 
system 

GO:0000278 mitotic cell cycle 
GO:0000279 M phase 
GO:0000746 conjugation 

 

GO:0000902 cellular 
morphogenesis 

GO:0001510 RNA methylation 

GO:0005975 carbohydrate 
metabolism 

GO:0006056 mannoprotein 
metabolism 

GO:0006066 alcohol metabolism 
GO:0006081 aldehyde metabolism 

GO:0006082 organic acid 
metabolism 
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GO:0006112 energy reserve 
metabolism 

GO:0006113 fermentation 
GO:0006118 electron transport 
GO:0006260 DNA replication 
GO:0006308 DNA catabolism 
GO:0006310 DNA recombination 
GO:0006323 DNA packaging 
GO:0006352 transcription initiation 

GO:0006353 transcription 
termination 

GO:0006354 RNA elongation 

GO:0006360 
transcription from 
RNA polymerase I 
promoter 

GO:0006366 
transcription from 
RNA polymerase II 
promoter 

GO:0006383 
transcription from 
RNA polymerase III 
promoter 

GO:0006399 tRNA metabolism 
GO:0006401 RNA catabolism 

GO:0006417 regulation of protein 
biosynthesis 

GO:0006457 protein folding 

GO:0006461 protein complex 
assembly 

GO:0006473 protein amino acid 
acetylation 

GO:0006476 protein amino acid 
deacetylation 

GO:0006508 proteolysis 
GO:0006512 ubiquitin cycle 

GO:0006519 amino acid and 
derivative metabolism 

GO:0006629 lipid metabolism 

GO:0006725 aromatic compound 
metabolism 

GO:0006730 
one-carbon 
compound 
metabolism 

GO:0006766 vitamin metabolism 
GO:0006790 sulfur metabolism 

GO:0006793 phosphorus 
metabolism 

GO:0006800 
oxygen and reactive 
oxygen species 
metabolism 

GO:0006807 nitrogen compound 
metabolism 

GO:0006811 ion transport 
GO:0006818 hydrogen transport 

GO:0006839 mitochondrial 
transport 

GO:0006869 lipid transport 

GO:0006913 nucleocytoplasmic 
transport 

GO:0006914 autophagy 
GO:0006944 membrane fusion 

GO:0006970 response to osmotic 
stress 

GO:0006974 response to DNA 
damage stimulus 

GO:0006986 response to unfolded 
protein 

GO:0006997 nuclear organization 
and biogenesis 

GO:0007005 
mitochondrion 
organization and 
biogenesis 

GO:0007010 
cytoskeleton 
organization and 
biogenesis 

GO:0007031 
peroxisome 
organization and 
biogenesis 

GO:0007033 vacuole organization 
and biogenesis 

GO:0007034 vacuolar transport 
GO:0007046 ribosome biogenesis 

GO:0007047 cell wall organization 
and biogenesis 

GO:0007059 chromosome 
segregation 
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GO:0007155 cell adhesion 

GO:0007166 
cell surface receptor 
linked signal 
transduction 

GO:0007243 protein kinase 
cascade 

GO:0007264 
small GTPase 
mediated signal 
transduction 

GO:0007530 sex determination 
GO:0007568 aging 

GO:0008213 protein amino acid 
alkylation 

GO:0008219 cell death 

GO:0008298 intracellular mRNA 
localization 

GO:0008380 RNA splicing 

GO:0008643 carbohydrate 
transport 

GO:0009100 glycoprotein 
metabolism 

GO:0009116 nucleoside 
metabolism 

GO:0009117 nucleotide 
metabolism 

GO:0009266 response to 
temperature stimulus 

GO:0009308 amine metabolism 
GO:0009415 response to water 

GO:0010035 response to inorganic 
substance 

GO:0015837 amine transport 
GO:0015849 organic acid transport 
GO:0015893 drug transport 

GO:0015931 

nucleobase, 
nucleoside, 
nucleotide and 
nucleic acid 
metabolism 

GO:0016071 mRNA metabolism 
GO:0016072 rRNA metabolism 

 

GO:0016192 vesicle-mediated 
transport 

GO:0016458 gene silencing 

GO:0016481 negative regulation of 
transcription 

GO:0016485 protein processing 

GO:0018193 peptidyl-amino acid 
modification 

GO:0019236 response to 
pheromone 

GO:0019748 secondary 
metabolism 

GO:0019932 second-messenger-
mediated signaling 

GO:0019953 sexual reproduction 
GO:0019954 asexual reproduction 

GO:0030261 chromosome 
condensation 

GO:0030435 sporulation 
GO:0030447 filamentous growth 

GO:0030705 
cytoskeleton-
dependent 
intracellular transport 

GO:0031023 
microtubule 
organizing center 
organization and 
biogenesis 

GO:0031123 RNA 3'-end 
processing 

GO:0040029 
regulation of gene 
expression, 
epigenetic 

GO:0042157 lipoprotein 
metabolism 

GO:0042594 response to 
starvation 

GO:0043094 metabolic compound 
salvage 

GO:0043284 biopolymer 
biosynthesis 

GO:0045184 establishment of 
protein localization 
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GO:0045185 maintenance of 
protein localization 

GO:0045333 cellular respiration 

GO:0045454 cell redox 
homeostasis 

GO:0045941 positive regulation of 
transcription 

GO:0046483 heterocycle 
metabolism 

GO:0048284 organelle fusion 
GO:0048308 organelle inheritance 

GO:0050790 regulation of enzyme 
activity 

GO:0050801 ion homeostasis 

GO:0051052 regulation of DNA 
metabolism 

GO:0051169 nuclear transport 
GO:0051186 cofactor metabolism 

GO:0051236 establishment of RNA 
localization 

GO:0051301 cell division 
GO:0051321 meiotic cell cycle 
GO:0051325 interphase 
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Appendix D 

Details of ARP8 Predictions and 
Validations 
Table D.1:  Functions predicted for ARP8 by SPELL. SPELL predicts that the 
un-annotated gene, ARP8 is involved in the following 13 biological processes 
which break down into 3 main classes 

Predicted GO term for Arp8 Class 
mitotic cell cycle Cell Cycle 
interphase Cell Cycle 
regulation of progression through cell cycle Cell Cycle 
cell division Cell Cycle 
asexual reproduction Cell Cycle 
transcription from RNA polymerase II 
promoter Transcription 

negative regulation of transcription Transcription 
positive regulation of transcription Transcription 
transcription initiation Transcription 
mRNA metabolism Transcription 
cellular morphogenesis Morphology 
cytoskeleton organization and biogenesis Morphology 
response to osmotic stress Other 

 

For verification of the cellular morphology defect, cell volume was 

determined using the Z2 automated cell counter (Beckman Coulter, Fullerton, 

California, United States). Culture was diluted into Isotone II buffer for the 

measurement. Cell morphology was determined using a 40x objective on a Zeiss 

Axioskop (Germany). The entire field of view is shown for both wild-type yeast 

and the arp8 deletion allowing for direct comparison of the images in Figure 2.9. 
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