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ABSTRACT
Edge networks connected to the Internet need effective mon-
itoring techniques to drive routing decisions and detect vio-
lations of Service Level Agreements (SLAs). However, exist-
ing measurement tools, like ping, traceroute, and trajectory
sampling, are vulnerable to attacks that make a path look
better than it really is. In this paper, we design and an-
alyze path-quality monitoring protocols that robustly raise
an alarm when packet-loss rate and delay exceeds a thresh-
old, even when adversary tries to bias monitoring results
by selectively delaying, dropping, modifying, injecting, or
preferentially treating packets.

Despite the strong threat model we consider in this pa-
per, our protocols are efficient enough to run at line rate on
high-speed routers. We present a secure sketching protocol
for identifying when packet loss and delay degrade beyond a
threshold. This protocol is extremely lightweight, requiring
only 250–600 bytes of storage and periodic transmission of
a comparably sized IP packet. We also present secure sam-
pling protocols that provide faster feedback and more accu-
rate round-trip delay estimates, at the expense of somewhat
higher storage and communication costs. We prove that
all our protocols satisfy a precise definition of secure path-
quality monitoring and derive analytic expressions for the
trade-off between statistical accuracy and system overhead.
We also compare how our protocols perform in the client-
server setting, when paths are asymmetric, and when packet
marking is not permitted.

1. INTRODUCTION
Path-quality monitoring is a crucial component of flexi-

ble routing techniques (e.g., intelligent route control, source
routing, and overlay routing) that give edge networks greater
control over path selection. Monitoring is also necessary to
verify that service providers deliver the performance speci-
fied in Service-Level Agreements (SLAs). In both applica-
tions, edge networks need to determine when path quality
degrades beyond some threshold, to switch from one path
to another or report an SLA violation. The problem is com-
plicated by the presence of nodes along the path who try to
interfere with the measurement process, out of greed, malice,
or even misconfiguration. In this paper, we design and ana-
lyze light-weight path-quality monitoring (PQM) protocols
that detect when packet loss or delay exceeds a threshold,
even when adversaries try to bias monitoring results. Our
solutions are efficient enough to run at line rate on the high-
speed routers connecting edge networks to the Internet.

1.1 The presence of adversaries
Today, path-quality monitoring relies on active measure-

ment techniques, like ping and traceroute, that inject special
“probe” packets into the network. In addition to imparting
extra load on the network, active measurements are vulner-
able to adversaries that try to bias the results by treating
probe packets preferentially. Instead, we want to design pro-
tocols that provide accurate information even when interme-
diate nodes may adversarially delay, drop, modify, inject or
preferentially treat packets in order to confound measure-
ment. Our motivations for studying this adversarial failure
model are threefold:

1. It covers active attacks. Our strong threat model covers
a broad class of malicious behaviour. Malicious adversaries
can easily launch routing-protocol attacks that draw packets
to (or through) a node of their choosing [6], or compromise
one of the routers along an existing path through the In-
ternet [13, pg. 14]. Biasing path-quality measurements
allows the adversaries to evade detection, while continuing
to degrade performance or impersonate the legitimate des-
tination at will. In addition, ISPs have both the economic
incentive and the technical means to preferentially handle
probe packets, to hide discrimination against unwanted traf-
fic like Skype [26] or BitTorrent [1], and evade detection of
SLA violations. (In fact, commercial monitoring services,
like Keynote, claim to employ “anti-gaming” techniques to
prevent providers from biasing measurement results [2].) Fi-
nally, adversaries controlling arbitrary end hosts (such as
botnets) can add “spoofed” packets to the stream of traf-
fic from one edge network to another, to confound simplistic
measurement techniques (e.g., such as maintaining a counter
of received packets).

2. It covers all possible benign failures. By studying the ad-
versarial setting, we avoid making ad hoc assumptions about
the nature of failures caused by normal congestion, malfunc-
tion or misconfiguration. Even benign modification of pack-
ets may take place in a seemingly adversarial manner. For
example, an MTU (Maximum Transmission Unit) mismatch
may cause a router to drop large packets while continuing
to forward the small probe packets sent by ping or tracer-
oute [22]. As another example, link-level CRC checks are
surprisingly ineffective at detecting the kinds of errors that
corrupt IP packets [31]. Since the adversarial model is the
strongest possible model, any protocol that is robust in this
setting is automatically robust to all other kind of failures.

3. It is challenging to satisfy in high-speed routers. We
choose to work in a difficult space, where we assume the
strongest possible adversarial model, and yet design solu-



tions for high-speed routers on multi-Gbit/sec links, where
computation and storage resources are extremely limited.
We view it as an important research goal to understand
what can and cannot be done in this setting, to inform prac-
tical decisions about what level of threats future networks
should be designed to withstand. Furthermore, designing
protocols for this adversarial setting is not simply a mat-
ter of adding standard cryptographic tools to existing non-
adversarial measurement protocols. Indeed, naive ways of
combining such protocols with cryptographic tools may be
either insecure or very inefficient (e.g., encrypting and au-
thenticating all traffic).

Despite the strong threat model we consider in this pa-
per, we are still able to design secure PQM protocols that
can be implemented in the constrained environment of high-
speed routers. Our protocols are competitive, in terms of ef-
ficiency, with solutions designed for the non-adversarial set-
ting [11, 14] and for weaker threat models. As such, we be-
lieve that our protocols are strong candidates for deployment
in future networks, even where our strong security guaran-
tees may not be essential.

1.2 Our results
We say that a packet delivery failure (failure for short)

has occurred on a path if a packet sent by the source was
dropped, modified, or delayed beyond a certain timeout pe-
riod, regardless of whether the drop is due to congestion,
malfunction or adversarial behavior. The goal of a PQM
protocol is to detect when the fraction of failures on a path
rises above a certain fractio β (say β = 0.01) of all packets
sent. We emphasize that a PQM protocol does not pre-
vent failures. A secure PQM protocol achieves its goal even
when there is an intermediate node on the path between
source and destination that can behave adversarially and
drop, modify, or inject both data and protocol-related pack-
ets to the path in order to bias the measurement results.
Most existing PQM protocols, such as ping, traceroute, and
counter-based solutions [32] completely break down in this
setting (we show why in Section 2.2).

To have efficient solutions that can run on high-speed
routers, we design secure PQM protocols based on two main
classes of data-reduction techniques:

Secure sketch. In Section 5, we present a protocol for
monitoring packet-loss rates that makes extremely efficient
use of communication and storage resources. Our secure
sketch protocol uses `2-norm estimation sketches [3,4,8,33]
to aggregate information about the failures that occur dur-
ing interval, in which T packets are sent, into a sketch of
size O(log T ) bits; the communication overhead is just a
single report packet per time interval. Assuming that about
107 packets are sent during an 100ms interval, our proto-
col requires between 250–600 bytes of storage at the source
and destination, and a report can easily fit into a single IP
packet. In the course of analyzing this protocol, we pro-
vide an improved formal analysis of the performance of [8]’s
sketching scheme that may be of independent interest.

Secure sampling. In certain settings, an edge-network
may require accurate round-trip delay measurements in ad-
dition to monitoring if the failure rate rises above a thresh-
old. Section 4 describes a secure PQM protocol that achieves
this by measuring performance for a sample of the traf-
fic that is obtained using a cryptographic hash function.

For PQM with threshold β, this sampling-based protocol
requires O(n/β) bits of storage at the source, where n is the
output length of the hash function. We present two variants:
(1) Symmetric Secure Sampling is designed for the setting
where source and destination can devote an equal amount
of resources to the running of the protocol, and (2) Asym-
metric Secure Sampling, which is designed for a client-server
setting where the client contributes the bulk of the resources,
and the server participates in path-quality monitoring with
many clients simultaneously.

Precise definition of security. Evaluating the security
of a protocol is challenging in practice. In many problem
domains, e.g., intrusion detection, the only viable approach
is to enumerate a set of possible attacks, and then show how
the protocol defends against these specific attacks. One way
to do this is to evaluate the protocol on, say, packet traces of
real-world attacks. However, there is always a risk that an
adversary might devise a new attack that we have not con-
sidered or that was not expressed in the trace. Fortunately,
in our problem domain, a more comprehensive security eval-
uation is possible. Namely, instead of enumerating ways the
protocol can break down (i.e., attacks), we can instead give
a precise definition of the functionality we require from the
protocol, and then guarantee that the protocol can carry out
these functions even in the face of all possible attacks by an
adversary with a specific set of powers.

To do this, in Section 2 we precisely define our require-
ments for a secure PQM protocol and the powers that we
give to the adversary. Then, to evaluate the security of our
protocols, we use formal analysis to prove that our protocols
achieve this functionality no matter what the adversary does,
short of breaking the security of the basic cryptographic
primitives (e.g., digital signatures and hash functions) from
which the protocol is constructed. In Section 6 we prove that
any secure PQM protocol (as per Definition 1) would need to
employ the same basic security machinery—secret keys and
cryptographic operations—used by our secure sketching and
sampling protocols.

Evaluating performance. The performance and cost
of any particular implementation of our protocols would de-
pend on memory speed and the particular choice of crypto-
graphic primitives. As such, we count separately the differ-
ent resources—computation, storage and communication—
used by our protocols, bound the resource utilization us-
ing formal analysis, and also show somewhat better bounds
through numerical experiments. Our protocols use crypto-
graphic hash functions in an online setting, where an ad-
versary has very limited time to break the security before
the hash parameters are refreshed; this allows us to use fast
implementations of these hash functions (see Appendix A).
We emphasize that all except one of our protocols do not
modify data packets in any way, and so they may be imple-
mented off the critical packet-processing path in the router.
Not marking packets also make our protocols more back-
wards compatible with IP, minimizes latency at the router,
allows the parties to turn on/off PQM protocols without
the need to coordinate with each other, and avoid prob-
lems with increasing packet size and possibly exceeding the
MTU. We discuss and compare the performance trade-offs
for our sketch and sampling protocols with known solutions
like IPsec in Section 7.



2. THE STATISTICAL SECURITY MODEL
In our model, a source Alice sends packets to a destination

Bob over a path through the Internet. Fixing a particular
time period, which we call an interval, we define a packet
delivery failure to be any instance where a packet that was
sent by Alice during the interval fails to arrive unmodified
at Bob before the interval ends. An adversary Eve can sit
anywhere on the path between Alice and Bob, and we em-
power Eve to drop, modify, or delay every packet or add her
own packets.

Definition 1. A path quality monitoring (PQM) proto-
col is a protocol that Alice and Bob run to detect whether
the number of failures during the interval exceeds a certain
fraction of total packets transmitted. More concretely, given
parameters 0 < α < β < 1 and 0 < γ < 1, we say a pro-
tocol is a (α, β, δ) secure PQM protocol if, letting T be the
number of packets sent during the interval:

1. (Few false negatives.) If more than βT packet delivery
failures occur then the protocol raises an alarm with
probability at least 1− δ, no matter what Eve does.

2. (Few false positives.) If no intermediate node behaves
adversarially and at most αT failures occur then the
protocol raises an alarm with probability at most δ.

We assume that the T packets sent during an interval are
distinct, because of natural variation in packet contents, and
the fact that even successive packets sent by the same host
have different ID fields in the IP header [11] (note that even
retransmissions of the same TCP segment correspond to dis-
tinct IP packets, because of the IP ID field).

2.1 Properties of our security definition
Our definition is strongly motivated by our intended appli-

cation of enabling routing decisions or SLA violation detec-
tion. The most important security guarantee it provides is
that no matter what Eve does she cannot prevent Alice from
raising an alarm when the failure rate for packets that Alice
sent to Bob exceeds β. As such, our definition encompasses
attacks by nodes on the data path that include (but of course
are not limited to): colluding nodes that work together in
order to hide packet loss, an adversarial node that intelli-
gently injects packets based on timing observations or deep
packet inspection, a node that preferentially treats packets
that it knows are part of the PQM protocol, and a node that
masks packet loss by injecting an equal number of nonsense
packets onto the data path.

On the other hand, as a routing-decision enabling tool,
we do not require PQM protocols to prevent packet deliv-
ery failures but rather only detect them. Second, rather
than determining exactly how many failures occurred, the
protocol is only required to detect if the number of failures
exceeds a certain threshold. (While solutions that exactly
count failures certainly exist, e.g., see discussion on IPsec in
Section 7, they typically require cryptographically authenti-
cating and/or encrypting all traffic and hence are rather ex-
pensive to operate in high-speed routers.) Third, we do not
require our protocols to distinguish between packet failures
occurring due to adversarial tampering or to due “benign”
congestion or malfunction.

Finally, while our security definition requires that our pro-
tocols do not raise a (false) alarm when the one-way failure

rate is less than α for the benign setting, we do allow for the
possibility of raising an alarm due to adversarial tampering
even when fewer than an α fraction of failures occur. This
is because an adversarial node has the power to arbitrarily
tamper not just with data packets, but also with any pack-
ets that are sent as part of the PQM protocol; thus Eve can
always make a path look worse than it actually is by selec-
tively dropping all acknowledgment or report messages that
Bob sends to Alice, even if all the original packets that Alice
sent to Bob were actually delivered. (In this paper, we will
assume that any acknowledgment or report messages that
Bob sends to Alice are sent repeatedly to ensure that, with
high probability, they are not dropped due to normal con-
gestion.) We note that in this case it may very well make
sense for the protocol to raise an alarm, and the router to
look for a different path.

2.2 Related works
The literature on path-quality monitoring typically deals

only with the benign setting; most approaches either have
the destination return a count of the number packets he
receives from the source, or are based on active probing
(ping, traceroute, [15,29,30] and others). However, both ap-
proaches fail to satisfy our security definition. The counter
approach is vulnerable to attack by an adversary who hides
packet loss by adding new, nonsense packets to the data
path. Active probing fails when an adversary preferentially
treats probe packets while degrading performance for reg-
ular traffic, or when an adversary sends forged reports or
acknowledgements to mask packet loss. Even known pas-
sive measurement techniques, where normal data packets
are marked as probes, either explicitly as in IPPM [15] and
Orchid [25] or implicitly as in Trajectory Sampling [11] and
PSAMP [14], are vulnerable to the same attacks as active
probing techniques if the adversary can distinguish the probe
packets from the non-probe packets (e.g., see [12] for attacks
on PSAMP).

To obtain path-quality monitoring protocols that work in
the adversarial setting, we have developed protocols that
are more closely related to those used for traffic characteriza-
tion. For example, our secure sampling protocol uses passive
measurement techniques similar to those of [11,14], that are
designed for characterizing traffic mix. Similarly, our secure
sketch protocol draws on `2-norm estimation schemes [3,4,8,
33] that are typically uses to characterize data streams. Be-
cause our protocols are designed for the adversarial setting,
they require the use of keys and cryptographic hash func-
tions (see sections 3 and 6) in order to prevent an adversary
from selectively adding and dropping packets in a manner
that skews the estimate returned from the sketch. On the
other hand, we can use the special structure of the path-
quality monitoring setting to prove new analytical bounds
which result in provably lower communication and storage
requirements than those typically needed in traffic charac-
terization applications.

Our results are also related to works in the cryptogra-
phy and security literature. In the security literature, tra-
ditional works on providing availability typically give guar-
antees on a per-packet basis, resulting in schemes with very
high overhead, see e.g., [10] and later works. While statis-
tical PQM protocols have been considered in the security
literature [5, 24, 32], ours is the first work in this area to
provide a formal security definition and to prove the secu-



rity of our protocols within this model. We argue that such
a model is crucial to understanding the security guarantees
provided by a protocol. Indeed, one of Fatih’s [24] PQM
approaches is based on a simple counter (and is therefore
vulnerable to the attack described above), while Listen [32]
is a protocol that does not use cryptographic operations,
and is thus vulnerable to attack by an intermediate node
that injects false acknowledgments onto the path. Finally,
while Stealth Probing [5] is secure in our model, it incurs the
extra overhead of encrypting and authenticating all traffic.

3. CRYPTOGRAPHIC PRIMITIVES
Our PQM protocols use several cryptographic primitives,

with different security properties and performance. We de-
scribe the security functionalities of these primitives below:
A Collision-Resistant Hash (CRH) function is a function H
for which it is infeasible to find a collision, i.e., m 6= m′

fulfilling H(m) = H(m′). Typical choices of H are SHA-1
and (truncated) SHA-256. The output of H(x) is called the
digest of x, and we assume it is 160 bits long.
A Pseudorandom function (PRF) is a keyed function hk(·)
from that maps an arbitrary length strings to an n-bit string
using a key k; in our case, n = 64 or 96 suffice. Its security
property is that if the key k is chosen at random, then to an
adversary with no knowledge of k the function hk(·) looks
totally unpredictable and cannot be distinguished (except
with an exponentially small probability) from a truly ran-
dom function (where each input is mapped independently
to a uniformly random output). hence, in our calculations
we may treat hk as if it is truly random. All our protocols
require a PRF computation on the entire contents of every
sent packet,1 and all subsequent processing of the packet re-
lies only on this hash value. In Appendix A we argue that
our online setting allows us to to realize the PRF via fast
cryptographic hash functions in both hardware and software
that support multi-Gbit/sec packet streams.
A PRF can be used to realize a Message Authentication Code
(MAC): using a shared key k, for a message m, one party
will send m,hk(m) and the other party can verify that a pair
(m, t) satisfies t =k (m). The value hk(m), called the tag,
cannot be feasibly forged by an adversary that does not know
k. We denote MACk(m) = (m,hk(m)). Digital signatures
provide authenticity in the public-key setting. Here a private
key SK is used to sign a message m and obtain a signature
σ; we denote this with σ = SignSK(m). A public key PK
is known to all parties and is used to verify the signature;
the VerifyPK(σ) operation outputs a message m for valid
signatures and aborts otherwise. Digital signatures are more
computationally expensive than MACs, so we use them only
for infrequent synchronization data.

Keys. While some of our protocols require parties to
share a pairwise secret key, this does not imply that we
must maintain an infrastructure of pairwise keys for the In-
ternet. All of our protocols require participation of only two
parties. Parties can derive pairwise keys via, e.g., authenti-
cated Diffie-Hellman key exchange (as used in TLS/SSL [9])
using Public Key Infrastructure such as DNSSEC or some

1For convenience, we abuse notation and say that whenever
the PRF is applied to a packet, the non-invariant fields of the
packet header are discarded from the input. In the case of
IPv4, this means excluding the ToS, TTL and IP checksum
(see [11, Section II.A]).

out-of-band secure channel. Furthermore, an organization
owning multiple routers running PQM might have an incen-
tive to assign pairwise secret keys. Once a pairwise shared
master key is established, keys for specific intervals and runs
of the protocol can be derived locally at each party using a
PRF h′. For example, we can use ku = h′k(u) where ku is the
key for interval u, and k is the master key. Here, because the
PRF h′ is used only once per interval, and also needs to be
resilient against many queries, we let h′ be traditional con-
servative pseudorandom function such as AES-CBC-MAC.

4. SECURE SAMPLING
In a sampling-based protocol, Alice and Bob agree on a

small set of packets (the probes) for which Alice expects
acknowledgments from Bob. Then, Alice can detect when
the path quality is unacceptable when too many probes are
unacknowledged. These protocols limit the storage and com-
munication overhead because only a small fraction of traffic
is monitored, and also allow Alice to measure round-trip
delay by monitoring arrival time of acks. However, such
protocols are inherently vulnerable to adversaries that pref-
erentially allow probes to travel unharmed, but drop, delay,
or modify other packets. Since most packets are not probes,
such an adversary can disrupt traffic without Alice learning
anything. To prevent such attacks, we require in our secure
sampling protocols that Alice and Bob use a shared PRF to
coordinate their sampling. By its cryptographic properties
discussed in Section 3, a PRF prevents an adversary from
distinguishing probes from non-probes.2 Use of a PRF in
our setting is necessary for security, and we show an exam-
ple why a non-cryptographic hash function (e.g., CRC) is
insufficient in Appendix B.

We present three protocols. The Symmetric Secure Sam-
pling protocol is designed for the setting where Alice and
Bob share pairwise secret keys. The two Asymmetric Secure
Sampling protocols (one for senders and one for receivers)
use a variant of delayed-exposure techniques (cf. [28] and the
references therein) to eliminate the need for pairwise keys,
at the cost of some increased storage at Alice or Bob. The
asymmetric protocols are especially advantageous when one
of the parties is a server that needs to engage in simultaneous
PQM sessions with many clients.

4.1 Symmetric Secure Sampling
We assume Alice and Bob share a secret (master) key k.

They also know a parameter p, called the probe frequency.
During each interval, our symmetric secure sampling proto-
col operates as follows:

1. Alice and Bob derive an interval-specific secret key by
applying a PRF keyed with the master key k to the
interval number u, i.e., (k1, k2) = h′k(u).

2. After transmitting each packet d, Alice decides whether
d is a probe. Specifically, she uses k1 and the probe fre-
quency p to run a Probe function that is implemented
using a PRF h keyed with k1 and outputting an integer

2We stress that probes are ordinary data packets that are
part of the data stream and are not explicitly marked. Al-
teration of packets is undesirable for several reasons for ex-
ample: it must be undone by the receiver prior to processing
or forwarding, and it may run into Maximum Transmission
Unit (MTU) limitations, etc.
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Figure 1: Secure Sampling.

in {0, . . . , 2n − 1}, as follows:

Probek1(d) =

{
Yes, if

hk1 (d)

2n
< p;

No, else.
(1)

If Probek1(d) outputs Yes then Alice stores the tag
z = hk2(d) in a table.3

3. Bob receives d′ and computes Probek1(d′). If it outputs
No then do nothing; if it outputs Yes then transmit
the tag z′ = hk2(d′) back to Alice.

4. Alice receives the acknowledgment z′ and removes it
from her table (if it is present).

At the end of an interval, Alice raises an alarm if and only if
her table contains more than 2αβ

α+β
TA remaining entries.4Otherwise

she does not raise an alarm.

Theorem 2. The symmetric secure sampling protocol is
an (α, β, δ)-secure PQM protocol as per Definition 1, when-
ever the probe frequency p and number of packets per interval
T satisfy

pT > 1.4 ln( 1
δ
)
(
β+α
β−α

)2
1
α
. (2)

For α = β/2 and 1 − δ = 99%, the right hand of (2) is
approximately 120/β.

Proof of Theorem 2. First, observe that regardless of
any strategy Eve adopts, and independently of all other pack-
ets, the probability each dropped/modified packet is a probe
is p. Indeed, recall that we assumed that packets sent by Al-
ice are unique. If hk1(·) in Probe were replaced by a truly
random function, then every packet would be a probe in-
dependently with probability p. The same must hold for
the real implementation of Probe using hk1 , since otherwise
Eve could distinguish between the PRF and a truly random
function, contradicting the PRF’s security.

For the false positives condition of Definition 1, suppose
the failure rate is less than α. The probability of misdetec-
tion is the probability that a larger than 2αβ

α+β
-fraction of the

samples are dropped. Let V be the number of remaining
table entries. When each packet is independently sampled
with probability p, standard Chernoff tail bounds imply that

Pr[ V > 2αβ
α+β

TA | failure rate < α ] ≤ e−
(β−α)2

2 ln 2(β+α)2
pαT

.

(3)

3When h uses the modified Wegman-Carter construction of
Appendix A, the computation of hk2(d′) can reuse the uni-
versal hash already computed for hk1(d′), and thus amounts
to a single AES or DES invocation.
4To obtain this threshold, we could have used the mid point
between αTA and βTA. However to get much better param-
eters for our protocols, we can apply maximum likelihood
estimation to obtain the threshold above, since (from proof
of Theorem 2) the number of unacknowledged probes in Al-
ice’s table is a binomial random variable.

By our observation above, this inequality still holds (up to
z negligible additive factor) using when we sample probes
using a pseudorandom function.

Next, consider the false negatives condition of Definition 1.
First note that Eve cannot forge a valid Ack to a packet that
was not received by Bob, since she only sees the output of the
PRF hk2 on packets that Bob receives, and cannot predict
its value on any other input. Therefore all that Eve can do
is to bias the measurement by preferentially dropping non-
probes. Once again, if probes are sampled independently
with probability p then

Pr[ V < 2αβ
α+β

TA | failure rate > β ] ≤ e−
(β−α)2

2 ln 2(β+α)2
pβT

.

(4)
As observed above, this inequality still holds (up to a negligi-
ble factor) when the probes are sampled using a PRF. Notice
that dropping Acks cannot help Eve, as it only makes the
source more likely to raise an alarm. It follows from equa-
tions (3)-(4) and Definition 1 that, given α, β and δ, the
protocol is secure whenever (2) holds.

4.2 Asymmetric Secure Sampling
This section describes variants of the above protocol for

the case where a single router (the server) deals with a large
number of other routers (the clients). Our protocols support
server scalability by minimizing the per-client cost of the
server. In particular, the server will not need to establish
a separate key for every client. We will, however, assume
that the clients can dedicate more resources to the PQM
protocol. We provide two different protocols, depending on
whether the server is receiving from, or sending to, its clients
(of course, the two PQM protocols can be applied jointly to
monitor both directions).

We again divide time into intervals, and the idea is that
the server performs his operations (as either sender or re-
ceiver) with private keys, which we call the salt, unknown
to anyone except himself until the end of the interval, at
which time he releases the salt to all interested clients. The
point is that by the time the server releases the salt it is too
late to cheat; note that even dishonest clients cannot cheat
honest clients because no one except the server knows the
salt until the end of the interval.

Instead of using symmetric keys between each pair of par-
ties, here we assume that the server has a public/private
key pair (PK,SK) where the public key PK is known to
all parties (e.g., through a Public Key Infrastructure). To
ensure that the computationally-expensive public-key op-
erations are used infrequently, we will use cryptographic
delayed-exposure techniques that require secure clock syn-
chronization. We assume that each client securely synchro-
nizes her clock so that it lags behind the server’s clock by
at most τ seconds, where τ is a constant known to all par-
ties. In Appendix C we present a simple secure protocol for
achieving this synchronization.

4.2.1 Receiving-Server Secure Sampling (RSSS)
We first consider the case where a single server (Bob) is re-

ceiving traffic from multiple clients (each playing the role of
Alice). The following protocol allows every client to monitor
the path quality for traffic that it sends to the server, while
the server’s storage and computation cost are low and inde-
pendent of the number of clients. During the u-th interval,
the RSSS protocol operates as follows:



Figure 2: Timing for Asymmetric Secure Sampling.

1. (Interval Setup.) Bob, the receiver, randomly chooses
a pair of salt values (s1(u), s2(u)) that he keeps secret
until the very end of the interval.

2. (Packet Transmission.) Packet transmission during
the interval proceeds as follows:

• For each packet d Alice wishes to send, she stores
the digest H(d) in her table. Suppose Alice sends
T packets in total. (This means Alice stores T
digests. In Section 4.3 we discuss how Alice can
independently subsample packets to reduce her
storage requirements.)

• Upon receiving each packet d′, Bob computes its
digest z′ = H(d′). He then evaluates Probes1(u)(z

′);
if No then he does nothing, and if Yes then
he transmits an Ack of the form MACs2(u)(z

′, u)
back to Alice.

• Each sender (Alice) stores all the Acks received
which included the current interval u.

3. (Salt Release.) Bob maintains the secrecy of the salt
until τ seconds after interval u ends. At that time he
reveals the salt (s1(u), s2(u)) to all clients by sending a
SaltRelease packet containing SignSK(u, s1(u), s2(u))
(see Figure 2).

4. (Security check.) If Alice fails to receive a SaltRe-
lease containing a signature σ within 1 RTT after
the interval u ends, or if VerifyPK(σ) doesn’t return a
tuple (u, s1(u), s2(u)), then Alice raises an alarm. Oth-
erwise, she uses salt s1(u) to run the Probe function on
the packet digests in her table, and salt s2(u) to verify
the Acks in her table. Then Alice counts the number
of packets for which Probes1(u)(z) = Yes and no valid
Ack is stored in her table, call this count V . Finally,
Alice raises an alarm if V > 2αβ

α+β
pT .

Assume for now that all parties’ clocks are perfectly syn-
chronized. Then Eve cannot cheat within any single interval:

Theorem 3. The RSSS protocol is an (α, β, δ)-secure PQM
protocol as per Definition 1, whenever the probe frequency p
and number of packets per interval T satisfy

pT > 1.4 ln( 1
δ
)
(
β+α
β−α

)2
1
α

(5)

Again, for α = β/2 and 1− δ = 99%, the right hand side
of (5) is approximately 120/β. Ignoring clock issues, this
proof is almost identical to that of Theorem 2 and we omit
it. Notice that even dishonest senders cannot bias an honest
sender’s measurements, since they learn nothing about the
result until the interval is over.

Now suppose that Alice’s clock lags Bob’s clock by at
most τ seconds. It follows that there will be period of time

of length < τ where Alice is operating in interval u−1 while
Bob has already moved into interval u. To deal with this,
during the first τ seconds of each interval, Bob uses both the
salt of the current interval s(u) and the salt from the previous
interval s(u − 1) in order to create his Acks. While most
Internet routers are able to maintain a clock with accuracy
of 21ms or less [23], secure clock synchronization is a non-
trivial problem. In Appendix C we show a simple stateless
protocol that allows Alice and Bob synchronize their clocks
to within 1.5 round trip times.

4.2.2 Transmitting-Server Secure Sampling (TSSS)
We now turn out attention to the case where a single

server is sending to multiple clients, and each client wants to
monitor the traffic it receives from the server while imposing
minimal cost on the server. Note that the server is now Alice
and the client is Bob. In our protocol for this case, the server
keeps a single counter per client, and modifies its packets by
appending a short MAC tag (using a global key).

The TSSS protocol proceeds as follows. As before, the
server picks random salt values (s1(u), s2(u)) at the begin-
ning of the interval, and releases them at the end of the
interval. Here, however, the server will keep, for each client
B, a count TA(B) of the number of packets it sends to B
during the interval. The server also authenticates all traf-
fic that she sends using the (client-independent) salt: for a
packet d, the server will compute a packet digest z = H(d)
and then appends the tag hk2(u, z) to the packet that he
sends the client.

The client will randomly sample a p-fraction of the packets
received. For each such packet d′, he stores the correspond-
ing digests z′ = H(d′) and the received tag. At the end of
the interval, the server reveals the salt as above, and also
sends SignSK(TA(B)) to B. Each client B verifies the elec-
tronic signature and checks all its stored packet digests and
tags using this salt. Let TB be the number of valid packets
thus found by B; then B estimates the number of failures as
V = pTA(B) − TB. As before, the client raises an alarm if
V > 2αβ

α+β
pTA(B). Using an argument similar to Theorem 2,

the protocol is secure if

pTA(B) > 1.4 ln( 1
δ
)
(
β+α
β−α

)2
1
α
. (6)

4.3 Some sample parameters
Suppose β = 1%, and assume a fully utilized 5 Gbps link

with an average packet of 3000 bits and an average round
trip time (RTT) of 100 msec. Then about T = 107 packets
are sent during an RTT.

Symmetric Secure Sampling. By Theorem 2 our symmetric
sampling protocol is secure when the probe frequency is p >
120
βT

= 1.2 ·10−3. This p is also the communication overhead,
i.e., the amount of added Ack packets as a fraction of the
data traffic. Using 96-bit packet digests (see Section 3),
Alice needs about pT ∼ 144 KB of storage during a single
round trip time. The amount of storage required for Alice
can be reduced without compromising security by noting
that (2) gives a tradeoff p and T . Alice can decrease her
sampling rate to p′ if she is willing to use a longer interval
T ′ = Tp/p′. Since almost every probe packet tag will be
deleted after 1 RTT, this nominally reduces Alice’s storage
to p/p′ · 144 KB. This comes at the cost of reduced PQM
temporal resolution, due to the longer intervals. (Notice
that Alice can arbitrarily decrease her sampling rate without



coordinating with Bob simply by changing the parameter p
in her Probe function.)

RSSS. As described above, the Receiving-Server Secure
Sampling protocol requires the sending client to store infor-
mation about every packet she sends to Bob for the duration
of a interval (which may last from a few milliseconds to a few
RTTs depending on synchronization quality). In case the in-
tervals last an RTT or more, it is not practical to expect the
sender to keep digests of over 107 packets in her storage,
and so we apply subsampling here to reduce the fraction of
packets stored: each sender only stores a q fraction of the
packets she sent, where each packet is stored independently
with probability q. In term of monitoring this is essentially
the same as reducing the packet stream by a factor of q, so
from (5) we can see that pqT > 120

β
suffices, giving a trade-

off between storage at Alice qT , and probe frequency and
communication overhead p. For example, suppose that the
probe frequency is p = 0.2. Then, by (5), Alice should store
qT ≈ 120

pβ
= 120

0.2 · 0.01 = 6 · 104 packet digests (160 bits each),

and about p times as many corresponding Ack tags (96 bits
each). Overall, this takes 6 ·104 ·(160+0.2 ·96)/8 ≈ 1.35 MB
of storage. Thus, if intervals last for 1 RTT, so that T ≈ 107,
then the subsampling rate must be at least q = 6 · 10−3.

TSSS In the 3rd protocol, the sending server stores one 32-
bit counter per client, and attaches a 96-bit tag to each mes-
sage. Following (6), and using same parameters as above,
the client needs to store qT ≈ 120

β
= 1.2 · 104 digests and

tags, for a total storage of 1.2 · 104 · (160 + 96)/8 ≈ 375 KB.

5. SECURE SKETCH PQM
In our secure sketch PQM protocol, Alice and Bob aggre-

gate all traffic Alice sends to Bob into a short data structure
called a sketch. (The difference between a sketch and a sam-
ple is that a sketch, although short, depends on all the traffic
that was sent/recieved, rather than just small subset of it.)
At the end of the interval, Bob sends his sketch to Alice and
she uses the similarity of the sketches to decide whether the
failure rate exceeded α.

We can apply several sketching techniques [3, 4, 8, 33] for
`2-norm estimation into our framework to give secure PQM
protocols. While sketches have been used before in the net-
working community (to estimate properties of data streams
that are too long to be stored in their entirety c.f. [8, 33]
and many other works), to the best of our knowledge this is
the first time that they have been applied to the problem of
path-quality monitoring. Furthermore, the special structure
in the PQM problem allows us to obtain new and improved
analytical bounds on the performance of these schemes. It
turns out that the path-quality setting has particular prop-
erties that enable us to achieve better performance for some
of these schemes. In particular, we prove a new bound on
the performance of [8]’s scheme that may be of independent
interest.

In this section we start by explaining the relationship be-
tween `2-norm estimation and path-quality monitoring, and
then present our PQM protocol and discuss its security. We
then show how the protocol works with several known `2-
norm estimation sketches and give settings of parameters
based on both analytical guarantees and numerical experi-
ments. Our results show that the secure sketch protocol is
almost as lightweight, in terms of storage and communica-
tion, as the trivial (but insecure) idea of keeping counters of

the number of packets sent and received .

5.1 PQM as norm estimation
Suppose that Alice sends T packets to Bob during some

interval. Let U be the total number of all possible packets
(e.g., if packets are 1500 bytes long then U = 21500·8) and
let vA be the U -dimensional vector that has c in the position
corresponding to packet x if Alice sent x during this interval
c times (where c is a non-negative integer). Similarly, let vB

be the U -dimensional vector that has c in the x-th position if
Bob received packet x exactly c times. Let nd be the number
of packets that were dropped during the interval (i.e., sent
but not received), and let na the packets that were added
(i.e., received but not sent).

Alice would like to know more than a β fraction of delivery
failures occurred; that is, whether nd ≥ βT . Note that

nd+na =
∑
x

∣∣(vA)x−(vB)x
∣∣ ≤∑

x

(
(vA)x−(vB)x

)2
= ‖vA−vB‖ 2

2

(7)
where ‖v‖2 denotes the `2-norm of a vector v (i.e., , ‖v‖2 =√∑

x v2
x). Furthermore, note that if both vA and vB only

have entries in 0, 1 then |(vA)x − (vB)x| =
(
(vA)x − (vB)x

)2
for every x, and hence the inequality in (7) becomes an
equality. Because Alice never transmits duplicate packets
(see Section 2), vA is a 0/1 vector, which means that (a)
in the benign case where there are no adds and at most αT
drops, ‖vA−vB‖22 ≤ αT and (b) in the adversarial case, if the
adversary drops at least βT packets then ‖vA−vB‖22 ≥ βT ,
regardless of the number of packet additions. This sug-
gests the following natural PQM protocol (assuming Bob can
transmit his vB securely to Alice): check if ‖vA−vB‖22 > αT
and if so, raise an alarm.

Sketches. Obviously, Alice and Bob cannot afford to store
or communicate huge vectors vA, vB, but happily there are
known schemes that enable Alice and Bob to maintain short
sketches wA, wB such that one can estimate ‖vA−vB‖2 from
wA and wB [3,4,8,18,33].5 Moreover, these sketches can be
computed incrementally on a stream of data: we can start
with a sketch w corresponding to the all-zero vector, and
for each incoming packet update w to reflect the increase in
one of the coordinates of v; the full vector v is never stored
explicitly. Some differences between the typical usage of
these schemes and our setting are:

1. These schemes are probabilistic, typically using a hash
function that is known by all parties involved (e.g., a
4-universal hash as in [8, 33]). In our setting, how-
ever, if the adversary can predict the outputs of the
hash function, she can add and drop packets in a way
that cannot be detected (e.g., by dropping some packet
and replacing it with a different packet that maps to
the sketch in an identical way). For this reason, we
replace the hash function with a pseudorandom func-
tion, whose secret key is shared between Alice and Bob
and is refreshed every interval.

2. Because we only need to detect when the failure rate is
above a certain threshold, we can use a far coarser esti-
mation than the typical applications of such sketches,

5Estimating the `p-norm for any p ≥ 1 would also suffice
to satisfy the analog of (7), and indeed such sketch schemes
exist. However, the presently known schemes for `2-norm
estimation are more efficient.



and can choose parameters for these sketches that re-
sult in very little storage and communication.

3. The fact that Alice does not send duplicate packets
implies a special structure of the vectors vA,vB that
allowed us to even further improve the parameters of
the sketches, see Theorem 5.

5.2 The secure sketch protocol
Recall that the inputs to a PQM protocol are the thresh-

olds α, β such that it should raise an alarm if more than a
β fraction of the packets are tampered with and not raise
an alarm if less than an α fraction are dropped. Our proto-
col works in separate intervals. We assume Alice and Bob
share a secret (master) key k, and derive an interval key ku
for each interval u (see Section 3). Within interval u, our
secure sketch protocol operates as follows:

1. Alice uses ku to run a sketching algorithm to incremen-
tally compute a sketch wA of the vector vA induced by
the packet it sends. (Since we using sketches that are
computed for streaming data, this amounts to running
an update algorithm that maps each sent packet to the
sketch.) Alice and Bob use shared secret randomness
for this algorithm, that is refreshed using the master
key every interval.

2. Bob similarly uses ku to compute sketch wB of the
vector vB induced by the packets he receives.

3. Bob sends his sketch wB to Alice, labeled with interval
number u and authenticated using a MAC.

4. Alice computes an estimate V of ‖vA−vB‖22 and raises

an alarm if and only if V > 2αβ
α+β

.

The decision threshold Γ = 2αβT/(β+α) is used by Alice
to decide between cases where nd < αT and nd > βT . (We
derived Γ using maximum likelihood estimation, under the
assumption that V is distributed like a Gaussian random
variable. Later we show that this threshold works well even
though V is not exactly Gaussian.)

Theorem 4. Suppose that the sketch guarantees that, with
probability at least 1−δ, the estimate of square norm ‖v‖22 is

within (1± ε) for ε = β−α
β+α

. Then, the secure sketch protocol

is a (α, β, δ)-secure PQM protocol as per Definition 1.

Interval synchronization. Below we prove the theorem
under the assumption that Alice and Bob agree on the choice
of interval. That is, in the benign case (where there is no ad-
versary) all packets that Alice considers as sent within inter-
val u are considered by Bob as also arriving within interval
u. In practice Alice and Bob can achieve such synchroniza-
tion using explicit “start interval” and “end interval” packets
(e.g., the report packet sent by Bob can double as the in-
terval marker). Of course, out-of-order packets could arrive
in a different interval number, but as long as the number of
packets arriving out of order before the interval marker is a
small fraction of αT , where α the false-alarm threshold, out-
of-order arrival should not cause any false alarms. Typically
this should indeed hold in practice: if we take T = 107 and
interval length to be 100ms, then αT ∼ 105, and as shown
in [27, Sec. III.A] the scale of packet reordering in the In-
ternet is typically no more than a few packets. (Because we

focus on PQM protocols that operate at the network layer, at
this layer TCP retransmissions do not look like out-of-order
packets.) If the link has many out-of-order packets even in
the benign case, we can enforce interval synchronization by
marking packets with a single bit denoting the parity of the
interval number (note that if the adversary tampers with
this mark, she only increases the likelihood that Alice will
raise an alarm).6

Proof of Theorem 4. First observe that Eve cannot
forge the report that the Bob sends to Alice, since the re-
port is authenticated using a secure MAC (and dropping
the report will only cause Alice to raise an alarm). It fol-
lows that at the end of the interval Alice gets a consistent
version of Bob’s sketch wB. Now, Eve cannot bias the esti-
mate V since the parties use secret randomness, i.e., a PRF,
to hash packets to the sketch, and Eve does not get any in-
formation about it until the interval is finished (when the
randomness, i.e., PRF key, is refreshed). But now assum-
ing that Eve cannot bias V , then our assumption about the
sketch scheme guarantees us with probability 1− δ that:

1. No false positives: if nd ≤ αT and na = 0, then
‖vA − vB‖22 ≤ αT and the estimate V is at most

(1 + β−α
β+α

)αT = 2βα
β+α

T = Γ.

2. No false negatives: if nd > βT , then ‖vA−vB‖22 > βT

and the estimate V is greater than is (1 − β−α
β+α

)βT =
2βα
β+α

T = Γ.

1. and 2. guarantee that with high probability Alice can
use the decision threshold Γ to decide between cases where
nd < αT and nd > βT .

From the proof, we see that it suffices if the sketch guar-
antees that the estimate is at most (1 + ε)αT for vectors v
that have all entries in {−1, 0, 1} and with norm ‖v‖2 ≤ αT ,
and the estimate is at least (1− ε)r for vectors v that have
at least r ≥ βT entries in ±1 (and possibly other nonzero
entries as well). It turns out this observation is crucial for
obtaining improved parameters for our protocol; see Theo-
rem 5 below.

5.3 Plugging in `2-norm estimation schemes
In this section we show how to instantiate our PQM pro-

tocol with three known sketching schemes, classic [3,4], CCF
[8] and TZ [33], such that the sketching schemes satisfy the
requirements of Theorem 4. We show how the three schemes
compare in terms of update time per incoming packet and
storage requirements (i.e., the number of bins in the sketch,
N , and the size of each bin). We also derive new bounds for
the storage requirements of these schemes for our setting.

All of the `2-norm estimation schemes we consider have
the following form. They transform a U -dimensional vector
v into a shorter, N -dimensional vector w by choosing a ran-
dom linear map S from some set S and setting w = S(v).
Then an estimator V for ‖v‖22 is computed from w; in the
cases we consider, the estimator will simply be ‖w‖22 .

6As packet marking is highly undesirable, it might be bet-
ter to use alternative options such as increasing the interval
length. Having a secret random interval starting time also
seems to help to some extent to ensure that out-of-order
packets do not effect the benign setting more than the ad-
versarial setting, by ensuring the adversary cannot give pref-
erential treatment to packets close to the interval boundary.
We have not fully analyzed this solution.



Due to linearity, we can compute w using streaming ac-
cess to the vector v. That is, we initialize w to be all ze-
roes, and then when we see a packet x we can update the
sketch as w ← w + S(ex), where ex is the U -dimensional
vector with 1 in the xth position and 0 everywhere else.
In general this requires updating all N positions of w, but
if S(ex) is, say, zero everywhere except for one entry for
every x, then we only need to make a single update to
w. Again, linearity implies that wA = S(vA) and wB =
S(vB), we have wA − wB = S(vA − vB). Hence if Alice
and Bob want to compute the distance of vA and vB, they
can do so by using the same function S to compute the
respective sketches wA and wB. Then Bob sends wB to
Alice and she runs the estimator on the difference vector
wA − wB. All three of the schemes we consider are known
to have estimators V with expectation ‖v‖22 and variance

2
N−1

(
‖v‖42 −

∑
x(vx)4

)
.

Classic dimension-reduction sketches. The original
sketch of Johnson and Lindenstrauss chose S to be a projec-
tion into a random N -dimensional hyperplane. Indyk and
Motwani [17] showed that S can be a random N ×U matrix
whose entries are independent Gaussian random variables
with mean 0 and variance 1/

√
N , and Achlioptas [3] (see

also [4]) showed that the entries can simply be chosen as
either +1√

N
or −1√

N
with probability 1/2 each. In all of these

cases, to ensure that with probability 1− δ the square norm
of w = S(v) is within a (1± ε) factor of ‖v‖22 , we can take

N = O
(

log(1/δ)

ε2

)
; specifically Achlioptas [3] showed that it

suffices to choose
N > 12

ε2
1

3−2ε
ln 1

δ
(8)

To use this scheme in our context, when receiving a packet
d we use a hash function that maps it to a vector b ∈ {±1}N
and add b to the sketch w. To prevent overflow we can take
each bin in the sketch to hold numbers in [−K,+K] where

K = 2
√

log(1/δ)T . (We can change the protocol to raise an
alarm if any bin overflows, since this will happen with low
probability in the benign case.)

CCF sketch. Charikar, Chen, and Farach-Colton [8] gave
a scheme with a faster update time; instead of updating all
N bins each time a new packet arrives, the CCF scheme only
updates a single bin. CCF uniformly draws S from SCCF,
the set of random sparse N × U matrices whose columns
are zero everywhere except for a single random entry, which
is ±1 with equal probability. In our context, this means
that when receiving a packet d we use a hash function that
maps it to a pair (i, b) where i ∈ [N ] and b ∈ {±1}, and
add b to the ith bin in the sketch w. To prevent overflow
we can take each bin to hold numbers in [−K,+K] where

K = 2
√

log(1/δ)T/N .
In order to get a (1 ± ε) accuracy with probability 1 − δ

this schemes require a larger N , N = Θ( 1
δε2

), rather than

N = Θ
(

log(1/δ)

ε2

)
of the classic scheme; it turns out no sparse

scheme (that only updates a single bin for each incoming
item) can achieve a better bound when the input can be
arbitrary.7 Thus it seems that there is an inherent tradeoff
between storage size and update speed. Fortunately, it turns

7CCF’s [8] sketch can attain better success probability by
using the median of estimates obtained from M indepen-
dent sketches, for some number M . However, this increases
the storage and update time by a factor of M . Also note
that [8] can show using 4-universal hashing and Chebyshev’s
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Figure 3: Histogram of estimator for the (a) classic,
and (b) CCF schemes with N = 300, T = 106, α = 1
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β,

β = 1% and threshold Γ = 6667.

out that CCF performs well in our setting because Alice
sends unique packets, and so our vectors are not sparse. In
fact, we prove below that in our setting it does suffice to

use N = O( log(1/δ)

ε2
). Our improved bound relies both on

the fact that our vectors v are have many non-zero entries
and the fact that we care about deciding whether ‖v‖22 lies
above or below a threshold rather than getting an accurate
estimate.

Theorem 5. For every δ, ε > 0, let v be a U-dimensional
vector all of whose entries are in {−1, 0, 1} and w = S(v)
where S is an N × U matrix chosen uniformly at random
according from SCCF. Then as long as

‖v‖22 > q = 6
ε2
N(lnN + ln 2

δ
) (9)

N > 24
ε2

(1 + ε)2 ln 2
δ

(10)

then with probability 1− δ we have ‖w‖22 ∈ (1± ε)‖v‖22 .

See Appendix D for a tighter and more precise statement of
Theorem 5, as well as its proof.

To apply the theorem into our setting, set ε = β−α
β+α

, set
v = vA − vB, and set q = αT . The false positive condition
is satisfied because we have v ∈ {0, 1}U and ‖v‖2 ≤ αT ,
so with probability 1 − δ, V = ‖w‖2 < 2αβT

α+β
. The false

negative condition is satisfied because we have the number
of drops is r > βT (and packets dropped are unique so they
each correspond to a 1 entry in v), and so, with probability
1− δ, we get that V = ‖w‖2 > 2αβT

α+β
.

Notice the bound requires conditions on both ‖v‖22 and N .
The fact that N , the number of bins in the sketch, must be
large is not so surprising. We need ‖v‖22 to be large because
CCF does not work as well when very sparse vectors v cause

inequality that the number of bins relates to the error prob-
ability as N = O( 1

δ
). However, even if the hash is a com-

pletely random function, we show in Appendix D that it
is impossible to get a better error probability for general
vectors.



high variance in the number of entries in the bins of w. We
note that this condition on v holds in our setting because
the number of bins in the sketch is much smaller than the
total number of packets. Similar conditions apply in many
other sketch applications, and thus this theorem may be of
independent interest.

TZ sketch. Finally, we note that Thorup and Zhang [33]
gave a variant of the CCF scheme where, instead of updating
a bin in the sketch with a randomly chosen element in {±1},
the bin is always updated with a +1. However, this requires
a larger bin size (roughly twice) than CCF and our numerical
experiments also indicated that the estimator V for the TZ
scheme is more spread out than that of CCF, so that the
number of bins required N for TZ must be slightly larger
than that required for CCF.

5.4 Some sample parameters and experiments
Suppose the detection threshold is β = 0.01, the false

alarm threshold is α = β/2 and that about T = 107 packets
are sent during an interval. Then, if we want a confidence
of 1 − δ = 99%, we can use (8) to find that PQM proto-
col based on the classic scheme requires N = 214 bins with
b = 14 bits per bin (for an array size of ∼ 525 bytes). For
the CCF scheme, we can apply the refined version of The-
orem 5 in Appendix D for the same α, β, δ, to find that we
can use N = 300 counters of b = 14 bits if we take intervals
containing at least T = 109 packets. As we discuss below,
our numerical experiments suggest that even better param-
eters are achievable for the CCF protocol. They indicate
(though do not conclusively prove) that even for T = 107

we can use N = 150 bins with 14 bits per bin, to get a total
sketch size of roughly 200 bytes. Indeed, CCF seems like the
best of the three schemes we considered, since it has a faster
update time than the classic scheme, and requires fewer bits
per bin than TZ.

Figure 3 is a histogram of the classic and CCF estimators
V for (from left to right) the benign case where nd = αT
(here we want the estimator to be below the threshold Γ
so that Alice does not raise an alarm), and for three cases
where nd = βT so we want Alice to raise an alarm: a case
where Eve does not add any packets, a case where Eve adds
(β−α)T distinct packets, and a case where Eve adds (β−α)T
total packets where each packet is duplicated twice. No-
tice that the threshold Γ clearly distinguishes between cases
where nd = βT and the benign cases where nd = αT . Also,
notice if Eve adds packets to the link, she only increases the
probability that Alice raises an alarm, as predicted by (7).
Indeed, in Appendix D we prove a theorem that gives evi-
dence that Eve cannot improve her chances of tricking Alice
into not raising an alarm when nd > βT by adding packets
to the data path. (This is the opposite of what we expect for
PQM protocols based on a simple counter, where Eve can
mask packet drops by adding packets, and suggests that we
could combine the counter and sketch approach to obtain
even better parameters for our schemes.) Figure 3 suggest
that taking N = 300 suffices for CCF even if we have shorter
interval lengths of T = 106. In Figure 4 we show the proba-
bility that Alice raises an alarm vs the number of bins N in
the CCF sketch, in each of the four cases we described above.
Even when we consider short interval lengths of T = 105 our
experiments suggest that using a CCF array with N = 150
bins suffices for a statistical confidence of δ = 1%.
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packets per interval and threshold Γ = 666.7.

6. NECESSITY OF CRYPTOGRAPHY
All of our protocols requires keys between participating

nodes, and cryptographic computations. We now show that
this overhead is inherent by proving that any PQM protocol
satisfying Definition 1 requires a key infrastructure and the
invocation of cryptographic operations. These results also
immediately imply that any PQM protocol that does not use
keys or cryptography, e.g., Listen [32], is insecure according
to Definition 1.

Keys are necessary. To see this, we argue in the contra-
positive: suppose Bob has no secrets from Eve. Then, since
Eve occupies a node on the path between Alice and Bob,
she receives the same information that Bob receives and can
compute the same responses. It follows that Eve can simply
run the PQM protocol on her own (responding to Alice with
the appropriate acks or reports), and then drop all the pack-
ets going to Bob. This breaks security because Alice has no
way to know that anything went wrong. Notice further that
this suggests that Alice needs Bob’s participation in order
to run a secure PQM protocol.

Cryptography is necessary: We now prove that the keys
must be used in a “cryptographically-strong” manner. Note
that our previous result that keys are necessary does not
imply that cryptography is necessary; for example [11] uses
secret keys in a non-cryptographic way and obtains a pro-
tocol that is not secure by our definitions. To show that
cryptography is necessary, we show that any secure PQM
protocol is at least as complex as a secure keyed identifica-
tion scheme (KIS), which is known to be equivalent to many
cryptographic tasks like encryption and message authentica-
tion [16]. Intuitively, our result follow from the fact that in
order for Alice to believe Bob, she must be assured that all
the information she is getting indeed came from Bob in a
way that Eve cannot impersonate. Our proof by reduction
can be found in Appendix E.

7. COMPARISON OF PROTOCOLS
Because we want PQM protocols that can be deployed in

high-speed routers, we have focused on efficiency consider-
ations; namely, we evaluated our protocols’ efficiency in (a)
communication overhead, (b) computation of cryptographic
operations, and (c) use of dedicated storage in the router.
We now explore a wider space of design objectives for eval-
uating our PQM protocols, discuss how our three protocols
perform under these objectives, and compare them with two
existing solutions for PQM: Stealth Probing [5] and IPsec.
We argue that obtaining PQM protocols that perform well



for one particular objective often involves trading off some
other objective. This discussion is summarized in Table 1.

Secure sketching. Our secure sketch protocol makes ex-
tremely efficient use of storage and communication. Fur-
thermore, these requirements are (roughly) independent of
the threshold chosen, and so can be used even to detect very
small degradations in path performance. On the other hand,
the secure sketch protocol does not allow us to easily mea-
sure round trip time, since packets are aggregated into one
sketch. It requires both the sender and the receiver to main-
tain keys and (small) storage, which might be a problem in
the client/server setting where a server is communicating
with many clients, and does not want to maintain per-client
storage for the purposes of running PQM protocols. Fi-
nally, the sketch protocol is not monotone: it will raise an
alarm if many packets are added into the path, even if no
packet is actually dropped. This could be an issue if an ad-
versary that does not sit on the path is able to inject packets
into the path, and thus make it seem worse than it really is.

Secure sampling. Our secure sampling protocols are best
suited for situations where Alice needs immediate feedback
and accurate measurements of round-trip delay (which she
can easily obtain, even in the absence of synchronized clocks,
by timing the arrival of acks). Furthermore, the protocols
are monotone in the sense that if an adversary adds pack-
ets to the path or spoofs acks, Alice can simply ignore all
the acks that do not correspond to the packets that she
sent. Symmetric Secure Sampling is best suited when Al-
ice and Bob are peers that have equal resources to devote
to the protocol. Furthermore, the protocol is best when
we do not want to make any clock synchronization assump-
tions, or when we want fast feedback (which can be obtained
by adjusting the probe frequency p appropriately, see Sec-
tion 4.3). Asymmetric Secure Sampling is best suited for
the client-server setting, where the server wants to run PQM
protocols with many clients without using dedicated storage
and using only a single key for all clients.

However, these protocols (save for the TSSS protocol of
Section 4.2.1) have a disadvantage in the asymmetric path
setting— when the forward (Alice to Bob) path is not the
same as the reverse (Bob to Alice) path. The reason is that
since only a p-fraction of sent packets are acknowledged,
each dropped ack looks like 1

p
dropped packets. Thus, in the

asymmetric path setting, an adversary on the reverse path
can arbitrarily increase the source’s estimate of the failure
rate on the forward path by dropping acks. In contrast, in
the secure sketch protocol only a single authenticated report
packet is sent on the reverse path, and so if it does not arrive
Alice can deduce that the problem is in the reverse rather
than the forward path (unless the forward path is completely
blocked and Bob is not even aware of Alice’s existence). Of
course, Alice and Bob could always coordinate switching
their forward and reverse paths once an alarm is raised.

IPsec. IPsec is a standard for symmetric-key encryption
and authentication of packets at the network layer. How-
ever, it requires invoking a cryptographic operation, modify-
ing, and adding tags to every packet sent on the path, which
could be quite expensive when operating at multi Gbit/sec
rates. Also, IPsec currently does not include a standard
for providing authenticated acknowledgements and so needs
additional machinery, like Stealth Probing [5], in order to
provide secure PQM at the network layer. On the other

Secure Sampling Secure
Sym Asym Sketching

Storage and commu-
nication8

144KB 375KB–1.35MB 0.2–6KB

Peer setting X X
Client-server setting X
No clock sync X coarse X
Estimate delay X X
Fast feedback X
Monotonicity X X

Table 1: Tradeoff space for our protocols.

hand, if we perform PQM at a higher layer, we can use TCP
over IPsec (so that we have authenticated acks for every sin-
gle packet sent) or even SSL. These protocols provide very
strong security guarantees; they not only provide confiden-
tiality, but also allow a source to detect if a failure occurs
for every single packet it sends. But given the high cost
associated with these guarantees, these protocols are proba-
bly best when confidentiality and integrity are necessary for
other reasons, or when PQM functionality is required at the
end-host, rather than in the high-speed routing setting that
we focus on here.

We note that all our protocols can be tuned to measure
the performance on a particular subset of the traffic, for
the purposes of detecting whether some intermediate nodes
treat certain packets (such as Skype [26] or BitTorrent [1])
differently than others. The same is true for IPsec based so-
lutions such as Stealth probing. In fact, the latter solutions
make selective treatment of packets much harder, as they
encrypt all traffic.

8. CONCLUSION
In this paper, we have designed and analyzed efficient

path-quality monitoring protocols that give accurate esti-
mates of path quality in a challenging environment where
adversaries may drop, delay, modify, or inject packets. Our
protocols have reasonable overhead, even when compared to
previous solutions designed for the non-adversarial settings,
and all except TSSS do not modify data packets in any way.
In fact, one possible deployment scenario for our protocols is
start deploying routers using hash functions with publicly-
known keys, to monitor path-quality in manner that is ro-
bust to non-adversarial failures such as congestion, miscon-
figuration, and malfuctions. Then, the same router support
could be leveraged, using secret keys, to operate in an ad-
versarial setting as needed. Another possibility is to use our
protocols with publicly known keys, but combine them with
IPsec for paths where protection against adversarial nodes
is required; this will be secure, albeit at a much higher over-
head than using our protocols on their own.

In our ongoing work, we are investigating the target ap-
plications of our protocols: driving routing decisions and
detecting violations of Service-Level Agreements. We be-
lieve that accurate techniques for determining when perfor-
mance degrades beyond a threshold will offer significant im-
provements for edge networks balancing load over multiple
paths through the Internet. In addition, we are exploring
how to compose multiple instances of our PQM protocols—
running over multiple paths simultaneously—to determine

8Storage and communication are given in kilobytes for an
interval of T = 107 packets, threshold β = 0.01 and α = β/2,
and 99% confidence.



whether the adversary resides on either the forward or re-
verse path, or even to localize the adversary to particular
nodes or links. We believe that our PQM protocols, and
our associated models of their properties, are valuable build-
ing blocks for designing future networks with predictable
security and performance.
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SIGCOMMŠ07, Aug 2007.

[31] J. Stone and C. Partridge. When the CRC and TCP
checksum disagree. In ACM SIGCOMM, Aug 2000.

[32] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and
R. H. Katz. Listen and Whisper: Security mechanisms
for BGP. In NSDI, March 2004.

[33] M. Thorup and Y. Zhang. Tabulation based
4-universal hashing with applications to second
moment estimation. In SODA, pages 615–624, 2004.

[34] B. Yang and R. Karri. Power optimization for
universal hash function data path using
divide-and-concatenate technique. In Conference on
Hardware/Software Codesign and System Synthesis,
pages 219–224, 2005.

[35] B. Yang, R. Karri, and D. A. McGrew.
Divide-and-concatenate: An architecture level
optimization technique for universal hash functions. In
Design Automation Conference, 2004.



APPENDIX
A. FAST CRYPTOGRAPHIC HASHING

The most common way to (heuristically) realize pseudo-
random hash functions (PRFs) is using a full-fledged crypto-
graphic hash functions such as SHA-1 in HMAC mode [19],
or AES in a MAC mode. Their typical performance in a
software implementation is 10–20 cycles per message byte,
which suffices for many applications. To support multi-
Gbit/sec packet streams we suggest a more efficient function
for hashing packets. This is possible since in our setting the
adversary is presented with an online problem: if Eve does
not break the secret key within a small time interval un-
til the key is refreshed, and based on the limited number
of examples she sees during that interval, then she cannot
compromise the measurement at all. (Indeed, in some of
our protocols we voluntarily send the key in plaintext once
the interval is over, see Section 4.2). Furthermore, in all of
our protocols, cryptographic hash computation can be done
after packet transmission and thus does not affect latency.
Moreover, the hash computation on different packets can be
arbitrarily parallelized and pipelined.

Our efficient pseudorandom hash function is based on a
modified Wegman-Carter construction [21, Sec. 2.8.3]. Namely,
for a key k = (κ1, κ2), we set hk(x) = Eκ1(gκ2(x)) where E
is a block cipher and g is an ε-almost universal hash function.
This construction can be realized based on any Wegman-
Carter MAC, such as UMAC [21], VMAC [20] or Poly1305-
AES [7], by modifying their final stage as above.9 Beside its
higher performance, this construction also relies on weaker
cryptographic assumptions than HMAC, and is unaffected
by the recently-discovered vulnerabilities of SHA-1. The re-
alization based on UMAC or VMAC is highly parallelizable
and lends itself to efficient and low-power hardware imple-
mentation [34,35]. It is also very suitable for vectorized soft-
ware implementations: on modern CPUs, it can typically be
computed at a speed of between 1 and 6 cycles per message
byte (for long and short messages respectively) [20]. Perfor-
mance can be further improved by replacing AES (in UMAC,
VMAC or Poly1305-AES) with a weaker block cipher such
as DES; this would still require enormous resources to break
within the time limit imposed in our online setting.

Our construction of the pseudorandom hash function has
the limitation that its pseudorandomness only holds as long
as hk(·) is invoked �

√
2n times where n is the size of g’s

output (see [21, Sec. 2.8.3]). In our PQM protocols this
suffices, since �

√
2n packets will be hashed between key

changes.

B. SECURITY FAILS WITHOUT PRFS
To see that using a non-cryptographic hash is insufficient

in our sampling protocols (similar arguments apply for our
sketch protocols), suppose that the Probe function of equa-
tion (1) was implemented using a CRC keyed with a secret
modulus, as in [11], instead of a PRF. Model the CRC func-
tion as hk(x) = x mod k, and consider the following at-
tack: Eve starts by observing the interactions on the chan-
nel, and records the list of packets that were not acknowl-
edged. Then, whenever she sees a new packet that is within

9Before modification, these MACs rely on an extra nonce
r which must be unique for each invocation, and define
hk(x, r) = Eκ1(r) + gκ2(m) or hk(x, r) = Eκ1(r)⊕ gκ2(m).

a small additive distance of old packet that was not acknowl-
edged, she drops the packet. Thus, Eve can drop non-probe
packets with high probability, and she can bias the esti-
mate V well below the true failure rate. This attack is
possible because the CRC does not use its “secret key” in
a “cryptographically-strong” manner (see our result on the
necessity of cryptography, Section 6).

C. SECURE CLOCK SYNCHRONIZATION
In settings where the sender and receiver do not share a

clock, the following simple protocol can be used to securely
synchronize Alice’s clock to Bob’s clock to within 1.5 round
trip times (RTT) (e.g., τ = 150 ms). Notably, this proto-
col does not require either Alice or Bob to keep any state
beyond their keys and local clocks. The protocol also does
not require Alice and Bob to trust one another, and does
not affect Alice’s global clock that is used when interacting
with other parties.

Simple synchronization protocol. Suppose Alice has
some local secret key kA (she does not need to shared this
key with anyone).

1. At time tA (on Alice’s clock) Alice sends Bob the mes-
sage MACkA(tA).

2. Bob receives this message at time tB (on Bob’s clock)
and responds with digitally signed message
ξ = SignSKB (tB ,MACkA(tA)).

3. Alice accepts Bob’s message ξ if VerifyPKB (ξ) returns
(tB ,MACkA(tA)), the MAC is correct, and Alice’s cur-
rent local time t′A fulfills t′A < tA + τ . If Alice accepted
Bob’s message, she computes ∆B = τ − t′A, and from
now on, whenever interacting with Bob she offsets her
clock by a factor of ∆B .

If, after many attempts, Alice fails to receive a valid response
to her synchronization message, then she decides to raise an
alarm. After Alice accepts, her local clock (after being offset
by ∆B) is within τ seconds from Bob’s regardless of Eve’s
actions. Indeed, a sufficient condition is that any accepted
message ξ was sent by Bob when his local time was t′B and
Alice’s local time was after t′A. Violating either of these
would contradict the security of the digital signature and
MAC schemes.

D. DETAILS FOR SECTION 5
First we prove a precise version of Theorem 5.

Theorem 6. For any vector v ∈ RU , choosing the N×U
matrix S according to SCCF and setting w = Sv, we have
that for all η, ε > 0 and all q, r > N

1. If v ∈ {−1, 0, 1}U , and ‖v‖22 ≤ q, then for γ = ε−η
1+ε

:

Pr[‖w‖22 > (1 + ε)q] ≤ Ne−
η2

2 ln 2
q/N + e−(γ2/2−γ3/3)N/2

2. If the number of entries in v that are ±1 is r, then

Pr[‖w‖22 < (1− ε)r] ≤ Ne−
η2

2 ln 2
r/N + e

−(
ε−η
1−η )2N/6

Theorem 5 is a direct consequence of this theorem with the
setting η = 1/25 and the observation that the first item is a
weaker bound than the second.



Proof. The main observation we make is that, with high
probability, the ±1 entries of v are distributed evenly among
the coordinates of w. Conditioned on this happening. we
can then apply the analysis of Achlioptas [3]. Let us define
for i ∈ [N ] the set Qi = {x ∈ U | h(x) = i} where h is the
hash function. Consider the first item. Let E1 denote the
event that ∃i ∈ [N ], |Qi| < (1− η)q/N . Then

Pr[E1] ≤ N Pr[|Qi| < (1− η)q/N ] ≤ Ne−
η2

2 ln 2
N

which is a straightforward application of a union bound
followed by a Chernoff bound. Condition on ¬E1. Set
D = (1 + η)q/N and let Yx be an unbiased ±1 random
variable for each x ∈ [U ]. We write:

Pr[‖w‖22 > (1 + ε)q] = Pr[

N∑
i=1

 1
D

∑
x∈Qi

Yxvx

2

> (1 + ε)q/D2]

Set c2i =
∑
h(x)=i v

2
x/D, which gives

≤ Pr[
N∑
i=1

c2i

∑
x∈Qi

1
D
Yx

vx
ci

2

> (1 + ε)q/D2]

≤ Pr[

N∑
i=1

∑
x∈Qi

1
D
Yx

vx
ci

2

> (1 + ε)q/D2]

where we use ci ≤ 1 because of the condition ¬E1.
Set Yi to be the vector of all Yx for x ∈ Qi, and let ui the

vector with entries vx√
Dci

for x ∈ Qi (notice that ‖ui‖2 = 1),

we can rewrite the above as

Pr[‖w‖22 > (1 + ε)q] ≤ Pr[

N∑
i=1

〈 Yi√
D
,ui〉2 > (1 + ε)q/D2]

= e−t(1+ε)q/D
2
N∏
i=1

E[e
t〈 Yi√

D
,ui〉2 ]

(∗)
≤ e−t(1+ε)q/D

2
(1− 2t/D)−N/2

≤ e−
ε−η
1+η

N
2 (1 + ε−η

1+η
)N/2 ≤ e−(γ2/2−γ3/3)N/2

The above follows a typical derivation of the Chernoff bound,
where we use an optimization constant t = D

2
ε−η
1+ε

and where

inequality (∗) is derived using Lemma 5.2 of [3]. In the final
expression γ = ε−η

1+η
.

In the other direction, the bad event E2 is when there
exists i such that the number of ±1 entries in v (of which
there are r) that hash to i is less than (1 − η)r/N , and

by Chernoff this is also at most N exp
(
− η2

2 ln 2
r/N

)
. Then

conditioned on ¬E2, we can derive the second item using a
similar analysis and using Lemma 5.2 of [3].

Numerical results: To get our numerical results, we
use the above theorem with the setting η = 1/25, ε =
β−α
β+α

= 1/3 (if β = 2α), which says that the probabil-

ity of false positive/negative is bounded by δ as long as
q > 867N(lnN + ln 100

δ
) and N > 65 ln 100

99δ
.

Bound does not apply to CCF in general: We cannot
hope for the error probability to decay exponentially in N in
general: consider the vector y = 1010ex + 1010ex′ where ex
is the vector with 1 in coordinate x and zero elsewhere, and
x 6= x′. Then ‖y‖22 = 2 · 1020, but with probability 1/2N a
sketch of y will be 0.

Adds never help for Gaussian CCF: Let SGCCF be
the distribution of all N × U matrices where each column
has exactly one non-zero entry (chosen at random) and that
entry is distributed as a Gaussian with zero mean and vari-
ance 1 (i.e., N(0, 1)). This is the same as normal CCF
except we multiply each entry by a Gaussian variable in-
stead of a ±1 variable. Then the following theorem shows
that adding packets can never help the adversary escape de-
tection; intuitively, the theorem says that the probability of
the adversary being detected only increases when she injects
additional packets. In the following v may be interpreted as
a vector of all the drops and y as a vector of all the adds.

Theorem 7. For all ε > 0, v ∈ {0, 1}U , and any y ∈ RU
which is non-zero only on coordinates where v is zero, for a
random S drawn from SGCCF, we have

Pr[‖Sv‖22 < (1− ε)‖v‖22 ] ≥ Pr[‖S(v + y)‖22 < (1− ε)‖v‖22 ]

We omit the proof due to space limitations.

E. NECESSITY OF CRYPTOGRAPHY
In a Keyed Identification Scheme (KIS) a challenge-response

protocol in which the two parties share a secret key, and Al-
ice wants to verify Bob’s identity. To do this, Alice typically
sends Bob a challenge, that Bob must respond to using his
secret key. A KIS is secure if Percy, an impersonator who
eavesdrops on the interactions between Alice and Bob but
does not know the secret key, cannot impersonate Bob by
come up with a correct response to the challenge (with prob-
ability better than just randomly guessing the response).

We us a reduction to prove that any PQM scheme that
is secure according to Definition 1 is at least as complex as
KIS. First, we show that given any secure PQM protocol,
we can construct a secure KIS. The construction is simple:
the challenge in the KIS are the T packets that Alice sends
to Bob during an interval of the PQM protocol. The correct
response in the KIS is the acks/reports that Bob sends to Al-
ice during an interval of the PQM protocol. Next, we show
that if the PQM scheme used in the above construction is
secure according to Definition 1, then our KIS construction
is also secure. We do this in contrapostive, by showing that
if there existed an efficient adversary Percy that breaks the
security of this KIS construction, then Percy can be used
to construct an adversary Eve that breaks the security of
the PQM protocol. To do this, we show how Eve can break
the security of the PQM protocol if she is given access to
Percy: First, whenever Percy wants to eavesdrop an inter-
action between Alice and Bob, Eve lets Percy observe an
interval of the PQM protocol. Next, when Percy is ready to
impersonate Bob, Eve gives the T packets that Alice sends
to Bob to Percy as his KIS challenge, but now, instead of for-
warding Alice’s packets on to Bob, Eve drops T packets and
instead responds to Alice with Percy’s KIS response. The
proof follows from the fact that Alice will not raise an alarm
(and therefore Eve breaks the security of the PQM proto-
col) whenever Percy produces a successful response the the
challenge in the KIS (and therefore breaks the security of
the KIS).


