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Abstract 
 

 
Recent developments in biotechnology have enabled high-throughput measurement of several 

cellular phenomena including gene expression, protein-protein interactions, protein localization, 

and DNA sequences. The wealth of data generated by this technology promises to support 

computational prediction of network models, but so far, successful approaches that translate 

these data into accurate, experimentally testable hypotheses have been limited.  This dissertation 

focuses on machine learning and signal processing approaches that utilize contextual clues often 

inherent in genomic data to extract useful information and make precise predictions. 

First, we describe methods for using microarray technology to detect chromosomal 

aberrations.  Amplification and deletion of portions of chromosomes often serve as a mechanism 

of rapid adaptation and have been associated with numerous cancers.  Accurate and precise 

identification of when and where these changes occur will help us understand this important 

adaptive mechanism and is an important step towards effective cancer treatment. 

Secondly, we address the more general problem of integrating diverse types of functional 

genomic data to understand gene function and predict biological networks.  We demonstrate that 

Bayesian methods can leverage unique noise characteristics of genomic data to predict accurate 

network models.  We illustrate the practical use of these methods in a web-based system that 

supports intelligent exploration of large repositories of noisy genomic data.  We have used this 

system to generate specific hypotheses about previously uncharacterized genes, many of which 

have been confirmed through experimental validation. 

Finally, this dissertation addresses the question of how to use machine learning methods 

to direct genome-scale experiments.  Until now, most bioinformatics methods have been used 

exclusively downstream of data-generating experiments.  Here, we discuss approaches for using 

computational predictions to actually direct further large-scale experiments.  We demonstrate that 

such approaches can dramatically improve the efficiency with which we use high-throughput 

genomic technology and, ultimately, help us to discover more novel biology. 



 ii  

Table of Contents 
 

 

Abstract ...………………………………………………………………………….………………………...i 
 
Table of Contents ...……………………………………………………………… ………………...…….iii 
 
List of Figures ………………………………………………………………………….………….……….vi 
 
List of Tables ………………………………………………………………………….…………………...x 
 
Acknowledgements ……………………………………………………………………………………… xi 
 
Chapter 1:  Introduction……………………………………………………………………………………1 

1.1 Background 
1.1.1 Gene Expression 
1.1.2 DNA Copy Number and Sequence Variation 
1.1.3 Protein-protein Interactions 
1.1.4 Genetic Interactions 
1.1.5 Protein Localization 

1.2 Dissertation Focus 
1.3 Dissertation Organization 
References 
 

Chapter 2:  Using Genomic Context to Infer Chromosomal Aberrations …………………………..14 
2.1 Chapter Overview 
2.2 Background: Chromosomal Aberrations and Related Experimental Technology 
2.3 ChARM:  a Method for Detecting Segmental Aneuploidies 

2.3.1 Edge Detection Filter 
2.3.2 Expectation-maximization Edge-placement Algorithm 
2.3.3 Window Significance Analysis 

2.4 Evaluation 
2.4.1 Synthetic Data Model 
2.4.2 Choice and Performance of Window Significance Test 
2.4.3 Robustness Evaluation 

2.5 Biological Validation 
2.5.1 Segmental Aneuploidies in S. cerevisiae Deletion Mutants 
2.5.2 Identification of Aneuploidies in Breast Cancer Gene Expression and 

Array CGH Data 
2.6 Conclusions 
References 

 
Chapter 3:  Visualization-based Analysis of Chromosomal Aberrations ………............................37 

3.1 Chapter Overview 
3.2 Background 
3.3 Methodology:  Statistical Analysis 
3.4 Methodology:  Visualization-based Analysis 
3.5 Illustration of Application 
3.6 Implementation and Usage 
3.7 Conclusions 
References

Chapter 4:  Inferring Biological Networks from Diverse Genomic Data …………………………….55 



 Table of Contents 

 iii  

4.1 Chapter Overview 
4.2 Background:  from Diverse Genomic Data to Networks 
4.3 Methods for Inferring Networks from Diverse Data 

4.3.1 Bayesian Integration of Heterogeneous Data 
4.3.2 Expert-driven Search Paradigm 
4.3.3 Probabilistic Graph Search Algorithm 
4.3.4 Publicly Available Interface 
4.3.5 Implementation 

4.4 Evaluation on Known Biological Networks 
4.5 Biological Validation of BioPIXIE 

4.5.1 Experimental Validation of Novel Network Predictions 
4.5.2 Example Use of the System:  Prediction of Novel Targets for the Cdc37-

Hsp90 Complex 
4.5.3 Experimental Evidence for an Hsp90 Role in DNA Replication 
4.5.4 Experimental Methods 

4.6 Using the Predicted Functional Network for Understanding Links Across Pathways 
4.6.1 Cross-talk Analysis Method 
4.6.2 Finding Functional Links between Processes 

4.7 Discussion and Future Directions 
4.8 Conclusions 
4.9 List of Supplemental Data Files 
References 

 
Chapter 5:  Gold Standards and Evaluation Methods for Functional Genomic Data …………..91 

5.1 Chapter Overview 
5.2 Background:  Genomic Data Evaluation 
5.3 Challenges in Effective Functional Evaluation 

5.3.1 Existing Gold Standards 
5.3.2 Inconsistencies among and within Different Standards 
5.3.3 Functional Biases in Prediction Performance 
5.3.4 Gold Standard Negatives 
5.3.5 Relative Size of Gold Standard Positive/Negative Sets 

5.4 Suggestions for Representative Functional Evaluation of Data and Methods 
5.4.1 Defining a New Gold Standard 
5.4.2 Evaluating Genomic Methods and Data 

5.5 Supporting Methods 
5.5.1 GO-based Functional Gold Standard 
5.5.2 Metrics for Evaluation:  ROC and Precision-recall Curves 
5.5.3 Implementation of Web-based Evaluation Framework 

5.6 Conclusions 
5.7 Supplemental Data Files 
References 

 
Chapter 6:  Context-sensitive Data Integration and Prediction of Biological Networks………….118 

6.1 Chapter Overview 
6.2 Background 
6.3 Methods 

6.3.1 Bayesian Context-specific Integration 
6.3.2 Context-sensitive Network Recovery Algorithm 

6.4 Results 
6.4.1 Contextual Network Recovery Evaluation 
6.4.2 Comparing Dataset Relevance Across Contexts 
6.4.3 Learning New Biology Using Contextual Information 

6.5 Biological Validation:  Predicting Novel Mitochondria-related Genes 
6.5.1 Summary of Experimental Findings 
6.5.2 Experimental Methods 



 Table of Contents 

 iv  

6.6 Discussion and Conclusions 
6.7 Supplemental Data Files 
References 

 
Chapter 7:  Deriving Quantitative Epistasis Measures from Yeast Mutant Colony Growth……..146 

7.1 Chapter Overview 
7.2 Background 

7.2.1 Defining Epistasis 
7.3 An Epistasis Model for Mutant Colony Growth 

7.3.1 Normalizing Row and Column Effects 
7.3.2 Correcting for Neighbor Colony Competition 
7.3.3 Fitting the Model:  Implementation Details 

7.4 Applying the Epistasis Model to Real Data 
7.4.1 Analysis of Variance in Colony Data 
7.4.2 Evaluating Model Parameter Estimates 

7.5 Experimental Validation of Model Estimates:  Comparison to Epistatis Measured in 
Liquid Growth Assay 

7.6 Discussion and Conclusions 
References 

 
Chapter 8:  Closing the Loop:  Directing Large-scale Genetic Interaction Screens with Context-
sensitive Integration……………………………………………………………………………………..168 

8.1 Chapter Overview 
8.2 Background 
8.3 Methods:  an Iterative Approach to Mapping the Global Genetic Interaction Network 

8.3.1 Neighborhood Definition 
8.3.2 Neighborhood Refinement 

8.4 Evaluation of Computationally Directed Neighborhood Approach   
8.5 Biological Validation:  What Can We Learn from All of These Data? 

8.5.1 Genetic Interaction Profiles are Highly Informative about Gene Function 
8.5.2 Between and Within-complex Genetic Interactions are Monochromatic 
8.5.3 Within-complex Genetic Interactions are Predictive of the Cellular Role of 

a Complex 
8.5.4 Ab initio Pathway Ordering from Genetic Interactions 

8.6 Discussion and Conclusions 
References 

 
Chapter 9:  Conclusions and Future Work……………………………………………………………192 

9.1 Dissertation Summary 
9.2 Future Work 

9.2.1 Large-scale Discovery of Gene Function Using Genomic Data Integration 
and Network Prediction Technology 

9.2.2 Iterative Computational-experimental Approaches 
References 
 

Appendix A:  BioPIXIE Query Sensitivity Analysis 
Appendix B:  Processing of Genomic Data for Input into Bayesian Networks 
Appendix C:  Modeling Independence between Input Datasets for Bayesian Integration 
Appendix D:  Theoretical Support for the Colony Size Model 
Appendix E:  Summary of Synthetic Genetic Array Double Mutant Plate Layout 
Appendix F:  List of Publications



 

 v  

Figures 
 

 
No.  Description             Page 
 
1.1 Schematic of DNA microarray technology………………………………………..……………2 

1.2 ROMA array CGH analysis for two abnormal chromosomes……………………..…………4 

1.3 Yeast two-hybrid assay for detecting physical interactions………………………..…………5 

1.4 TAP-MS assay for detecting physical interactions…………………………………………....6 

1.5 Protein localization in Saccharomyces cerevisiae………...…………………………………..8 

1.6 Number of published human microarray studies vs. date……………………………..……..9 

1.7 Number of human genes with annotations vs. date…………………………………..………9 

2.1 Three-stage segmental aneuploidy detection scheme……………………………………...18 

2.2 Preliminary edge detection filtering process illustrated on gene expression data 

positioned along the chromosome………………………………………………………………………19 

2.3 Receiver operating characteristic (ROC) curves for sign test, mean test, coefficient of 

variance, and combined tests……………………………………………………………………………26 

2.4 Effect of multiplicative noise on sensitivity and errors in edge coordinates…...................27 

2.5 Chromosomal maps showing a subset of predicted aneuploidies and biologically relevant 

mapped chromosomal elements………………………………………………………………………...29 

2.6 Gene expression levels plotted by chromosomal location in predicted aneuploidies…....30 

2.7 Overlapping amplification predictions in array CGH and gene expression microarray data 

for breast cancer…………………………………………………………………………………………..32 

3.1 Gaussian approximation of the permutation-based p-value………………………………..41 

3.2 Simultaneous visualization of replicate aCGH experiments………………………………..42 

3.3 Simultaneous visualization of multiple independent expression microarrays…………….44 

3.4 Identifying functionally relevant genomic aberrations……………………………………….45 

3.5 Screenshot of ChARMView applied to S. cerevisiae array CGH data…………………….46 

3.6 Predicted amplifications and deletions on breast cancer array CGH data………………..47 

4.1 Overview of the bioPIXIE system……………………………………………………………...60



Figures 

 vi  

4.2 BioPIXIE network recovery evaluation…………………….………………………………….68 

4.3 BioPIXIE query-driven context illustration…………………….…………………………………...70 

4.4 Experimental validation of bioPIXIE prediction for biological role of YPL017C, YPL077C 

and YPL144W……………………………………………………………………………………………..72 

4.5 BioPIXIE output for Cdc37………………………………………..……………………………74 

4.6 Single and double mutants between Hsp90 and co-chaperones and dbf4-1………….....76 

4.7 Single and double mutants between Hsp90 and co-chaperones and cdc7-1…………....77 

4.8 Experimentally confirmed genetic interactions between cdc7/dbf4 and Hsp90 and co-

chaperones………………………………………………………………………………………78 

4.9 Hydroxyurea sensitivity of DNA replication and Hsp90 mutants…………………………...78 

4.10 A map of cross-talk between 363 biological groups in S. cerevisiae………………………82 

5.1 Inconsistencies in genomic data evaluation due to process-specific variation in 

performance……………………………………………………………………………………...94 

5.2 Comparison of functional genomic data evaluation on GO and KEGG gold standards…97 

5.3 Size distribution of depth 5 biological process GO terms (S. cerevisiae)…………………98 

5.4 Depth and size properties of GO terms selected or excluded from the evaluation gold 

standard based on expert curation…………………………………………………………..104 

5.5 General (whole-genome) evaluation example……………………………………………...106 

5.6 Process-specific evaluation example.…………………………………………………........108 

6.1 Dataset relevance across different biological contexts…………………………………….119 

6.2 Overview of method for context-sensitive integration and prediction…………………....122 

6.3 Bayesian network for context-sensitive integration………………………………………...124 

6.4 RNA splicing network recovery example……………………………………………………129 

6.5 Network recovery evaluation summary……………………………………………………...132 

6.6 Bayes net learned dataset relevance………………………………………………………..134 

6.7 Precision of network prediction for uncharacterized genes……………………………….136 

6.8 Summary of confirmed phenotypes for novel predictions and controls………………….138 



Figures 

 vii  

6.9 Experimental results for mitochondrial movement assay on two novel mitochondria-

related proteins…………………………………………………………………………………140 

7.1 Evaluation of genetic interaction profiles at predicting functionally related pairs of 

genes……………………………………………………………………………………………………..147 

7.2 Illustration of how epistasis relates to fitness……………………………………………….149 

7.3 Overview of Synthetic Genetic Array (SGA) technology…………………………………..151 

7.4 Plate of double mutants from a Synthetic Genetic Array (SGA) screen………………....152 

7.5 Row and column effects measured on an SGA plate……………………………………...155 

7.6 Illustration of the nutrient competition effect on colony size………………………………156 

7.7 Analysis of variance (ANOVA) on colony size……………………………………………...158 

7.8 Distribution of relative single mutant fitness effect and estimation error………………...159 

7.9 Distribution of normalized relative double mutant fitnesses and estimation error………159 

7.10 Comparison of epistasis estimates with published genetic interactions…………………160 

7.11 Enrichment of epistasis scores for known protein-protein interactions and functionally 

related genes…………………………………………………………………………………………….162 

7.12 Comparison of SGA epistasis scores with epistasis measured in liquid growth media..163 

8.1 Iterative experiment-computation discovery loop…………………………………………..168 

8.2 Overview of functional neighborhood genetic interaction screening approach…………170 

8.3 Overview of iterative computational-experimental approach for mapping the global yeast 

genetic interaction network……………………………………………………………………………..171 

8.4 Fraction of total pairs screened for 10 functional neighborhoods vs. the size of the 

functional neighborhoods……………………………………………………………………………….174 

8.5 Overview of functional neighborhood definition…………………………………………….175 

8.6 Schematic of whole-genome diagnostic screen approach for iterative refinement of 

neighborhoods…………………………………………………………………………………………...176 

8.7 Criteria for selecting whole-genome diagnostic screens:  neighborhood specificity vs. 

node degree……………………………………………………………………………………………...178 

8.8 Sensitivity analysis of neighborhood design approach…………………………………….181 



Figures 

 viii  

8.9 Functional enrichment of genetic interaction profiles ……………………………………..182 

8.10 Within-complex gene pairs and between complex gene pairs are largely 

monochromatic…………………………………………………………………………………………..184  

8.11 Within-complex epistasis correlates with essentiality……………………………………...185 

8.12 Deriving pathway order from single and double mutant phenotypes…………………….187 

8.13 2D clustergram of genetic interactions for the AP-1 and AP-3 adaptor protein 

complexes………………………………………………………………………………………………..188 

8.14 Automated pathway ordering of the AP-1 and AP-3 Golgi-vacuole trafficking 

pathways………………………………………………………………………………………………….189 

9.1 Estimated precision of best functional assignment for all uncharacterized genes……...194 

A1 BioPIXIE noise sensitivity analysis…………………………………………………………..197 

A2 BioPIXIE size sensitivity analysis…………………………………………………………….198 

B1 Comparison of functional enrichment of genetic interactions and genetic interaction 

profiles …………………………………………………………………………………………….……..201 

B2 Comparative evaluation of gene expression correlation based on PISA clustering……203 

B3 Comparison of sequence similarity input datasets…………………………………………205 

C1 Comparison of Naïve Bayesian network and a tree-augmented Bayesian network.......208 

C2 Conditional mutual information between input genomic datasets………………………..209 

C3 Distribution of dataset conditional mutual information ………………………….…………210 

C4 Comparison of Naive Bayes and TAN inferred pairwise probabilities……………………211 

C5 Functional evaluation of TAN and naive Bayes results………………………………...….212 

E1 Picture of SGA plate…………………………………………………………………………...215 

E2 Layout of double mutant colonies on SGA plate……………………………………………216 

E3 Schematic of SGA query cross into a set of array plates………………………………….216 



 

 ix 

Tables 
 

 
No.  Description             Page 
 
2.1 Estimated parameters for array CGH and expression human breast cancer data………24 

3.1 ChARMView comparison with existing visualization and analysis software………………39 

3.2 Examples of predicted breakpoints in breast tumor aCGH case study……………………48 

4.1 Overview of graph search algorithm…………………………………………………………..62 

4.2 Probabilistic graph search algorithm…………………………………………………………..64 

5.1 Example depth five biological process GO terms……………………………………………99 

5.2 Definition of quantities relevant for dataset evaluation…………………………………….112 

6.1 Comparison between context-sensitive and global network inference approaches……131 

6.2 Correlation between improvement due to context-sensitivity and the specificity of the 

context…………………………………………………………………………………………………….133 

7.1 Definition of epistasis model parameters……………………………………………………153 

7.2 Comparison of SGA epistasis scores with epistasis measured in liquid growth media..164 

 

 

 

 

 

 

 

 

 

 

 

 



 

 x 

Acknowledgements 

 
  
 

The work presented in this dissertation was partially supported by funds from the Princeton 

Program in Integrative Information, Computer and Application Sciences (PICASso) funded by the 

NSF and a Quantitative and Computational Biology Training Program grant funded by the NIH 

(T32 HG003284).   

There are a number of people who made my graduate school experience both possible 

and rewarding, all of whom deserve recognition.  First, to my advisor, Olga, thank you for taking a 

chance on an Electrical Engineering graduate student who knew very little biology— I would 

certainly not be where I am had I not worked with you.  Your guidance, constant encouragement, 

and never-ending advocacy for your students are an inspiration for the mentor I hope to be.  To 

S.Y. Kung, my former advisor, thank you for your support throughout my time at Princeton and for 

introducing me to the field of bioinformatics.  To my dissertation committee, David Botstein, 

Leonid Kruglyak, S.Y. Kung, Kai Li, and also Steve Kleinstein, thank you for your valuable advice 

over the past few years and for sending many recommendation letters on my behalf.   

To the members of the Troyanskaya Lab, including Matt Hibbs (the other “original” 

member), Curtis Huttenhower, Patrick Bradley, Maria Chikina, Yuanfang Guan, Florian 

Markowetz, Edo Airoldi, and David Hess, thanks for making the lab a fun environment, which 

made work and life in graduate school much more bearable.  I am also grateful to several 

talented undergraduates who worked in the Troyanskaya Lab for their help in implementing 

various software projects related to my dissertation including Drew Robson, Adam Wible, Xing 

Chen, Rachel Sealfon, Rajiv Ayyangar, and Jon Ullman.  To several experimental biologists in the 

Lewis-Sigler Institute and at the University of Toronto, including Camelia Chiriac, David Hess, 

Amy Caudy, Michael Costanzo, Anastasia Baryshnikova, Maitreya Dunham, Kara Dolinski, and 

David Gresham, thank you for teaching me the biology side of bioinformatics.  Many of you also 

undertook significant experimental work to validate predictions from the methods described in this 

dissertation for which I am grateful.  To several administrative and technical staff in both 



 

 xi 

Computer Science and the Lewis-Sigler Institute, including Melissa Lawson, Ginny Hogan, Laurie 

Bellero, Jen Havens, Francine Taylor, Jen Brick, Faith Bahadurian, John Wiggins, and Mark 

Schroeder, thank you for making my life easier on many different occasions.  Finally, I owe 

thanks to a number of friends from Princeton for good company and good times outside of work 

including Chris Sadler, Noel and Andrea Eisley, Matt Hibbs, Bryan Patel, Kat Wakabayashi, Phil 

Lenart, Greg Reeves, Scott McAllister, Melanie Webb, Chris Bristow, Tom O’Connor, and Brigitte 

Brunelle. 

To my family, Mom, Dad, Carissa, Brandon, and the newest members, Ed and Lydia, 

thank you for being the loving and supportive family that anyone would hope for.   You always 

gave me confidence and encouragement when I needed it the most, and I would not be writing 

this today without that.  To my extended family of grandparents, aunts and uncles, cousins, and 

in-laws, especially Julie and Ben, Ben Jr., Ross, and Becky, thank you for supporting us through 

graduate school— spending time with you always puts things into perspective.  We appreciate all 

of those times you acted interested while we carried on about our “exciting” research.  Lastly, to 

Sasha, my wife and best friend, thank you for your unconditional love and support in everything I 

do.  I cannot imagine a better person to have with me on this journey through graduate school or 

through life. 

 



 

1 

Chapter 1  
 

Introduction 
 

1.1 Background 

Recent advances in biotechnology have enabled us to begin quantitatively characterizing several 

different aspects of cellular mechanisms and behavior.  The impetus for many of these 

technologies was the introduction of fast sequencing techniques [10], which have led to the 

sequencing of hundreds of organism over the past ten to fifteen years, including the first human 

genome sequence in 2001 [14,24].  Whole-genome sequence information spurred the 

development of several new technologies including DNA microarrays, which can simultaneously 

read out the expression of all genes in an organism’s genome given a sample of cells (e.g. a 

tumor specimen) (reviewed in [10]).  Other technology has enabled high-throughput investigation 

protein-protein interactions, which are at the heart of the mechanisms behind most cellular 

processes.  Still other approaches can precisely identify the location of proteins in different 

cellular compartments, giving us hints about their function.  In all, current technologies are able to 

capture cellular information at a variety of complementary levels from the genetic identify of a cell 

to a cell’s diverse responses to environmental stimuli. 

These data promise to revolutionize our understanding of core cellular processes and 

gene function.  However, harnessing the rich information present in these large, often noisy, 

datasets is challenging.  This dissertation approaches this problem from a computational 

perspective.  Specifically, we explore strategies for extracting accurate biological hypotheses 

from high-throughput data and for integrating several diverse data sources to reveal a holistic 

view of cellular mechanisms.  The rest of this chapter is organized as follows. 

 First, we give a brief overview of the types of genomic data available, how these data are 

measured, and what we hope to learn from them.  Second, we discuss a few of the key 

challenges in developing methods for analyzing and integrating these data, which motivate 
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recurring themes throughout this dissertation.  Finally, we describe the overall flow of the 

dissertation, including a brief summary of each chapter. 

 

1.1.1 Gene Expression 

 Perhaps the most revolutionizing and certainly most abundantly used genomic 

technology over the past ten years is the DNA microarray.  Microarrays enable biologists to 

simultaneously measure the expression of tens of thousands of genes on a single chip [3].  

Briefly, the way microarray technology works is that short probe sequences matching the mRNA 

of genes of interest are either spotted or printed onto a glass or silicon slide  (Figure 1.1).   

 

Figure 1.1.  Schematic of DNA microarray technology.  (A) Test and reference cDNA or cRNA 
samples are differentially labeled with Cy3 and Cy5 flourescent dye and hybrized to an array of 
target sequences [5].  Relative intensities at each set of probe sequences are then measured 
through excitation with a laser.  (B) A raw image of microarray data from an Agilent  Saccharomyces 
cerevisiae array of an hsp82Δ deletion mutant at 37 oC. 
 

A 

B 
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For two-color microarrays, cDNA or cRNA are prepared from a test and reference sample (e.g. 

diseased and normal tissue) and are differentially labeled with Cy3 and Cy5.  The samples are 

mixed and hybridized to the array.   The relative levels of mRNA are then inferred by measuring 

the relative intensities of Cy3 and Cy5 emission wavelengths upon excitation with a laser.  Gene 

expression data is typically interpreted in the form of log-ratios of these intensities [20].  Another 

commonly used variation of microarrays is the single-channel array, which is based on the same 

principle of hybridization to target sequences.  However, rather then measuring relative 

intensities, single-channel arrays attempt to directly measure absolute mRNA levels through the 

use of specific sequence variants and spike-in controls [15].  Microarray technology has rapidly 

evolved since its invention in 1995 [21], including improvements in both quality and the number of 

transcripts that can be measured at once.  The technology has been rapidly adopted by the 

genomics community— as of October 2007, there were 6744 different microarray studies 

deposited in NCBI’s Gene Expression Omnibus database [6].  Gene expression profiles 

measured over a variety of conditions capture the cell’s programmed response to external stimuli, 

and thus, are a valuable source of functional information as discussed in detail in Chapters 4-6. 

 

1.1.2 DNA Copy Number and Sequence Variation 

Genomic sequence and copy number variation play a major role in susceptibility to disease and, 

in particular, several cancers.  Variations of microarray technology have been used quite 

successfully to construct high-resolution maps of this variation.  One specific technology 

discussed extensively in Chapters 2 and 3 is array comparative genomic hybridization (array 

CGH).  The basis for the technology is the same as for expression microarrays, but instead of 

hybridizing representations of mRNA to an array of probe sequences, genomic DNA from a test 

and reference sample is prepared and hybridized [18].  Chromosomal aberrations relative to the 

reference sample are then inferred from stretches of adjacent probes with significantly higher or 

lower relative hybridization intensity.  Using the latest versions of this technology, some studies 

have reported detecting even single copy number changes on the order of several hundred to 
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several thousand bases [18].  Figure 1.2 illustrates data from one existing high-density array CGH 

technique, Representational Oligonucleotide Microarray Analysis (ROMA), where two different 

chromosomes with various abnormalities have been identified [16]. 

 Another promising application of microarray technology has been the detection of a 

smaller type of sequence variation, single nucleotide polymorphisms, or SNPs.  Microarray 

technologies for detecting SNPs are often designed in a targeted fashion, where individual probes 

are specifically constructed to center around a suspected polymorphism [12].  Genomic DNA 

fragments with mismatches at the location of interest exhibit less hybridization efficiency and are 

thus detected as altered.  Some groups have also demonstrated promising approaches for 

unbiased, global identification of SNPs based on whole-genome tiling microarrays, in which 

microarray probes are designed to cover the entire genome with short overlapping sequences [9]. 

 

1.1.3 Protein-protein Interactions 

Another major focus of recent high-throughput genomic technology has been the identification of 

protein-protein interactions.  Physical interactions between proteins are crucial for most cellular 

functions.  For instance, protein-protein interactions are the means of signal transduction by 

which a cell receives information about its external environment.  Furthermore, the very structure 

B. A. 

Figure 1.2.  ROMA array CGH analysis for two abnormal chromosomes.  ROMA oligonucleotide-
based CGH analysis for chromosome 17 (A) and the X chromosome (B) of the tumor cell line SK-
BR-3 [16].  The Y-axis plots the mean ratio of two hybridizations in log-scale and the X-axis is 
organized in genome order.  Copy number polymorphisms appear as sustained spikes or troughs 
along each chromosome.  
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of the cell and all of its machinery are formed through protein interactions [22].  We highlight two 

recent experimental techniques for capturing interactions that are responsible for the majority of 

available data. 

 

Yeast two-hybrid 

Yeast two-hybrid is a technology for specifically interrogating physical interactions between pairs 

of proteins.  Two-hybrid relies on the two-domain structure of eukaryotic transcription factors to 

report an interaction.   In eukaryotes, transcription factors bind short DNA sequences upstream, 

and recruit RNA polymerase to initiate transcription [1].  A two-hybrid positive interaction is 

obtained by fusing one protein to a DNA-binding domain (bait) while another protein is fused to an 

activation domain (prey) such that binding of the two proteins of interest in the nucleus “switches 

on” transcription of a reporter gene [17].  The power of the two-hybrid approach is that it can be 

used to efficiently query thousands of interactions in an unbiased manner.  However, two-hybrid 

is notoriously known for its high rate of false positive interactions [22].  Dealing with this inherent 

noise is one of the challenges addressed by the methods described in Chapters 4-6.  

 

Tandem affinity purification-mass spectrometry (TAP-MS) 

Another promising technique for identifying protein-protein interactions in high-throughput is 

tandem affinity purification followed by mass spectrometry identification.  The basis of the 

approach is to integrate a TAP tag into the open reading frame (ORF) of a target protein.  The 

TAP tag consists of two IgG binding domains of Staphylococcus aureus protein A (ProtA) and a 

calmodulin binding peptide (CBP) separated by a TEV protease cleavage site [19] (Figure 1.4).  

The target protein and its interaction partners are then purified through two steps.  First, the IgG 

domains bind with high affinity to a IgG matrix while contaminants are washed off.  Then, the TEV 

Figure 1.3. Yeast two-hybrid assay for detecting physical 
interactions.  Interactions between a bait and prey 
protein are detected by fusing them to a DNA-binding 
domain and an activation domain, which when bound, 
activate transcription of a reporter gene [8]. 
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prot

ease is used to cut the the IgG domains free, and the eluate is incubated in calmodulin-coated 

beads in the presence of calcium [19]. The final result is the initial target protein and any 

interacting pairs, free from all contaminants.  

 Given a complex purified from the steps described above, the usual approach is to use 

mass spectrometry to identify the member proteins [22].  Briefly, mass spectrometry is a 

technique for precise identification of compounds and structure based on the mass-to-charge 

ratio of its constituent ions [22].  This combination of complex purification and precise 

identification of the components has been applied on a whole-proteome scale [7,13].  While TAP-

MS also suffers from false positives like the two-hybrid system, it does have several advantages.  

First, it can detect not just protein-protein interactions, but whole protein complexes.  Furthermore 

Protein identification 
(Mass Spectrometry) 

 

Complex pull-down  
(Tandem Affinity Purification) 

A. 

B. 
C. 

Figure 1.4. TAP-MS assay for detecting physical 
interactions.  (A) Target proteins have a C-
terminal or N-terminal TAP tagged integrated into 
the corresponding ORF and go through a two-step 
purification process (B) [19].  The remaining 
complex members are identified via mass 
spectrometry [22]. 
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these complexes can be detected in their natural environment, which is not true of the two-hybrid 

assay where interactions must occur within the nucleus to activate the reporter gene [22]. 

 

1.1.4 Genetic Interactions 

Another highly informative type of genomic data that have been measured in high-throughput in 

recent years is genetic interaction data.  A genetic interaction is said to occur between two genes 

whose simultaneous mutation results in a phenotype different from what is expected given the 

phenotypes of their individual mutations [4].  An extreme example of this phenomenon is 

synthetic lethality, where the simultaneous deletion of two genes causes cell death but a single 

deletion of either is healthy [4].  In general, genetic interactions indicate co-involvement in the 

same complex, pathway, or parallel pathways leading to the same essential function, and thus 

are highly informative of gene function [4].  One recent method, Synthetic Genetic Array (SGA) 

analysis, enables high-throughput investigation of double mutant combinations of yeast deletion 

strains [23].  SGA analysis is the focus of Chapters 7 and 8 and provides an ideal setting for 

applying genomic data integration technology to direct high-throughput experiments.  Further 

background on genetic interactions is provided in Chapter 7. 

 

1.1.5 Protein Localization 

Clearly, an important indicator of protein function is cellular localization.  Identifying where a 

protein is present in a cell can provide specific clues about the functional role it plays.  Thus, 

several experimental groups have developed high-throughput microscopy assays to enable rapid 

localization of proteins (e.g. [11]).  The typical strategy for these approaches is to construct a 

library of strains, each expressing one protein of interest fused with a green or red fluorescent 

protein (GFP or RFP).  The library also consists of a set of “marker strains” with specific and 

known cellular localization patterns, which are used as a gold standard for each cellular 

compartment.  This approach is illustrated in Figure 1.5 for two yeast query proteins (Utp13 and 

Cbf2) are matched against a known nucleolar marker (Sik1) [11]. 
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1.2 Dissertation Focus 

This variety of relatively new high-throughput experimental technologies has fueled an explosion 

of data over the past ten years.  Perhaps the best illustration of this is the rapid increase in the 

number of published microarray studies.  Figure 1.6 plots the cumulative number of human 

microarray datasets deposited into NCBI’s GEO database since January 2001 [6].  As of October 

2007, there were 2208 published human datasets, and the total continues to grow quadratically 

[6]  (Figure 1.6).  Interestingly, by most metrics, the knowledge contributed by these studies has 

not experienced the same degree of growth.  For instance, one reasonable metric for our current 

knowledge is the number of human genes with hand-curated Gene Ontology annotations [2].  

Figure 1.7 plots the total number of such genes as curated by the European Bioinformatics 

Institute.  As of October 2007, there were 8700 genes with annotations based on primary 

literature, and the trend appears to be relatively flat, linear growth.  If we assume a total of 20,000 

human genes, at this rate, it will take approximately 10 more years before we characterize a 

single function for each gene.  Certainly most genes have more than one function, so that is only 

a small step towards a complete understanding of the cell.  The situation is better in other 

Figure 1.5. Protein localization in Saccharomyces cerevisiae.  A library of GFP-tagged 
strains and a collection of genes with known localization is used for global analysis of 
protein localization in yeast.  Here, Sik1 is a known nucleolar protein and is used to 
identify another nucleolar protein (Utp13) [11]. 
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organisms, such as yeast, but even there, our ability to generate genomic data far surpasses our 

capacity for deriving specific, testable hypotheses from those data. This begs the question, why 

are we not more efficiently translating these data into knowledge? 

 

 

Figure 1.6.  Number of published human microarray studies vs. date.  All 
human microarray datasets were downloaded from NCBI’s GEO database.  
Here we plot the cumulative number by date. 
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Figure 1.7.  Number of human genes with annotations vs. date.  Human GO 
annotations were downloaded from the European Bioinformatics Institute.  We plot the 
cumulative number of genes annotated by year, excluding all IEA (Inferred from 
Electronic Annotation) and RCA (Reviewed Computational Analysis) annotations to 
capture how many have directly reference in the literature. 
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 This dissertation focuses precisely on this question.  I address a few key biological 

problems with variations of classic computational methods and demonstrate how they can turn 

vast repositories of relatively unreliable data into specific, testable hypotheses, many of which 

have been confirmed in our lab.  While I describe solutions for a range of problems, there are 

three overarching themes that persist throughout my work.   

First, taking full advantage of the rich information present in genomic data requires 

integrative methods.  Many of the available experimental data are complementary in the cellular 

phenomena they capture and bringing them together illuminates patterns one might not otherwise 

see.  Integration of diverse genomic data is challenging, however, because these data are 

heterogeneous both in structure and in their relevance to understanding gene function.  If not 

done properly, integration of multiple noisy datasets can result in an even noisier combination.  

Much of this dissertation centers on robust methods for addressing this challenge.   

The second recurring theme throughout the dissertation is the use of genomic data 

context for improving inferences drawn from noisy data.  By context, we mean leveraging our 

prior knowledge, however incomplete, to focus and refine prediction methods.  This does not 

mean the methods described here do not make predictions about novel biology— in fact, we 

describe several case examples where these methods have guided us directly to testable, correct 

hypotheses.  Instead, one should consider our use of context as a way to “bootstrap” ourselves 

from relatively sparse knowledge to comprehensive, accurate predictions.  Using clues about 

genomic context enables us to make more accurate predictions based on the same data. 

Finally, every method described in this dissertation in some way incorporates genomic 

data visualization into the analysis pipeline.  In my experience, the most effective means of 

translating raw genomic data into knowledge is not intelligent methods, but intelligent methods 

that are driven by biologists.  All of the approaches described here are developed from the 

biologist user’s perspective and were ultimately created to enable hypothesis generation through 

intelligent exploration of genomic data. 
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1.3 Dissertation Organization 

We begin in Chapter 2 with a discussion of methods for using either gene expression or array 

CGH microarray data to automatically and precisely identify chromosomal aberrations.  Chapter 3 

describes a software implementation of this approach, with an emphasis on aspects of 

visualization-based identification of chromosomal abnormalities from integrative analysis of gene 

expression and copy number microarray data.  In Chapter 4, we transition into the more general 

problem of inferring biological networks from diverse genomic data including gene expression, 

protein-protein interactions, sequence, and localization data.  Chapter 5 addresses the important 

issue of deriving gold standards for network inference from the Gene Ontology, which is a critical 

issue in applying machine learning approaches to the problem of genomic data integration.  

Chapter 6 describes further insights into the network inference problem, specifically, how 

biological context can be used to dramatically improve prediction performance.  The last two 

chapters focus on using these data integration and network inference technologies to drive high-

throughput genetic interaction screens.  Chapter 7 presents a background on genetic interactions, 

a description of Synthetic Genetic Arrays (SGA), and our work on how the SGA platform can be 

used to quantitatively measure epistasis.  Chapter 8 describes our iterative computational-

experimental approach for mapping the global yeast genetic interaction network with the SGA 

platform.  Chapter 9 concludes the dissertation with an outlook on possibilities for future research. 
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Chapter 2 
 

Using Genomic Context to Infer 
Chromosomal Aberrations from Gene 
Expression and Array CGH Data 
 

2.1 Chapter Overview 
 
We begin the dissertation with an illustration of how genomic context can be used to infer 

chromosomal aberrations from microarray data.  Chromosomal copy number changes 

(aneuploidies) are common in cell populations that undergo multiple cell divisions including yeast 

strains, cell lines, and tumor cells.  Identification of aneuploidies is critical in evolutionary studies, 

where changes in copy number serve an adaptive purpose, as well as in cancer studies, where 

amplifications and deletions of chromosomal regions have been identified as a major 

pathogenetic mechanism.  Aneuploidies can be studied on whole-genome level using array CGH 

(a microarray-based method that measures DNA content), but their presence also affects gene 

expression.  In gene expression microarray analysis, identification of copy number changes is 

especially important in preventing aberrant biological conclusions based on spurious gene 

expression correlation or masked phenotypes that arise due to aneuploidies.  Previously 

suggested approaches for aneuploidy detection from microarray data mostly focus on array CGH, 

address only whole-chromosome or whole-arm copy number changes, and rely on thresholds or 

other heuristics, making them unsuitable for fully automated general application to gene 

expression data sets.  There is a need for a general and robust method for identification of 

aneuploidies of any size from both array CGH and gene expression microarray data. 

In this chapter, we present ChARM (Chromosomal Aberration Region Miner), a robust 

and accurate expectation-maximization based method for identification of segmental aneuploidies 

(partial chromosome changes) from gene expression and array CGH microarray data.  
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Systematic evaluation of the algorithm on synthetic and biological data shows that the method is 

robust to noise, aneuploidal segment size, and p-value cutoff.  Using our approach, we identify 

known chromosomal changes and predict novel potential segmental aneuploidies in commonly 

used yeast deletion strains and in breast cancer.  ChARM can be routinely used to identify 

aneuploidies in array CGH data sets and to screen gene expression data for aneuploidies or 

array biases.  Our methodology is sensitive enough to detect statistically significant and 

biologically relevant aneuploidies even when expression or DNA content changes are subtle as in 

mixed populations of cells.   

The work presented in this chapter is published in [28] and includes contributions from 

Maitreya Dunham and S.Y. Kung, and Olga Troyanskaya.  Maitreya provided the yeast array 

CGH data for analysis and offered interpretation of the results, S.Y. gave feedback on the filtering 

and the expectation-maximization algorithm, and Olga supervised the project. 

 

2.2 Background: Chromosomal Aberrations and Related 

Experimental Technology 

Chromosomal amplifications, deletions, and rearrangements are thought to play important 

evolutionary roles in speciation [10] and adaptive mutation in yeast and microbial populations 

[9,16], and constitute a key mechanism in cancer progression [4,31].  Aneuploidies are especially 

common in cell populations that undergo multiple cell divisions such as laboratory strains or cell 

lines, and presence of amplifications or deletions of whole chromosomes or their parts 

(segmental aneuploidies) can have substantial effects on gene expression [18,11,14].  Thus, 

identification of aneuploidies is important in cancer pathogenesis and molecular evolution studies, 

as well as in every genome-scale gene expression microarray experiment because copy number 

changes can alter expression profiles and result in spurious correlations of functionally unrelated 

genes. 

 Recent developments in microarray technology have enabled genome-wide 

investigations of copy-number changes through array-based comparative genomic hybridization 
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(array CGH), where differentially labeled sample and reference DNA are hybridized to DNA 

microarrays [32,33].  This technology has proven effective in identifying aneuploidies in tumor 

cells [13,31,38,24], experimental evolution studies [9], and in yeast strains [18,30].  Routine 

application of array CGH to every strain or tissue used in gene expression studies is unfortunately 

not feasible.  However, several studies have demonstrated that chromosomal abnormalities 

correlate with spatial biases in gene expression along chromosomes  [18,31,37,11,14,27,34,24].  

For example, Pollack et al. estimate that 62% of highly amplified genes in 37 breast cancer 

tumors demonstrate moderately or highly elevated expression.  Thus, aneuploidies can be 

detected in gene expression or array CGH microarray data, and it is necessary to develop 

analysis methods that can accurately identify chromosomal abnormalities based on either. 

 Accurate identification of aneuploidies from thousands of array CGH or gene expression 

measurements requires robust computational methods.  Most array CGH data analyses involve 

heuristics and threshold-based methods [18,9,34].  Recently, Autio et al. (2003) presented a 

dynamic-programming-based approach to identifying copy-number changes from array CGH 

data, which addressed the problem algorithmically for CGH data but lacked significance analysis 

[1].   Accurate identification of potential copy number changes based on gene expression data 

is even more challenging because of mRNA expression levels reflect transcriptional regulation as 

well as DNA copy number.  Previous approaches for aneuploidy detection from gene expression 

data focus only on whole-chromosome or chromosomal-arm copy number changes, and most 

methods are based on heuristics or dataset-specific thresholds.  In the most sophisticated 

method to date, Crawley et al. employ a sign test for detecting whole chromosome (or whole arm) 

expression biases [7].  Hughes and Roberts et al. use a simpler error-weighted mean approach 

for whole-chromosome aneuploidy detection and a heuristic scanning method that identifies 

adjacent occurrences of 4 over or under-expressed genes as potential segmental aneuploidies 

[18].  A visualization-based imbalance detection scheme for identifying biases common in cancer 

specimens as compared to normal samples is proposed by Kano et al. [21].  These methods 

address the problem of whole chromosome or chromosomal arm copy changes, but the issue of 

robust identification of segmental aneuploidies remains open. 
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Here we present ChARM, a robust and accurate statistical method for identification of 

segmental aneuploidies from gene expression or array CGH microarray data.  Our technique 

provides three key improvements over previously suggested approaches.  First, nearly all current 

aneuploidy detection schemes for expression data rely on thresholds for defining significant over- 

and under-expression levels (some requiring up to a 1.7-1.8 fold change).  Recent studies 

suggest, however, that expression level changes do not always directly reflect copy change 

proportions, and thresholds determined for one data set often will not generalize to others [31].  

Our method is statistical, and therefore generalizes to different datasets, microarray platforms, 

and organisms.  Second, we focus on the problem of detecting segmental aneuploidy, which is 

generally more difficult than detecting whole-chromosome aneuploidy for which the methods 

developed by Hughes and Roberts et al. or Crawley et al. are effective.  Third, our method is 

general and performs well with both gene expression and array CGH data. 

ChARM employs an edge detection filter that identifies potentially aneuploid regions, an 

EM algorithm that finds maximum likelihood breakpoints based on a local search in these 

potential regions, and a statistical analysis that determines which predicted aneuploidies 

correspond to statistically significant biases as opposed to experimental noise. Our scheme can 

accurately identify known aneuploidies in biological gene expression or array CGH data [18], and 

rigorous performance analysis with synthetic data demonstrates that the method is robust to 

noise and aneuploidy size and thus can generalize to other microarray data sets.  Applying 

ChARM to 300 gene expression profiles of laboratory yeast strains, we identify multiple previously 

unknown aneuploidies, most of which are supported by current biological knowledge of yeast 

chromosomal rearrangement mechanisms.  Our analysis of breast cancer array CGH and gene 

expression microarray data identifies both known and novel areas of chromosomal instability and 

reveals two groups of immune system genes on different chromosomes that are overexpressed 

and often amplified in a subset of breast tumors.  This novel result may, upon experimental 

verification, contribute to understanding of how cancers escape immune response. 
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2.3 ChARM: a Method for Detecting Segmental Aneuploidies 

ChARM is composed of three sub-systems:  an edge detection filter that identifies points  on 

chromosomes where potential aneuploidies start or end, an EM-based edge-placement algorithm 

that statistically optimizes these start and end locations, and a window significance test that 

determines whether predicted amplifications and deletions are statistically significant or are 

artifacts of noise (Figure 2.1).  The EM algorithm has a well-known tendency to find local rather 

than global maxima, but this three-stage structure is useful in setting initial conditions that ensure 

meaningful convergence.  All three stages assume input in the form of array CGH or gene 

expression log ratios arranged in the order in which the corresponding genes appear along a 

single chromosome.  

 

 

2.3.1 Edge Detection Filter 

The edge detection filter estimates locations along the chromosome where abrupt changes in 

gene expression occur.  This is accomplished by a simple cascade of a non-linear median filter, a 

linear smoothing filter, and a linear differentiator (Figure 2.2).  The median filter functions as a 

high-level smoother, removing outliers, which are common in microarray data, and preserving 

only sustained changes in the input sequence.  Finer smoothing, which is a necessary pre-

processing step for the differentiator, is accomplished by a linear averaging filter with a smaller 

window size.  The differentiator effectively computes the derivative over a short window flagging 

any substantial changes with large peaks.  These peaks and the corresponding chromosomal 

locations serve as the input to the more precise EM algorithm. 

Figure 2.1. Three-stage segmental aneuploidy detection scheme.  The edge detection filter estimates 
edge coordinates, which are then refined by the EM edge-placement algorithm.  The resulting edges 
serve as input to the prediction significance test that analyzes statistical significance of spatial biases. 
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2.3.2 Expectation-maximization Edge-placement Algorithm 

The purpose of the EM edge-placement algorithm is to provide fine adjustments to the edge 

estimates from the previous filter.  To facilitate convergence to statistically optimal gene indices, 

each edge is surrounded by a "radius of influence" (ROI), which includes an equal-length set of 

adjacent genes on either side that is allowed to affect the placement at a given iteration.  

Furthermore, each edge is associated with two distributions, one for each of the two distinct 

regions (left and right) it is potentially separating.  Each iteration of the algorithm consists of two 

stages:  a typical EM clustering stage for learning the maximum likelihood parameters of the two 

distributions for each ROI (see E-step, M-step 1 below) and an edge-placement stage which 

adjusts the edge position optimally given the learned parameters (see M-step 2 below).  Before 

each edge adjustment, every pair of adjacent windows1 is tested for similarity to ensure that the 

edge between these windows actually separates chromosomal regions of different copy number.  

                                                
1 We refer to the regions between any two adjacent edges or between an edge and a chromosome end as 
“windows”. 

Figure 2.2. Preliminary edge detection filtering process illustrated on gene expression data positioned 
along the chromosome.  Bars above the coordinate axis represent overexpression, bars below 
represent underexpression.  The input-output relation for each of the filters is given on the left.  ][ny  
is the output as a function of ]n[x where n  refers to gene index on the chromosome and N and M 
are the window sizes of each filter.  Significant peaks are marked at the output of the differentiator. 
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The algorithm converges when all edge positions are fixed for several iterations. Each of these 

steps is described in detail below. 

 

Update membership (E-step)   

Soft (fuzzy) memberships are computed for all genes in the radius of influence of an edge and 

are proportional to the probability of observing the gene given the left and right distributions 

associated with that edge.  Let [ ]iii lgG ,=  represent the log-transformed ratio (array CGH or 

expression) and location of gene i , )(t

j
e  denote edge j , and ( )t

jè 1,
 and ( )t

jè 2,
 the left and right 

edge distributions at iteration t of the EM algorithm.  Also, let 
inf
r  denote the radius of influence.  

Here, we assume that the set of genes in the ROI lie in two normal distributions, i.e. ( )t
kjè ,

 is 

parameterized2 by[ ])(,)(

, ,
t

kj

t

kj !µ .  Then, the conditional probability of observing gene i  given 

the distribution ( )t
kjè ,

 is: 
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1  and 
g
n is the number of genes on the chromosome of interest. 

 

Mean and variance computation (M-step 1)   

Based on the membership ( )it

kj GèP
)(

,
 determined in the E-step, the maximum likelihood mean 

and variance parameters for the next iteration ( 1+t ) are computed as follows: 

                                                
2 Note that in our implementation, we use normally distributed ig ’s.  Empirically, this has demonstrated 
adequate performance, but this approach can be generalized to other, more accurate models as well.   



Chapter 2:  Inferring Aneuploidies from Microarray Data   
 

21 

( )
( )

( )
( )

( )( ) ( )

( )!

!

!

!

=

=

+

+

=

=+

"

==
g

g

g

g

n

i

i

t

kj

n

i

i

t

kj

t

kji
t

kjn

i

i

t

kj

n

i

ii

t

kj
t

kj

GP

GPx

GP

gGP

1

)(

,

1

)(

,

21

,
12

,

1

)(

,

1

)(

,
1

,

#

#µ

$

#

#

µ
 

when ( ) ( )
),(~

t

j

t

ji NG !µ [8]. 

 

Edge adjustment (M-step 2) 

For edge adjustment, we use the information theoretic notion of surprise (i.e. the amount of 

information learned from observing a probabilistic event).  At each iteration, we restrict the 

possible edge locations to only the set of indices included in the current ROI.  Each placement 

implies a different clustering of the genes around the edge into the left or right edge distributions.  

Each gene’s placement in the implied cluster is treated as the observation of a random variable 

whose probability distribution is the gene’s posterior probability of being associated with that 

cluster.  For instance, if
i
G falls in ( )t
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where the indices )12(1 inf +rK  refer to those genes in the ROI.  Upon adjusting the edge 

placement for each window, the window parameters are updated accordingly (i.e. 
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Window similarity test   

The window similarity test is needed at each iteration to ensure that edges about to be adjusted 

actually separate different windows with distinct chromosomal biases (separate aneuploidy 

predictions).  The difference between left and right windows on either side of an edge must 

exceed a minimum signal-to-noise threshold or the edge is removed.  As noted earlier, a window 
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that extends beyond the ROI includes all genes up to the next edge or chromosome end.  We 

have evaluated several parametric and non-parametric statistical metrics for measuring the 

difference between two sets of samples including t-test, non-parametric t-tests, rank-sum test, 

Kolmogorov-Smirnov test.  Empirically, the ratio of the difference in medians between two 

adjacent windows and the pooled absolute deviation from the median has demonstrated the best 

performance.  Thus, we impose the following criterion on this modified signal-to-noise ratio (SNR) 

for removing an edge ( )(t

j
e ) at iteration t:  
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for )( ,, kjkj wmedianmed =  where
1,j

w and
2,j

w  include all the genes in the adjacent windows 

with sizes 
1,j

n and 
2,j

n  respectively.   thresh
SNR  is a threshold dependent on the current 

convergence behavior measured by e! , the average edge position change (in gene indices) from 

one iteration to the next.  We raise the minimum SNR threshold as the edge positions begin to 

converge so that adjacent windows must be “more different” to remain separate as edges 

approach their final estimates.  

  

2.3.3 Window Significance Analysis 

Once the EM algorithm obtains precise window positions, the significance analysis scheme 

determines if each window represents a statistically significant spatial bias in DNA content or 

expression.  We consider three statistical tests for assessing the significance of windows 

identified by the EM algorithm: a one-sample sign test, a mean permutation test, and a coefficient 

of variance permutation test, as well as combinations of the mean and sign tests and the variance 

and sign tests.  The sign test is that reported by Crawley et al. in [7] with the modification that the 

threshold is chosen dynamically for each chromosome to allow for identification of biased regions 

exhibiting lower degrees of over or under-expression than the 1.7-1.8 fold threshold used by 

others.  Both permutation tests require performing approximately 5,000 random permutations of 
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the genes on the chromosome and comparing the statistic (mean or variance) obtained on the 

actual arrangement with the most significant statistic for the same window size on each random 

permutation.  We use the Bonferroni method to correct for multiple hypothesis tests on the same 

chromosome.  Our permutation tests are designed specifically for the segmental aneuploidy 

problem, while other methods such as the sign test or the error-weighted mean approach 

proposed in [18] are more appropriate for chromosome-wide bias detection. 

 

2.4 Evaluation 

To systematically assess ChARM’s accuracy and robustness, we evaluate it using a synthetic 

microarray measurement error model described below. Using this model, we assess which 

window significance test yields the best performance for aneuploidy detection and thoroughly 

evaluate the robustness of our scheme.  We further evaluate our scheme on biological data (see 

Application to Biological Data). 

 

2.4.1 Synthetic Data Model 

We generate synthetic two-color microarray data according to the model proposed in [35].  Under 

this two-component model, reference ( R
y ) and test ( T

y ) intensity values are simulated as: 

TSTTTRSRRR
TSRS eyey !!µ"!!µ" ####

+++=+++=
++ , 

where! is the mean background intensity, µ is the intensity contributed by the quantity of 

interest, and 

( ) ( ) ( )
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This model was originally proposed for gene expression microarrays, but it is also appropriate for 

array CGH experiments with the modification that
R

µ  and 
T

µ are amounts of reference and test 

genomic DNA rather than mRNA.  The parameters denoted by the subscript “s” are 

characteristics of the microarray spot and common to both reference and test samples.  The 
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mean background intensities (! ) are typically estimated by microarray image analysis software 

and used to compute estimates of test and reference signal intensities,
T
x and

R
x , as follows: 

TTTRRR yxyx !! ˆˆ "="= . 

We model the error in this background estimation,!̂ , as an additional normally distributed error 

term,
est
! , so that the pre-log-ratio intensities are generated as: 

estTSTTestRSRR

TSRS exex !!!µ!!!µ """"
+++=+++=

++  

Parameters for this model are estimated as suggested in [35] for biological array CGH 

and gene expression experiments (Table 2.1).  Prior to noise addition, test and reference 

intensities across each synthetic chromosome for all simulations are drawn from a normal 

distribution with )800,3980(~ Nµ , and the mean background intensity is assumed to be 400 for 

test and reference samples with )40,0(~ N
est
! .  Regions of aneuploidy are synthetically 

produced by setting all affected genes’ test-to-reference ratio !!
"

#
$$
%

&

R

T

µ

µ
 to 1.53 (prior to noise 

effects).  Furthermore, to model expression scenarios realistically, 10% of the genes outside of 

aneuploidal regions are randomly set to over- or under-expressed with no spatial correlation. 

 

                                                
3 As gene expression changes do not directly reflect DNA copy number, the test-to-reference ratio for a 
gene that has been duplicated will not necessarily be 2.  We chose to set these ratios to 1.5 to provide a 
conservative evaluation of our method. 

 
Table 2.1.  Estimated parameters for array CGH and expression human breast cancer 
data.  Parameters were estimated as suggested by Rocke and Durbin (2001).   

 
Microarray type 

Parameter 
Array CGH Expression 

T!̂  R!̂  59.2, 45.9 399, 238 

Tµ̂  Rµ̂  111, 113 3980, 4130 

RTS
ˆˆ,ˆ , !!! """  .63, .059, .090 .53, .17, .13 

RTS
ˆˆ,ˆ , !!! """  25, 11, 0 137, 54, 94 
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2.4.2 Choice and Performance of Window Significance Test 

We first address the question of choosing the window significance test for our framework.  We 

consider three window significance tests (sign test, mean test, coefficient of variance test) and 

evaluate their performance on simulated 50-gene aneuploidies under varying p-value cutoffs 

(Figure 2.3).  Under all conditions tested, the mean and coefficient of variance permutation tests 

perform overwhelmingly better than the one-sample sign test, which is used by Crawley et al. [7] 

and Haddad et al. [14].  However, when an aneuploidy is located on the end of a chromosome, 

the mean test, which is generally very specific, can falsely report the region spanning the rest of 

the chromosome as significant based on the permutations.  This shortcoming of the permutation-

based approach can be overcome by combination with the simpler sign test.  This combined 

mean permutation and sign test scheme performs best both in terms of specificity and sensitivity, 

and is thus used in the rest of evaluation experiments.  A similar combination of the coefficient of 

variance test and the sign test is less effective because the variance-based test yields lower 

sensitivity due to the noisy characteristics of microarray data.   

 

2.4.3 Robustness Evaluation 

We also examine the performance of ChARM under varying noise conditions.  The performance 

of the method is only minimally affected by additive noise (!  parameters) (data not shown).  The 

effect of multiplicative error (! ) in test and reference samples is shown in Figure 2.4.  The 

sensitivity of the algorithm is robust (! .9) to noise levels well above the biological range (Figure  

2.4A, Table 2.1), and the specificity ranges from 1 to .94 for all noise parameters (data not 

shown).  Our method provides accurate edge placement at biologically realistic noise levels 

(average edge coordinate error < 8%) (Figure 2.4B).  Edge coordinate error is defined as 

( )

esaneuploidi identified of #

eêeê 2,2,1,1,! "+"

=# i

iiii

, where parameters 
1,

ê
i

 and 
2,

ê
i

 refer to the edge estimates of the ith 

prediction, and 
1,

e
i

and
2,

e
i

 are the known edge locations of the synthetic aneuploidy.  Both 
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s

ensitivity and edge placement error are more sensitive to multiplicative reference and test noise 

than to shared spot noise. 

 To test for bias in our method’s performance toward particular aneuploidal segment 

sizes, we perform a similar noise analysis across a range of typical lengths (results not shown). 

At moderate biological noise levels (0.1), the algorithm identifies even small segments (< 10 

genes) of copy-number change with very high specificity (> .95).  Under severe noise conditions 

the sensitivity of the detection algorithm degrades quite noticeably for very small aneuploidies 

(much less than 100 genes in length). However, the algorithm is able to detect larger copy 

number changes (>100 genes) even under high noise conditions (
T

!" 10 times greater than 

typical biological noise) with relatively high sensitivity.  The edge coordinate errors behave 

similarly, although with less degradation.  Both effects are due to the fact that separating signal 

from noise becomes more difficult as the length of spatial correlation decreases.  Therefore our 

scheme is robust to noise and can accurately identify aneuploidy regions even under high noise 

conditions.  

Figure 2.3.  Receiver operating characteristic (ROC) curves for sign test, mean test, coefficient of 
variance, and combined tests with p-value cutoffs between 10-6 and .4. Performance was 
evaluated on synthetic data with simulated 50-gene aneuploidies and generated with 

.2.
)(5.
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$$$
  A combined mean and sign test shows the 

highest sensitivity at every false positive rate (FPR) tested.   
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2.5 Biological Validation 

We applied ChARM to the yeast deletion mutants’ gene expression data set of Hughes and 

Marton et al. [17] and to gene expression and array CGH data for breast cancer patients from 

[34].  The results, presented below, demonstrate that our method can be successfully applied to 

B. 

A. 

Figure 2.4.  Effect of multiplicative noise on A. sensitivity and B. errors in edge coordinates 
(as % of total window size). Performance of the scheme in identifying a 50 gene aneuploidal 
segment was evaluated under varying degrees of noise.  

S
!" was varied while the remaining 

terms were fixed at .1.  Similarly, 
RT

!! "" ,  were varied with 5.=
S

!" . Biological noise is 

typically under 0.65 for 
Sç

ó and under 0.2 for 
RT

!! "" ,  (Table 1). P-value cutoffs were set at 

10-3 and 10-2 for the sign and mean permutation tests respectively, and the tests were 
combined as previously described. The detection scheme with the combined mean and sign 
window significance test identifies most windows (>90%) with high accuracy in placement of 
edge coordinates (error < 0.1%) and is robust to high levels of spot, test, and reference noise 
(substantially higher than noise levels common in biological data shown in Table 2.1).  
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both gene expression and array CGH biological data for different organisms.  We outline known 

amplifications and deletions that ChARM identifies and present some novel aneuploidies we find 

as well. 

 

2.5.1 Segmental Aneuploidies in S. cerevisiae Deletion Mutants 

We applied our method to the compendium of expression profiles of 300 S. cerevisiae deletion 

mutants and drug-treated strains developed and previously analyzed for aneuploidies by Hughes 

and Roberts et al. [18].  The analysis by Hughes et al. emphasizes whole-chromosome copy 

number changes, and they identify based on gene expression data and confirm by array CGH 

only two segmental aneuploidies4.  Our method identifies these confirmed segmental 

aneuploidies  (rpl20aΔ/rpl20aΔ and rad27Δ/rad27Δ strains) with high confidence 

(rad27Δ/rad27Δ sign test p-value of 10-5, mean permutation test p-value of <10-4; 

rpl20aΔ/rpl20aΔ sign test p-value of 10-7, mean permutation test p-value of <10-4).  In addition to 

confirming the segmental aneuploidies identified by Hughes et al., we identify a number of 

previously unknown potential aneuploidal regions5, the top 100 (sign test p-values of  < 10-3 and 

mean permutation test p-values of  < 10-2) of which are pictured in Figure 2.5, and expression 

profiles of two are displayed in Figure 2.6.  To assess the biological significance of these results, 

we use biological models of mechanisms of chromosomal breakage and aneuploidy formation in 

yeast.  Chromosomal amplifications and deletions in yeast are thought to arise through ectopic 

recombination between homologous sequences, such as Ty transposons, transposon-related 

long terminal repeats (LTRs), or tRNA sequences (Infante et al., 2003).  Thus, presence of 

transposons, LTRs, or tRNA sequences near the edges of a predicted aneuploidy region can 

serve as biological evidence that the region in question truly contains an amplification or deletion.  

                                                
4 Hughes et al. identified one additional segmental aneuploidy (in top3Δ  based on array CGH.  This 
aneuploidy is not reflected in the gene expression data and thus cannot be identified by any gene 
expression analysis method.   
5 Predictions that represented two adjacent occurrences of Ty transposons or included centromeric regions 
were excluded from further analysis due to the potential of cross-hybridization artifacts. 
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In addition, increased chromosomal breakage may be observed in the conserved Y′ areas at the 

ends of the yeast chromosomes [5].  

Our analysis reveals that 73% of predictions presented in Figure 2.5 are significantly (p-value < 

0.1) closer to such homologous sequences than expected by chance or are located in the Y′ 

regions. These predictions likely correspond to novel segmental aneuploidies, while other 

predictions may represent array artifacts or aneuploidies that arose through an alternative 

molecular mechanism. 

Figure 2.5.  Chromosomal maps showing a subset of predicted 
aneuploidies (sign test p-values of  < 10-3 and mean permutation 
test p-values of  < 10-2) and biologically relevant mapped 
chromosomal elements. Aneuploidies are color-coded: red indicates 
amplification and green indicates deletion. Predictions shown in 
different rows on the same chromosome correspond to different 
yeast strains (e.g. Chr II), and multiple predications at the same 
chromosomal coordinate represent identical aneuploidies found in 
multiple strains (e.g. Chr XI). Proximity of predictions to LTR, 
transposon, and tRNA elements was evaluated through 10,000 
random placements of same-sized regions on the chromosomal 
map and through finding the proportion of random regions with 
shorter distance (drand) to homologous elements than real 

predictions (dobs) 
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 In yeast deletion mutant strains undergoing multiple divisions, an aneuploidy that  

compensates for or masks the deleted gene’s phenotype could confer a selective advantage [9].  

For example, growth defects caused by the deletion of anp1 (Figure 2.6A), an endoplasmic 

reticulum (ER) protein with a role in retention of glycosyltransferases in the Golgi [20], may be 

alleviated by the amplification of the region on chromosome II that includes SFT2, a gene 

involved in ER-Golgi transport [6].  The hdf1 deletion mutant also exhibits a compensatory 

mechanism.  Hdf1 protein functions as a heterodimer with the Ku protein in maintaining normal 

telomere length and structure, but cells can maintain telomeres in the absence of telomerase 

through a recombination-dependent “survivor” pathway that replicates Y’ regions of chromosomes 

[22].  Indeed, we identify amplifications in the Y’ region of chromosomes II, VI, and XII in this 

hdf1Δ/hdf1Δ strain.   

 

 

anp1/wt A. B. prb1/wt 
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Figure 2.6.  Gene expression levels plotted by chromosomal location in predicted 
aneuploidies: A. anp1 (chromosome II, sign test p-value of < 10-10, mean 
permutation test p-value of 10-3 ) and B.  prb1 (chromosome III, sign test p-value 
of < 10-10, mean permutation test p-value of < 10-4) heterozygous deletion 
mutants. Aneuploidies predicted by our method are identified by arrows and 
correspond to spatial expression biases. 
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2.5.2 Identification of Aneuploidies in Breast Cancer Gene Expression and 

Array CGH Data  

Genomic instability is thought to play a major role in oncogenesis, and breast tumors specifically 

are known to harbor multiple aneuploidies [34,12].  Using ChARM, we analyzed array CGH data 

from [34] for 44 breast tumors and the corresponding gene expression studies for 37 of these 

sample [36].  Our method identifies the known “hot spots” of amplifications and deletions in breast 

cancer [19,34], including multiple cases of deletions on 13q that include tumor suppressor protein 

Rb1 and on 17p that span tumor suppressor protein Tp53.  Deletion of either Rb1 or Tp53 is 

known to cause chromosomal instability, and we do identify multiple additional aneuploidies in 

tumors with predicted Rb1 or Tp53 deletion [23].  We also identify a known 17q amplification that 

includes proto-oncogene ERBB2/HER2 [26]. 

 One advantage of our method is the ability to make predictions based independently on 

array CGH or gene expression data.  Overlaps in these independent predictions can be used to 

focus on potentially functionally relevant segmental aneuploidies. The two most striking overlap 

regions both include immune system proteins: genes that encode class II major 

histocompatability complex proteins (MHCII) on chromosome 6, and immunglobulin heavy chain 

genes on chromosome 14 (Figure 2.7).  It is surprising to find such expression levels of these 

immune proteins in the tumor samples. One concern is that the data reflect the presence of a 

lymphocytic infiltrate in tumor tissue, however in such a case one would not expect correlated 

amplification data.  Immune system effects on tumor progression are relatively poorly understood; 

a key question is why some tumors are recognized and destroyed by the immune system while 

others successfully proliferate. 

 Immunoglobulins, also known as antibodies, are secretable proteins produced by mature 

B lymphocytes.  These molecules play an essential part in the adaptive immune system by 

binding and neutralizing foreign particles.  As immunoglobulin gene expression typically occurs 

only in B lymphocytes after directed germline rearrangement, immunoglobulin heavy chain 

overexpression and amplification of the corresponding region is potentially an important finding, 

but requires further investigation into the functional status of the transcripts.  MHCII is another key 
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component of adaptive immune response – it is a membrane protein whose primary role is the 

presentation of protein fragments for immune recognition.   However, MHCII presentation of 

foreign proteins activates a response optimally in the presence of other costimulatory molecules, 

and MHCII overexpression outside of this immune context may lead to immune tolerance, a 

condition when tumors do not activate immune response [15,16].  One theory is that malignant 

tumors may induce tolerance with out-of-context immune stimuli, thereby evading immune 

response, which allows them to grow and proliferate [25].  No definitive evidence for this theory 

exists, but these effects have been observed in model systems [29,3] and MHCII overexpression 

has been associated with poor prognosis in melanomas [2].  Experimental verification of our 

findings may provide novel evidence of induction of immune tolerance in tumors. 

 

2.6 Conclusions 

We have demonstrated that segmental aneuploidies can be identified based on array CGH or 

gene expression microarray data and have presented a robust statistical method that can 

accurately locate aneuploidies in biological data.  Evaluations on synthetic and biological data 

show that our method is robust to experimental noise and aneuploidy size and thus is appropriate 

for general and automated application to microarray data sets.  ChARM allows routine screening 

G
ene expression predictions 

 

 
 

 

 



Chapter 2:  Inferring Aneuploidies from Microarray Data   
 

33 

of gene expression data for aneuploidies and is sensitive enough to detect small statistically 

significant signal biases in mixed populations of cells.  It is important to note that gene expression 

does not always reflect copy number and, furthermore, algorithms based on gene expression 

data alone cannot discriminate between spatial expression biases that arise from DNA 

abnormalities and biases that are the result of spatial coregulation or array artifacts.  Our method 

can identify spatial expression biases due to either aneuploidies or technology artifacts and thus 

can be used as a general screening tool for gene expression microarray data.  In cases when 

ChARM is used to screen for aneuploidies only, gene expression microarray data should be 

normalized for special artifacts prior to applying ChARM [39].  Applying ChARM to biological data, 

we have identified multiple previously unknown aneuploidies in public yeast gene expression 

data, several of which are supported by biological evidence, and potential amplification and 

overexpression of immune genes in breast cancer.  These predictions should be further 

evaluated through targeted laboratory investigation. 
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Chapter 3 
 

Visualization-Based Analysis of 
Chromosomal Aberrations 
 
3.1 Chapter Overview 

In Chapter 2, we described ChARM, a method for accurate detection of chromosomal 

amplifications and deletions.  One powerful approach to analysis of copy number changes based 

on microarray data is a combination of visualization-based and automated computational 

analysis, such as that provided by ChARM.  To address this need, we have developed 

ChARMView, a visualization and analysis system for guided discovery of chromosomal 

abnormalities from microarray data.  Our system facilitates manual or automated discovery of 

aneuploidies through dynamic visualization and integrated statistical analysis.  ChARMView is an 

effective and accurate visualization and analysis system for recognizing even small aneuploidies 

or subtle expression biases, identifying recurring aberrations in sets of experiments, and 

pinpointing functionally relevant copy number changes.  In this chapter, we describe the 

functionality of ChARMView, and discuss several illustrative case examples where this system 

has been used to find biologically relevant chromosomal aberrations. 

 The work presented in this chapter is published in [18] and includes contributions from 

Xing Chen and Olga Troyanskaya.  Xing developed a prototype of the software, and Olga 

supervised the project.  

 

3.2 Background 

As discussed in Chapters 1 and 2, aneuploidies (chromosomal copy number changes) constitute 

a key mechanism in cancer progression [3,20] and play important evolutionary roles in speciation 

[7] and adaptive mutation in yeast and microbial populations [6,13].  Array-based comparative
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 genomic hybridization (array CGH) has enabled fast genome-wide investigations of copy-number 

changes [21,22].  However, once microarray experiments have been performed, accurate 

identification of amplifications and deletions requires a combination of manual discovery through 

data visualization and sophisticated statistical analysis. 

 Computational methods can use additional data sources, such as gene expression, to 

facilitate the discovery and analysis of genomic aberrations.  This is possible because the 

presence of amplifications or deletions of whole or partial chromosomes can have substantial 

effects on gene expression in the affected regions [14,10,12].  Gene expression microarray data 

can serve both as a second source of information for aneuploidy detection and perhaps as an 

indication of which genomic changes are most functionally relevant since mRNA transcript 

abundance more directly affects cellular phenotype than genomic DNA content.  Therefore, an 

effective visualization and analysis system for aneuploidy detection should make use of both 

array CGH and gene expression data, and allow easy examination of overlaps in the 

corresponding data sets. 

 Existing visualization tools include Caryoscope [1], CGHAnalyzer [11], Java Treeview’s 

Karyoscope [25], and SeeCGH [5].  All of these were developed specifically for the analysis of 

array CGH data and with the exception of CGHAnalyzer, none allow convenient visualization of 

multiple experiments.  Additionally, while they all offer a number of useful approaches to 

visualization, none include automatic statistical prediction to complement manual discovery of 

amplifications and deletions (see Table 3.1 for a detailed comparison of features of our software 

as compared to those of existing applications).  To facilitate discovery of genomic aberrations 

from microarray data, novel methodology is required that integrates visualization with 

sophisticated statistical analysis and enables visualization of multiple experiments and data types 

simultaneously. 

 Here we describe ChARMView – an integrated system that combines statistical analysis 

with effective visualization capabilities to enable interpretation of microarray data for aneuploidy 

discovery.  Our system facilitates both manual and automated discovery of genomic aberrations  
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Table 3.1.  ChARMView comparison with existing visualization and analysis software, including Caryoscope 
[1], CGHAnalyzer [11], Java Treeview’s Karyoscope [25], SeeCGH [5], CGH-Explorer [17], CGH-PRO [4], 
and CGH-Miner [27]. 
 

 

 

Feature ChARM 
View 

Caryo- 
scope 

Java 
TreeView  SeeGH 

CGH 
Analyz
er 

CGH 
Explorer 

CGH 
PRO 

CGH 
Miner 

Platform 
most 
platforms 
(Java-
based) 

most 
platforms 
(Java-
based) 

most 
platforms 
(Java-
based) 

Windows 

most 
platforms 
(Java-
based) 

most 
platforms 
(Java- 
based) 

Linux, 
Windo
ws 

Windows
, Unix, 
Excel 
add-in 

Software 
availability 

freely 
downloa
dable 
with 
registrati
on 

freely 
downloa
dable 

freely 
downloadab
le 

freely 
download
able with 
registratio
n 

freely 
downloa
dable 
with 
registrati
on 

freely 
downloadab
le with 
registration 

freely 
downl
oadabl
e 

freely 
downloa
dable 
with 
registrati
on 

Source-code 
license 

GNU 
GPL 

MIT 
license GNU GPL not 

available 

freely 
downloa
dable 

freely 
downloadab
le 

GNU 
GPL 

freely 
downloa
dable 

External 
software 
dependencies 

none none none 
requires 
MySQL 
database 

none none MySQ
L, R R 

Automatic 
statistical 
determination 
of single-array 
aberrations 

Yes No No No No Yes Yes Yes 

Statistical 
analysis of 
manually 
selected 
regions 

Yes No No No Yes Yes No No 

Simultaneous 
display of 
multiple 
experiments 

Yes No No No Yes Yes Yes Yes 

Statistical 
analysis of 
aberrations 
occurring in 
multiple 
experiments 

No No No No Yes No No No 

Aberration 
breakpoints/st
atistics export 

Yes No No No Yes Yes Yes Yes 

Image export Yes Yes Yes Yes Yes Yes Yes Yes 

Command-line 
statistical 
analysis 
feature 

Yes No No No No No No No 

Allows user-
defined 
genomic 
feature 
annotation 

Yes Yes Yes Yes Yes Yes Yes Yes 
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from microarray data and can display multiple experiments and data types simultaneously.  

ChARM-View can be used to identify amplifications and deletions from array CGH or gene 

expression data independently or simultaneously, making it a powerful approach for identifying 

real and functionally relevant chromosomal changes.   

 

3.3 Methodology: Statistical Analysis 

ChARMView computational analysis automatically detects regions of non-random spatial bias 

and is appropriate for any genomic data associated with chromosomal coordinates.  Statistical 

analysis is based on our algorithm ChARM (Chromosomal Aberration Region Miner), described in 

detail in [19].  ChARM identifies potential breakpoints by a differential filter followed by an 

accurate expectation-maximization approach.  The statistical significance of each identified region 

is evaluated with a one-sample sign test and a permutation-based mean test.  By their 

formulation, the significance tests are valid for any size segment, but do lose power with 

decreasing segment size.  ChARM has been evaluated on gene expression and array CGH data: 

it is robust and accurate for regions as small as 4-5 probes, and sensitive enough to detect 

aneuploidies even in mixed populations of cells [19]. 

 As a system for dynamic and real-time data analysis and visualization, ChARMView 

requires very fast statistical algorithms.  However, the permutation-based test as originally 

described in Myers et al. [19] requires non-trivial computation since it involves performing several 

thousand permutations of the chromosome order.  To speed up the mean permutation test for the 

software system, we have developed an accurate approximation that requires many fewer 

permutations.  The original version of the test requires computing the mean of the region of 

interest and comparing this with the means of similar-sized segments in randomly permuted data.  

We have verified that means of typical chromosomal segments in array CGH and gene 

expression data can generally be reasonably approximated with a normal distribution.  This is a 

generally well-accepted claim even for small groups (~10) unless the underlying population is 

extremely non-normal, which is typically not the case for log-transformed array CGH or gene 

expression data.  The statistical significance of predicted aneuploidy region in 
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ChARMView is obtained by computing means of 200 permutations of chromosome ordering of 

the actual data, estimating the parameters, and then integrating the tail of the underlying 

distribution beyond the observed value.  Figure 3.1 illustrates the correlation between p-values 

generated from 10,000 random permutations and p-values obtained from a normal approximation 

whose parameters were estimated with only 200 permutations.  This approximation yields the 

precision of several thousand permutations based on significantly less computation.  Completing 

a fully automated statistical analysis on a typical gene expression dataset (6000 genes over 16 

chromosomes, measured in 16 experiments) requires approximately 7 seconds/experiment for a 

total of less than 2 minutes on a Pentium 4 3.2 GHz desktop.  ChARMView also allows users to 

manually select regions to test for statistical significance.   

 

Figure 3.1.  Gaussian approximation of the permutation-based p-value.   
ChARMView performs 200 permutations to assess statistical significance of 
predictions, then uses Gaussian approximation to estimate the p-value.  The p-values 
based on 200 permutations and Gaussian approximation show .9991 correlation to the 
p-values based on 10,000 permutations as computed by ChARM. 
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3.4 Methodology: Visualization-based Analysis 

The most powerful aspect of ChARMView is integration of computational analysis with 

visualization.  This combination of visualization and analysis enables users to view automated 

predictions of aneuploidies as well as analyze statistical significance of manually selected 

regions.  Visualization is a critical complement to computational analysis as human perception 

can often identify subtle trends in the data that cannot be detected with purely computational 

methods.  This is especially critical when comparing results of multiple experiments or 

experimental replicates, such as in cancer studies where researchers often search for recurring 

aneuploidies in a set of patients.  ChARMView facilitates such discovery with visualization of 

multiple experimental replicates, experiments, and data types. 

The most common way to increase confidence in results of an experiment is to produce 

replicate microarray experiments.  Data from such replicate experiments is usually averaged for 

computational analysis.  However, viewing such replicates simultaneously is an effective 

approach to analysis, as people are often perceptive of subtle but repeated trends that are 

difficult to capture with a statistical test.  This visualization-based approach does not make any 

assumptions, such as independence assumption of the typically used Fisher meta-analysis test 

[8].  Thus, aligning corresponding chromosomal data from several replicates of the same 

experiment typically allows the user to spot trends that might otherwise go unnoticed.  Figure 3.2 

illustrates this phenomenon with two replicates of the same array CGH experiment.    

 

 

 
Figure 3.2.  Simultaneous visualization of replicate aCGH experiments.  A set of replicate array 
CGH experiments from Dunham et al. [6] displayed with ChARMView (chromosome 4 of CP1AB, 
replicates 1 and 2 shown).  The region identified by the arrows is hard to distinguish from noise in 
either of the replicates when viewed separately, but is clearly a region of positive bias when the 
replicates are viewed together.  This is confirmed by statistical analysis. 
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The simultaneous display feature of ChARMView is also useful for visual analysis of 

computational prediction results for multiple experiments.  This is an effective method for 

identifying common genomic aberrations in otherwise uncorrelated experiments or a 

characteristic aberration in a set of samples with a common phenotype.  For example, a set of 

breast cancer samples [23,26] can share the same bias in gene expression that corresponds to a 

predicted aneuploidy or a localized expression bias, as shown in Figure 3.3.  Overlapping 

predictions serve as independent confirmations that the predicted aberration is real.  

Furthermore, results of such analysis of multiple samples can then be used to correlate specific 

chromosomal aberrations with phenotypic or clinical parameters. 

As array CGH techniques become more widely applied, the generation of copy number 

data is rarely the end goal of biological studies.  Instead, a key challenge is deciphering which 

parts of a karyotypic profile are responsible for particular phenotypes.  While sophisticated 

statistical and computational methods will certainly be required to answer these questions, the 

most effective approaches will also need to harness the power of human visual perception.  To 

address this issue, ChARMView can display and analyze both array CGH and gene expression 

microarray data and display these diverse data and predictions for corresponding chromosomes 

simultaneously.  Simultaneous display of array CGH and gene expression data enables 

researchers to observe the effect that amplification or deletion of particular sequences of genomic 

DNA has on the abundance of mRNA transcripts (Figure 3.4).  We have noted a number of cases 

where large amplifications or deletions result in no detectable change in gene expression.  These 

regions may be less likely to cause a particular phenotype than aneuploidies that result in drastic 

changes in gene expression.  ChARMView facilitates convenient discovery of these changes, 

focusing further experimental investigation. 

 A final unique characteristic of ChARMView is that its visualization and statistical tools 

are developed for general use, independent of data type and organism.  Any dataset with 

features that can be associated with chromosomal position can be imported and analyzed with 
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ChARMView.  For instance, the software has been particularly useful in identification of 

aneuploidies based on gene expression datasets although array CGH is the typical experimental 

approach for probing genomic amplifications or deletions.  ChARMView has also been used to 

identify spatially-correlated biases in gene expression that are unrelated to altered chromosome 

structure.  Generally, our tool can be used to identify any region of non-randomness with respect 

to position in genomic data with inherent ordering.  In addition to its usefulness for a variety of 

data types, ChARMView can be applied to a variety of organisms.  By default, the system 

Figure 3.3.  Simultaneous visualization of multiple independent expression microarrays.  
Simultaneous visualization of overlapping significant expression biases in a set of four 
independent breast tumor samples from Sorlie et al. [26] (chromosome 6 of breast tumor 
expression profiles BC208A-BE, BC305A-BE, BC308B-BE, and BC111A-BE shown). Each red 
bar below the data indicates a predicted aberration identified independently on the corresponding 
experiment.   
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provides chromosomal coordinates for Saccharomyces cerevisiae data with ORF identifiers and 

human data with Unigene identifiers.  However, any data that can be mapped to a set of linear 

chromosomes can be imported and analyzed by ChARMView.   

 

3.5 Illustration of Application 

We have applied ChARMView to a number of array CGH and gene expression datasets, 

including data derived from both Saccharomyces cerevisiae and human experiments.  Here we 

present an example application of our software to array CGH data from experimental evolution 

experiments in which eight strains of budding yeast were analyzed for chromosomal copy number 

changes after 100–500 generations of growth in glucose-limited chemostats [6].  Dunham et al. 

confirmed aneuploidy regions identified by array CGH through pulsed-field gel electrophoresis, 

thus creating a standard for assessing our results.  Our method identified all 12 of the confirmed 

aneuploidies and two additional regions of bias.  The novel regions identified by our method 

correspond to biases smaller than the ones identified by 

Figure 3.4.  Identifying functionally relevant genomic aberrations.  A small amplification evident 
in the array CGH data breast cancer data (top) [23], and its effect on mRNA expression 
(bottom) [26] (chromosome 15 of breast tumor sample 709B shown).  
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Dunham et al. [6] and may reflect aneuploidy present in a subset of cells in the population or may 

be due to a hybridization artifact.  Further laboratory experiments are required to further evaluate 

these predictions.  Figure 3.5 shows a screenshot of our application upon finishing automated 

statistical analysis of one of these experiments.   

We also present two specific instances from an array CGH breast cancer study where 

ChARMView can be used to visualize and accurately predict breakpoints of known amplifications.   

Figure 3.6A illustrates the results of ChARMView’s automated statistical analysis on chromosome 

1 array CGH profiles of three different breast tumor samples (110B, 112B, 122A) from [23].  The 

entire q arm of chromosome 1 is known to frequently amplified in breast cancer (typically 

observed in approximately 50-60% of tumors [9,24]).  Thus, we expect the amplications here to 

begin at or near the centromeric end of the q arm.  ChARMView predicts breakpoints 3, 1, and 0 

probes from the centromeric end of the q arm for samples 110B, 112B, and 122A respectively. 

ChARMView can also be used to accurately find much smaller regions of amplification or 

deletion and the associated breakpoints.  Figure 3.6B illustrates this capability on chromosome 

17 array CGH profiles of three breast tumor samples (123B, 309A, and BC-A) from 

Figure 3.5.  Screenshot of ChARMView applied to S. cerevisiae array CGH data.  Screenshot of 
ChARMView analysis of S. cerevisiae molecular evolution experiments data from Dunham et al [6].  
The right panel displays array CGH data arranged in the order of chromosomal position and 
amplification (red) and deletion (green) predictions.  The left panel displays information for the 
selected region, including gene names and values and statistics for the selected amplification 
prediction. 
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[23].  An amplicon frequently associated with breast tumors includes the ERBB2 oncogene at 

17q12.  While breakpoints identified in individual tumors vary, recent studies have identified a 

group of 7 genes surrounding the ERBB2 locus that are commonly amplified, including 

NEUROD2, MLN64, PNMT, ERBB2, GRB7, ZNFN1A3, and EST 48582 [15,16].  ChARMView’s 

amplification predictions for the three tumor profiles shown include 15, 18, and 13 probes 

Figure 3.6.  Predicted amplifications and deletions on breast cancer array CGH data.  ChARMView 
automated predictions on three breast tumor array CGH profiles (110B, 112B, 122A) from 
chromosome 1 and three profiles (123B, 309A, and BC-A) from chromosome 17 of [23].  The 
predicted chromosome 1 breakpoints (identified by arrows in Figure 6A) are 3, 1, and 0 probes from 
the centromere.  The predicted chromosome 17 amplification common to all three profiles (identified 
by arrows in Figure 6B) includes 7 genes known to be typically amplified with the ERBB2 locus.  All 
visible predictions have Bonferroni-corrected p-values less than .05 for both mean and sign 
significance tests.  See Table 2 for a complete list of breakpoint predictions for each of the results 
pictured. 
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respectively, all of which span the 7-gene region previously identified.  All predictions shown in 

Figure 3.6 have Bonferroni-corrected p-values less than .05 for both mean and sign significance 

tests.  Complete lists of predicted breakpoints for both chromosome 1 and chromosome 17 

amplicons are included in Table 3.2. 

 

 
Table 3.2.  Examples of predicted breakpoints in breast tumor aCGH case study.  Listing of Unigene IDs 
corresponding to predicted breakpoints for ChARMView results pictured in Figures 3.6A and 3.6B.  The 
Unigene ID and gene name are the first and last markers included in the predicted amplification.  All results 
listed have Bonferroni-corrected less than p-values of .05 for both mean and sign significance tests. 
 

Tumor 
sample Chrom. Predicted start 

breakpoint 
Adjacent gene 
(in amplicon) 

Predicted end 
breakpoint 

Adjacent gene 
(in amplicon) 

110B 1 Hs.15871 ACP6 Hs.7395 
(last marker) TFB2M 

112B 1 Hs.59889 HMGCS2 Hs.7395 
(last marker) TFB2M 

122A 1 Hs.381235 SEC22L1 Hs.7395 
(last marker) TFB2M 

123B 17 Hs.97477 LYZL6 Hs.276916 NR1D1 

309A 17 Hs.73817 CCL18 Hs.267871 PTRF1 

BC-A 17 Hs.635 CACNB1 Hs.2340 HAP1 

 

 

 

3.6 Implementation and Usage 

ChARMView was implemented in Java using Swing set 

components to ensure cross-platform compatibility.  Many of 

the visualization features were developed using the Open Source 2D graphics toolkit Piccolo 

developed at the University of Maryland [2].  ChARMView can be downloaded at 

http://function.princeton.edu/ChARMView and run on virtually any platform if the J2SE Java 

Runtime Environment version 1.4.2 or greater is present.  A brief overview of the primary features 

of the software follows. 

 

(logo design by Matt Hibbs) 
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Loading data 

ChARMView accepts all types of data from any organism provided that the features can be 

ordered on a set of linear chromosomes.  Input files must be tab-delimited, specifically in the 

commonly-used .pcl format.  Chromosome labels and position must be included in the input file 

unless the organism type is Saccharomyces cerevisiae or human with ORF or Unigene 

identifiers, which ChARMView is able to order without coordinates. 

 

Viewing data 

Figure 3.5 shows a typical ChARMView screenshot upon loading data and statistical analysis.  

The data display is zoomable and selectable with mouse-overs for identification of experiments 

and individual genes.  Zoom features include standard single-click magnification, zoom to 

rectangle, and zoom reset (fit to screen) capabilities.  When one or more gene or probe data 

points are selected, identifiers and associated annotation are displayed in the “Results” tab, which 

appears adjacent to the display panel.  This allows users to select regions of interest on the 

display panel and retrieve lists of genes or probes within these regions.  Additionally, any number 

of experiments may be viewed simultaneously by toggling the corresponding checkboxes in the 

“Experiment Options” tab, also adjacent to the display panel. 

 

Analyzing data 

ChARMView supports two different modes of analysis. The first employs the automated edge-

finding algorithm discussed in Myers et al. [19] followed by statistical analysis. The second mode 

is for testing user-selected regions of data and only evaluates the statistical significance of the 

chosen region.  Both methods of analysis rely on two tests of statistical significance: a mean-

based permutation test, and a one-sample sign test.  Details of both tests are discussed above 

and in Myers et al. [19].  P-values for these tests are reported for all regions found by the 

automated approach or selected by the user.  Figure 3.5 displays a typical view of statistical 

results for a single experiment.  Note that the red and green rectangles below the data 

correspond to regions of predicted aberration.  The p-value cutoff at which results of the statistical 
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analysis appear in the display panel can be adjusted by applying p-value filters provided in the 

“Prediction Options” tab adjacent to the display panel.  

 A p-value filter consists of a logical combination of the mean permutation test and/or the 

one-sample sign test and real-valued cutoffs for each test.  These combinations specify how the 

selected p-value cutoffs will be used to deem statistical significance. For instance, one possible p-

value filter is "Sign AND Mean Tests" with Sign p-value cutoff of 0.001 and Mean p-value cutoff of 

0.01, which will result in only predictions with both Bonferroni corrected sign p-values of less than 

.001 and mean p-values of .01 being displayed.  The Bonferroni corrected p-value is obtained by 

multiplying the raw p-value from both significance tests by the number of regions tested for that 

chromosome.  Another possibility is to apply "Sign OR Mean Tests", which results in a prediction 

being displayed if at least one of these criteria is met at the specified significance level.  While we 

recommend the "Sign AND Mean Test" option for general use, other combinations may be useful 

under certain circumstances.  Users can select any displayed prediction, which results in the 

genes or probes and associated annotation in that particular region to be displayed in the 

“Results” tab adjacent to the display panel (Figure 3.5).  

 

Exporting results 

Publication quality images can be exported in multiple formats at any stage of the visualization.  

This includes images of exclusively raw data, results of statistical analysis, or combinations of 

these.  In addition, predictions resulting from automated or manual statistical analysis can be 

exported in tab-delimited text form with the associated gene or probe identifiers and 

corresponding p-values.  A p-value filter similar to that described in “Analyzing data” can be 

applied to all exported results to allow full user control over which predictions are included.   

Finally, lists of genes or probes for any object selected on the display panel can also be exported 

to text files to facilitate immediate analysis of regions identified by manual inspection. 
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Command-line usage 

ChARMView can also be used in command-line mode to make automated predictions of 

amplification or deletions.  This command-line feature can be used by invoking ChARMView as 

follows: 

java -Xmx300m -jar ChARM.jar  –inputFile <input-file>  

-outputFile <output-file>  

-organismType <organism-type>  

-meanPvalCutoff <mean-pvalue-cutoff>  

-signPvalCutoff <sign-pvalue-cutoff> 

-sigTestType <significance-test-type> 

The possible organism types, which determine reference chromosomal coordinates, are:  1, 

Saccharomyces cerevisiae; 2, human; 3, other (user-provided coordinates).  Possible significance 

test options include: 1, mean AND sign tests; 2-mean OR sign tests; 3, mean test only; 4, sign 

test only.  When run in command-line mode, ChARMView outputs all predicted regions of 

amplification and deletion meeting the specified significance level.   

3.7 Conclusions 

We have developed ChARMView, a statistical visualization system for analysis and discovery of 

genomic aberrations.  Our system can analyze various types of genomic data, including gene 

expression and array CGH microarray data, for a variety of organisms, and has been developed 

to facilitate both manual discovery through powerful visualization as well as automated prediction 

through robust statistical analysis.  ChARMView can identify and visualize even small copy 

number changes, and is sensitive enough to detect aneuploidies in mixed populations of cells.  

This combination makes ChARMView uniquely effective for identifying subtle trends, recurring 

aberrations in sets of experiments, and pinpointing functionally relevant copy number changes.  

Thus, this system is effective for identification of aneuploidies in cancer studies and molecular 

evolution experiments, as well as for routine analysis of microarray data for special biases. 
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Chapter 4  
 

Inferring Biological Networks from 
Diverse Genomic Data  
 
4.1 Chapter Overview 

The previous two chapters have focused on using the chromosomal context of microarray data to 

make inferences about chromosomal aberrations.  In this chapter, we transition to the more 

general problem of making inferences about biological networks based on large collections of 

diverse genomic data including gene expression, protein-protein interactions, genetic interactions, 

cellular localization and sequence information.  Specifically, we describe, bioPIXIE, a general 

probabilistic system, we have developed for query-based discovery of pathway-specific networks.  

We illustrate both computational and experimental validation of this framework by accurately 

recovering known networks for 31 biological processes in Saccharomyces cerevisiae and 

experimentally verifying predictions for the process of chromosomal segregation and the protein 

chaperone Hsp90. 

 Much of the work presented in this chapter is published in [35] and includes contributions 

from Drew Robson, Adam Wible, Matt Hibbs, Camelia Chiriac, Chandra Theesfeld, Kara Dolinski, 

and Olga Troyanskaya.  Drew and Adam developed the first prototype and web-interface for the 

system described here, and Matt provided suggestions on both the integration methods and 

interface design.  Camelia contributed all experimental results described in this chapter, and 

Chandra and Kara provided biological interpretation of the Hsp90 findings and cross-talk analysis.  

Olga supervised the project. 

 

4.2 Background: from Diverse Genomic Data to Networks 

Understanding biological networks on a whole-genome scale is a key challenge in modern 

systems biology.  Broad availability of diverse functional genomic data from protein-protein 
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interaction, gene expression, localization, and regulation studies should enable fast and accurate 

generation of network models through computational prediction and experimental validation.  

However, reliability of experimental results varies among data sets and technologies, and these 

data generally provide only pair-wise evidence for biological relationships between genes or 

proteins.  Most cellular mechanisms, on the other hand, involve groups of genes or gene products 

that behave in a coordinated way to perform a specific biological process.  We will refer to such 

groups of functionally related genes as process-specific networks.  Although a wide variety of 

functional genomic data is available, and much has been learned from them, we are far from 

exploiting the full potential of these data for discovering such process-specific networks.  There 

are several reasons for this: lack of accessibility to data and methods to analyze them, barriers to 

incorporating expert knowledge in the network discovery process, and noise and heterogeneity in 

high-throughput gene data. 

The first problem is simply the lack of accessibility of both the data and analysis methods.  

Even when data are publicly available, results are often buried in large files, and computational 

methods developed to analyze them are often not available in forms that the typical biologist can 

use.  Thus, experimental researchers are unable to identify interesting results from computational 

studies that are worth verifying.  Instead, most biologists are limited to what the authors’ of such 

studies deem important or interesting enough to highlight in the written publication.  Our ability to 

effectively utilize genomic data for process-specific network discovery has thus been hampered 

by the lack of effective interfaces to both the data and the relevant analysis methods. 

The second challenge is to allow biology researchers to integrate their biological 

knowledge in analysis.  When biologists inquire about particular biological processes, they bring 

with them existing knowledge that can and should be used to generate the most sensitive and 

precise hypotheses possible.  Such information is hard to extract automatically, and effectively 

incorporating biological expert knowledge is of course closely linked to the accessibility challenge 

noted above.  Most previous methods for process-specific network prediction have not allowed 

biologists to use their previous knowledge in their area of interest to target the analysis process.  
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Biological research demands convenient and accessible systems that leverage existing 

knowledge to direct and facilitate discovery. 

The third challenge in constructing accurate process-specific networks from diverse 

genomic data lies in the heterogeneity and high noise levels in large-scale data sets.  High-

throughput data by nature are often noisy and simple combinations of results from different types 

of experiments (e.g. conclusions of genome-scale two-hybrid experiments and microarray 

studies) are of limited effectiveness because they sacrifice either sensitivity or specificity. 

Recent applications of probabilistic data integration to the related but simpler problem of 

predicting protein function from diverse genomic data have demonstrated that integrated analysis 

of heterogeneous sources provides a substantial increase in prediction accuracy.  Much of the 

work in function prediction focuses on fusing information from multiple heterogeneous sources for 

pairs of proteins to make more reliable statements about pair-wise functional relationships.  

Bayesian networks [26,48] and variations of this approach [50,30,25] have been applied 

successfully to construct “functional linkage maps” whose connecting edges represent 

probabilistic support for a functional relationship between the adjacent proteins.  Protein functions 

are then inferred through “guilt by association” with surrounding nodes of known function.  

Several studies have formalized this “guilt by association” approach by using Markov Random 

Field models to propagate known functional annotations through confidence-weighted edges 

[32,13,28]. 

Despite much investigation into heterogeneous data integration for the purpose of 

function prediction, there have been only limited attempts to use confidence-weighted linkage 

maps from integrated data to address the more biologically significant problem of how to group 

functionally related proteins together into process-specific networks.  These network-level 

questions are distinctly different from function prediction problems and require new methodology 

for general data integration and network discovery.  Previous work in identifying groups of genes 

involved in specific biological pathways from interaction networks has focused on mainly binary 

interactions, which are prone to false positives and inadequate coverage when only limited types 

of genomic evidence are used.  For instance, two studies [5,45] describe approaches for finding 
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highly-connected subgraphs in binary interaction graphs from high-throughput experiments.  They 

found that highly connected groups in these graphs often correspond to protein complexes or 

biological processes.  Another study [18] introduced the notion of modular decomposition of 

protein-protein interaction networks to make inferences about pathways.  While these approaches 

have demonstrated the promise of using protein-protein interaction networks for recognizing 

groups of proteins involved in specific processes, they are constrained by their reliance on limited 

types of interaction data and their use of binary, rather than probabilistic networks.  A recent 

study extended these approaches to a weighted interaction network and used graph clustering 

analysis to detect coordinated functional modules [38].  A common theme among many of these 

studies is their unsupervised approach to network detection.  However, incorporating expert 

knowledge in the search process can dramatically improve both the specificity and sensitivity of 

process-specific network discovery from protein-protein interaction data. 

To our knowledge, the only existing work that leverages expert knowledge in constructing 

biological networks or protein complexes from integrated data is a network reliability approach to 

protein complex recovery [4] and a greedy search algorithm applied to a confidence-weighted 

protein-protein interaction network [6].  The former was specifically targeted towards protein 

complexes, while we focus on the more general problem of discovering not just physically 

interacting sets of proteins, but functional or process-specific networks.  The latter algorithm [6] 

leveraged both physical and genetic interaction data with the goal of extracting more general 

protein networks.  Distinctions between this work and our approach are that we integrate 

functional genomic data in a Bayesian framework that allows a probabilistic, rather than heuristic, 

graph search.  This probabilistic search incorporates both direct and indirect protein-protein links 

while integrating a wider variety of data (e.g. microarray expression, co-localization).  

Furthermore, we are the first to our knowledge to develop an interactive, web-accessible system 

that both facilitates discovery of novel biological networks and allows exploratory analysis of the 

underlying genomic data that supports these predictions. 

To address these challenges to discovering process-specific networks from functional 

genomic data, we have created a publicly available system called bioPIXIE (biological Process 
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Inference from eXperimental Interaction Evidence).  The system allows users to enter a set of 

proteins and then uses a novel probabilistic graph search algorithm on a protein-protein linkage 

map derived from diverse genomic data to predict the surrounding process-specific network for 

the local neighborhood of interest.  Most importantly, the system includes a convenient interface 

for dynamic visualization of the resulting predictions and provides analysis of their functional 

coherence.  We have completed an extensive evaluation of our method against known pathways 

as well as experimentally verified a subset of predictions made by our system. 

 

4.3 Methods for Inferring Networks from Diverse Data 

Our method relies on four critical components:  (1) Bayesian integration of heterogeneous data, 

(2) an expert-driven search paradigm, (3) a probabilistic graph search algorithm, and (4) an easily 

accessible interface for interpretation of the results (Figure 4.1).  In simple terms, bioPIXIE 

integrates different types of data (gene expression, interaction data, high-throughput or single 

experiments, etc.) using a Bayesian framework that is learned from proteins (or genes) that are 

known to be functionally linked.  This Bayesian data integration step reduces the heterogeneous 

input data to protein pairs with a score indicating the likelihood that they functionally interact, 

allowing different types of data to be combined with each other.  Then, given a protein or group of 

proteins as a query set (the expert-driven search component), a novel probabilistic algorithm 

considers the integrated pair-wise relationships to build a local process-specific network around 

the query proteins.  

 

4.3.1 Bayesian Integration of Heterogeneous Data 

This component uses a Bayesian network to integrate diverse data to derive a probabilistic 

linkage map among proteins.   

Functional genomic input data 

We have collected a diverse set of evidence from over 950 publications from several databases, 

including complete physical and genetic interaction data from the GRID and BIND databases 
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(downloaded on 6/25/04), which contain both high-throughput interaction data sets and some 

interactions from individual experiments curated from the literature [8,10,3].  We also make use of 

cellular localization data [23], curated sequence data in the form of shared transcription factor 

binding sites from the Saccharomyces cerevisiae Promoter Database (SCPD) [56], and biological 

complex curated literature from the Saccharomyces Genome Database (SGD) [8].  Additionally, 

we have collected gene expression data from 10 different microarray studies, totaling more than 

300 arrays and 29 distinct biological conditions [14,11,44,20,37,46,55,19,54,43].  Pearson 

correlation between genes across each set of related conditions is used as a measure of 

Figure 4.1.  Overview of the bioPIXIE system.  Diverse data sets are integrated with a 
Bayesian network, which weighs each evidence type probabilistically based on its 
accuracy (1).  This Bayesian integration produces a graph with confidence-weighted 
relationships between each gene pair (characterized in supplemental Figure S1).  Based 
on this integrated network graph and a user-defined query set of proteins of interest (2), 
the network prediction algorithm identifies novel network components by finding proteins 
with the maximum expected number of direct and indirect relationships with the query set 
(3).  The resulting network is then displayed to the user using a spring model layout, 
such that the geometric proximity of genes reflects how related they are to each other, 
and the edge color reflects the confidence of pair-wise connections (4).  Details of each 
component are presented in Methods. 
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similarity.  Correlation coefficients in each dataset are converted to Z-scores and combined 

across datasets.  References to all sources of genomic data are available as a Supplementary 

file.  

 

Bayesian network structure and conditional probabilities 

Given these diverse data, we can answer questions about pair-wise protein relationships using a 

Bayesian network that leverages our previous work [48].  A Bayesian network essentially weights 

each evidence type according to a measure of confidence in the source of that evidence and then 

estimates the posterior probability that a relationship exists between two proteins given all 

observed data [16].  The critical components of such a network are the structure, which 

determines relationships between evidence nodes, and the conditional probability tables (CPTs), 

which capture the reliability of each evidence type.  The structure of the network used here is 

expert-based and derived from our previous work [48].  Unlike our previous work which also relied 

on experts for estimating the CPTs, here we generalize the framework and automatically learn 

the CPT for each evidence type using protein-protein relationships inferred by the GO biological 

process ontology.   

Specifically, we obtained gold standard protein-protein relationships for learning the 

network CPTs by propagating each biological process annotation up to its ancestors and counting 

the number of unique annotations per GO term.  Because the biological specificity of each term 

roughly corresponds to the number of total annotations, we chose two thresholds to define the set 

of positive (functionally related) and negative (not functionally related) protein pairs.  Protein pairs 

whose most specific co-annotation occurs in GO terms of 300 total annotations or less were 

considered positives, while pairs whose most specific co-annotation occurs in GO terms of 1000 

total annotations or more were considered negatives.  The resulting set of positive and negative 

protein pairs is available as a supplementary file and can also be downloaded from the online 

supplement [51].   

Given this set of gold standard pairs, we used the expectation-maximization algorithm 

[12] to compute the CPTs.  As EM is guaranteed to identify a local, not global, maximum on the 
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likelihood surface, we computed a reasonable starting point for the algorithm based on 

independent counting of individual evidence sources.  We used a discrete Bayesian network, and 

continuous-valued microarray expression correlation was discretized into 16 bins (see additional 

data file 1 for details).  Both the structure and final learned conditional probabilities are available 

as a supplementary data file.  The final probabilistic output of the Bayesian network for the whole 

yeast proteome is also available as supplementary file.  We have performed cross-validation 

analysis by excluding all related GO relationships from the gold standard for each pathway we 

attempt to predict. 

 

4.3.2 Expert-driven Search Paradigm 

A critical aspect of our method is that we make use of existing expert biological knowledge to 

improve the accuracy of process-specific network prediction by allowing the biologist to drive the 

search process.  Specifically, the user enters a list of proteins (of arbitrary size) he or she either 

expects to play a role in the same biological process, or wants to test for functional relationships.  

Our system then queries the surrounding confidence-weighted network derived from integrated 

data for additional related proteins.  The resulting process-specific network is not a simple sub-

section of the complete integrated protein-protein interaction graph; rather it is probabilistically 

biased by the graph search algorithm (described in detail below) toward the biological process 

represented in the set of query proteins.  This paradigm is based on two important observations: 

(1) detailed knowledge of specific biological processes is typically learned in a directed fashion, 

not by taking a completely unsupervised view of high-throughput data, and (2) novel process-

specific proteins can be predicted more precisely when we consider their relationship to groups of 

known proteins simultaneously.  This query-driven process results in a view of the integrated 

genomic data in the context of the specific process being interrogated.  Figure 4.3, discussed in 

detail in Results, illustrates this behavior for Rad23, a DNA repair protein. 
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4.3.3 Probabilistic Graph Search Algorithm 

Given an initial set of query proteins defined by the user, we wish to find other proteins with 

significant connectivity back to the starting group.  It is unrealistic to expect related proteins to 

have direct connections to all other proteins in the same biological process due to incomplete 

data.  Furthermore, there are often protein pairs involved in the same process whose relationship 

 

  

is not present in existing experimental data.  Thus, we measure connectivity back to the original 

query set via both direct and indirect relationships.  A brief overview of the algorithm is presented 

in Table 4.1.  Because we used a Bayesian approach to data integration, weights of edges 

connecting pairs of proteins are precisely the posterior probability of a functional relationship 

between the proteins given all observed evidence for the pair, i.e. for each edge weight, ij
e , in 

the integrated network, 

( ) evidenceproteintorelatedlyfunctionalisprotein jiPeij = . 

 Given this formulation, the existence of any pairwise biological relationship can be treated as a 

Bernoulli random variable, ijX , with probability of success ij
e .  The number of direct 

relationships protein i
p  shares with the original query set, Q , can then be found by summing 

over all i
p ’s connections to proteins in Q .  Letting the random variable ( )iQ pS  denote this sum, 

we obtain 

( ) !
"

=
Qp

ijiQ

j

XpS . 

Then, the expected number of direct relationships to the query set for protein pi is 

Start with user-defined query set of related proteins. 
1. Find the 

1
n  direct neighbors with largest connections to the query set. 

2. Find the 
2
n  direct or indirect neighbors with largest connections to the query set, 

requiring that all indirect paths pass through proteins from Step 1. 
3. Return 

21
nn +  proteins and associated links.  

Table 4.1.  Overview of graph search algorithm. 
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Since not all proteins involved in a particular process will have high-probability direct relationships 

with other members of the same process, we also need to measure indirect connectivity to the 

query set.  However, from a biological standpoint, not all indirect connections are actually 

meaningful.  We expect there are a limited number of high-probability adjacent neighbors of the 

query set through which indirect connections are meaningful.  Thus, our approach relies on a two-

step search approach where a pre-defined number of direct neighbors are found (first 

neighborhood, referred to as
1
N ) after which the maximally connected indirect neighbors adjacent 

to the first neighborhood and the original query set are added (second neighborhood, referred to 

as
2
N ).  Letting the random variable ( )iQN pS !

1

 denote the number of 2-step indirect 

connections between protein i
p and the query set (Q ) through first neighborhood proteins (

1
N ), 

we obtain 
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and the expected number of indirect connections through the first neighborhood is 
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Here, we implicitly assume independence of Xij  and Xjk.  This requires that the existence of a 

relationship between any proteins i
p and j

p  be independent of the relationship between 

proteins j
p and kp , which is a reasonable assumption.  Also, we do not consider indirect 

connections beyond 2 steps from the query set.  We have empirically evaluated the algorithm for 

more distant indirect relationships, but found the performance on 2-step relationships superior.  

The search algorithm is summarized in Table 4.2.  We have empirically determined that a first 
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neighborhood of between 10 and 20 proteins (i.e. 2010
1
!! n ) provides the best precision and 

recall over a wide range of biological processes.  This was determined by optimizing the  

 

 

difference of recall and impurity (1-precision) with respect to the first neighborhood size (data not 

shown).  The number of second neighborhood proteins returned (
2
n ) is determined by the 

density of the local network and the limits of the user interface.  Thus, second neighborhood 

proteins are added to the graph until the total number of proteins reaches 40 or no neighbors with 

links exceeding the prior probability of interaction remain.  From an information visualization 

perspective, a typical user is unable to draw useful information from interaction graphs of more 

than 40 proteins. 

 

4.3.4 Publicly Available Interface 

We provide public, web-based access to our integrated process-specific network analysis and 

visualization system [52].  This allows biologists to browse the integrated set of functional 

genomic data for proteins of interest, and explore our network predictions.  Furthermore, users 

can directly query specific links leading to the reported predictions, an important part of the 

analysis pipeline. 

 

4.3.5 Implementation 

Allow user to determine query set,Q . 
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3. Return{ }
21

, ÍÍ . 

(logo design by Matt Hibbs) 

Table 4.2.  Probabilistic graph search algorithm. 
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The Bayesian network used in integrating genomic data was implemented using SMILE, a C++ 

library developed by the Decision Systems Laboratory at the University of Pittsburgh[53].  The 

user interface tool, GeNIe, useful for developing and analyzing Bayesian models was also used 

extensively during the development of bioPIXIE [53].  bioPIXIE's web interface is implemented in 

PHP and all genomic data is stored in a MySQL database.  The graph server which performs 

probabilistic searches and renders results is implemented in C++ and renders graphs in SVG, 

which allows for user-friendly browsing and interactivity.  AT&T's Graphviz is used for layout of all 

graphs. 

 

4.4 Evaluation on Known Biological Networks 

Our system achieves accurate network prediction by effectively integrating diverse data sets and 

probabilistically identifying new components of process-specific networks given only one or a few 

known members.  We evaluated the ability of our approach to recover known process-specific 

networks given initial query sets by using a collection of well-annotated functional groups 

including KEGG pathways, sets of biological process GO terms, and MIPS protein complexes.  

We restricted our evaluation to groups of 15 to 250 total proteins in which at least half of the 

member proteins had one type of evidence linking them with another member protein.  We 

identified 31 such groups from the set of KEGG pathways, MIPS protein complexes, and GO 

terms (see supplementary data file 2).  We evaluated the performance of our method on each 

group by sampling 100 random query sets consisting of 10 proteins each from the pathway or 

complex of interest, applying our data integration and search algorithm, and analyzing the 

returned set of proteins for consistency with the remaining proteins in the group. 

The advantage of using bioPIXIE to integrate multiple types of genomic data is illustrated 

in Figures 4.2 A, B, and C for three diverse KEGG pathways (graphs for all 31 processes are 

available in supplemental Figure S2 on the bioPIXIE website [51]).  bioPIXIE dramatically and 

consistently improves the number of network components recovered over any of the individual 

types of evidence.  For example, for KEGG cell cycle proteins (Figure 4.2A), given a random 10-

protein query set, we identify an average of 42 of the remaining 77 proteins using integrated data, 
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whereas only 25 are identified by either physical or genetic evidence, and only 18 by microarray 

evidence alone.  Different evidence types have varying degrees of relevance for different 

pathways—microarray correlation is very informative for ribosome proteins (Figure 4.2B) while 

physical interactions are more informative for proteins involve in ATP synthesis (Figure 4.2C). 

This advantage of integrating diverse data types is confirmed in a more comprehensive 

evaluation of bioPIXIE’s performance, where we averaged results over the entire set of 31 

processes and complexes described above. Figure 4.2D compares the precision-recall 

characteristics of our network identification method using Bayesian integrated data versus using 

individual evidence types.  Given only 10 query genes, the integrated version recovers 50% of the 

remaining members at a precision of 30% while the method applied to independent subsets 

achieves only 15% (physical association), 10% (genetic association), and 3% (microarray 

correlation) precision at the same recall (Figure 4.2D).  Thus, combining data from multiple 

sources clearly improves network recovery.   

One might expect that due to the relative sparsity of current functional genomic data, 

simple combinations of these sources followed by a straightforward search would be sufficient for 

precise network recovery.  However, such combinations are substantially less effective than our 

approach as shown in Figure 4.2E, which plots the average precision-recall characteristics of two 

such approaches to integration and recovery.  The first approach (“Binary recovery”) uses all 

available evidence, but only as a binary “yes” or “no” depending on whether evidence of any type 

is present for a particular protein pair.  Given a query, connected proteins are then added in an 

arbitrary order.  The second approach (“Counting-based recovery”) also uses all available 

evidence but counts observed evidence for each pair such that overlaps between multiple 

sources of evidence receive higher weights.  Proteins are then added in order of weight for 

network recovery.  Neither of these simpler approaches achieves accuracy similar to that of our 

method.  In fact, the counting-based approach yields a 4-fold lower prediction precision than our  

approach and the binary approach results in a 10-fold lower prediction precision at 50% recall.   

In addition to these two naive methods, we have also compared our system to two 

previously published methods for query-based protein complex discovery, SEEDY and 
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Complexpander [6,4].  bioPIXIE’s performance is superior to both existing methods; it achieves 

an average of 30% precision at 50% recall while SEEDY yields 12% and Complexpander 7% at 
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Figure 4.2.  bioPIXIE network recovery evaluation.  Figures 2A, B, and C illustrate typical network recovery 
performance for three KEGG pathways.  For all pathways,10 proteins from the pathway were randomly 
picked as a query set and results shown are averages of 100 independent samplings.  The fraction of the 
total known process components recovered is plotted versus the size of the graph grown from the query 
set.  Figures 2D, E, and F represent an average over 31 KEGG pathways, GO biological processes, and 
MIPS complexes.  Performance is measured and reported as the trade-off between precision (the 
proportion of correct pathway components returned to the total size of the returned network) and recall (the 
proportion of correct pathway components returned to the number of total non-query pathway proteins).  
Figure 2D illustrates the improvement gained by using our network prediction algorithm on a Bayesian 
integration of genomic evidence as compared to separate evidence types.  bioPIXIE shows considerable 
improvement in both the number of known member proteins recovered and the precision of predicted 
members for the integrated evidence over any individual evidence type.  Figure 2E illustrates the improved 
network recovery offered by the bioPIXIE algorithm versus more naïve approaches to integration and 
graph search.  Specifically, we plot the performance of bioPIXIE on integrated data against a naïve binary 
approach for which information from all evidence types is used but only as a binary “yes” or “no” 
relationship, and a more sophisticated approach where overlapping evidence receives higher weights and 
connected proteins are recovered in order of confidence.  Figure 2F compares the performance of 
bioPIXIE to two existing methods for query-based protein complex recovery [6,4]. 
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50% recall (Figure 4.2F).  Furthermore, calculating the average area under the precision-recall 

curve (AUC) for each pathway individually, we find that the average bioPIXIE AUC exceeds the 

average SEEDY AUC by more than one standard deviation for 22 of the 31 groups, while SEEDY 

outperforms bioPIXIE for only 1 of the 31 groups (see supplementary data file 3).   Similarly 

bioPIXIE outperforms Complexpander for 26 of the 31 groups, while the converse never occurs 

(supplementary data file 3). 

Another important characteristic of our method is its robustness to the quality and size of 

the query set.  For each of the 31 groups of proteins described earlier, we evaluated the recovery 

performance for 20 query proteins of which between 1 and 19 were randomly chosen from the 

entire proteome and the rest were chosen from the appropriate process or complex.  All 31 

groups could tolerate 25% query set noise with less than a 10% reduction in the average AUC, 27 

of those could tolerate 50% query set noise, and 14 of those could tolerate up to 75% random 

proteins in the query set (see Appendix A).  Thus, our method is robust to imperfect query sets.  

We also evaluated the recovery performance over a range of query set sizes from 4 to 60 

proteins to determine whether there was a noticeable decline in performance for very small query 

sets.  We found that, in general, the quality of the network recovered from a pure query set of 4-5 

proteins is comparable to the result of a much larger query (i.e. 40-50 proteins) on the same 

process, suggesting that relatively few proteins are required to obtain a signal (Appendix A).  For 

instance, with only a 4-protein query set, bioPIXIE’s maximum AUC score was within 10% of the 

maximum AUC score obtained on up to 60-protein query sets for 22 of the 31 processes (see 

Appendix A for supporting plot). 

The query-driven nature of the search algorithm is a key factor in the accuracy of our 

method.  The relationships between query proteins selected by the user affect which neighboring 

proteins are added to the final network.  Thus, the network resulting from a query is not simply a 

sub-section of the complete integrated protein-protein interaction graph rooted at the query 

proteins; rather, it is probabilistically biased by the network search algorithm toward the specific 

biological context represented in the query set.  Figure 4.3 illustrates this effect for the query 

protein Rad23.  Rad23 is known to form a complex with Rad4 (NEF2) and participate in 
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Figure 4.3.  bioPIXIE query-driven context illustration.  Nodes represent proteins, and edges represent 
functional links between them.  Edge color indicates the confidence of the link (red edges are high 
confidence while green edges are low).  Query proteins are indicated by gray nodes.  Rad23 is known to 
form a complex with Rad4 (NEF2) and participate in nucleotide excision repair and has also been 
implicated in inhibiting the degradation of specific substrates in response to DNA damage.  For Figure 
3A, Rad23 was entered with Rad4, Rad3, and Rad24 and the resulting network is enriched (22 of 44, p-
value  < 10-22) for DNA repair proteins (GO:0006281).  For Figure 3B, Rad23 was entered with 
proteasome components Pup1, Pre6, Rpn12 and the recovered network is enriched (36 of 44, p-value  < 
10-55) for ubiquitin-dependent catabolism proteins (GO:0006511) and only contains 2 DNA repair 
proteins (Rad6 and Rad23).  Rad23 has high-confidence relationships with several proteins in both 
processes, but the network recovery algorithm is dependent on the context of the query, which results in 
two different views of Rad23 and its neighbors. 
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nucleotide excision repair [39].  Recent work has also suggested that Rad23 facilitates DNA 

repair by inhibiting the degradation of specific substrates in response to DNA damage [41,49].  

Depending on which partners are included in a query with Rad23, the network recovered by our 

system can focus on Rad23’s involvement in nucleotide excision repair or in ubiquitin-dependent 

protein catabolism.  For instance, when the query includes DNA repair proteins Rad4, Rad3, and 

Rad24 in addition to Rad23, the recovered network of 44 total proteins (Figure 4.3A) is highly 

enriched for DNA repair (GO:0006281), with 22 of the 44 having direct or indirect annotations (p-

value  < 10-22).  However, when Rad23 is entered as a query with proteasome components Pup1, 

Pre6, Rpn12, the resulting network  (Figure 4.3B) is instead enriched for ubiquitin-dependent 

catabolism (GO:0006511), with 36 of the 44 having direct or indirect annotations (p-value < 10-55).  

Rad23 has high-confidence relationships with several proteins in both processes, but the 

recovered network returned by our system is dependent on the context implied by the query.  

This query-driven context facilitates accurate recovery of network components related to the 

biological process or pathway of interest.  

 

4.5 Biological Validation of BioPIXIE 

4.5.1 Experimental Validation of Novel Network Predictions 

bioPIXIE does not simply recapitulate known biology, but it also predicts novel network 

components based on the diverse types of input data.  In fact, the "false positives" identified by 

bioPIXIE in the evaluation above may be novel discoveries or known proteins that interact very 

closely with the biological process in question but are not annotated to it by the current standard.  

Thus, although the computational evaluation above is an accurate comparative evaluation of the 

methods, we wanted to experimentally confirm the quality of predictions made by our method.  

We have done so by using bioPIXIE to generate hypotheses about previously uncharacterized 

proteins in yeast and experimentally testing these hypotheses.  Specifically, for several biological 

processes of interest, we entered member proteins as queries and identified uncharacterized 

proteins consistently returned in the predicted networks.  One biological process with high-

confidence uncharacterized proteins was the process of chromosomal segregation.  When 
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Figure 4.4.  Experimental validation of bioPIXIE prediction for biological role of YPL017C, 
YPL077C and YPL144W.  bioPIXIE was used to predict previously uncharacterized genes likely 
to participate in processes related to chromosomal segregation.  Yeast cells were fixed, stained, 
and photographed using differential interference contrast imaging and DAPI staining.  When 
compared with wild type cells, populations of cells lacking YPL017C, YPL077C or YPL144W have 
a higher proportion of large-budded cells with a single nucleus at the bud neck (75%, 55% and 
62% as compared to 22% in wild type.  Large budding cells are indicated by arrows.  This 
morphology and failure of nuclear separation are analogous to that of ctf4∆ mutants [33], 
supporting the hypothesis that YPL017C, like CTF4, is involved in chromosome segregation. 
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compared with wild type cells populations of cells lacking the genes YPL017C, YPL077C or 

YPL144W all exhibit nuclear defects, containing a larger proportion of large budding cells with 

only one nucleus (indicated by arrows) as well as an increased fraction of clump morphologies 

(Figure 4.4).  Nuclear defects, and sometimes ploidy problems, are both phenotypes associated 

with defects in chromosomal segregation.  This difference is statistically significant in all three 

mutants, with the percentage of defective large budded cells at 22% in wild type, but at 75% in 

the YPL017C null mutant (p-value = 5.0x10^-9 , Fisher’s exact test), 55% in the YPL077C null 

mutant (p-value = 1.98x10^-7 , Fisher’s exact test), and 62% in the YPL144W null mutant (p-

value = 1.17x10^-9 , Fisher’s exact test).  This morphology and failure of nuclear separation is 

consistent with the phenotype of mutants known to affect chromosome segregation such as ctf4∆ 

[33].  This example demonstrates that bioPIXIE facilitates experimental design by providing high-

confidence predictions that can be readily tested experimentally using standard molecular biology 

techniques.  

 

4.5.2 Example Use of the System: Prediction of Novel Targets for the 

Cdc37-Hsp90 Complex 

We expect that bioPIXIE will be a convenient and effective tool for biologists to explore the 

growing sets of functional genomic data as well as direct further experimentation in their domains 

of interest.  As an example of this type of exploratory analysis, we used bioPIXIE to examine the 

Cdc37-Hsp90 complex and found evidence for previously uncharacterized roles in important 

processes.  Hsp90 is a molecular chaperone that participates in the folding of several proteins, 

including signaling kinases and hormone receptors, which are involved in growth and apoptotic 

pathways; it has thus been identified as a possible anticancer drug target.  Hsp90 is a highly 

conserved protein found in organisms from bacteria to humans, and there are two Hsp90 

homologs in yeast, HSC82 and HSP82 (reviewed in [21,7,9]).  

Using bioPIXIE, we were able to identify known and novel targets of Hsp90 and its co-

chaperones, in particular Cdc37.  Cdc37 and other proteins associated with Hsp90 are thought 

both to function as chaperones themselves and potentially to determine Hsp90 target specificity.  
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Cdc37 interacts with Hsp90 and is involved in the folding of protein kinases (CDKs, MAP 

kinases), and previous work has suggested that Cdc37 might be a general kinase chaperone 

[24].  When Cdc37 is entered as a seed protein into bioPIXIE, our algorithm detects associations 

between Cdc37 and several kinases that are known interaction partners (Cdc28 [21,17,34], Mps1 

[42], Cak1 [17,34], Ste11 [1,31], Cdc5 [34]) (Figure 4.5).  In addition, bioPIXIE predicts previously 

uncharacterized connections between Cdc37 and the protein kinase Ctk1, based on high-

throughput affinity precipitation, thus providing further support for the hypothesis that Cdc37 may 

be a general kinase chaperone. 

Furthermore, our algorithm predicts a potential novel role of the Cdc37-Hsp90 complex in 

DNA replication.  Specifically, bioPIXIE identifies connections between components of this 

complex and Cdc7, a serine/threonine kinase involved in replication origin firing, which is 

regulated by Dbf4 in a manner analogous to the way that CDKs are regulated by cyclins [27].  

Our system predicts this interaction (confidence of .49) based on a combination of two hybrid 

evidence and correlated expression data. Although this putative interaction was identified in a two 

Figure 4.5.  bioPIXIE output for Cdc37.  Nodes represent genes, and edges represent functional links 
between them.  Edge color indicates the confidence of the link (red edges are high confidence while 
green edges are low). In this example, CDC37 was entered as input (gray node); other genes displayed 
(white nodes) were identified by the bioPIXIE prediction algorithm.  Red nodes indicate that the gene is 
uncharacterized. 
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hybrid screen, it was not further characterized [34].  In further support of the DNA replication link, 

bioPIXIE also identifies previously uncharacterized interactions between Cdc7 and two other 

members of the Hsp90 complex, Sti1 and Cpr7.  Sti1 is also functionally linked to Dbf4, a 

regulator of Cdc7, by the algorithm on the basis of a high-throughput genetic interaction [47] and 

correlated gene expression in a microarray experiment [20].  Because our system integrates 

diverse data sources, it highlights interesting interactions that may otherwise go unnoticed.  

Furthermore, bioPIXIE’s network identification and interactive exploration features allow 

generation of novel, experimentally testable hypotheses, in this case that Cdc37- Hsp90 

complexes may have a previously uncharacterized role in some aspect of DNA replication. 

 

4.5.3 Experimental Evidence for an Hsp90 Role in DNA Replication 

To investigate the hypothesis that Hsp90 plays a role in DNA replication in yeast, we 

experimentally characterized several mutants involving Cdc7-Dbf4 and Hsp90 and its co-

chaperones.  Indeed, we find there is strong evidence for this Hsp90-DNA replication link.  

Specifically, we identify several novel genetic interactions supporting this hypothesis including 

cdc7-1—hsc82Δ, cdc7-1—cpr7Δ, cdc7-1—sti1Δ, cdc7-1—cdc37Δ, and dbf4-1—cpr7Δ, and we 

confirm a previously known interaction between dbf4-1—sti1Δ (Figures 4.6, 4.7, and 4.8).  We 

further investigated whether Hsp90 mutants exhibit defects in DNA replication by testing 

sensitivity to hydroxyurea (HU), which specifically inhibits DNA replication.  We confirm 

hypersensitivity of the hsc82Δ (Hsp90 yeast homolog) single mutant under moderate exposure to 

HU, particularly at 37 oC (Figure 4.9).  This sensitivity is consistent with the phenotypes of cdc7-1 

and dbf4-1, which are known to initiate DNA replication.  This validation provides a compelling 

example where exploration through bioPIXIE was used to propose a specific, non-trivial 

hypothesis, which these experimental data suggest is correct. 
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Figure 4.6.  Single and double mutants between Hsp90 and co-chaperones and dbf4-1. 
All combinations of Hsp90 co-chaperone and Dbf4 haploid double mutants were formed 
and incubated at RT, 30 oC (semi-permissive) and 37 oC.  Double mutants showing genetic 
interactions are highlighted. 
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Figure 4.7.  Single and double mutants between Hsp90 and co-chaperones and cdc7-1.  All 
combinations of Hsp90 co-chaperone and Cdc7 haploid double mutants were formed and 
incubated at RT, 30 oC (semi-permissive) and 37 oC.  Double mutants showing genetic 
interactions are highlighted. 
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Figure 4.8.  Experimentally confirmed genetic interactions between cdc7/dbf4 and Hsp90 and co-
chaperones.  We tested all combinations of DNA replication cdc7-1 and dbf4-1 temperature 
sensitive mutants with Hsp90 and its co-chaperones for genetic interactions (see Figures 6 and 7).  
This figure summarizes all interactions confirmed among these double mutants. 
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Figure 4.9.  Hydroxyurea sensitivity of DNA replication and Hsp90 mutants.  Single mutants 
related to DNA replication and Hsp90 were tested for sensitivity to hydroxyurea (HU), which 
inhibits DNA replication.  Mutants showing hypersensitivity are highlighted.  Both cdc7-1 and 
dbf4-1 mutants are sensitive to HU as well as the positive control, rad52Δ.  Interestingly, the 
Hsp90 homolog also shows sensitivity to HU. 
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4.5.4 Experimental Methods 

For confirmation of chromosome segregation mutants, haploid deletion mutant strains were 

obtained from YKO heterozygous diploid collection by sporulation (http://www-

sequence.stanford.edu/group/yeast_deletion_project/spo.html), and confirmed by backcrosses.  

Haploid cells were grown to mid-log phase in YPD at 30°C.  Cells were fixed in 4% formaldehyde, 

stained with DAPI and visualized under fluorescence microscope. Image acquisition was 

performed on an Zeiss AxioSkop equipped with a video CCD camera using SimplePCI software 

(Hamamatsu).  For flow cytometry, mid-log phase haploid cells were fixed in ethanol and stained 

with sytox green.   

For Hsp90 and Cdc7-Dbf4 experiments, the cdc7-1, dbf4-1, and the cdc37-1 temperature 

sensitive mutants were obtained from Charlie Boone’s lab (U. of Toronto) and backcrossed four 

times into the S288C background.  Strains were mated and sporulated to obtain double mutant 

haploids, and confirmed by tetrad dissection.  Single mutant and double mutant haploid cells 

were grown to saturation at RT overnight in liquid YPD media.  10x serial dilutions were spotted 

onto YPD plates and incubated at RT, 30°C and 37°C.  For the hydroxyurea sensitivity analysis, 

10x serial dilutions were spotted onto YPD plates +/- HU and incubated at RT, 30°C and 37°C. 

 

4.6 Using the Predicted Functional Network for Understanding 

Links across Pathways 

4.6.1 Cross-talk Analysis Method 

To measure cross-talk between processes, we start with a single pathway as our query set, build 

the graph of interactions around this query using bioPIXIE, and analyze the resulting superset of 

proteins for statistical enrichment of other processes.  More specifically, we first remove the 

original query set from the recovered set of proteins and obtain counts of proteins in the 

remaining set for every other possible interacting pathway.  We then use a hypergeometric test to 

estimate the significance of the observed counts.  For example, suppose we use a query 

pathway,Q , and with a graph of size X  recover m proteins annotated to a different pathway, 
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R , of total size M .  If there are N total known proteins in the organism of interest, the 

probability of observing a number this large or greater under the null assumption that the two 

pathways do not interact is: 
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We repeated this calculation for all pairwise combinations of pathways (see supplementary data 

file).  We conservatively corrected for multiple hypothesis testing by Bonferroni correction and 

only report results with corrected p-values of < 10-2. 

 

4.6.2 Finding Functional Links between Processes 

Our approach of combining data integration with a method for process-specific network discovery 

provides a convenient framework for addressing biological questions at a higher level.  Thus, in 

addition to constructing specific and testable hypotheses about individual biological processes, 

we can use the system to discover novel interplay, or cross-talk, among biological networks.  To 

investigate possible cross-talk among biological networks, we start with a single functional group 

as our query set, use bioPIXIE to predict additional network components, and analyze the 

resulting superset of proteins for statistical enrichment of other functional groups.  By repeating 

this for each process of interest, we can construct a map of cross-talk that represents a variety of 

high-level biological relationships (see Materials and Methods for details of this analysis).  We 

have applied this approach to map functional links among a set of 363 KEGG pathways, GO 

categories, and co-regulated transcription factor targets.  By using this variety of classification 

systems, we can detect links across different biological relationships—from biological roles (GO 

process ontology) to cellular locations (GO component ontology) to metabolic pathways (KEGG).  

Upon mapping cross-talk among these groups, we clustered the results to reveal biologically 

significant groups of inter-related processes (Figure 4.6 and supplementary data files). 

This analysis identifies a number of known or expected relationships between networks 

with related functions.  For example, one would expect that the processes of actin cytoskeleton 
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organization, vesicle-mediated transport, and budding would be well connected with each other, 

and that proteins involved in these processes would share similar functional links to proteins 

localized to the sites of polarized growth or proteins that when mutated cause morphological 

defects. Indeed, these groups of genes are found in a tight cluster in our cross-talk analysis 

(Figure 4.10: top cluster).   

In addition to such clusters that are expected based on current biological knowledge, we 

also identify novel relationships.  For example, one such cluster contains four previously 

unrelated groups, namely genes that have Swi5 binding sites, genes with Ino2 binding sites, 

proteins with lyase activity, and genes that have Cbf1 binding sites.  Swi5 activates genes 

expressed at the M/G1 boundary and during G1 phase of the cell cycle, and Ino2 regulates 

expression of phospholipid biosynthetic genes.  Cbf1 is required for the function of centromeres 

and MET gene promoters, and recent work suggests a general role for Cbf1 in chromatin 

remodeling [29].  These four groups are found in the same cluster because they share significant 

links with ribosome biogenesis and assembly, nucleolus, RNA binding, and RNA metabolism.  

This suggests an explicit, functional link among the processes of cell cycle regulation, 

transcriptional regulation, inositol metabolism and protein synthesis. 

While the cross-talk across all of these biological processes has not yet been well characterized, 

there is evidence in the literature that supports these predicted connections.  

For instance, the expression pattern of CBF1, INO2, or SWI5 is well correlated with the 

expression of NOP7 (e.g. as cells undergo diauxic shift and during sporulation, CBF1 and NOP7 

are co-expressed with a Pearson correlation of greater than 0.8 [8,14,11]).  Du and Stillman found 

that Nop7/Yph1, a protein required for the biogenesis of 60S ribosomal subunits [22,2,36], 

associates with the Origin Recognition Complex (ORC), cell cycle-related proteins, and MCM 

proteins. As cells are depleted of Nop7p, they exhibit cell cycle arrest, and in wild-type cells, 

Nop7 levels vary in response to different carbon sources [15].  Taken together, these previous 

experimental results support our prediction linking metabolic pathways, the cell cycle, and 

ribosome assembly.  It is important to note that while the characterization of Nop7 is consistent 

with this prediction, the individual experiments with Nop7 described above were not part of the 
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input data to our system.  Rather, our system was able to make the predicted links across these 

functional groups based on other heterogeneous, and mostly high throughout, data through 

bioPIXIE integration and network analysis.  Thus, cross-talk analysis using bioPIXIE is effective in 

identifying novel interplay among pathways, biological processes, cellular locations, and 

regulatory modules. 

 

4.7 Discussion and Future Directions 

We have developed bioPIXIE, an analysis and visualization system for the discovery of biological 

process-specific networks.  bioPIXIE’s public interface allows researchers to use their knowledge 

to explore novel and previously known components of a variety of biological processes.  The 

Figure 4.10.  A map of cross-talk between 363 biological groups in S. cerevisiae.  The combination 
of our Bayesian data integration system and our network discovery algorithm allows us to find 
biologically significant cross-talk among known biological groups.  The interaction matrix was 
generated based on 363 KEGG pathways, GO categories, and co-regulated transcription factor 
targets.  Rows of this matrix correspond to the query group and columns correspond to potential 
cross-talk partner processes; red boxes signify statistically significant links.  The cross-talk matrix 
has been clustered [40] to reveal tightly-connected groups of interacting processes (i.e. clusters in 
this matrix correspond to sets of groups who interact with same partners).  Highlighted clusters are 
discussed in the text.  See supplemental Figure S10 [51] for a complete, labeled map. 
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system provides detailed information about experimental sources for each prediction, including 

links to original literature, and can be used to generate testable hypotheses.  It is important to 

note that predictions made by bioPIXIE require further experimental validation; we hope that the 

public availability of our system and all results presented here will encourage such verification by 

yeast biology laboratories.   

A key strength of our system is in addressing network-level behavior as opposed to 

focusing purely on pair-wise protein relationships.  This is critical because many biologically 

significant questions involve the behavior of groups of proteins in networks or the interplay among 

networks with different functions.  Furthermore, from a computational standpoint, the network-

level approach to analysis and modeling of biological data is beneficial because subtle but 

coordinated group behavior can provide a more accurate picture of biological relationships than 

can be detected through pair-wise protein linkages.  Although we focus on discovering networks, 

bioPIXIE can also be used for function prediction of individual proteins.  Functions of 

uncharacterized proteins can be predicted either by analyzing uncharacterized components that 

are returned by the system given a known query set or by using an uncharacterized protein itself 

as the query, building the local interaction graph around it with our network-discovery algorithm, 

and analyzing the proteins in the final graph for statistical enrichment for particular functions. 

Another advantage of bioPIXIE is the probabilistic nature of the method that can easily adapt to 

new types of data.  In the future, bioPIXIE will incorporate additional data sets from sources 

already modeled by the system as well as data from new approaches such as protein 

microarrays. 

Another future direction for our method is to use process-specific neighborhoods 

generated by the system as a starting point for deciphering more precise details of biological 

relationships.  Our notion of functional relationship is intentionally rather general so a wide variety 

of biological interactions can be detected.  However, developing detailed models of how groups of 

functionally related proteins specifically relate with each other requires more precise definitions of 

relationships.  We propose our method as a way to pinpoint groups of proteins acting together, 

after which other methods can be applied to investigate details of relationships between these 
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proteins.  This narrowing process will undoubtedly improve downstream computational 

approaches. 

Finally, our method may be applicable to higher eukaryotes.  Additional challenges for 

such applications include handling multiple cell types, less comprehensive sets of functional 

genomics data, and incomplete genome annotation.  Our method is general, and by extending 

the Bayesian network structure to organism-specific data sources and learning the corresponding 

integration weights from available annotation data, bioPIXIE can enable discovery and accurate 

modeling of previously uncharacterized process-specific networks in a diverse range of 

organisms.  It is important to stress that the success of applying our method and other related 

approaches to higher eukaryotes depends on public availability of functional genomics data for 

these organisms and continued improvement of their annotation data, ideally through expert 

curation. 

 

4.8 Conclusions 

We have developed a novel probabilistic methodology for identification of biological process-

specific networks based on diverse genomic data and have used this methodology to create a 

fully functional system for network analysis and visualization.  bioPIXIE allows researchers to 

identify novel pathway components and to study specific interactions among them.  Predictions 

made by our system are specific enough to be tested using common molecular biology 

techniques.  Using this approach, we have accurately modeled multiple known processes in S. 

cerevisiae, characterized unknown components in these processes, and identified novel cross-

talk relationships.  We are making bioPIXIE publicly available through the web to ensure that 

analysis and interpretation of accurate network predictions we generate, as well as the underlying 

data, are conveniently accessible to biological researchers.   
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4.9 List of Supplemental Data Files 

File name:  bioPIXIE_bayesnet.dsl 
File format:  dsl, GeNIe recommended for viewing, available at 
http://www.sis.pitt.edu/~genie/downloads.html 
Title:  bioPIXIE Bayesian network for genomic data integration 
Description: 
This file contains the structure and final learned conditional probability tables used for integrating 
multiple heterogeneous sources of functional genomic data. 
 
File name:  bioPIXIE_evaluation_groups.txt 
File format:  txt, tab-delimited 
Title:  Evaluation pathways and protein complexes  
Description: 
This file contains a list of pathways and protein complexes that were used to evaluate the 
performance of bioPIXIE.  The source of the group and the number of proteins in each is also 
included. 
 
File name:  comparison_AUCs.xls 
File format:  Microsoft Excel 
Title:  Results of comparison with existing methods 
Description: 
This file contains a comparison of the performance of bioPIXIE to existing methods for biological 
network recovery.  The area under the precision-recall curve (AUC) is computed and plotted 
separately for each of the 31 evaluation pathways and complexes. 
 
File name:  bioPIXIE_data_sources.html 
File format:  HTML 
Title:  List of data sources 
Description: 
This file contains a list of references for all data incorporated into bioPIXIE. 
 
File name:  bioPIXIE_bayesnet_integration.zip 
File format:  zipped txt, tab-delimited 
Title:  bioPIXIE probabilistic network 
Description: 
This file contains the integrated, probabilistic functional network, a listing of pairwise probabilities 
between all genes. 
 
File name:  GO_gold_standard.zip 
File format:  zipped txt, tab-delimited 
Title:  bioPIXIE gold standard for learning 
Description: 
This file contains the pairwise gold standard used for learning the Bayesian network CPT’s. 
 
File name:  bioPIXIE_pathwaycrosstalk.txt 
File format:  txt, tab-delimited 
Title:  Cross-talk between pathways as measured by bioPIXIE 
Description: 
This file contains a binary matrix of complexes, pathways, and processes where significant cross-
talk between the pathways is indicated with a 1. 
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File name:  bioPIXIE_crosstalk_clusters.txt 
File format:  txt, tab-delimited 
Title:  Clusters of pathway cross-talk  
Description: 
This file contains a list of pathway, process, and complexes clustered based on their cross-talk 
signature.  It lists the complexes that are co-clustered and their common interacting partners. 
 
File name:  querysizedependence_AUCS.xls 
File format:  Microsoft Excel 
Title:  Results of query size sensitivity evaluation 
Description: 
This file contains the results of a query size sensitivity evaluation. The area under the precision-
recall curve (AUC) is computed and plotted separately for each of the 31 evaluation pathways 
and complexes. 
 
File name:  querynoisedependence_AUCS.xls 
File format:  Microsoft Excel 
Title:  Results of query noise sensitivity evaluation 
Description: 
This file contains the results of a query noise sensitivity evaluation. The area under the precision-
recall curve (AUC) is computed and plotted separately for each of the 31 evaluation pathways 
and complexes. 
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Chapter 5  
 

Gold Standards and Evaluation 
Methods for Functional Genomic 
Data  
 

5.1 Chapter Overview 

In Chapter 4, we discussed a general system for integration of diverse data and prediction of 

biological networks.  One critical aspect of such a system is that we require gold standards of 

established functional information for both evaluation and training.  In general, accurate 

evaluation of the quality of genomic or proteomic data and computational methods is vital to our 

ability to use them for formulating novel biological hypotheses and directing further experiments.  

There is currently no standard approach to evaluation in functional genomics.  Our analysis of 

existing approaches shows that they are inconsistent and contain substantial functional biases 

that render the resulting evaluations misleading both quantitatively and qualitatively.  These 

problems make it essentially impossible to compare computational methods or large-scale 

experimental datasets and also result in conclusions that generalize poorly in most biological 

applications.   

In this chapter, we reveal issues with current evaluation methods and suggest new 

approaches to evaluation that facilitate accurate and representative characterization of genomic 

methods and data.  Specifically, we describe a functional genomics gold standard based on 

curation by expert biologists and demonstrate its use as an effective means of evaluation of 

genomic approaches.  Our evaluation framework and gold standard are freely available to the 

community through our website.  Proper methods for evaluating genomic data and computational 

approaches will determine how much we, as a community, are able to learn from the wealth of 

available data.  In this chapter, we describe our insight into this problem and propose several 

guidelines for reasonable gold standards for genomic data analysis and integration.
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 The work presented in this chapter was published in [26] and includes contributions from 

Daniel Barrett, Matthew Hibbs, Curtis Huttenhower, and Olga Troyanskaya.  Daniel was 

instrumental in implementing the web-based evaluation system resulting from this study, Matt and 

Curtis provided ideas for both analysis and interface design, and Olga supervised the project.  

Also, Matt Brauer, Kara Dolinski, Maitreya Dunham, Rose Oughtred, and Charlotte Paquin 

contributed to the Gene Ontology-based evaluation standard. 

 

5.2 Background: Genomic Data Evaluation 

Recent advances in experimental methods have enabled the development of functional 

genomics, a genome-wide approach to understanding the inner workings of a cell.  While such 

large-scale approaches will undoubtedly be instrumental in extending our knowledge of molecular 

and cellular biology, they produce enormous amounts of heterogeneous data of varying 

relevance and reliability.  A key challenge in interpreting these data is separating accurate, 

functionally relevant information from noise. 

Here we focus on using noisy genomic datasets to associate uncharacterized genes or 

proteins with biological processes.  Recent literature on protein function prediction focuses on 

integrating multiple sources of evidence (e.g. physical interactions, genetic interaction, gene 

expression data) to assign proteins to processes [28,9,20,4] or to predict functional associations 

or interactions between related proteins [18,33,21,23,6,37].  Individual high-throughput datasets 

are typically noisy, but effective integration can yield precise predictions without sacrificing 

valuable information in the data.  All of these methods require a gold standard, which is a trusted 

representation of the functional information one might hope to discover.  Such a standard, 

coupled with an effective means of evaluation, can be used to assess the performance of a 

method and serves as a basis for comparison with existing approaches.  Beyond methods for 

predicting protein function or interactions, evaluation against gold standards can be used to 

directly measure the quality of a single genomic dataset, a necessary step in developing and 

validating new experimental technology. 
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We have undertaken a study of proposed standards and approaches to evaluation of 

functional genomic data and highlight a number of important issues.  We find that current 

approaches are inconsistent, making reported results incomparable, and often biased in such a 

way that the resulting evaluation cannot be trusted even in a qualitative sense.  One specific 

problem we identify is substantial functional biases in typical gold standard datasets.  We 

demonstrate this problem by evaluating several functional genomic datasets using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [19] as a gold standard (Figure 5.1), as is 

commonly employed in the literature (e.g. [21,39]).  A naïve evaluation in this manner identifies 

co-expression data as by far the most sensitive and specific genome-scale functional genomic 

data type (Figure 5.1a).  However, this apparent superior performance is due to characteristics of 

a single pathway; when the ribosome (1 out of 99 total KEGG pathways) is removed from the 

gold standard, co-expression becomes one of the least informative datasets (Figure 5.1b).  In 

addition to such substantial functional biases, we find that commonly used gold standards are 

highly inconsistent even for comparative evaluations and that most current evaluation 

methodologies yield misleading estimates of accuracy. 

We have identified and describe these problems with current evaluation standards with 

the hope of instigating a community dialog on proper approaches to comparing genomic data and 

methods.  As noted above, there are two typical approaches to using genomic data for analyzing 

protein function: methods that directly associate proteins with particular processes or functional 

classes, and methods that focus on predicting functional associations or interactions between 

pairs of proteins.  We focus our attention toward standards for the latter, evaluating pairwise 

associations between genes produced by either experimental or computational techniques.  Many 

of the problems we describe, however, apply to both approaches, and we suggest an alternative 

standard for evaluation that is appropriate in both settings.  We provide both a trusted set of 

functional associations between proteins as well as a specific set of biological processes that 

maps proteins to well-defined functional classes.  Both standards are based on curation by a 

panel of biological experts.  Furthermore, we propose several guidelines for using these 

standards to perform accurate evaluation of methods and data.  The resulting evaluation 
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framework can be used to directly measure and compare the functionally relevant information 

present in raw high-throughput datasets as well as to evaluate or train computational genomics 

methods. 

Our gold standard and evaluation methodology have been implemented in a web-based 

system [36] to facilitate community use for comparison among published datasets or methods.  

We demonstrate the use of our approach on genomic data from Saccharomyces cerevisiae.  

Figure 5.1.  Inconsistencies in evaluation due to process-specific variation in performance.  (a and 
b) Comparative functional evaluation of several high-throughput datasets based on a KEGG-derived 
gold standard.  The evaluation pictured in (b) is identical to that in (a) except that one of ninety-nine 
KEGG pathways was excluded from the analysis (“Ribosome,” sce03010).  Gold standard positives 
were obtained by considering all protein pairs sharing a KEGG pathway annotation as functional 
pairs, while gold standard negatives were taken to be pairs of proteins occurring in at least one 
KEGG pathway but with no co-annotation.   Performance is measured as the trade-off between 
precision (the proportion of true positives to total positive predictions) and true positive pairs.  For 
the evaluation in (b), both precision and sensitivity drop dramatically for co-expression data.  (c) 
Composition of correctly predicted positive protein-protein relationships at two different choices of 
precision-recall.  Of the 0.1% most co-expressed pairs, 99.3% of the true positive pairs (842 of 848) 
are due to co-annotation to the ribosome pathway (left pie chart).  This bias is less pronounced at 
lower precision but still present.  Of the 1% most co-expressed pairs, 86% of the true positive pairs 
(8500 of 9900) are due to co-annotation to the ribosome pathway (right pie chart). 
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Accurate evaluation methods are particularly critical for this model organism, because yeast is 

widely used as a platform for the development of both high-throughput experimental techniques 

and computational methods.  However, the weaknesses we identify in existing evaluation 

methodologies as well as the solution we propose are applicable to data from other model 

organisms and humans. 

 

5.3 Challenges in Effective Functional Evaluation 

We first discuss commonly used gold standards and several fundamental issues with current 

approaches to evaluation of functional genomic data and methods.  To address these problems, 

we propose a new gold standard based on expert curation and recommend appropriate uses of 

the standard that ensure accurate evaluation.  Finally, we describe a web-based implementation 

of our evaluation framework, which is available for public use by computational and experimental 

biologists. 

 

5.3.1 Existing Gold Standards 

A number of different gold standards for evaluating yeast functional genomic data or methods 

have been proposed in the literature.  Each standard generally consists of sets of gene or protein 

pairs grouped as either “positive” or “negative” examples.  This is due in large part to the fact that 

some high throughput data takes the form of associations between genes or gene products (e.g. 

physical or genetic interactions).  Furthermore, a pairwise approach to analysis is a natural way to 

view biological systems, which are composed of networks, or groups of interactions between 

gene products.  Although this is a commonly adopted approach, others have trained classifiers for 

specific functional classes where individual proteins or genes are directly associated with 

functional classes or processes [28,4].  While we focus on data and methods for pairwise 

associations between proteins here, many of the issues described are equally problematic for 

such non-pairwise approaches, and we propose an alternative gold standard appropriate for both 

settings (see details in “Defining a new gold standard” in Methods). 
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Most functional genomics evaluations derive gold standard positives from functional 

classification schemes that capture associations of genes or proteins with specific biological 

processes as reported in the literature [34,13,35,31,21,22,39,37].  Such classifications are 

available from multiple sources including the Gene Ontology (GO) [2] (and associated annotation 

repositories such as the Saccharomyces Genome Database)[3], KEGG [19], the Munich 

Information Center for Protein Sequences (MIPS) [25], and the Yeast Protein Database (YPD) 

[10].  A common source of gold standard negatives is cellular localization data [18,17,21,27].  

Most of these methods utilize a localization study in which 75% of the yeast proteome was GFP-

tagged and classified into 22 different cellular compartments [15] and they assume that two 

proteins localizing to distinct compartments do not interact.  Random pairs of proteins sampled 

from the proteome provide another common gold-standard negative, relying on the assumption 

that the expected number of functionally related or interacting pairs is much less than the total 

number of possible pairwise protein-protein combinations [11,6,29]. 

 

5.3.2 Inconsistencies among and within Different Standards 

Perhaps the most apparent issue with functional genomic evaluation arises from the diversity of 

possible standards and lack of agreement among them.  It has been noted that gold standard 

positive pairs derived from KEGG, MIPS, and GO biological process ontology show little overlap 

[7].  We find even less agreement among gold standards for physical interactions predictions, 

which are usually based on small interaction datasets obtained from protein-protein interaction 

databases such as the Database of Interacting Proteins (DIP) [38], the General Repository for 

Interaction Datasets (GRID) [8], or the Biomolecular Interaction Network Database (BIND) [1].  

However, the more alarming problem is that even the relative performance of methods or 

datasets evaluated against these standards is not consistent.  For example, using both the 

biological process GO and the KEGG pathways gold standard to evaluate the relative 

performance of commonly used data sets produces strikingly different results (Figure 5.2).  This 

difference is likely due to the nature of the biological relationships each standard is trying to 

capture or simply variation in which specific proteins are present in the classification scheme or 
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Figure 5.2.  Comparison of functional genomic data evaluation on GO and KEGG gold 
standards.  (a) Comparative functional evaluation of several high-throughput evidence types 
based on a typical Gene Ontology (GO) gold standard.  Positive pairs were obtained by 
finding all protein pairs with co-annotations to terms at depth 8 or lower in the biological 
process ontology.  Negative pairs were generated from protein pairs whose most specific co-
annotation occurred in terms with more than 1000 total annotations.  (b) Evaluation of the 
same data against a KEGG-based gold standard.  Gold standard positives were obtained by 
considering all protein pairs sharing a KEGG pathway annotation as functional pairs, while 
gold standard negatives were taken to be pairs of proteins occurring in at least one KEGG 
pathway but with no co-annotation.  There are several serious inconsistencies between the 
two evaluations.  In addition to vastly different estimates of the reliability of co-expression 
data, other evidence types change relative positions.  For instance, transcription factor 
binding site predictions appear competitive with both two-hybrid and synthetic lethality in the 
KEGG evaluation, but are substantially out-performed in the GO evaluation.  These 
inconsistencies between the two gold standards demonstrate the need for a common, 
representative evaluation framework. 
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interaction dataset.  Although each standard is correctly evaluating some aspect of the data, 

without a common, representative evaluation framework, the community cannot assess the 

relative performance of novel methods or high-throughput techniques. 

In addition to substantial inconsistencies among existing gold standards, variation in 

biological specificity within each standard has also impaired previous evaluation methods.  

Standards based on biological ontologies (e.g. GO or the MIPS Functional Catalogue) classify 

proteins at a broad range of resolutions (e.g. metabolism vs. carbohydrate metabolism).  

Although these ontologies can provide a powerful framework for defining a gold standard, there 

are a few caveats.  A typical approach for using GO has been to pick a particular depth in the 

hierarchy below which term co-annotations imply gold standard positives.  However, terms at the 

Figure 5.3.  Size distribution of depth 5 biological process GO terms (S. cerevisiae).  Depth 
and size are commonly used metrics for assessing the biological specificity of GO terms, a 
necessary step in creating a functional gold standard from the ontology.  Here, the number of 
direct and indirect annotations was counted for each depth 5 GO term and counts were 
binned to obtain a histogram of sizes for depth 5 GO terms.  This reveals a wide range of 
sizes for terms at the same depth (from 0 annotations to 1381 annotations), suggesting size 
and depth are not capturing the same notion of specificity, and that likely neither is an 
appropriate measure for true biological specificity.   A sampling of the largest and smallest 
depth 5 GO terms is shown in Table 5.1. 
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same level can vary dramatically in biological specificity [24] (Fig 5.3 and Table 5.1).  For 

example, at a depth of 5 in the biological process GO, the term “regulation of sister chromatid 

cohesion” (GO:0007063) with a single indirect gene product annotation appears alongside a 

much more general term “cellular protein metabolism” (GO:0044267), which has 1381 

annotations.  Widely varying degrees of specificity in a gold standard not only complicate 

evaluation methods but can also appear as inconsistencies in the data when training machine 

learning algorithms, which can result in poor performance. 

 

 

 

 

GO term Term 
depth 

Total 
annotations 

lipoic acid metabolism (GO:0000273) 5 1 
cytokinesis, contractile ring contraction 

(GO:0000916) 

5 1 
DNA ligation (GO:0006266) 5 1 

lysosomal transport (GO:0007041) 5 1 
regulation of sister chromatid cohesion 

(GO:0007063) 

5 1 
cytoskeleton organization and biogenesis 

(GO:0007010) 

5 285 
transcription (GO:0006350) 5 474 

protein biosynthesis (GO:0006412) 5 775 
cellular protein metabolism (GO:0044267) 5 1381 

 

5.3.3 Functional Biases in Prediction Performance 

The majority of current evaluation approaches are performed without regard to which biological 

processes are represented in the set of true positives (correctly predicted examples), and thus 

they are often unknowingly skewed toward particular processes.  We illustrate this bias with an 

example using the KEGG pathways gold standard to evaluate genomic data (Figure 5.1).  In this 

evaluation, the estimated reliability of microarray co-expression drops dramatically when a single 

pathway (“Ribosome” or sce3010) is excluded from the analysis.  The substantial drop in 

precision suggests that a large fraction of the true positives predicted by co-expression are 

exclusively ribosome relationships.  In fact, of the positive examples in the 1% most co-expressed 

Table 5.1.  Example depth five biological process GO terms.  GO term depth is a commonly used 
metric for biological specificity in the Gene Ontology.   5 of the smallest depth 5 GO terms and 4 of the 
largest depth 5 GO terms are listed above.  The processes described range from very specific 
behaviors (e.g. contractile ring contraction) to less informative groupings (e.g. cellular protein 
metabolism), suggesting depth is a poor measure of specificity.  The size distribution for all depth 5 
GO terms is plotted in Fig. 3. 
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pairs, 86% (~8500 of 9900) are due to co-annotation to the ribosome pathway.  This bias 

becomes even more pronounced at higher co-expression level cutoffs: of the 0.1% most co-

expressed positive pairs, 99% (842 of 848) are from the ribosome pathway.  We find a similar 

bias in evaluations using the GO and MIPS gold standards. 

Thus, the traditional approach of using a general ROC curve (or related measure) without 

regard to which processes are represented can be misleading (see Methods for a discussion of 

ROC curves).  This is particularly true when the data or computational predictions have process-

dependent reliability as is often the case with genomic or proteomic data.  The problem is  

magnified when the gold standard examples themselves are heavily skewed towards specific 

functional categories.  While the general precision-recall characteristics such as those portrayed 

in Figure 5.1 are technically correct, they generalize poorly to non-ribosomal protein relationships.  

Thus, such an evaluation would be misleading for a scientist hoping to use these data to generate 

new hypotheses about proteins unrelated to the ribosome.  We address this problem in our 

process-specific evaluation framework. 

 

5.3.4 Gold Standard Negatives 

Another shortcoming of current standards for gene/protein function prediction is the nature of the 

gold standard negative examples.  In yeast, one proposed source of gold standard negatives is 

based on protein localization data [15,17] because pairs of proteins localizing to different cellular 

compartments are highly enriched for non-interacting proteins.  However, localization data is 

likely not representative of “typical” unrelated protein pairs.  For instance, Ben-Hur and Noble 

found the performance of SVM classifiers trained with localization negatives artificially inflated 

because this negative set is composed entirely of high-confidence pairs [6,5]. Using such a non-

representative “easy” set of negatives will overestimate prediction accuracy, and the resulting 

classifier will generalize poorly to real biological problems. 

Thus, although protein localization data is a strong negative indicator of functional 

relationships or interactions, we caution against its use as a general negative gold standard.  This 

is particularly problematic for higher-level questions such as function prediction, because proteins 
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co-involved in some biological processes span cellular compartments.  Perhaps a safer role for 

localization data is as the input to computational approaches.  We suggest an alternative negative 

standard based on the biological process Gene Ontology that can provide representative 

negative examples (see “Suggestions for representative functional evaluation of data and 

methods”). 

 

5.3.5 Relative Size of Gold Standard Positive/Negative Sets 

A final issue common among many evaluation standards in the literature is the relative size of the 

positive and negative example sets.  The expected number of proteins involved in any particular 

biological process is a small percentage of the proteome, which should be reflected in evaluation 

standards.  This imbalance is particularly problematic in methods based on pairwise associations 

between proteins, where the expected number of protein pairs sharing functional relationships is 

an even smaller fraction of all possible protein combinations.  For instance, of the 18 million 

possible protein pairs in yeast, it is expected that less than 1 million are functionally related.  This 

large difference makes the typical reporting of sensitivity and specificity misleading.  For instance, 

a recently published method for predicting protein-protein interactions from several genomic 

features showed seemingly impressive 90% sensitivity and 63% specificity in evaluations [27], but 

would make correct predictions only 1 out of every 9 times when applied on a whole-genome 

scale, rendering the method impractical in many experimental contexts (details in additional file 4: 

Supplementary discussion).   

Given this imbalance, an appropriate measure of functional relevance of genomic data or 

predictions is the precision or positive predictive value (PPV) !
"

#
$
%

&

+ FPTP

TP [17].  This measure 

rewards methods that generate firm positive predictions, without regard to the accuracy of 

negative predictions, which are less helpful in guiding laboratory experiments.  Direct application 

of precision may be misleading, though, because this measure is only correct under the 

assumption that the ratio of positive to negative examples in the gold standard matches that in 

the application domain.  If the ratio of positive to negatives in the gold standard is much larger 
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than in whole-genome data, as is often the case in published evaluations, then the number of 

false positive predictions will be small and will artificially inflate the precision statistic.  For 

instance, the 90%-63% sensitivity-specificity example above used an approximately equal 

number of positive and negative examples (1500 and 2000 respectively), leading to 65% 

precision.  However, application of this method on a whole-genome scale, where the ratio of 

positive to negative examples is roughly 20 times smaller, would lead to an expected precision of 

just 11% (details in additional file 4: Supplementary discussion).   

To avoid such misleading evaluations, the balance of positives and negatives in the gold 

standard should match that of the application domain as closely as possible.  Precision, or PPV, 

then becomes a direct, representative measure of how well one could expect a dataset or method 

to perform on whole-genome tasks.  Of course, precision alone does not convey all of the 

important information, only the quality of the predictions made by a dataset or method.  It must be 

reported in tandem with some measure of the quantity of true predictions made.  A standard 

measure for this is the recall, or sensitivity !
"

#
$
%

&

+ FNTP

TP , which is what is used in our evaluation 

framework (for more details, see Methods). 

 

5.4 Suggestions for Representative Functional Evaluation of 

Data and Methods 

In light of these problems with current gold standards and approaches to evaluation, we have 

compiled a new functional genomics gold standard and suggest several strategies for accurate 

comparative evaluation of genomic datasets and methods. 

 

5.4.1 Defining a New Gold Standard 

As discussed previously, a major issue with the current state of the community is inconsistency 

among the variety of standards used.  Evaluations based on different standards (e.g. derived 

from KEGG versus GO) are often not comparable, even in a qualitative sense.  Deriving a 

standard from these hierarchies is further complicated due to varying levels of biological 



Chapter 5:  Gold Standards and Evaluation of Genomic Data 

104 

specificity of curated biological knowledge.  Furthermore, each of the sources of curated 

information has inherent functional biases that can lead to incorrect estimates of accuracy.   

To develop a unified standard for general application in functional genomics, several key 

criteria must be met.  The standard must be cross-organismal to ensure relevance to a broad 

audience.  Secondly, the standard should cover a wide variety of biological functions or 

processes to facilitate comprehensive evaluations.  Finally, the standard should adapt quickly as 

biological knowledge expands.  Although there are several sources of annotation that satisfy 

these criteria to varying extents (eg. KEGG, MIPS, and GO), GO is arguably the best option to 

serve as a foundation for the standard, as it is well-curated and was designed for complete 

coverage. 

Although GO can serve as a good basis for a functional gold standard, effective mapping 

from organism-specific annotations to a set of positive and negative examples is critical.  In 

particular, we have addressed the problem of varying levels of resolution in the GO hierarchy by 

selecting the gold standard set of terms through curation by six expert biologists. Through this 

formal curation process, the experts selected terms that are specific enough to be confirmed or 

refuted through laboratory experiments while also general enough to reasonably expect high-

throughput assays to provide relevant information (see details in Methods and additional file 4: 

Supplementary discussion).  The result of this process is a set of specific functional classes (GO 

terms) which can be used to generate an accurate set of positively related gene pairs or to 

directly evaluate or train computational approaches that explicitly associate proteins with 

particular biological processes.  This standard created using expert knowledge is quite different 

from GO standards commonly used in the literature (Figure 5.4).  It can serve as a single, 

common standard that addresses the specific concerns of functional genomics. 

This curation can also be used to obtain a negative standard which addresses some 

issues with currently used methods.  Specifically, our standard includes a set of negatives more 

broadly representative than sources such as localization while excluding likely positive examples 

(a shortcoming of approaches that use random sampling).  Further, the standard approximates 
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the correct relative balance of positive and negative sets enabling biologically relevant 

evaluations (see Methods for details). 

 

 

Figure 5.4.  Depth and size properties of GO terms selected or excluded from the evaluation 
gold standard based on expert curation.  The functional gold standard based on voting from an 
expert panel cannot be approximated by either a size or a depth measure of specificity.  (a) 
Distribution of GO term depths for expert-selected terms (4-6 votes) and expert-excluded terms 
(1-3 votes).  The selected set of terms cannot be separated from the “too general” excluded 
terms on the basis of depth.  For instance, 53 of the 107 general GO terms appear at depth 4 or 
lower and 51 of 1692 specific GO terms appear at depth 3 or higher.  (b)  Distribution of GO 
term sizes (direct and indirect annotations) for the selected and excluded terms based on the 
expert voting analysis.  As with term depth, size cannot effectively distinguish specific terms 
from those deemed too general by experts.   For example, 28 of 107 GO terms deemed too 
general for inclusion in the standard have fewer than 100 annotations. 
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5.4.2 Evaluating Genomic Methods and Data 

 In addition to defining a unifying standard, it is critical to use the standard in a manner that 

accurately reflects the biological reliability of datasets or methods.  To expressly address the 

process-specific variability in accuracy, we developed an evaluation framework that facilitates 

identification of functional biases in current general evaluations.  To accomplish this, we propose 

that two complementary modes of analysis accompany any evaluation of functional genomic 

data:  (1) a genome-wide evaluation that estimates general reliability but also reports the 

functional composition of the results and (2) a process-specific evaluation in which the data or 

method is independently evaluated against a set of expert-selected processes. 

 

Genome-wide evaluation 

To provide a genome-wide analysis that also features information on the constituent biological 

processes, we have developed a hybrid evaluation framework that combines traditional measures 

of the precision-recall tradeoff with an analysis of the biological processes accurately represented 

in the data.  In addition to the usual estimation of precision-recall characteristics, we compute the 

distribution of biological processes represented in the set of correctly classified positives (true 

positives) at every point along the precision-recall tradeoff curve (Figure 5.5).  This distribution 

allows one to identify and measure any biases in the set of positive results toward a specific 

biological process and interpret evaluation results accordingly.  Furthermore, all of this 

information is summarized and presented in a dynamic and interactive visualization framework 

that facilitates quick but complete understanding of the underlying biological information. 

Figure 5.5 illustrates an example of a genome-wide evaluation of several high-throughput 

datasets using our framework.  At first glance, a general evaluation indicates that the Gasch et al. 

microarray data is the second most reliable source for functional data (Figure 5.5a).  However, an 

analysis of the processes represented in the set of correctly classified pairs reveals that 

approximately 60% of the correct predictions by the co-expression data are related to the process 

of ribosome formation (Figure 5.5a, bottom chart).  This type of analysis is included for any 
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Figure 5.5.  General (whole-genome) evaluation example.  (a) Example of a genome-wide evaluation of 
several different high-throughput datasets using our framework.   These datasets include five protein-
protein interaction datasets, including yeast 2-hybrid [34,16,32] and affinity precipitation data [13,14], and 
two gene expression microarray studies [30,12].  Pearson correlation was used as a similarity metric for 
the gene expression data.  The functional composition of the correctly classified set can be investigated 
at any point along the precision-recall trade-off, as is illustrated for the Gasch et al. co-expression data.  
This analysis reveals that a large fraction of the true positive predictions (> 60%) made by this dataset 
are associations of proteins involved in ribosome biogenesis.  Of the 500 true positive pairs identified at 
this threshold, 298 are pairs between proteins involved in ribosome biogenesis, suggesting that the 
apparent superior reliability may not be general across a wider range of processes.  (b) The same form 
of evaluation as in (a), but with a single GO term (“ribosome biogenesis and assembly,” GO:0042254) 
excluded from the analysis, a standard option in our evaluation framework.  With this process excluded, 
the evaluation shows that neither of the co-expression datasets is as generally reliable as the physical 
binding datasets.  Additional functional biases can be interrogated through this analysis and corrected if 
necessary. 
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evaluation done with our system and interactive visualization allows for quick and accurate 

detection of any biases that might be present. 

In addition to identifying biases in genome-wide evaluations of datasets or methods, our 

evaluation framework provides a way to normalize these biases out of the analysis.  A user can 

choose to exclude all positive examples related to one or more biological processes.  Figure 5.5b 

illustrates an example of this functionality for the evaluation discussed above.  Based on the bias  

we observed, we excluded all proteins involved in ribosome biogenesis and assembly (GO term 

GO:0042254) and re-evaluated the same set of datasets.  While none of the interaction datasets 

change significantly with this process excluded, both gene expression datasets show substantial 

decay in their precision-recall characteristics, suggesting they are generally less reliable at 

predicting functional relationships over a broad range of processes.  This result is quite different 

from what we might have concluded had we not been able to discover and correct this process-

specific bias.  

 

Process-specific evaluation 

Many biological laboratories focus on specific processes or domains of interest, even when using 

high throughput data/methods.  In such situations, a targeted, process-specific evaluation is often 

more appropriate than a genome-wide evaluation. Our framework facilitates convenient and 

representative process-specific evaluations by performing independent precision-recall analysis 

for each process of interest.   

For effective presentation of process-specific evaluation results, we have developed an 

interactive matrix-based view that facilitates comparative evaluation of multiple datasets across 

several targeted biological processes (Figure 5.6).  This method allows for easy and dynamic 

inter-process and inter-dataset comparisons.  In addition, precision-recall characteristics for any 

process are readily accessible, allowing for a more detailed view of the results.  Thus, our 

framework combines general and specific evaluations, enabling accurate interpretation of 

functional genomics data and computational methods.  This community standard can facilitate the 
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comparisons necessary for formulating relevant biological hypotheses and determining the most 

appropriate dataset or method for directing further experiments. 

 

5.5 Supporting Methods 

5.5.1 GO-based Functional Gold Standard 

With the Gene Ontology and corresponding annotations in hand, the main issue in generating a 

standard for evaluation is deciding which terms are specific enough to imply functional  

associations between gene products.  As noted in Results and discussion, the typical approach to 

this problem has been to select a particular depth in the ontology, below which all co-annotated 

genes are taken to be positive examples.  This has obvious problems in that biological specificity 

Figure 5.6.  Process-specific evaluation example.  A detailed understanding of which specific biological 
signals are present in a particular dataset is important for robust evaluation.  Our evaluation framework 
allows users to query specific processes of interest.  (a) Example of an evaluation of 7 high-throughput 
datasets over a set of 16 user-specified processes (GO terms).  The precision-recall characteristics of 
each dataset-process combination were computed independently and the intensity of the corresponding 
square in the matrix is scaled according to the area under the precision-recall curve (AUPRC).  (b) 
Detailed comparison of results for a single dataset, which can be accessed directly from the summary 
matrix.  The AUPRC statistic of a particular dataset (e.g. Ito et al. two-hybrid) for each process is plotted 
to allow for comparison across a single dataset.  (c) The actual precision-recall curve (from which the 
AUPRC was computed) is also easily accessible from our evaluation framework.  Users can view 
underlying details of the AUPRC summary statistic which appears in the other three result views.  (d) 
The AUPRC results for a single biological process across all datasets can also be obtained from an 
evaluation result.  This allows for direct measure of which datasets are most informative for a process of 
interest.  
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varies dramatically at any given depth in the ontology (see Figure 5.3 and Table 5.1 for details).  

Another approach reported in the literature is to use term size (i.e. the number of gene product 

annotations) as a proxy for biological specificity.  Using this approach, gene products co-

annotated to terms smaller than a certain threshold are considered positive examples.  The 

number of annotation genes, however, is not only a function of how specific a particular term is, 

but often how well-studied the area is.  Thus size is not always an accurate indicator of specificity, 

and this problem only becomes worse in organisms that are less well-studied.  

To address the issue of biological specificity of positive examples, we chose the less 

automated but more direct and biologically consistent approach of expert curation.  For this task, 

we chose six biological experts with doctorate degrees in yeast genomics.  This group contains a 

cumulative total of more than 40 years of post-doctoral experience working with yeast in a 

research setting.  Instead of using characteristics of the GO term (e.g. depth in the hierarchy, 

number of annotations) to determine specificity, we instructed our expert panel to formally assess 

which GO terms are specific enough to imply a meaningful biological relationship between two 

annotated proteins.  More precisely, we instructed the experts to select terms with enough 

specificity that predictions based on them could be used to formulate detailed biological 

hypotheses, which could be confirmed or refuted by laboratory experiments.  This curation was 

performed for all GO terms from the biological process branch of the ontology without information 

of their hierarchical relationships, and each set of resulting responses was corrected for 

hierarchical inconsistencies.  Responses for all experts were then merged by counting the 

number of votes for each GO term and terms that received more than three votes were selected 

for the positive evaluation standard.  The final counts for all GO terms can be obtained from 

additional file 1: Biological expert voting results. 

Given this set of specific GO terms, we can generate a positive pairwise gold standard by 

considering all proteins co-annotated to each term as positives.  This set of specific functional 

classes can also be used to directly evaluate or train computational approaches that explicitly 

associate proteins with particular biological processes as well.  For this, we start with the set of 

specific terms and obtain a non-redundant set by removing any terms whose ancestors are also 
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in the set.  This set of terms can be obtained from additional file 3: Non-redundant set of specific 

GO terms. 

We can also use the results of this voting procedure to define a representative set of 

negative examples.  We expect that GO terms receiving 1 or fewer votes are too general to imply 

meaningful functional relationships between co-annotated proteins.  Furthermore, GO terms with 

a very large number of direct and indirect annotations (i.e. a substantial fraction of the genome) 

are most certainly too general to imply meaningful functional relationships between co-annotated 

members.  Thus, we obtain a set of gold standard negatives by finding pairs of proteins in which 

both members have annotations (other than “biological process unknown”) but whose most 

specific co-annotation occurs in terms with more than 1000 total annotations (~25% of the 

annotated genome) and with one or fewer votes from our panel of six experts.  The resulting 

negative set is more accurate than random pairs of proteins but is still large enough to reflect our 

understanding of the relative size of functionally related to unrelated pairs in the genome.  

Furthermore, this set of negative examples is more representative of the presumed distribution of 

biological negatives than alternate sources of negative evidence such as co-localization.  The 

final gold standard based on this analysis can obtained from additional file 2: GO-based yeast 

functional gold standard. 

The resulting set of gold standard positive and negative examples is quite different from 

previously used GO standards based on size or depth as a measure of biological specificity.  

Figure 5.4 illustrates this, plotting a histogram of GO term depth and size for both the excluded 

and included GO term sets based on the biological expert voting procedure described above.  

Because our gold standard is based on direct re-evaluation of the gene ontology with respect to 

functional genomics, there are a number of non-specific GO terms excluded based on the voting 

results that appear relatively deep in the ontology, and conversely, a number of relevant GO 

terms included that appear near the root (Figure 5.4).  A similar trend is true of the GO term sizes 

of the selected and excluded set: many of the GO terms excluded on the basis of expert voting 

have relatively few annotations.  This confirms our earlier observation that neither size nor depth 

in the ontology serve as good measures of biological specificity.  Basing the criteria for generating 
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a GO-based gold standard instead on expert knowledge ensures that the standard is consistent 

in terms of the biological specificity of the relationships it is capturing and can therefore provide a 

meaningful basis for evaluation. 

Other efforts have previously aimed to derive summary terms from the GO hierarchy, 

most notably the Saccharomyces Genome Database’s (SGD) GO Slim set [2].  This set, 

however, is not generally appropriate for the purposes of functional evaluation as it was 

constructed to be a set of “broad biological categories” meant to span the entire range of 

processes [2].  The functional relationships captured by such broad terms are often too general to 

provide a meaningful basis for data evaluation.  For example, protein biosynthesis (GO:0006412) 

is one such term included in the GO Slim set, which has approximately 800 annotated genes.  A 

prediction of an uncharacterized protein’s involvement in “protein biosynthesis” would not be 

specific enough to warrant further experimental investigation in most cases.  Furthermore, from 

the perspective of defining an accurate pairwise evaluation standard, clearly not every pair of 

genes within this set (over 300,000 possible pairwise combinations) has a specific functional 

relationship.  

 

5.5.2 Metrics for Evaluation: ROC and Precision-recall Curves 

Sensitivity-specificity and precision-recall analysis are two approaches to measuring the 

predictive accuracy of data from two classes given the class labels (referred to here as positive 

and negative).  Sensitivity and specificity are typically computed over a range of thresholds (for 

multi-valued data) and plotted with respect to one another.  Such an analysis is known as a 

Receiver Operating Characteristic (ROC) curve and portrays the trade-off between sensitivity and 

specificity.  Each threshold yields one point on the curve by considering protein pairs whose 

association in the data exceeds the threshold value to be positive predictions and other pairs to 

be negative.  Precision-recall analysis is done in the same way, but with precision (or PPV) 

replacing specificity.  Each of these quantities is calculated as described in Table 5.2.  

ROC and precision-recall curves can be summarized with a single statistic: the area 

under the curve.  For ROC curves, we refer to this statistic as the AUC, which is equivalent to the  
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Wilcoxon rank-sum (Mann-Whitney) statistic.  Precision-recall characteristics can be summarized 

with a similar measure which we refer to as the AUPRC.  For all plots shown here, we have used 

AUPRC because precision is more informative than specificity for the typical sizes of positive and 

negative example sets as discussed in the “Relative size of gold standard positive/negative sets” 

section of Results and discussion. 

 

5.5.3 Implementation of Web-based Evaluation Framework 

To facilitate community use of the standard, we have implemented 

our evaluation framework in a public, web-based system available 

at [36].  All evaluations are based on the standard described in 

“Defining a new gold standard”, which is also available for 

download as additional file 2: GO-based yeast functional gold standard and additional file 3: Non-

redundant set of specific GO terms.  The website allows users to upload genomic datasets for 

evaluation and includes several widely used high throughput datasets (including those described 

Quantity Definition 

True positives (TP) protein pairs associated by data and annotated as 
positives in gold standard 

False positives (FP) protein pairs associated by data and annotated as 
negatives in gold standard 

True negatives (TN) protein pairs not associated by data and annotated as 
negatives in gold standard 

False negatives (FN) protein pairs not associated by data and annotated as 
positives in gold standard 

Precision 
FPTP

TP

+
 

Recall 
FNTP

TP

+
 

Specificity 
FP TN

TN

+
 

Sensitivity 
FNTP

TP

+
 

Table 5.2.  Definition of quantities relevant for dataset evaluation.   

(logo design by Matt Hibbs) 
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here) for comparative evaluation.  The methods for presenting evaluation results, including all 

graphs and interactive components, were implemented in SVG (Scalable Vector Graphics), which 

can be viewed on most browsers with freely available plugins (see Help at [36] for details).  The 

web interface was implemented in PHP, with a back-end MySQL database and C++ evaluation 

server.  

 

5.6 Conclusions 

We have identified a number of serious issues with current evaluation practices in functional 

genomics.  These problems make it practically impossible to compare computational methods or 

large-scale datasets and also result in conclusions or methods that generalize poorly in most 

biological applications.  We have developed an expert-curated functional genomics standard and 

a methodological framework that address the problems we have identified.  We hope these can 

serve as an alternative to current evaluation methods and will facilitate accurate and 

representative evaluation.  Furthermore, we hope our analysis will initiate a broader community 

discussion about appropriate evaluation techniques and practices.   

In recent years, the computational community has played an influential role in the field of 

genomics by contributing many valuable computational methods that facilitate discovery of 

biological information from high-throughput data.  However, without an accurate understanding of 

how well the computational methods perform, the role of bioinformatics in directing experimental 

biology will remain limited.  Lack of accurate assessment of the experimental methods 

themselves hinders both interpretation of the results and further development of genomic 

techniques.  Thus, representative evaluation of computational approaches and high throughput 

experimental technologies is imperative to our ability as a community to harness the full potential 

of biological data in the post-genome era. 
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5.7 Supplemental Data Files 

1.  Biological expert voting results 
File name:  GO_curated_gold_standard_votingresults.txt 
File format: tab-delimited text 
Title:  Biological expert voting results 
Description: 
This file contains the results of the voting procedure used to generate a functional gold standard 
based on the Gene Ontology (described in detail in Methods).  Experts selected terms that are 
specific enough to direct laboratory experiments, but are also general enough to reasonably 
expect high-throughput assays to provide relevant information.   
 
2.  GO-based yeast functional gold standard 
File name:  GO_curated_gold_standard.txt.gz 
File format:  gzipped text 
Title:  GO-based yeast functional gold standard 
Description: 
This file contains the final pairwise gold standard set of positive and negatives resulting from our 
expert curation.  Yeast protein pairs classified as positives are labeled with a “1” and pairs 
classified as negative in the standard are indicated with a -1. 
 
3.  Non-redundant set of specific GO terms 
File name:  GO_curated_nonredundant_terms.txt 
File format: tab-delimited text 
Title:  Non-redundant set of specific GO terms 
Description: 
This file contains a non-redundant set of GO terms receiving more than 3 votes (of 6) from 
experts.  The non-redundant set was obtained by removing any term whose ancestor in the 
hierarchy is also in the set. 
 
4.  Supplementary discussion 
File name:  supplementary_discussion.pdf 
File format: pdf 
Title:  Supplementary discussion 
Description: 
This file contains a more detailed discussion of the relative size of gold standard positive and 
negative example sets and associated issues. 
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Chapter 6  
 

Context-sensitive Data Integration 
and Prediction of Biological 
Networks 
 
6.1 Chapter Overview 

In Chapter 4, we discussed a general strategy for integrating genomic data and predicting 

biological networks that accounts for reliability of the input data.  However, as discussed in 

Chapter 5, experimental technologies capture different biological processes with varying degrees 

of success, and thus, each source of genomic data can vary in relevance depending on the 

biological process one is interested in predicting.  Accounting for this variation can significantly 

improve network prediction, but no previous approaches have explicitly leveraged this critical 

information about biological context. 

In this chapter, we confirm the presence context-dependent variation in functional 

genomic data and propose a Bayesian approach for context-sensitive integration and query-

based recovery of biological process-specific networks.  By applying this method to 

Saccharomyces cerevisiae, we demonstrate that leveraging contextual information can 

significantly improve the precision of network predictions, including assignment for 

uncharacterized genes.  We expect that this general context-sensitive approach can be applied to 

other organisms and prediction scenarios.   

The work presented in this chapter was published in [21] and includes contributions from 

David Hess, Amy Caudy, and Olga Troyanskaya.  David and Amy were complete all experimental 

work in confirming mitochondria-related mutants, and Olga supervised the project.   
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6.2 Background 

Recent developments in biological technology have fueled the generation of numerous large 

genomic and proteomic datasets for several organisms.  These data capture a wide range of 

biological phenomena including gene expression, genetic interactions, physical interactions 

between proteins, and sequence content.  Many recent studies have shown that high-throughput 

data are often quite noisy and have varying degrees of reliability or relevance for understanding 

biological networks [9,24,5].  To address this heterogeneity and harness the wealth of information 

present in the data, several groups have designed methods for data integration to combine 

information from multiple sources of genomic or proteomic evidence in order to arrive at accurate 

and holistic network and gene predictions.  For instance, Troyanskaya et al. used expert-based 

Figure 1.  Dataset relevance across different biological contexts. 
 

Figure 6.1.  Dataset relevance across different biological contexts.  We measured the 
relevance of several Saccharomyces cerevisiae genomic datasets for predicting function in a 
range of biological contexts (GO terms) using our previously published evaluation framework 
[19].  A selection of the datasets used in our integration appear on the rows, and contexts 
appear on the columns.  The intensity of each square reflects the area under a precision-
recall curve (AUPRC) for each dataset in the corresponding context.  The relevance of each 
dataset varies substantially both in terms of precision and sensitivity across biological 
processes, and thus the relative weighting of data during integration depends critically on the 
context.  For example, if one were interested in predicting proteins involved in ribosome 
biogenesis, any of the three gene expression datasets would be informative.  If one were 
interested in chromosome organization, these data might offer little reliable information as 
compared to one of the two-hybrid datasets (e.g. Drees et al.). 
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Bayesian networks for inferring functional interactions between pairs of proteins given observed 

experimental data supporting those interactions [26].  Other studies have extended this idea by 

applying more sophisticated Bayesian approaches and other methods, most of which 

automatically learn reliability characteristics from the data given a trusted gold standard 

[15,27,17,14,23].  In general, all of these methods assess the reliability of input high-throughput 

genomic data and use these characteristics for more robust integration, which typically offers 

significant improvement in terms of both sensitivity and specificity in predicting protein-protein 

interactions or functional relationships. 

While these earlier approaches to data integration address the heterogeneity in reliability 

among different datasets, they all fail to utilize one important source of variation: biological 

context.  Most experiments are designed with a particular process or pathway in mind.  For 

instance, a researcher studying meiosis in yeast might profile gene expression under specific 

conditions (e.g. in sporulation media) that result in a clear meiotic signal in the data but very little 

reliable information about the mitotic cell cycle.  Furthermore, most experimental technologies 

target specific biological processes simply because of how they physically measure biological 

phenomena.  Yeast two-hybrid technology for identifying interacting proteins, for example, relies 

on the two-domain structure of eukaryotic transcription factors to report an interaction.  A two-

hybrid positive interaction is obtained by fusing one protein to a DNA-binding domain (bait) while 

another protein is fused to an activation domain such that binding of the two proteins of interest 

“switches on” transcription of a reporter gene [22].  Thus, while two-hybrid results are generally 

informative for proteins which can be targeted to the nucleus, we should expect very little reliable 

information about membrane proteins or proteins with domains that prevent them from entering 

the nucleus.  In fact, if an interaction including such a protein is reported, we should confidently 

reject it as a false positive. 

We have explicitly measured context-dependent variation for a wide variety of public, 

genomic data for Saccharomyces cerevisiae (baker’s yeast), including a large number of 

microarray datasets, protein-protein interaction data, and sequence data.  Specifically, for each 

source of functional genomic data we measured precision-recall characteristics for a set of 
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experimentally relevant Gene Ontology (GO) terms covering a broad range of biological 

processes [19] (Figure 6.1).  This analysis demonstrates that most datasets have a broad range 

of precision-recall characteristics depending on which processes they are compared against.  

More importantly, we find that the relative ordering of genomic data in terms of quality varies 

dramatically from process to process, suggesting the degree to which we should trust any dataset 

depends on the process we are interested in predicting. 

While this context-dependent variation is not surprising given the inherent bias of different 

experimental techniques toward particular processes and different goals and conditions under 

which the data was measured, to our knowledge, no previous computational approaches for 

heterogeneous data integration or network prediction have explicitly leveraged this information.  

We demonstrate here that incorporating information about biological context in the integration and 

prediction process can significantly boost precision and sensitivity.  We develop a system for 

predicting process-specific networks from diverse genomic data that uses biological context 

information to improve the recovery of known networks from integrated experimental data.  We 

compare our contextual approach to our earlier work, which uses prior knowledge of gene 

function as a gold standard, but does not specifically leverage biological context [20], and 

demonstrate that considering context can yield a dramatic benefit.  While we illustrate the effect 

of biological context for a specific method for network prediction here, we demonstrate that such 

context-specificity has a dramatic effect on dataset reliability and thus we expect that the general 

idea can be used to improve predictions in a variety of settings and for many organisms. 

 

6.3 Methods 

The objective of our approach is, given a diverse set of genomic data, to recover a process-

specific network starting from a small related set of query proteins.  Such algorithms have proven 

to be practical approaches for expert-driven search of genomic data, largely because they 

harness information from all available evidence in a robust way while also providing an intelligent 

interface for discovering functional modules and extracting the relevant portion of the interaction 

network [20].  This general approach of incorporating expert direction in the prediction process is 
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articularly attractive because it offers a convenient method of learning the biological context and 

leveraging this information to arrive at more precise predictions.  Our solution based on this 

premise can be divided into two distinct components:  a data integration phase that forms a 

probabilistic protein-protein network as supported by experimental data, and a network search 

algorithm that, given the probabilistic network, recovers additional relevant proteins starting from 

a query set (Figure 6.2).  Both phases of the network prediction process utilize information about 

biological context, which is inferred from the starting query set. 

 

6.3.1 Bayesian Context-specific Integration 

The integration phase consists of a Bayesian network, which captures the context-dependent 

reliability variation to integrate the diverse input data.  The result of this phase is a probabilistic 

protein-protein interaction network reflecting the reliability of the supporting data in a given 

biological context.  The input data used here and the details of the Bayesian network are 

described below. 

 

 

 

Figure 6.2.  Overview of method for 
context-sensitive integration and 
prediction.  Our approach is developed 
for the scenario where a user enters a 
query set of proteins and wishes to obtain 
a relevant network prediction based on a 
diverse set of experimental evidence.  
The method consists of two stages, the 
first a Bayesian network for data 
integration and the second a network 
recovery algorithm which uses the 
probabilistic network from the first stage 
to recover the network surrounding the 
entered query.  The biological context of 
a prediction is inferred from the entered 
query set, and this information is fed into 
both stages to improve prediction 
precision. 
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Genomic input data 

We have collected genomic data for Saccharomyces cerevisiae from over 6500 publications, 

including gene expression, literature-curated and high-throughput protein-protein and genetic 

interactions [1,25], protein localization data [13], transcription factor binding site data [29,12], and 

sequence data [28].  See Appendix A for a detailed description of how each data type was 

processed.  The processed input data was separated first by experimental method responsible for 

producing the data, then by publication.  To ensure that each input dataset had a reasonable 

number of observations for learning, publications with fewer than 50 observations were merged 

with other publications reporting results from the same experimental method.  This process 

resulted in 174 different input data types for Bayesian integration. 

 

Bayesian network 

The goal of our integration scheme is to harness the information from the diverse data while not 

sacrificing precision.  Furthermore, the integration is designed such that it can model and exploit 

the context-dependent relevance variation discussed earlier.  Because many of the input data 

types represent functional interactions (either physical or other) between pairs of genes or 

proteins, we have adopted the approach of predicting functional associations.  This approach has 

been used in several earlier studies [15,27,17,14], and the final integrated protein-protein linkage 

network is convenient for understanding and predicting network structure, which is our goal here.  

Several methods for associating proteins directly with processes or functional classes (function 

prediction) have also been applied successfully [18,16,6], but are less appropriate for the goal of 

network analysis and prediction. 

Starting with the goal of predicting functional associations between genes, there are 

several choices of machine learning methods that might be appropriate.  Here, we employ a 

Bayesian network because it is robust to diverse forms of input data, and it yields a generative 

model that is useful in terms of drawing relevant biological conclusions about the properties of the 

input data.  Furthermore, a Bayesian framework is a convenient setting for incorporating 

contextual information as is illustrated below. 
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The simplest Bayesian approach for integration is to assume independence between all 

of the input datasets given knowledge of a functional relationship between any pair of proteins.  In 

practice, this approach is quite powerful for genomic data and is competitive with more 

sophisticated alternatives, including methods where dependence among datasets is modeled  

(e.g. tree-augmented Bayesian networks [10], see Appendix B for a comparison).  We begin with 

the naive approach and extend it to include contextual information as illustrated in Figure 6.3.  

Each input dataset is modeled with a discrete probability distribution conditioned on the presence 

or absence of a functional relationship and the biological context.  Given a gold standard which 

associates observed data with known functional relationships and biological context (described in 

detail in the following section), we estimate the conditional distribution for each input dataset by 

simple counting.  With these learned parameters, given a new protein-protein pair with observed 

data and a corresponding context (derived from the query as described below), we can then infer 

the probability of functional relationship between the two proteins, i.e. 
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Figure 6.3.  Bayesian network for context-sensitive integration.  The data integration stage of 
our context-sensitive approach consists of a Bayesian network, which is used to integrate 
pairwise protein-protein association data to arrive at a single, probabilistic network.  Biological 
context information is incorporated into the integration process by conditioning the probability 
distributions of each type of observed genomic data on both the presence or absence of a 
functional relationship between the pair of proteins in question and the biological context of 
interest.  This structure captures both the inherent dataset quality as well as the relevance 
variation from one biological process to another.  Evidence nodes are assumed to be 
discrete, and conditional probability tables (CPT’s) are automatically learned from the data 
using a gold standard based on the biological process branch of the Gene Ontology (GO). 
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Here
ijFR refers to the presence or absence of a functional relationship between proteins i and j, 

n

ijD
refers to the observed association in dataset n between the proteins i and j, 

ijC
is the biological 

context of the pair, and !  is a normalization constant. 

 

Gold Standard for Bayesian Integration 

The gold standard used in estimating the parameters for the Bayes net is a critical part of the 

prediction process.  The gold standard used here is based on the biological process branch of the 

Gene Ontology [2] as proposed in [19].  For the global (non-context-sensitive) approach 

described here, we directly used the protein-protein pairwise standard for functional relationships 

published in Myers et al. as our global (non-context-sensitive) standard for functional relationship.  

For the context-sensitive approach, we require a gold standard that associates positive and 

negative examples of functionally related pairs of proteins to a set of biological contexts.  For this, 

we used the non-redundant set of specific GO terms published in [19], which is a set of terms 

spanning the entire process ontology at a specificity sufficient for inferring useful functional 

information as curated by biology researchers.  Specifically, we chose the 101 largest of these 

terms (those with more than 20 annotations), as the space of all possible contexts (c1, ..., cn).  

Positive examples for each context were derived by forming all possible pairs of proteins 

annotated to the corresponding term.  Negatives were sampled from the negative gold standard 

described in [19].  Negative gold standard pairs are obtained by sampling from the set of 

negatives used for the global context until the ratio of positives to negatives matches the global 

prior.  20% of these negatives are sampled from protein pairs annotated as negative in the gold 

standard but for which one of the proteins is in the current context.  The remaining 80% are 

sampled from the entire set of gold standard negatives.  The reason for this distinction is that 

these two sets of negatives can be, qualitatively, quite different— the negatives touching the 

context of interest are generally more difficult to classify.  A context-sensitive gold standard 

consisting of a mix of these two types of negatives provides the best performance based on 
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empirical evidence.  During the inference process, context is inferred from the entered query 

proteins by mapping to the term in this comprehensive set containing the maximum number of 

proteins in the query.   

 

6.3.2 Context-sensitive Network Recovery Algorithm 

The problem of recovering a network from a starting query set given a probabilistic interaction 

graph of proteins has been addressed in previous work [4,3,8,20].  Approaches to this problem 

range from random walks on the probabilistic network [8], to methods based in network reliability 

theory [3], to variations of maximum adjacency [4,20].  We find that the performance of such 

methods often depends on the sparsity of the starting network, and it is difficult to find one that 

always provides superior performance.  We describe an approach here that performs favorably 

on our probabilistic network, but emphasize that the larger point of incorporating biological 

context is independent of the specific network recovery algorithm used.  Our network recovery 

algorithm consists of two steps:  (1) a feature selection step that, given a query set of genes, 

determines a “characteristic” interaction profile for that group, and (2) a pattern matching step that 

finds additional proteins matching the characteristic profile. 

 

Feature selection 

Let Q be the query set of proteins of size NQ chosen out of the entire proteome consisting of NT 

proteins, and let ( )ijk

ijijijijij CDDDFRPp ,,,,
21

K=  be the probability of functional relationship 

between proteins i and j in the current biological context.  Our goal is to select a set of features 

which are predictive of proteins related to the query set.  Here, we treat each protein’s interaction 

probabilities as a set of features, and thus feature selection is equivalent to finding a set of 

interaction partners which are common and discriminative of the query set.  For each possible 

feature, k, we compute: 
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where t  is a threshold on the interaction probabilities.  We can then assign a p-value measuring 

the significance of the association between feature k and the query set using the hypergeometric 

distribution, i.e.  
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For each feature, we compute this p-value over a range of interaction probability thresholds and 

select the minimum.  The selected features are then given by ( ){ }05.0min:},,2,1{ <!= tfNkF k
t

TK . 

 

Pattern matching 

During the pattern matching phase, we identify remaining genes whose interaction profiles match 

the characteristic profile determined during the feature selection phase.  Given the query set, Q , 

and selected features, we add proteins to the predicted network based on their similarity to the 

query proteins over the set of relevant features, F .  Specifically, each candidate protein, i , is 

ranked according to the following adjacency score: 

!!
" "

=
Qj Fk

jkiki ppS  

This metric ensures that only relevant features are used in predicting the final network, and each 

relevant feature (protein interaction) is weighted by our confidence in that particular interaction.  

Intuitively, this two-step approach of graph feature selection and pattern matching identifies a set 

of informative neighbors in the interaction network and ranks candidate proteins by measuring 

adjacency to the query set on paths through these informative neighbors. 

 

6.4 Results 

We demonstrate the importance of considering biological context for predicting biological 

networks by comparing our contextual approach with a simpler version that does not use 

information about biological context.  Specifically, we replaced the context-sensitive Bayesian 
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network illustrated in Figure 6.3 with a simple, naive structure with no context node.  For all 

experiments described here, both approaches start with a query set of proteins and use the same 

network recovery procedure, such that the only difference between the two is the presence or 

absence of contextual information during data integration. 

We compared the simpler version of our method (with no contextual information) to 

existing approaches for network recovery [4,3] in our previous publication [20].  In summary, the 

non-contextual version of our method outperforms existing approaches for network recovery in 

terms of both precision and recall on a wide range of biological processes, complexes, and 

pathways.  The details of this comparison are summarized in the Supplementary information.  

Evaluation results presented here illustrate further improvement offered by incorporating context 

information during integration and network recovery. 

 

6.4.1 Contextual Network Recovery Evaluation 

Perhaps the most important question to address with evaluation experiments is:  does 

incorporating biological context information improve network prediction?  To answer this question, 

we performed cross-validation experiments on Saccharomyces cerevisiae data for both our 

context-sensitive approach and the simpler non-contextual Bayesian integration and search 

algorithm.  Specifically, for each of the GO terms in the evaluation gold standard [19], we withheld 

one-half of the annotated proteins for network recovery evaluation.  The other half was used in 

training both Bayesian network configurations (with and without context nodes).  Positive and 

negative examples (protein pairs) for the non-contextual configuration were derived as described 

in [19].  For the context-specific case, we obtained positive protein pairs for each context by 

considering all pairs between proteins annotated to the corresponding GO terms, except those 

selected in the corresponding cross-validation fold, as positive examples.  To maintain the same 

ratio of positives to negatives, negative examples were sampled from the negatives described in 

[19].  Details on the training example selection are discussed in the Supplementary data. 

On the proteins held out in each cross-validation fold, query sets of 10 proteins each were 

randomly sampled from each GO term, and we attempted to recover the remaining proteins 
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w

ith both the context-sensitive and general approaches.  All results presented here are averaged 

over 20 random query set samplings and two folds of cross-validation.  We start by considering 

network recovery results for the RNA splicing context.  Our context-sensitive integration and 

recovery dramatically improves both the precision and sensitivity of network recovery for RNA 

 

 

 

Figure 6.4.  RNA splicing network recovery example.  We compared the ability of the context-
sensitive and global approaches to recover known networks of proteins using cross-validation 
experiments.  Specifically, we started with a set of GO terms covering a wide range of biological 
processes [19], and measured each method’s ability to recover held-out proteins given 10-
protein queries from the same process.  As proteins are added to the predicted network, we plot 
the number of true positive proteins present for each method, averaged over 20 query 
samplings (Figure 4a).  On average, the context-sensitive approach recovers more held-out 
true positive proteins at better precision than the global approach.  Specific examples of 
predicted networks from the context-sensitive and global approaches are pictured in Figures 4b 
and 4c respectively (sampled from the recovery curve at the point indicated in Figure 4a).  
Query proteins are colored gray, true positives are white, and false positives are red.  For this 
particular query, the context-sensitive approach makes 24 of 30 correct predictions (80% 
precision) while the global approach only makes 8 of 30 correct predictions (27% precision). 
 

B. 

A. 

C. 
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splicing proteins (Figure 6.4).  For example, starting with 10 randomly chosen RNA splicing 

proteins, the context-sensitive approach recovers an average of 25 proteins correctly in the first 

50 predictions, while the global approach only recovers 15 proteins.  Figures 6.4b and 6.4c 

illustrate the results of the same 5-protein query for both methods at the indicated point on the 

recovery performance curves.  For this particular query, the context-sensitive prediction reports 

only 6 false positives resulting in 80% precision while the global network reports 22 false positives 

resulting in 27% precision.  Both approaches are substantially better than random in terms of 

predictive power, but the contextual information clearly offers an improvement. 

This improvement gained by using contextual information is consistent over a broad 

range of biological processes.  We performed a similar evaluation to that described above for 

RNA splicing for 101 total GO terms from the evaluation set [19].  The results of this evaluation 

for a range of predicted network sizes are summarized in Table 6.1.  As each approach added 

proteins to the predicted network, we measured the number of predicted, held-out true positives 

and averaged these estimates over several randomly sampled query sets.  At each network size 

increment, we compared the average number of recovered true positive proteins for the context-

sensitive versus global approaches and summarized the improvement over the set of evaluation 

GO terms for which both methods recovered at least 2 true positives (53 out of the 101 evaluation 

terms).  For example, for networks of 40 recovered proteins (from a query of 10 proteins), the 

context-sensitive approach improved 51% of the GO terms by more than 2 standard deviations 

(estimated from random query samplings).  

  Conversely, the context-sensitive approach resulted in a deterioration of the performance 

by more than 2 standard deviations on only 8% of the GO terms.  The average improvement in 

the number of true positives recovered across all terms for size 40 networks is 46%.  This 

comparison is summarized in Figure 6.5.  The improvement offered by context-sensitive 

integration and prediction is consistent across a range of network sizes (see Table 6.1 for a 

complete performance comparison).  
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Correlation between Context-sensitive Improvement and Context specificity 

Interestingly, the performance of the context-sensitive integration correlates with the specificity of 

the context.  Table 6.2 illustrates this effect for the evaluation described above, considering all 

101 evaluation GO terms.  For contexts with between 20 and 49 annotations (proteins), the 

context-sensitive approach improves the result significantly for 8 terms and results in a 

performance deterioration for 7 terms.  However, as the context size grows, the number of terms 

improved by context-sensitive integration increases (e.g. 50-79: 10 improved, 1 deteriorated; 80-

110: 11 improved, 2 deteriorated).  This is likely due to the fact that the number of training 

examples for each context scales quadratically with the number of proteins annotated.  Smaller 

contexts may suffer from too few examples, which results in mediocre performance of our 

 

Network 
size 

(proteins) 

Fract. of 
processes where 
Context-sensitive 
> Global network * 

Fract. of 
processes where 
Global > Context-
sensitive network * 

Fract. of processes 
where no significant 

performance 
difference 

Average 
improvement 

(%) 

15 0.49 0.13 0.38 50% 

20 0.43 0.08 0.49 40% 

25 0.52 0.11 0.38 53% 

30 0.51 0.10 0.39 42% 

35 0.53 0.09 0.38 44% 

40¶ 0.51 0.08 0.41 46% 

50 0.54 0.07 0.39 42% 

60 0.55 0.07 0.38 44% 
 
* Networks are only counted as significantly different if the difference in number of true positive proteins recovered is more than 
two standard deviations over random samplings.                                                                                             
¶ Pictured in Figure 5. 
 
Table 6.1. Comparison between context-sensitive and global network inference approaches.  To 
compare the context-sensitive and global approaches to network prediction, we performed cross-
validation experiments as described in the manuscript.  On the proteins held out in each cross-
validation fold, query sets of 10 proteins each were randomly sampled from each GO term, and we 
attempted to recover the remaining proteins with both the context-specific and global approaches.  
All results presented here are averaged over 20 query set samplings and two folds of cross-
validation.  This table compares the ability of the two approaches to recover held-out true positive 
proteins given a 10 protein query over a range of network sizes.  Here, we restrict our evaluation to 
terms where both methods recovered at least 2 true positives (53 of the 101 total terms).  For each 
network size, the fraction of the evaluation contexts for which the context-sensitive approach 
improves over the global approach by at least 2 standard deviations is highlighted in gray (std. dev. 
estimated from the 20 samplings).  The fraction of processes for which the converse occurs is also 
reported as is the fraction with no significant difference between the two approaches.  The average 
improvement across all processes is reported in the final column.  Figure 5 corresponds to a 
network size of 40. 
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approach.  Another interesting result of this evaluation is that the two most severe performance 

deteriorations resulting from context-sensitive integration occur on the GO terms translation 

(GO:0043037) which has 424 annotations and cellular respiration (GO:0045333) which has 90 

annotations.  Both of these contexts clearly have a sufficient number of examples for learning, but 

represent fairly general processes compared to many of the other contexts (e.g. RNA splicing, 

sulfur metabolism).  A possible explanation for this is that such contexts are so general, that 

context-specific learning is unable to identify a consistent signal between cross-validation folds, 

resulting in poor performance.  In these cases, a global integration reflecting overall dataset 

reliability appears to be a safer alternative. 

Figure 6.5.  Network recovery evaluation summary.  We compared the ability of the context-
sensitive and global approaches to recover known networks of proteins using cross-
validation experiments.  Specifically, we started with a set of GO terms covering a wide 
range of biological processes [19], and measured each method’s ability to recover held-out 
member proteins given 10-protein queries from the same process.  As proteins were added 
to each process-specific network, we measured the number of true positives recovered.  
Figure 5 compares the number of true positives recovered for the two different methods for 
networks of 40 proteins on 101 different biological processes.  The context-sensitive 
approach improves recovery by more than 2 std. dev. (estimated from query samplings) for 
51% of the terms evaluated and only causes deterioration by more than 2 std. dev. on 8% of 
the terms.  This improvement is consistent across network sizes (see Table 6.1 for a 
complete comparison). 
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6.4.2 Comparing Dataset Relevance across Contexts 

After confirming superior performance of the context-sensitive approach for a variety of biological 

processes, we investigated reasons for this improvement.  The most informative aspect of our 

results is the learned parameters of the context-sensitive Bayesian network, which is designed to 

capture the relevance variation that motivated our approach.  If our original observation of 

context-dependent relevance variation is correct, we expect to observe differences in the learned 

conditional probability distributions.  To measure these differences, we computed ( )
ji CDFRP , , 

the posterior probability of a functional relationship given an observation from a single dataset, 

i
D , across a range of biological contexts, jC .  To obtain a single measure reflecting the 

relevance of each dataset in each given, we then found the maximum posterior over all possible 

quantized observations for a given dataset.  Comparing this posterior for several contexts to the 

same posterior inferred by the non-contextual Bayesian network yields insight into how dataset 

relevance variation is captured across different contexts.  Figure 6.6 illustrates this comparison 

for 13 of the total 174 input datasets and two biological contexts:  RNA splicing (GO:0008380) 

and Phosphorus metabolism (GO:0006793).  The global network reports dataset relevance 

(posterior probability of FR) as inferred by the simpler Bayesian network (with no contextual 

information).  As is demonstrated in the figure, there are several datasets for which the posterior 

from the global network is much larger than both contexts (e.g. ER-Golgi co-localization, Martin et 

al. microarray) suggesting these datasets are generally quite reliable but contain little information 

about either RNA splicing or phosphorus metabolism.  Conversely, there are some datasets that 

appear relatively unreliable on the global scale, but are actually quite precise when examined in a 

Table 6.2.  Correlation between improvement due to context-sensitivity and the specificity of the context.  
This table list the total number of context networks where prediction improved and deteriorated for a 
range of context sizes. 

# of proteins associated with 
context 20-49 50-79 80-110 111-140 >140 Total 

# of terms improved by context-
sensitive integration 8 10 11 6 11 46 

# of terms deteriorated by 
context-sensitive integration 7 1 2 0 3 13 
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spe

cific context.  For instance, all three protein-protein interaction datasets pictured are up-weighted 

in the RNA splicing context, particularly the Gavin et al. TAP-MS (2006) interaction data, which 

measures a maximum posterior of .72 for the RNA splicing context compared to a .22 posterior in 

the simpler Bayesian network.   From a biological standpoint, perhaps this is not too surprising 

since a large portion of the RNA splicing term is composed of the spliceosome complex, which 

would be readily detectable with physical binding assays.  These protein-protein interaction 

datasets have no extra relevance for the phosphorus metabolism, but all of the microarray 

datasets included in Figure 6.6 are up-weighted in the phosphorus metabolism context, 

particularly the Epstein et al. dataset, which profiled several mitochondrial perturbations. 

Figure 6.6.  Bayes net learned dataset relevance.  We analyzed the learned parameters of 
the context-sensitive Bayesian network to understand the improvement achieved by our 
method.  Dataset relevance was measured by computing the maximum posterior probability 
of functional relationship for each dataset in each context.  Figure 6a compares these 
relevance estimates for the global integration approach to the context-specific approach for 
RNA splicing and phosphorus metabolism contexts on a sampling of 13 datasets integrated 
by our approach.  Datasets that one might expect to be relevant for predicting RNA splicing 
proteins are up-weighted relative to the global approach in the RNA splicing context (e.g. 
Gavin et al. TAP-MS data), and likewise, datasets that are likely relevant for understanding 
metabolism are up-weighted in the phosphorus metabolism context (e.g. Epstein et al., which 
profiled mitochondrial perturbations).  Figures 6b and 6c compare these context-specific 
dataset relevance measures for the whole collection of 174 datasets to the global Bayesian 
network for RNA splicing and phosphorus metabolism, respectively.  The most striking trend 
is that there are number of datasets which contain information globally but are uninformative 
(or contain no data) for these specific contexts.  Modeling this variation during data 
integration helps to exclude false positives from irrelevant datasets that might otherwise 
result in poor network prediction. 
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These differences between the global and context-specific posteriors are not limited to 

these 13 datasets, but occur in many of the datasets included in our integration (data not shown).  

Interestingly, there are a large number of datasets that have reasonably high posteriors in the 

global setting with near zero posteriors in the specific contexts.  This suggests that many datasets 

either contain little or very unreliable information for these contexts.  This knowledge is actually 

quite useful for improving predictions for a specific context, because it means we can confidently 

exclude a number of observations from the corresponding datasets as false positives.  Generally, 

the chances of making a false positive prediction are high simply because of there are many 

more negative examples (proteins) than positive for network prediction problems.  Thus, any 

reliable means of excluding false positives is an effective strategy for improving prediction 

performance. 

 

6.4.3 Learning New Biology Using Contextual Information 

We have shown through cross-validation experiments that using contextual information can 

generally improve the quality of network prediction, but these results are based on held-out, 

known annotations for genes or proteins.  An interesting (and perhaps more biologically relevant) 

question is, does such an approach help us learn new biology with greater precision?  While the 

true answer to this question requires experimental confirmation of novel predictions, we can 

derive some hints from our network recovery evaluation. 

To compare the ability of the context-sensitive and global approaches to confidently 

associate previously uncharacterized proteins in Saccharomyces cerevisiae with portions of 

characterized networks, we performed a similar cross-validation experiment to that described 

previously.  More specifically, on the proteins held out in each cross-validation fold, query sets of 

were randomly sampled from each GO term, and we used both methods to recover the remaining 

network.  For each protein added to the network, we estimated the precision of that particular 

prediction based on known, held-out proteins for the corresponding cross-validation fold.  

Precision estimates were smoothed across each ranked list (order in which proteins were 

recovered for each network), and an uncharacterized gene appearing in any prediction was 
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a

ssigned the corresponding precision.  Uncharacterized genes were assumed to be genes 

annotated to the “biological process unknown” GO term (GO:0000004) as of 5/1/2006 [28].  

Figure 6.7 illustrates the results of this analysis for the two methods by plotting the measured 

precision (relative to random) versus the number of uncharacterized proteins assigned with at 

least that precision.   

The context-sensitive network prediction approach is generally able to make more 

network predictions at higher confidence.  For instance, at 10 times the precision expected by 

chance, the global scheme is able to predict networks for 118 previously uncharacterized proteins 

while the context-sensitive approach makes predictions for 214 uncharacterized proteins (81% 

improvement).  Interestingly, the difference between the two approaches is smaller for very high-

Figure 6.7.  Precision of network prediction for uncharacterized genes.  To assess the potential 
of context-sensitive prediction for learning new biology in Saccharomyces cerevisiae, we 
compared the ability of the context-sensitive and global approaches to predict precise networks 
involving uncharacterized genes.  We performed cross-validation analysis as described in 
Section 3.1, and used held-out known proteins to assess the precision at which uncharacterized 
genes were predicted in networks across a range of biological processes.  Figure 7 plots a 
range of precision measures (relative to random predictions) versus the number of 
uncharacterized genes recovered at that precision or higher.  The context-sensitive approach 
tends to predict the involvement of more uncharacterized genes at higher precision than the 
global approach.  For instance, at 10 times the precision expected by chance, the global 
scheme is able to predict networks for 118 previously uncharacterized proteins while the 
context-sensitive approach makes predictions for 214 uncharacterized proteins (81% 
improvement). 
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precision predictions (e.g. > 20 fold over random), suggesting there a limited number of 

uncharacterized proteins whose participation in certain networks is relatively easy to detect and 

varies little between the two methods.  As we relax the precision criteria, however, the context-

sensitive approach shows a clear and consistent improvement in precisely predicting 

uncharacterized genes in networks recovered from known sets of related proteins. 

 

6.5 Biological Validation: Predicting Novel Mitochondria-related 

Genes6 

We further validated our context-sensitive prediction approach by experimentally testing several 

predictions related to mitochondrial function.  Specifically, we trained a Bayesian network based 

on the mitochondrion organization and biogenesis context  (GO:0007005) and tested 30 novel 

predictions using two different assays for mitochondrial function.  These 30 proteins included 17 

completely uncharacterized proteins as well as 13 characterized proteins that had no previously 

reported association with mitochondria.  We summarize the results of these experiments in the 

following sections.  

 

6.5.1 Summary of Experimental Findings 

We tested predictions of novel mitochondria-related proteins with two different assays.  First, we 

checked for severe respiration defects in deletion mutants of all predicted genes, and secondly, 

we checked for altered frequency of petite colony formation, which indicates an absence of 

functional mitochondria (see the Experimental Methods section below for more details).  In 

addition to the 30 novel predictions, 47 positive controls (genes known to be involved in proper 

mitochondrial functioning) and 48 genes chosen at random were tested with the same protocols 

to establish a baseline discovery rate for mitochondrial proteins.  We confirmed mitochondrial 

defects (either respiratory deficiency or increased petite frequency) for 15 of the 30 novel 

predictions (50%)  (Figure 6.8).  9 of these 15 novel phenotypes were for previously 

                                                
6 All experimental work presented in the section was completed by David Hess and Amy Caudy. 
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uncharacterized genes and 6 were previously characterized genes with no reported mitochondria 

association.  We observed mitochondria defects for 34 of the 51 positive controls (67%) and for 

only 7 of the 48 genes selected at random (15%) (Figure 6.8).  Thus, using our prediction 

approach we have increased the discovery rate of genes with mitochondria-related phenotypes 

from 15% to 50%, and have discovered a novel mitochondrial role for 15 new genes. 

 A striking characteristic of the distribution of phenotypes for our novel predictions is that 

they are not only highly enriched for real mitochondria phenotypes, but that they result largely in 

subtle phenotypes.  Our positive controls, which were drawn from the set of known mitochondria 

proteins, exhibit 55% respiratory deficiency, a severe phenotype whose detection is relatively 

straightforward.  We only confirm 10% respiratory deficiency in our novel predictions.  However, 

40% of our predictions have significantly increased petite colony frequency compared to only 

12% with the same phenotype among the positive controls.  This suggests an interesting 

characteristic of the yeast biology that is remains undiscovered:  many of these uncharacterized 

genes result in mild phenotypes when knocked out and thus will not likely be readily detected by 
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Figure 6.8.  Summary of confirmed phenotypes for novel predictions and controls. 
We tested our novel mitochondria predictions using a petite frequency assay, which indicates a 
lack of functional mitochondria.  Here, we plot the percentage of phenotypes resulting from 
either the positive control group, the novel predictions, and randomly selected genes.  The set 
of novel predictions is highly enriched for mutants exhibiting real phenotypes compared to 
genes selected at random.  See section 6.5.2 for a detailed description of the experimental 
assay. 
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low-sensitivity whole-genome screens.  Computational predictions, such as those made here, 

could play a key role in directing us towards putative functions for these proteins. 

Interestingly, a few of our confirmed predictions showed physical interactions with actin-

related proteins, suggesting their possible involvement in mitochondrial movement within the cell.  

The mechanism of mitochondrial movement in yeast cells is largely uncharacterized [7], so we 

pursued further experiments to elucidate the role of these proteins.  Using a version of GFP 

(green fluorescent protein) tagged with a mitochondrial localization signal, we can clearly 

visualize the mitochondria in live cells (Figure 6.9A).  When yeast cells prepare to divide, the 

mitochondria are localized to the bud neck.  Just prior to cytokinesis, a portion of the mitochondria 

move into the daughter cell (anterograde movement) and a portion of the mitochondria move 

back into the mother cell (retrograde movement) [7].  This coordinated relocalization of the 

mitochondria is necessary to ensure that both the mother and daughter cells receive functioning 

mitochondria. 

Two mutants in genes predicted by our approach demonstrate significant mitochondrial 

movement defects similar to those exhibited by our positive control, a puf3 deletion (Figure 6.9B) 

[11].  Additionally, when the frequency of cells exhibiting anterograde or retrograde movement is 

calculated for these mutants, one mutant (yir003wΔ) has a strong defect in retrograde movement 

(Fig 6.9C).  These data demonstrate a clear role for Yir003w, a completely uncharacterized 

protein, in mitochondrial localization.  Furthermore, this presents a compelling case for the utility 

of our context-sensitive prediction framework—  we have correctly predicted novel mitochondrial 

functions for 15 proteins, including what appears to be a key player in mitochondrial inheritance.  

 

6.5.2 Experimental Methods 

Respiration and petite frequency assay 

First, several replicates of each deletion mutant are grown for 48 hours using glycerol as a carbon 

source.  Strains severely deficient in their ability to maintain functional mitochondrial are unable to 

grow on glycerol and are classified as respiration deficient.  Strains able to grow on glycerol are 
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A. 

B. 

C. 

Figure 6.9.  Experimental results for mitochondrial movement assay on two novel mitochondria-
related proteins.  (A) Example still frame of a yeast strain expressing the mitochondrial-localized 
GFP used in the mitochondrial movement assay.  (B) Average mitochondrial velocity (µm/s) 
measured for the indicated strains.  Measurements based on tracking >50 independent cells with 
motile mitochondrial over 5 seconds.   (C) Direction of mitochondrial movement.  For each strain 
>200 cells were tracked over a period of 3 seconds.  The first set of bars displays the percent of 
cells with moving mitochondria over that time period.  When movement was observed, it was 
characterized as anterograde (towards the daughter cell) or retrograde (towards the mother cell).  
The percentage of cells with anterograde and retrograde motion are displayed by the second and 
third set of bars, respectively.  
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diluted and plated for single colonies on rich media, which releases the requirement for functional 

mitochondria.  Thus, as the colony forms, cells without functional mitochondria are generated.  

When the colony is fully formed, it is a mixture of cells with functional mitochondria and cells 

without functional mitochondria.  This ratio is measured by resuspending the colony and plating a 

dilution such that 100-300 colonies are formed on a plate.  By overlaying with soft agar containing 

tetrazolium, colonies with functional mitochondria are stained red while cells without functional 

mitochondria remain white.  The ratio of white colonies to total colonies gives the petite frequency 

(a petite cell is a cell without functional mitochondria).  Eight independent petite frequencies were 

measured for each strain tested.  The distribution of these frequencies is compared to frequency 

of petite generation in wild-type yeast using the Mann-Whitney U test.  Strains with a p-value of 

less than .01 are classified as a confirmed petite phenotype. 

 

Mitochondrial movement assay 

We track mitochondrial movement in the cell using a version of GFP (green fluorescent protein) 

tagged with a mitochondrial localization signal.  Images are filmed over 2 minute time courses 

with 1 second resolution, which allows us to measure the rate and direction of mitochondrial 

movement.  Movements are recorded by hand using the ImageJ software. 

 

6.6 Discussion and Conclusions 

In summary, incorporating contextual information in the data integration and prediction process 

can significantly improve prediction quality and provide important information about relevance of 

individual datasets in different contexts.  As noted above, there are a very limited number of 

cases where the context-sensitive approach results in a loss of performance.  This is typically due 

to the size of the GO terms corresponding to these contexts, and for such cases, global (non-

context-sensitive) integration should be used (see Supplementary information for a detailed 

analysis).  Incorporating context into the Bayesian integration phase requires context-specific 

examples, which can be very few in number for smaller contexts (GO terms).  Interestingly, this 
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suggests a trade-off between the number of examples and the specificity of examples, which 

hints at why contextual information for network prediction is important.  Put simply, the more 

specific we can be about the learning task, the better performance we can expect.  This only 

holds true, however, if we can maintain a statistically representative example set, which requires 

a minimum number of examples.  In general, this problem seems to affect a small minority of 

contexts evaluated here, and can be avoided by defining contexts more broadly. 

We should emphasize that although we have implemented our approach using a 

Bayesian integration scheme and a particular search algorithm, the overall message of using 

contextual information is general and could be used to improve a variety of approaches to 

network prediction.  We expect this concept to be particularly true as we begin to develop 

methods for integration and prediction in higher organisms, where there is not only variation in 

dataset relevance across biological process, but also across other aspects such as tissues or 

stages of development.  An important consideration, however, is that to take advantage of this 

information, methods must be formulated in such a way that cross-context variation can actually 

by incorporated into the process.  For instance, in our discussion here, we have assumed a 

query-based scheme, which inherently provides a straightforward approach to inferring the 

context of the prediction.  Methods like this that allow expert direction are particularly well-suited 

to leveraging contextual information to improve prediction. 

In conclusion, we have demonstrated evidence for context-dependent dataset reliability 

and illustrated a Bayesian integration and network recovery approach that makes use of this 

variation.  Our approach achieves significant improvement in terms of both precision and 

sensitivity over a broad range of biological processes, and we have shown that it improves the 

estimated precision on predicting networks for previously uncharacterized genes.  We further 

confirm several of these novel predictions by experimentally validating their role in mitochondrion 

organization and biogenesis.  Biological context is an important consideration for any network 

prediction approach, and can be an effective means for managing data heterogeneity, particularly 

as we move toward developing computational methods for understanding networks in more 

complex organisms. 
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6.7 Supplemental Data Files 
 
File name:  GO_<GO ID>_ps_network_posteriors.txt 
File format:  Tab-delimited 
 Title:  Dataset relevance measures for all 101 contexts 
Description: 
These files contain dataset relevance measure for all contexts and datasets.  For each context, 
we report the posterior probability of functional relationship given evidence from that dataset in 
the corresponding context. 
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Chapter 7  
 

Deriving Quantitative Epistasis 
Measures from Yeast Mutant Colony 
Growth 
 
7.1 Chapter Overview 

The earlier chapters of this dissertation have focused mainly on general methods for 

characterizing and integrating genomic data to understand gene function.  We transition now to 

analysis of a specific type of genomic data, genetic interactions.  Our motivation for a detailed 

study of genetic interactions is two-fold.  First, genetic interaction data are among the most 

informative high-throughput sources of functional information.  Figure 7.1 illustrates this with a 

precision-recall analysis of several different genomic datasets, comparing their ability to predict 

functional associations between genes [13].  Only one other dataset in this group provides more 

precise information, the Gavin et al. affinity precipitation data, and genetic interaction profiles are 

able to provide substantially more recall if the precision threshold is relaxed only slightly. 

 The second motivation for our focus on genetic interactions, is that recent methods have 

been developed that can rapidly generate enormous amounts of data.  Specifically, one 

technique, Synthetic Genetic Array (SGA) analysis, uses robots to rapidly construct yeast deletion 

mutants and assay for growth defects [19].  Given how valuable genetic interactions in 

understanding gene function, ideally we would apply this approach to construct all possible 

double deletion mutants (about 18 million total), but even with this technology, that is estimated to 

take between five and ten years [19].  However, if we intelligently pick which double mutants to 

screen, we can potentially find the most interesting interactions much more quickly.  This 

presents a perfect opportunity to apply the genomic integration technology we have described 

throughout this dissertation.  Over the next two chapters, we demonstrate how such methods can 
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be used to dramatically improve the efficiency with which we apply high-throughput technology 

and give several examples of biological insight we gain in the process. 

 In this chapter, we give a detailed introduction to genetic interactions, or epistasis, and 

how they relate to a gene’s role in the cell.   We also describe SGA technology and our 

contribution to the SGA project, which is how to accurately derive quantitative epistasis measures 

from double mutant colony size data.  Given this background and a precise measure of epistasis, 

we move on in Chapter 8 to discuss our iterative computational-experimental framework for 

efficiently mapping the global yeast genetic interaction network.  The work presented in this 

chapter includes contributions from Michael Costanzo, Anastasia Baryshnikova, David Hess, and 

Olga Troyanskaya.  Michael and Anastasia helped me in understanding the SGA technology and 

in developing the SGA epistasis score.  David Hess provided several insights in measuring 

epistasis from colony data, and Olga supervised the project. 

  

7.2 Background 

Most phenotypic properties of an organism result from the collaborative interactions of genes and 

their products.  Genetic interactions are broadly defined as pairs or groups of genes whose 

simultaneous perturbation results in a phenotypes different from what is expected given their 

individual phenotypes [3].  Genetic interactions are of particular interest because this general 

Figure 7.1.  Evaluation of genetic interaction profiles at predicting functionally related pairs of 
genes.  We computed correlation coefficients between genetic interactions profiles and measured 
their ability to prediction functional associations between genes [13].  We find that genetic 
interactions are among the most informative genomic data. 

Genetic interaction 
profiles 
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phenomenon is believed to be the root of many common diseases, where multiple gene variants 

interact to alter the normal functioning of cellular processes [11].  This is in contrast to relatively 

rare Mendelian disorders which result from a mutation in a single gene.  Beyond their relevance 

to our understanding human disease, genetic interactions reflect fundamental properties of the 

underlying genetic network.  For instance, in yeast, it has recently been confirmed that only 20% 

of all genes are essential for cell viability [20,7].  The other 80% can be completely disabled in 

haploid cells growing under normal laboratory conditions with no severe fitness consequences, 

suggesting the cell has a great deal of built-in redundancy.  Studying genetic interactions can 

reveal the underlying network that leads to this robust behavior. 

 Because of their value in dissecting the structure of the genetic network and their 

relevance to understanding human disease, geneticists have long been using combinatorial 

perturbations of genes for characterizing biological systems.  Recently, genetic interactions have 

also been the focus of efforts to develop high-throughput screening technology in yeast [19,14] 

and higher eukaryotes such as worm [10].  One of these approaches designed for high-

throughput screening in yeast (Synthetic Genetic Arrays) is the focus of this chapter. 

 

7.2.1 A Quantitative Definition of Genetic Interaction 

Statistical geneticists have also been studying the phenomena of genetic interactions for years, 

albeit from a different perspective than the classical geneticist.  Global trends of genetic 

interaction have important implications on broad questions of interest to the statistical genetics 

community such as the evolutionary basis for recombination and sexual reproduction [9].  

Statistical geneticists typically refer to genetic interactions generally as epistasis [15].  Fisher first 

used the word “epistacy” in 1918 to refer to deviation from the expected quantitative combination 

of independently functioning genes in the context of different alleles’ additive contributions to a 

quantitative phenotype [5].  Fisher’s landmark paper introducing this concept serves as the basis 

for much of modern quantitative genetic analysis.  Later work motivated by Fisher’s original study 

focused on modeling the effect of combinations of genetic loci on an organism’s fitness [12].  

Moran suggested a multiplicative fitness model, whereby the fitness of a combination of two non-
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interacting mutations is modeled as the product of the fitnesses of the independent mutations 

[12].  Pairs of mutations deviating from this model were termed epistatic.  Consider the example 

presented in Figure 7.2, which illustrates the construction of a double mutant in the two genes A 

and B.  If a deletion of A by itself results in a fitness of 0.7 relative to wild-type and an 

independent deletion of B results in a fitness of 0.8, the expected fitness of the combination of 

these two deletions based on the classical model would be 0.7 x .08 = 0.56.  We term pairs of 

mutants, AB, that are less fit than the expected amount as “negatively epistatic” and pairs that are 

more fit than expected under this model “positively epistatic.”  We should note that Moran also 

suggested an additive version of this model, which he describes as “less natural” [12] but which 

has also received some attention in the literature (see [16] for example).  

 Unfortunately, there has been significant confusion of the term epistasis among the 

various biological communities.  Although Fisher introduced the term epistacy as described 

above, Bateson actually originally introduced “epistasis” earlier in 1909 to explain genetic effects 

that alter single Mendelian gene effects [3].  Studying these types of interactions is a classical 

method used by geneticists to understand the relative ordering of different genetic components in 

pathways, and have been used in characterizing many core processes in yeast (for example [8]).  

Figure 7.2.  Illustration of how epistasis relates to fitness.  Epistasis is generally defined as an 
unexpected phenotype arising from combinations of mutations.  In the context of fitness, non-
epistatic combinations of mutations are expected to combine multplicatively [12,21].  In the 
example illustrated above, a single mutant aΔ with a relative fitness of 0.7 and a single mutant 
bΔ with a relative fitness of 0.8 are expected to form a double mutant with a fitness of 0.56.  
Double mutants that are less fit are referred to as negatively epistatic and double mutants 
exhibiting greater than expected fitness are referred to as positively epistatic. 
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Bateson’s version of epistasis is the established meaning of the word among the traditional 

genetics community, which is often a source of confusion between the traditional and statistical 

genetics community.  Because our goal is to develop a framework for a quantitative measure of 

genetic interaction, we adopt the more statistical definition but note that Bateson’s epistatic 

interactions are a subset of the interactions we are able to capture with our approach. 

 

7.2.2 Synthetic Genetic Array Analysis 

An extreme example of negative epistasis is when the combination of two viable single mutants 

results in a dead double mutant, which is often referred to as synthetic lethality [3].  Identifying 

synthetic lethal pairs of interactions has been the focus of several recent high-throughput 

technologies in yeast [19,14].  Synthetic Genetic Array (SGA) analysis is one such technology for 

detecting genetic interactions in high throughput (Figure 7.3).  The basis of the SGA approach is 

robotic construction of yeast double deletion mutants from a library of single mutant strains.  

Specifically, a mutation in a gene of interest is crossed to the full set of viable gene deletion 

mutants, and a series of robotic arraying procedures allows selected growth of double-mutant 

meiotic progeny, which can then be scored for specific phenotypes.  In particular, both qualitative 

and quantitative measures of mutant colony sizes can be obtained by acquiring and processing 

digital images (see Figure 7.4 for example or Appendix E for a more detailed discussion of how 

mutants are physically arranged on SGA plates).  Using SGA, the first large-scale genetic 

interaction map was obtained in 2004 by crossing 132 query genes were crossed to ~4700 viable 

yeast gene deletion mutants, resulting in ~4000 synthetic lethal or sick gene combinations [19].  

The analysis showed that synthetic lethal interactions are rare events, occurring among ~0.5% of 

gene pairs tested.  We describe here how to extend this technology to quantitatively measure not 

just synthetic lethality, but general epistasis, including both positive and negative interactions.  

The computational machinery for this is described in the following section. 
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Figure 7.3.  Overview of Synthetic Genetic Array (SGA) technology.  SGA 
technology is a high-throughput assaying for detecting genetic interactions in yeast.  
A MATα query single mutant carrying a nourseothricin-resistance marker (natMX) is 
crossed into an ordered array of MATa deletion mutants.  The resultant 
heterozygous diploids are plated on reduced carbon and nitrogen medium to induce 
sporulation and the formation of haploid meiotic spore progeny.  Spores are then 
transferred to a medium lacking histidine which selects for MATa meiotic progeny.  
The MATa progeny are transferred to a medium containing kanamycin, which 
selects for mutants in the array strain.  The final selection medium contains both 
nourseothricin and kanamycin, which selects double mutants between the query 
mutants and the ordered array.  Plates are then incubated and photographed to 
obtain colony size information [3]. 
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7.3 An Epistasis Model for Mutant Colony Growth 

The main challenge in deriving accurate measures of epistasis from colony growth data is that 

many systematic effects must be accounted for before one can hope to arrive at accurate 

estimates for the biological quantities of interest.  For instance, even visual inspection of the SGA 

plate in Figure 7.4 reveals there is a clear trend towards larger colonies at the extreme edges of 

the plate, which is due to the availability of extra nutrients.  Also, the size of the colonies tends to 

vary systematically from plate to plate, based on the amount of time the colonies were allowed to 

grow before processing.  Yet another source of variation is local competition for nutrients.  For 

example, colonies situated next to a dead neighbor or a blank spot on the plate tend to grow 

larger because there are more available nutrients. 

 We propose a model that accounts for both these systematic effects and, simultaneously, 

the relevant biological effects, which are the single mutant and double mutant fitnesses and 

presence or absence of epistasis.  Constructing a simple model from first principles to address 

this problem is challenging for at least two reasons.  First, while there have been some efforts to 

Figure 7.4.  Plate of double mutants from a Synthetic Genetic Array (SGA) screen.  SGA uses 
robotic technology to rapidly cross query single mutants into an ordered array of single mutants.  
This plate is the result of a single query crossed into a plate of array single mutants.  Each double 
mutant appears with four replicates, and there are 1536 total colonies on each plate.  See 
Appendix E for more detailed information about plate layout. 
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model fungal colony growth (see [6] for example), there is no well-established model of how 

colony size (area or diameter) maps directly to growth rate or fitness.  Second, it is not exactly 

clear how each of the systematic effects we want to model affect the colony size.  Thus, we 

propose two simple models, both reasonably straightforward.  Specifically, we model the 

observed colony size as either a multiplicative (1) or additive (2) combination of all biological and 

systematic effects: 

( ) escompffpcrs ijklmlmmlkjkikijklm ++++++++= !µ  (1) 

( )escompffpcrs ijklmlmmlkjkikijklm !µ=  (2) 

where the model parameters are defined in Table 7.1.  

 

Both formulations model the observed colony size as a function of single mutant fitnesses and 

include an interaction term, lm
! , which explains differences from the expected combination of the 

single mutant effects (epistasis).  The multiplicative model has a more theoretical foundation, but 

in practice, we find that both models fit the raw data reasonably well, and both provide 

approximately the same enrichment for published genetic interactions.  In fact, in some cases, we 

observe a slight advantage for the additive model in terms of enrichment for known protein-

protein interactions and functional relationships.  See Appendix D for a brief discussion of the 

theoretical support for the multiplicative case.  An appealing property of both formulations is that 

they can be computed efficiently on very large collections of double mutant colony 
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Table 7.1.  Definition of epistasis model parameters. 
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measurements.  The additive case can be fit directly with standard linear regression and the 

multiplicative case can be fit with linear regression after a log-transformation on the raw colony 

size measurements. 

 In general, either model can be fit in its entirety given double mutant colony size data, but 

in practice, we found a stepwise fitting approach more effective.  More specifically, we found that 

row and column effects are confounded with single mutant effects, and thus required further 

constraints on their fitting.  Furthermore, modeling local nutrient competition depends non-trivially 

on the actual colony size and neighboring colony sizes and thus did not fit conveniently in the 

regression framework.  We discuss the procedure used for fitting the model below, including a 

special discussion of these effects. 

 

7.3.1 Normalizing Row and Column Effects 

Plate-specific row and column effects are often confounded with single mutant fitness effects 

because only a limited number of unique strains are present in each row or column (16 and 24).  

However, we know that row and column effects are due to the geometric arrangement of colonies 

on the plate and the availability of nutrients.  Thus, we expect that neighboring rows should 

exhibit similar effects, and consequently, trends across or down the plate should be relatively 

smooth.  We can take advantage of this property to derive accurate estimates of how colony 

position affects colony size and remove this systematic trend from the data.  Specifically, we 

apply Lowess smoothing to estimate the colony size-row and colony size-column trends, using a 

linear fit for each window and a window size spanning 6 rows or columns7. 

Figure 7.5 illustrates the results of this approach for real colony data and the additive 

model.  Each estimate is represented by a box and whisker plot indicating uncertainty estimated 

through bootstrapping.  Indeed, we confirm the trend we saw in Figure 7.4 by visual inspection:  

colonies in the outer rows and columns tend to grow larger.  Interestingly, we also identify other 

subtle yet statistically significant trends such as an overall W-shape and a slight increase in 

                                                
7 Since double mutants occur in groups of two across or down each row or column, smoothing 
over 6 rows or columns ensures that effects are estimated based on at least three unique sets of 
mutant strains. 
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c

olony size as one moves across and down the plate.  The trends are highly consistent across 

plates, suggesting they are a real systematic artifact, likely due to the geometric properties of the 

plate or the media. 

 

7.3.2 Correcting for Neighbor Colony Competition 

Another systematic effect that is difficult to estimate through linear regression, but that must be 

corrected, is local competition for nutrients.  This effect is largely due to the high density of 

colonies on the plate (1536 total per plate), and is most pronounced in cases where a healthy 

colony is positioned next to a sick colony or a dead spot.  The severity of this effect is illustrated 

in Figure 7.6.  To test whether large colonies are explained by small neighbors, we plotted the 

distribution of neighbor colony sizes for a range of different double mutant colony sizes8.  The 

                                                
8 We consider the minimum of the three closest neighbors for this analysis.  We only consider 
neighbors that are distinct double mutants so as to differentiate between positive correlation 
between mutants sharing the same deletions and negative correlation between big colonies and 
small neighbors.  See Appendix D for a detailed description of plate layout. 
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Figure 7.5.  Row and column effects measured on an SGA plate.  We used a lowess 
smoothing procedure to estimate row and column effects on colony size.  The estimated 
effects are shown here in the order they appear down and across the plate.  We detect 
severe U-shaped trends across both rows and columns, and also identify more subtle 
systematic increases in colony size moving from the top left to bottom right of the plate.  
These effects are relatively reproducible across plates. 
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neighbor distribution is plotted for three different ranges of double mutant colony sizes:  0-10 

percentile, 40-50 percentile, and 90-100 percentile.  Strikingly, the largest 10% of double mutants, 

have a dramatically disproportionate number of small neighbors, suggesting that the reason they 

are large is not that they are more fit, but that they have access to more nutrients. 

 To normalize this effect, we take a two-step approach.  First, we bin all double mutants 

into 10 deciles based on their neighbor colony sizes.  Normalization is then applied to remove the 

effect of competition both within and between these groups. 

 

Within-group competition normalization 

To normalize the competition effect within each decile, we plot double mutant colony size versus 

the minimum neighbor size and apply linear Lowess smoothing with a window size of 1000.  

Smoothed estimates are then subtracted for the additive model and divided for the multiplicative 

case.   

 

Figure 7.6.  Illustration of the nutrient competition effect on colony size.  (A) For each colony, we 
found the minimum of its three closest neighboring colonies not sharing the same double gene 
deletion.  (B) We grouped colonies into ten deciles based on the overall double mutant colony size 
distribution, and plotted the distribution of minimum neighbor sizes for three of these deciles (0-10%, 
40-50%, 90-100%).  (C) We find that the largest 10% of colonies is highly enriched for very small 
neighbors, suggesting their size is not a biological effect, but a systematic effect due to the extra 
availability of mutants. 
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Between-group competition normalization 

The competition effect is normalized across decile groups by using quantile normalization, which 

is a technique that has been applied extensively in microarray normalization [2].  Essentially, 

quantile normalization takes the data one wants to normalize and a reference distribution, and 

forces the cumulative distribution (CDF) of the sample data to match the cumulative distribution of 

the reference data.  We define a reference distribution based on double mutants with relatively 

healthy neighbors (60-80 percentile), and then quantile normalize each decile described above 

such that the CDF matches this reference.  Since we do not expect colonies that are already sick 

to benefit from extra nutrients, we only apply this normalization to colonies that are larger than the 

mean colony size. 

 

7.3.3 Fitting the Model:  Implementation Details 

The positional effects and competition effects are fit as just described, and the remaining effects 

are fit using linear regression.  For the multiplicative case regression is applied on log-

transformed colony sizes (log-transformed colony size is linear to modeled effects for the 

multiplicative case).  Error estimates on fit parameters are obtained by 50 rounds of .632 

bootstrapping, and the final estimates and standard deviation are derived from the mean and 

variance across bootstrap samples.  All normalization and model fitting is implemented in 

MATLAB and linear regression on large datasets is done using the Tomlab optimization library. 

 

7.4 Applying the Epistasis Model to Real Data 

We applied both the additive and the multiplicative models described above to raw colony data 

from SGA screens.  We performed several different validation experiments to characterize the 

performance of our model and validate that epistatic interactions estimated by the model appear 

to be biologically valid.   For all of the analysis described, the additive and multiplicative versions 

of our model showed very few differences, so we only highlight examples from the additive model 

below. 
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7.4.1 Analysis of Variance in Colony Data 

Our model for both systematic and biological effects explains greater than 90% of the variance 

observed in the SGA colony size data.  This suggests that we have captured most major sources 

of variation.   Interestingly, the systematic effects (e.g. plate, row and column) themselves explain 

73% of the variance.  The biological effects, the single mutant fitness and the epistatic interaction 

term, account for only 20% of the variance.  Thus, accurate estimation of these quantities of 

interest depends critically on our accurate modeling of systematic effects. 

 

7.4.2 Evaluating Model Parameter Estimates 

We further investigated the characteristics of the biological parameters estimated by our model, 

specifically the single mutant fitness and interaction terms.   The interaction terms were used to 

compute the actual fitness for each double mutant, and all fitnesses are reported relative to a 

wild-type control.  The distribution of single mutant fitnesses derived from our model and their 

estimated error based on bootstrapping are plotted in Figure 7.8.  We observe a range of single 
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Figure 7.7.  Analysis of variance (ANOVA) on colony size.  We measured the contribution of 
each of the systematic and biological effects in our model to the observed variance in double 
mutant colony sizes.  Overall, these effects explain 93% of the variance, and over 70% of this 
variance is due to row, column, and plate effects.  The magnitude of these effects 
demonstrates the importance of accurate models for detecting the biological quantities of 
interest. 
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mutant fitnesses from 20% relative to wild-type up to mutants that appear to be 110-120% wild-

type fitness.  The majority of mutants are centered right at or slightly below wild-type fitness.  The 

error on the single mutant fitness estimates is quite low (.5%) largely because we have a large 

sample of colony data for each mutant. 

 We observe a more diverse range of double mutant fitnesses, and also find that the error 

in our estimate increases significantly to around 5-10% (Figure 7.9).  This is unsurprising since 

we have only between 4-8 colony replicates for each double mutant (see Appendix E for a 
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Figure 7.8.  Distribution of relative single mutant fitness effect and estimation error.  We fit our 
epistasis model on raw colony size data and measured the resulting single mutant fitness effects.  
Estimation error was obtained from the standard deviation across bootstrapped model fits.  The 
approximate relative error for most single mutant effects is 0.5% because of the large number of 
colonies supporting this estimate. 
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Figure 7.9.  Distribution of normalized relative double mutant fitnesses and estimation error.  We fit 
our epistasis model on raw colony size data and measured the resulting normalized double mutant 
fitnesses.  Estimation error was obtained from the standard deviation across bootstrapped model 
fits.  The approximate relative error for most single mutant effects is between 5-10%. 
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detailed description of plate layout).  In general, the model yields precise estimates for both single 

and double mutant fitnesses.  

 

Comparison with published genetic interactions 

In addition to characterizing single mutant and double mutant fitness estimates, we also compare 

our predicted interactions to published knowledge of genetic interactions.  We find that our 

epistasis estimates correlate well with known examples of epistasis.  Specifically, we plotted the 

distribution of interaction term, lm
! , estimates for several categories of genetic interactions 

curated by bioGRID [17].  We find that the direction and magnitude of our estimates correlate well 

with published interactions.  For instance, we find that both interactions labeled “Synthetic 

lethality” and “Phenotypic enhancement” by bioGRID curators are shifted significantly to the left 

(85% < 0 for Synthetic lethality; 91% < 0 for Phenotypic enhancement), which indicates we 

estimate several significant negatively epistatic interactions for these pairs.  Conversely, the 

interactions labeled as “Phenotypic suppression” by bioGRID curators are shifted significantly to 

Figure 7.10.  Comparison of epistasis estimates with published genetic interactions.  We compared 
the epistasis effects estimated by our model to published genetic interactions obtained from 
bioGRID [17].  The epistasis estimates largely agree with the published data.  For instance, we see 
a strong negative epistasis bias in the distribution of epistasis scores for known synthetic lethal pairs 
and a strong positive bias in the distribution of scores for pairs classified as phenotypic suppression.  
Pairs with reported growth defects are not as strongly bias, but still show a tendency towards 
negative interactions. 
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the right (84% > 0), suggesting that we are also detecting real examples of positive epistasis.  

Interestingly, for interactions labeled as “Growth defects”, we do find a significant bias towards 

negative epistasis (72% < 0), but not nearly as strong as either Synthetic lethality of Phenotypic 

enhancement interactions. 

 

Comparison of interacting pairs against known protein-protein interactions and 

functionally related genes 

As discussed earlier, we know that genetic interactions reveal rich information about gene 

function and pathway organization.  Thus, we further evaluated interactions predicted by our 

model against known protein-protein interactions [17] and functionally associated genes [13].  For 

a range of interaction scores, lm
! , estimated by our model, we calculated the enrichment of 

either of these types of association among pairs with that score (Figure 7.11).  Indeed, we confirm 

enrichment for both functional relationships and protein-protein interactions for pairs with both 

extreme negative and positive epistatic genetic interactions.  For instance, for the most extreme 

negative interactions, we find 7-fold more physically interacting pairs than expected by chance 

and for extreme positive interactions, we find approximately 18-fold more than expected by 

chance.  The fold enrichment for functionally associated pairs of genes is less, but we observe a 

similar trend (Figure 7.11B).  Thus, the genetic interactions predicted by our model recapitulate 

known genetic interactions and, furthermore, are enriched for functionally related pairs of genes 

and protein-protein interactions, suggesting we are finding true epistatic interactions with high 

confidence. 
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7.5 Experimental Validation of Model Estimates: Comparison to 

Epistasis Measured in Liquid Growth Assay 

Although the previous section provides substantial evidence that our model successfully predicts 

genetic interactions from double mutant colony data, we also confirmed this experimentally.  To 

Interaction score (
lm
! ) 

Fo
ld

 E
nr

ic
hm

en
t 

(p
ro

te
in

-p
ro

te
in

 in
te

ra
ct

io
ns

) 

Interaction score (
lm
! ) 

Fo
ld

 E
nr

ic
hm

en
t 

(fu
nc

tio
na

l r
el

at
at

io
ns

hi
ps

) 

A. 

B. 

Figure 7.11.  Enrichment of epistasis scores for known protein-protein interactions (A) and 
functionally related genes (B).   After estimating epistasis effects from real SGA data, we binned the 
interaction scores and evaluated each bin for enrichment of known protein-protein interactions [17] 
or functionally associated genes [13].  
 



Chapter 7:  Measuring Epistasis on Yeast Colony Data 

164 

do this, we compared interactions predicted by our model to epistasis estimates derived through 

growth-rate analysis of double mutants in liquid media [18].  St. Onge et al. constructed double 

yeast deletion mutants from pairs of several single mutants in genes involved in the response to 

DNA damage.  In all, growth rates for approximately 300 double mutants (26 x 26) were 

experimentally measured.  For the purpose of comparison, we obtained experimental colony size 

data for the same set of double mutants using the SGA approach and fit the model as described 

above. 

 Epistasis estimates derived from SGA colony size data correlate surprisingly well with 

epistasis measured through growth rate analysis.  In fact, for the double mutants deemed 

significantly non-zero (either positive or negative) by the St. Onge et al. study, we observe a 

correlation coefficient of 0.9 between estimates from our model and their published epistasis 

values (Figure 7.12A).  Furthermore, we find significant correlation (0.82) even among the more 

subtle effects reported in the St. Onge study, suggesting these may be real and can also detected 

through SGA double mutant colony analysis (see Figure 7.12B).  Overall, the two approaches 
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Figure 7.12.  Comparison of SGA epistasis scores with epistasis measured in liquid growth 
media.  We compared the epistasis estimates derived from our model based on SGA data to 
epistasis measured on the same mutants based on growth rate analysis [18].  We confirm a 
high degree of correlation (.90), particularly among the interactions deemed significant by the 
St. Onge et al. study).  Interestingly, we find a slightly lower, but significant correlation (.82) 
between all pairs, suggesting that subtle effects are shared between the two studies and are 
likely real. 
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agree for a vast majority of the pairs in this study, although it appears epistasis measured based 

on SGA may in fact be statistically more sensitive.  At a significance level (p-value) of 0.05, the 

St. Onge study identified 31 positive epistatic interactions, 28 of which were also detected by our 

approach.  St. Onge et al. detected 54 total negative epistatic interactions, 39 of which we 

detected.  However, we detected 15 significant positive interactions and 40 significant negative 

interactions not identified by their approach (Table 7.2).  There were no cases where the two 

approaches disagreed (i.e. one called a significant positive interaction while the other a significant 

negative interaction).  In summary, our epistasis model for SGA colony size data shows a high 

degree of correlation with epistasis measured in a completely different experimental assay.  

 

7.6 Discussion and Conclusions 

We have described basic background relevant to understanding and interpreting genetic 

interactions in a functional context as well as one high-throughput technology for detecting these 

interactions, Synthetic Genetic Array (SGA) analysis.  We have also introduced our extension of 

this high throughput technology, a simple model for deriving precise, quantitative epistasis 

measures from raw double mutant colony data.  We have demonstrated that this model yields 

both precise single and double mutant fitness estimates and that epistatic interactions it detects 

Table 7.2.  Comparison of SGA epistasis scores with epistasis measured in liquid growth 
media.  We counted the overlap between the significantly non-zero pairs reported in [18] (p-
value < .05) with those fit by our model (p-value < .01).  This table reports overlap between the 
various categories. 
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correspond well to known interactions and often occur between functionally related and physically 

interacting genes. 

 This work has exciting potential for a number of reasons.  First, no previous work on SGA 

has shown that precise, quantitative epistasis measures can be derived from these experiments.  

Earlier SGA analysis focused on the detection of synthetic lethal double mutants which were then 

confirmed by more traditional experiments [19].  Previous work has also derived quantitative 

indicators for SGA data [4] but did not explicitly model epistasis by estimating single mutant 

fitnesses.  We show here that we can detect both negative and positive interactions precisely.   

 Previous work has suggested that highly quantitative genetic interaction measurements 

could be of great utility in reverse engineering network topology and pathway information [1].  The 

combination of fast high-throughput technology for constructing double mutants coupled with the 

quantitative framework presented here for precise detection of epistatic interactions will have a 

number of promising applications in elucidating gene function. 
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Chapter 8  
 

Closing the Loop:  Directing Large-
scale Genetic Interaction Screens 
with Context-sensitive Integration 
 
8.1 Chapter Overview 

As demonstrated by several examples throughout this dissertation, computational approaches to 

data integration and network inference can be readily used to generate specific and accurate 

biological hypotheses.  This is a result of both the improving quality and quantity of data as well 

as advances in methods for analyzing genomic data such as those described here.  Despite this 

success, however, there have been only limited efforts to validate hypotheses generated by 

computational approaches on a large scale.  Often, when validation experiments are done, they 

are typically focused on justification of a methods’ publication, not furthering community 

understanding of biology [9]. 

 A promising but under-explored role for computational integration technology is in 

actually directing further, targeted experiments as illustrated in Figure 8.1.   This chapter 

describes our design of such an approach for directing large-scale genetic interaction screens. 

Figure 8.1.  Iterative experiment-computation discovery loop.  Computational approaches 
have demonstrated promise in translating raw genomic data into accurate biological 
hypothesis, but to date, they are rarely used in driving new, targeted experiments.  We 
describe such an approach for mapping the global yeast genetic interaction network. 
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We demonstrate that “closing the loop” by using predictions to define further experiments can 

both increase the efficiency at which high-throughput technology is applied and also lead to rapid 

discovery of novel biology.  This chapter includes contributions from Michael Costanzo, Anastasia 

Baryshnikova, David Hess, and Olga Troyanskaya.  Michael and Anastasia helped me in 

understanding the SGA technology and in the analysis of the neighborhood interaction data.  

David Hess provided insights in analyzing the results of genetic interaction screens, and Olga 

supervised the project. 

  

8.2 Background 

Genetic interactions, or epistasis between pairs of genes, can reveal rich information about gene 

function and systems-level organization of the cell.  In Chapter 7, we described in detail a high-

throughput approach for detecting genetic interactions in yeast, Synthetic Genetic Array (SGA) 

analysis.  Furthermore, we demonstrated that using a relatively simple model, we can derive 

precise, quantitative measures of epistasis from double mutant colony size data.  Preliminary 

validation and analysis of these interactions indicated they are among the most valuable sources 

of genomic information available for learning about the functional role and organization of genes.  

If these data are so informative, why not use this technology to screen the entire space of all 

possible double mutants?  This could perhaps produce an unprecedented view of the global 

genetic network.  The answer to this is question is that the vast size of the combinatorial space of 

all possible double mutants (approximately 18 million in total) makes this task challenging, even 

with technology such as SGA.  Estimates put the total time required for such an effort between 5-

10 years [12]. 

Although a complete map may be several years off, one key insight described in [12] 

offers hope for significantly speeding this process.  Tong et al. observed that while synthetic lethal 

interactions (extreme negative epistasis) are rare in the background of all possible genes 

(approximately 0.5%), they often occur between functionally related groups of genes.  This 

suggests that if we could define such functional groups of genes in an unbiased, comprehensive 

way, we could rapidly explore at least the interesting parts of the genetic interaction map.  This 
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th

en raises the important question:  how can we define these “functional neighborhoods” when our 

knowledge of some cellular processes is still relatively incomplete? 

 This presents a perfect opportunity for applying the genomic integration technology at the 

focus of this dissertation.  As demonstrated in Chapters 4-6, these technologies perform well at 

providing a global, rough organization of the underlying functional network, even including genes 

that are uncharacterized.  We demonstrate here that it can indeed be successfully used to direct 

an efficient mapping of the global yeast genetic interaction network.  The basis of the approach is 

the definition of comprehensive yet accurate functional neighborhoods of genes, where screening 

is then limited to within-neighborhood pairs (Figure 8.2).  The remainder of the chapter is 

organized as follows.  First, we describe the details of our iterative computational-experimental 

approach for using Bayesian integration to direct high-throughput genetic interactions screens.  

We then present an evaluation of the efficiency improvement offered by such an approach.  And 

finally, we discuss several novel biological insights that have resulted from computational analysis 

of this large-scale genetic interaction data, demonstrating the promise of using computational 

models to drive high-throughput genomic technology. 

 

 

Figure 8.2. Overview of functional 
neighborhood genetic interaction screening 
approach.  The basis of our approach is to 
define an accurate comprehensive set of 
functional neighborhoods (groups of related 
genes) to target for genetic interactions 
screens.  All within-neighborhood pairs 
(illustrated in blue above) will be screened while 
between-neighborhood pairs will not.  We 
expect most extreme genetic interactions 
should occur within these functional 
neighborhoods. 
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8.3 Methods: an Iterative Approach to Mapping the Global 

Genetic Interaction Network 

The computational framework that serves as the basis for our iterative approach to mapping the 

global yeast genetic interaction network is the integration and network prediction methodology 

developed over Chapters 4-6.  The approach consists of two key components:  a system for 

defining functional neighborhoods from an integration of diverse genomic data, and a strategy for 

neighborhood refinement based on an iterative application of targeted, small-scale SGA screens 

(Figure 8.3).  The neighborhood definition component ultimately identifies which pairs are to be 

screened to map the genetic interaction network, but the neighborhood refinement component 

also plays a key role.  The motivation for the refinement step is that before significant resources 

are spent screening complete functional neighborhoods, we want to be certain neighborhoods are 

both comprehensive and accurate.  Since we know genetic interaction data is one of the most 

informative sources of functional information, our strategy is to generate a limited amount of 

Figure 8.3.  Overview of iterative computational-experimental approach for mapping the global 
yeast genetic interaction network.  Our approach consists of two key components:  a Bayesian 
data integration framework for neighborhood definition and a method for neighborhood refinement 
based on targeted, whole-genome genetic interaction screens. 



Chapter 8:  Computational Direction of Global Genetic Interaction Screens 

173 

targeted, highly informative data that can be used to refine neighborhood definitions before the 

final screens.  Both of these components are described in detail in the sections that follow.  

 

8.3.1 Neighborhood Definition 

The core computational machinery for directing the construction of the global yeast genetic 

interaction map is context-sensitive genomic data integration and network prediction, which was 

presented in Chapter 6 and [7].  The basic idea is that we build a putative functional network 

based on available genomic data, which is then partitioned to define pairs of genes to screen for 

genetic interactions.  We started this process by defining a core set of broad biological contexts, 

or functional neighborhoods, based on established knowledge of yeast biology (Table 1).  

Identification of these groups did not require a listing of all related components, but rather simply 

served as a broad functional classification for capturing most core processes in yeast.  In addition 

to this listing, we associated a comprehensive set of specific GO terms with each of these groups, 

allowing them to belong to multiple neighborhoods if appropriate.  These terms were taken from 

the non-redundant set of terms discussed in [6]. 

 These functional groups, each including a catalogue of associated processes, served as 

the basis for context-sensitive learning and as seeds for building functional networks centered in 

each of these biological neighborhoods.  The key steps from genomic data integration to 

neighborhood definition are described in detail below. 

 

Predicting a context-sensitive functional network 

For each broadly defined functional target, we constructed a functional network based on a 

context-sensitive integration of all available genomic data, including gene expression, protein-

protein interactions, known genetic interactions, localization, and sequence information.  The 

details of this approach and the exact datasets used are described in Chapter 6 and Appendix B, 

but we briefly summarize the process here.  For context-sensitive integration, a Bayesian network 

is trained on functionally related pairs of genes from a specified biological context, such that the 

learned conditional probability distributions reflect the reliability of each input dataset in the given  
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context.  One can think of this as a weighted filter of different genomic data types that is 

optimized for the context of interest.  As demonstrated in Chapter 6, context-specific learning can 

dramatically improve the accuracy of genomic data integration because it leverages the natural 

variance of datasets’ relevance across different biological processes.  Given the learned 

Bayesian network, we then perform inference on all possible pairs of proteins to derive a 

probabilistic network in which edges represent the probability that two proteins are functionally  

associated.  One such network is constructed for all functional neighborhoods targeted by our 

approach (Table 8.1). 

 

Defining functional neighborhood membership 

Successful neighborhood definition requires a comprehensive assignment of all proteins to one or 

more functional neighborhoods, which are then screened for genetic interactions.  Clearly, the 

efficiency of the entire neighborhood approach depends on the average size of the 

neighborhoods.  If we wish to target 10 different general biological areas, a neighborhood size of 

approximately 1000 genes would result in screening about 28% of all possible double mutant 

combinations (Figure 8.4).  Increasing the size of each neighborhood much more than 1000 

genes would result in screening a significant portion of all possible pairs, defeating the purpose of 

the neighborhood design.  Thus, we chose a target neighborhood size of between 600-1000 

genes, which results in a coverage of about 20-30%. 

Number Functional target 
1 Secretion/trafficking 
2 DNA replication and repair 
3 RNA processing 
4 Cell cycle/tubulin cytoskeleton 
5 General transport: small molecule, ion, drug 
6 Metabolism 
7 Mitochondria/energy/peroxisome 
8 Polarity/actin cytoskeleton/cell wall 
9 Protein biosynthesis/modification 

10 Transcription 

Table 8.1.  List of functional neighborhoods targeted by iterative 
approach. 
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 Membership in each functional neighborhood is defined based on the context-specific 

putative functional network described above.  Specifically, we measured statistical association of 

all genes to the set of genes known to be involved in the specific processes catalogued under 

each neighborhood.  The association was measured for each GO term separately with the 

following metric:  
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where HG is the cumulative distribution function (CDF) of the hypergeometric distribution, !".  
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This metric essentially tests for enrichment of known proteins in the neighborhood of candidate 

proteins, assigning more weight to probabilistic links with higher confidence.  This metric is 

computed for each GO term associated with each neighborhood, and overall neighborhood 

association is taken as the sum of the top 3 in-neighborhood associations.  Based on these 

scores derived from the functional network, we added candidate genes with significant 

associations in the following order of priority: (a) uncharacterized genes, (b) characterized genes 
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Figure 8.4.  Fraction of total pairs screened for 10 functional neighborhoods vs. the size of 
the functional neighborhoods.  This plot illustrates the fraction of pairs screened across 10 
functional neighborhoods for a range of neighborhood sizes.  We pick neighborhood sizes in 
the range of 600-1000 genes, and thus only screen a small fraction of all possible pairs. 
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annotated to GO terms associated with the neighborhood of interest, and (c) other characterized 

genes with no current annotation in the functional neighborhood, but with significant association.  

Because we wanted to ensure global coverage of the genome in the genetic interactions screens, 

all genes were added to the neighborhood showing the highest association before multiple 

assignments for any genes were made.  However, since our neighborhoods are quite large and 

many had space remaining, we added multiple assignments for genes with statistically significant 

association to more than one functional neighborhood. 

 

8.3.2 Neighborhood Refinement 

The second key component in our hybrid computational-experimental approach for mapping the 

global interaction network is an iterative approach to neighborhood refinement.  The motivation 

behind this component is to ensure comprehensive and accurate neighborhoods before investing 

significant resources in complete functional neighborhood screens.  Because genetic interaction 

data is among the most informative genomic data types for predicting gene function (see Chapter 

Figure 8.5.  Overview of functional neighborhood definition.  Neighborhood definition is 
based on a context-sensitive integration of genomic data [7].  This process results in a 
putative functional network (probabilistic graph connecting all genes) optimized towards each 
of the functional neigborhoods.  Neighborhoods are then defined by measuring association to 
known genes in each graph. 
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7), we set out to design targeted, small-scale SGA screens that would provide information to best 

refine our neighborhoods.  Specifically, our experimental collaborators were willing to invest a 

small amount of resources in whole-genome screens for a handful of genes.  The goal in 

selecting this set was that interactions identified in whole-genome screens across the set would 

provide a highly informative diagnostic signature for refining neighborhood membership for any 

candidate gene (Figure 8.6).  Thus, we are left with the question of how to best pick this set of 

diagnostic genes.  

 

Picking an optimal diagnostic gene set 

This question can be addressed precisely by the predicted functional networks.  Intuitively, we 

want to identify likely hubs in the genetic interaction network that will yield highly functionally 

informative signatures when screened against the whole genome.  This motivates two criteria for 

Figure 8.6.  Schematic of whole-genome diagnostic screen approach for iterative refinement of 
neighborhoods.  Based on the number and specificity of interactions in the predicted functional 
networks, we choose an optimal set of genes to serve as diagnostic screens across the whole 
genome.  This process is illustrated above.  Blue represents areas screened for genetic 
interactions and red indicates a confirmed genetic interaction.   
Upon screening the diagnostic sets, we expect to find most interactions within our defined 
neighborhoods, but interactions outside of these neighborhoods indicate potential missing 
candidate genes. 
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their selection based on our functional networks: node degree and node specificity.  Within-

neighborhood node degree for a neighborhood, N, is defined as: 
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Node degree is the sum of all edges adjacent to any gene a functional neighborhood of interest 

and reflects its overall “hubbiness.”  Genes with high node degree are likely to associate with 

several genes and play a central role in a variety of cellular processes.  Within-neighborhood 

node specificity for a neighborhood, N, is defined as: 
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Node specificity captures a different aspect of a gene’s cellular role:  how localized its interacting 

partners are to a specific biological process.  A gene could have a very high node degree but 

interact with other proteins in a diverse set of processes, and thus, would not be an ideal 

candidate for the diagnostic set.  Instead, we want genes that are both likely to interact (high 

degree), and also genes whose interactions are predictive of a role in a specific function (high 

specificity).  We illustrate this point further with an example from the metabolism functional 

neighborhood. 

 Figure 8.7 plots the within-neighborhood specificity versus the within-neighborhood node 

degree for all member genes.  We observe a broad distribution of these values across the entire 

neighborhood.  Two striking proteins in this plot are Ser1 and Cdc28, both exhibiting a high node 

degree of greater than 130 in the metabolism functional network (Figure 8.7).  Ser1, however, is 

highly specific to this neighborhood (.75) while Cdc28 mainly interacts with proteins outside of 

metabolism, evidenced by a specificity of .25.  Interestingly, these characteristics accurately 

reflect the cellular role of these two proteins— Cdc28 is the catalytic subunit of the main cell-cycle 

dependent kinase (CDK) and is responsible for regulation of a variety of cell-cycle events [4].  

Ser1 catalyzes the formation of phosphoserine, which is required for serine and glycine 

biosynthesis [3], and thus, while it interacts with many genes in the functional network, most of 

them play a role in metabolism.  While Cdc28 is not a good candidate for the diagnostic set, Ser1 
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is because we expect most of its genetic interactions will indicate involvement in some aspect of 

metabolism.  

 We formalize the intuition behind node degree and node specificity to design an algorithm 

for selecting the optimal diagnostic set for each functional neighborhood.  Briefly, the algorithm 

requires a minimum threshold on specificity, and then greedily optimizes interaction coverage 

across each neighborhood (Table 8.2).  The parameter, D, controls the credit awarded for 

redundant interactions to genes already covered by the current diagnostic set.  !=D  will only 
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Figure 8.7.  Criteria for selecting whole-genome diagnostic screens:  neighborhood 
specificity vs. node degree.  Genes for diagnostic whole-genome screens are picked 
based on interaction specificity and node degree with each functional neighborhood.  This 
figure illustrates these metrics for the metabolism neighborhood.  Each point represents 
one gene assigned to this neighborhood.  Two proteins, Ser1 and Cdc28, are indicated on 
the graph.  Ser1 is specific to metabolism and thus has both high node degree and high 
specificity, while Cdc28 plays a diverse role in regulating cell cycle events and has high 
node degree but low node specificity within the metabolism context. 
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reward the largest such interactions and 1D =  will reward all interactions even if they  

are adjacent to already covered nodes.  We chose 25.1D = , and applied this approach to select 

10-15 genes from each functional neighborhood for whole-genome diagnostic screens.  

 

Updating neighborhood definition 

Given the SGA screens from the diagnostic set, neighborhood definitions are updated in a 

straightforward manner.  Correlation coefficients are computed between all candidate genes’ 

diagnostic interaction profiles, and we evaluate each gene’s adjacency to each functional 

neighborhood based on the average correlation.  Any neighborhood exhibiting higher correlation 

than the current assignment is added as an additional neighborhood assignment.  This 

refinement procedure is still under development as of writing of this dissertation, and there are 

several promising alternatives to this simple approach.  For instance, once could imagine training 

a discriminative classifier on diagnostic interaction profiles to achieve more precise neighborhood 

definitions, particularly for uncharacterized genes.  We are currently pursuing approaches based 

on this idea. 

 

 

 

Table 8.2.  Algorithm for picking diagnostic gene set. 
 

Initialize {}=T , repeat the following: 
 While <|| T  max. size of diagnostic set 
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8.4 Evaluation of Computationally Directed Neighborhood 

Approach 

We applied the iterative computational-experimental approach described above to map genetic 

interactions in yeast using SGA genetic interaction screens.  As of writing of this dissertation, 3 

functional neighborhoods were complete, including secretion/trafficking, metabolism, and 

mitochondria/energy/peroxisome as well as approximately 150 whole-genome diagnostic 

screens.  Given these whole-genome screens, we measured the efficiency improvement gained 

by our approach.  In short, we find that our framework has dramatically improved the efficiency at 

which genetic interactions are detected.  We measured this by comparing the number of within-

neighborhood interactions identified in the whole-genome screens to the total number of 

interactions identified, which gives an estimate of the sensitivity of our approach (i.e. what fraction 

of interactions would we have detected in these whole-genome screens had we only screened 

within-neighborhood pairs?).  We detect 82% of the most significant interactions by screening 

less than 30% of the possible pairs (Figure 8.8).  This provides strong evidence supporting the 

utility of our approach.  Our functional neighborhoods are dramatically enriched for genetic 

interactions and we detect a large majority of the most significant interactions by screening only a 

small fraction of all possible pairs.  
 

8.5 Biological Validation: What Can We Learn from all of these 

Data? 

Beyond evaluating the sensitivity of our approach, we have also begun analyzing the genetic 

interaction data resulting from the computationally-driven screens.  In general, we find these data 

continue to be among the most informative sources of genomic data and have led to numerous 

biological insights.  We highlight a few of our findings here.  All of the results discussed in this 

section are based on the secretion functional neighborhood screens. 

 



Chapter 8:  Computational Direction of Global Genetic Interaction Screens 

182 

8

.5.1 Genetic Interaction Profiles are Highly Informative about Gene 

Function 

As indicated by our earlier analysis in Chapter 7, genetic interaction data are highly informative 

about gene function.  To verify this, we computed correlation coefficients between genetic 

A. 

B. 

Figure 8.8  Sensitivity analysis of neighborhood design approach.  We evaluated the 
sensitivity of our approach by measuring the number of within-neighborhood genetic 
interactions (illustration in A) found in a set of 76 whole-genome screens.  Figure B plots the 
fraction of interaction pairs detected with previously defined functional neighborhoods at the 
given percentile.  For a typical genetic interaction cutoff, we estimate that our neighborhood 
approach would detect 82% of the most extreme interactions by screening less than 30% of 
the total possible pairs (B). 



Chapter 8:  Computational Direction of Global Genetic Interaction Screens 

183 

in

teraction profiles in the secretion neighborhood and measured their ability to predict co-

involvement in a specific process.  We confirm that with the exception of one high-throughput 

physical interaction dataset, the genetic interaction data from a single functional neighborhood is 

the most sensitive and precise of all genomic datasets in our collection (Figure 8.9A).  For 

Figure 8.9.  Functional enrichment of genetic interaction profiles.  We performed a precision-recall 
analysis of correlation coefficients across genetic interaction profiles from the secretion functional 
neighborhood (A).  We find that these profiles are among the most informative sources of genomic 
data.  We also confirmed rich functional information in these data based on 2D clustering (B).   We 
find several examples of tightly clustered known secretion complexes, including some that 
encompass previously uncharacterized genes. 
 

SGA secretion 
neighborhood data 

A. 

B. 
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instance, correlation among these profiles can detect approximately 1000 functionally associated 

pairs across diverse processes at a precision of 40% (Figure 8.9A).  The presence of rich 

functional information in these data is also confirmed through 2D hierarchical clustering (Figure 

8.9B).  We find several clusters highly enriched for protein complexes related to secretion (e.g. 

the vacuolar ATPase).  Many of these tight clusters also include uncharacterized genes with 

predicted involvement in the secretion neighborhood.  These examples demonstrate that even 

simple clustering analyses of these data can reveal clear details of network-level organization. 

 

8.5.2 Between and Within-complex Genetic Interactions are Monochromatic 

One interesting and surprisingly clear trend we observed in the secretion functional neighborhood 

was monochromaticity of within-complex and between-complex interactions.  This trend is 

illustrated for secretion-related complexes in Figure 8.10A, the retromer, ER assembly complex, 

and vacuolar ATPase complexes.  All significant positive or negative epistatic interactions are 

indicated by green and red edges, respectively.  With few exceptions, between-complex 

interactions between pairs of proteins within the same complex are in the same direction, and the 

same is true for gene pairs spanning two different complexes.  We see both negative and positive 

epistatic between-complex interactions.  Interestingly, we observe positive epistasis between the 

ER assembly complex and the vacuolar ATPase, which is consistent with their relative roles in 

the cell— the ER assembly complex is required for proper assembly of the vacuolar ATPase [2]. 

 This monochromaticity holds across several more complexes, as illustrated in Figure 

8.10B, where now complexes have been collapsed into single nodes.  The color of each node 

indicates the proportion of positive and negative interactions within each complex (bright red id 

100% negative, bright green is 100% positive).  Edges are colored in a similar fashion.  

Interestingly, there are very few nodes or edges that are not entirely composed of the same 

interaction type. 

 The monochromaticity reveals the inherent modularity of cellular genetic networks and 

will no doubt enable powerful approaches to reverse engineering network structure.  This 

phenomenon has been predicted in earlier work [10] based on analysis of synthetic data 
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generated from metabolic networks.  To our knowledge, this is the first time it has been confirmed 
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Figure 8.10.   Within-complex gene pairs and between complex gene pairs are largely monochromatic.  
(A) We plot the confirmed genetic interactions for three complexes related to secretion.  Green edges 
indicate positive epistasis while red edges indicate negative epistasis.  Pairs within the same complex 
and pairs spanning the same two complexes mostly share the same type of interaction.  (B) This trend is 
confirmed on a larger scale, with a set of 12 secretion-related complexes.  Node color indicates the 
proportion of positive or negative interactions within each complex, and the color of the edges indicates 
the proportion of positive or negative interactions between genes spanning those complexes.  Edge size  
Indicates the number of interactions between each pair. 
 

A. 

B. 
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on epistasis measures from raw double mutant colony size data.  This serves as a striking 

confirmation of the quality of interactions derived from these high-throughput screens. 

 

8.5.3 Within-complex Genetic Interactions are Predictive of the Cellular 

Role of a Complex 

In addition to finding well-defined modularity reflecting protein complexes, we find that the type of 

within-complex genetic interactions (positive or negative) is also informative.  Complexes that 

exhibit mainly negative epistatic within-complex interactions are highly likely to contain at least 

one essential gene (Figure 8.11).  Based on complexes obtained from the MIPS Complex 

 

Figure 8.11.  Within-complex epistasis correlates with essentiality.  For each complex, we plot the 
proportion of within-complex pairs screened that exhibit positive or negative genetic interactions.  
We find that approximately half of the complexes exhibit mainly positive epistasis and half exhibit 
negative epistasis between member pairs.   86% of complexes exhibiting negative epistasis are 
complexes containing one or more essential genes.  Note that the interactions comprising these 
proportions only include non-essential genes. 
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Catalogue [5], we measured the proportion of within-complex pairs screened that showed either 

 significant positive or negative interactions.  Of 28 complexes with a majority of negative 

interactions, 24 of the 28 (86%) contained essential genes, while only 3 of 27 (11%) of complexes 

with mostly positive within-complex interactions contained essential genes.  We suspect the 

reason for this correlation relates to the role the complex plays in the cell.  Complexes with 

essential genes are ultimately required for cell viability and thus, as pairs of non-essential 

complex members are removed, the complex degrades, losing its function, and the cell dies.  

Complexes without essential components, on the other hand, are likely not essential for cell 

viability and thus, as members are removed, the complex may cease to function normally, but the 

cell remains viable.  These double mutants then exhibit positive interactions because the cell is 

healthier than expected based on the two single mutants.  In essence, within-complex 

interactions are indicative of buffering at the complex level.  This striking trend is yet another 

confirmation of the quality and utility of the genetic interaction data generated by our approach. 

 

8.5.4 Ab Initio Pathway Ordering from Genetic Interactions 

From the previous analysis, it is clear that the modularity readily apparent in genetic interaction 

data contains important clues about protein complex membership and function.  Previous studies 

on epistasis have demonstrated that the magnitude of positive epistatic interactions can be used 

to determine the order of pathways [1,11].  One example is illustrated in St. Onge et al. where a 

number of DNA damage repair mutants were ordered from epistasis measured on growth in liquid 

media [11].  The basic principle used in this analysis is that positive epistasis usually indicates co-

involvement in a complex or serial pathway and the single mutant farthest upstream masks the 

phenotype of the downstream single mutant when their mutations are simultaneously introduced 

(Figure 8.12).  Under an assumption of positive regulation, the severity of the double mutant 

phenotype can be compared to the two singles and can define relative order as illustrated in 

Figure 8.12. 
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 We tested whether this approach also worked on epistasis estimates from the secretion 

functional neighborhood.  To do this, we focused on the AP-1 and AP-3 complexes, which 

interact with clathrin during endocytosis and function to specify the cargo for vesicle-mediated 

transport [8].  Most cargo proteins, including carboxypeptidase Y (CPY), are delivered to the 

vacuole through a prevacuolar endosome via several proteins including Pep12p, Vps45p, Vps4p, 

and Vps27 [8].  However, recent research has implicated a parallel pathway for Golgi to vacuole 

transport which shuttles the membrane protein alkaline phosphatase (ALP) via the AP-3 adaptor 

protein complex [8] (Figure 8.14A).  This set of pathways provides a perfect case for validation 

because it involves two parallel pathways one of which has an established serial ordering of 

proteins, all screened in our secretion neighborhood.  Interestingly, before we even began 

ordering, we saw hints of this pathway structure in the 2D clustergram (Figure 8.13).  Both the 

AP-1 and AP-3 complexes exhibit positive within-complex interactions, and have completely 

opposite interaction profiles across the other genes pictured, suggesting they are operating in 

parallel. 

 For all significant positive interactions, we applied the rules outlined in Figure 8.12 to 

assign order between all possible pairs of genes.  We applied a transitive reduction to the 

resulting graph to remove redundant edges, and the final, pruned network is presented in 8.14B.  

With only minor exceptions, this simple approach based on a comparison of single and double 

Figure 8.12.  Deriving pathway order from single and double mutant phenotypes.  Previous work on 
epistasis has demonstrated that positive interactions often occur between genes arranged in series 
in a pathway, and that the magnitude of the interactions can be used to define their order [1,11].  For 
pathways under positive regulation, the rule for determining order is presented above.  The single 
mutant which most closely resembles the double mutant phenotype is placed upstream in the 
pathway. 
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m

utant phenotypes almost perfectly reconstructed the pathway configuration for this example.  The 

serial AP-1 pathway appears exactly as reported in the literature and most components show 

negative interactions with the AP-3 complex, consistent with its suspected parallel role.  We were 

surprised and skeptical at the success of this method because it relies on relatively simplistic 

assumptions of positive regulation.  We expect this approach will not work in all cases or even 

most, but it appears to successfully reconstruct this pathway.  
 

 

 

Figure 8.13.  2D clustergram of genetic interactions for the AP-1 and AP-3 adaptor protein 
complexes.  The AP-1 and AP-3 complexes interact with clathrin during endocytosis and 
function to specify the cargo for vesicle-mediated transport, and are believed to act in parallel 
[8].  Their parallel action is supported by this clustergram, which indicates that AP-1 and AP-3 
show largely the opposite interaction profiles across a set of downstream genes. 
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8.6 Discussion and Conclusions 

We have described a hybrid computational-experimental approach for efficiently mapping the 

global yeast genetic interaction network.  We have used this method for successfully mapping 

interactions in 3 of 10 functional neighborhoods to date, and estimate that we detect 

approximately 85% of the extreme epistatic interactions by screening less than 30% of all 

possible double mutants.  We have also presented several examples of biological insights 

derived from simple analyses of these data, demonstrating the broad utility of large-scale genetic 

interactions for understanding systems-level properties of the genetic network. 

 The work presented in this chapter represents a compelling example of how computation 

can be used not only to generate accurate predictions, but also to drive an entire experimental 

study.  The interactions screens responsible for generating the data presented here required 

Figure 8.14.  Automated pathway ordering of the AP-1 and AP-3 Golgi-vacuole trafficking pathways.  
(A) The current model for Golgi to vacuole transport mediated through the AP-1 and AP-3 pathways 
suggests these complexes are two parallel mechanisms [8].  We attempted to order genes in these 
complexes and the associated downstream counterparts based on the magnitude of epistatic 
interactions among them (B).  With only a few exceptions, we are able to automatically reconstruct 
this pathway, including the serial order of the downstream AP-1 components.  The negative 
interactions between AP-3 and these downstream components suggest that they are indeed parallel 
means of Golgi to vacuole transport. 
 

A. B. 
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several months of work, and most pairs screened were defined through computation.  We expect 

the utility of this type of approach will generalize to other experimental settings, e.g. microarray 

analysis, where targeted experiments derived from computational predictions could potentially 

enable more efficient discovery. 

 Another interesting aspect of this work is the iterative nature of the mapping framework.  

Computational analysis of the functional network was used to identify a set of informative 

diagnostic hubs, which were then screened against the whole genome to generate informative 

diagnostic profiles for neighborhood refinement.  Often, targeted measurements can yield the 

missing piece of data critical for building the correct network model, and thus, a flexible, iterative 

framework that allows this feedback is crucial. 

 Based on our preliminary analysis of the data resulting from this iterative computational-

experimental approach, we find that genetic interaction data can readily lead to new insights into 

gene function and network organization.  We suspect the utility of these data will only grow when 

placed in the context of a global map of the genetic interaction network.  The tools for unlocking 

the full potential of these data to generate accurate, testable hypotheses are yet to be discovered, 

but will almost certainly involve computational models. 
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Chapter 9  
 

Conclusions and Future Work 
 
9.1 Dissertation Summary 

Recent developments in biotechnology have enabled the unprecedented measurement of several 

cellular phenomena including gene expression, protein-protein interactions, genetic interactions, 

protein localization, and sequence information.  However, making use of these measurements to 

generate specific, testable hypotheses is non-trivial and thus, valuable information present in 

these data is often not translated into knowledge.  In this dissertation, we have explored a 

number of computational solutions to this and have demonstrated their potential for helping us 

learn new biology. 

 We began with a discussion of interpreting gene expression and copy number data in its 

chromosomal context, and demonstrated a promising method for automatically detecting 

chromosomal aberrations.  Gross chromosomal changes have been associated with several 

cancers, and thus accurate and automatic identification of these changes is an important step 

towards identifying recurring global patterns of abnormality and potentially learning clues about 

the underlying mechanisms of tumorigenesis and cancer progression.  We have also addressed 

the broader problem of drawing inferences about molecular and genetic networks from diverse 

genomic data.  The challenging aspect of this problem is heterogeneity among the available 

datasets.  Taking advantage of all information present in the data, while not sacrificing precision, 

requires robust methods for integration.  We have presented a general Bayesian framework for 

accommodating this heterogeneity and constructing global maps of functional associations 

between proteins. 

Beyond robust integration, the key insight that enabled this work was identifying context-

specific signals in the data.  This idea is based on the observation that most experimental 

technologies capture different biological processes with varying degrees of success, and thus, 
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each source of genomic data will vary in relevance depending on the biological process one is 

interested in predicting.  For example, context-dependent variation naturally follows from the fact 

that biologists often design experiments to target specific processes.  Accounting for this variation 

is critical for predicting accurate network models, but no previous computational approaches for 

network prediction from diverse data leveraged this information.  We expect this context-sensitive 

framework will provide the basis for a variety of genomic data integration applications, especially 

as we attempt to apply methods to higher organisms with tissue and developmental specificity. 

Finally, we have demonstrated the utility of such genomic data integration technologies in 

not only generating accurate, testable hypotheses but also in driving large-scale experiments.  

We showed that computational direction of high-throughput genetic interaction screens can 

dramatically increase the efficiency with which novel biology is discovered.  Furthermore, 

preliminary analysis of the genetic interaction data generated through these computationally-

directed screens has revealed several systems-level insights and demonstrated the promising 

potential of large-scale genetic interaction data for functional characterization. 

A recurring theme throughout all of the work presented in this dissertation is the 

importance of effective data visualization.  Nearly every key insight presented here was motivated 

by visual analysis of the data.  From identifying functional biases in the signals captured by 

genomic datasets to finding global trends across epistasis profiles, intelligent data visualization 

played a key role in several of these discoveries.  As data repositories continue to grow and new 

technologies enable new diverse genomic characterization, methods for visualization-based 

analysis will no doubt play a central role in deriving meaning from these data. 

In summary, we have presented several new strategies for learning from genomic data 

and have demonstrated their promising applications with numerous case examples of novel 

biological results that were correctly predicted and validated based on these approaches.  In 

closing, we discuss a few promising directions for future research. 
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9.2 Future Work 

9.2.1 Large-scale Discovery of Gene Function Using Genomic Data 

Integration and Network Prediction Technology 

Perhaps the most consistently reinforced conclusion throughout the projects described in this 

dissertation was that finding novel biology based on predictions was often much easier than 

expected.  In general, we tend to significantly underestimate the accuracy of our predictions (e.g. 

the mitochondria validation example presented in Chapter 6).  This observation suggests that 

computational methods for network and gene function prediction are now mature enough to 

support large-scale experimental validation of predictions.  Based on performance estimates of 

bioPIXIE (discussed in Chapters 4 and 6), we estimate that we can assign function with high 

confidence to a large percentage of the genes in yeast that are uncharacterized.  In fact, we 

estimate that just based on current data, we can assign specific functions to approximately 500 of 

the 1347 (37%) total uncharacterized proteins at a precision of at least 40% (Figure 9.1).  The 

challenge is no longer in making accurate predictions, but rather in developing an experimental 

framework the supports large-scale validation of these predictions.  The mitochondria example 

presented in Chapter 6 provides a compelling example of such a framework for identifying 
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Figure 9.1.  Estimated precision of best functional assignment for all uncharacterized genes 
in Saccharomyces cerevisiae.  We predicted function based on the bioPIXIE functional 
network (see Chapters 4 and 6), and for each uncharacterized protein, we estimate the 
precision of its best functional assignment.  This plot illustrates the distribution of precision 
estimates for all 1347 currently uncharacterized genes in yeast. 
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mitochondria-related proteins.   Undoubtedly, a promising direction of future research is to scale 

this framework to other processes and organisms to allow rapid characterization based on 

computational analysis and integration. 

 

9.2.2 Iterative Computational-Experimental Approaches 

A related promising future direction for research is the development of approaches that support 

iterative experimental-computational discovery.  We demonstrated the successful application of 

such an approach in mapping the yeast genetic interaction network.  Putative functional networks 

derived from an integration of diverse genomic data proved invaluable in picking mutants for 

genetic interactions screens.  In our experience, the most powerful aspect of this type of iteration 

is the ability to generate targeted data for the specific question one would like to answer, or 

hypothesis one would like to validate.  In our case, the goal was to produce the most informative 

diagnostic interaction profiles, and we used the functional network to find specific, hubs that were 

likely to yield informative interactions.  We expect this idea can be applied successfully in other 

experimental contexts as well 

   

9.2.3 Combining Genetic Interaction Data with Other Genomic Data for 

Automatic Inference of Pathway and Network Topology 

A final promising direction for future research is automatic discovery and refinement of pathways 

based on genetic interaction screens.  Based on our preliminary analysis presented in Chapter 8, 

these data contain significantly more topological information than most other data sources we 

have analyzed.  Our analysis and reconstruction of a secretion-related pathway was based solely 

on genetic interaction data.  Integrating a global map of genetic interaction profiles with other 

existing genomic data (e.g. protein-protein interactions, gene expression) could provide a 

powerful approach for direct pathway prediction.  Previous methods for pathway inference 

beyond the functional association approach described here have only achieved limited success, 

largely because the experimental data cannot statistically support these inferences.  The rich, 
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systems-level information offered by comprehensive genetic interaction screens will likely support 

more sophisticated approaches.
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Appendix A 
 

BioPIXIE Query Sensitivity Analysis 
 
 
BioPIXIE is designed to support queries for groups of proteins, and returns a functional network 

centered at the query set.  Thus, we found it important to evaluate the sensitivity of the 

algorithm’s performance to different characteristics of the query set, specifically, the noise and the 

size in the query set.  Results for each of these are presented below.  See Chapter 4 for an in-

depth analysis. 

Query Noise Sensitivity Analysis 

 

Figure A1. BioPIXIE noise sensitivity analysis.  We evaluated the sensitivity of the network 
recovery algorithm to noise in the input query set. For each of the 31 reference processes and 
complexes, 20 total query proteins were selected with a varying degrees of random proteins 
inserted (1-19). The area under the precision recall curve (AUC) is plotted for each pathway, 
averaged over 50 independent samplings. 

A
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For each of the 31 evaluation sets of proteins described in Chapter 4, we evaluated the recovery 

performance for 20 query proteins of which between 1 and 19 were randomly chosen from the 

entire proteome and the rest were chosen from the appropriate process or complex.  All 31 

groups could tolerate 25% query set noise with less than a 10% reduction in the average AUC, 27 

of those could tolerate 50% query set noise, and 14 of those could tolerate up to 75% random 

proteins in the query set (Figure A1). 

 
Query Size Sensitivity Analysis 

We also evaluated the sensitivity of the network recovery algorithm to the size of the input query 

set.  We found that, in general, the quality of the network recovered from a pure query set of 4-5 

proteins is comparable to the result of a much larger query (i.e. 40-50 proteins) on the same 

process, suggesting that relatively few proteins are required to obtain a signal.  For instance, with 

only a 4-protein query set, bioPIXIE’s maximum AUC score was within 10% of the maximum AUC 

Figure A2. BioPIXIE query size sensitivity analysis.  A range of query set sizes (4-60 proteins) 
was sampled from the set of member proteins for each of the evaluation processes, and the 
remaining network was recovered with bioPIXIE. The area under the precision recall curve (AUC) 
is plotted above for each pathway, averaged over 50 random samplings. 
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score obtained on up to 60-protein query sets for 22 of the 31 processes (complete results 

illustrated in Figure A2). 

 

List of Supplemental Data Files 

File name:  querysizedependence_AUCS.xls 
File format:  Microsoft Excel 
Title:  Results of query size sensitivity evaluation 
Description: 
This file contains the results of a query size sensitivity evaluation. The area under the precision-
recall curve (AUC) is computed and plotted separately for each of the 31 evaluation pathways 
and complexes. 
 
File name:  querynoisedependence_AUCS.xls 
File format:  Microsoft Excel 
Title:  Results of query noise sensitivity evaluation 
Description: 
This file contains the results of a query noise sensitivity evaluation. The area under the precision-
recall curve (AUC) is computed and plotted separately for each of the 31 evaluation pathways 
and complexes. 
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Appendix B 
 

Processing of Genomic Data for Input 
into Bayesian Networks 
 
 
The input data for our approach consists of genomic data for Saccharomyces cerevisiae from 

over 6500 publications.  This data includes physical and genetic interactions, gene expression, 

protein localization, transcription factor binding site data, and sequence data.  The bulk of the 

interaction data was obtained from BioGRID [13] and BIND [1], and processing of the physical 

interaction data from these sources is straightforward.  Interactions were separated first by 

experimental method responsible for producing the data, then by publication.  To ensure that 

each input dataset had a reasonable number of observations for learning, publications with fewer 

than 50 observations were merged with other publications reporting results from the same 

experimental method.  Several of the other data types required more sophisticated processing to 

get them into final pairwise associations between proteins, which is described in detail for each 

type below.  In total, 174 different datasets were used as input. 

 

Genetic Interaction Data 

The genetic interaction data was obtained from BioGRID and was processed in two different 

ways, the results of which were both included as input.  First, gene pairs with genetic interactions 

were included as one input data type.  Also, because genetic interactions tend to occur between 

cross-pathway pairs, genes with similar interacting partners often tend to be involved in related  
biological processes [16].  Thus, we also treat interacting partners for each gene as features and 

compute inner products between all pairs of genes over their interaction profiles.  These inner 

products are then used as a separate dataset and often contain rich information about functional 

relationships (Figure B1). 
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Gene expression data 

We collected several yeast gene expression datasets including [3,2,12,5,10,14,18,4,17,11].  In 

total, we have collected gene expression data from approximately 150 different studies, totaling 

over 2500 experimental conditions.  A typical approach for mapping gene expression data to 

pairwise associations between genes is to compute correlation between pairs of gene expression 

profiles and use the correlation coefficient as a measure of association.  This approach, however, 

tends to yield little functional diversity in processes it predicts with high precision [9].  Instead, we 

adopt an iterative clustering approach in order to increase the diversity of functions captured by 

the data.  Specifically, we used the PISA algorithm [8], which essentially uses an iterative 

approach to identify gene modules in a set of gene expression profiles and progressively 

subtracts off dominant modules once they have been identified to reveal more subtle trends.  

Since PISA is most effective on large feature vectors, we concatenated all normalized expression 

Figure B1.  Comparison of functional enrichment of genetic interactions and genetic interaction 
profiles.  Genetic interactions were used to generate two different input datasets: one in which 
pairs of interacting genes were treated directly as observations, and one in which a similarity 
measure was derived from pairs of genetic interaction profiles by computing an inner product.  
Both of these datasets was evaluated for enrichment of functional relationships as described in 
[9]. 



 

204 

data into a single matrix and ran the PISA algorithm 500 times independently, identifying up to 

100 modules per run.  This results in a set of modules, many of which are identified several times.  

We first collapse redundant modules using the approach recommended in [8]. 

Given the non-redundant set of modules resulting from applying PISA to our collection of 

expression data, our task is now to map these modules to pairwise associations between genes.  

Furthermore, we wish to retain information about which specific datasets each module was active 

in for the purposes of our context-sensitive integration and prediction scheme, which can 

leverage variation in functional signal across different datasets.  To do this, we identify the set of 

conditions contributing to each module and assign a weight for all genes in the module to each of 

the contributing datasets according to the proportion of the module contributed by that dataset.  

The final step is to map these fractional gene memberships into pairwise associations, which we 

accomplish by simply adding the weights of all modules in which each pair of genes co-occurs for 

each dataset. 

The benefit of using an algorithm such as PISA to generate pairwise associations 

between genes rather than a simple measure of correlation is illustrated in Figures B2A and B2B.  

We used our genomic data evaluation framework [9] to measure the enrichment of co-annotated 

genes in the pairwise scores from the two different approaches.  Figure B2A illustrates this 

comparison over all possible GO terms as described in [9].  At first glance, the gene-gene 

associations based on correlation appear to out-perform the associations based on PISA 

modules, but a check of the distribution of processes represented in the true positives of each 

method reveals that most of the co-annotated pairs identified by correlation are associated with 

ribosomal genes.  If we exclude the ribosomal biogenesis GO term (GO:0007046) and two other 

problematic terms from this analysis (protein biosynthesis, GO:0006412; and DNA recombination, 

GO:0006310), we obtain the evaluation result illustrated in Figure B2A.  The associations based 

on co-occurrence in PISA modules are clearly more diverse in terms of the different process they 

are able to predict with reasonable precision. 
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Figure B2.  (A) Comparative evaluation of gene expression correlation measure with more 
sophisticated PISA clustering result on the same expression data.  Both datasets are evaluated for 
their ability to recover functional relationships as defined by co-annotation to specific GO terms [9].  
While the two datasets show similar overall reliability, they capture very different sets of biological 
processes as illustrated by charts A and B.  (B) Comparative evaluation of gene expression correlation 
measure with more sophisticated PISA clustering result on the same expression data excluding 
heavily over-represented terms.  The PISA clustering result on the same data clearly achieves much 
greater functional diversity than the Pearson correlation coefficient similarity. 

A. 

B. 
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Protein localization data 

We incorporate protein localization data from [7].  We mapped these data to pairwise 

associations between proteins by marking all co-localized pairs as 1 and any other pairs is zero.  

We expect (and confirmed with a functional evaluation) that co-localization to different cellular 

compartments is enriched for functionally-related proteins to varying degrees.  For instance, a 

protein pair co-localized in the cytoplasm is clearly not as meaningful as a protein pair co-

localized in the Golgi.  Thus, we split the co-localization pairs into separate datasets, one for each 

cellular compartment such that the Bayesian integration can weigh them differently. 

 

Transcription factor binding sites 

We include transcription factor from two different sources, the SCPD dataset [19] and Harbison et 

al. ChIP-chip data [6].  To map these to pairwise associations between genes, we simply count 

the number of shared TF binding sites (or predicted binding sites) between any given pair. 

 

Sequence data 

We also include sequence similarity data as input, which is based on the Saccharomyces 

cerevisiae sequence obtained from SGD [15].  We measured sequence similarity between all 

pairs of genes for three different regions: 1000bp upstream sequence, coding sequence, and 

1000bp downstream sequence.  To generate pairwise gene associations, we performed all-

against-all BLAST and retain all sequence alignments that have an E-value of 50 or less.  For 

each pair of sequences, the total percent sequence identity including all retained BLAST hits is 

reported as the measure of similarity.  Upstream, downstream, and coding regions are compared 

separately and included as separate input datasets.  See Figure B3 for a comparative functional 

evaluation of these three datasets. 
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Appendix C 
 

Modeling Independence between 
Input Datasets for Bayesian 
Integration 
 

For most of the network inference we describe here, we employ a naive Bayesian network to 

perform data integration.  Naïve Bayes classifiers are known to provide robust classification 

performance in a variety of application domains, but they are built on the assumption of 

conditional independence between the input features.  One could imagine that such an 

assumption is not always true for genomic data.  For instance, two two-hybrid input datasets for 

detecting physical interactions between proteins might be prone to calling the false positives 

between the same pairs of proteins.  

  

Functional 
relationship 

Dataset 1 Dataset 2 Dataset n … 

Functional 
relationship 

Dataset 1 Dataset 2 

Dataset 3 

… Dataset n 

A. 

B. 

Figure C1.  Naïve Bayesian network (A) and a tree-augmented Bayesian network (TAN) (B) for 
integrating genomic datasets to predict functional linkages between genes.  The dotted edges in the 
TAN network indicate edges that are added based on mutual information between datasets. 
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To investigate this independence issue, we measured the conditional dependence of all 

genomic datasets described in Chapter 6.  We also evaluated a more sophisticated alternative to 

the naïve Bayes classifier, the tree-augmented network, which is a simple extension that models 

dependency between input features [2] (Figure C1).  One useful measure of conditional 

dependence of two datasets is the conditional mutual information between the datasets.  The 

conditional mutual information between two discrete datasets X and Y is  
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where C is the class of interest, in our case, the presence or absence of a functional relationship 

[1].  We measured this quantity for all pairs of datasets used as input to our context-sensitive 

integration and prediction scheme described in Chapter 6 (Figures C2 and C3).  We find that, 

indeed, there are pairs of datasets that are conditionally dependent.  For instance, using the 

following metric to identify highly dependent pairs, 
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Figure C2.  Conditional mutual information between approximately 30 input genomic 
datasets described in Chapter 6.  Similarity is measured as the ratio of the conditional mutual 
information to the minimum conditional entropy of the two datasets. 



 

212 

w

e find that the recent global high-throughput study of protein complexes [3] is highly conditionally 

dependent on two earlier protein mass spectrometry studies [4,5] ( ( )YXS ,  of .53 and .35 

respectively).  Figure C2 plots a heat map of these dependences over a set of 30 input datasets 

and Figure C3 illustrates the overall distribution of dependence values.  

Since we do measure significant dependence between input genomic datasets, we 

further investigated whether this results in poor performance on our yeast integrated functional 

network.  To do this, we compared our naive integration scheme with a more sophisticated model 

that can model dependence among input datasets, the tree-augmented network (TAN).  The TAN 

structure was constructed from the conditional mutual information study by finding the maximum-

weighted spanning tree connecting the observed data nodes in the network [2].  Figure C4 

illustrates the results of a comparison of the two different approaches  

Figure C3.  Distribution of dataset conditional mutual information.  We computed the conditional 
mutual information between approximately 30 input genomic datasets.  The distribution of the 
normalized mutual information is plotted here. 
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(naive vs. TAN) on our collection of genomic data for Saccharomyces cerevisiae.  Figure C4 plots 

the inferred posterior probability for all possible pairs output by the naive Bayes net versus the 

corresponding probability estimated by the tree-augmented network.  The naive network clearly 

overestimates the posterior in several cases because it fails to model dependence between 

correlated datasets.  However, if we only measure the ability of either classifier to separate 

positive from negative pairs in terms of rank-ordering, there is little difference between the two.  

Figure C5 illustrates this comparison by plotting precision-recall characteristics as measured 

against GO annotations for biological processes as described in [6].  While the TAN approach 

offers a slight improvement over the naive network, there is little difference in their ability to 

correctly order positive and negative examples, at least for this particular set of input data.  We 

should note, however, that we expect this may be a potential concern if naïve integration are 

applied in other genomic integration scenarios (e.g. other organisms).  We do measure strong 

dependence among some datasets, and ideally, this dependence would be properly modeled. 

 

 

Figure C4.  Comparison of Naive Bayes and TAN inferred pairwise probabilites.  The naive 
network tends to overestimate the posterior probability of functional relationship compared to the 
TAN result, likely due to violations of the independence assumption among the input datasets. 
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Figure C5.  Functional evaluation of TAN and naive Bayes results.  While the two approaches result 
in different inferred probabilities, the results are very similar in terms of their ability to rank-order 
known pairs of related proteins.  This evaluation is based on co-annotation to specific biological 
processes as discussed in [6]. 
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Appendix D 
 

Theoretical Support for the Colony 
Size Model 
 

In Chapter 7, we present two models for deriving an epistasis measure from double mutant 

colony size data, one additive in the single mutant effects and one multiplicative.  In practice, we 

find that both models fit the raw data reasonably well, and both provide approximately the same 

enrichment for published interactions.  In some cases, we do observe a slight advantage for the 

additive model in terms of enrichment for known protein-protein interactions and functional 

associations, which is why we have chosen to describe both.  The multiplicative model, however, 

has theoretical support, which is discussed in the epistasis literature [1].  We present a summary 

of that here. 

 As discussed by Sanjuan and Elena, the relative fitness of a given mutant, i, can be 

estimated from the relative area of the colony sizes as follows: 
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which suggests that the colony size of a double mutant, under the assumption of no epistatic 

interaction, can be modeled as a multiplicative combination of single mutant effects. 
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Appendix E 
 

Summary of Synthetic Genetic Array 
Double Mutant Plate Layout 
 
 

The epistasis model for detecting genetic interactions from colony size data presented in Chapter 

7 is based on Synthetic Genetic Array (SGA) technology [1].  The positional effects and the 

approach to modeling and normalizing them are motivated by the physical layout of colonies on 

the plate.  Figure 1 pictures an image of an actual SGA plate, which consists of 1536 total 

colonies arranged in 32 rows and 48 columns. 

 

Double mutants on each plate are arrayed in groups of 4, such that replicates of the same double 

mutant are positioned adjacent to one another (Figure 2).  There are also 2 rows and 2 columns 

on the edges of all plates that are reserved for buffer mutants with a his3Δ, to avoid severe 

nutrient effects at the edges.   

 A query single mutant is crossed into a set of plates containing array single mutants as 

pictured in Figure 3.  All double mutants on the plate then share the same query single mutant.  

This process is repeated for all queries selected for each screen. 

Figure E1.  Picture of SGA plate. 
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