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Abstract

Algorithms based on convex optimization, especially linear and semidefinite programming,
are ubiquitous in Computer Science. While there are polynomial time algorithms known
to solve such problems, quite often the running time of these algorithms is very high.
Designing simpler and more efficient algorithms is important for practical impact.

In this thesis, we explore applications of the Multiplicative Weights method in the
design of efficient algorithms for various optimization problems. This method, which was
repeatedly discovered in quite diverse fields, is an algorithmic technique which maintains
a distribution on a certain set of interest, and updates it iteratively by multiplying the
probability mass of elements by suitably chosen factors based on feedback obtained by
running another algorithm on the distribution.

We present a single meta-algorithm which unifies all known applications of this method
in a common framework. Next, we generalize the method to the setting of symmetric
matrices rather than real numbers. We derive the following applications of the resulting
Matrix Multiplicative Weights algorithm:

1. The first truly general, combinatorial, primal-dual method for designing efficient
algorithms for semidefinite programming. Using these techniques, we obtain signif-
icantly faster algorithms for obtaining O(

√
log n) approximations to various graph

partitioning problems, such as Sparsest Cut, Balanced Separator in both di-
rected and undirected weighted graphs, and constraint satisfaction problems such
as Min UnCut and Min 2CNF Deletion.

2. An Õ(n3) time derandomization of the Alon-Roichman construction of expanders
using Cayley graphs. The algorithm yields a set of O(log n) elements which generates
an expanding Cayley graph in any group of n elements.

3. An Õ(n3) time deterministic O(log n) approximation algorithm for the quantum
hypergraph covering problem.

4. An alternative proof of a result of Aaronson that the γ-fat-shattering dimension of
quantum states on n qubits is O( n

γ2 ).

Using our framework for the classical Multiplicative Weights Update method, we derive
the following algorithmic applications:

1. Fast algorithms for approximately solving several families of semidefinite programs
which beat interior point methods. Our algorithms rely on eigenvector computa-
tions, which are very efficient in practice compared to the Cholesky decompositions
needed by interior point methods. We also give a matrix sparsification algorithm to
speed up the eigenvector computation using the Lanczos iteration.

2. O(
√

log n) approximation to the Sparsest Cut and the Balanced Separator
problems in undirected weighted graphs in Õ(n2) time by embedding expander flows
in the graph. This improves upon the previous Õ(n4.5) time algorithm of Arora,
Rao, and Vazirani, which was based on semidefinite programming.
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Chapter 1

Introduction

Convex optimization deals with the problem of minimizing a convex function on a convex
domain in Euclidean space, and is a very well developed area (see [27]). Convex optimiza-
tion techniques have found wide application in theoretical computer science, especially in
the design of efficient algorithms for various fundamental combinatorial optimization prob-
lems. Typically, a relaxation to a given combinatorial optimization problem is obtained
by embedding its solutions as vectors in Euclidean space, and optimizing the objective
function over a convex body defined by constraints satisfied by any solution. This “con-
vexification” of the problem allows the application of powerful tools from convex analysis.
In addition, this relaxation endows a combinatorial problem with geometric structure
which can be exploited to good effect for rounding the obtained solution to one of the
desired characteristics, such as an integer solution.

In particular, various kinds of mathematical programming, such as linear programming
(LP) and its more sophisticated cousin, semidefinite programming (SDP), have been of
fundamental importance in the design of various exact and approximation algorithms,
and numerous algorithms are based directly or indirectly on mathematical programming
intuition. Similarly, convex optimization concepts such as duality and complementary
slackness have inspired the design of many algorithms. The paradigm of obtaining ap-
proximation algorithms to NP-hard problems by using their linear or semidefinite pro-
gramming relaxations has become standard; indeed, rarely does one find an algorithm
which is not directly based on either LP or SDP, or for which an interpretation in the
setting of an LP or an SDP does not yield additional intuition.

Thus, approximation algorithms for various optimization problems such as Vertex
Cover, Set Cover, and Max-SAT have been developed inspired by their LP relax-
ations. Similarly, various network design problems such as k-Median, Multicut, and
Steiner Forest network flow problems such as Max Flow, Multicommodity Flow, etc.
have algorithms based on LP. Many scheduling problems are also solved using LP. Even
outside traditional Computer Science, linear programming has enjoyed spectacular suc-
cess. Many practical problems arising in Operations Research and Business Management,
such as network flow, inventory management, air traffic management, allocation for hu-
man and machine resources, food blending, portfolio and finance management, can be
cast as linear programming problems.
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Similarly, SDP has recently received much attention in Computer Science as a result
of the work of Goemans and Williamson [45], who used SDP to design new approximation
algorithms for several NP-hard problems such as MaxCut, Max 2-Sat, and Max 3-
Sat. In subsequent years, SDP-based approximation algorithms were designed for coloring
k-colorable graphs, Max Dicut, etc. Then progress halted for a few years, until the work
of Arora, Rao, Vazirani [18] that gave a new O(

√
log n)-approximation for the Sparsest

Cut problem. The ideas of this paper were extended to derive similar approximation
algorithms for Min 2CNF Deletion, Min Uncut, directed Sparsest Cut, directed
Balanced Separator in [2] and Non-Uniform Sparsest Cut in [32, 17].

In addition to these well-known approximation algorithms, SDP has also proved useful
in a host of other settings. For instance, Linial, London, and Rabinovich [75] observe that
given an n-point metric space, its minimum-distortion embedding into Euclidean space
can be found via SDP. Recent approximation algorithms for the cut norm of a matrix [8]
and for certain subcases of correlation clustering [31] use SDPs. Halperin and Hazan [51]
showed that a biological probability estimation problem, which estimates the frequencies
of haplotypes from a noisy sample, can be solved using SDP. Outside Computer Science,
semidefinite programming is used in Control Theory and for polynomial optimization.

Given the fundamental importance of linear and semidefinite programming, both of
these have been intensively studied by algorithm designers and numerical analysts. Var-
ious general purpose methods have been developed which solve LPs and SDPs. Among
these are the famous simplex algorithm of Dantzig [38], which, though not polynomial
time, is nevertheless extremely efficient and widely used in practice to solve LPs; the el-
lipsoid method developed by Shor, Yudin and Nemirovskii in the 1970s and later adapted
by Khachiyan [63] to give the first polynomial time algorithm for LP; and the interior
point method introduced by Karmarkar [60] for LPs and adapted by Nesterov and Ne-
mirovskii [83, 84] and Alizadeh [5] for SDPs. Appendix A gives more details of these
algorithms.

Even though interior point methods for LPs are quite efficient in practice, the worst
case running times one obtains for several important optimization problems mentioned
in the beginning of this chapter are still quite high. This problem is exacerbated in the
case of SDP, where interior point methods have even higher worst case running times.
Given the growing popularity of SDP, it would be extremely useful to develop alternative
approaches that avoid the use of general-purpose interior point methods. Even problem-
specific approaches would be very useful and seem hard to come by, and most SDP based
algorithms use a general-purpose SDP solver as a first step.

A similar situation developed in the past decade in the case of linear programming,
after LPs were used to design many approximation algorithms. Subsequent improvements
to running times for these algorithms fall into two broad camps:

(A) Eliminating use of LP in favor of a direct, combinatorial algorithm that uses the
same intuition (in many cases, the same proof of the approximation ratio). Various
primal-dual algorithms that substitute (previously) LP-based algorithms fall in this
category. Though these usually evolve out of (and use the same intuition as) earlier
approximation algorithms that used LP as a black box, they do not solve the LP
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per se. Rather, the algorithm incrementally builds a dual solution together with an
integer primal solution, updating them at each step using “combinatorial” methods.
At the end, the candidate dual solution is feasible and the bound on the approxima-
tion ratio is derived by comparing the integer primal solution to the bound provided
by this feasible dual. Usually the update rule is designed using intuition from the
rounding algorithm used in the original LP-based algorithm.

Some canonical examples are network design problems [3] (or see the survey [46])
and O(1)-approximation for k-Median (LP-based algorithm in [30]; faster primal-
dual algorithm in [58]).

(B) Solving the LP approximately instead of exactly. Typically this uses some version
of the classical Lagrangian relaxation idea. Shahrokhi and Matula [80] gave the first
approximation algorithm for multicommodity flow problems. Plotkin, Shmoys, and
Tardos [85] generalized the method to the family of packing/covering LPs. Later,
Garg and Könemann [44] and Fleischer [40] improved the running times further for
flow LPs.

The technique of Lagrangian relaxation also finds applications in algorithms of type
(A) above, such as in [58]. This technique solves a constrained optimization prob-
lem iteratively by combining the constraints into a single weighted constraint, and
then solving the relaxed problem. The weights are then tuned based on the solu-
tion obtained. This technique has proved quite successful in designing very fast,
combinatorial algorithms for various problems.

Such problem-specific algorithms for SDP are quite rare. The majority of this thesis
describes how a specific Lagrangian relaxation technique, which we call the Multiplicative
Weights algorithm, can be used to design fast algorithms for various optimization problems
based on both LP and SDP. In the rest of this chapter, we formulate the linear and
semidefinite programming problems, and then give a description of the results in this
thesis.

1.1 Linear and Semidefinite Programming

In this section we formalize the linear and semidefinite programming problems. A lin-
ear program aims to optimize a linear objective function subject to linear equality and
inequality constraints:

min c · x
a1 · x ≥ b1

a2 · x ≥ b2
...

am · x ≥ bm

x ≥ 0

3



where x ∈ Rn is a vector of variables, c,a1,a2, . . . ,am ∈ Rn, b1, b2, . . . , bm ∈ R, and x ≥ 0
is notation for the condition that all coordinates of x are non-negative. Here, for vectors
u,v ∈ Rn, u · v =

∑n
i=1 uivi is their inner product.

A semidefinite program has superficially the same form as a linear program, in that it
has linear constraints and a linear objective function. The number of variables is n+

(
n
2

)
,

and are written in the form of a square symmetric matrix X. We have the additional
stipulation that X is positive semidefinite, i.e. all its eigenvalues are non-negative. Thus,
a general SDP can be written as follows:

min C •X

A1 •X ≥ b1

A2 •X ≥ b2
...

Am •X ≥ bm

X � 0

where X ∈ Rn×n is a square matrix of variables, C,A1,A2, . . . ,Am ∈ Rn×n, b1, b2, . . . , bm ∈
R. We assume that all matrices are symmetric. Thus X has real eigenvalues, and X � 0 is
notation for the condition that X is positive semidefinite. Here, for matrices U,V ∈ Rn×n,
U•V =

∑n
i=1

∑n
j=1 UijVij is the inner product of the matrices thinking of them as vectors

in Rn2
.

A point of notation: in this thesis, bold lowercase letters such as a,b,x,v represent
vectors, and bold uppercase letters such as A,B,X,V represent matrices. Variables
written in normal weight font represent scalars, for e.g. x is a scalar variable, ai is the
ith coordinate of the vector a, and Aij is the ijth element of the matrix A. Frequently,
in summations where the index runs over the entire range, we will drop the specification
of the range when it is clear from the context: for example,

∑
i may be used to stand for∑n

i=1, and
∑

ij may be used to stand for
∑n

i=1

∑n
j=1.

1.2 Results in this thesis

The focus of this thesis is the design of efficient algorithms using a specific Lagrangian
relaxation technique which we call the Multiplicative Weights method. This method is
certainly not new, and has been discovered and rediscovered in widely different areas. We
now discuss the results of this thesis in some detail.

The Multiplicative Weights algorithm and Applications. In Chapter 2, we present
a framework for the Multiplicative Weights algorithm that unifies all previously known
applications of this method. This framework is based on an online player who needs to
take one of several courses of actions in the face of uncertainty. Once the action is chosen,
the cost of all the actions is revealed, and the player incurs the cost of her chosen action.
The player’s long term goal is to minimize her cost relative the cost of the best fixed action
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in hindsight. The Multiplicative Weights algorithm allows her to do that. She chooses
her action based on some weights on the actions, and iteratively penalizes actions which
have high cost by reducing their weight by a carefully chosen multiplicative factor. This
simple idea is powerful enough to give efficient algorithms for a wide variety of problems.
We present some of these applications, including solving feasibility problems with concave
constraints on convex domains, and solving zero-sum games.

The Matrix Multiplicative Weights algorithm and Applications. In Chapter 3,
we present a matrix generalization of the Multiplicative Weights algorithm. This algo-
rithm makes use of the matrix exponential operation to replace the multiplicative weights
update of the basic algorithm. We call this the Matrix Multiplicative Weights algorithm.
This retains the original Multiplicative Weights algorithm as a special case when all the
matrices involved are diagonal. In an analogous manner to the Multiplicative Weights al-
gorithm, we present an application of this algorithm to solving a matrix generalization of
a zero-sum game, and thus obtain a min-max theorem which is equivalent to semidefinite
programming duality. This connection to semidefinite programming paves the way to the
applications in the following chapter.

Combinatorial, Primal-Dual Approach to Semidefinite Programs. The first im-
portant application of the Matrix Multiplicative Weights algorithm appears in Chapter 4.
SDPs satisfy a duality theorem just like LPs, and so in principle one should be able to
solve them using primal-dual (type (A)) approaches. However, several conceptual difficul-
ties arise, and no primal-dual algorithms for SDP were known so far. One issue is that the
basic object in SDPs is a positive semidefinite matrix, rather than vectors as in LPs, and
it is harder to reason about matrices than vectors. Another issue is that most rounding
algorithms for SDPs use the global geometric structure of optimum or near-optimum so-
lutions, and it is unclear how to use this geometric structure in the context of the grossly
infeasible solutions one might encounter during a primal-dual algorithm. Finally, there is
the issue of implementing matrix operations efficiently enough so that the running time
is an improvement over interior point methods.

In Chapter 4, we show how the Matrix Multiplicative Weights algorithm gives us
a generic primal-dual scheme for solving SDPs. This yields primal-dual algorithms for
various SDPs. We also show how to implement our algorithms efficiently, by making
a subtle use of the Johnson-Lindenstrauss lemma to reduce the expensive operation of
computing matrix exponentials to matrix-vector products.

Thus, we obtain the fastest known algorithms for obtaining O(
√

log n) and O(log n)
approximations to the Sparsest Cut and minimum c-Balanced Separator problems
in both undirected and directed, weighted graphs. These problems ask for a partition of
the input graph into two large pieces while minimizing the size of the “interface” between
them, as measured by the number of edges crossing the partition. Graph partitions or
separators are central objects of study in the theory of Markov chains, geometric embed-
dings and are a natural algorithmic primitive in numerous settings, including clustering,
divide and conquer algorithms, PRAM emulation, VLSI layout, and packet routing in

5



distributed networks. Since finding optimal separators is NP-hard, one is forced to settle
for approximation algorithms (see [89])

We also obtain the fastest known algorithms for obtaining an O(
√

log n) approxima-
tion to the Min UnCut problem, and an O(

√
log n) approximation to the Min 2CNF

Deletion problem. The Min 2CNF Deletion problem is of particular interest since it
is the hardest Min CSP problem that has nontrivial approximation guarantees. Khanna,
Sudan, Trevisan and Williamson [66] classified the approximability of all Min CSP prob-
lems and both Min UnCut and Min 2CNF Deletion are complete problems for classes
of Min CSP problems in their hierarchy. Our algorithms significantly improve upon previ-
ously known algorithms which are based on solving the SDP using interior point methods.

Derandomization and Quantum Algorithms. In Chapter 5, we describe some ad-
ditional applications of the Matrix Multiplicative Weights algorithm to derandomization
and quantum computing. The first result is a derandomization of the Alon-Roichman
theorem [9], which says that the Cayley graph generated using O(log n) randomly chosen
elements of an arbitrary group of order n is an expander with high probability. We show
how to use the Matrix Multiplicative Weights algorithm to obtain an Õ(n3) time deter-
ministic algorithm which chooses a set of O(log n) generators such that the Cayley graph
thus formed is guaranteed to be an expander.

The second application is a deterministic O(log n) approximation to the Quantum
Hypergraph Cover problem. This problem is a generalization of the classical Set Cover
problem and it arises in quantum information theory. It was shown by Ahlswede and
Winter [4] that a O(log n) approximation to the problem can be found by solving an
associated SDP and randomly rounding the fractional solution thus obtained. We de-
randomize this process using the Matrix Multiplicative Weights algorithm, and obtain
an Õ(n3) time algorithm to find an O(log n) approximate cover. This algorithm can be
viewed as a generalization of the greedy algorithm for the Set Cover problem.

The third application is to a learning problem in quantum mechanics. An n-qubit
quantum state is described by a positive semidefinite matrix of trace 1 of size 2n × 2n.
Suppose we could repeatedly measure the quantum state, and now we want to build an
approximate description of it (in terms of another quantum state). To learn the state
exactly we may need to do exponentially many (in n) measurements, but if our goal is
to learn the state well enough to have reasonable confidence about its behavior in future
measurements, then we need to do only O(n) measurements. This result was shown
by Aaronson [1] by bounding a learning theoretic parameter called the fat-shattering
dimension of quantum states by O(n). Just like the VC-dimension, this parameter allows
us to place bounds on the sample complexity of a learning problem in a relevant PAC-style
framework. Using the Matrix Multiplicative Weights algorithm, we give an alternative
proof of Aaronson’s result.

Fast Algorithms for Approximate Semidefinite Programming. We then turn
back to semidefinite programming in Chapter 6. This chapter describes how to apply the
(basic) Multiplicative Weights algorithm to approximate SDPs. The algorithms thus ob-
tained are of type (B). Our algorithm reduces SDP solving to a sequence of approximate
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eigenvalue/eigenvector computations, which can be done efficiently using the well-known
iterative methods such as the power method or the more efficient Lanczos method. This
generalizes the work of Klein and Lu [67] who had previously applied the Multiplicative
Weights algorithm to approximately solve SDPs that arose in the algorithms of Goemans-
Williamson for MaxCut and Karger, Motwani, and Sudan for Coloring. We make
this approach more efficient by making judicious use of the ellipsoid algorithm in a hy-
brid two-level algorithm, and we further speed up the process of computing approximate
eigenvectors by using a sparsification procedure for reducing the number of non-zero en-
tries in the input matrix. Using this approach, we give significantly faster algorithms
for approximately solving SDPs which arise in quadratic programming problem called
MaxQP (which generalizes MaxCut), in a biological probability estimation problem
called HaploFreq considered by Halperin and Hazan [51], and in computing the mini-
mum distortion embedding of a given finite metric space into `2.

Fast Graph Partitioning algorithms using Expander Flows. Finally, in Chap-
ter 7, we again consider the problem of approximating the Sparsest Cut and minimum
c-Balanced Separator problems in undirected weighted graphs, which we first consid-
ered in Chapter 4. We give an alternative algorithm for approximating these problems
up to a factor of O(

√
log n) in Õ(n2) time. This approach is different from the one in

Chapter 4 in that we do not solve the associated SDP; though the formulation in terms
of expander flows is indeed inspired by the SDP dual. Instead, we use the Multiplicative
Weights algorithm to embed an expander flow, which is a multicommodity flow whose
demand graph is an expander, in the graph. The expander flow gives a lower bound
on the expansion of the input graph. Then using the theorems of [18], we can find a
cut of expansion within a factor of O(

√
log n) of the lower bound thus obtained, which

thus gives us an O(
√

log n) factor approximation of the Sparsest Cut. The algorithm
uses a combination of multicommodity flow computations, eigenvalue computations, and
random sampling to achieve the Õ(n2) running time.

At the core of all these algorithms is the Multiplicative Weights algorithm, and this is
the common theme which runs through all the results in this thesis.
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Chapter 2

The Multiplicative Weights
Update method

The Multiplicative Weights method is a simple idea which has been repeatedly discovered
in fields as diverse as Machine Learning, Optimization, and Game Theory. The setting for
this algorithm is the following. A decision maker has a choice of n decisions, and needs to
repeatedly make a decision and obtain an associated payoff. The decision maker’s goal,
in the long run, is to achieve a total payoff which is comparable to the payoff of that fixed
decision that maximizes the total payoff with the benefit of hindsight. While this best
decision may not be known a priori, it is still possible to achieve this goal by maintaining
weights on the decisions, and choosing the decisions randomly with probability propor-
tional to the weights. In each successive round, the weights are updated by multiplying
them with factors which depend on the payoff of the associated decision in that round.
Intuitively, this scheme works because it tends to focus higher weight on higher payoff
decisions in the long run.

This idea lies at the core of a variety of algorithms. Some examples include: Fre-
und and Schapire’s AdaBoost algorithm in machine learning [42]; algorithms for game
playing studied in economics (see Section 2.4), the Plotkin-Shmoys-Tardos algorithm for
packing and covering LPs [85], and its improvements in the case of flow problems by Garg-
Könneman [44] and Fleischer [40]; etc. The analysis of the running time uses a potential
function argument and the final running time is proportional to 1/ε2.

It has been clear to most researchers that these results are very similar, see for in-
stance, Khandekar’s PhD thesis [64]. In this chapter, we develop a unified framework
for all these algorithms. This meta algorithm is a generalization of Littlestone and War-
muth’s Weighted Majority algorithm from learning theory [78]. We call this the Multi-
plicative Weights algorithm (a similar algorithm, Hedge, was developed by Freund and
Schapire [42]). This algorithmic framework, and the derivation of previously known al-
gorithms using it, have been studied in much more detail in the survey paper [15]. We
also present some applications of this framework in designing algorithms to approximately
solve zero-sum games, feasibility problems with concave constraints over a convex domain,
and fractional packing and covering linear programs.
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2.1 The Weighted Majority Algorithm

Consider the following setting. We are trying to invest in a certain stock. For simplicity,
think of its price movements as a sequence of binary events: up/down. (Below, this will
be generalized to allow non-binary events.) Each morning we try to predict whether the
price will go up or down that day; if our prediction happens to be wrong we lose a dollar
that day.

In making our predictions, we are allowed to watch the predictions of n “experts”
(who could be arbitrarily correlated, and who may or may not know what they are talking
about). The algorithm we present will be able to limit its losses to roughly the same as
the best of these experts. At first sight this may seem an impossible goal, since it is not
known until the end of the sequence who the best expert was, whereas the algorithm is
required to make predictions all along.

The algorithm does this by maintaining a weighting of the experts. Initially all have
equal weight. As time goes on, some experts are seen as making better predictions than
others, and the algorithm increases their weight proportionately. The Weighted Majority
algorithm is given in Figure 2.1.

Weighted majority algorithm

Initialization: Fix an ε ≤ 1
2 . For each expert i, associate the weight wi(1) := 1.

For t = 1, 2, . . . , T :

1. Make the prediction that is the weighted majority of the experts’ predictions based
on the weights w1

(t), . . . , wn
(t). That is, predict “up” or “down” depending on which

prediction has a higher total weight of experts advising it (breaking ties arbitrarily).

2. For every expert i who predicts wrongly, decrease his weight for the next round by
multiplying it by a factor of (1− ε):

wi
(t+1) = (1− ε)wi(t) (update rule). (2.1)

Figure 2.1: The Weighted Majority algorithm.

Theorem 1. After T steps, let mi
(T ) be the number of mistakes of expert i and m(T ) be

the number of mistakes our algorithm has made. Then we have the following bound for
every i:

m(T ) ≤ 2 lnn
ε

+ 2(1 + ε)mi
(T ).

In particular, this holds for i which is the best expert, i.e. having the least mi
(T ).

Proof: A simple induction shows that wi(t+1) = (1 − ε)mi(t) . Let Φ(t) =
∑

iwi
(t) (“the

potential function”). Thus Φ(1) = n. Each time we make a mistake, the weighted majority
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of experts also made a mistake, so at least half the total weight decreases by a factor 1−ε.
Thus, the potential function decreases by a factor of at least (1− ε/2):

Φ(t+1) ≤ Φ(t)

(
1
2

+
1
2

(1− ε)
)

= Φ(t)(1− ε/2).

Thus another simple induction gives Φ(T+1) ≤ n(1 − ε/2)m
(T )

. Finally, since Φi
(T+1) ≥

wi
(T+1) for all i, the claimed bound follows by comparing the above two expressions and

using the fact that − ln(1− ε) ≤ ε+ ε2 since ε < 1
2 . 2

The beauty of this analysis is that it makes no assumption about the sequence of events:
they could be arbitrarily correlated and could even depend upon our current weighting
of the experts. In this sense, this algorithm delivers more than initially promised, and
this lies at the root of why (after generalization) it can give rise to the diverse algorithms
mentioned earlier. In particular, the scenario where the events are chosen adversarially
resembles a zero-sum game, which we consider later in Section 2.3.1.

2.2 The Multiplicative Weights algorithm

In the general setting, we still have n experts. The set of events/outcomes may not
be necessarily binary and could even be infinite. To model this, we dispense with the
notion of predictions altogether, and instead suppose that in each round, every expert
recommends a course of action, and our task is to pick an expert and use his advice. At
this point the costs of all actions recommended by the experts is revealed by nature. We
suffer the cost of the action recommended by the expert we chose.

To motivate the Multiplicative Weights algorithm, consider the näıve strategy that, in
each iteration, simply picks an expert at random. The expected penalty will be that of the
“average” expert. Suppose now that a few experts clearly outperform their competitors.
This is easy to spot as events unfold, and so it is sensible to reward them by increasing
their probability of being picked in the next round (hence the multiplicative weight update
rule).

Intuitively, being in complete ignorance about the experts at the outset, we select
them uniformly at random for advice. This maximum entropy starting rule reflects our
ignorance. As we learn who the hot experts are and who the duds are, we lower the
entropy to reflect our increased knowledge. The multiplicative weight update is our means
of skewing the distribution.

We now set up some notation. Let t = 1, 2, . . . , T denote the current round, and let i
be a generic expert. In each round t, we select a distribution p(t) over the set of experts,
and select an expert i randomly from it (and use his advised course of action). At this
point, the costs of all the actions recommended by the experts are revealed by nature
in the form of the vector m(t) such that expert i incurs cost mi

(t). We assume that the
costs lie in the range [−1, 1]. This is the only assumption we make on the costs; nature
is completely free to choose the cost vector as long as these bounds are respected, even
with full knowledge of the actions recommended by the experts.
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The expected cost to the algorithm for choosing the distribution p(t) is

E
i∈p(t)

[mi
(t)] = m(t) · p(t).

The total expected cost over all rounds is therefore
∑T

t=1 m(t) · p(t). Just as before, our
goal is to design an algorithm which achieves a total expected cost not too much more
than the cost of the best expert, viz. mini

∑T
t=1mi

(t).

Multiplicative Weights algorithm

Initialization: Fix an ε ≤ 1
2 . For each expert i, associate the weight wi(t) := 1.

For t = 1, 2, . . . , T :

1. Choose expert i with probability proportional to his weight wi(t). I.e., use the
distribution p(t) = {w1

(t)/Φ(t), . . . , wn
(t)/Φ(t)} where Φ(t) =

∑
iwi

(t).

2. Observe the costs of the experts m(t).

3. Penalize the costly experts by updating their weights as follows: for every expert i,

wi
(t+1) =

{
wi

(t)(1− ε)mi(t) if mi
(t) ≥ 0

wi
(t)(1 + ε)−mi

(t)
if mi

(t) < 0

Figure 2.2: The Multiplicative Weights algorithm.

The following theorem —completely analogous to Theorem 1— bounds the total ex-
pected cost of the Multiplicative Weights algorithm (given in Figure 2.2) in terms of the
total cost of the best expert:

Theorem 2. In the given setup, the Multiplicative Weights algorithm guarantees that
after T rounds, for any expert i, we have

T∑
t=1

m(t) · p(t) ≤
T∑
t=1

mi
(t) + ε

T∑
t=1

|mi
(t)|+ lnn

ε
.

Proof: We use the following facts, which follow immediately from the convexity of the
exponential function:

(1− ε)x ≤ (1− εx) if x ∈ [0, 1]
(1 + ε)−x ≤ (1− εx) if x ∈ [−1, 0]

The proof is along the lines of the earlier one, using the potential function Φ(t) =
∑

iwi
(t).
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Since mi
(t) ∈ [−1, 1], using the facts above we have,

Φ(t+1) =
∑
i

wi
(t+1)

=
∑

i: mi(t)≥0

wi
(t)(1− ε)mi(t) +

∑
i: mi(t)<0

wi
(t)(1 + ε)−mi

(t)

≤
∑
i

wi
(t)(1− εmi

(t))

= Φ(t) − εΦ(t)
∑
i

mi
(t)pi

(t)

= Φ(t)(1− εm(t) · p(t))

≤ Φ(t) exp(−εm(t) · p(t)).

Here, we used the fact that pi(t) = wi
(t)/Φ(t). Thus, by induction, after T rounds, we have

Φ(T+1) ≤ Φ(1) exp(−ε
T∑
t=1

m(t) · p(t)) = n · exp(−ε
T∑
t=1

m(t) · p(t)).

Furthermore, for every expert i,

Φ(T+1) ≥ wi(T+1) = (1− ε)
∑
≥0mi

(t)

· (1 + ε)−
∑
<0 mi

(t)
,

where the subscripts “≥ 0” and “< 0” in the summations refer to the rounds t where
mi

(t) is ≥ 0 and < 0 respectively. Now we get the desired bound by taking logarithms
and simplifying as before. We used the facts that ln( 1

1−ε) ≤ ε+ ε2 and ln(1 + ε) ≥ ε− ε2

for ε ≤ 1
2 . 2

Remark: From the proof, it can be seen that the following multiplicative update rule:

wi
(t+1) = wi

(t)(1− εmi
(t))

regardless of the sign of mi
(t), would also give the same bounds. Such a rule may be easier

to implement.

Corollary 1. If the costs of all experts lie in the range [0, 1], then the Multiplicative
Weights algorithm also guarantees that after T rounds, for any distribution p on the
experts,

T∑
t=1

m(t) · p(t) ≤ (1 + ε)
T∑
t=1

m(t) · p +
lnn
ε
.

Proof: This corollary follows immediately from Theorem 2, by taking a convex combi-
nation of the inequalities for all experts i with the distribution p. 2
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2.2.1 Gains instead of losses

There are situations where it makes more sense for the vector m(t) to specify gains for
each expert rather than losses. Now our goal is to get as much total expected payoff as
possible in comparison to the total payoff of the best expert. We can get an algorithm
for this case simply by running the Multiplicative Weights algorithm using the loss vector
−m(t).

The algorithm that results updates the weight of expert i by a factor of (1 + ε)mi
(t)

when mi
(t) ≥ 0, and (1− ε)−mi(t) when mi

(t) < 0. The following theorem follows directly
from Theorem 2 by simply negating the quantities:

Theorem 3. In the given setup, the Multiplicative Weights algorithm (for gains) guar-
antees that after T rounds, for any expert i, we have

T∑
t=1

m(t) · p(t) ≥
T∑
t=1

mi
(t) − ε

T∑
t=1

|mi
(t)| − lnn

ε
.

2.3 Applications

Typically, the Multiplicative Weights method is applied in the following manner. A pro-
totypical example is to solve a constrained optimization problem. We then let an expert
represent each constraint in the problem, and the events correspond to points in the
domain of interest. The penalty of the expert is made proportional to how well the cor-
responding constraint is satisfied on the point represented by an event. This might seem
counterintuitive, but recall that we reduce an expert’s weight depending on his penalty,
and if an expert’s constraint is well satisfied on events so far we would like his weight to
be smaller, so that the algorithm focuses on experts whose constraints are poorly satis-
fied. With these weights, the algorithm generates a maximally adversarial event, i.e. the
event whose corresponding point maximizes the expected penalty, i.e. the weighted sum
of penalties. With this intuition, we can describe the following applications.

2.3.1 Solving zero-sum games approximately

We show how the general algorithm above can be used to approximately solve zero-sum
games. This is a duplication of the results of Freund and Schapire [43], who gave the same
algorithm but a different proof of convergence that used KL-divergence.

Let A be the payoff matrix of a finite 2-player zero-sum game, with n rows (the
number of columns will play no role). When the row player plays strategy i and the
column player plays strategy j, then the payoff to the column player is A(i, j) := Aij . We
assume that A(i, j) ∈ [0, 1]. If the row player chooses his strategy i from a distribution p
over the rows, then the expected payoff to the column player for choosing a strategy j is
A(p, j) := Ei∈p[A(i, j)]. Thus, the best response for the column player is the strategy j
which maximizes this payoff. Similarly, if the column player chooses his strategy j from a
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distribution q over the columns, then the expected payoff he gets if the row player chooses
the strategy i is A(i,q) := Ej∈q[A(i, j)]. Thus, the best response for the row player is the
strategy i which minimizes this payoff. John von Neumann’s min-max theorem says that
if each of the players chooses a distribution over their strategies to optimize their worst
case payoff (or payout), then the value they obtain is the same:

min
p

max
j
A(p, j) = max

q
min
i
A(i,q) (2.2)

where p (resp., q) varies over all distributions over rows (resp., columns). Also, i (resp., j)
varies over all rows (resp., columns). The common value of these two quantities, denoted
λ∗, is known as the value of the game.

Let δ > 0 be an error parameter. We wish to approximately solve the zero-sum game
up to additive error of δ, namely, find mixed row and column strategies p̃ and q̃ such that

λ∗ − δ ≤ min
i
A(i, q̃) (2.3)

max
j
A(p̃, j) ≤ λ∗ + δ. (2.4)

The algorithmic assumption about the game is that given any distribution p on ex-
perts, we have an efficient way to pick the best event, namely, the pure column strategy j
that maximizes A(p, j). This quantity is at least λ∗ from the definition above. Call this
algorithm the Oracle.

Theorem 4. Given an error parameter δ > 0, there is an algorithm which solves the
zero-sum game up to an additive factor of δ using O( logn

δ2 ) calls to Oracle, with an
additional processing time of O(n) per call.

Proof: We map our general algorithm from Section 2.2 to this setting by considering (2.3)
as specifying n linear constraints on the probability vector q̃: viz., for all rows i, A(i, q̃) ≥
λ∗ − δ. Now, following the intuition given in the beginning of this section, we make our
“experts” to correspond to pure strategies of the row player. Thus a distribution on the
experts corresponds to a mixed row strategy. “Events” correspond to pure strategies of
the column player. The penalty paid by an expert i when an event j happens is A(i, j).

In each round, given a distribution p(t) on the rows, we will set the event j(t) to be
the best response strategy to p(t) for the column player, by calling Oracle. Thus, the
cost vector m(t) is the j(t)-th column of the matrix A.

Since all A(i, j) ∈ [0, 1], we can apply Corollary 1 to get that after T rounds, for any
distribution on the rows p, we have

T∑
t=1

A(p(t), j(t)) ≤ (1 + ε)
T∑
t=1

A(p, j(t)) +
lnn
ε
.

Dividing by T , and using the fact that A(p, j(t)) ≤ 1 and that for all t, A(p(t), j(t)) ≥ λ∗,
we get

λ∗ ≤ 1
T

T∑
t=1

A(p(t), j(t)) ≤ 1
T

T∑
t=1

A(p, j(t)) + ε+
lnn
εT
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Setting p = p∗, the optimal row strategy, we have A(p, j) ≤ λ∗ for any j. By setting
ε = δ

2 and T = d4 lnn
δ2 e, we get that

λ∗ ≤ 1
T

T∑
t=1

A(p(t), j(t)) ≤ 1
T

T∑
t=1

A(p, j(t)) + δ ≤ λ∗ + δ. (2.5)

Thus, 1
T

∑T
t=1A(p(t), j(t)) is an (additive) δ-approximation to λ∗.

Let t̃ be the round t with the minimum value of A(p(t), j(t)). We have, from (2.5),

A(p(t̃), j(t̃)) ≤ 1
T

T∑
t=1

A(p(t), j(t)) ≤ λ∗ + δ.

Since j(t̃) maximizes A(p(t̃), j) over all j, we conclude that p(t̃) is an approximately optimal
mixed row strategy, and thus we can set p∗ := p(t̃). 1

We set q∗ to be the distribution which assigns to column j the probability |{t: j
(t)=j}|
T .

From (2.5), for any row strategy i, by setting p to be concentrated on the pure strategy
i, we have

λ∗ − δ ≤ 1
T

T∑
t=1

A(i, j(t)) = A(i,q∗)

which shows that q∗ is an approximately optimal mixed column strategy. 2

2.3.2 Approximating Linear Feasibility Programs on Convex Domains

Plotkin, Shmoys, and Tardos [85] generalized some known flow algorithms to a framework
for approximately solving fractional packing and covering problems. Their algorithm is a
quantitative version of the classical Lagrangian relaxation idea, and applies also to general
linear programs. Below, we derive the algorithm for convex programs which can be stated
as trying to find a point in a convex domain satisfying a number of linear inequalities.
We will then mention the slight modification that yields better running time for fractional
packing and covering LPs.

The basic problem is to check the feasibility of the following convex program:

∃?x ∈ P : Ax ≥ b (2.6)

where A is an m× n matrix, x ∈ Rn, and P is a convex set in Rn. Intuitively, the set P
represents the “easy” constraints to satisfy, such as non-negativity, and A represents the
“hard” constraints to satisfy.

We wish to design an algorithm that given an error parameter δ > 0, either solves the
problem to an additive error of δ, i.e., finds an x ∈ P such that for all i, Aix ≥ bi − δ, or
failing that, proves that the system is infeasible. Here, Ai is the ith row of A.

1Alternatively, we can set p∗ = 1
T

∑
t p

(t). For let j∗ be the optimal column player response to p∗.

Then we have A(p∗, j∗) = 1
T

∑
tA(p(t), j∗) ≤ 1

T

∑
tA(p(t), j(t)) ≤ λ∗ + δ.
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We assume the existence of an algorithm, called Oracle, which, given a probability
vector p on the m constraints, solves the following feasibility problem:

∃?x ∈ P : p>Ax ≥ p>b (2.7)

It is reasonable to expect such an optimization procedure to exist (indeed, such is the
case for many applications) since we only need to check the feasibility of one constraint
rather than m. If the feasibility problem (2.6) has a solution x∗, then the same solution
also satisfies (2.7) for any probability vector p over the constraints. Thus, if there is a
probability vector p over the constraints such that no x ∈ P satisfies (2.7), then it is proof
that the original problem is infeasible.

We assume that the Oracle satisfies the following technical condition, which is nec-
essary for deriving running time bounds:

Definition 1. An (`, ρ)-bounded Oracle, for parameters 0 ≤ ` ≤ ρ, is an algorithm
which given a probability vector p over the constraints, solves the feasibility problem (2.7).
Furthermore, there is a fixed subset I ⊆ [m] of constraints such that whenever the Oracle
manages to find a point x ∈ P satisfying (2.7), the following holds:

∀i ∈ I : Aix− bi ∈ [−`, ρ]
∀i /∈ I : Aix− bi ∈ [−ρ, `]

The value ρ is called the width of the problem.

In previous work, such as [85], only (ρ, ρ)-bounded Oracles are considered. We
separate out the upper and lower bounds in order to obtain tighter guarantees on the
running time. The results of [85] can be recovered simply by setting ` = ρ.

Theorem 5. Let δ > 0 be a given error parameter. Suppose there exists an (`, ρ)-bounded
Oracle for the feasibility problem (2.6). Assume that ` ≥ δ

2 . Then there is an algorithm
which either solves the problem up to an additive error of δ, or correctly concludes that
the system is infeasible, making only O( `ρ log(m)

δ2 ) calls to the Oracle, with an additional
processing time of O(m) per call.

Proof: The condition ` ≥ δ
2 is only technical, and if it is not met we can just redefine `

to be δ
2 . To map our general framework to this situation, we have an expert representing

each of the m constraints. Events correspond to vectors x ∈ P. The loss of the expert
corresponding to constraint i for event x is 1

ρ [Aix− bi] (so that the costs lie in the range
[−1, 1]).

In each round t, given a distribution over the experts (i.e. the constraints) p(t), we
run the Oracle with p(t). If the Oracle declares that there is no x ∈ P such that
p(t)>Ax ≥ p(t)>b, then we stop, because now p(t) is proof that the problem (2.6) is
infeasible.

So let us assume that this doesn’t happen, i.e. in all rounds t, the Oracle manages
to find a solution x(t) such p(t)>Ax ≥ p(t)>b. Since the cost vector to the Multiplicative
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Weights algorithm is specified to be m(t) := 1
ρ [Ax(t) − b], we conclude that the expected

cost in each round is non-negative:

m(t) · p(t) =
1
ρ

[Ax(t) − b] · p(t) =
1
ρ

[p(t)>Ax− p(t)>b] ≥ 0.

Let i ∈ I. Then Theorem 2 tells us that after T rounds,

0 ≤
T∑
t=1

1
ρ

[Aix(t) − bi] + ε

T∑
t=1

1
ρ
|Aix(t) − bi|+

lnm
ε

= (1 + ε)
T∑
t=1

1
ρ

[Aix(t) − bi] + 2ε
∑
<0

1
ρ
|Aix(t) − bi|+

lnm
ε

≤ (1 + ε)
T∑
t=1

1
ρ

[Aix(t) − bi] +
2ε`
ρ
T +

lnm
ε

Here, the subscript “< 0” refers to the rounds t when Aix(t)− bi < 0. The last inequality
follows because if Aix(t) − bi < 0, then |Aix(t) − bi| ≤ `. Dividing by T , multiplying by
ρ, and letting x̄ = 1

T

∑T
t=1 x(t) (note that x̄ ∈ P since P is a convex set), we get that

0 ≤ (1 + ε)[Aix̄− bi] + 2ε`+
ρ ln(m)
εT

.

Now, if we choose ε = δ
4` (note that ε ≤ 1

2 since ` ≥ δ
2), and T = d8`ρ ln(m)

δ2 e, we get that

0 ≤ (1 + ε)[Aix̄− bi] + δ =⇒ Aix̄ ≥ bi − δ.

Reasoning similarly for i /∈ I, we get the same inequality. Putting both together, we
conclude that x̄ satisfies the feasibility problem (2.6) up to an additive δ factor, as desired.
2

Concave constraints

The algorithm of Section 2.3.2 works not just for linear constraints over a convex domain,
but also for concave constraints. Imagine that we have the following feasibility problem:

∃?x ∈ P : ∀i ∈ [m] : fi(x) ≥ 0 (2.8)

where, as before, P ∈ Rn is a convex domain, and for i ∈ [m], fi : P → R are con-
cave functions. We wish to satisfy this system approximately, up to an additive error
of δ. Again, we assume the existence of an Oracle, which, when given a probability
distribution p = 〈p1, p2, . . . , pm〉>, solves the following feasibility problem:

∃?x ∈ P :
∑
i

pifi(x) ≥ 0 (2.9)

An Oracle would be called (`, ρ)-bounded there is a fixed subset of constraints I ⊆ [m]
such that whenever it returns a feasible solution x to (2.9), all constraints i ∈ I take
values in the range [−`, ρ] on the point x, and all the rest take values in [−ρ, `].
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Theorem 6. Let δ > 0 be a given error parameter. Suppose there exists an (`, ρ)-bounded
Oracle for the feasibility problem (2.8). Assume that ` ≥ δ

2 . Then there is an algorithm
which either solves the problem up to an additive error of δ, or correctly concludes that
the system is infeasible, making only O( `ρ log(m)

δ2 ) calls to the Oracle, with an additional
processing time of O(m) per call.

Proof: Just as before, we have an expert for every constraint, and events correspond to
x ∈ P. The loss of the expert corresponding to constraint i for event x is 1

ρfi(x).
Now we run the Multiplicative Weights algorithm with this setup. Again, if at any

point the Oracle declares that (2.9) is infeasible, we immediately halt and declare the
system (2.8) infeasible. So assume this never happens. Then as before, the expected cost
in each round is m(t) ·p(t) ≥ 0. Now, applying Theorem 2 as before, we conclude that for
any i ∈ I, we have

0 ≤ (1 + ε)
T∑
t=1

1
ρ
fi(x(t)) +

2ε`
ρ
T +

lnm
ε
.

Dividing by T , multiplying by ρ, and letting x̄ = 1
T

∑T
t=1 x(t) (note that x̄ ∈ P since P is

a convex set), we get that

0 ≤ (1 + ε)fi(x̄) + 2ε`+
ρ ln(m)
εT

,

since 1
T

∑T
t=1 fi(x

(t)) ≤ fi( 1
T

∑T
t=1 x(t)), by Jensen’s inequality, since all the fi are concave.

Now, if we choose ε = δ
4` (note that ε ≤ 1

2 since ` ≥ δ
2), and T = d8`ρ ln(m)

δ2 e, we get
that

0 ≤ (1 + ε)fi(x̄) + δ =⇒ fi(x̄) ≥ −δ.

Reasoning similarly for i /∈ I, we get the same inequality. Putting both together, we
conclude that x̄ satisfies the feasibility problem (2.8) up to an additive δ factor, as desired.
2

Approximate Oracles

The algorithm described in the previous section allows some slack for the implementation
of the Oracle. This slack is very useful in designing efficient implementations for the
Oracle.

Define a δ-approximate Oracle for the feasibility problem (2.6) to be one that solves
the feasibility problem (2.7) up to an additive error of δ. That is, given a probability
vector p on the constraints, either it finds an x ∈ P such that p>Ax ≥ p>b − δ, or it
declares correctly that (2.7) is infeasible.

Theorem 7. Let δ > 0 be a given error parameter. Suppose there exists an (`, ρ)-bounded
δ
3 -approximate Oracle for the feasibility problem (2.6). Assume that ` ≥ δ

3 . Then there
is an algorithm which either solves the problem up to an additive error of δ, or correctly
concludes that the system is infeasible, making only O( `ρ log(m)

δ2 ) calls to the Oracle, with
an additional processing time of O(m) per call.
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Proof: We run the algorithm of the previous section with the given Oracle, setting
ε = δ

6` . Now, in every round, the expected payoff is at least − δ
3ρ . Simplifying as before,

we get that after T rounds, we have, the average point x̄ = 1
T

∑T
t=1 x(t) returned by the

Oracle satisfies
−δ

3
≤ (1 + ε)[Aix̄− bi] + 2ε`+

ρ ln(m)
εT

.

Now, if T = d18`ρ ln(m)
δ2 e, then we get that for all i, Aix̄ ≥ bi − δ, as required. 2

Fractional Covering Problems

In fractional covering problems, the framework is the same as above, with the crucial
difference that the coefficient matrix A is such that Ax ≥ 0 for all x ∈ P, and b > 0. A
δ-approximation solution to this system is an x ∈ P such that Ax ≥ (1− δ)b.

We assume without loss of generality (by appropriately scaling the inequalities) that
bi = 1 for all rows, so that now we desire to find an x ∈ P which satisfies the system
within an additive δ factor. Since for all x ∈ P, we have Ax ≥ 0, and since all bi = 1, we
conclude that for any i, Aix − bi ≥ −1. Thus, we assume that there is a (1, ρ)-bounded
Oracle for this problem. Now, applying Theorem 5, we get the following:

Theorem 8. Suppose there exists a (1, ρ)-bounded Oracle for the program Ax ≥ b
with x ∈ P. Given an error parameter δ > 0, there is an algorithm which computes a
δ-approximate solution to the program, or correctly concludes that it is infeasible, using
O(ρ log(m)

δ2 ) calls to the Oracle, plus an additional processing time of O(m) per call.

Fractional Packing Problems

A fractional packing problem can be written as

∃?x ∈ P : Ax ≤ b

where P is a convex domain such that Ax ≥ 0 for all x ∈ P, and b > 0. A δ-approximate
solution to this system is an x ∈ P such that Ax ≤ (1 + δ)b.

Again, we assume that bi = 1 for all i, scaling the constraints if necessary. Now by
rewriting this system as

∃?x ∈ P : −Ax ≥ −b

we cast it in our general framework, and a solution x ∈ P which satisfies this up to an
additive δ is a δ-approximate solution to the original system. Since for all x ∈ P, we have
Ax ≥ 0, and since all bi = 1, we conclude that for any i, −Aix+ bi ≤ 1. Thus, we assume
that there is a (1, ρ)-bounded Oracle for this problem. Now, applying Theorem 5, we
get the following:

Theorem 9. Suppose there exists a (1, ρ)-bounded Oracle for the program −Ax ≥ −b
with x ∈ P. Given an error parameter δ > 0, there is an algorithm which computes a
δ-approximate solution to the program, or correctly concludes that it is infeasible, using
O(ρ log(m)

δ2 ) calls to the Oracle, plus an additional processing time of O(m) per call.
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2.4 A brief history of various applications of the Multiplica-
tive Weights method

An algorithm similar in flavor to the Multiplicative Weights algorithm were proposed in
game theory in the early fifties [29, 28, 86]. Following Brown [28], this algorithm was
called “Fictitious Play”: at each step each player observes actions taken by his opponent
in previous stages, updates his beliefs about his opponents’ strategies, and chooses my-
opic pure best responses against these beliefs. In the simplest case, the player simply
assumes that the opponent is playing form an stationary distribution and sets his current
belief of the opponent’s distribution to be the empirical frequency of the strategies played
by the opponent. This simple idea (which was shown to lead to optimal solutions in
the limit in various cases) led to many subfields of economics, including Arrow-Debreu
General Equilibrium theory and more recently, evolutionary game theory. Grigoriadis
and Khachiyan [49] showed how a randomized variant of “Fictitious Play” can solve two
player zero-sum games efficiently. This algorithm is precisely the multiplicative weights
algorithm. It can be viewed as a soft version of fictitious play, when the player gives
higher weight to the strategies which pay off better, and chooses her strategy using these
weights rather than choosing the myopic best response strategy.

In Machine Learning, the earliest form of the multiplicative weights update rule was
used by Littlestone in his well-known Winnow algorithm [76, 77]. This algorithm was
generalized by Littlestone and Warmuth [78] in the form of the Weighted Majority algo-
rithm.

The multiplicative update rule (and the exponential potential function) was also dis-
covered in Computational Geometry in the late 1980s [34] and several applications in
geometry are described in Chazelle [33] (p. 6, and p. 124).

The weighted majority algorithm as well as more sophisticated versions have been inde-
pendently discovered in operations research and statistical decision making in the context
of the On-line decision problem; see the surveys of Cover [37], Foster and Vohra [41], and
also Blum [23] who includes applications of weighted majority to machine learning. A no-
table algorithm, which is different from but related to our framework, was developed by
Hannan in the fifties [52]. Kalai and Vempala showed how to derive efficient algorithms
via similar methods [59].

Within computer science, several researchers have previously noted the close relation-
ships between multiplicative update algorithms used in different contexts. Young [103]
notes the connection between fast LP algorithms and Raghavan’s method of pessimistic
estimators for derandomization of randomized rounding algorithms. Klivans and Serve-
dio [70] relate boosting algorithms in learning theory to proofs of Yao’s XOR Lemma.
Garg and Khandekar describe a common framework for convex optimization problems
that contains Garg-Könemann [44] and Plotkin-Shmoys-Tardos [85] as subcases.

In the survey paper [15], we use the framework developed in this chapter to unify
previously known applications of the Multiplicative Weights method. In the same paper,
we also give lower bounds (inspired by the work of Klein and Young [69]) that show that
the analysis of the Multiplicative Weights algorithm is tight in the various parameters
involved.
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Chapter 3

The Matrix Multiplicative
Weights Algorithm

In the preceding chapter, we considered an online decision making problem with experts.
We refer to that setting as the basic or scalar case. In the present chapter, we consider a
different online decision making problem with experts, which is seemingly quite different
from the previous one, but has enough structure that we can obtain an analogous algo-
rithm for it. We move from loss vectors to loss matrices, and from probability vectors to
density matrices. For this reason, we refer to the current setting as the matrix case. We
call the algorithm presented in this setting the Matrix Multiplicative Weights algorithm.

The matrix case has the basic case as a subcase when all the matrices involved are
diagonal, and in this sense the results of this chapter are a generalization of the ones in
the last. The advantage of this matrix formulation is that it allows us to algorithmically
obtain good bounds on the extreme eigenvalues of matrices of interest. This immediately
leads to applications in:

• solving semidefinite programs, which have non-negativity conditions on the eigen-
values of a matrix of variables (see Chapter 4),

• derandomizing constructions of expander graphs, which are characterized by having
second largest eigenvalues of their normalized adjacency matrix bounded away from
1 (see Chapter 5), and

• a learning problem in quantum computing concerning density matrices (see Chap-
ter 5).

We expect there to be many more applications, just as the basic case does.

3.1 Preliminaries

The domain of interest is Rn, and we will deal with symmetric matrices in Rn×n through-
out (or, in general, Hermitian matrices in Cn×n: all results stated here follow without
change). We review a few basic matrix facts which can be found in [55, 56]. By the
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spectral theorem, any symmetric matrix A can be diagonalized and has real eigenvalues,
i.e. there exists an orthogonal matrix U and a diagonal matrix D with the eigenvalues
of A on the diagonal such that A = UDU>. We let λ1(A), λ2(A), . . . , λn(A) be the
eigenvalues of A in decreasing order.

The trace of a matrix A, denoted by Tr(A), is the sum of its diagonal entries, i.e.
Tr(A) =

∑n
i=1Aii, and is also equal to the sum of all its eigenvalues,

∑n
i=1 λi(A). A

matrix A will be called positive semidefinite, denoted by A � 0, if all its eigenvalues
are non-negative, i.e. for all i ∈ [n], λi(A) ≥ 0. The positive semidefiniteness property
induces a partial order on all symmetric matrices: we say that A � B if A−B � 0.

For any function f : R → R, extend the definition of f to symmetric matrices as
follows. For a diagonal matrix D, f(D) is the diagonal matrix with f applied to each
diagonal entry of D. For an arbitrary symmetric matrix A, we first diagonalize A as
UDU> where U is an orthogonal matrix and D is a diagonal matrix of the eigenvalues
of A. Then f(A) = Uf(D)U>.

Lemma 1. Let f, g : R→ R, and suppose that the inequality f(x) ≥ g(x) holds for x ∈ D
for some D ⊆ R. Then for any symmetric matrix A all of whose eigenvalues lie in D, we
have f(A) � g(A).

Proof: Let A = UDU> be the diagonalization of A. Then f(A) − g(A) = U(f(D) −
g(D))U>, and since all eigenvalues of A are in D, f(D) − g(D) is diagonal matrix with
non-negative diagonal. Thus, f(A) − g(A) is a positive semidefinite matrix, and hence
f(A) � g(A). 2

In particular, we will need the notion of the matrix exponential, exp(A), which can
be equivalently defined as

exp(A) =
∞∑
i=0

Ai

i!
.

This power series converges for all A. We will need the following matrix inequalities:

Corollary 2. For any ε ≤ 1, let ε1 = 1−e−ε and ε2 = eε−1. Then we have the following
matrix inequalities:

1. If all eigenvalues of a symmetric matrix A lie in [0, 1], then exp(−εA) � I− ε1A.

2. If all eigenvalues of a symmetric matrix A lie in [−1, 0], then exp(−εA) � I− ε2A.

Proof: The inequalities follow immediately from Lemma 1 using the following inequali-
ties over real numbers, which follow from the convexity of the exponential function:

exp(−εx) ≤ 1− ε1x if x ∈ [0, 1]
exp(−εx) ≤ 1− ε2x if x ∈ [−1, 0]

2

We also need the Golden-Thompson inequality:

Lemma 2 (Golden [48], Thompson [91]). Let A and B be any two real symmetric ma-
trices. Then,

Tr(exp(A + B)) ≤ Tr(exp(A) exp(B)).
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3.2 A Matrix Game

We associate an expert with every unit vector v in Sn−1, the unit sphere in Rn. As in
the basic case, in every round, each expert recommends an action, and our task is to
pick an expert v ∈ Sn−1 and follow his suggested course of action. At this point, the
losses of all actions recommended by the experts are revealed by nature. These losses
are not arbitrary, but they are correlated in the following way. A loss matrix M ∈ Rn×n

is revealed, and the loss of an expert v is then v>Mv. We assume that all these losses
are either in the range [0, 1] or in [−1, 0]. Again, as in the basic case, this is the only
assumption we make on the way nature chooses the costs; indeed, the costs could even
be chosen adversarially. Equivalently, we assume that the matrix M satisfies the bounds
0 �M � I or −I �M � 0.

This game is repeated over a number of rounds. Let t = 1, 2, . . . , T denote the current
round. In each round t, we select a distribution D(t) over the set of experts Sn−1, and
select an expert v randomly from it (and use his advised course of action). At this point,
the losses of all the experts are revealed by nature in the form of the loss matrix M(t).
The expected cost to the algorithm for choosing the distribution D(t) is

E
v∈D(t)

[v>M(t)v] = E
v∈D(t)

[M(t) • vv>] = M(t) • E
v∈D(t)

[vv>].

Define the matrix P(t) := Ev∈D(t) [vv>]. Note that P(t) is positive semidefinite: this is
because it is a convex combination of the elementary positive semidefinite matrices vv>.
Also, Tr(P(t)) = 1, again because for all v, we have Tr(vv>) = ‖v‖2 = 1. A matrix P
which is positive semidefinite and has trace 1 is called a density matrix.

We will only be interested in the expected loss to the algorithm, and all the information
required for computing the expected loss for a given distribution D over Sn−1 is contained
in the associated density matrix. Conversely, given a density matrix P, there is a canonical
way to associate a distribution D over Sn−1 such that its density matrix is P: let P =∑n

i=1 λi(P)viv>i be the eigen decomposition of P, where for i = 1, 2, . . . , n, vi is a (unit)
eigenvector belonging to the eigenvalue λi(P). Then the canonical distribution D is the
one that chooses the vector vi with probability λi(P). Note that for all i, λi(P) ≥ 0 (since
P is positive semidefinite), and

∑n
i=1 λi(P) = Tr(P) = 1, so the eigenvalues do form a

valid probability distribution. Note that D is a discrete distribution.
With this intuition, in each round t, we require our online algorithm to choose a

density matrix P(t), rather than a distribution D(t) over Sn−1 (the distribution is implicit
in the choice of P(t)). We then observe the loss matrix M(t) revealed by nature, and suffer
the expected loss M(t) •P(t). After T rounds, the total expected loss is

∑T
t=1 M(t) •P(t),

while the best fixed expert in hindsight corresponds to the unit vector v which minimizes∑T
t=1 v>M(t)v. Since we minimize this quantity over all unit vectors v, the variational

characterization of eigenvalues implies that this minimum loss is exactly λn(
∑T

t=1 M(t)).
Our goal is to design an online algorithm whose total expected loss over the T rounds is
not much more than the loss of the best expert.

The following theorem bounds the total expected loss of the Matrix Multiplicative
Weights algorithm (given in Figure 3.1) in terms of the loss of the best fixed expert:
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Matrix Multiplicative Weights algorithm

Initialization: Fix an ε ≤ 1
2 . Initialize the weight matrix W(1) = In.

For t = 1, 2, . . . , T :

1. Use the density matrix P(t) = W(t)

Tr(W(t))
.

2. Observe the loss matrix M(t).

3. Update the weight matrix as follows:

W(t+1) = exp(−ε
∑t

τ=1M
(τ)).

Figure 3.1: The Matrix Multiplicative Weights algorithm.

Theorem 10. In the given setup, the Matrix Multiplicative Weights algorithm guarantees
that after T rounds, for any expert v, we have

(1− ε)
∑
�0

M(t) •P(t) + (1 + ε)
∑
�0

M(t) •P(t) ≤
T∑
t=1

v>M(t)v +
lnn
ε
. (3.1)

Here, the subscripts “� 0” and “� 0” in the summations are used to refer to the rounds
t when M(t) � 0 and M(t) � 0 respectively.

Proof: The proof is exactly on the lines of the proof of Theorem 2, and is based on
the potential function Φ(t) = Tr(W(t)). We track the changes in Φ(t) over time. The
analysis is complicated by the fact that matrix multiplication is non-commutative, so
exp(A + B) 6= exp(A) exp(B) in general. However, we can use the Golden-Thompson
inequality (Lemma 2): Tr(exp(A + B)) ≤ Tr(exp(A) exp(B)). Define ε1 = 1 − e−ε and
ε2 = eε − 1. We have:

Φ(t+1) = Tr(W(t+1))

= Tr(exp(−ε
∑t

τ=1M
(τ)))

≤ Tr(exp(−ε
∑t−1

τ=1M
(τ)) exp(−εM(t))) ∵ Golden-Thompson inequality

= W(t) • exp(−εM(t)) ∵ Tr(AB) = A •B

≤

{
W(t) • (I− ε1M(t)) if M(t) � 0
W(t) • (I− ε2M(t)) if M(t) � 0

by Corollary 2

=

{
Tr(W(t)) · (1− ε1M(t) •P(t)) if M(t) � 0
Tr(W(t)) · (1− ε2M(t) •P(t)) if M(t) � 0

≤

{
Φ(t) · exp(−ε1M(t) •P(t)) if M(t) � 0
Φ(t) · exp(−ε2M(t) •P(t)) if M(t) � 0

24



By induction, since Φ(1) = Tr(W(1)) = Tr(In) = n, we get that

Φ(T+1) ≤ n exp
(
−ε1

∑
�0M(t) •P(t) − ε2

∑
�0M(t) •P(t)

)
.

On the other hand, we have:

Φ(T+1) = Tr(W(T+1)) = Tr(exp(−ε
∑T

t=1M
(t))) ≥ exp(−ελn(

∑T
t=1M

(t))).

The last inequality follows because Tr(eA) =
∑n

k=1e
λk(A) ≥ eλn(A). Thus, we conclude

that

exp(−ελn(
∑T

t=1M
(t))) ≤ n exp

(
−ε1

∑
�0M(t) •P(t) − ε2

∑
�0M(t) •P(t)

)
.

Now, for any unit vector v, λn(
∑T

t=1M
(t)) ≤

∑T
t=1v

>M(t)v. Using this fact, and by
taking logarithms and simplifying, we get the required inequality. We also need the facts
that ε1 = 1− e−ε ≥ ε(1− ε) and ε2 = eε − 1 ≤ ε(1 + ε) for ε ≤ 1/2. 2

Corollary 3. In the given setup, the Matrix Multiplicative Weights algorithm guarantees
that after T rounds, for any density matrix P, we have

(1− ε)
∑
�0

M(t) •P(t) + (1 + ε)
∑
�0

M(t) •P(t) ≤
T∑
t=1

M(t) •P +
lnn
ε
. (3.2)

Furthermore, we have

(1− ε)
∑
�0

M(t) •P(t) + (1 + ε)
∑
�0

M(t) •P(t) ≤ λn

(
T∑
t=1

M(t)

)
+

lnn
ε
. (3.3)

Proof: The inequality (3.3) follows from (3.1) because minv∈Sn−1

∑T
t=1 v>M(t)v =

λn(
∑T

t=1 M(t)). As for (3.2), let P =
∑n

i=1 λi(P)viv>i be the eigen decomposition of
P, where vi are unit vectors. Then

T∑
t=1

M(t) •P =
T∑
t=1

n∑
i=1

λi(P)v>i M(t)vi ≥
n∑
i=1

λi(P) · λn

(
T∑
t=1

M(t)

)
= λn

(
T∑
t=1

M(t)

)
,

because
∑n

i=1 λi(P) = Tr(P) = 1. 2

Remark. While we have restricted our matrices to be real and symmetric, the algorithm
and the theorem hold without change even for complex Hermitian matrices. The analysis
is identical because the Golden-Thompson inequality and Corollary 2 hold for complex
Hermitian matrices as well. This consideration is important when we apply the algo-
rithm to quantum computing problems where the matrices are complex Hermitian (see
Chapter 5).
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3.2.1 Gains instead of losses

Just as in Section 2.2.1, we can consider a version of the matrix game where the matrices
M(t) specify gains for the experts instead of losses. We get an algorithm for this case
by using the Matrix Multiplicative Weights algorithm with the loss matrices −M(t). The
weight matrix in round t+ 1 is now

W(t+1) = exp(ε
∑t

τ=1M
(t)).

Now Theorem 10 immediately implies the following theorem:

Theorem 11. In the given setup, the Matrix Multiplicative Weights algorithm (for gains)
guarantees that after T rounds, for any expert v, we have

(1− ε)
∑
�0

M(t) •P(t) + (1 + ε)
∑
�0

M(t) •P(t) ≥
T∑
t=1

v>M(t)v − lnn
ε
. (3.4)

We also have the following corollary analogous to Corollary 3:

Corollary 4. In the given setup, the Matrix Multiplicative Weights algorithm (for gains)
guarantees that after T rounds, for any density matrix P, we have

(1− ε)
∑
�0

M(t) •P(t) + (1 + ε)
∑
�0

M(t) •P(t) ≥
T∑
t=1

M(t) •P− lnn
ε
. (3.5)

Furthermore, we have

(1− ε)
∑
�0

M(t) •P(t) + (1 + ε)
∑
�0

M(t) •P(t) ≥ λ1

(
T∑
t=1

M(t)

)
− lnn

ε
. (3.6)

3.2.2 Connection to the Basic Setting

The algorithm presented here can be viewed as a generalization of the basic Multiplica-
tive Weights algorithm, when all matrices involved are diagonal. To avoid complications
due to positive and negative losses, we only consider the setting where all losses in the
basic setting are non-negative, and all loss matrices in the matrix setting are positive
semidefinite.

We associate the n experts in the basic setting with the n standard basis vectors
e1, e2, . . . , en, where ei has 1 in the ith coordinate, and zeros elsewhere. In round t,
the loss vector m(t) is specified in the form of a diagonal positive semidefinite matrix
M(t) = diag(m(t)). Then the loss of expert i is exactly e>i M(t)ei. A distribution p(t) over
the experts can also be specified as the diagonal density matrix P(t) = diag(p(t)). Then
the expected loss for using distribution p(t) in round t is exactly M(t) •P(t).

With these transformations, we see that the Matrix Multiplicative Weights algorithm
in this setting reduces exactly to the basic Multiplicative Weights algorithm (with the
minor change that the parameter ε in the Matrix Multiplicative Weights algorithm is
actually − ln(1 − ε′) where ε′ is the parameter used in the basic Multiplicative Weights
algorithm). The loss bound of Theorem 10 in this case also translates directly to the loss
bound of Theorem 2.
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3.3 A Min-Max Theorem

Freund and Schapire [43] observed that the basic Multiplicative Weights algorithm can
be used to construct approximately optimal strategies for two player zero-sum games (see
Section 2.3.1). They also noted that this gives an alternative way to prove von Neumann’s
min-max theorem for two player zero-sum games. In the previous section, we saw that
the Matrix Multiplicative Weights algorithm reduces to the basic Multiplicative Weights
algorithm if all the matrices involved are diagonal. This indicates that there should be an
analogous min-max theorem arising out of the Matrix Multiplicative Weights algorithm.

We describe such a min-max theorem now. We imagine a two player zero-sum game
where the first player’s strategy set is Sn−1, and the second player’s strategy set is a subset
M of symmetric matrices in Rn×n with eigenvalues in [0, 1]. In each round of the game,
the first player chooses a unit vector v ∈ Sn−1, and the second player chooses a matrix
M ∈ M. The first player then suffers a loss of v>Mv to the second player. We allow
both players to randomize over their strategy sets, i.e. the first player chooses his strategy
from a distribution P over Sn−1 and the second player chooses his from a distribution Q
over M. Then the expected payoff to the second player is denoted by EP,Q[v>Mv]. The
following min-max theorem shows that if both players choose their respective distributions
to optimize their worst case payoffs, then the expected payoff in either case is the same:

Theorem 12. With the given setup, the following equality holds:

min
P

max
Q

E
P,Q

[v>Mv] = max
Q

min
P

E
P,Q

[v>Mv].

Proof: First, we observe that the expected payoff EP,Q[v>Mv] = M̄ • P̄ where M̄ =
EQ[M] and P̄ = EP [vv>]. Note that 0 � M̄ � I, and P is a density matrix. Now define
λ1 = minP maxQ EP,Q[v>Mv] and λ2 = maxQminP EP,Q[v>Mv].

Standard calculations show that λ1 ≥ λ2: we have, for any P0,Q0,

E
P0,Q0

[v>Mv] ≥ min
P

E
P,Q0

[v>Mv]

∴ max
Q0

E
P0,Q0

[v>Mv] ≥ max
Q0

min
P

E
P,Q0

[v>Mv]

∴ min
P0

max
Q0

E
P0,Q0

[v>Mv] ≥ max
Q0

min
P

E
P,Q0

[v>Mv].

To show λ1 ≤ λ2, we imagine a matrix game between a player, who iteratively chooses
and updates distributions on Sn−1, P(t), expressed in the form of density matrices P(t),
using the Matrix Multiplicative Weights algorithm. Nature chooses the most adversarial
distribution onM, i.e. Q(t) = arg maxQ EQ[M•P(t)], in response to the distribution P(t),
and plays the matrix M(t) = EQ(t) [M]. This implies that for all rounds t,

M(t) •P(t) = E
P(t),Q(t)

[v>Mv] ≥ λ1.
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Now, applying Theorem 10 and using the fact that in all rounds t we have M(t) � 0,
we get that for any density matrix P,

(1− ε)Tλ1 ≤ (1− ε)
T∑
t=1

M(t) •P(t) ≤
T∑
t=1

M(t) •P +
lnn
ε
.

Divide by T , and define Q̄(T ) = 1
T

∑T
t=1Q(t). Since P can represent any distribution P

over Sn−1, we have

(1− ε)λ1 ≤ E
P,Q̄(T )

[v>Mv] +
ln(n)
εT

.

If we choose P to be the most adversarial response of the online player to nature’s dis-
tribution Q̄(T ), i.e. P = arg minP0 EP0,Q̄(T ) [v>Mv], and using the definition of λ2, we
get

E
P,Q̄(T )

[v>Mv] ≤ λ2.

Putting these together, and choosing ε =
√

ln(n)
T , we get that(

1−
√

lnn
T

)
λ1 ≤ λ2 +

√
ln(n)
T

.

Letting T →∞, we get that λ1 ≤ λ2 as desired. 2

Remark. From the proof of Corollary 3, it can be seen that this theorem is equivalent
to the following:

min
P

max
M∈M

E
P

[v>Mv] = max
Q

λn

(
E
Q

[M]
)

This fact also follows from the (strong) semidefinite programming (SDP) duality. Alter-
natively, this can be seen as a proof of the strong SDP duality, in the same way that von
Neumann’s min-max theorem is equivalent to LP duality. This fact is the basis of the
primal-dual algorithms for SDP of the next chapter.

3.4 Related work

A form of the Matrix Multiplicative Weights algorithm for learning problems had been
previously discovered in Machine Learning by Tsuda, Rätsch and Warmuth [92], as the
Matrix Exponentiated Gradient algorithm. Warmuth and Kuzmin extended these ideas to
independently discover the same Matrix Multiplicative Weights algorithm as ours and gave
further applications to online variance minimization [98] and online Principal Component
Analysis [99, 100]. They also developed a related Bayesian probability calculus for density
matrices [97]. Warmuth [96] applies the algorithm to online Winnowing Subspaces. All
these papers have a different proof of convergence using the quantum relative entropy as
a potential function.

Finally, Wigderson and Xiao [101] independently obtained some more applications to
derandomization and covering SDPs (see Chapter 5 for some of these applications). Their
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algorithms are derived by derandomizing the Ahlswede-Winter [4] Chernoff bound for
matrix valued random variables using the technique of pessimistic estimators, and in fact
implicitly use the Matrix Multiplicative Weights algorithm. This is directly analogous to
Young’s [103] algorithms for fractional packing and covering linear programs which are
based on derandomizing the standard Chernoff bounds using pessimistic estimators. In
fact, it was this very connection to Chernoff bounds discovered by Young that led us to
wonder whether a matrix analogue of the basic Multiplicative Weights algorithm can be
designed, using the matrix Chernoff bounds of Ahlswede and Winter. The result was the
Matrix Multiplicative Weights algorithm.

29



Chapter 4

Combinatorial, Primal-Dual
Algorithms for Semidefinite
Programming

As discussed in the introductory chapter, semidefinite programming (SDP) has proved
useful in design of approximation algorithms for NP-hard problems, and often (as in the
case of MaxCut, Sparsest Cut, Min UnCut, Min 2CNF Deletion, etc.) yields
better approximation ratios than known LP-based methods.

But in several ways, our understanding of SDPs seriously lags our understanding of
LPs. One is running time: though LP and SDP are syntactically similar when viewed
as subcases of cone optimization and can theoretically be solved in similar amounts of
time [5, 84], in practice SDP solvers are slower. Another is conceptual: LP-inspired
notions such as duality are ubiquitous in algorithm design whereas corresponding SDP-
inspired concepts are rarely used. Thus, primal-dual algorithms which achieve fast running
time by circumventing the necessity of solving an LP using a generic method (such as the
ellipsoid algorithm, interior point methods, etc.) abound, whereas similar algorithms for
SDPs are quite rare.

In this chapter, we describe how to use the Matrix Multiplicative Weights algorithm to
obtain a general scheme to design primal-dual algorithms for SDPs. We apply this method
to various graph partitioning and constraint satisfaction problems, and obtain the fastest
known algorithms for them, beating the running times of previous algorithms based on
interior point methods. Furthermore, these algorithms are combinatorial, and are able to
exploit the special structure of these problems. Thus, we obtain O(

√
log n) and O(log n)

approximation algorithms to the Sparsest Cut and Balanced Separator problems
in undirected and directed weighted graphs, and O(

√
log n) approximation algorithms to

the Min UnCut and Min 2CNF Deletion problems. The design of our primal-dual
algorithms is guided by a robust analysis of rounding algorithms used to obtain integer
solutions from fractional ones.

The results of this chapter first appeared in a joint paper with Sanjeev Arora [87].
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4.1 Primal-Dual algorithms

Primal-dual algorithms in the LP world can be typically divided into two classes. The
first compute (1 + ε)-approximation to special families of LPs, such as multicommodity
flow. They eschew interior point methods in favor of more efficient (and combinatorial)
Lagrangian relaxation methods; see Plotkin, Shmoys, Tardos [85], Young [103], Garg,
Könemann [44], etc. (these are the type (B) algorithms considered in Chapter 1).

The second class consists of primal-dual approximation algorithms for NP-hard prob-
lems. These are the type (A) algorithms considered in in Chapter 1. Though these usually
evolve out of (and use the same intuition as) earlier approximation algorithms that used
LP as a black box, they do not solve the LP per se. Rather, the algorithm incrementally
builds a dual solution together with an integer primal solution, updating them at each step
using “combinatorial” methods. At the end, the candidate dual solution is feasible and
the bound on the approximation ratio is derived by comparing the integer primal solution
to the bound provided by this feasible dual. Usually the update rule is designed using
intuition from the rounding algorithm used in the original LP-based algorithm. Some
canonical examples are network design problems [3] (or see the survey [46]) and O(1)-
approximation for k-median (LP-based algorithm in [30]; faster primal-dual algorithm in
[58]). Arguably, a primal-dual algorithm gives more insight than an algorithm that uses
LP as a black box. For instance, the primal-dual algorithm for k-median problem inspired
the discovery of algorithms for many related problems, as well as algorithms in the online
and streaming models.

Since SDPs also satisfy a duality theorem, in principle one should be able to solve them
using primal-dual approaches. But several conceptual difficulties arise. First, the basic
object in SDPs is a positive semidefinite matrix, whereas it is a half-space (equivalently, a
vector) in LPs, and matrix operations are just harder to visualize than vector operations.
Second, the recent spate of rounding algorithms for SDPs use the global structure of
optimum or near-optimum solutions (e.g., the Arora, Rao, Vazirani (ARV)-style rounding
depends upon the geometry of `22 spaces), and it is unclear how to use those rounding
ideas in context of the grossly infeasible solutions one might encounter during a primal-
dual algorithm. Finally, even if one surmounts the previous two difficulties, there is the
issue of implementing matrix operations efficiently enough so that the running time is an
improvement over interior point methods.

We note that an ad hoc primal-dual approach did prove useful for the Sparsest
Cut problem, resulting in an O(

√
log n)-approximation in Õ(n2) time [12], improving

upon the Õ(n4.5) time using SDPs [18]. A related paper gives an even more efficient
Õ(m+n1.5) time algorithm for Sparsest Cut, albeit with a worse approximation ratio of
O(log2 n) [65]. But there is no obvious way to generalize these ad hoc approaches to other
SDPs, especially as both rely upon the connection between eigenvalues and expansion,
which does not extend to problems other than Sparsest Cut.
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4.2 Results of this chapter

In this chapter, we overcome the difficulties mentioned in the previous section and present
general techniques that lead to fast primal-dual approximation algorithms for a number
of problems.

We give a general primal-dual approximation algorithm for any SDP that uses the
Matrix Multiplicative Weights algorithm introduced in Chapter 3. The matrix version
is useful in an SDP context because exp(A) is positive semidefinite for all symmetric A.
The algorithm is similar to the one described in Section 2.3.2, and requires an appropriate
Oracle which computes loss matrices as feedback to the density matrices generated by
the Matrix Multiplicative Weights algorithm.

For general SDPs the implementation of the Oracle amounts to solving a very simple
LP (see Section 4.4), but the convergence time of the algorithm depends upon the “width”
of the problem as in the corresponding LP algorithms (see Section 2.3.2). We give very
simple and combinatorial implementations of the Oracle for several problems and prove
that the width is low, resulting in (very fast) polynomial running times for the algorithms.
Sometimes (as in our algorithm for MaxCut) computing the feedback is as simple as
sorting; at other times it may involve multicommodity flows and shortest paths (as in our
algorithms for Sparsest Cut, Min UnCut, and all related problems). Since the goal
is an approximation algorithm for an NP-hard problem, one can terminate the above
process far before the primal SDP solution is (1 + ε)-approximate. Instead, one rounds
the current primal candidate and proves its goodness by comparing to the dual. This is
the basis for all approximation algorithms in this paper.

Not surprisingly, the computation of the feedback function is inspired by SDP rounding
algorithms from [18] and subsequent papers such as [2] (though we had to modify the
rounding algorithms in various places). This is the SDP analog of what Young [103]
called “Randomized Rounding without solving the LP.” We use the following observation
about ARV-style rounding techniques: if the rounding fails to yield a good integer solution
when applied to a candidate primal solution, then it actually uncovers gross deviations
from feasibility in the candidate solution, which can be used as “feedback” (the vector y
in the generic algorithm of Section 4.4) to improve the primal.

We observe that in our context it suffices to compute matrix exponentials only ap-
proximately, for which we give efficient algorithms that can make use of sparsity; see
Section 4.7. (By contrast, exact matrix exponentiation is tricky and inefficient because
of accuracy issues; see [81].) This relies upon a subtle use of the Johnson-Lindenstrauss
lemma on random projections. We show that for certain well-conditioned implementa-
tions of the Oracle, it is possible to compute a good enough approximation to the matrix
exponential by computing instead its product with several randomly chosen vectors. This
primitive is commonly available in packages for solving linear differential equations, raising
hope that our approach may be practical.

Table 4.1 lists the running times of our algorithms for approximating various problems
on a weighted graph with n vertices and m edges, and compares the running time to those
of the previously known algorithms from [12, 2]. For problems other than undirected
Sparsest Cut and Balanced Separator, the previous best algorithms needed to solve
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Problem Previous: Current: Current:
O(
√

log n) apx O(
√

log n) apx O(log n) apx
Undir. Sparsest Cut Õ(n2) [12] Õ(n2) Õ(m+ n1.5)
Undir. Balanced Separator Õ(n2) [12] Õ(n2) Õ(m+ n1.5)
Dir. Sparsest Cut Õ(n4.5) [2] Õ(m1.5 + n2+µ) Õ(m1.5)
Dir. Balanced Separator Õ(n4.5) [2] Õ(m1.5 + n2+µ) Õ(m1.5)
Min UnCut Õ(n4.5) [2] Õ(n3) –
Min 2CNF Deletion Õ(n4.5) [2] Õ(nm1.5 + n3) –

Table 4.1: Running times obtained for various approximation algorithms.

an SDP with m = O(n3) triangle inequality constraints. Thus, an interior point algorithm
needs O(

√
m(n3 +m)L) = Õ(n4.5) time to solve them, which gives the reported running

time in the table. Throughout this chapter, the Õ(·) notation suppresses polylog(n) and
poly(1

ε ) factors. In the case of directed Balanced Separator and directed Sparsest

Cut, the running time depends on a parameter µ which is any given constant. The Õ
notation hides poly( 1

µ) dependence on µ in this case.
A recent paper [65] suggested that the gold standard for approximation algorithms in

this area should be Tflow, the time to compute single commodity max flows. Even though
methods based upon LP duality can not yet attain this gold standard, that paper gave
algorithms that attain it while computing O(log2 n)-approximation to Sparsest Cut and
Balanced Separator in undirected graphs. We can attain this gold standard for four
of the problems even with O(log n)-approximation (Tflow is Õ(m1.5) for directed graphs
and Õ(n1.5) undirected graphs). For the last three problems, we do not know of any
published primal-dual algorithms (even in the LP world).

Related work. Our primal-dual algorithm should not be confused with earlier primal-
only methods for approximate solutions to SDPs, such as the ones in Arora, Hazan and
Kale [13] (described in Chapter 6), and an earlier paper by Klein and Lu [67].

They depend upon the Multiplicative Weights algorithm described in Section 2.3.2 and
have a significant drawback – they find primal solutions which satisfy every constraint up
to an additive error ε, and the running time is proportional to 1/ε2. Since the recent wave
of SDP-based approximation algorithms for minimization problems require ε to be quite
small, it is difficult to get significant running time improvement (though the algorithms of
Chapter 6 get around this hurdle with “hybrid” approaches). This problem is exacerbated
if the graph is weighted, when ε may depend upon the largest weight in the graph. By
contrast, our algorithm can round the current primal candidate at each step and stop as
soon as the gap with the dual is small enough. All our algorithms are strongly polynomial
so long as the algorithm for max flow is.

33



4.3 Preliminaries

4.3.1 Positive Semidefinite Matrices

We recall some matrix notation and facts which can be found in [55, 56]. We will deal
with symmetric matrices in Rn×n, unless specified otherwise. As usual, Tr(A) is the
trace of matrix A, which is the sum of the diagonal entries (equivalently, the sum of the
eigenvalues) of A. Matrix A is positive semidefinite, or PSD, if there is a matrix V such
that A = VV> (equivalently, if every eigenvalue of A is nonnegative). Such a V is called
the Cholesky decomposition of A; note that Aij = vi · vj where vi is the ith row of V,
and A is known as the Gram matrix of the vectors vi. For matrices A and B, define
A •B := Tr(AB) =

∑
ijAijBij . Notice, this is just the usual inner product if we think of

A,B as n2-dimensional vectors. It is easily checked that A is PSD if and only if A•B ≥ 0
for all PSD B. We say A � B if A−B is PSD. We use the notation A ∈ [a, b], for real
numbers a, b, if aI � A � bI. We will use the `2 norm of matrices: ‖A‖ is the largest
eigenvalue of A in absolute value, i.e. min{λ ≥ 0 : A ∈ [−λ, λ]}. Note that since ‖ · ‖
is a norm, the triangle inequality ‖A + B‖ ≤ ‖A‖ + ‖B‖ holds. We will often use the
following inequality: for any two vectors v and w, we have 2‖v‖2 + 2‖w‖2 ≥ ‖v −w‖2.

4.3.2 Laplacians

We often use the following special matrix. If G = (V,E) is a undirected graph with
weight c{i,j} on edge {i, j} then its combinatorial Laplacian is a matrix C, with rows and
columns indexed by the nodes of G such that Cii =

∑
j 6=ic{i,j}, i.e. the weighted degree

of node i, and Cij is −c{i,j}. We will use two important properties of Laplacians. First,
for any positive semidefinite matrix X, if vi are the vectors obtained from its Cholesky
decomposition, then

C •X =
∑
{i,j}∈E

c{i,j}‖vi − vj‖2.

This final expression should be familiar to readers who have encountered SDP relaxations
of problems such as MaxCut and Sparsest Cut. Second, we have

C•X =
∑
{i,j}∈E

c{i,j}‖vi−vj‖2 ≤
∑
{i,j}∈E

2c{i,j}(‖vi‖2+‖vj‖2) ≤
∑
i

2d‖vi‖2 = 2dI•X,

where d is the maximum weighted degree in the graph. Thus, we conclude that C � 2dI.
Also, since C •X ≥ 0 for all PSD X, we conclude that C is PSD.

Some problems deal with directed graphs, and we need to use the directed Laplacian.
Let G = (V,E) be a directed graph with weights cij on directed edge (i, j). Depending
on the application, we will actually have two different kinds of directed Laplacians. In
the first setting, we associate vectors vi and vn+i with every node i. Note that now the
dimension is 2n rather than n. The directed Laplacian of the first kind is the matrix
D ∈ R2n×2n such that if X ∈ R2n×2n is any PSD matrix with vectors vi obtained from
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its Cholesky decomposition, then

D •X =
∑

(i,j)∈E

cij(‖vi − vj‖2 − ‖vn+i − vi‖2 + ‖vn+j − vj‖2).

More explicitly, we have for all i ∈ V , Dii = 2
∑

(j,i)∈E cji and Dn+i,n+i =
∑

(j,i)∈E cji −∑
(i,j)∈E cij , and for all i 6= j ∈ V , if (i, j) ∈ E then Dij = Dji = −cij , Di,n+i =

Dn+i,i =
∑

(i,j)∈E cij −
∑

(j,i)∈E cji, and all other entries are 0. Arguing as before, if d is
the maximum degree in the graph, then −2dI � D � 4dI.

In the second setting, we associate vectors vi with every node i. We also have a special
vector v0. Note that now the dimension is n + 1 rather than n. The directed Laplacian
of the second kind is the matrix B ∈ R(n+1)×(n+1) such that if X ∈ R(n+1)×(n+1) is any
PSD matrix with vectors vi obtained from its Cholesky decomposition, then

B •X =
∑

(i,j)∈E

cij(‖vi − vj‖2 − ‖v0 − vi‖2 + ‖v0 − vj‖2).

More explicitly, we have for all i ∈ V , Bii = 2
∑

(j,i)∈E cji and B00 = 0, and for all
i 6= j ∈ V , if (i, j) ∈ E then Dij = Dji = −cij , Di0 = D0i =

∑
(i,j)∈E cij −

∑
(j,i)∈E cji,

and all other entries are 0. Again, if M =
∑

(i,j)∈E cij is the total weight of edges in the
graph, then −MI � K2 � 2MI.

4.3.3 Matrix Exponentials

Finally, we discuss matrix exponentials. If A is a matrix, then the exponential is exp(A) =∑∞
i=0

Ai

i! . Notice, since AB 6= BA in general, exp(A+B) 6= exp(A) exp(B). Furthermore,
exp(A) is PSD for all symmetric A since exp(A) = exp(1

2A)> exp(1
2A). In particular, this

allows us to assume without loss of generality that algorithms for matrix exponentiation
can also output the Cholesky decomposition of the output matrix.

Matrix exponentiation itself is tricky because of accuracy issues; see the classic ar-
ticle [81]. However, in context of solving SDPs we need the Cholesky decomposition of
exp(A), namely exp(1

2A). Furthermore, in all the SDPs of interest in this chapter, the con-
straints involve squared lengths of vectors ‖vi‖2 or ‖vi−vj‖2, rather than inner products
vi · vj . Thus it actually suffices to compute the Cholesky decomposition approximately,
in a way that these lengths are preserved upon a multiplicative factor (1 + ε). By the
well-known Johnson-Lindenstrauss lemma, the lengths of n vectors in `2 are essentially
determined by their projections on O( logn

ε2
) random directions, so it suffices to compute

exp(1
2A) · u for a random unit vector u. This operation is extremely efficient (even for

arbitrary vector u) since it is at the heart of software packages to solve systems of linear
differential equations. The algorithms are also provably efficient and run in Õ(m) time if
A is “well-conditioned,” where m is the number of nonzero entries in A. All our matrices
are well-conditioned or can be easily made well-conditioned. Section 4.7 describes these
algorithms in greater detail, as well as a subtlety that needs addressing.

35



4.4 Primal-Dual Approach for Approximately Solving SDPs

This section describes a general primal-dual algorithm to compute a near-optimal solution
to any SDP (and not just SDPs used in approximation algorithms). As an illustrative
example we also describe its use for the SDP relaxation for MaxCut.

A general SDP with n2 variables (thought of as an n × n matrix variable X) and m
constraints, and its dual can be written as follows:

max C •X min b · y
∀j ∈ [m] : Aj •X ≤ bj

∑m
j=1Ajyj � C

X � 0 y ≥ 0

Here, y = 〈y1, y2, . . . , ym〉> are the dual variables and b = 〈b1, b2, . . . , bm〉>. Also, [m]
is notation for the set {1, 2, . . . ,m}. Just as in the case of LPs, strong duality holds for
SDPs under very mild conditions (always satisfied by the SDPs considered here) and the
optima of the two programs coincide.

Note that a linear program is the special case whereby all the matrices involved are
diagonal. (Aside: The recipe for writing SDP duals is syntactically similar to the one for
LP dual, except instead of vector inequalities such as a ≥ b, one uses matrix inequalities
A � B.)

For notational ease assume that A1 = I and b1 = R. This serves to bound the trace
of the solution: Tr(X) ≤ R and is thus a simple scaling constraint. It is very naturally
present in SDP relaxations for combinatorial optimization problems.

We assume that our algorithm uses binary search to reduce optimization to feasibility.
Let α be the algorithm’s current guess for the optimum value of the SDP. It is trying to
either construct a PSD matrix that is primal feasible and has value > α, or a dual feasible
solution whose value is at most (1 + δ)α for some arbitrarily small δ > 0.

As is usual in primal-dual algorithms, the algorithm starts with a trivial candidate
for a primal solution, in this case the trivial PSD matrix (possibly infeasible) of trace R,
viz. X(1) = R

n I. Then it iteratively generates candidate primal solutions X(2),X(3), . . ..
At every step it tries to improve X(t) to obtain X(t+1), and in this it has help from an
auxiliary algorithm, called the Oracle, that tries to certify the validity of the current X(t)

as follows. Oracle searches for a vector y from the polytope Dα = {y : y ≥ 0, b·y ≤ α}
such that

m∑
j=1

(Aj •X(t))yj − (C •X(t)) ≥ 0. (4.1)

If Oracle succeeds in finding such a y then we claim X(t) is either primal infeasible or
has value C •X(t) ≤ α. The reason is that otherwise

m∑
j=1

(Aj •X(t))yj − (C •X(t)) ≤
m∑
j=1

bjyj − (C •X(t)) < α− α = 0,

which would contradict (4.1). Thus y implicitly contains some useful information to
improve the candidate primal X(t), and we use y to update X(t) using a familiar-looking

36



matrix exponential update rule (step 5 in the algorithm). Our observation about matrix
exponentials ensures that the new matrix X(t+1) is also PSD.

Lemma 3. If there is no vector y ∈ Dα which satisfies (4.1), then a suitably scaled version
of X(t) is a primal feasible solution of objective value at least α.

Proof: Consider the following linear program, and its dual:

max
m∑
j=1

(Aj •X(t))yj min αφ

b · y ≤ α ∀j : bjφ ≥ (Aj •X(t))
y ≥ 0 φ ≥ 0

Now, since there is no vector y ∈ Dα which satisfies (4.1), we conclude that the optimum
of the primal is less than C • X(t). Thus, the optimum is finite, and so the dual is
feasible and has the same optimum. Let φ∗ be the optimum solution of the dual. Then
αφ∗ ≤ C •X(t). Furthermore, since b1 = R and A1 •X(t) = I •X(t) = Tr(X(t)) = R, we
conclude that φ∗ ≥ 1. Let X∗ = 1

φ∗X
(t). Then for all j, Aj •X∗ ≤ bj , and C •X∗ ≥ α.

So X∗ is a primal feasible solution of objective value at least α. 2

The important point here is that the desired y is not dual feasible: in fact the Oracle
can ignore the PSD constraint and its task consists of solving an LP with just one non-
trivial constraint (the others are just non-negativity constraints)! Thus, one may hope to
implement Oracle efficiently, and furthermore, even find y with nice properties, so that
the algorithm makes fast progress towards feasibility. Now we formalize one aspect of
nice-ness, the width. (Another aspect of niceness concerns a subtle condition that allows
quick matrix exponentiation; see the discussion in the Section 4.7.)

Definition 2. An (`, ρ)-bounded Oracle, for parameters 0 ≤ ` ≤ ρ, is an algorithm
that finds a vector y ∈ Dα that satisfies (4.1) such that either

∑
j Ajyj −C ∈ [−`, ρ] or∑

j Ajyj −C ∈ [−ρ, `] holds. The value ρ is called the width of the Oracle.

The constraint on width may seem like a backdoor way to bring in the semidefiniteness
constraint into the oracle but it is more correctly viewed as a measure of the Oracle’s
effectiveness in helping the algorithm make progress (high width equals slow progress).
This is analogous to the bounds on the responses of the Oracle when solving linear
feasibility problems (Section 2.3.2). In all our applications the vector y will be computed
using combinatorial ideas, such as simple case analysis or multicommodity flow. Thus our
algorithms do adhere to the primal-dual philosophy. The algorithm is shown in Figure 4.1.

The following theorem bounds the number of iterations needed in the algorithm.

Theorem 13. In the Primal-Dual SDP algorithm, assume that the Oracle never fails
for T iterations. Let ȳ = 1

T

∑T
t=1 y(t), and define y∗ as y∗1 = ȳ1 + δα

R , and y∗j = ȳj for
j ≥ 2. Then y∗ is a feasible dual solution with objective value at most (1 + δ)α.

Proof: In the Matrix Multiplicative Weights algorithm, the expected loss in round t is

M(t) •P(t) =
1

`+ ρ

(∑m
j=1Ajy

(t)
j −C + `(t)I

)
• 1
R

X(t) ≥ `(t)

`+ ρ
.
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Primal-Dual Algorithm for Maximization SDPs
Given: Access to (`, ρ)-bounded Oracle, where ` ≥ δα

4R .

1. Run the Matrix Multiplicative Weights algorithm with ε = δα
2`R up to T = 8`ρR2 ln(n)

δ2α2

rounds.

2. In each round t, run the Oracle with candidate solution X(t) = RP(t), where P(t)

is the density matrix generated by the Matrix Multiplicative Weights algorithm.

3. If the Oracle fails, stop and output X(t).

4. Else, let y(t) be the vector generated by Oracle.

5. Provide the loss matrix to the Matrix Multiplicative Weights algorithm:

M(t) =

 1
`+ ρ

m∑
j=1

Ajy
(t)
j −C + `(t)I

 , (4.2)

where

`(t) =

{
` if

∑m
j=1Ajy

(t)
j −C ∈ [−`, ρ]

−` if
∑m

j=1Ajy
(t)
j −C ∈ [−ρ, `]

Figure 4.1: The Primal-Dual SDP algorithm.

because the Oracle finds a vector y(t) such that
∑m

j=1(Ajy
(t)
j •X(t)) − (C •X(t)) ≥ 0,

and I •X(t) = Tr(X(t)) = R. Plugging this bound in the inequality (3.3), we get

∑
t: `(t)≥0

(1− ε)`(t)

`+ ρ
+

∑
t: `(t)≤0

(1 + ε)`(t)

`+ ρ
≤ 1

`+ ρ
λn

 T∑
t=1

m∑
j=1

Ajy
(t)
j −C + `(t)I

+
lnn
ε
.

Simplifying, and dividing by T , we get

0 ≤ λn

 1
T

T∑
t=1

m∑
j=1

Ajy
(t)
j −C

+ ε`+
(`+ ρ) ln(n)

εT
.

Then using the specified values of ε and T , and the fact that ȳ = 1
T

∑T
t=1 y(t), we get

−δα
R

I �
m∑
j=1

Aj ȳj −C. (4.3)

Now, since A1 = I, we get that A1(ȳ1 + δα
R ) +

∑m
j=2 Aj ȳj � C. Thus, the vector y∗ as
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defined in the statement of the theorem is dual feasible, and has dual objective value

δα

R
· b1 + b · ȳ ≤ δα+

1
T

T∑
t=1

b · y(t) ≤ (1 + δ)α,

since y(t) ∈ Dα, and so b · y(t) ≤ α. 2

As a warmup, we illustrate the use of Theorem 13 in the following simple application
to the MaxCut SDP on a graph with n vertices and m edges. For comparison, the
previous best algorithm for approximating the MaxCut SDP, by Klein and Lu [67], runs
in time Õ(mn). On graphs where the maximum degree is within a constant factor of the
average degree, our algorithm runs in Õ(m) time.

Theorem 14. Let G = (V,E) be a weighted graph with n nodes and m edges with maxi-
mum weighted degree ∆, and average weighted degree d. Then the MaxCut SDP can be
approximated in Õ(∆2

d2 m) time.

Proof: Let cij be the weight of edge {i, j}. Then the MaxCut SDP in vector and
matrix form is as follows (the standard SDP has a factor of 1

4 in the objective, but we
disregard it since the optimum solution is the same):

max
∑
{i,j}∈E

cij‖vi − vj‖2 max C •X

∀i ∈ [n] : ‖vi‖2 ≤ 1 ∀i ∈ [n] : Xii ≤ 1
X � 0

The dual SDP is the following:

min
∑n

i=1xi

diag(x) � C

∀i ∈ [n] : xi ≥ 0

Here, C is the combinatorial Laplacian of the graph, and diag(x) is the diagonal matrix
with the vector x on the diagonal. Since the maximum degree in the graph is ∆, we have
0 � C � 2∆I.

We use the Primal-Dual SDP algorithm to solve this within a factor of (1− δ). Since∑
{i,j}∈E cij = 1

2nd, the MaxCut lies in the range [1
4nd,

1
2nd], since a random cut has

expected size at least 1
4nd. Let α∗ be the SDP optimum. The Goemans-Williamson

analysis indicates that α∗ ∈ [4 · 1
4nd,

4
0.878 ·

1
2nd] ⊆ [nd, 3nd]. We perform a binary search

for α∗ in this range. Let α be our current estimate of α∗.
Now, if X is any primal feasible solution, then Tr(X) ≤ n, so R = n. We now show

how to implement an (O(∆), O(∆))-bounded Oracle, which ensures by Theorem 13
that the number of iterations is O(log n). Each invocation of Oracle and the matrix
exponentiation step will take Õ(m) time (the latter uses Lemma 24 and the fact that the
number of non-zero matrix entries in C is O(m)). This yields the desired running time.
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It remains to describe Oracle. For every node i, let di denote the weighted degree,
i.e. di =

∑
j cij . Given a candidate solution X, it needs to find a vector x ≥ 0 such that∑

ixi ≤ α and
∑

ixiXii −C •X ≥ 0. Intuitively, to make
∑

ixiXii as large as possible,
we should make xi large for all i where Xii is large.

1. If C • X ≤ α, then set all xi = α
n . Then since

∑
iXii = Tr(X) = n we have∑

ixiXii −C •X ≥ α
n

∑
iXii − α = 0. Note that −2∆I � diag(x)−C � O(d)I.

2. So assume C •X ≥ α. Let C •X = λα for some λ ≥ 1. Since C � 4∆I, we have
λα = C •X ≤ 4n∆. Since α ≥ nd, we have that λ ≤ 4∆

d . Let S := {i : Xii ≥ λ},
and let ES be the set of edges with at least one endpoint in S. Let v1, . . . ,vn be
the vectors obtained from the Cholesky decomposition of X.

Let w :=
∑

i∈S4diXii. If w ≥ δλα, then let k = λα
w . Note that k ≤ 1

δ = O(1). We
set xi = 4kdi for all i ∈ S, and xi = 0 for all i /∈ S. Then∑

ixi =
∑
i∈S

4kdi =
λα
∑

i∈S 4di∑
i∈S 4di‖vi‖2

≤ α

since ‖vi‖2 ≥ λ for all i ∈ S. Then
∑

ixiXii − C •X = λα
w

∑
i∈S4diXii − λα = 0.

Furthermore, −2∆I � diag(x)−C � O(∆)I.

3. In every other case we show that we can easily construct a feasible primal solution
from X with objective value at least (1 − δ)α, which is therefore approximately
optimum.

Construct new vectors v′i such that v′i = vi for i /∈ S, and v′i = v0 for i ∈ S, for
an arbitrary fixed unit vector v0. Let X̃ be the resulting Gram matrix of the v′i
vectors. Now we have C• (X̃−X) ≥ −

∑
{i,j}∈EScij‖vi−vj‖2. We can lower bound

the RHS by −δλα as follows. Using the fact that for any i, j we have ‖vi − vj‖2 ≤
4 max{‖vi‖2, ‖vj‖2}, we get that∑

{i,j}∈ES

cij‖vi − vj‖2 ≤
∑

{i,j}∈ES

4cij ·max{‖vi‖2, ‖vj‖2}

≤
∑
i∈S

∑
j

4cij‖vi‖2

=
∑
i∈S

4di‖vi‖2

≤ δλα,

since we assumed that w ≤ δλα. The second inequality above follows because for
every edge {i, j} ∈ ES such that i ∈ S and j /∈ S, we have max{‖vj‖2, ‖vj‖2} =
‖vi‖2.

Thus, C • X̃ ≥ (1 − δ)λα. Furthermore, for all i, X̃ii = ‖v′i‖2 ≤ λ. So the matrix
X∗ = 1

λX̃ is a feasible primal solution with objective value at least (1− δ)α.

2
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4.4.1 Extension to minimization problems

Since the rest of this chapter concerns minimization problems, we extend the above frame-
work to it. A general minimization SDP can be written as follows:

min C •X max b · y
∀j ∈ [m] : Aj •X ≥ bj

∑m
j=1Ajyj � C

X � 0 y ≥ 0

Here, we assume that A1 = −I and b1 = −R, which translates to the trace bound
Tr(X) ≤ R.

The Primal-Dual algorithm in this case is essentially the same as before, with a few
changes. First, given a candidate solution X, the Oracle needs to find a vector y from
the polytope Dα = {y : y ≥ 0, b · y ≥ α} such that

∑m
j=1(Aj •X)yj − (C •X) ≤ 0.

The algorithm now is the same as the one described before, except that the loss matrix
in (4.2) is negated, i.e.

M(t) =
−1
`+ ρ

 m∑
j=1

Ajy
(t)
j −C + `(t)I

 .
Finally, and most important, we allow the Oracle to find a matrix F(t) such that for all
primal feasible X, we have F(t) •X ≤ C •X, and a vector y(t) ∈ Dα such that∑m

j=1(Aj •X(t))y(t)
j − (F(t) •X) ≤ 0. (4.4)

In this case, we use

M(t) =
−1
`+ ρ

 m∑
j=1

Ajy
(t)
j − F(t) + `(t)I

 .
In other words, we can replace C by F(t), which is under our control. Note that if
F(t) � C, then because any primal feasible X is PSD, we have F(t) •X ≤ C •X. So it
suffices to find F(t) � C. (The reason for allowing F in the framework is to reduce width;
see Section 4.5.)

We now present a theorem analogous to Theorem 13.

Theorem 15. In the modified Primal-Dual algorithm for a minimization SDP as de-
scribed above, suppose the Oracle never fails for T iterations. Let ȳ = 1

T

∑T
t=1 y(t), and

define y∗ as y∗1 = ȳ1 + δα
R , and y∗j = ȳj for j ≥ 2. Then y∗ is a dual solution that proves

that the primal optimum is at least (1− δ)α.

Proof: The proof is on the same lines as the proof of Theorem 13. Following the proof
till (4.3), we obtain the following inequality

−δα
R

I � −
m∑
j=1

Ajyj + F̄,
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where F̄ = 1
T

∑T
t=1 F(t). Now, since A1 = −I, we get that A1(ȳ1 + δα

R ) +
∑m

j=2 Aj ȳj � F̄,
i.e.

∑m
j=1 Ajy

∗
j � F̄, for the vector y∗ defined in the statement of the theorem. Now let

X∗ be the optimal solution to the primal, and let the primal optimum be α∗. Then we
have

F̄ •X∗ =
1
T

T∑
t=1

F(t) •X∗ ≤ 1
T

T∑
t=1

C •X∗ = C •X∗ = α∗.

On the other hand, since X∗ � 0, we have

F̄ •X∗ ≥
m∑
j=1

y∗j (Aj •X∗) ≥
m∑
j=1

y∗j bj =
δα

R
· b1 +

1
T

T∑
t=1

T∑
j=1

yj
(t)bj ≥ (1− δ)α,

because y(t) ∈ Dα. This shows that α∗ ≥ (1− δ)α∗, as required. 2

4.4.2 Approximate Oracles

Just as in the case of linear programs (Section 2.3.2), the Primal-Dual algorithms discussed
here also work with approximate Oracles. We will discuss this only in the context of
maximization SDPs, the extension to minimization SDPs is analogous.

If α is the current estimate of the optimum, define a δ-approximate Oracle to be an
algorithm that, given a candidate solution X, finds a vector y ∈ Dα such that

∑m
j=1 yj(Aj•

X)− (C •X) ≥ −δα. We now have the following theorem:

Theorem 16. Suppose that there exists an (`, ρ)-bounded, δ
3 -approximate Oracle. As-

sume that the Primal-Dual algorithm is run with this Oracle with the parameters ` =
δα
3`R and T = 18`ρR2 ln(n)

δ2α2 , and that the Oracle never fails for T iterations. Let ȳ =
1
T

∑T
t=1 y(t), and define y∗ as y∗1 = ȳ1 + δα

R , and y∗j = ȳj for j ≥ 2. Then y∗ is a feasible
dual solution with objective value at most (1 + δ)α.

Proof: The proof is identical to that of Theorem 13. The only difference is that the
expected loss in round t is

M(t) •P(t) =
1

`+ ρ

(∑m
j=1Ajy

(t)
j −C + `(t)I

)
• 1
R

X(t) ≥
− δα

3R + `(t)

`+ ρ
,

since the Oracle finds a vector y(t) such that
∑m

j=1 yj
(t)(Aj •X(t))− (C •X(t)) ≥ − δα

3 .
The rest of the proof is the same as before. 2

4.5 Primal-dual approximation algorithms via SDPs

In this section, we apply our general framework of Section 4.4.1 to design faster approxi-
mation algorithms for a host of NP-hard problems for which thus far we needed to solve
SDPs. The important difference from Section 4.4 is that we do not try to solve the SDP
to near-optimality as that would take too long. Instead, we use the framework to produce
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a dual solution of a certain value together with an integer primal solution whose cost is
O(log n) or O(

√
log n) factor higher than the value of the dual solution.

We now outline how to implement the Oracle, which, as mentioned in the Section 4.2,
uses the known SDP rounding techniques (stemming from the Arora, Rao, Vazirani paper
and subsequent work) for the problem in question. At each step the Oracle starts by
applying the rounding algorithm on the current primal solution. If the rounding succeeds,
then it yields a good integer solution. Otherwise, it actually uncovers gross deviations
from feasibility in the candidate primal solution, which can be used as “feedback” (the
vector y in the generic algorithm of Section 4.4.1) to improve the primal. To aid the
Oracle in finding deviations from feasibility, we augment most SDPs for the problems
we consider with extra constraints, all of which are easily implied by linear combinations
of the original constraints. This gives us extra dual variables to play with, and the added
flexibility makes the description of the Oracle cleaner.

The main point is that the rounding could potentially succeed even though the primal
is quite far from feasibility, which is why the algorithm may end only with a feasible
dual solution. (Of course, the general framework of Section 4.4 could be used to continue
the algorithm until it also finds a feasible primal, but the Oracle’s width parameter
increases, raising the running time a lot.) Thus the running time of the Oracle (and the
algorithm) depends upon how efficiently it can compute the “feedback” when the rounding
algorithm fails, and often this running time is much less for O(log n)-approximation as
compared to a O(

√
log n)-approximation.

The key insights in the implementation of the Oracle are that: (a) the feedback, in
the form of dual weights, can be viewed as Laplacians of certain weighted graphs, whose
spectral behavior is easy to understand, and this allows us to bound the width, and (b)
the spectral behavior (in other words, the width bound) is improved by careful choice of
these weights, and this was the main reason for allowing F instead of C in Theorem 15
in the first place.

4.5.1 Undirected Balanced Separator

We are given a capacitated graph G = (V,E) with |V | = n, |E| = m, and capacity ce
on edge e ∈ E. For a subset S ⊆ V , let S̄ = V \ S. A cut (S, S̄) is called c-balanced
if |S| ≥ cn, and |S̄| ≥ cn. The minimum c-Balanced Separator problem is to find
the c-balanced cut with minimum capacity. A t pseudo-approximation to the minimum
c-Balanced Separator is a c′-balanced cut for some other constant c′ whose expansion
is within a factor t of that of the minimum c-Balanced Separator.

Before we run the algorithm, we pre-process the graph using the sparsification al-
gorithm of Benczúr and Karger [22]. This algorithm randomly chooses edges using a
non-uniform sampling approach that leaves all cuts in that leaves very few (weighted)
edges while approximately preserving the value of any cut in the graph:

Theorem 17 ([22]). There is an algorithm which given a weighted graph with n nodes
and m edges with non-zero weight, produces in O(m log3 n) time a new graph on the same
set of nodes which has only O(n log(n)/ε2) edges with non-zero weight, such that the value
of any cut in the original graph is preserved within a multiplicative factor of 1± ε.
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Since we want to approximate the minimum c-Balanced Separator, we can run
this algorithm (with ε = 0.5, say) to reduce the number of non-zero edges to Õ(n). From
now on, we assume the graph has already been pre-processed in this manner.

Theorem 18.

1. An O(log n) pseudo-approximation to the minimum c-Balanced Separator can
be computed in Õ(m+ n1.5) time using O(log2(n)) single commodity flow computa-
tions.

2. An O(
√

log n) pseudo-approximation to the minimum c-Balanced Separator can
be computed in Õ(n2) time using O(log n) multicommodity flow computations.

Proof: First, we consider the well-known c-Balanced Separator SDP (see [18]).
To increase the flexibility in handling the candidate solution X we throw in additional
constraints, which are not part of the standard SDP specification, but which are implied
by it. (The reason is that the candidate primal solutions at intermediate steps are not
feasible, so these constraints are actually helpful to Oracle.) We assign vectors vi to
the nodes in G. Let X be the Gram matrix of these vectors. Below, we write the SDP in
vector and its corresponding matrix form. Let C be the combinatorial Laplacian of the
graph, and for any subset S of the nodes, let KS be the Laplacian of the graph where all
nodes in S are connected by edges, and all other edges are absent. We will only consider
sets S of size at least (1 − ε)n (for some ε to be fixed later), and we use the notation
“∀S” to mean only such sets. Let p = (i1, i2, . . . , ik) be a generic path of nodes in the
complete graph, and let Tp be the difference of the Laplacian of p and that of a single
edge connecting its endpoints.

min
∑

e={i,j}∈E

ce‖vi − vj‖2 min C •X

∀i : ‖vi‖2 = 1 ∀i : Xii = 1

∀p :
∑k−1

j=1‖vij − vij+1‖2 ≥ ‖vi1 − vik‖
2 ∀p : Tp •X ≥ 0

∀S :
∑

i,j∈S‖vi − vj‖2 ≥ an2 ∀S : KS •X ≥ an2

X � 0

The path inequalities, Tp •X ≥ 0, are usually omitted from the standard c-Balanced
Separator SDP, which only involves triangle inequalities. However, they are implied
by the triangle inequalities, so we retain them. Similarly, the original SDP only has the
single spreading constraint KV •X ≥ 4c(1− c)n2. If S ⊆ V of size at least (1− ε)n, then
(KV −KS) •X =

∑
i∈S,j∈V ‖vi − vj‖2 ≤ 4εn2 since ‖vi − vj‖2 ≤ 2‖vi‖2 + 2‖vj‖2 = 4.

Thus, the constraints KS •X ≥ an2 where a = 4[c(1 − c) − ε] are also implied, and we
retain them. We set ε = 1

2c(1− c), so that a = 2c(1− c).
The optimum of this SDP divided by 4 is a lower bound on the minimum c-Balanced

Separator. This can be seen as follows. For a cut (S, S̄), select an arbitrary unit vector
v0, and set vi = v0 for all i ∈ S, and vj = −v0 for all j ∈ S̄. Then ‖vi − vj‖2 = 4 if
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i ∈ S and j ∈ −S (or vice-versa), and 0 otherwise. Thus, the objective function is∑
e={i,j}∈E

ce‖vi − vj‖2 = 4E(S, S̄).

The dual SDP is the following. It has variables xi for every node i, fp for every path
p, and zS for every set S of nodes of size at least (1 − ε)n. Let diag(x) be the diagonal
matrix with the vector x on the diagonal.

max
∑

ixi + an2∑
SzS

diag(x) +
∑

pfpTp +
∑

SzSKS � C

∀p, S : fp, zS ≥ 0

Let the current guess for the optimum in the Primal-Dual algorithm be α. Let X be a
candidate solution generated by the Primal-Dual algorithm. Note that Tr(X) = n. The
Oracle needs to find variables xi, fp ≥ 0, zS ≥ 0 and a matrix variable F � C (c.f.
Theorem 15) such that

∑
ixi + an2

∑
SzS ≥ α which satisfies

diag(x) •X +
∑

pfp(Tp •X) +
∑

SzS(KS •X)− (F •X) ≤ 0.

If it succeeds in doing this, then the matrix returned as feedback is diag(x) +
∑

pfpTp +∑
SzSKS − F.
Our implementation of Oracle works as follows. Given a candidate solution X, the

Oracle checks first whether all the Xii are O(1). If a significant fraction of them aren’t,
then the Oracle can punish the solution X by setting the xi’s appropriately, in a similar
way as done for MaxCut. Next, it checks whether KS •X ≥ Ω(n2) for some set S of
nodes. If it isn’t, then by setting the corresponding zS appropriately, it can punish X.

The most complicated case is when almost all Xii are O(1), and KS •X ≥ Ω(n2). In
this case, we perform a flow computation, and interpret the fp variables as a multicom-
modity flow in the graph.

Now, we describe in detail the implementation of a (O(αn ), Õ(αn ))-bounded Oracle.
Given a candidate solution X, the Oracle runs the following steps (all unspecified vari-
ables, including F, are set to 0):

1. Assume, without loss of generality, that X11 ≤ X22 ≤ · · · ≤ Xnn. Let h = (1−ε)n+
1. If Xhh ≥ 2, then set xi = − α

εn for i ≥ k, and xi = 2α
(1−ε)n for i < k. Then

diag(x)•X =
∑
i≥k
− α

εn
Xii+

∑
i≥k

2α
(1− ε)n

Xii ≤ −
α

εn
·2·εn+

2α
(1− ε)n

·(n−2εn) ≤ 0.

Finally, since all xi = O(αn ), ‖diag(x)‖ ≤ O(αn ).

2. Now we assume that for all but εn exceptional nodes i, Xii ≤ 2. Let W be the set of
all the exceptional nodes, and let S := V \W . Note that |S| ≥ (1− ε)n, so we have
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the constraint KS •X ≥ an2 in the SDP. If KS •X ≤ an2

2 , then choose zS = 2α
an2 all

xi = −α
n . Then (

−α
n

I +
2α
an2

KS

)
•X ≤ α− α = 0.

Also, since 0 � KS � nI, we have ‖ − α
nI + 2α

an2 KS‖ ≤ O(αn ).

3. Now assume that KS • X ≥ an2

2 . Let v1, . . . ,vn be vectors obtained from the
Cholesky decomposition of X. Note that for all nodes i ∈ S, we have ‖vi‖2 ≤ 2.
Also, KS •X ≥ an2

2 implies that
∑

i,j∈S‖vi − vj‖2 ≥ an2

2 .

Now, the algorithm nudges X towards satisfying the path inequality constraints.
At first, it is even unclear how to check at any time that the path inequalities are
satisfied, since there are so many of them. For this we use multicommodity flow.
First, some notation. For a flow which assigns value fp to path p define fe to be the
flow on edge e, i.e. fe :=

∑
p3efp. Define fi to be the total flow from node i, i.e.

fi =
∑

p∈Pifp where Pi is the set of paths starting from i. Finally, define fij to be
the total flow between nodes i, j, i.e. fij =

∑
p∈Pijfp, where Pij is the set of paths

from i to j. A valid d-regular flow is one that satisfies the capacity constraints:
∀e : fe ≤ ce, and ∀i : fi ≤ d.

Our main tool is the following lemma, which shows that either we can find a nice
flow to make progress (i.e., give substantial “feedback”), or a cut with the desired
expansion (i.e., a near-optimal integer solution). This proof of this lemma appears
after the current proof.

Lemma 4. Let S ⊆ V be a set of nodes of size Ω(n). Suppose we are given, for all
i ∈ S, vectors vi of length O(1), such that

∑
i,j∈S‖vi−vj‖2 ≥ Ω(n2), and a quantity

α. Then:

(a) There is an algorithm, which, using a single max-flow computation, either out-
puts a valid O( log(n)α

n )-regular flow f = 〈fp〉p such that
∑

ijfij‖vi − vj‖2 ≥ α,
or a c′-balanced cut of expansion O(log(n)αn ).

(b) There is an algorithm, which, using a single multicommodity flow computation,
either outputs a valid O(αn )-regular flow f = 〈fp〉p such that

∑
ijfij‖vi−vj‖2 ≥

α, or a c′-balanced cut of expansion O(
√

log(n)αn ).

We apply the two algorithms of Lemma 4 to the set S, corresponding to the two
cases of Theorem 18. In case we find a cut with the desired expansion, then we stop.
Otherwise, we get a valid d-regular flow which satisfies

∑
ijfij‖vi−vj‖2 ≥ α, where

d = O( log(n)α
n ) or O(αn ) depending on the two cases.

Now, we set F to be the Laplacian of the weighted graph with edge weights fe. The
capacity constraints fe ≤ ce imply that F � C, because C − F is the Laplacian of
the graph with edge weights ce − fe, and is hence PSD. Let D be the Laplacian of
the demand graph, i.e. the complete weighted graph where only edges {i, j} with
i ∈ S and j ∈ T have weight fij , and the rest have 0 weight.
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Now, we have that D •X =
∑

ijfij‖vi − vj‖2 ≥ α. Then we set all xi = α
n , and

all zS = 0. It can be checked easily that
∑

pfpTp = F −D. Thus, the “feedback”
matrix becomes

diag(x) + F−D− F = diag(x)−D.

Then
(
α
nI−D

)
•X ≤ α−α = 0. Also, since the flow is d-regular, we have 0 � D �

2dI. Hence, −2dI � α
nI−D � α

nI.

We now estimate the running time for each algorithm.

1. In this case, we have ` = O(αn , ρ = O( log(n)α
n ) and R = n. Thus, the number of

iterations, from Theorem 13 is O(log2(n)). Each iteration involves at most one max-
flow computation, which can be done in Õ(n1.5) time since there are Õ(n) edges,
using the algorithm of Goldberg and Rao [47].

In each iteration, we compute an approximation to the Cholesky decomposition of
the matrix exponential by projecting on a random O(log n) dimensional subspace.
Furthermore, since there are only O(log2(n)) iterations and each iteration adds at
most Õ(n1.5) demand pairs in the max-flow computation, the matrix to be exponen-
tiated has only Õ(n1.5) non-zero entries, and thus the product of the matrix with a
given vector can be computed in Õ(n1.5) time (we are disregarding the KS matrices
here, but it is easy to compute the product KSu for any vector u in O(n) time,
since KSu =

∑
i,j∈S(ui−uj)2 = |S|

∑
i u

2
i − (

∑
i∈S ui)

2). Overall, Lemma 23 shows
that the matrix exponentiation step can be done in Õ(n1.5) time.

Overall, the running time, accounting for the initial graph sparsification, becomes
Õ(m+ n1.5).

2. In this case, we have ` = ρ = O(αn ) and R = n. Thus, the number of iterations,
from Theorem 13 is O(log(n)). Each iteration involves at most one maximum mul-
ticommodity flow computation, which can be done in Õ(n1.5) time since there are
Õ(n) edges, using the algorithm of Fleischer [40].

In each iteration, Fleischer’s multicommodity flow algorithm adds at most Õ(n)
demand pairs. Since there are only O(log n) iterations, the matrix to be exponenti-
ated has only Õ(n) non-zero entries (again disregarding the KS matrices). Overall,
Lemma 23 shows that the matrix exponentiation step can be done in Õ(n) time.

Overall, the running time becomes Õ(n2).

2

Finally, we turn to the proof of Lemma 4.
Proof:[Lemma 4]
Part 1. We seek a valid d-regular flow f = 〈fp〉p for d := β log(n)·α

n where β is a sufficiently
large constant to be chosen later. For this, we choose a direction represented by a unit
vector u at random from the uniform distribution over the unit sphere (i.e. according to
the Haar measure).
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Since KS •X ≥ Ω(n2), we have that
∑

ij∈S ‖vi − vj‖2 ≥ Ω(n2). Then Lemma 14 in
Section 4.6 shows that we can find sets L and R of size cn each, for some constant c > 0,
such that for all i ∈ L and j ∈ R, we have (vj − vi) · u ≥ σ√

n
for some constant σ > 0.

Now, we use the Lemma 13 regarding the Gaussian nature of random projections for
t = Θ(

√
log n), to conclude that with very high probability, for any pair of nodes i, j, we

have that |(vi−vj) ·u| ≤ O(
√

log(n)) · ‖vi−vj‖√
n

. Since with constant probability, we have
|(vi − vj) · u| ≥ σ√

n
for all i ∈ L, j ∈ R, we conclude that the bound ‖vi − vj‖2 ≥ γ

log(n)

for some constant γ holds with constant probability.
Assuming this is the case, we connect all nodes in L to a single source and connect all

nodes in R to a single sink with edges of capacity d each. Let f = 〈fp〉p be the max flow
in this network, where every edge e has its original capacity ce.

Suppose the total flow obtained is at least cβ
2 log(n) · α. We may assume that all the

flow originates from some node i ∈ L and ends at some node j ∈ R. Then we have∑
i∈L,j∈Rfij‖vi − vj‖2 ≥

cβ

2
log(n) · α× γ

log(n)
= α

if we choose β = 2
cγ .

Now suppose that the total flow obtained in the previous step is less than cβ
2 log(n) ·α.

By the max-flow-min-cut theorem, the cut obtained also has capacity at most O(log(n)·α).
Note that this cut will be c/2-balanced, since at most cβ

2 log(n) · α/d = cn/2 source (and
sink) edges can be cut. Thus, the expansion of the cut is O(log(n) · αn ).

Part 2: We seek a valid d-regular flow f = 〈fp〉p for d := βα
n where β is a sufficiently

large constant to be chosen later. Now we consider a maximum multicommodity flow
problem, where the demand pairs are nodes i, j ∈ S such that ‖vi − vj‖2 ≥ s for some
constant s to be specified later. Let D be the set of such pairs of nodes. We seek a valid
d-regular flow for d := βα

n , which maximizes the total flow
∑

ij∈Dfij . The d-regularity con-
dition can be equivalently obtained by adding an artificial edge {i, i′} of capacity cii′ = d
to every node i, where i′ is a new node, and considering the new set of demand pairs
D′ = {{i′, j′} : {i, j} ∈ D}. Let the new graph be G′. The multicommodity flow problem
can be expressed by the following LP, and its dual. Here, p refers to a generic path in G′

between some node pair {i′, j′} ∈ D′. Any such path consists of the edge {i′, i}, followed
by a path connecting i to j in G, and then the edge {j, j′}.

max
∑
p

fp min
∑
e

cewe

∀e :
∑
p3e

fp ≤ ce ∀p :
∑
e∈p

we ≥ 1

∀p : fp ≥ 0 ∀e : we ≥ 0

Using Fleischer’s algorithm [40], this problem can be solved up to any given constant
factor, say 1

2 . Now we check if the flow obtained satisfies
∑

ij∈Dfij ≥
α
s . If it does, then

we have
∑

ij∈Dfij‖vi − vj‖2 ≥ α.
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Assume now that the total flow obtained
∑

ijfij <
α
s . Since we chose an approximation

factor of 1
2 in Fleischer’s algorithm, this means that the optimum of the multicommodity

flow problem is less than 2α
s . Let we be the optimal set of edge weights to the dual of the

LP. For every node i, set si := wii′ . Since the optimum value is less than 2α
s , we get that

these edge weights satisfy the following conditions:∑
ecewe +

∑
i

βα

n
si ≤

2α
s
,

and for any demand pair i, j ∈ D and a path p connecting them,

si + sj +
∑

e∈pwe ≥ 1.

Now we apply the algorithm from the following theorem (with the vectors vi scaled down
by 2 to ensure their length is at most 1). The proof, which appears in Section 4.6, can be
derived using the techniques of Arora, Rao and Vazirani [18] and Lee [73]. Note that the
number edges, m, is Õ(n) here since we sparsified the graph first.

Theorem 19. Let v1,v2, . . . ,vn be vectors of length at most 1, such that
∑

ij‖vi−vj‖2 ≥
an2. Let we be weights on edges and nodes and let α =

∑
ecewe. Then there is an

algorithm which runs in Õ(m1.5) time and finds a cut of value C which is c-balanced for
some constant c, such that there exists a pair of nodes i, j with the property that the graph
distance between i and j is at most O(

√
log n · αC ) and ‖vi−vj‖2 ≥ s where s is a constant

which only depends on a. Furthermore, this is true even if any fixed set of τn nodes are
prohibited from being i or j, for some small constant τ .

We have
∑

e cewe ≤
2α
s = O(α). At most τn nodes have si ≥ 2

βτs . Let these nodes
form the forbidden set in the theorem. We run the algorithm from the theorem to obtain a
cut of value C. Let i, j be the pair of nodes whose existence is guaranteed by the theorem.
The value s is defined to be the lower bound on ‖vi− vj‖2 from the theorem; thus, i, j is
a demand pair in D. Choose β = 8

τs . Then si, sj ≤ 1
4 , and we have

si + sj +O
(√

log n
α

C

)
≥ 1 ⇒ C = O(

√
log n · α).

Since the cut is Ω(1)-balanced, its expansion is at most O(
√

log nαn ). 2

4.5.2 Undirected Sparsest Cut

We have the same setup as for undirected Balanced Separator. The Sparsest Cut

in a graph G = (V,E) is the cut (S, S̄) with minimum expansion, E(S,S̄)
min{|S|,|S̄|} . As before,

we assume that the graph has been pre-processed using the algorithm of Benczúr and
Karger [22] to have only Õ(n) edges with non-zero weight, with all cuts having capacities
within a constant factor of their original capacities.

Theorem 20.

1. An O(log n) pseudo-approximation to the Sparsest Cut can be computed in Õ(m+
n1.5) time using O(log2(n)) single commodity flow computations.
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2. An O(
√

log n) pseudo-approximation to the Sparsest Cut can be computed in
Õ(n2) time using O(log n) multicommodity flow computations.

Proof: The Sparsest Cut SDP, in vector and matrix form, is the following:

min
∑

e={i,j}∈E

ce‖vi − vj‖2 min C •X

∀p :
∑k−1

j=1‖vij − vij+1‖2 ≥ ‖vi1 − vik‖
2 ∀p : Tp •X ≥ 0

‖
∑

ivi‖
2 = 0 J •X = 0∑

i‖vi‖
2 = n Tr(X) = n

X � 0

Here, J is the all ones matrix. We note that the last two constraints are not standard.
Typically, we only have the constraint

∑
ij‖vi − vj‖2 = n2. Note that the SDP optimum

doesn’t change if we throw in the constraint that
∑

ivi = 0, or equivalently, ‖
∑

ivi‖2 =
0. With this additional constraint, the constraint

∑
ij‖vi − vj‖2 = n2 is equivalent to∑

i‖vi‖2 = n, precisely the kind of trace bound we need.
The optimum divided by 2n is a lower bound on the expansion of the Sparsest Cut.

This can be seen as follows. Given a cut (S, S̄), select an arbitrary unit vector v0, and set
vi = n

2
√
|S||S̄|

v0 for all i ∈ S, and vi = − n

2
√
|S||S̄|

v0 for all i ∈ −S. Then ‖vi−vj‖2 = n2

|S||S̄|

if i ∈ S and j ∈ −S (or vice-versa), and 0 otherwise. Thus, the objective function is∑
e={i,j}∈E

ce‖vi − vj‖2 =
n2E(S, S̄)
|S||S̄|

≤ 2n
E(S, S̄)

min{|S|, |S̄|}
.

The dual SDP is the following:

max nx

xI +
∑

pfpTp + zJ � C

∀p : fp ≥ 0

Given a candidate solution X, the Oracle always sets x = α
n . Since xI •X = α, it

now needs to find fp, z and F � C such that

α+
∑

pfp(Tp •X) + z(J •X)− (F •X) ≤ 0.

It runs the following steps (as before, all unspecified variables, including F, are set to 0):

1. If J•X ≥ n2/5, then set z = −5α
n2 , so that z(J•X) ≤ −α. Furthermore, ‖αnI−zJ‖ ≤

O(αn ), since 0 � J � nI.

2. Assume now that J • X ≤ n2/5. Let v1,v2, . . . ,vn be vectors obtained from the
Cholesky decomposition of X. Then since I • X = Tr(X) = n, the condition
J •X ≤ n2/5 implies that n2 ≥

∑
ij‖vi − vj‖2 ≥ 4

5n
2, since the Laplacian of the

complete graph is exactly KV = nI − J, and KV •X =
∑

ij‖vi − vj‖2. Now, we
can apply the algorithm of the following lemma (proved after the current proof):
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Lemma 5. Suppose we are given, for all i ∈ V , vectors vi, such that n2 ≥
∑

ij‖vi−
vj‖2 ≥ 4

5n
2, and a quantity α. Then there is an algorithm, which, using a single

max-flow computation, outputs either

(a) a valid O(αn )-regular flow f = 〈fp〉p, such that
∑

ijfij‖vi − vj‖2 ≥ α, or,

(b) a cut of expansion O(αn ), or

(c) a set of nodes S ⊆ V of size Ω(n), such that there is a node i0 ∈ S such that
for all i ∈ S, ‖vi − vi0‖2 = O(1), and

∑
i,j∈S‖vi − vj‖2 ≥ Ω(n2).

If we get a cut of expansion, O(αn ), we output it. If we get a flow f = 〈fp〉p such
that

∑
ij fij‖vi − vj‖2 ≥ α, then just as in step 3 of the Oracle for undirected

Balanced Separator, we can set F and D to be the flow and demand graph
Laplacians respectively, and make progress, since

α+
∑
p

fp(Tp •X)− (F •X) = α−D •X = α−
∑

ijfij‖vi − vj‖2 ≤ 0.

Finally, if we get a set of nodes S ⊆ V of size Ω(n), such that there is a node i0
such that for all i ∈ S, ‖vi − vi0‖2 = O(1), and

∑
i,j∈S‖vi − vj‖2 ≥ Ω(n2), then

we can apply Lemma 4 to S with the vector vi − vi0 associated to node i ∈ S,
with the current value of α. This will again yield either a cut of small expansion,
in which case we stop, or a Õ(αn )-regular flow such that

∑
ij fij‖vi − vj‖2 ≥ α, in

which case we again make progress by setting F and D to be the flow and demand
graph Laplacians respectively of this new flow.

The running time is bounded in the same way as in the case of minimum c-Balanced
Separator, noting that the most expensive additional step required here is a max-flow
computation, which can be done in Õ(n1.5) time using the algorithm of Goldberg and
Rao [47]. 2

Now, we prove Lemma 5.
Proof:[Lemma 5] Given vectors vi such that n2 ≥

∑
ij‖vi − vj‖2 ≥ 4

5n
2, we run the

following steps:

1. For a node i, and radius r, let B(i, r) = {j : ‖vi − vj‖ ≤ r}. If there is a node i
such that |B(i, 1

2
√

10
)| ≥ n/4, then any i0 ∈ B(i, 1

2
√

10
) satisfies |B(i0, 1√

10
)| ≥ n/4.

So we can find such an i0 by simple random sampling. Let L = B(i0, 1√
10

), and
let R = V \ L. For j ∈ R, define ∆(j, L) = mini∈L ‖vi − vj‖2 (doesn’t need to be
computed). We have
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4
5
n2 ≤

∑
ij

‖vi − vj‖2

≤
∑
ij

2‖vi − vi0‖2 + 2‖vi0 − vj‖2

≤ 2n
∑
i

‖vi − vi0‖2

≤ 2n
∑
i

[2∆(i, L) +
2
10

].

Thus,
∑

i d(i, L) ≥ [1
5 −

1
10 ]n = n

10 . Since for i ∈ L, we have d(i, L) = 0, we conclude
that

∑
j∈Rd(j, L) ≥ n

10 . Let k := |R|
|L| . Note that k ≤ 4.

Now, we connect all nodes in L to a single source with edges of capacity 10kα
n and

all nodes in R to a single sink with edges of capacity 10α
n , and compute the max-flow

f in the graph. Though the flow is between a single source and sink, we ignore the
artificial edges added and associate the flow to paths between node pairs i ∈ L,
j ∈ R in the natural way. For such a node pair i, j, let fij be the total flow from i
to j. If the flow saturates all source and sink nodes, then we have∑

i∈L,j∈R
fij‖vi − vj‖2 ≥

∑
j∈R

10α
n
·∆(j, L) ≥ α.

2. If the flow doesn’t saturate all source and sink edges, then in the resulting cut, let
the number of nodes in L connected to the source be ns and the number of nodes in
R connected to the sink be nt. Then the capacity of the graph edges cut is at most
10α
n (|R|−kns−nt), and the smaller side of the cut has at least min{|L|−ns, |R|−nt}

nodes. Thus, the expansion of the cut obtained is at most 10kα
n = O(αn ).

3. Now assume that for all nodes i we have |B(i, 1
2
√

10
)| < n/4. Then we claim that

there is a node i such that |B(i, 2)| ≥ n/2. Otherwise, for all nodes i, there are more
than n/2 nodes j such that ‖vi − vj‖2 ≥ 22 = 4. This is a contradiction since this
would imply that ∑

ij

‖vi − vj‖2 > n · 1
2
n · 4 · 1

2
= n2.

Again, by random sampling, we can find an i0 such that |B(i0, 4)| ≥ n/2. Let
S = B(i0, 4). Since for every i ∈ S, |B(i, 1

2
√

10
)| < n/4, we conclude that there are

at least n/2− n/4 = n/4 nodes j ∈ S such that ‖vi − vj‖2 ≥ 1
40 . Thus, we have∑

i,j∈S
‖vi − vj‖2 ≥

1
2
n · 1

4
n · 1

40
· 1

2
= Ω(n2).

We return this set S.

2
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Connection to KRV’s Sparsest Cut algorithm. Khandekar, Rao and Vazirani [65]
obtain an O(log2 n) approximation to the Balanced Separator and Sparsest Cut in
undirected graphs in Õ(m + n1.5) time. We obtain O(log n)-approximation in the same
time. Here we note that despite superficial differences, their algorithm is a close cousin of
ours. At each iteration, their algorithm maintains a (multi)graph that is a union of perfect
matchings. It uses spectral methods (specifically, a random walk) to identify sparse cuts in
this graph. Then it computes a single-commodity max flow across this sparse cut, finds a
new perfect matching via flow decomposition, and adds it to the current multigraph before
proceeding to the next iteration. The analysis of convergence uses an ad hoc potential
function, and the main theorem says that the union of matchings converges in O(log2 n)
iterations to an expander.

Our algorithm is somewhat similar except we use matrix exponentiation at each iter-
ation instead of random walks. However, the two are related. If L is a graph Laplacian,
and β < 1/(max degree) is any constant, then exp(−βL) is the transition matrix after 1
time unit for the following continuous random walk: in each time interval δt, every node
sends out a βδt fraction of its probability mass to each of its neighbors. The algorithm of
[65] simulates such a random walk, where L is the Laplacian of the union of the perfect
matchings found so far. In our case, L is the Laplacian of the union of the flows found
so far. Both algorithms compute a projection of the rows of the transition matrix on a
random vector and then compute a max-flow based on the projections.

Of course, their ad hoc analysis does not apply to the other problems considered in
this paper.

4.5.3 Directed Balanced Separator

We have a directed graph G = (V,E) with capacity ce on edge e ∈ E. For a cut (S, S̄)
in the graph, define E(S, S̄) to be the total capacity of arcs going from S to S̄. The
minimum c-Balanced Separator is the c-balanced cut (S, S̄) with minimum value of
E(S, S̄).

Theorem 21. 1. An O(log n) pseudo-approximation to the minimum c-Balanced
Separator in directed graphs can be computed in Õ(m1.5) time using polylog(n)
single-commodity flow computations.

2. An O(
√

log n) pseudo-approximation to the minimum c-Balanced Separator in
directed graphs can be computed in Õ(m1.5 + n2+µ) time using polylog(n) single-
commodity flow computations, for any specified constant µ > 0. The Õ notation
hides polynomial dependence on 1

µ .

Proof: Consider the minimum c-Balanced Separator SDP for a directed graph
(see [2]). As usual, we have a vector vi corresponding to every node. In addition, we
also have a vector wi. For notational convenience, we will also denote this vector by vn+i.
Thus, we now have matrices in R2n×2n. For a directed edge (i, j), we define its directed
length d(i, j) := ‖vi − vj‖2 − ‖wi − vi‖2 + ‖wj − vj‖2. With the same notation as in the
case of undirected Balanced Separator, the SDP, in vector and matrix form, is given
below:
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min
∑

e=(i,j)∈E

ced(i, j) min C •X

∀i ∈ [2n] : ‖vi‖2 = 1 ∀i ∈ [2n] : Xii = 1

∀i, j ∈ [n] : ‖wi −wj‖2 = 0 ∀i, j ∈ [n] : Eij •X = 0

∀p :
∑k−1

j=1‖vij − vij+1‖2 ≥ ‖vi1 − vik‖
2 ∀p : Tp •X ≥ 0

∀S :
∑

i,j∈S‖vi − vj‖2 ≥ an2 ∀S : KS •X ≥ an2

X � 0

Note that C is the directed Laplacian of the first kind (c.f. Section 4.3.2) of the graph. In
the standard SDP for this problem [2], it is intended that all the wi vectors are the same,
and equal to some unit vector v0, and this is enforced by the constraint ‖wi −wj‖2 = 0.
The matrix Eij corresponds to this constraint, and is the (undirected) Laplacian of a
single unit capacity edge joining n+ i to n+ j. We introduce these additional vectors for
the purpose of keeping the width bounded.

The optimum of this SDP divided by 8 is a lower bound on the capacity of the minimum
c-Balanced Separator. This can be seen as follows. For a directed cut (S, S̄), select
an arbitrary unit vector v0, and set wi = v0 for all i ∈ V , and set vi = v0 for all i ∈ S,
and vi = −v0 for all i ∈ −S. Then d(i, j) = 8 if i ∈ S and j ∈ −S, and 0 otherwise.
Thus, the objective function is ∑

e=(i,j)∈E

ced(i, j) = 8E(S, S̄).

The dual to the SDP is as follows:

max
∑

ixi + an2∑
SzS

diag(x) +
∑

i,j∈[n]yijEij +
∑

pfpTp +
∑

SzSKS � C

∀p, S : fp, zS ≥ 0

Now we turn to the implementation of the Oracle. Most of the steps are the same
as in the undirected case. In the most complicated case, we need to compute a directed
flow. If we have a flow in the graph which satisfies the capacity constraints fe ≤ ce, then
if we set F to be the directed Laplacian (of the first kind) of the flow, then for any primal
feasible X, with vectors vi,wi obtained from its Cholesky decomposition, we have that

F •X =
∑

e=(i,j)∈E

fed(i, j) ≤
∑

e=(i,j)∈E

ced(i, j) = C •X.

because the triangle inequalities on the primal feasible matrix X imply the directed dis-
tance d(i, j) ≥ 0. This matrix F can thus be used in the Primal-Dual framework for
minimization SDPs.

The Oracle is implemented as follows:
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1. This step is identical to Step 1 in the undirected case. LetH := {i ∈ [2n] : Xii ≥ 2}.
If |H| ≥ ε

2n, then we set xi = − α
|H| for all i ∈ H, and xi = 2α

2n−|H| for all i /∈ H.
Then

diag(x) •X ≤ − α

|H|
· 2|H|+ 2α

2n− |H|
· (2n− 2|H|) ≤ 0.

Also, ‖diag(x)‖ ≤ O(αn ).

2. Now, assume that |H| < ε
2n. Now we try to find Ω(n) disjoint pairs i, j ∈ [n] such

that ‖wi −wj‖ ≥ δ for some δ ≥ Ω( 1
logn) to be fixed later. We restrict attention to

vectors wi for i ∈W := {i ∈ [n] : i, n+ i /∈ H}. Note that |W | ≥ (1− ε
2)n.

For a node i ∈ W , and radius r, let C(i, r) = {j ∈ W : ‖wi −wj‖ ≤ r}. Suppose
for all nodes i ∈ W we have |C(i, δ)| ≤ (1 − ε)n. Equivalently, for every node
i ∈W , there are at least ε

2n nodes j such that ‖wi−wj‖2 ≥ δ2. Thus by randomly
sampling, in expected O(n) time, we can greedily remove k := εn

8 disjoint pairs i, j
such that ‖wi − wj‖2 ≥ δ2. This is because if we have found less than k pairs so
far, then for every node i, there are still ε4n nodes j such that ‖wi−wj‖2 ≥ δ2, so a
randomly chosen pair i, j ∈W satisfies ‖wi −wj‖2 ≥ δ2 with constant probability.

Let these pairs be (i1, j1), . . . , (ik, jk). For all these pairs, we set their yij = − 8α
δ2εn

.
We set all xi = α

2n . Then

α

2n
(I •X)− 8α

δ2εn

k∑
t=1

(Eitjt •X) ≤ α− α = 0.

Furthermore, − 16α
δ2εn

I � α
2nI− 8α

δ2εn

∑k
t=1Eitjt � α

2nI.

3. Now, assume that there is an i ∈W such that for some constant |C(i, δ)| ≥ (1−ε)n.
Then any k ∈ C(i, δ) satisfies |C(k, 2δ)| ≥ (1 − ε)n. So we can find such an k by
simple random sampling. Let S := C(k, 2δ). Since |S| ≥ (1 − ε)n, and we have
constraint KS •X ≥ an2 corresponding to the set S in the SDP.

Now we check if KS •X ≤ an2

2 , and if it is, then we set zS = 2α
an2 all xi = − α

2n . Then(
− α

2n
I +

2α
an2

KS

)
•X ≤ α− α = 0.

Also, since 0 � KS � nI, we have ‖ − α
2nI + 2α

an2 KS‖ ≤ O(αn ).

4. Finally, assume that KS •X ≥ an2

2 , i.e.
∑

ij∈S ‖vi − vj‖2 ≥ Ω(n2). Furthermore,
for any i, j ∈ S = C(k, 2δ), we have ‖wi −wj‖ ≤ 4δ. We can now apply Lemma 6
below to the set S with the vectors vi, wi.

Lemma 6. Let S ⊆ V be a set of nodes of size Ω(n). Suppose we are given, for
all i ∈ S, vectors vi,wi of length O(1), such that

∑
i,j∈S‖vi − vj‖2 ≥ Ω(n2), and

∀ij, ‖wi − wj‖ ≤ 4δ, where δ = Ω( 1
logn) is a parameter that can be set as desired.

Define the directed distance d(i, j) = ‖vi−vj‖2−‖wi−vi‖2 + ‖wj −vj‖2. For any
given value α,
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(a) There is an algorithm, which, using a single max-flow computation, either out-
puts a valid O( log(n)α

n )-regular directed flow f = 〈fp〉p such that
∑

ijfijd(i, j) ≥
α, or a c′-balanced cut of expansion O(log(n)αn ).

(b) There is an algorithm, which, using O(log n) max-flow computations, plus an
additional time of O( 1

µn
2+µ) for any constant µ > 0, outputs either:

i. a c′-balanced cut of expansion O(
√

log(n)αn ), or
ii. a valid O(αn )-regular directed flow f = 〈fp〉p such that

∑
ijfijd(i, j) ≥ α,

or
iii. Ω( n√

logn
) vertex-disjoint paths such that the path inequality along these

paths is violated by Ω(1).

If we get a d-regular directed flow such that
∑

ijfijd(i, j) ≥ α, where d = O( log(n)α
n )

or O(αn ) depending on the two cases, then we set F to be the directed Laplacian (of
the first kind) of the flow, and D to be the directed Laplacian (of the first kind) of
the demand graph. Then D • X =

∑
i∈L,j∈Rfijd(i, j) ≥ α. Again, just as in the

undirected case, we can set all xi = α
2n , so that ( α2nI −D) •X ≤ α − α ≤ 0, and

−4dI � α
2nI−D � α

2nI.

Finally, if we get k = Ω( n√
logn

) vertex-disjoint paths p1, . . . , pk, such that the path
inequality along these paths is violated by Ω(1), Tp•X ≤ −s. Then, we set fpk = α

sk
and all xi = α

2n . So, (
a

2n
I +

m∑
k=1

α

sk
Tpk

)
•X ≤ α− α = 0.

We can bound the width as ‖ a2nI +
∑m

k=1
α
skTpk‖ ≤ O(

√
logn·α
n ).

The overall running time is bounded just as in the undirected case. Again, we have Õ(1)
iterations, and in each iteration the most expensive operations are the polylog(n) max-
flow computations, which take Õ(m1.5) time on a directed graph, using the algorithm of
Goldberg and Rao [47]. For the O(

√
log n) approximation algorithm, we may incur an

additional cost of Õ( 1
µn

2+µ) per iteration in order to find Õ(n) paths with violated path
inequalities. Thus, we get the stated running time. 2

We now prove Lemma 6.
Proof:[Lemma 6]
We may assume, by scaling down if necessary, that all vectors vi,wi have length at most
1. Let ‖wi −wj‖ ≤ δ, where δ is a parameter that we can make as small as needed (but
always Ω( 1

logn)).
We choose a direction represented by a unit vector u at random. Lemma 14 shows

that he fact that
∑

ij∈S ‖vi − vj‖2 ≥ Ω(n2) implies that with constant probability γ, we
can find sets L0, R0 ⊆ S each of size at least cn for some constant c, such that for any
i ∈ L0 and j ∈ R0, (vj − vi) · u ≥ σ√

n
.

Next, let r be the median distance from wi0 to the vectors {v′i : i ∈ L0}. Let
L+

0 := {i ∈ L0 : ‖v′i − wi0‖ ≥ r} and L−0 := {i ∈ L0 : ‖v′i − wi0‖ ≤ r}. Define R+
0 and
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R−0 analogously. If |R+
0 | ≥ |R

−
0 |, then set L = L−0 , and R = R+

0 , else set L = R−0 and
R = L+

0 . Note that both L and R have at least cn
2 nodes each.

For any pair of nodes i ∈ L and j ∈ R, we have

d(i, j) = ‖vi − vj‖2 − ‖wi − vi‖2 + ‖wj − vj‖2

= [‖vi − vj‖2 − ‖wi0 − vi‖2 + ‖wi0 − vj‖2]− (wi0 −wi) · (2vi −wi0 −wi)
+ (wi0 −wj) · (2vj −wi0 −wj)

≥ ‖vi − vj‖2 − 8δ

The last inequality follows because ‖wi0 −wj‖ ≤ δ, and ‖2vj −wi0 −wj‖ ≤ 4 since all
vectors are of length at most 1. Now we have two cases, depending on what approximation
we need:

Part 1. To get an O(log n) approximation, we can proceed exactly as in the case of
undirected graphs. Namely, we may assume that all pairs i ∈ L and j ∈ R satisfy
‖vi−vj‖2 ≥ γ

logn for some constant γ > 0. We choose δ = γ
16 logn , so that d(i, j) ≥ γ

2 logn .

Next, we connect all nodes in L to a single source with edges of capacity β log(n)α
n , and

all nodes in R to a single sink with edges of capacity β log(n)α
n . We now compute the

(directed) max-flow in this network. Just as in the undirected case, if we choose β large
enough, either we get a flow such that

∑
i∈L,j∈Rfij‖vi − vj‖2 ≥ 2α or we get a cut of

expansion at most O(log(n) · αn ). In the former case, by our choice of δ, we conclude that∑
i∈L,j∈Rfijd(i, j) ≥ α.

Part 2. To get an O(
√

log n) approximation, we connect all nodes in L to a single source

with edges of capacity β
√

log(n)α

n , and all nodes in R to a single sink with edges of capacity
β
√

log(n)α

n . We now compute the (directed) max-flow in this network. Now there are three
cases:

1. If the total flow obtained is less than cβ
4

√
log(n) · α, then by the max-flow-min-cut

theorem, the cut obtained is also at most this size. Note that this cut will be c/4-
balanced, since at most cβ

4

√
log(n) ·α/d = cn/4 source (and sink) edges can be cut.

Thus, the expansion of the cut is O(
√

log(n) · αn ).

2. Now assume that the total flow obtained is at least cβ
4

√
log(n) · α. Then we check

if
∑

i∈L,j∈Rfijd(i, j) ≥ α. If it is, then we are done.

3. Otherwise, if the total flow is at least cβ
4

√
log(n) · α, but

∑
i∈L,j∈Rfijd(i, j) < α,

then we repeat this process for O(log(n)) different random directions. If we always
end up in this case, then we try to find many paths for which the path inequality is
violated to a large extent.

For each direction u, at least half the flow is between demand pairs (i, j) such
that d(i, j) ≤ 8

cβ
√

logn
. Now we choose δ = 1

4cβ
√

logn
. Thus for all such pairs,
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‖vi − vj‖2 ≤ 10
cβ
√

logn
. Since at most β

√
log(n)α

n flow enters or leaves any node in L

and R, we can show that in fact there is a matching of size εn, with ε = c
64 , of pairs

i ∈ L and j ∈ R such that ‖vi − vj‖2 ≤ η√
logn

where η = 10
cβ . (This argument is

essentially the one given in Lemma 15. Scale down the flow by β
√

log(n)α

n so that
at most a unit flow enters or leaves any node in L and R, and the total amount of
flow between pairs i, j such that ‖vi−vj‖2 ≤ η√

logn
is at least c

8n. Then Lemma 15
shows that we obtain a matching of size c

64n by a random selection process).

Note also that such pairs satisfy (vj − vi) · u ≥ σ√
n

. We call i, j a “(η, σ)-stretched
pair along u” (or often simply “stretched pair”). Let the fraction of directions u
such that there is a matching of stretched pairs along u of size at least c

64n be γ′.
If γ′ < γ/2, then after a constant number of repetitions of this procedure, we will
end up in case 1, with high probability.

So assume that in each repetition we find large matchings of stretched pairs. In this
case, we conclude that γ′ ≥ γ/2 with high probability. Now, we apply the algorithm
of the following lemma, proved in Section 4.6:

Lemma 7. Let v1,v2, . . . be vectors of length at most 1 such for a γ fraction of
directions u, there is a matching of (η, σ)-stretched pairs along u of size εn. Let
µ > 0 be a given constant. There is a randomized algorithm which finds k vertex-
disjoint paths p of length at most 2C

µ

√
log n such that the triangle inequality along

p is violated by at least s, in time Õ(n2 + 1
µkn

1+µ). Here, s, C are constants that
depend only on γ, ε, σ, and we assume that k ≤ ( µε4C ) · n√

logn
and that η ≤ µs

4C .

By setting β = 40C
µsc , we can ensure that η ≤ µs

4C . Then the lemma above implies
that we can find Θ( n√

logn
) paths p on which the path inequality is violated by at

least a constant, and return them.

2

4.5.4 Directed Sparsest Cut

We have the same setup as for directed Balanced Separator. The Sparsest Cut in
a directed graph G = (V,E) is the cut (S, S̄) with minimum expansion, E(S,S̄)

min{|S|,|S̄|} .

Theorem 22. 1. An O(log n) pseudo-approximation to the Sparsest Cut in directed
graphs can be computed in Õ(m1.5) time using polylog(n) single-commodity flow
computations.

2. An O(
√

log n) pseudo-approximation to the Sparsest Cut in directed graphs can
be computed in Õ(m1.5 +n2+µ) time using polylog(n) single-commodity flow compu-
tations, for any specified constant µ. The Õ notation hides polynomial dependence
on 1

µ .
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Proof: We consider the directed Sparsest Cut SDP (see [2]). As in the minimum
c-Balanced Separator problem, we have vectors vi,wi ≡ vn+i corresponding to every
node. In addition, we also have a vector wi. Thus, the matrix X ∈ R2n×2n. For a directed
edge (i, j), we define its directed length d(i, j) := ‖vi − vj‖2 − ‖wi − vi‖2 + ‖wj − vj‖2.
With the same notation as in the case of directed minimum c-Balanced Separator,
the SDP, in vector and matrix form, is given below:

min
∑

e=(i,j)∈E

ced(i, j) min C •X

∀i, j ∈ [n] : ‖wi −wj‖2 = 0 ∀i, j ∈ [n] : Eij •X = 0

∀p :
∑k−1

j=1‖vij − vij+1‖2 ≥ ‖vi1 − vik‖
2 ∀p : Tp •X ≥ 0∑

i,j∈[n]

‖vi − vj‖2 = n2 KV •X = n2

2n∑
i=1

‖vi‖2 ≤ n Tr(X) ≤ n

X � 0

Here, C is the directed Laplacian of the first kind (c.f. Section 4.3.2) of the graph. Also,
KV has the Laplacian of the complete graph on the vertices in [n], in the top left n × n
block, and zero elsewhere.

The optimum of this SDP divided by 4n is a lower bound on the expansion of the
Sparsest Cut. This can be seen as follows. Given a cut (S, S̄), select an arbitrary unit
vector v0, and set wi = n

2
√
|S||S̄|

v0 for all i ∈ [n], and set vi = n

2
√
|S||S̄|

v0 for all i ∈ S,

and vi = − n

2
√
|S||S̄|

v0 for all i ∈ −S. Then d(i, j) = 2n2

|S||S̄| if i ∈ S and j ∈ −S, and 0

otherwise. Thus, the objective function is∑
e={i,j}∈E

ce‖vi − vj‖2 =
2n2E(S, S̄)
|S||S̄|

≤ 4n
E(S, S̄)

min{|S|, |S̄|}
.

The dual to the SDP is as follows:

max nx+n2z

xI +
∑

i,j∈[n]yijEij +
∑

pfpTp + zKV � C

∀p : fp, x ≥ 0

Given a candidate solution X, the Oracle works as follows:

1. If KV •X ≥ 6
5n

2, then we set z = −5α
n2 , and x = 6α

n . Then we have

x(I •X) + z(KV •X) ≤ 6α− 5α
n2
· 6

5
n2 = 0.

Furthermore, −5α
n I � xI− zKV � 6α

n I.

Similarly, if KV • X ≤ 4
5n

2, then we set z = 5α
n2 , and x = −4α

n and get similar
bounds.
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2. This step is identical to step 2 in the implementation of the Oracle for directed
Balanced Separator. For a node i ∈ [n], and radius r, let C(i, r) = {j ∈ [n] :
‖wi−wj‖ ≤ r}. Suppose for all i ∈ [n] we have |C(i, δ)| ≤ n/6 for some δ = Ω( 1

logn)
to be fixed later. Equivalently, for every i ∈ [n], there are at least n/6 nodes j such
that ‖wi − wj‖2 ≥ δ2. Then as before, by randomly sampling, in expected O(n)
time, we can greedily remove k := n

24 disjoint pairs i, j such that ‖wi −wj‖2 ≥ δ2.

Let these pairs be (i1, j1), . . . , (ik, jk). For all these pairs, we set their yij = −24α
δ2n

.
We set x = α

n . Then

α

n
(I •X)− 24α

δ2n

k∑
t=1

(Eitjt •X) ≤ α− α = 0.

Furthermore, −48α
δ2n

I � α
nI− 24α

δ2n

∑k
t=1Eitjt � α

nI.

3. Now assume that the vectors satisfy 6
5n

2 ≥
∑

i,j∈[n] ‖vi−vj‖2 ≥ 4
5n

2. Furthermore,
assume that there is a node i such that |C(i, δ)| ≥ 5

6n. By random sampling,
we can find a node k ∈ C(i, δ), and thus there are 5

6n nodes j ∈ C(k, 2δ). Let
W = V \ C(i2, 2δ). Note that |W | ≤ n/6. Note that for all i, j ∈ C(k, 2δ), we have
‖wi − wj‖ ≤ 4δ. Furthermore, we claim that ‖wk‖ ≤ 2. Otherwise, for any node
j ∈ C(i2, 2δ), we have ‖wj‖ ≥ ‖wk‖ − 2δ ≥ 3/2 if we choose δ ≤ 1/4. But then
Tr(X) ≥

∑
j∈C(k,2δ) ‖wj‖2 ≥ 9

4 ·
5
6n > n, a contradiction. Thus, for all j ∈ C(i2, 2δ),

we have ‖wj‖ ≤ ‖wi‖+ 2δ ≤ 5
2 .

Now, we can apply the algorithm of the Lemma 8 below to the set of vectors vi,wi:

Lemma 8. Suppose we are given, for all i ∈ V , vectors vi,wi, such that 6
5n

2 ≥∑
i,j∈[n] ‖vi − vj‖2 ≥ 4

5n
2 and there is a set of nodes W of size n/6 such that

for any nodes i, j ∈ V \ W , we have ‖wi‖ ≤ O(1) and ‖wi − wj‖ ≤ 4δ. Here,
δ = Ω( 1

logn) is a parameter that can be set as desired. Define the directed distance
d(i, j) = ‖vi − vj‖2 − ‖wi − vi‖2 + ‖wj − vj‖2. Let α be any given value. Then
there is an algorithm, which using a single max-flow computation, outputs either

(a) a valid O(αn )-regular directed flow f = 〈fp〉p such that
∑

ijfijd(i, j) ≥ α, or
(b) a cut of expansion O(αn ), or
(c) a set S of nodes of size Ω(n) and a node i0 ∈ S such that ‖vi0 − vi‖2 ≤ O(1).

Furthermore,
∑

ij∈S ‖vi − vj‖2 ≥ Ω(n2) and for any pair i, j ∈ S, we have
‖wi‖ ≤ O(1) and ‖wi −wj‖2 ≤ 4δ.

If we get a cut of expansion O(αn ), we output it.

If we get a directed flow f = 〈fp〉p such that
∑

ij fij‖vi − vj‖2 ≥ α, then just as in
step 4 of the Oracle for directed Balanced Separator, we can set F and D to
be the directed flow and demand graph Laplacians (of the first kind) respectively,
and make progress, since

α+
∑
p

fp(Tp •X)− (F •X) = α−D •X = α−
∑

ijfij‖vi − vj‖2 ≤ 0.
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Finally, in the last case, we get a set S of nodes of size Ω(n) and a node i0 ∈ S such
that ‖vi0 − vi‖2 ≤ O(1). Also,

∑
ij∈S ‖vi − vj‖2 ≥ Ω(n2) and for any pair i, j ∈ S,

we have ‖wi‖ ≤ O(1) and ‖wi−wj‖2 ≤ 4δ. Then we can apply Lemma 6 to S with
the vector vi − vi0 and wi associated to node i ∈ S, with the current α.

This will again yield either a cut of small expansion, in which case we stop, or a
directed Õ(αn )-regular flow such that

∑
ij fij‖vi − vj‖2 ≥ α, in which case we again

make progress by setting F and D to be the flow and demand graph Laplacians (of
the first kind) respectively of this new flow.

The running time is bounded in the same way as in the case of directed Balanced
Separator, noting that the most expensive additional step required here is a max-flow
computation, which can be done in Õ(m1.5) time using the algorithm of Goldberg and
Rao [47]. 2

Now, we prove Lemma 8.
Proof:[Lemma 8] We run the following steps:

1. For a node i, and radius r, let B(i, r) = {j : ‖vi − vj‖ ≤ r}. If there is a node i
such that |B(i, 1

2
√

10
)| ≥ n/4, then any i0 ∈ B(i, 1

2
√

10
) satisfies |B(i0, 1√

10
)| ≥ n/4.

So we can find such an i0 by simple random sampling. Let L = B(i0, 1√
10

) and
R = V \ L. Now just as in step 1 of the proof of Lemma 5, if for any node j,
∆(j, L) := mini∈L ‖vi − vj‖2, then

∑
j∈R ∆(j, L) ≥ n

10 . Let k = |R|
|L| . Note that

k ≤ 4.

Now consider the two quantities
∑

i∈L k‖wi − vi‖2 and
∑

j∈R ‖wj − vi‖2. One of
the two is smaller. Assume that it is the former; the other case is analogous, we just
reverse the direction of the flow computation. We connect all nodes in L to a single
source with edges of capacity 10kα

n and all nodes in R to a single sink with edges
of capacity 10α

n , and compute the max-flow f in the graph. Again, we associate the
flow to paths between node pairs i ∈ L, j ∈ R in the natural way. For such a node
pair i, j, let fij be the total flow from i to j. If the flow saturates all source and
sink nodes, then we have∑

i∈L,j∈R
fij‖vi − vj‖2 ≥

∑
j∈R

10α
n
·∆(j, L) ≥ α.

Now, we have that for any i ∈ L, j ∈ R, d(i, j) + d(j, i) = 2‖vi − vj‖2. So∑
i∈L,j∈R fij [d(i, j) + d(j, i)] ≥ 2α. Consider∑

i∈L,j∈R
fijd(i, j)−

∑
i∈L,j∈R

fijd(j, i) =
∑

i∈L,j∈R
fij‖wj − vj‖2 −

∑
i∈L,j∈R

fij‖wi − vi‖2

=
∑
j∈R

10α
n
‖wj − vj‖2 −

∑
i∈L

10kα
n
‖wi − vi‖2

≥ 0,
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by assumption. The third equality follows because each node i ∈ L is a source for
exactly 10kα

n flow, and each node j ∈ R is a sink for exactly 10α
n flow. Thus, we

conclude that
∑

i∈L,j∈R fijd(i, j) ≥ α.

2. If the flow doesn’t saturate all source and sink edges, then in the resulting cut, let
the number of nodes in L connected to the source be ns and the number of nodes in
R connected to the sink be nt. Then the capacity of the graph edges cut is at most
10α
n (|R|−kns−nt), and the smaller side of the cut has at least min{|L|−ns, |R|−nt}

nodes. Thus, the expansion of the cut obtained is at most 10kα
n = O(αn ).

3. Now assume that for all nodes i we have |B(i, 1
2
√

10
)| < n/4. Then we claim that

there is a node i such that |B(i, 3)| ≥ n/2. Otherwise, for all nodes i, there are more
than n/2 nodes j such that ‖vi − vj‖2 ≥ 32 = 9. This is a contradiction since this
would imply that ∑

ij

‖vi − vj‖2 > n · 1
2
n · 9 · 1

2
>

6
5
n2.

Again, by random sampling, we can find an i0 such that |B(i, 6)| ≥ n/2. Let
S = B(i, 6) \ W . Note that |S| ≥ n/3 since |W | ≤ n/6. Since for every i ∈ S,
|B(i, 1

2
√

10
)| < n/4, we conclude that there are at least n/3 − n/4 = n/12 nodes

j ∈ S such that ‖vi − vj‖2 ≥ 1
40 . Thus, we have∑

i,j∈S
‖vi − vj‖2 ≥

1
3
n · 1

12
n · 1

40
· 1

2
= Ω(n2).

Furthermore, for any i, j ∈ S, we have ‖wi‖ ≤ O(1) and ‖wi−wj‖ ≤ 4δ. We return
this set S.

2

4.5.5 Min UnCut

The Min UnCut problem has various equivalent forms (see [2]). The one we will use is
the following. We are given an edge capacitated graph G = (V,E) on the set of nodes
V = {−n, . . . ,−2,−1, 1, 2, . . . , n} such that {i, j} ∈ E if and only if {−j,−i} ∈ E. Also,
we assume that the capacities satisfy cij = c−j,−i. A cut (S, S̄) is called symmetric if
S̄ = −S where −S = {−i : i ∈ S}. The Min UnCut problem is to find the symmetric
cut (S,−S) on minimum capacity, denoted E(S,−S).

Theorem 23. An O(
√

log n) approximation to Min UnCut can be computed in Õ(n3)
time.

Proof: As usual, we start by writing the SDP for the problem. The SDP has vectors
vi for all i ∈ V , and the condition that vi = −v−i. We do not explicitly maintain the
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vectors for negatively indexed nodes; rather, wherever v−i appears in the SDP, we replace
it by −vi. Assuming we have made this transformation, the following SDP results:

min
∑

e={i,j}∈E

ce‖vi − vj‖2 min C •X

∀i : ‖vi‖2 = 1 ∀i : Xii = 1

∀p :
∑k−1

j=1‖vij − vij+1‖2 ≥ ‖vk − vik‖
2 ∀p : Tp •X ≥ 0

X � 0

The optimum of this SDP divided by 4 is a lower bound on the value of the minimum
symmetric cut. This can be seen as follows. For a symmetric cut (S,−S), select an
arbitrary unit vector v0, and set vi = v0 for all i ∈ S, and vi = −v0 for all i ∈ −S. Then
‖vi − vj‖2 = 4 if i ∈ S and j ∈ −S (or vice-versa), and 0 otherwise. Thus, the objective
function is ∑

e={i,j}∈E

ce‖vi − vj‖2 = 4E(S,−S).

The dual SDP is the following:

max
∑

ixi

diag(x) +
∑

pfpTp � C

∀p : fp ≥ 0

Given a candidate solution X, the Oracle works as follows:

1. If there is an i, say i = 1, such that Xii ≥ 2. Then we set x1 = −α, and xi = 2α
n−1

for all i ≥ 2. Since
∑

i≥2Xii ≤ n− 2, we have

diag(x) •X ≤ −α · 2 +
2α
n− 1

· (n− 2) ≤ 0.

Also, −αI � diag(x) � 2α
n−1I.

Similarly, if there is an i, say i = 1, such that Xii ≤ 1
2 . Then we set x1 = 2α, and

xi = − α
n−1 for all i ≥ 2. Since

∑
i≥2Xii ≥ n− 1

2 , we have

diag(x) •X ≤ 2α · 1
2
− α

n− 1
·
(
n− 1

2

)
≤ 0.

Also, − α
n−1I � diag(x) � 2αI.

2. Assume for all i, 1
2 ≤ Xii ≤ 2. We can now apply Lemma 9 below.

Lemma 9. Assume we are given vectors vi for every node in G such that for all
i, ‖vi‖2 = Θ(1) and vi = −v−i and a value α. Then there is an algorithm, which,
using a single multicommodity flow computation, can obtain either:
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(a) a valid O(α)-regular flow f = 〈fp〉p, such that
∑

ijfij‖vi − vj‖2 ≥ α, or

(b) a symmetric cut (S,−S) of value O(
√

log n · α).

If we get a O(α)-regular flow such that
∑

i,j∈D fij‖vi − vj‖2 ≥ α, then we set F to
be flow Laplacian, and D to be the demand Laplacian of the flow, and we set all
xi = α

n . Then D •X =
∑

i,j∈D fij‖vi − vj‖2 ≥ α, and so

(diag(x)−D) •X ≤ α− α = 0.

Note that −2α
s I � α

nI−D � α
nI.

Otherwise, we get a symmetric cut (S,−S) of value at most O(
√

log n · α), and we
stop.

Now, we bound the running time. First, since we are working with an undirected graph,
we may assume that the graph has been sparsified using the algorithm of Benczúr and
Karger [22], to leave only Õ(n) edges. Each iteration may involve one maximum multi-
commodity flow problem, which takes Õ(n2) using Fleischer’s algorithm. To bound the
number of iterations, we estimate the relevant parameters. The Oracle we described is
(O(αn , O(α))-bounded, and the parameter R = n. Thus, the number of iterations is Õ(n)
by Theorem 15. Finally, Lemma 24 indicates that we can compute an approximation to
the matrix exponential in Õ(n2) time. Overall, the algorithm takes Õ(n3) time. 2

Now, we prove Lemma 9.
Proof:[Lemma 9] We consider a maximum multicommodity flow problem where the set
of demand pairs D consists of all pairs i, j such that ‖vi − vj‖2 ≥ s for some constant
s to be fixed in Lemma 10. We only impose the edge capacity constraints fe ≤ ce,
and no d-regularity constraints, and solve the maximum multicommodity flow problem
max

∑
i,j∈D fij , using Fleischer’s algorithm, say to a factor of 1

2 . We have the following
cases:

1. If max
∑

i,j∈D fij ≥
α
s , then assume that the flow is scaled down so that the total

flow is exactly α
s . So

∑
i,j∈D fij‖vi − vj‖2 ≥ α, and we return this flow.

2. If the total flow is less than α
s , then the actual max flow is less than 2α

s , since we
have a 1

2 approximation. Fleischer’s algorithm then yields weights we on the edges
with

∑
ecewe ≤

2α
2 so that for any demand pair i, j and any path p connecting them,∑

e∈pwe ≥ 1.

Given a subset of nodes S ⊆ V , let E(S) be the set of edges in the subgraph induced
by S, and define Vol(S) :=

∑
e∈ES cewe. Then we have the following lemma:

Lemma 10. Let G be a graph with nodes V = {−n, . . . ,−1, 1, . . . , n} and assume
we are given vectors vi for every node i such that ‖vi‖2 = Θ(1) and for all i,
vi = −v−i. Also, assume that we are given some weights on edges we such that
for any node pair i, j with ‖vi − vj‖2 ≥ s, and for any path p connecting them,∑

e∈pwe ≥ 1. Then it is possible to partition the graph into sets (S,R,−S) such that
the capacity of edges cut is at most O(

√
log nVol(V )), and Vol(R) ≤ (1 − c)Vol(V )

for some constant c < 1.
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Thus, we can recursively partition the graph to get a symmetric cut of value at most
O(
√

log n · α) as follows. We first apply the procedure of Lemma 10 to R0 := V .
The procedure returns a partitioning of vertices (S,R,−S) such that the capacity of
edges cut is at most O(

√
log nVol(V )), and Vol(R) ≤ (1− c)Vol(V ). Then we apply

the procedure again to R1 := R, and continue aggregating cuts recursively until we
end up with a symmetric cut (S,−S). The capacity of this cut is bounded by

O(
√

log n[Vol(R0)+Vol(R1)+Vol(R2)+· · · ]) = O(
√

log nVol(R0)) = O(
√

log n·α),

because Vol(R0),Vol(R1), . . . is a geometrically decreasing sequence. We return the
cut (S,−S).

2

Now we prove Lemma 10.
Proof:[Lemma 10] We repeat each node i mi := b4n

∑
e3i cewe

Vol(V ) c times. Let N be the total
number of nodes created this way. Then

8n ≥
∑
i∈V

4n
∑

e3i cewe

Vol(V )
≥ N ≥

∑
i∈V

[
4n
∑

e3i cewe

Vol(V )
− 1
]
≥ 2n.

Since each node i has a partner node −i with vector −vi, and all ‖vi‖2 ≥ 1
2 , we have∑

ij∈V
‖vi − vj‖2 =

∑
i,j>0

[‖vi − vj‖2 + ‖vi − v−j‖2 + ‖v−i − vj‖2 + ‖v−i − v−j‖2]

=
∑
i,j>0

4‖vi‖2 + 4‖vj‖2

≥ 2n2

= Ω(N2).

We now apply Corollary 5 of Lemma 14 to conclude that for a constant fraction of
directions u, there exists a set S′ of nodes of size 2cN such that for all i ∈ S, we have
vi · u ≥ σ√

n
for some constants c, σ > 0. We assume that if any copy of a node i is

included in S, then so are all the rest. We now apply the algorithm of Theorem 19 to
the set S′ and T = −S′. Now Theorem 19 implies that a max-flow-min-cut computation
gives us a cut a c-balanced cut of value C such that there is a pair of nodes i, j and a
path p connecting them such that ‖vi − vj‖2 ≥ s, for some constant s > 0, such that∑

e∈pwe ≤ O(
√

log nVol(G)
C ). Now we symmetrize the cut as follows. If the edge {k, `} is

in the cut, then so we cut the edge {−`,−k} as well. The total capacity of cut edges is at
most 2C. Let S be the set of nodes connected to the source after cutting all these edges.
Then by symmetry, −S is the set of all nodes connected to the sink. Note that |S| ≥ cN .
Let R = V \ (S ∪ −S). Now note that

2cn ≤ cN ≤
∑
i∈S

mi ≤
∑
i∈S

2n
∑

e3i cewe

Vol(V )
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Thus, we have
∑

i∈S
∑

e3i cewe ≥ cVol(V ). So Vol(R) ≤ (1− c)Vol(V ).
Now since ‖vi − vj‖2 ≥ s, we conclude that i, j is a demand pair. Then we get

that O(
√

log nVol(G)
C ) ≥

∑
e∈pwe ≥ 1, which implies that C ≤ O(

√
log nVol(G)). Thus,

(S,R,−S) is the required partitioning of the graph. 2

4.5.6 Min 2CNF Deletion

The Min 2CNF Deletion problem has various equivalent forms (see [2]). The one we
will use is the following. We are given an edge capacitated directed graph G = (V,E)
on the set of nodes V = {−n, . . . ,−2,−1, 1, 2, . . . , n} such that (i, j) ∈ E if and only if
(−j,−i) ∈ E. Also, we assume that the capacities satisfy cij = c−j,−i. A cut (S, S̄) is
called symmetric if S̄ = −S where −S = {−i : i ∈ S}. For such a cut, let E(S,−S)
denote the total capacity of all arcs from S into −S. The Min 2CNF Deletion problem
is to find the symmetric cut (S,−S) with minimum E(S,−S).

Theorem 24. An O(
√

log n) approximation to the Min 2CNF Deletion problem can
be computed in Õ(nm1.5 + n3) time.

Proof: Consider the Min 2CNF Deletion SDP (see [2]). The SDP has vectors vi
for all i ∈ V , and the condition that vi = −v−i. So we do not explicitly maintain the
vectors for negatively indexed nodes; rather, wherever v−i appears in the SDP, we replace
it by −vi. We have an additional unit vector v0. For a directed edge (i, j), we define its
directed length d(i, j) := ‖vi − vj‖2 − ‖v0 − vi‖2 + ‖v0 − vj‖2. The SDP, in vector and
matrix form, is given below:

min
∑

e=(i,j)∈E

ced(i, j) min C •X

∀i ∈ {0, . . . , n} : ‖vi‖2 = 1 ∀i ∈ {0, . . . , n} : Xii = 1

∀p :
∑k−1

j=1‖vij − vij+1‖2 ≥ ‖vk − vik‖
2 ∀p : Tp •X ≥ 0

X � 0

The optimum of this SDP divided by 8 is a lower bound on the value of the minimum
symmetric cut. This can be seen as follows. For a directed symmetric cut (S,−S), set
vi = v0 for all i ∈ S, and vi = −v0 for all i ∈ −S. Then d(i, j) = 8 if i ∈ S and j ∈ −S,
and 0 otherwise. Thus, the objective function is∑

e=(i,j)∈E

ced(i, j) = 8E(S,−S).

The dual SDP is the following:

max
∑

ixi

diag(x) +
∑

pfpTp � C

∀p : fp ≥ 0

Now we describe the Oracle. Given a candidate solution X, the Oracle works as
follows:
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1. Let λ = Θ( 1√
logn

) be a parameter to be fixed later.

Now suppose there is an i ∈ {0, . . . , n}, say i = k, such that Xkk ≥ 1 + λ. Then we
set xk = −α

λ + (1+1/λ)α
n+1 , and for all i 6= k, xi = (1+1/λ)α

n+1 . Note that
∑

i xi = α, and

diag(x) = −α
λEk + (1+1/λ)α

n+1 I. Thus,

diag(x) •X = −α
λ
Xkk +

(1 + 1/λ)α
n+ 1

(I •X) ≤ −α
λ

(1 + λ) + (1 + 1/λ)α = 0.

Also, −α
λ I � diag(x) � (1+1/λ)α

n+1 I.

2. Similarly, if there is an i ∈ {0, . . . , n}, say i = k, such that Xkk ≤ 1 − λ, then we
set we set xk = α

λ + (1−1/λ)α
n+1 , and for all i 6= k, we set xi = (1−1/λ)α

n+1 . Note that∑
i xi = α, and diag(x) = α

λEk + (1−1/λ)α
n+1 I. Thus,

diag(x) •X =
α

λ
Xkk +

(1− 1/λ)α
n+ 1

(I •X) ≤ α

λ
(1− λ) + (1− 1/λ)α = 0.

Also, (1−1/λ)α
n+1 I � diag(x) � α

λ I.

3. Now, assume that all Xii ∈ [1−λ, 1 +λ]. Now we apply the procedure of Lemma 11
below to the vectors vi obtained from the Cholesky decomposition of X, with the
current value of α.

Lemma 11. Let G be a graph with the vertex set V = {−n,−(n−1), . . . ,−1, 1, 2, . . . , n},
and for all i ∈ V , let vi be a vector of squared length in [1 − λ, 1 + λ], for some
λ = Θ( 1√

logn
), such that v−i = −vi. Let v0 be a unit vector, and define d(i, j) =

‖vi − vj‖2 − ‖v0 − vi‖2 + ‖v0 − vj‖2. Given a value α, there is an algorithm,
which, using O(log2 n) single-commodity flow computations, and an additional time
of Õ(n2), can obtain either:

(a) a capacity-respecting flow f = 〈fp〉p, such that the total flow,
∑

p fp, is at most
O(
√

log n · α), and
∑

ijfijd(i, j) ≥ 2α, or

(b) a path p such that the path inequality along p is violated by at least a constant,
or

(c) a symmetric cut (S,−S) of value at most O(
√

log n · α).

If we obtain a symmetric cut (S,−S) of capacity O(
√

log n·α), then we stop, because
we have the required approximation.

If we obtain a path p such that the path inequality along p is violated by at least a
constant, then we fall through to the next case.

So assume that we obtain a flow f = 〈fp〉p such that the total flow, F :=
∑

p fp, is
at most O(

√
log n · α), and

∑
ij fijd(i, j) ≥ 2α, where for any node pair (i, j), fij is

the total flow from i to j.
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Now we set F to be the directed Laplacian (of the second kind) of the flow f , and
D to be the directed Laplacian (of the second kind) of the demand graph. Then
D •X =

∑
ij fijd(i, j) ≥ 2α.

Note that the matrix corresponding to the directed distance d(i, j) is exactly Tij0.
Thus, D =

∑
ij fijTij0, where Tij is the matrix. Using the inequality that for any

two vectors v and w, ‖v − w‖2 ≤ 2‖v‖2 + 2‖w‖2, we conclude that the matrix
Tij0 + 2Ei + 2E0 � 0, since for any X � 0, if v0, . . . ,vn are the vectors obtained
from its Cholesky decomposition, we have

(Tij+2Ei+2E0)•X = ‖vi−vj‖2 +‖v0−vj‖2−‖v0−vj‖2 +2‖v0‖2 +2‖vi‖2 ≥ 0.

Thus,
0 � D +

∑
ij

fij(2Ei + 2E0) � 4F I.

Now, we set xi = −
∑

j 2fij + 4F+α
n+1 , for 1 ≤ i ≤ n, and x0 = −2F + 4F+α

n+1 . Note
that ∑

i

xi = −
∑

1≤i≤n

∑
j

2fij − 2F + 4F + α = −2F − 2F + 4F + α = α.

Also,

diag(x)−D =
4F + α

n+ 1
I− [D +

∑
ij

fij(2Ei + 2E0)],

and hence
−4F I � (diag(x)−D) � 4F + α

n+ 1
I.

Finally,

(diag(x)−D) •X =

4F + α

n+ 1
I− [D +

∑
ij

fij(2Ei + 2E0)]

 •X

≤ 4F + α− 2α−
∑
ij

4fij(1− λ)

≤ 4Fλ− α
≤ 0,

if we choose λ ≤ α
4F = Θ( 1√

logn
).

4. If we find a path p connecting node k to node `, such that the path inequality
along p is violated by a constant s, i.e. Tp • X ≤ −s, then we set fp = 2α

s . As
in the previous case, we can infer that the matrix 4I � Tp + 2Ek + 2E` � 0.
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So we set xk = x` = 2fp + −4fp+α
n+1 , and xi = −4fp+α

n+1 for all i 6= k, `. Then∑
i xi = 4fp + [−4fp + α] = α. Also,

diag(x) + fpTp = fp(Tp + 2Ek + 2E`) +
−4fp + α

n+ 1
I,

so
−4fp + α

n+ 1
I � diag(x) + fpTp �

(
4fp +

α

n+ 1

)
I.

Also,

(diag(x) + fpTp) •X =
(
fp(Tp + 2Ek + 2E`) +

−4fp + α

n+ 1
I
)
•X

≤ −2α+ 4fp(1 + λ)− 4fp + α

= 4fpλ− α
≤ 0,

if we set λ ≤ α
4fp

= Θ(1).

Now we can estimate the running time. The implementation of Oracle described above
is (O(

√
log nαn ), O(

√
log n ·α))-bounded, and the parameter R = n+1. Thus, Theorem 15

implies that the number of iterations is Õ(n). In each iteration, we may need to do
polylog(n) single commodity flow computations, plus Õ(n2) additional time. Each flow
computation can be done in Õ(m1.5) time using the algorithm for Goldberg and Rao [47].
The matrix exponential can be approximated in Õ(n2) time using Lemma 24. Overall,
the running time becomes Õ(nm1.5 + n3). 2

Now, we prove Lemma 11.
Proof:[Lemma 11] We consider a max-multicommodity flow problem, with the demand
pairs being all nodes i, j such that d(i, j) ≥ ∆, where ∆ = Θ( 1√

logn
) is a fixed quantity.

Let D be the set of demand pairs. The multicommodity flow problem can be formulated
as the following LP, where p refers to a generic (directed) path in the graph between some
demand pair in D:

max
∑
p

fp

∀e :
∑
p3e

fp ≤ ce

∀p : fp ≥ 0

This LP can be (approximately) solved using Fleischer’s algorithm in O(m2) time, but
here we describe a more efficient algorithm. We run the Multiplicative Weights algorithm
in the gain form (see Section 2.2.1), with the parameter ε = 1/4, on this LP. We treat the
LP as a packing program (see Section 2.3.2).

In each round t of the Multiplicative Weights algorithm, we are given a probability
distribution on the constraints (alternatively, on the edges) p(t) = 〈pe(t)〉e, and our goal is
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to find a flow f (t) = 〈fp(t)〉p which minimizes the expected payoff
∑

e pe
(t)
∑

p3e
fp(t)

ce
. Let

we = αpe(t)

ce
, so that

∑
e cewe = α. Thus, the expected payoff becomes

∑
e

pe
(t)
∑
p3e

fp
(t)

ce
=

∑
ewe

∑
p3e fp

(t)

α
=

∑
p fp

(t)
∑

e∈pwe

α
.

Now, we use the procedure of Lemma 12 recursively as follows. If at any stage in
the recursion, this procedure returns a path p such that the triangle inequality along p
is violated by at least a constant, then we immediately return this path. So assume that
the procedure never finds such a path.

For a subset of nodes S, define Vol(S) =
∑

e∈E(S) cewe, where E(S) is the set of edges
in the induced subgraph on S. Thus, Vol(V ) = α.

We start out with the set of vertices V (0) = V . At any stage r, for r ≥ 0, let V (r)

be the set of vertices remaining. We will ensure that V (r) is always a symmetric set (i.e.
V (r) = −V (r)). We run the procedure of Lemma 12 on the subgraph induced by V (r),
with the weight on node i, wi = 1

2

∑
e∈E(V (r)): e3i cewe, so that Vol(V (r)) =

∑
i∈V (r) wi.

The procedure gives us a subset of nodes S(r) such that
∑

i∈S(r) wi ≥ cVol(V (r)) for
some constant c > 0, and for all i, j ∈ S(r), ‖vi−v−j‖2 ≥ Ω( 1√

log |V (r)|
) ≥ η√

logn
for some

small constant η.
Now define S+

(r) = {i ∈ S(r) : vi ·v0 ≥ 0}, and S−(r) = {i ∈ S(r) : vi ·v0 ≤ 0}. Then
for any i, j ∈ S+

(r), we have

d(i,−j) = ‖vi − v−j‖2 − ‖v0 − vi‖2 + ‖v0 − v−j‖2

≥ ‖vi − v−j‖2 + 2v0 · (vi − v−j)− ‖vi‖2 + ‖v−j‖2

≥ ‖vi − v−j‖2 − 2λ

Now, if we choose λ ≤ η
4
√

logn
, and if we set ∆ = η

2
√

logn
, then we conclude that for all

i, j ∈ S+
(r), d(i,−j) ≥ ∆. Similarly, we get that for all i, j ∈ S−(r), d(−j, i) ≥ ∆. Now,

if
∑

i∈S+
(r) wi ≥

∑
i∈S−(r) wi, we set L(r) = S+

(r), else we set L(r) = −S−(r). We have∑
i∈L(r) ≥ c

2Vol(V (r)), and for any i, j ∈ L(r), we have d(i,−j) ≥ ∆.
Now, we collapse all nodes in L(r) into a single source, and all nodes in −L(r) into

a single sink, and find the min-cut between them by computing a max-flow (where each
edge has its original capacity ce). Let g(r) be the flow, and let C(r) be the value of the
min-cut (which is also the value of the max-flow).

Now, we have∑
p

gp
(r)
∑
e∈p

we =
∑

e∈E(V (r))

we
∑
p3e

gp
(r) ≤

∑
e∈E(V (r))

wece = Vol(V (r)). (4.5)

Also, by the max-flow-min-cut theorem,
∑

p gp
(r) = C(r).

Now, let W (r) be the set of nodes reachable from L(r) after the edges in the min-cut
have been removed. Then, we claim that W (r) and −W (r) are disjoint. This is because
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the existence of such a node implies that there is a directed path from some node in L(r)

to some node in −L(r), by the symmetry of the edges. This is impossible since we removed
all the edges in the min-cut between them. Thus, there can be no directed edge from a
node in W (r) to any node in −W (r) either, because then the endpoint of the arc would
also be reachable from L(r) and thus be in W (r). Thus, the min-cut disconnects W (r)

from −W (r).
Now, let V ′(r) = V (r) \ (W (r) ∪ −W (r)). Since L(r) ⊆ W (r), we conclude that

Vol(V ′(r)) ≤ (1− c)Vol(V (r)).
Next, we apply the procedure of Lemma 12, to the set V ′(r), with the weights on all

nodes set to 1. We get a set S′(r) of size at least c|V ′(r)| such that for all i, j ∈ S′(r),
‖vi − v−j‖2 ≥ Ω( 1√

logn
). As before, we construct sets S′+

(r) = {i ∈ T (r) : vi · v0 ≥ 0}
and S′−

(r) = {i ∈ T (r) : vi · v0 ≤ 0}, and we get that for any i, j ∈ S′+(r), d(i, j) ≥ ∆,
and for any i, j ∈ S′−(r), d(−j, i) ≥ ∆. If |S′+(r)| ≥ |S′−(r)|, then we set L′(r) = S′+

(r), else
L′(r) = −S′−(r). Thus, |L′(r)| ≥ c

2 |V
′(r)|, and for any i, j ∈ L′(r), we have d(i,−j) ≥ ∆.

Now, we collapse all nodes in L′(r) into a single source, and all nodes in −L′(r) into
a single sink, and find the min-cut between them by computing a max-flow (where each
edge has its original capacity ce). Let g′(r) be the flow, and let C ′(r) be the value of the
min-cut (which is also the value of the max-flow). Now, we have∑

p

g′p
(r)
∑
e∈p

we =
∑

e∈E(V ′(r))

we
∑
p3e

g′p
(r) ≤

∑
e∈E(V ′(r))

wece = Vol(V ′(r)) ≤ Vol(V (r)).

(4.6)
Also, by the max-flow-min-cut theorem,

∑
p g
′
p

(r) = C ′(r).
Let W ′(r) be the set of nodes reachable from L′(r) after the edges in the min-cut have

been removed. As before, W ′(r) and −W ′(r) are disjoint, and the min-cut disconnects
W ′(r) from −W ′(r). Now, let V (r+1) = V ′(r) \ (W ′(r) ∪ −W ′(r)). Since L′(r) ⊆ W ′(r), we
conclude that |V (r+1))| ≤ (1 − c)|V ′(r)| ≤ (1 − c)|V (r)|. Also, Vol(V (r+1) ≤ Vol(V ′(r)) ≤
(1− c)Vol(V (r)). We recur on the set of nodes V (r+1).

Eventually, we end up getting a symmetric cut (S,−S) in the graph. Let α′ =∑
r≥0 Vol(V (r)). Note that since the volumes decrease geometrically by a factor of (1− c)

in every round, we get that α′ ≤ 1
cVol(V ) = 1

cα. Let C =
∑

r≥0C
(r) + C ′(r). C is an

upper bound on the total capacity of the cut (S,−S).
If C ≤ 8α

c∆ , then we can return the cut (S,−S) , because the cut has capacity at most
O(
√

log n · α).
So assume that C > 8α

c∆ . The total flow over all levels in the recursion is∑
r≥0

∑
p

[gp(r) + g′p
(r)] =

∑
r≥0

[C(r) + C ′(r)] = C >
8α
c∆

.

Let t be the current round in the Multiplicative Weights algorithm. Then we set f (t) =
βc
2

∑
r≥0[g(r) + g′(r)], where β ≤ 1 is the scaling factor needed so that the total flow∑

p fp
(t) = 4α

∆ , i.e. β = c∆C
8α .
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Then we have ∑
p

fp
(t)
∑
e∈p

we =
βc

2

∑
r≥0

∑
p

[gp(r) + g′p
(r)]
∑
e∈p

we

≤ βc

2

∑
r≥0

2Vol(V (r))

≤ α.

The second inequality above follows from (4.5) and (4.6).
Thus, the expected payoff for using the flow f (t) in round t in the Multiplicative

Weights algorithm is ∑
p fp

(t)
∑

e∈pwe

α
≤ 1.

Furthermore, for any path p between the pair of nodes i, j carrying non-zero flow in
f (t), we have that d(i, j) ≥ ∆, so (i, j) ∈ D. Let fij(t) be the total flow from node i to
node j in the flow f (t). Then we have∑

ij

fij
(t)d(i, j) ≥

∑
ij

fij
(t) ·∆ =

4α
∆
·∆ = 4α.

Now, in each level of the recursion, we have |V (r+1)| ≤ (1− c)|V (r)|, so there at most
O(log n) levels in all. In each level we use edge capacities at most twice, in two max-flow
computations. Overall, any edge is overloaded by at most a factor of O(log n). Thus, the

width ρ in this case is maxe
∑
p3e fp

(t)

ce
≤ O(log n).

Now, since we applied the gain form of the Multiplicative Weights algorithm, by
Theorem 3, we get the following inequality for any edge e:

T ≥ (1− ε)
T∑
t=1

fe
(t)

ce
− ρ lnm

ε
.

When T = dρ lnm
ε2
e = O(log2 n), we get that

(1 + ε)T ≥ (1− ε)
T∑
t=1

fe
(t)

ce
.

Let f = (1− 2ε) 1
T

∑T
t=1 f (t). We conclude that for all edges e,

∑
p3e fp ≤ ce. Thus, f is a

capacity respecting flow. The total flow in f is at most (1− 2ε)4α
∆ = O(

√
log n · α), since

in each round t, the total flow in f (t) is at most 4α
∆ .

Finally, since we set ε = 1/4 in the Multiplicative Weights algorithm, we have

∑
ij

fijd(i, j) =
1

2T

T∑
t=1

∑
ij

fij
(t)d(i, j) ≥ 1

2T
· T · 4α = 2α.

Thus, we have found the required flow, and we return it. 2
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Lemma 12. Let G be a graph with the vertex set V = {−n,−(n−1), . . . ,−1, 1, 2, . . . , n},
and for all i ∈ V , let vi be a vector of length Θ(1) such that v−i = −vi. For every node
i, let wi be an associated weight, such that wi = w−i. For S ⊆ V , let w(S) =

∑
i∈S wi.

Then there is an algorithm that in Õ(n2) time, finds either

1. a set of nodes S of such that w(S) ≥ cw(V ) for some constant c > 0, and for all
i, j ∈ S, ‖vi − v−j‖2 ≥ Ω( 1√

logn
), or,

2. a path p such that the triangle inequality along p is violated by a constant.

Proof: We now repeat each node i, mi := b 4nwi
w(V )c times. Let V ′ be the new set of

vertices, and let N = |V ′|. Note that

4n ≥
∑
i∈V

4nwi
w(V )

≥ N ≥
∑
i∈V

[
4nwi
w(V )

− 1
]
≥ 2n.

With each copy of a node i, we associate the same vector vi, so that we obtain a centrally
symmetric set of vectors.

Now, we apply Lemma 14, Corollary 5 to the set of vertices V ′ (with the vectors
vi scaled down by a constant so that their length is at most 1), to conclude that for a
constant fraction γ of directions u, there is a set S0 of size at least 4cN such that for any
i ∈ S, we have vi · u ≥ σ√

N
, for some constants c, σ.

We start removing all pairs i, j such that i ∈ S0, and j ∈ −S0 and ‖vi−vj‖2 ≤ η√
logN

for a suitably small constant η. We do this while preserving symmetry, i.e. if we remove
a pair i, j, we also remove the pair −j,−i so that we are left with the sets S1,−S1 at the
end. Now we have two cases:

1. |S1| ≥ 2cN : Let S be the subset of nodes in G which corresponds to the new nodes
in S1. Then we have

4cn ≤ |S1| =
∑
i∈S

mi ≤
∑
i∈S

4nwi
w(V )

,

which implies that w(S) =
∑

i∈S wi ≥ cw(V ). We return the set S. Note that for
all i, j ∈ S, we have ‖vi − vj‖2 ≥ η√

N
≥ Ω( 1√

N
).

2. |S′| ≤ 2cN : This means that we removed a matching of size at least 2cN of node
pairs i, j such that ‖vi − vj‖2 ≤ η√

logN
but (vj − vi) · u ≥ σ√

N
. We call such pairs

“(η, σ)-stretched pairs along u”. Let the fraction of directions u such that there is
a matching of stretched pairs along u of size at least 2cN be γ′. If γ′ < γ/2, then
after a constant number of repetitions of this procedure, we will end up in case 1,
with high probability.

So assume that in each repetition we find large matchings of stretched pairs. In
this case, we conclude that γ′ ≥ γ/2 with high probability. Now, we can apply the
algorithm of Lemma 7 to find a path p such that the triangle inequality along p is
violated by at least a constant, and we return this path. This procedure takes time
Õ(N2) = Õ(n2).

2
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4.6 Proofs of Theorem 19 and Lemma 7

The proofs of Theorem 19 and Lemma 7 are based on the analysis of Arora, Rao and
Vazirani [18] and Lee [73].

4.6.1 Proof of Theorem 19

We restate Theorem 19 here for convenience:

Theorem 19. Let v1,v2, . . . ,vn be vectors of length at most 1, such that
∑

ij‖vi−vj‖2 ≥
an2. Let we be weights on edges and nodes and let α =

∑
ecewe. Then there is an

algorithm which runs in Õ(m1.5) time and finds a cut of value C which is c-balanced for
some constant c, such that there exists a pair of nodes i, j with the property that the graph
distance between i and j is at most O(

√
log n · αC ) and ‖vi−vj‖2 ≥ s where s is a constant

which only depends on a. Furthermore, this is true even if any fixed set of τn nodes are
prohibited from being i or j, for some small constant τ .

The Project/Max-Flow Algorithm

0. Let σ = a
48 , and c = a

256 .

1. Choose a random direction u, and project all vi on it. By a linear scan, find
sets S and T of size at least 2cn each such that for all i ∈ S and j ∈ T ,
(vj − vi) · u ≥ σ√

n
. If no such sets exist, repeat this step with a new random

direction u.

2. Connect all nodes of S to (an artificial) source with edges of capacity 1, and
connect all nodes of T to (an artificial) sink with edges of capacity 1. Scale the
capacity of the original graph edges by a factor k, and compute the max flow.
Let κ be the value of k at which the max flow in the network is cn, and output
the min cut found.

Figure 4.2: The Project/Max-Flow algorithm.

The Project/Max-Flow algorithm is given in Figure 4.2. Note that this algorithm
may need to do at most O(log n) max-flow computations (since the source can send out
at most n flow), and each max-flow computation can be done in Õ(m1.5) time using the
algorithm of Goldberg and Rao [47], thus giving the stated running time.

Let Cobs be the capacity of the cut obtained, and let Cmed be the median value of
Cobs. We show that Cmed satisfies the conditions of Theorem 19.

We need the following lemma regarding the Gaussian nature of projections (see [18]):

Lemma 13. Let v ∈ Rn be a vector. Let u ∈ Sn be a randomly chosen unit vector. Then,
for any t ≤

√
n/4, we have

Pru

[
|v · u| ≥ t‖v‖√

n

]
≤ exp(−t2/4).
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Also, for any t ≤ 1, we have

Pru

[
|v · u| ≤ t‖v‖√

n

]
≤ 3t.

To begin the analysis of the algorithm, we need the following lemma, which shows
that with constant probability, Step 1. of the algorithm succeeds:

Lemma 14. For at least an 8c fraction of directions u, there are efficiently computable
subsets of the nodes S and T , each of size at least 2cn, such that for any i ∈ S and j ∈ T ,
(vj − vi) · u ≥ σ√

n
.

Proof: Since
∑

ij ‖vi − vj‖2 ≥ an2, and the maximum value of ‖vi − vj‖ is 2, we get
that

∑
ij ‖vi − vj‖ ≥ a

2n
2. For any node i,

a

2
n2 ≤

∑
jk

‖vj − vk‖ ≤
∑
jk

‖vj − vi‖+ ‖vi − vk‖ ≤ n
∑
j

‖vi − vj‖,

so
∑

j ‖vi − vj‖ ≥ a
2n. Since the maximum value of ‖vi − vj‖ is 2, we get that there

must be at least a
8n nodes j such that ‖vi−vj‖ ≥ a

4 . For any such pair i, j, the Gaussian
behavior of projections (Lemma 13) implies that |vi · u− vj · u| ≥ a

24
√
n

with probability

at least 1
2 . Call such a pair of nodes a stretched pair. The expected number of stretched

pairs is at least 1
2 ·

1
2 ·

a
8n · n = a

32n
2. Since there are at most 1

2n
2 pairs in all, we get that

for at least a
32 = 8c fraction of directions u, we get a

64n
2 stretched pairs.

Let u be such a direction. Let δ = σ√
n

= a
48
√
n

. Let m be the median value of
vi · u. Define the sets L = {i : vi · u ≤ m − δ}, M− = {i : vi · u ∈ [m − δ,m]},
M+ = {i : vi · u ∈ [m,m + δ]}and R = {i : vi · u ≥ m + δ}. Then any stretched
pair has at least one node in L ∪ R. Now we claim that at least one of L and R has
size at least a

128n = 2cn, because otherwise, the number of stretched pairs is less than
2 · a

128n ·n = a
64n, a contradiction. If, say, |L| ≥ a

128n, we can set S = L, and T = M+∪R.
Note that |T | ≥ 1

2n, since T is the set of all points with projection higher than the median.
2

The following corollary to Lemma 14 is needed for the analysis of algorithms for Min
UnCut and Min 2CNF Deletion.

Corollary 5. Let G be a graph with the vertex set V = {−n,−(n−1), . . . ,−1, 1, 2, . . . , n},
and for all i ∈ V , let vi be a vector with squared length in [a, 1] such that v−i = −vi.
Then for a a

8 fraction of directions u, there is a set S of size at least cn such that for all
i ∈ S, vi · u ≥ σ√

n
, for c = a

32 , σ = a
12
√

2
.

Proof: We have∑
ij∈V
‖vi − vj‖2 =

∑
i,j>0

[‖vi − vj‖2 + ‖vi − v−j‖2 + ‖v−i − vj‖2 + ‖v−i − v−j‖2]

=
∑
i,j>0

4‖vi‖2 + 4‖vj‖2

≥ 4an2.
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Thus, Lemma 14 implies that for a a
8 fraction of directions u, there are sets S and T of

size cn such that for any i ∈ S and j ∈ T , we have (vj−vi) ·u ≥ σ√
n

, for c = a
32 , σ = a

12
√

2
.

Closer examination of the procedure of Lemma 14 reveals that the sets S and T have
projections on u which are less than and greater than the median projection respectively.
The median projection is 0, because we have a centrally symmetric set of vectors. Fur-
thermore, one of S and T is a set of vectors whose projection on u is at least σ√

n
away on

one side of the median projection. If S is this set, then for all i ∈ S, vi · u ≤ − σ√
n

, and
thus −S = {−i : i ∈ S} is the set we need. Otherwise, T is the set we need. 2

Now we show that in a constant fraction of directions, we get a linear-sized matching
of “stretched pairs” of nodes:

Lemma 15. For at least 4c fraction of directions u, there is a matching Mu of node pairs
(i, j) such that:

1. |Mu| ≥ cn
16 ,

2. ∀(i, j) ∈Mu we have `ij ≤ 2α
Cmed

, and

3. ∀(i, j) ∈Mu, we have |(vi − vj) · u| ≥ σ√
n

.

Proof: Lemma 14 shows that with probability at least 8c, both S and T have size at
least 2cn. Conditioned on this happening, with a probability of 1

2 , the expansion of the
cut, Cobs ≥ Cmed. So overall, for c fraction of directions, Cobs ≥ Cmed.

Assume this is the case. Since the max flow is cn, the min cut must attach the source
to at least cn nodes to S; and the sink to at least cn nodes of T . So, the min cut is
c-balanced.

For a path p in the graph from S to T , let f = 〈fp〉p denote the flow on it and `p its
length (under we). We have:∑

p

fp`p =
∑
p

fp
∑
e∈p

we =
∑
e

we
∑
p3e

fp ≤
∑
e

wece · κ = κα. (4.7)

Let Sobs be the set of nodes in G which lie on the same side as the source in the output
min cut. We assume, without loss of generality, that Sobs is the smaller side on the min
cut. By the max-flow min-cut theorem, we have

Cobs · κ+ |S − Sobs|+ |T ∩ Sobs| = cn

This implies that
κ ≤ cn

Cobs
. (4.8)

Inequalities (4.7) and (4.8) imply that∑
p

fp`p ≤
cnα

Cobs
.
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Since
∑

p fp = cn, by Markov’s inequality we conclude the following:

At least
cn

2
flow is on paths p with length `p ≤

2α
Cmed

. (4.9)

Let Nu be the set of all pairs (i, j) with i ∈ S and j ∈ T such that `ij ≤ 2α
Cmed

. We now
use the probabilistic method to show the existence of the desired matching. Let M ′u be
the set of pairs (i, j) obtained as follows. For a pair (i, j) in Nu, let fij be the total flow
from i to j. For every i ∈ S, note that di :=

∑
j:(i,j)∈Nu

fij ≤ 1 because the total flow
into i from the source is 1. Interpreting the fij ’s as a probability distribution over j’s
(here, we discard all j’s with probability 1 − di), randomly choose a single pair (i, j) for
inclusion in M ′u. Next, let Mu be the set obtained from M ′u by removing all pairs (i, j)
where j occurs again in a different pair.

We now analyze the expected size of Mu. For any node j ∈ T , let Xj be the number
of times j occurs as a pair (i, j) ∈ M ′u. Then E[|Mu|] =

∑
j Pr[Xj = 1]. We have that

Xj =
∑

(i,j)∈Nu
Xij where Xij is an indicator random variable which is set to 1 with

probability fij . Thus, E[Xj ] = dj :=
∑

i:(i,j)∈Nu
fij . Note that dj ≤ 1 since the total flow

out of j into the sink is at most 1. Now, Pr[Xj = 1] = 1−Pr[Xj ≥ 2]−Pr[Xj = 0]. By
Markov’s inequality, we have that Pr[Xj ≥ 2] ≤ dj

2 . Also,

Pr[Xj = 0] =
∏

(i,j)∈Nu

(1− fij) ≤
∏

(i,j)∈Nu

exp(−fij) = exp(−dj) ≤ 1− (1− 1/e)dj .

Here, the last inequality uses the fact that for x ∈ [0, 1], e−x ≤ 1− (1− 1/e)x. Thus,

Pr[Xj = 1] ≥
(

1
2
− 1
e

)
dj ≥

dj
8
.

This implies:

E[|Mu|] ≥
1
8

∑
j

dj =
1
8

∑
(i,j)∈Nu

fij ≥
cn

16
.

Here, the last inequality follows from (4.9). Thus, there must exist a matching Mu of size
at least cn

16 . Also, Mu satisfies conditions 2 and 3 by construction. 2

Next, we show the existence of a large core, which is a set X of linear size such that
each node in X participates in a constant fraction of the matchings found in Lemma 15.
For this, consider a complete weighted graph on the same nodes, such that for every pair
of nodes i, j the weight is wij = Pru[{i, j} ∈Mu].

Lemma 16. There is a subset of nodes, X, of size at least c2

4 n, such that for every i ∈ X,
the degree of i on the subgraph induced by X is at least c2

8 .

Proof: Lemma 15 implies that the total weight of all edges is at least 4c · c16n = c2

4 n.
Now, we recursively remove all nodes with (remaining) degree less than c2

8 , and the edges
incident on them. Altogether, we may remove at most c2

8 ·n from the total weight. Thus,

77



at least c
8n weight remains. Since the degree of any node is at most 1, this implies that

at least c2

4 n nodes remain, each with degree at least c2

8 . 2

A node i is said to be (ε, δ) centrally covered by X if for a δ fraction of directions u,
there exists a node j ∈ X such that (vj − vi) · u ≥ ε. Similarly, a set of nodes Y is said
to be (ε, δ) centrally covered by X if every node in Y is. Lemma 16 implies that X is
(ε, δ) centrally covered by itself, where ε = σ√

n
and δ = c2

8 . For a vertex i ∈ X, define
Γ(i) = {j ∈ X : ∃u s.t. (i, j) ∈ Mu} ∪ {i}. Extend the definition of Γ to subsets S ⊆ V
as Γ(S) =

⋃
i∈S Γ(i). Define Γr(S) = Γ(Γ(· · ·Γ︸ ︷︷ ︸

r times

(S) . . .)). Nodes in Γr(i) are said to be

within r matching hops of i.
The following three lemmas discuss various useful properties of (ε, δ) covers.

Lemma 17 (Chaining Lemma). Let X be the subset of nodes from Lemma 16. Let S ⊆ X
be a set of nodes that is (ε1, 1− δ

2) centrally covered by X. Let ρ = |S|/|Γ(S)|. Then there
is a set S′ of size at least δ

4 |S| which is (ε1 + ε, δρ4 ) centrally covered by X.

Proof: Since S ⊆ X, every node i ∈ S is (ε, δ) centrally covered by Γ(i). Since for
a uniformly random direction u, the direction −u is also a uniformly random direction,
so we conclude that for a δ fraction of directions u, there is a node j ∈ Γ(i) such that
(vj − vi) · (−u) ≥ ε.

Also, since i is (ε1, 1− δ
2) centrally covered by X, for a 1− δ

2 fraction of directions u,
there is a node k ∈ Γ(i) such that (vk−vi) ·u ≥ ε1. Thus, for a δ

2 fraction of directions u,
both these events happen simultaneously, and thus we find a pair of nodes j, k such that
(vk − vj) · u ≥ ε1 + ε. We say that i contributes the vector vk − vj to j in the direction
u towards building a central cover with projection ε1 + ε. We we may assume that j is
the matched node to i in M−u, thus ensuring that for any given direction, each node in
S contributes such a vector to at most one node in Γ(S).

Now, for every node j ∈ Γ(S), let

dj = Pru[∃k ∈ X : (vk − vj) · u ≥ ε1 + ε].

We have
∑

j∈Γ(S) dj ≥
∑

i∈S
δ
2 = δ

2 |S|, since we assumed that for any given direction,
each node in S contributes a vector to at most one node in Γ(S). Since |Γ(S)| = 1

ρ |S|, the

average dj over nodes j ∈ Γ(S) is at least δρ
2 . Since all dj ≤ 1, by Markov’s inequality, at

most 1− δρ
4 fraction of the dj ’s can be less than δρ

4 . Thus, at least δρ
4 |Γ(S)| = δ

4 |S| nodes
j have dj at least δρ

4 , i.e. these many nodes are (ε1 + ε, δρ4 ) centrally covered by X. 2

Lemma 18 (Close-by Covering Lemma). Let X be the subset of nodes from Lemma 16.
Let i be a node which is (ε, δ) centrally covered by X. Let j be another node and let
s := ‖vj − vi‖. Then for any t ≥ 0, j is (ε− ts√

n
, δ − exp(− t2

4 )) centrally covered by X.

Proof: Since ‖vj −vi‖ = s, by the Gaussian nature of projections (Lemma 13), we have
Pru[|(vj −vi) ·u| ≥ ts√

n
] ≤ exp(− t2

4 ). Thus, for a δ− exp(− t2

4 )) fraction of directions, we
have a node k ∈ X such that (vk − vi) · u ≥ ε, and |(vj − vi) · u| ≤ ts√

n
. Thus, for such a

78



direction u we have (vk−vj) ·u ≥ ε− ts√
n

, and hence j is (ε− ts√
n
, δ− exp(− t2

4 )) centrally
covered by X. 2

Lemma 19 (Concentration of Measure Lemma). Let i be a node which is (ε, δ) centrally
covered by a set of nodes S such that for any j ∈ S, ‖vj − vi‖ ≤ s. Then for any t ≥ 0,

j is (ε− t′s√
n
, 1− exp(− t2

2 )) centrally covered by S, where t′ =
√

2 log(2
δ ) + t.

Proof: The proof use P. Levy’s isoperimetric inequality for measurable subsets of unit
sphere Sn−1 (see [18]), which says that of all measurable sets A ⊆ Sn−1 of a given measure
δ, the one that minimizes the measure of the set Aγ of all points within a distance of γ of
A is the spherical cap of measure δ. Standard then calculations show that this minimum

measure is 1− exp(− t2

2 ) if γ >

√
2 log( 2

δ
)+t

√
n

.
Now, consider the set A of unit vectors u such that there is a node j ∈ S such that

(vj − vi) · u ≥ ε. This is a measurable set and has measure at least δ, since S is an (ε, δ)

central cover for i. Now, for any t ≥ 0, set γ = t′√
n

, where t′ =
√

2 log(2
δ ) + t. Then the

set Aγ has measure at least 1− exp(− t2

2 ). Let v ∈ Aγ . Then there is a vector u ∈ A such
that ‖v − u‖ ≤ γ, and a node j ∈ S such that (vj − vi) · u ≥ ε, we have

(vj − vi) · v ≥ (vj − vi) · u− |(vj − vi) · (v − u)| ≥ ε− sγ,

since |(vj − vi) · (v − u)| ≤ ‖vj − vi‖‖v − u‖ ≤ sγ by the Cauchy-Schwarz inequality.
Thus, S forms a (ε− t′s√

n
, 1− exp(− t2

2 )) central cover for i. 2

Now, we can prove the following lemma which forms the key inductive step in the
proof of Theorem 19:

Lemma 20. Let X be the subset of nodes from Lemma 16. For every r ≥ 0, one of the
following two cases holds:

1. There is a non-empty set Sr ⊆ X such that:

(a) |Sr| ≥ ( δ4)r|X|,
(b) |Sr| ≥ δ|Γ(Sr)|, and

(c) Sr is ( rε2 , 1−
δ
2) centrally covered by X.

2. There is a pair of points i, j such that j ∈ Γ3r(i) and ‖vi − vj‖ ≥ β, where β =
σ

16
√

log(4/δ)
.

Proof: We prove this by induction on r. For r = 0, we can choose S0 = X. Every point
i in X is covered by itself, so X itself is a (0, 1− δ/2) cover for i. Further, Γ(X) = X, so
all conditions required for case 1 hold.

For r > 0, assume that case 2 doesn’t hold, but case 1 holds for r − 1. Then by
the Chaining Lemma 17, and the observation that |Sr−1|/|Γ(Sr−1)| ≥ δ, to get a set S′r
such that |Sr| ≥ ( δ4)|Sr−1| ≥ ( δ4)r|X|, and S′r is ( (r−1)ε

2 + ε, δ
2

4 ) centrally covered by X.
Now we expand the set S′r using the Γ operation as follows. Let k be the first value for
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which |Γk(S′r)| ≥ δ|Γk+1(S′r)|. Let Sr = Γk(S′r). Since |S′r| ≥ ( δ4)r|X|, it follows that
k ≤ log1/δ(

4
δ )r ≤ 2r. Let i be any point in Sr. Then there is a point i′ ∈ S′r such that

i ∈ Γ3r(i′). Since we assumed that case 2 doesn’t hold, we must have that ‖vi−vi′‖ ≤ β.
By the Close-by Covering Lemma 18, we conclude that the central cover X of point i is also

a ( (r−1)ε
2 + ε− tβ√

n
, δ

2

4 − exp(− t2

4 )) central cover for i. Choose t = 2
√

log( 8
δ2 ) ≤ 4

√
log(4

δ ).

Thus, tβ√
n
≤ σ

4
√
n

= ε
4 , and so X becomes a ( (r−1)ε

2 + 3ε
4 ,

δ2

8 ) central cover for i.
Next, if (i, j) is an edge in the central cover for i, then we claim that j is within 3r

matching hops of i. This is because there is a path from i to j of matching hops which is
composed of alternate expansion steps and chaining steps. There are at most r chaining
steps, which may reduce the size of the current set by a factor of δ

4 , and expansion steps,
which increase the size of the current set by a factor of 1

δ . Thus, the total number of
expansion steps so far is at most log1/δ(

4
δ )r ≤ 2r. In addition to the r chaining steps, we

get a total of at most 3r matching hops. Again, since we assumed that case 2 doesn’t
hold, we must have that ‖vi − vj‖ ≤ β. Now we can use the Concentration of Measure
Lemma 19 to conclude that X forms a ( (r−1)ε

2 + 3ε
4 −

t′′β√
n
, 1− exp(− t′2

2 )) central cover for

i, where t′′ =
√

2 log(16
δ2 ) + t′. If we set t′ =

√
2 log(2

δ ), we get that t′′ ≤ 4
√

log(4
δ ). Thus,

tβ√
n
≤ σ

4
√
n

= ε
4 , and so X becomes a ( rε2 , 1−

δ
2) cover for i.

To complete the induction, note that if case 2 holds for r − 1, then it trivially holds
for r also. 2

Finally, we can prove Theorem 19.
Proof:[Theorem 19] If a vector vi is ( rε2 , 1 −

δ
2) covered by vectors v1, . . . ,vn, and all

vectors are of length at most 1, then n ≥ (1 − δ
2) · exp( r

2ε2n
64 ), since ‖vj − vi‖ ≤ 2 and

thus by Lemma 13, we have Pru[|(vj − vi) · u| ≥ rε
2 ] ≤ exp(− r2ε2n

64 ).

Thus, since δ < 1 and ε = σ√
n

, case 1 of Lemma 20 cannot hold for r ≥
√

64 log(2n)

σ =
Θ(
√

log n). So for some r ≤ O(
√

log n), case 2 must hold. Case 2 implies the existence of
a pair of points i, j which are within a graph distance of 3r× 2α

Cmed
= O(

√
log n 2α

Cmed
) and

‖vi − vj‖2 ≥ β2 = Ω(1). We set s = β2.
The robustness property follows because we can set aside some τn nodes from partic-

ipating in the matchings with a small degradation in the constants. For instance, we can
set τ = c

32 , and then we can ensure that there is a matching of stretched pairs of size at
least c

32n in at least 4c fraction of directions, which do not involve any of the τn forbidden
nodes. The rest of the analysis follows just as before. 2

4.6.2 Proof of Lemma 7

We now turn to the proof of Lemma 7. In this context, we call a pair of nodes i, j is a
(η, σ)-stretched pair along u if ‖vi − vj‖2 ≤ η√

logn
but (vj − vi) · u ≥ σ√

n
for constants

η, σ > 0. The first step is to show that there are many pairs of nodes with a path
connecting them with the desired parameters:
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Lemma 21. Let v1,v2, . . . be vectors of length at most 1 such for at least a γ fraction
of directions u, there is a matching of (η, σ)-stretched pairs i, j of size εn along u. Then
there is a pair i, j of nodes such that there is a path p of stretched pairs of length C

√
log n

such that each edge in the path is a stretched pair, and ‖vi−vj‖2 ≥ s for some constant s,
where C = C(γ, ε, σ), s = s(γ, ε, σ) are constants (independent of n and δ). Furthermore,
there are ε

4n pairs i, j of nodes such that there is a path p of stretched pairs connecting
them of length C ′

√
log n and ‖vi−vj‖2 ≥ s′, where C ′ = C(γ, ε/2, σ) and s′ = s(γ, ε/2, σ).

Proof: The proof uses Lemmas 16 and 20. Note that neither of these lemmas need any
upper bound on the distance between a pair of matched nodes i, j, and so their proofs
work as long as for a constant fraction of directions u, we have Ω(n) sized matchings of
node pairs i, j such that (vj − vi) · u ≥ σ√

n
. Thus, for some r ≤ O(

√
log n), case 2 of

Lemma 20 must hold, at which point we get a pair of nodes i, j within 3r matching hops
such that ‖vi − vj‖2 ≥ s for some constant s. Thus, i, j are connected with a path of
stretched pairs of length at most 3r = O(

√
log n).

We can show the existence of many such pairs using a greedy algorithm. We keep
finding disjoint pairs i, j which satisfy the properties until the number of pairs found is
Ω(n). When we find a pair i, j, we discard the nodes i, j from further consideration. If
we have found only o(n) pairs i, j so far, then we still have matchings of stretched pairs
of size Ω(n) among the nodes still under consideration, and so more such pairs remain to
be found.

More precisely, suppose we have found less than ε
4n pairs i, j so far. Then excluding

all such nodes from consideration in the matchings of stretched pairs, for a γ fraction of
directions u, we have a matching of size ε

2n of stretched pairs along u. Thus, there is a
pair of nodes i, j such that ‖vi−vj‖2 ≥ s′, for s′ = s(γ, ε/2, σ), and a path p of stretched
pairs connecting them of length at most C ′

√
log n for C ′ = C(γ, ε/2, σ). We can continue

finding pairs this way until we have at least ε
4n of them. 2

We can now prove Lemma 7, restated here for convenience.

Lemma 7. Let v1,v2, . . . be vectors of length at most 1 such for a γ fraction of directions
u, there is a matching of (η, σ)-stretched pairs of size εn along u. Let α > 0 be a given
constant. There is a randomized algorithm which finds k vertex-disjoint paths p of length
at most 2C

α

√
log n such that the triangle inequality along p is violated by at least s, in time

Õ(n2 + 1
αkn

1+α). Here, s, C are constants that depend only on γ, ε, σ, and we assume that
k ≤ ( αε4C ) · n√

logn
and that η ≤ αs

2C .

Proof: The idea is the same as before, i.e. to keep finding the required paths greedily
and discarding all nodes on them from future consideration. Since we need to find only
O( n√

logn
) paths, and each path has length at most O(

√
log n), we end up discarding at

most O(n) nodes, where the constant in the O-notation can be made as small as we please.
This allows us to conclude that we still have large matchings in many directions, and thus
more paths remain to be found.

Now we describe this process in more detail. We construct a new graph, M with the
same set of nodes, where there is an edge between nodes i and j if ‖vi − vj‖2 ≤ η√

logn
.

We now use the dynamic decremental spanners algorithm of Baswana [21], which, for
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any given constant α, maintain a spanner of size O( 1
αn

1+α), such that all distances are
stretched by at most a factor of 2

α , which support edge deletion in polylog(n) time. The
algorithm requires Õ(m) preprocessing time, where m is the number of edges in M (which
is O(n2) in the worst case).

Suppose we have found less than k of the required paths. We discard the nodes on all
the paths we find. The number of nodes thus discarded is less than 2C

α

√
log n× k ≤ ε

2n.
Thus, for a γ fraction of directions u, there are matchings of stretched pairs of size at least
ε
2n along u. Thus, by Lemma 21, there are ε

8n pairs of nodes i, j such that ‖vi−vj‖2 ≥ 2s
and there is a path p of stretched pairs length at most C

√
log n connecting them, where

s = 1
2s(γ, ε/4, σ) and C = C(γ, ε/4, σ).

Since the graph spanner has stretch at most 2
α , the nodes i, j are connected by a path

of length at most 2C
α

√
log n in the spanner. By randomly sampling nodes i and doing a

breadth-first search i of depth at most 2C
α

√
log n, we find a node j such that ‖vi−vj‖2 ≥ 2s

with probability at least ε
8 . Thus, after constant number of random samples, we get the

required node pair i, j with high probability. Thus, the time taken for finding such a pair
is O( 1

αn
1+α) since the graph spanner has only so many edges.

Let p = 〈i = i1, i2, . . . , ik = j〉 be the path of length at most 2C
α

√
log n connecting i, j.

Since for all edges (it, it+1) along the path p, we have ‖vit −vit+1‖2 ≤
η√

logn
, we conclude

that
k−1∑
t=1

‖vit − vit+1‖2 − ‖vi − vj‖2 ≤
2ηC
α
− 2s ≤ −s,

i.e. the path inequality along p is violated by at least s.
We now remove all nodes in p from the spanner. This procedure amounts to removing

all edges incident on nodes in p in the graph M . So we remove at most O(
√

log n·n) edges,
and that takes time Õ(n). Overall, the time taken to find k paths becomes Õ(n2+ 1

αkn
1+α).

2

4.7 Computing the Matrix Exponential

In our general framework of Section 4.4 for maximization SDPs, the candidate solution
X(t) at each step is exp(M) for some M. We show how to do this exponentiation faster
than the trivial O(n3) time for the SDPs considered here, based on the idea that approx-
imate computation suffices.

4.7.1 Johnson-Lindenstrauss Dimension reduction

Let α be our current estimate of the optimum and δ > 0 be such that we desire a dual
solution of cost at most (1+δ)α. The Oracle’s task, when given a candidate solution X(t),
is to find appropriate dual variables y1, . . . , ym such that

∑j
i=1(Aj•X(t))yj−(C•X(t)) ≥ 0.

Let v1, . . . ,vn be vectors obtained from the Cholesky decomposition of X(t) such that
Xij

(t) = vi ·vj = 1
2 [‖vi‖2 +‖vj‖2−‖vi−vj‖2]. Thus Oracle’s task is to find appropriate

variables si and tij for i, j ∈ [n] such that
∑

i si‖vi‖2 +
∑

ij tij‖vi − vj‖2 ≥ 0. (Note that
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the si and tij variables cannot be set independently, since they are a linear transformation
of y1, . . . , ym.)

The vectors vi obtained from the Cholesky decomposition of X(t) = exp(M) are just
the row vectors of exp(1

2M). Since we are only interested in the square lengths of the
row vectors and their differences, we can try Johnson-Lindenstrauss dimension reduction.
If we project the vectors vi on a random d = O( logn

ε2
) dimensional subspace, and scale

the projections up by
√
n/d to get vectors v′i, then by the Johnson-Lindenstrauss lemma,

with high probability, the squared lengths ‖v′i‖2 and ‖v′i−v′j‖2 are within (1±ε) of ‖vi‖2

and ‖vi−vj‖2 respectively, for all i, j ∈ [n]. Thus, we could run the Oracle with the X′

which is the Gram matrix of the vectors v′i, and hope that the Oracle’s “feedback” for
X′ would be also valid for X(t). (Note that the exponential is only used for the Oracle’s
computation at this step, and never used again in the algorithm.)

Now we mention why Johnson-Lindenstrauss dimension reduction does not suffice
in general, and then state conditions under which it does. (All our Oracles satisfy
these conditions.) The problem is that the si and tij variables could take both positive
and negative values, so

∑
i si‖vi‖2 +

∑
ij tij‖vi − vj‖2 may no longer be non-negative,

even though the corresponding sum for the v′i’s is. But the difference between the two
is at most ε

∑
i |si|‖v′i‖2 +

∑
ij |tij |‖v′i − v′j‖2. So if the Oracle can also ensure that∑

i |si|‖v′i‖2 +
∑

ij |tij |‖v′i − v′j‖2 ≤ Cα, where α is the current estimate of the optimum,
and C = O(polylog(n)), then we can set ε = δ/3C, so that

∑
i si‖vi‖2+

∑
ij tij‖vi−vj‖2 ≥

− δ
3α. Thus, we have a δ

3 -approximate Oracle (see Section 4.4.2), and so Theorem 16
applies, and we conclude that the Primal-Dual SDP algorithm takes the same number of
iterations, up to constant factors. The following lemma formalizes this.

Lemma 22. In the above setting, if the Oracle always finds values for the si’s and tij’s
such that

∑
i si‖vi‖2 +

∑
ij tij‖vi−vj‖2 ≥ 0 and also

∑
i |si|‖vi‖2 +

∑
ij |tij |‖vi−vj‖2 ≤

Õ(α), then the algorithm works even if instead of vi, the Oracle uses vectors v′i obtained
by Johnson-Lindenstrauss dimension reduction as above.

The lemma also works for minimization SDPs analogously.

4.7.2 Matrix exponential-Vector Products

Our task is now reduced to finding the projection of the vectors vi on a given unit vector
u. Note that exp(A) = exp(1

2A) exp(1
2A), so it easy to compute the Cholesky decomposi-

tion of a matrix exponential. The Johnson-Lindenstrauss lemma requires computing the
projection of the vectors vi onto O( logn

ε2
) random vectors u, which is simply exp(1

2A)u.
This has fast implementations in solvers for linear differential equations, and one can give
good complexity bounds.

It suffices to do this approximately: all we have to do is find a vector v such that
‖ exp(1

2A)u − v‖ ≤ ‖ exp(1
2A)‖τ for some inverse polynomial τ (we will obtain precise

bounds on τ momentarily). We call such a vector v an “approximation within error
parameter τ”.
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One obvious way to do this is to use the Taylor series expansion for exp(1
2A), which

exploits the sparsity of A. A matrix vector product Au can be computed in time which
is proportional to the number of non-zero entries of A.

Lemma 23. Let tA be the time needed to compute the matrix-vector product Au. Then
the vector v =

∑k
i=0

Ai

i! u can be computed in O(ktA) time and if k ≥ max{e2λ, ln( 1
τ )}

then ‖ exp(A)u− v‖ ≤ ‖ exp(A)‖τ .

Proof: It is easy to see that v can be computed in O(ktA) time, since each successive
term Ai

i! u can be computed from the previous one with one matrix-vector product. It
remains to bound ‖ exp(A)u − v‖. This can be bounded as follows. Let λ = ‖A‖. We
have

‖ exp(A)u− v‖ =
∥∥∥∥exp(A)u−

∑k
i=0

Ai

i!
u
∥∥∥∥ ≤ ∥∥∥∥exp(A)−

∑k
i=0

Ai

i!

∥∥∥∥ ≤ ∑∞
i=k+1

λi

i!

The last inequality follows because the eigenvalues of exp(A) −
∑k

i=0
Ai

i! are
∑∞

i=k+1
µi

i!
where µ is an eigenvalue of A. Now, using standard approximations for the factorial
function, it is easy to see that if k ≥ max{e2λ, ln( 1

τ )}, then
∑∞

i=k+1
λi

i! ≤ e
λτ = ‖ exp(A)‖τ .

2

Since the matrices exponentiated in the Primal-Dual SDP algorithm are −ε
∑t

τ=1M
(t),

for t = 1, 2, . . . , T , and since for all t, 0 �M(t) � I, we conclude that ‖ − ε
∑t

τ=1M
(t)‖ ≤

εT ≤ O(ρR ln(n)
δα ). So when this is small (such as O(log(n)) as in the case of MaxCut,

Balanced Separator and Sparsest Cut (both directed and undirected), this simple
method is good enough.

However, in some situations, this quantity may be large (like in the case of Min
UnCut and Min 2CNF Deletion where it is Õ(n)), it may be prohibitively expensive
to use this method. We now present a more sophisticated method, the Shift-and-Invert
Lanczos (SI-Lanczos) method of van den Eshof and Hochbruck [94], adapted by Iyengar,
Phillips, and Stein [57] for the very setting we have. We sketch out this method now.

Let S :=
∑t

τ=1M
(τ). In the Primal-Dual SDP algorithm, we need to compute

exp(− ε
2S)u. Now, the idea is that this product is mostly determined by the smallest

eigenvalues of S. Thus, one can apply the Lanczos iteration to (I+γS)−1 for some γ > 0.
This emphasizes the eigenvalues of interest.

In each iteration t of the Lanczos method, the most expensive operation is the comput-
ing the vector (I+γS)−1vt where vt is a unit vector. If we assume that S is well-conditioned
(for e.g. if S � 0 and the condition number of I + γS, κ(S) := 1+γλ1(S)

1+γλn(S) is bounded by
a constant) then we can use the conjugate gradient method to compute this vector to
any relative accuracy τ in O(log( 1

τ )) iterations. Each iteration of the conjugate gradient
method requires one matrix-vector product (I + γS)u for some vector u.

Now, the key idea is that eventually, we normalize by dividing by the trace. So for
any µ,

exp(−εS)
Tr(exp(−εS))

=
exp(−ε(µI + S))

Tr(exp(−ε(µI + S)))
.
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Thus, instead of using S in the SI-Lanczos algorithm, we can use µI + S. We can now
choose µ judiciously, so that S is well-conditioned. For example, since for all τ = 1, 2, . . . , t,
we have −I � M(τ) � I, we conclude that −tI � S � tI. So if we set µ = 2t, then we
have 2tI + S � tI � 0 and

κ(I + γ(2tI + S)) =
1 + 2tγ + γλ1(S)
1 + 2tγ + γλn(S)

≤ 1 + 3tγ
1 + tγ

≤ 3.

Lemma 24 ([94]). Let A � 0. The SI-Lanczos algorithm with γ = 1/2 requires O(log2( 1
τ ))

iterations to find a vector v such that

‖exp(−A)u− v‖ ≤ ‖ exp(−A)‖τ,

for any given unit vector u. Each iteration of SI-Lanczos takes time O(tA), where tA is
the time needed to compute the matrix-vector product Au. If A has m non-zero entries,
then tA = O(m), and the product exp(A)u can be approximated within error parameter τ
in Õ(m log3( 1

τ )) time.

We now turn to the question of how small τ needs to be so that the Primal-Dual
algorithm can be made to work with the approximate matrix exponential.

Lemma 25. The Primal-Dual algorithm converges in O( `ρR
2 log(n)
δ2α2 ) iterations if the den-

sity matrix is computed using matrix exponential-vector products approximated within the
error parameter τ = δα

48n5/2R(`+ρ)
.

Proof: Let A = ε(2tI+S). In the Primal-Dual SDP algorithm, we construct a candidate
solution by taking the density matrix P = exp(−A)

Tr(exp(−A)) and scaling it by R, to get X = RP.

In response, the Oracle finds a matrix −I �M � I such that M •P ≥ ±`
`+ρ , where the

sign depends on the current iteration (i.e. the sign is that of `(t) in the description of the
algorithm).

The Cholesky factorization of exp(−A) is exp(−1
2A) exp(−1

2A). To compute the
projection of the rows of exp(−1

2A) on a d = O( logn
ε2

) dimensional subspace, scaled up
by
√
n/d we consider a matrix U ∈ Rn×d whose d columns are of length

√
n/d and

form an orthogonal basis for the subspace. Then the projected vectors are the rows
of W := exp(−1

2A)U. We showed in the previous section that the Primal-Dual SDP
algorithm can be made to work using the density matrix P′ = WW>

Tr(WW>)
instead of P.

Now, by Lemma 24 above, we can compute a matrix V ∈ Rn×d such that each column
vector of V is within an a radius of

√
n/d‖ exp(−1

2A)‖τ of the corresponding column
vector in W.

We use the density matrix P′′ = VV>

Tr(VV>)
as an approximation to P′. We now estimate

the error in this approximation. Let E = W−V. Then we have ‖E‖F ≤
√
n‖ exp(−1

2A)‖τ
by the bound from Lemma 24. Here, ‖ · ‖F is the Frobenius norm. Now, consider

‖WW> −VV>‖ = ‖ −EU> exp(−1
2A)> − exp(−1

2A)UE> + EE>‖
≤ 2‖E‖‖ exp(−1

2A)‖‖U‖+ ‖E‖2

≤ 3n‖ exp(−A)‖τ. (4.10)
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Here, we used the facts that ‖ exp(−1
2A)‖2 = ‖ exp(−A)‖ and ‖U‖ =

√
n/d. Also, we

have

|Tr(WW>)−Tr(VV>)| = | − 2Tr(EU> exp(−1
2A)>) + Tr(EE>)|

≤ 2|Tr(EU> exp(−1
2A)>)|+ |Tr(EE>)|

≤ 2
√
n‖EU> exp(−1

2A)>‖F + ‖E‖2F
≤ 2
√
n‖E‖F ‖U‖F ‖ exp(−1

2A)‖F + ‖E‖2F
≤ 3n3/2‖ exp(−A)‖τ. (4.11)

By the Johnson-Lindenstrauss Lemma, with high probability the rows of W have lengths
within 1± ε of the lengths of the corresponding rows in exp(−1

2A). Since Tr(WW>) is
the sum of the squared lengths of rows in W, and Tr(exp(−A)) is the sum of the squared
lengths of rows in exp(−1

2A), we have

|Tr(WW)> −Tr(exp(−A))| ≤ ε2Tr(exp(−A)). (4.12)

Now, putting everything together, we have

‖P′ −P′′‖ =
∥∥∥∥ WW>

Tr(WW>)
− VV>

Tr(VV>)

∥∥∥∥
≤
∥∥∥∥ WW>

Tr(WW>)
− WW>

Tr(VV>)

∥∥∥∥+
∥∥∥∥ WW>

Tr(VV>)
− VV>

Tr(VV>)

∥∥∥∥
≤ ‖WW>‖|Tr(WW>)−Tr(VV>)|

Tr(WW>)Tr(VV>)
+
‖WW> −VV>‖

Tr(VV>)

≤ (3n3/2 + 3n)‖ exp(−A)‖τ
Tr(WW>)− 3n3/2‖ exp(−A)‖τ

from (4.10) and (4.11)

≤ (3n3/2 + 3n)‖ exp(−A)‖τ
(1− ε2 − 3n3/2τ)Tr(exp(−A))

from (4.12)

≤ (3n3/2 + 3n)τ
1− ε2 − 3n3/2τ

≤ 8n3/2τ,

if we set τ ≤ 1/12n3/2 and ε ≤ 1/2. Here, we also used the facts that for any symmetric
matrix B, we have ‖B‖ ≤ Tr(B).

Thus, for any matrix −I �M � I found by the Oracle, we have

|P′ •M−P′′ •M| = |(P′ −P′′) •M|
≤ |8n3/2τI •M| ∵ −8n3/2τI � P′ −P′′ � 8n3/2τI

≤ 8n5/2τ ∵ −I �M � I
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Finally, if we set τ = δα
48n5/2R(`+ρ)

, then we have M • P′ ≥M • P′′ − δα
6R(`+ρ) . Assuming

the Oracle finds M such that M •P′′ ≥ ±`
`+ρ , then we have M •P′ ≥

−δα
6R
±`

`+ρ .
Now, we set the dimension of the subspace d appropriately so that the Johnson-

Lindenstrauss lemma implies that we have a M • P ≥ M • P′ − δα
6R(`+ρ) . Thus, we get

that M •P ≥ −
δα
3R
±`

`+ρ , and so the Primal-Dual SDP algorithm converges in O( `ρR
2 log(n)
δ2α2 )

rounds, just as in the proof of Theorem 16. 2
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Chapter 5

Derandomization and Quantum
Algorithms

In this chapter, we discuss a few additional applications of the Matrix Multiplicative
Weights algorithm of Chapter 3 in derandomization and quantum computing.

The basic idea in two of these applications is the same: there is a certain matrix
whose eigenvalues need to be bounded, and this is achieved by the Matrix Multiplicative
Weights algorithm. In the case of derandomizing the Alon-Roichman construction of
expander graphs (Section 5.1), the second largest eigenvalues of the normalized adjacency
matrix of the graph needs to be bounded away from 1. In the quantum hypergraph
covering problem (Section 5.2), a minimal multi-set of matrices needs to be picked from
a given collection such that the smallest eigenvalue of their sum is at least 1.

Finally, in the problem of learning quantum states (Section 5.3), the Matrix Multi-
plicative Weights algorithm implicitly gives an efficient algorithm to produce a quantum
state that is consistent with a given set of measurements, and thus gives an upper bound
on a complexity measure (related to the VC-dimension) of the hypothesis space of quan-
tum states.

5.1 Derandomization of the Alon-Roichman Theorem

Expander graphs are extremely useful tools in computer science, with applications ranging
from derandomization, to hardness of approximation results, to error-correcting codes (see
[54] for a comprehensive survey). Explicit constructions of expanders are important for
various deterministic constructions. The Alon-Roichman theorem [9] gives a generic way
to construct an expander graph from any algebraic group by random sampling. We
derandomize the proof of the Alon-Roichman theorem given by [72] (see also [79]) to give
a deterministic and efficient construction of the expanding generating set. A similar result
was also obtained by Wigderson and Xiao [101].

We start by describing expander graphs. Given a connected undirected d-regular graph
G = (V,E) on n vertices, let A be the normalized adjacency matrix, i.e. Aij = wij

d where
wij is the number of edges between vertices i and j, including self-loops and multiple edges.
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Note that A is a real, symmetric matrix. We have λ1(A) = 1, and the corresponding
eigenvector is e, which is the all 1’s vector scaled down by

√
n. The graph G is called an

expander if λ2(A) ≤ β for some constant β < 1.
Now, let H be an arbitrary algebraic group of order n. A multi-set of elements of H,

S is called symmetric if for all i ∈ H, the multiplicities i and i−1 in S are the same. The
Cayley graph Cay(H;S) is the |S|-regular graph whose vertex set is the elements of H,
and for i, j ∈ H, we have wij = |{k ∈ S : i ◦ k = j}|, where ◦ is the group operation.
Alon and Roichman [9] prove the following theorem:

Theorem 25 ([9]). Fix β < 1. For an arbitrary group H of size n, by picking a random
multi-set of size O( 1

β2 log n) and taking its symmetric closure S = T t T−1 we have

Pr[λ2(Cay(H;S)) ≤ β] > 0.

Here, the symmetric closure of a multi-set T of elements of H, denoted by T t T−1,
is the set S such that for each element i ∈ T , we include i and i−1 in S. We have
the following derandomization of this theorem, using the Matrix Multiplicative Weights
algorithm:

Theorem 26. There is a deterministic algorithm which, given β and H, runs in Õ(n3/β2)
time and produces a set T of size O( 1

β2 log n) so that if S = T t T−1, then we have

λ2(Cay(H;S)) ≤ β.

Proof: For every element i ∈ H, define N(i) = 1
2(R(i) + R(i−1) − 2

nJ), where R(i) is
the permutation matrix associated with i (i.e. R(i)jk = 1 if k = j ◦ i, and 0 otherwise),
and J is the all ones matrix. Now, it is easy to check that for any multi-set T ⊆ H
and S = T t T−1, we have the normalized adjacency matrix of Cay(H;S) is given by
A := 1

|T |
∑T

t=1
1
2(R(i) + R(i−1)). Since λ1(A) = 1 and the corresponding eigenvector is

e, we conclude that

λ2(A) = λ1

(
1
|T |
∑

i∈T
1
2(R(i) + R(i−1))− ee>

)
= λ1

(
1
|T |
∑

i∈T
1
2(R(i) + R(i−1)− 2

nJ)
)

= λ1

(
1
|T |
∑

i∈TN(i)
)
.

The algorithm consists of an online matrix game in the gain form (see Section 3.2.1).
In every round, we choose an element i ∈ H and the corresponding gain matrix is M(i) =
1
2(N(i) + I). We now estimate ‖N(i)‖. Note that N(i)e = 0, so the largest eigenvalue of
N(i) in absolute value corresponds to a unit vector v that is perpendicular to e. For such
a vector v, we have

‖N(i)v‖ = ‖1
2(R(i) + R(i−1))v‖ ≤ 1

2 [‖R(i)‖+ ‖R(i−1)‖] = 1,

since ‖R(i)‖ = ‖R(i−1)‖ = 1. Thus, ‖N(i)‖ ≤ 1, and so the gain matrices satisfy
0 �M(i) � I. In every round i 1, given a density matrix P(i), the gain matrix chosen is

1For convenience of notation, we index rounds by i rather than t.
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M(i) for any i which satisfies

M(i) •P(i) ≤ 1
2
. (5.1)

We show later that such an i always exists and so it can be found by exhaustive search.
Suppose the game is played for T rounds. With some abuse of notation, we also let T

be the multi-set of elements i played in the T rounds. Let S = T t T−1. By Corollary 4
to Theorem 11, we have

(1 + ε)
T

2
≥ (1 + ε)

∑
i∈TM(i) •P(i) ≥ λ1

(∑
i∈TM(i)

)
− lnn

ε
.

Divide by T , and note that

1
T λ1

(∑
i∈TM(i)

)
= 1

2

(
λ1

(
1
T

∑
i∈TN(i)

)
+ 1
)
.

Rearranging, and setting ε = β
2 and T = 8 lnn

β2 , we get that

λ1

(
1
T

∑
i∈TN(i)

)
≤ β,

as required.
We only need to show the existence of the element i ∈ H satisfying (5.1) as claimed.

For any density matrix P, we have

1
n

∑
i∈H

M(i) •P =
1
n

∑
i∈H

1
2

(N(i) + I) •P =
1

2n

∑
i∈H

N(i) •P +
1
2
I •P.

Now, we have
∑

i∈H N(i) =
∑

i∈H R(i)− J = 0, since for any j, k ∈ H, there is a unique
i such that R(i)jk = 1, viz. i = j−1 ◦ k. Thus,

1
n

∑
i∈H

M(i) •P =
1
2
I •P =

1
2

and so there is an element i ∈ H such that M(i) •P ≤ 1
2 . 2

5.2 Covering Quantum Hypergraphs

In the Set Cover problem, we are given a universe V of size n, and a collection of subsets
of V , E, whose union is V . The Set Cover problem is to find the smallest collection of
subsets of V from E whose union is V (alternatively, we can imagine a hypergraph with
V being the set of vertices and E being the set of hyperedges, and the goal is to find
the smallest set of hyperedges which cover all vertices). The Set Cover problem can be
cast in a matrix framework as follows. For every subset of nodes S ∈ E, we associate a
diagonal matrix M(S) which has the indicator vector for S on the diagonal. Note that
such matrices satisfy 0 �M(S) � I. A collection of subsets E′ ⊆ E covers all elements in
V if and only if

∑
S∈E′ M(S) � I. The greedy algorithm of repeatedly picking subsets that
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cover the maximum number of uncovered elements obtains an O(log n) approximation to
the Set Cover problem.

The Quantum Hypergraph Cover problem is a quantum generalization of the Set Cover
problem, defined by Ahlswede and Winter [4]. A quantum hypergraph is Γ = (V, E)
where V is a n-dimensional Hilbert space and E is a finite set of m hyperedges e which
are identified with a Hermitian operator M(e) such that 0 �M(e) � I.

A cover of the quantum hypergraph Γ is a multi-set C of hyperedges e such that∑
e∈CM(e) � I. The cover number c(Γ) is the size of the smallest cover of Γ. The

problem is to approximate c(Γ). This problem has important applications in quantum
information theory, see [4] for more details.

If c(Γ) > m, then we can approximate it to within a factor of 2, by solving an associated
covering SDP and rounding up the fractional solution, see Lemma 26. We therefore assume
that c(Γ) ≤ m.

Ahlswede and Winter [4] showed that by solving the associated covering SDP and
running a randomized rounding algorithm on the fractional solution, we obtain a cover
of size O(log n) · c(Γ). We derandomize their algorithm using the Matrix Multiplicative
Weights algorithm. A similar algorithm was independently discovered by Wigderson and
Xiao [101], by derandomizing the randomized rounding of the associated SDP using the
method of pessimistic estimators.

Theorem 27. There is a deterministic algorithm that obtains an O(log n) approximation
to the Quantum Hypergraph Cover problem in Õ(n3 · c(Γ)) time. This is a polynomial
time algorithm if we assume that c(Γ) ≤ m.

Proof: The algorithm consists of an online matrix game. For every hyperedge e ∈ E ,
we associate the loss matrix M(e). We run the Matrix Multiplicative Weights algorithm
with this setup, with the parameter ε = 1

2 . At each step t, we choose the hyperedge
e(t) = arg maxe M(e) •P(t). We claim that e(t) satisfies

M(e(t)) •P(t) ≥ 1
c(Γ)

. (5.2)

This is because for the optimal cover C∗, we have∑
e∈C∗

M(e) •P(t) ≥ I •P(t) = 1,

so some e ∈ C∗ must satisfy (5.2). By Corollary 3 to Theorem 10, we get

T

2c(Γ)
≤ λn

(∑T
t=1M(e(t))

)
+ 2 ln(n).

By setting T = (4 ln(n) + 2) · c(Γ), and rearranging the inequality we get

λn

(∑T
t=1M(e(t))

)
≥ 1 =⇒

T∑
t=1

M(e(t)) � I.

So we have a cover C = {e(1), e(2), . . . , e(T )} of size O(log n) · c(Γ) as desired. 2
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Lemma 26. If c(Γ) > m, then there is a deterministic algorithm that obtains a quantum
hypergraph cover of size at most 2c(Γ).

Proof: Consider the following covering SDP:

min
∑

eye∑
eyeM(e) � I

∀e : ye ≥ 0

If we restrict ye to non-negative integers, then the SDP becomes equivalent to the Quan-
tum Hypergraph Cover problem, so the optimum of the SDP is at most c(Γ). We solve the
SDP to obtain a fractional solution y∗e for every hyperedge e, such that

∑
e y
∗
eM(e) � I

and
∑

e y
∗
e ≤ c(Γ). Then the integer solution which takes ỹe := dy∗ee copies of hyperedge

e also satisfies
∑

e ỹeM(e) � I and
∑

e ỹe ≤
∑

e(y
∗
e + 1) ≤ c(Γ) + m ≤ 2c(Γ), and so we

have our desired 2-approximation. 2

5.3 Fat-shattering dimension of quantum states

Aaronson [1] considered the problem of learning a quantum state. Suppose we have a
physical process that produces a quantum state. By applying the process repeatedly, we
can prepare as many copies of the state as we want, and can then measure each copy
in a basis of our choice. The goal is to learn an approximate description of the state by
combining the various measurement outcomes.

An n-qubit quantum state can be represented by a density matrix P in the Hilbert
space of dimension 2n. A measurement of P is two-outcome positive operator valued
measure (POVM), which is represented by a matrix F such that 0 � F � I. If we
measure P using F, the outcome is 1 with probability F • P, and 0 with probability
1 − F • P. Let S be the set of all two-outcome POVMs. The function fP : S → [0, 1]
defined as fP(F) = F •P is a probabilistic concept (p-concept) as defined by Kearns and
Schapire [61]. In general, a p-concept is a mapping from the set of learning examples to
[0, 1] which assigns to each example the probability that its label is 1.

We now discuss the learning problem in detail. There is an unknown quantum state,
P∗, that we can prepare as many times as needed. We now sample measurements from
an unknown distribution D on S, and measure P∗ with the sampled distributions. For
the purpose of this section, we assume that the measurement actually yields the value of
fP∗(F) = F•P∗ for any measurement F, though Aaronson [1] shows that this assumption
is not necessary 2. The goal is to learn a quantum state P̃ using as few measurements as
possible that approximates P∗ in the following sense:

PrF∈D[|fP̃(F)− fP∗(F)| ≤ γ] ≥ 1− ε,

where γ, ε > 0 are error parameters.
2Thus, strictly speaking, we no longer have a p-concept, rather a real valued function that we’re trying

to learn.
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This Probably Approximately Correct (PAC)-style learning framework also has an
analogous concept to the Vapnik-Chervonenkis (VC) dimension in standard PAC learning,
viz. the fat-shattering dimension. Just as the VC dimension enables us to bound sample
complexity in standard PAC learning (see Blumer et al [25]), the fat-shattering dimension
enables us to bound the sample complexity of learning p-concepts, by the results of Kearns
and Schapire [61], Anthony and Bartlett [11], and Bartlett and Long [20].

We define the concept of fat-shattering dimension only in the current context. Let
Cn = {fP}P be the set of the p-concepts induced by all density matrices.

Definition 3. Let T = {F1,F2, . . . ,Fk} ⊆ S be a set of measurements of size k. Then
T is said to be γ-fat shattered by Cn if there are real numbers α1, α2, . . . , αk ∈ [0, 1] such
that for all k-bit vectors y = 〈y1, y2, . . . , yk〉 ∈ {0, 1}k, there is a density matrix Py such
that for all i,

if yi = 0 then fPy(Fi) ≥ αi + γ

if yi = 1 then fPy(Fi) ≤ αi − γ

or equivalently, for all i,
(−1)yi(Fi − αiI) •Py ≥ γ.

The γ-fat shattering dimension of Cn, fat(γ), is defined to be the largest k such that there
is a set of k measurements which is γ-fat shattered by Cn.

Aaronson shows that the results of Anthony and Bartlett [11] and Bartlett and Long [20]
imply the following:

Theorem 28. Let ε, γ, δ > 0 be given error parameters. Let X be a set of m sample
measurements drawn i.i.d. from D. Suppose that there is an algorithm that produces a
quantum state P̃ such that for any measurement F ∈ X, we have |fP̃(F)− fP∗(F)| ≤ γε

7 .
Then, for some constant c, with probability at least 1 − δ over the choice of the training
set X, we have

PrF∈D[|fP̃(F)− fP∗(F)| ≤ γ] > 1− ε,
provided

m ≥ c
γ2ε2

(
fat(γε35 ) · log2

(
1
γε

)
+ log

(
1
δ

))
.

The main technical part is therefore to bound the γ-fat shattering dimension of Cn.
Aaronson proves the following theorem using a lower bound due to Ambainis et al [10]
for quantum codes. We give an alternative proof using the Matrix Multiplicative Weights
algorithm.

The approach taken in this section is analogous to the O( 1
ρ2 ) bound one obtains on

the fat-shattering dimension of hyperplane classifiers with margin ρ using the perceptron
algorithm: the idea is that the fat-shattering dimension gives a lower bound on the number
of mistakes an algorithm for the learning problem must make in the worst case; conversely,
an upper bound on the number of mistakes made by an algorithm gives an upper bound on
the fat-shattering dimension. In our setting, the Matrix Multiplicative Weights algorithm
is used implicitly as a learning algorithm. Tsuda, Rätsch and Warmuth [92] also consider
a similar learning algorithm.
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Theorem 29. The γ-fat shattering dimension of Cn is O( n
γ2 ).

Proof: Let T = {F1,F2, . . . ,Fk} ⊆ S be a set of measurements of size k which is γ-fat
shattered by Cn. Let α1, α2, . . . , αk ∈ [0, 1] be the corresponding threshold parameters.
Given a bit vector y = 〈y1, y2, . . . , yk〉, we will show, using the Matrix Multiplicative
Weights algorithm, a procedure to obtain a density matrix P such that for all i,

(−1)yi(Fi − αiI) •P ≥ γ

2
(5.3)

by inspecting only O( n
γ2 ) of the measurements in T . This implies that k = O( n

γ2 ),
because if k were bigger, then there is measurement, say Fi, which is not inspected by the
algorithm. Thus, we could set its bit yi to be such that (−1)yi(Fi − αiI) •P ≤ 0, which
contradicts (5.3).

We now describe the algorithm. We run the Matrix Multiplicative Weights algorithm
in the gain form (see Section 3.2.1) with the gain matrices Mi := 1

2 [(−1)yi(Fi−αiI) + I].
Note that 0 �Mi � I, since −I � (−1)yi(Fi − αiI) � I.

In each round, given the density matrix P generated by the Matrix Multiplicative
Weights algorithm, we choose the loss matrix Mi which maximizes Mi • P. If it is the
case that for all i, Mi • P ≥ 1

2(1 + γ
2 ), then we stop, because P now satisfies (5.3).

Otherwise, we continue. After T iterations, by Corollary 4 to Theorem 11, for any density
matrix P, we have

(1 + ε)
T∑
t=1

Mit •Pt ≥
T∑
t=1

Mit •P− ln(2n)
ε

.

The left hand side is bounded from above by T
2 (1+ε)(1+ γ

2 ) by assumption. Now, since T is
γ-fat shattered by Cn, there is density matrix Py such that for all i, (−1)yi(Fi−αiI)•Py ≥
γ. By substituting P = Py, we have Mi • Py ≥ 1 + γ

2 for all i, so we can lower bound
the first term on the right hand side by T

2 (1 + γ). Thus, we get

T

2
(1 + ε)(1 + γ

2 ) ≥ T

2
(1 + γ)− ln(2)

ε
n.

If we set ε = γ/5, then assuming γ ≤ 1/2, we have (1 + ε)(1 + γ
2 ) ≤ 1 + 3γ

4 , and so this
inequality implies that T ≤ 40 ln(2)n

γ2 . Thus, within 40 ln(2)
γ2 n iterations, we will obtain the

desired density matrix. 2

Remark: Aaronson obtains a better constant factor than the 40 ln(2) factor we obtain in
Theorem 29. It is possible to improve our constant somewhat by relaxing condition (5.3)
to require only non-negativity of the LHS.
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Chapter 6

Fast Algorithms for Approximate
Semidefinite Programming

In this chapter, we return to the Semidefinite Programming (SDP) problem of Chapter 4.
Many recent combinatorial optimization algorithms utilize SDP at their core, and as
discussed earlier, even though interior point methods solve such SDPs quite efficiently,
specialized algorithms which obtain faster running time using the primal-dual schema or
Lagrangian relaxation are still quite desirable, and quite rare in the SDP world. The
results of Chapter 4 gave primal-dual algorithms for SDP; in this chapter, we describe
how fast algorithms for SDP can be designed using Lagrangian relaxation techniques.
These algorithms make use of the basic Multiplicative Weights algorithm in the manner
of Section 2.3.2, and they directly work on the constraints of the primal SDP. In this
sense, they may be called primal-only methods, in contrast to the primal-dual algorithms
of Chapter 4. We apply this method to the problems of MaxQP, a quadratic programming
problem which has MaxCut as a subcase, HaploFreq, a probability estimation problem
in computational biology, and Embedding, the problem of embedding a finite metric
space in `2 with the least distortion, and obtain fast (approximation) algorithms for each
of them.

The results of this chapter originally appeared in a joint paper with Sanjeev Arora
and Elad Hazan [14].

6.1 Semidefinite Programming: a recapitulation

We recall the notation of Chapter 4, and we consider minimization SDPs of the following
form:

min C •X
∀j ∈ [m] : Aj •X ≥ bj

Tr(X) ≤ R

X � 0 (6.1)
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Here, X ∈ Rn×n is a matrix of variables and A1,A2, . . . ,Am ∈ Rn×n. Also, [m] is
notation for the set {1, 2, . . . ,m}. Throughout this chapter, without loss of generality, we
assume that all matrices are real and symmetric. For matrices A,B, we use the notation
A •B = Tr(AB) =

∑
ij AijBij . This SDP is quite general. The trace bound is the only

non-standard constraint.
As discussed in the introductory chapter, the first polynomial-time algorithm for

semidefinite programming (strictly speaking, an approximation algorithm that computes
the solution up to any desired accuracy ε) used the ellipsoid method [50] but faster interior-
point methods were later given by Alizadeh [5], and Nesterov and Nemirovskii [83, 84].
The running time of these interior point algorithms is Õ(

√
m(m + n3)L) where L is an

input size parameter. In this chapter, the Õ notation is used to suppress polylog(mnε )
factors.

In addition to well-known approximation algorithms based on SDP such as MaxCut,
Sparsest Cut, Coloring, etc., SDP has also proved useful in a host of other settings.
In this chapter, we consider a few of these applications. For instance, Linial, London,
and Rabinovich [75] observe that given an n-point metric space, finding its minimum-
distortion embedding into `2 can be formulated as an SDP with m = O(n2) constraints,
which takes Õ(n4) time to solve. Recent approximation algorithms for the cut norm of a
matrix [8] and for certain subcases of correlation clustering [31] use a type of SDPs with
m = O(n), and hence require time Õ(n3.5). (An intriguing aspect of this work is that the
proof that the integrality gap of the SDP used in [8] is O(1) uses the famous Grothendieck
inequality from analysis.) Halperin and Hazan [51] showed that a biological probability
estimation problem, which estimates the frequencies of haplotypes from a noisy sample,
can be solved using SDP with m = O(n2).

Given the growing popularity of SDP, it would be extremely useful to develop alter-
native approaches that avoid the use of general-purpose interior point methods. Even
problem-specific approaches would be very useful and seem hard to come by.

The results of this chapter give such algorithms for various specific SDPs. These
algorithms are of type (B) considered in Chapter 1. We use the technique of Lagrangian
relaxation with the basic Multiplicative Weights algorithm to approximately solve the
SDPs.

This generalizes the work of Klein and Lu [67] who use the algorithm of Section 2.3.2
based on the Multiplicative Weights algorithm to approximately solve SDPs that arose in
the algorithms of Goemans-Williamson for Max Cut and Karger, Motwani, and Sudan
for Coloring. The Klein-Lu approach reduces SDP solving to a sequence of approximate
eigenvalue/eigenvector computations, which can be done efficiently using the well-known
power method.

6.2 Description of results

While the Klein-Lu work seemed promising, further progress then stalled. As we discuss in
some detail later on, the main reason has to do with the width parameter (see Definition 1),
which is ρ such that the linear functions appearing in the constraints take values in the
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range [−ρ, ρ]. Then the number of iterations in the Multiplicative Weights algorithm is
proportional to ρ2. Unfortunately, the width is large in most of the SDP relaxations
mentioned above: the SDPs considered by Klein-Lu happened to be among the few where
this problem is manageable.

In this chapter, we describe how to modify the Multiplicative Weights algorithm to
handle some of these high-width SDPs. Our technique is a hybrid of the Multiplicative
Weights technique and an “exterior point” (i.e., Ellipsoid-like method) of Vaidya; this
lowers the dependence on the width and is very efficient so long as the number of con-
straints with high width is “not too high.” (Actually the Vaidya algorithm is overkill in
most instances, where the number of high-width constraints is a small constant, and one
can use simpler ideas, based on binary search, that are reminiscent of fixed-dimension LP
algorithms.)

Formally, one needs a two-level implementation of the Multiplicative Weights update
idea, that combines old constraints into new, fewer constraints. Intuitively, this works
because the Multiplicative Weights algorithm excels at handling many low-width con-
straints and exterior point methods excel at handling a few, high-width constraints. The
idea is related to the observation in [85] that their packing-covering problems are solvable
in polynomial time using the dual ellipsoid method.

Next, we use a better technique for eigenvalue/eigenvector computations than the
power method, namely, the Lanczos algorithm. This is the method of choice among nu-
merical analysts, but has not been used in theory papers thus far because worst-case
analysis for it is hard to find in the literature. We adapt an analysis for semidefinite ma-
trices [71] to our needs (see Lemma 31). The Lanczos algorithm is quite efficient because
it can exploit the sparsity of the matrix. We also provide a sparsification procedure for
matrices (see Section 6.7) based on random sampling to further speed up the process.

Overview of our results.

Our algorithms assume a feasibility version of the SDP (6.1). Here, we implicitly perform
a binary search on the optimum and the objective is converted to a constraint in the
standard way.

∀j ∈ [m] : Aj •X ≥ bj

Tr(X) ≤ R

X � 0 (6.2)

The upper bound on the trace, Tr(X) =
∑

iXii, is usually absent in the textbooks, but
is natural for relaxation SDPs. For instance, in combinatorial optimization, usually we
have some unit vectors v1,v2, . . . ,vn associated with, say, the nodes in a graph, and
Xij = vi · vj . Then Tr(X) = n. In any case, Tr(X) for the optimum X can usually be
“guessed” by binary search.

We wish to solve the SDP approximately up to a given tolerance ε, by which we mean
that either we find a solution X which satisfies all the constraints up to an additive error
of ε, i.e. Aj • X ≥ bj − ε for j = 1, 2, . . . ,m, or conclude correctly that the SDP is
infeasible.
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We use the algorithm of Section 2.3.2, which approximately solves the feasibility prob-
lem

∃? X ∈ P : ∀j ∈ [m] : Aj •X ≥ bj (6.3)

where P = {X ∈ Rn×n : X � 0,Tr(X) ≤ R}. In each round t of this algorithm, we
get a probability distribution p(t) = 〈p1

(t), p2
(t), . . . , pm

(t)〉 on the constraints, and then
Oracle’s task is the following feasibility problem

∃? X ∈ P :
m∑
j=1

pj
(t)(Aj •X− bj) ≥ 0 (6.4)

This is actually an eigenvalue problem in disguise, since, as we will momentarily show,
assuming the system is feasible, then there is a feasible solution X that has rank 1.

Table 6.1 summarizes the improvements we obtain for various problems using this
approach. The main point to stress is that in practice our algorithm may run even faster
than the worst-case estimates in Table 6.1. Throughout this chapter we carefully list times
in terms of number of eigenvalue/eigevector computations required, and these tend to run
much faster than our worst-case estimate (which are formally given in Lemma 31 below).
By contrast, each iteration of Alizadeh’s SDP solver requires Cholesky decomposition,
which is inherently a Θ̃(n3) operation.

Problem Previous best Our algorithm Improvement

MaxQP Õ(n3.5) Õ
(
n1.5

ε2.5
·min

{
N, n1.5

εα∗

})
For N = o(n2)

α∗ ∈ [ 1
n , 1] or α∗ = ω( 1√

n
)

HaploFreq Õ(n4) Õ
(
n2.5

ε2.5

)
Ω(n1.5)

Embedding Õ(n4) Õ
(

n3

d2.5
minε

3.5

)
For dmin = ω(n−0.4)

Table 6.1: Running time obtained for several applications. The running times shown are
for a multiplicative 1− ε approximation to the MaxQP and Embedding problems, and
an additive ε approximation to the HaploFreq problem.

The worst-case running time is a function of the approximation guarantee ε. In some
cases, there are also dependencies upon other problem parameters. For instance, our
algorithm for MaxQP provides speedups when either of the following two conditions
are true (a) the number of nonzero entries in the matrix A in the objective function is
N = o(n2) or (b) the optimum of the SDP, α∗, is at least 1√

n

∑
i,j |Aij | . This covers a

wide range of matrices, including the ones arising in the MaxCut SDP.
Likewise, in the Embedding problem, where one is seeking the minimum distortion

embedding into `2, the ε is benign, say Ω(1). However, there is a dependence on the aspect
ratio; in other words, minimum squared internode distance dmin, where sum of squares of
all
(
n
2

)
internode distances is normalized to n2. Our algorithm provides a speedup when

dmin is at least n−0.4. (This is still an interesting set of metrics.)
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In the original paper on the topic of this chapter [14], we also considered applications
to the following SDPs: undirected Sparsest Cut and Balanced Separator, Min
UnCut, and Min 2CNF Deletion. We omit these applications in this chapter because
the improvements obtained were for a narrow range of parameters, and the results of
Chapter 4 subsume these applications anyway.

6.3 Description of the method

In this section, we give more details of the method, illustrating its application to the
SDP (MaxQP) given below. This SDP arises in many algorithms such as approximating
MaxCut, maximizing the correlation in correlation clustering, approximating the Cut-
Norm of a matrix, approximating the Grothendieck constant of a graph, etc. See [31] for
a discussion.

max A •X

∀i ∈ [n] : Xii ≤ 1
X � 0 (MaxQP)

We assume here that diag(A) ≥ 0, i.e. all diagonal entries of A are nonnegative. Let
N ≥ n be the number of non-zero entries of A. We wish to get a multiplicative 1−O(ε)
approximation to the optimum value of the SDP. Alizadeh’s interior point method solves
the SDP in Õ(n3.5) time.

Step I: Bounding the optimum and trace. We consider the general SDP (6.1). The
first step is to compute bounds on the optimum α∗ of the SDP, i.e. we find L ≤ U such
that α∗ ∈ [L,U ]. We implicitly assume that all our SDPs have positive optimum value.
We conduct a binary search for the optimum in the range [L,U ]. We also compute a
bound on the trace of the optimum, Tr(X) ≤ R, if it is not explicitly specified in the
SDP.

Example: SDP (MaxQP). We assume that
∑

ij |Aij | = 1, this amounts to scaling the
optimum by a fixed quantity, and the multiplicative approximation guarantees translate
to the unscaled problem directly.

Let X∗ be the optimum solution. Since X∗ is positive semidefinite, there are vectors
v1,v2, . . . ,vn ∈ Rn such that X∗ij = vi · vj . Thus, the Cauchy-Schwarz inequality implies
that for any i, j, (X∗ij)

2 ≤ X∗iiX∗jj ≤ 1, so |X∗ij | ≤ 1. Hence, α∗ = A •X∗ =
∑

ij AijX
∗
ij ≤∑

ij |Aij | = 1. Conversely, the matrix X specified by Xij = sgn(Aij)
n and Xii = 1 is

diagonally dominant and hence positive semidefinite, and achieves an objective value of
1
n . This gives a lower bound on α. We can bound the trace of the optimum as Tr(X) ≤ n.

Step II: Reduction to feasibility problem. We “guess” the value of α∗ using binary
search in the range [L,U ] computed in Step I. Let α be our current guess. Define a convex
set P = {X ∈ Rn×n : X � 0, Tr(X) ≤ R}. We rewrite the SDP as a feasibility problem
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for the binary search as follows:

− 1
α

C •X ≥ −1

∀j ∈ [m] : Aj •X ≥ bj

X ∈ P (6.5)

Note that an additive error of ε translates to a multiplicative error of 1 − O(ε) to the
objective, assuming the binary search guessed the value of the optimum to within a factor
of 1 + ε.

Example: SDP (MaxQP). We set P = {X ∈ Rn×n : X � 0, Tr(X) ≤ n}, and
consider the following feasibility problem, for α ∈ [ 1

n , 1]:

1
α

A •X ≥ 1

∀i ∈ [n] : −Xii ≥ −1
X ∈ P (6.6)

Step III: The Multiplicative Weights Update algorithm. Now, we turn to the
general SDP feasibility problem (6.3), since we have reduced the MaxQP problem to a
feasibility problem of this kind in Step II. Let Toracle be the time needed to implement the
Oracle. We can run the algorithm of Theorem 7, which we restate here in the context
of solving SDPs:

Theorem 30. Let ε > 0 be a given error parameter. Suppose there exists an (`, ρ)-
bounded ε

3 -approximate Oracle for the feasibility problem (6.4). Assume that ` ≥ ε
3 .

Then there is an algorithm which either solves the problem (6.3) up to an additive error
of ε, or correctly concludes that the system is infeasible, in time

O

(
`ρ log(m)

δ2
· Toracle +m

)
.

Example: SDP (MaxQP). We estimate width bounds on the Oracle. In (6.6), we
have 1

αA •X− 1 ∈ [−n
α − 1, nα ] for all X ∈ P, since

|A •X| ≤ |A • nI| = n|Tr(A)| ≤ n.

Similarly, 1 − Xii ∈ [−n, 1] for all X ∈ P. Thus, any implementation of the Oracle
which solves the feasibility problem (6.4) is (nα ,

n
α + 1)-bounded. We have m = n + 1,

R = n. Thus, the running time from Theorem 30 is Õ( n2

ε2α2 (Toracle + n)) which is worse
than Alizadeh’s algorithm for α = o(n−0.25) even without factoring in Toracle. We will
how to improve the running time momentarily.

Step IV: Oracle from eigenvector computations. Note that the Oracle can be
implemented by maximizing

∑m
j=1 pj(Aj •X − bj) over the set P = {X ∈ Rn×n : X �
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0,Tr(X) ≤ R}, where p = 〈p1, p2, . . . , pm〉 is a given probability distribution on the
constraints.

We show in Lemma 30 that this amounts to approximately computing the largest
eigenvector of the matrix C =

∑m
j=1 pj(Aj− bj

R I) up to tolerance δ = ε
3R . Define Tev(C, δ)

to be the time needed for this. Thus, Toracle = O(Tev(C, δ)).

Step V: Inner and Outer SDPs. Now we indicate our width reduction technique.
The observation is that the Oracle yields a separation hyperplane for the dual problem,
and so we can apply Vaidya’s algorithm. Recall that m is the number of constraints. Let
M(m) = O(m2.36) be the time needed to multiply two m ×m matrices. We prove the
following theorem in Section 6.4:

Theorem 31. With the setup as in Theorem 30, there is an algorithm which produces an
ε approximate solution to the general SDP (6.3) or declares correctly its infeasibility in
time

Õ(m log(ρ) · Toracle +m log(ρ)M(m log(ρ)))

Note that this algorithm has poor dependence on the number of constraints but handles
high width very well. On the other hand, the Multiplicative Weights algorithm has good
dependence on the number of constraints but poor dependence on the width. We therefore
seek to combine the two algorithms so as to be able to exploit the advantages of both.
For this, we define a more constraint specific notion of width:

Definition 4 (Constraint width). A constraint of the kind A •X ≥ b where X ∈ P, is
said to be (`, ρ)-bounded over P for some parameters 0 ≤ ` ≤ ρ, if one of the following
two conditions holds for all X ∈ P: either

A •X− b ∈ [−`, ρ], or
A •X− b ∈ [−ρ, `]

Then value ρ is called the width of the constraint.

Observe that in the SDP (MaxQP), there is a single constraint, 1
αA • X − 1 ≥ 0,

which has high width: O(nα). The other constraints have width bounded by n. This
phenomenon happens in all our applications: we find a constant sized set of constraints
of high width and the rest will have low width. We devise a hybrid algorithm, using the
multiplicative update method to handle the low width constraints and an exterior point
algorithm to handle the (few) high width constraints.

To describe this idea, let J ⊆ [m] be a subset of constraints, such that for all j ∈ J , the
constraint Aj ≥ bj is (`H , ρH)-bounded, and for all j ∈ [m] \ J the constraint Aj ≥ bj is
(`L, ρL)-bounded, for some parameters `H , ρH , `L, ρL. Here, we assume that ρH � ρL, so
that J is the index set of the high-width constraints. Let mH = |J |, and let mL = m−mH .

Now we push the high width constraints,into the convex domain for X, thus creating a
new convex set Q = {X ∈ P, ∀j ∈ J : Aj •X ≥ bj}, and run the Multiplicative Weights
Update algorithm of Theorem 30 on the other constraints with X ∈ Q. We call this the
outer SDP.
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The (outer) Oracle now needs to solve the following feasibility problem, given a
probability distribution p the set of constraints [m] \ J :

∃? X ∈ Q :
∑

j∈[m]\j

pj(Aj •X− bj) ≥ 0 (6.7)

As usual, it suffices to find an X ∈ Q which satisfies the feasibility problem (6.7) up to an
additive error of − ε

3 . This can be achieved by approximately solving the following SDP
with mH + 1 constraints: ∑

j∈[m]\j

pj(Aj •X− bj) ≥ 0

∀j ∈ J : Aj •X ≥ bj
X ∈ P

We call this the inner SDP. The (inner) Oracle for this SDP needs to optimize a weighted
combination of all m constraints over P, which is just the one we needed in Step IV.

We solve the inner SDP using the algorithm of Theorem 31. The number of constraints
in the inner SDP is mH + 1. Thus, the algorithm of Theorem 31 implements the outer
Oracle in

Õ(mH log(ρH) · Toracle +mH log(ρH)M(mH log(ρH)))

time. Here, Toracle is the time for implementing the inner Oracle, which, as proved
in Lemma 30, is O(Tev(C, ε

3R), where C is an arbitrary convex combination of all the
constraints.

Putting Theorem 30 and Theorem 31 together in this hybrid fashion, we obtain the
following theorem:

Theorem 32. With the given setup, the hybrid algorithm which composes an outer and
inner SDP produces an ε approximate solution to the general SDP (6.3) or declares cor-
rectly its infeasibility in time

Õ

(
`LρL
ε2

[mH log(ρH) · Toracle +mH log(ρH)M(mH log(ρH))] +mL

)
.

The time bound given in Theorem 32 is horrendous; we can simplify it considerably
by making the following assumptions on mH and ρH , which are satisfied in all our appli-
cations:

Corollary 6. If mH = Õ(1), and ρH = poly(mn), then the running time of the algorithm
of Theorem 32 reduces to

Õ

(
`LρL
ε2
· Toracle +m

)
.

Here, Toracle = O(Tev(C, ε
3R), where C is an arbitrary convex combination of all the

constraints.
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Example: SDP (MaxQP). We have only one high width constraint, 1
αA •X− 1 ≥ 0,

and so the set J consists of only this single constraint. Thus, mH = 1, mL = n, ρH =
O(nα) = O(n2), `L = 1, ρL = n. Thus, by Corollary 6, the SDP can be solved in time
Õ( n

ε2
· Toracle + n). Factoring in the Toracle = O(Tev(C, ε

3n), we get the following theorem,
which will be proved in section 6.6.1:

Theorem 33. A multiplicative 1−O(ε) approximation to SDP (MaxQP) can be obtained
in time

Õ

(
n1.5

ε2.5
·min

{
N,

n1.5

εα∗

})
.

Here, N is the number of non-zero entries in the matrix A in the objective function.

This running time is always better than the Õ(n3.5) running time of Alizadeh’s interior
point algorithm. It is asymptotically faster if the matrix A is not dense, i.e. N = o(n2),
or if α∗ = ω( 1√

n
).

We note here the special case of the MaxCut SDP. For this problem, the matrix A is
the combinatorial Laplacian of the input graph, divided by 4m (to make the

∑
ij |Aij | = 1),

where m is the total weight of all edges in the graph. Since a random cut in the graph
has expected value at least m

2 , we get that α∗ ≥ m/2
4m = 1

8 . Thus, our algorithm runs in
time Õ(n1.5 ·min{N,n1.5}).

The best algorithm for solving the MaxCut SDP is due to Klein and Lu [67], with
running time Õ(nN). Our algorithm is a

√
n factor worse when N = o(n2). However,

our algorithm solves the much more general problem (MaxQP) and the approach of [67]
does not extend to this general problem.

6.4 Proofs of the Main Theorems

In this section we prove Theorem 31. For convenience of notation, we define the linear
functions fj(X) = Aj •X− bj for j ∈ [m]. The problem is to check the feasibility of the
system of inequalities

∃? X ∈ P : ∀j ∈ [m] : fj(X) ≥ 0 (6.8)

We assume that there is an Oracle which does the following task: given a distribution
on the constraints p = 〈p1, p2, . . . , pm〉, solves the feasibility problem

∃? X ∈ P :
m∑
j=1

pjfj(X) ≥ 0 (6.9)

approximately, i.e. it either finds an X ∈ P which makes the weighted combination∑
j pjfj(X) ≥ − ε

3 or declares correctly that (6.9) is infeasible.
In the algorithm we describe, we do not use any special properties of the convex domain

P. So this algorithm applies to any general linear feasibility problem with an arbitrary
convex domain P, in the same setting as in Section 2.3.2, as long as we have access to an
Oracle of the kind described above. Let Toracle be the time needed for the Oracle. We
restate Theorem 31 in this setting:
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Theorem 31. Let ε > 0 be a given error parameter. Suppose there exists an (`, ρ)-
bounded, ε

3 -approximate Oracle for the feasibility problem (6.9). Assume that ` ≥ ε
3 .

Then there is an algorithm which either solves the feasibility problem (6.8) up to an ad-
ditive error of ε, or correctly concludes that the system is infeasible, in time

Õ(m log(ρ) · Toracle +m log(ρ)M(m log(ρ))).

Proof: To derive the algorithm, we will need the following version of Farkas’ lemma:

Lemma 27 (Farkas). Given a matrix A ∈ Rn×m and a vector c ∈ Rm, one and only one
of the following systems has a solution:

1. Ap ≤ 0, p ≥ 0 and c · p > 0 for some p ∈ Rm;

2. A>q ≥ c and q ≥ 0 for some q ∈ Rn.

Farkas’ Lemma implies the following lemma:

Lemma 28. Consider X1, ...,Xn ∈ P. Then exactly one of the following holds:

1. There exists a distribution p = 〈p1, p2, . . . , pm〉> such that for all i ∈ [n], we have∑
j pjfj(Xi) ≤ −ε.

2. There exist a distribution q = 〈q1, q2, ..., qn〉> such that for Y =
∑

i qiXi we have
that for all j ∈ [m], Y satisfies fj(Y) ≥ −ε.

Proof: In Lemma 27, choose the matrix A to be Aij = fj(Xi) + ε, and the vector c as
cj = 1 for all j ∈ [m]. Since c > 0, we conclude that the vectors p and q in Lemma 27 are
non-zero. By scaling we may assume that p is a distribution as required in this lemma.
Then the first case exactly corresponds to the first case of Lemma 27. The second case
of Lemma 27 translates to the following: there is a vector q̃ = 〈q̃1, q̃2, . . . , q̃n〉> such
that q̃ ≥ 0 and ∀j ∈ [m], we have

∑
i q̃i(fj(Xi) + ε) ≥ 1. Set qi = q̃i/

∑
k q̃k so that

q = 〈q1, q2, . . . , qn〉> is a distribution. Then for all j ∈ [m], we have
∑

i qifj(Xi) ≥
1∑
i q̃i
− ε ≥ −ε which implies that fj(

∑
i qiXi) ≥ −ε, since fj is a linear function. Setting

Y =
∑

i qiXi concludes the proof. 2

Lemma 29. Let X1, . . . ,Xn ∈ P. Suppose the first case of Lemma 28 holds, i.e. there is
a distribution p∗ = 〈p∗1, p∗2, . . . , p∗m〉> such that for all i ∈ [n], we have

∑
j p
∗
jfj(Xi) ≤ −ε.

Then the polytope Q of vectors 〈p1, p2, . . . , pm〉> ∈ Rm defined by the linear inequalities

∀i ∈ [n] :
∑
j

fj(Xi)pj ≤ −
3ε
4∑

j

pj ≤ 1 +
ε

4ρ∑
j

pj ≥ 1− ε

4ρ

∀j ∈ [m] : pj ≥ −
ε

2mρ
(6.10)

has volume at least ( ε
2mρ)m. Also, it is contained in an `∞ box of volume 2m.
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Proof: We show that the `∞ box around p∗ defined by B = {p ∈ Rm : ‖p−p∗‖∞ ≤ ε
4mρ}

is contained in Q. This box has volume ( ε
2mρ)m. This is true because for any p ∈ B, we

have:

∀i ∈ [n] :
∑
j

fj(Xi)pj ≤
∑
j

[
fj(Xi)p∗j + |fj(Xi)| ·

ε

4mρ

]
≤ −ε+mρ · ε

4mρ
= −3ε

4∑
j

pj ≤
∑
j

p∗j +m · ε

4mρ
= 1 +

ε

4ρ∑
j

pj ≥
∑
j

p∗j −m ·
ε

4mρ
= 1− ε

4ρ

∀j ∈ [m] : pj ≥ p∗j −
ε

4mρ
≥ − ε

4mρ

Here, the first inequality uses the fact that |fj(Xi)| ≤ ρ.
Next, note that for all j ∈ [m], we have − ε

4mρ ≤ pj ≤ 1 + ε
4ρ . So Q is contained in the

`∞ box {
p ∈ Rm : ∀j ∈ [m] : − ε

4mρ
≤ pj ≤ 1 +

ε

4ρ

}
,

which has volume ((1 + ε
4ρ) + ε

4mρ)m ≤ 2m. 2

At this point, we are ready to present the algorithm. We run Vaidya’s algorithm [93] for
deciding emptiness of a convex polytope equipped with a separation oracle. The algorithm
is analogous to the Ellipsoid Algorithm but is more efficient in terms of iterations needed.

The polytope in question is defined adaptively as follows: in each iteration of Vaidya’s
algorithm, a point X ∈ P may be generated by running Oracle on a distribution in
Rn×n. Let X1,X2, . . . ,Xn be all the points generated in this way over all iterations.
Then the polytope is Q defined by the linear inequalities (6.10) in Lemma 29.

The separation oracle works as follows: given a point p = 〈p1, . . . , pm〉>, it first checks
whether p satisfies the last three constraints, and returns one of them as a separating
hyperplane if it is violated. So assume that the last three constraints are satisfied by
p. Now, it calls Oracle on the distribution p̃ which is obtained as follows. Let q =
〈q1, . . . , qm〉> be defined by qj = pj + ε

4mρ . Note that qj ≥ 0 and

∑
j

qj =
∑
j

pj +
ε

4mρ
≤ 1 +

ε

4ρ
+

ε

4mρ
·m = 1 +

ε

2ρ
<

3
2
, (6.11)

if we assume that ε < ρ. Also,∑
j

qj ≥
∑
j

pj ≥ 1− ε

4ρ
> 0.

Now, we define the distribution p̃ = 〈p̃1, . . . , p̃m〉> as p̃j = qj/Z where Z =
∑m

j′=1 qj′ . If
Oracle declares that there for all X ∈ P,

∑
j p̃jfj(X) < 0, then the algorithm immedi-

ately aborts and declares infeasibility of the system. Otherwise, Oracle returns a point
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X ∈ P such that
∑

j p̃jfj(X) ≥ − ε
3 . Thus, we have

∑
j

(
pj +

ε

4mρ

)
· fj(X) ≥ −ε

3
· Z > −ε

2
,

since Z < 3
2 by (6.11). Also,∑

j

pjfj(X) +
ε

4
≥
∑
j

(
pj +

ε

4mρ

)
· fj(X),

since |fj(X)| ≤ ρ. From the above two inequalities, we have
∑

j pjfj(X) > −3ε
4 . Then the

constraint
∑

j pjfj(X) ≤ −3ε
4 serves as a separating hyperplane for Vaidya’s algorithm

and X becomes one of the Xi’s mentioned above.

Vaidya’s algorithm needs n = O

(
log
(

2m

( ε
2mρ

)m

))
= Õ(m log(ρ)) iterations to decide

emptiness of the polytope Q. In this case, the first case of Lemma 28 doesn’t hold, so
the second must. Since the existence of the distribution q = 〈q1, q2, . . . , qn〉> has been
established, it can be found by solving the linear program:

∀j ∈ [m] :
∑
i

fj(Xi)qi ≥ −ε∑
i

qi = 1

∀i ∈ [n] : qi ≥ 0 (6.12)

Note that n = Õ(m log(ρ)) so the linear program has Õ(m log(ρ)) variables and Õ(m log(ρ))
equations, and can be solved in Õ((m log(ρ))3) time using Ye’s algorithm [102]. The time
needed for Vaidya’s algorithm is Õ(m log(ρ) · Toracle + m log(ρ)M(m log(ρ)))), so overall
the time complexity is also Õ(m log(ρ) · Toracle +m log(ρ)M(m log(ρ)))). 2

6.5 Implementing Oracle using Approximate Eigenvector
Computations

In this section, we present lemmas which describe how to efficiently implement the Ora-
cle. Recall that the Oracle needs to solve the feasibility problem (6.4), which we restate
here: given a probability distribution p = 〈p1, p2, . . . , pm〉 on the constraints, consider the
following feasibility problem:

∃? X ∈ P :
m∑
j=1

pj(Aj •X− bj) ≥ 0

The Oracle needs to find an X ∈ P which satisfies this up to an additive error of ε
3 ,

or declare correctly that no X can satisfy this feasibility problem. We now show how to
implement the Oracle using an approximate eigenvector finding procedure:
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Lemma 30. Suppose we have a procedure, that given a matrix C ∈ Rn×n and a tolerance
δ > 0, computes a unit vector x which satisfies x>Cx ≥ −δ, in time Tev(C, δ), or declares
correctly that C is negative definite. Then, given a distribution p = 〈p1, p2, . . . , pm〉>, we
can implement Oracle by applying this procedure once with C =

∑m
j=1 pj(Aj − bj

R I) and
δ = ε

3R .

Proof: Suppose
∑m

j=1−pj · bj ≥ 0. In this case, the Oracle can simply return X = 0.
So assume that

∑m
j=1−pj · bj < 0, or equivalently,

∑m
j=1 pj · bj > 0.

Then the Oracle constructs the matrix C =
∑m

j=1 pj(Aj − bj
R I) and applies the

procedure of the lemma on C with δ = ε
3R . Suppose the procedure yields a unit vector

x such that x>Cx ≥ −δ, then the Oracle returns the matrix X̃ = Rxx>. Note that
Tr(X̃) = R. For this matrix, we have

m∑
j=1

pj(Aj • X̃− bj) =
m∑
j=1

pj(Aj • X̃− bj
R

I • X̃)

= C • X̃ = C •Rxx> = Rx>Cx ≥ R · − ε

3R
= −ε

3

as required.
Otherwise, the procedure declares correctly that C is negative definite. In this case,

the Oracle declares that no X ∈ P satisfies the feasibility problem (6.4). We show
now that this is correct. Suppose that in fact there were an X ∈ P which satisfies∑m

j=1 pj(Aj •X− bj) ≥ 0. Because X ∈ P, Tr(X) ≤ R and X � 0. Since C ≺ 0, we have
C •X < 0 (note that X 6= 0, since

∑m
j=1 pj · bj > 0). Then we have

0 > C •X =
m∑
j=1

pj

(
Aj •X− bj

R
I •X

)
≥

m∑
j=1

pj(Aj •X− bj) ≥ 0.

The second inequality follows because I•X = Tr(X) ≤ R. Thus, we have a contradiction.
2

By Lemma 30, the Oracle needed for our algorithms can be implemented by comput-
ing the eigenvector belonging to the largest eigenvalue of the matrix which represents the
weighted combination of the constraints. The Lanczos algorithm with a random starting
vector is the most efficient algorithm for finding extreme eigenvectors. The running time
for the Lanczos algorithm used in our context is the following:

Lemma 31. Let C ∈ Rn×n be a matrix with N ≥ n non-zero entries. Let λ1 := λ1(C)
and λn := λn(C). Let δ > 0 be a given error parameter, and let Λ be an upper bound
on |λn|. Let γ = λ1+δ

λ1+Λ . If λ1 ≥ − δ
2 , then with high probability, the Lanczos algorithm

with a random start applied to the matrix C + ΛI yields a unit vector x which satisfies
x>Cx ≥ −δ in time Õ( N√γ ). Thus, Tev(C, δ) = Õ( N√γ ).

Proof: We need Theorem 3.2(a) of Kuczyński and Wozńiakowski [71]:
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Theorem 34 (KW). Let M ∈ Rn×n be a positive semidefinite matrix. Then with high
probability, the Lanczos algorithm produces in O( log(n)√

γ ) iterations a unit vector x such

that x>Mx
λ1(M) ≥ 1− γ.

Now let M = C + ΛI. Notice that M is positive semidefinite, and λ1(M) = λ1 + Λ.
We set γ = λ1+δ

λ1+Λ . Note that if λ1 > δ, then γ > 0. We apply Theorem 34 with the given

value of γ to conclude that with high probability, in Õ( log(n)√
γ ) iterations a unit vector x

such that:
x>Mx
λ(M)

=
x>(C + ΛI)x

λ1 + Λ
=

x>Cx + Λ
λ1 + Λ

≥ 1− γ

Simplifying, we get x>Cx ≥ (1− γ)λ1 − γΛ = δ, so we return x.
The most expensive operation in each iteration of the Lanczos algorithm is a product

of some vector with the matrix M, and this can implemented in time O(N). Thus, the
overall running time becomes Õ( N√γ ). 2

Remark: The parameters γ in Lemma 31 is not known a priori, but in applications we
will derive suitable bounds on them. One convenient lower bound on γ can be obtained
as follows.

Lemma 32. Assume λ1 ≥ − δ
2 , and Λ ≥ δ. Then γ ≥ δ

2Λ .

Proof: If λ1 > 0, then
λ1 + δ

λ1 + Λ
≥ δ

Λ
≥ δ

2Λ
,

because δ ≤ Λ. If 0 ≥ λ1 ≥ − δ
2 , then

λ1 + δ

λ1 + Λ
≥
− δ

2 + δ

Λ
=

δ

2Λ
.

2

Lemma 31 shows that the running time of the Oracle depends on the sparsity of
C, i.e. the number on non-zero entries in it. In Section 6.7 we provide a randomized
sparsification procedure:

Lemma 33. Let C ∈ Rn×n be a symmetric matrix with N non-zero entries and let
S =

∑
ij |Cij |. Let δ > 0 be a given error parameter. Then there is a randomized procedure

which runs in Õ(N) time and with high probability produces a symmetric matrix C′ such
that C′ has O(

√
nS
δ ) non-zero entries and ‖C−C′‖2 ≤ δ.

Suppose we obtain C′ by sparsifying C using Lemma 33 with error parameter δ
4 , and

then we use the Lanczos algorithm of Lemma 31 with error parameter δ
2 . Then for any

unit vector x, we have |x>C′x−x>Cx| ≤ ‖C′−C‖ ≤ δ. So if the Lanczos procedure yields
a unit vector x such that x>C′x ≥ − δ

2 , then x>Cx ≥ −3δ
4 . Furthermore, if λ1(C′) < − δ

4 ,
then λ1(C) < 0, and hence C ≺ 0. The upshot is that we can use C′ in place of C in
the Lanczos algorithm, if it turns out to be sparser: the decision for specific applications
depends on the smaller of the quantities N and

√
nS
δ .
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6.6 Applications

In this section, we describe several applications of the method outlined above. It should
be noted that the method does not automatically yield faster algorithms; additional fine-
tuning (mostly in terms of bounding large negative eigenvalues) is necessary for specific
applications.

6.6.1 SDP relaxations of Quadratic Programs

Our first application is the SDP (MaxQP) that we used to illustrate the method, and we
complete the proof of Theorem 33.

Theorem 33. A multiplicative 1−O(ε) approximation to SDP (MaxQP) can be obtained
in time

Õ

(
n1.5

ε2.5
·min

{
N,

n1.5

εα∗

})
.

Here, N is the number of non-zero entries in the matrix A in the objective function.

Proof: We apply Corollary 6. The range of the constraints of the outer SDP, viz.
1−Xii ≥ 0 for 1 ≤ i ≤ n, is [1,−n] for X ∈ Q. Thus `L = 1, ρL = n. Now we bound the
running time of the eigenvector computation procedure for the Oracle.

Given non-negative weights p0, p1, . . . , pn which sum to 1, the matrix C from Lemma
30 in this case is p0( 1

αA − 1
nI) +

∑n
i=1 pi(

1
nI − eie>i ), where ei is the ith standard basis

vector, and δ = ε
6n or ε

3n , depending on whether we use the sparsification procedure or
not.

To apply Lemma 31, we need to bound the most negative eigenvalue, λn, of C. Observe
that Tr(C) = p0( 1

αTr(A)−1) ≥ −1. Since the trace equals the sum of the eigenvalues, we
conclude that (n− 1)λ1 + λn ≥ −1. If λ1 ≥ 0 then we conclude that |λn| ≤ (n− 1)λ1 + 1,
which implies that

γ =
λ1 + δ

λ1 + |λn|
≥ λ1 + δ

nλ1 + 1
≥ δ,

since δ < 1
n . If λ1 < 0, then |λn| ≤ 1, and hence

γ =
λ1 + δ

λ1 + |λn|
≥ λ1 + δ

λ1 + 1
≥ δ.

Thus, in either case γ ≥ δ ≥ Ω( εn), and by Lemma 31, the eigenvector procedure takes
Õ(N

√
n√
ε
) time.

If we apply the sparsification procedure of Lemma 33, then the relevant parameters
are S =

∑
ij |Cij | = O( 1

α

∑
ij |Aij |) = O( 1

α) (recall
∑

ij |Aij | = 1). Thus the sparsification

procedure yields a matrix C ′ with O(n
1.5

εα ) non-zero entries. Overall, the running time of
the Lanczos algorithm becomes Õ(min{N, n1.5

εα } ·
√

n
ε ) as stated.

Putting everything together, the final running time of the algorithm becomes

Õ

(
n1.5

ε2.5
·min

{
N,

n1.5

εα∗

})
.
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In each step of the binary search when α ≤ α∗, SDP (6.6) is feasible, we get a solution
X � 0 which satisfies the SDP up to an additive error of ε, i.e. for all i ∈ [n], Xii ≤ 1 + ε,
and A • X ≥ (1 − ε)α. Now consider the solution X̃ = 1

1+εX. Then for all i ∈ [n],
X̃ii ≤ 1, and A • X̃ ≥ 1−ε

1+εα ≥ (1− 2ε)α. So X̃ is a feasible solution with objective value
at least (1 − 2ε)α. When α > 1

1−2εα
∗, then no feasible solution with objective value at

least (1−2ε)α exists, so the Oracle declares the system infeasible in some iteration, and
we stop the binary search. In the binary search, we increase α by a factor of 1 + ε every
time. Thus, we get a 1− 3ε approximation to the α∗ when we stop. 2

6.6.2 SDP relaxations of biological probability estimation problems

The following SDP arises in the context of the biologically-motivated problem of estimat-
ing haplotype frequencies. See [51] for a more detailed description of the problem.

max A •X∑
ij

Xij = 1

∀i, j ∈ [n] : Xij ≥ 0
X � 0 (HaploFreq)

where A is a non-negative matrix, i.e. all its entries are non-negative. This SDP is
a natural relaxation in certain problems where a probability distribution is required.
Intuitively, we want to find a probability distribution {p1, p2, . . . , pn} which maximizes
the objective

∑
ij Aijpipj . In the SDP relaxation, the Xij variables represent pipj .

We apply our method to this problem. Step I requires that we bound the optimum
and the trace. Let the optimum to this SDP be denoted α∗. We claim that α∗ is in
the range maxij{Aij} · [1

2 , 1]. The upper bound is trivial since the objective is a convex
combination (with the weights Xij) of the Aij values. Let Ak` be the maximal Aij . Then
the lower bound is obtained by taking the vector u = 1

2(e` + ek), where ei is the ith

standard basis vector, and letting X be the positive semidefinite matrix uu>. We have
A •X = 1

4 [Akk + 2Ak` + A``]. Since all Aij are non-negative, this solution has value at
least 1

2Akl.
The trace of X is trivially bounded by 1 from the first constraint. Note also that

without loss of generality we can relax the first constraint to be
∑

ij Xij ≤ 1. This is
because in the optimum solution X the sum has to equal 1: all the quantities are non-
negative, and so scaling up the matrix X to make

∑
ij Xij = 1 doesn’t decrease the

objective value.

Theorem 35. SDP (HaploFreq) can be approximated up to an additive error of O(ε)
in Õ(n

2.5

ε2.5
) time.

Proof: According to step II, we “guess” α using binary search and reduce the SDP to
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the following problem. Here, P is the convex set {X ∈ Rn×n : X � 0, Tr(X) ≤ 1}.

1
α

A •X− 1 ≥ 0

1−
∑
ij

Xij ≥ 0

∀i, j ∈ [n] : Xij ≥ 0
X ∈ P

We now estimate the width of each constraint. We have maxX∈P(A • X) = ‖A‖ ≤
nmaxij{Aij}. Thus, the width of the first constraint is 1

α‖A‖+ 1 = n+ 1. Similarly, the
width of the second constraint is ‖J‖ + 1 = n + 1, where J is the all 1’s matrix. These
two constraints have high width and we will put into the inner SDP.

For any i, j, the width of the constraint Xij ≥ 0 is 1: this is because X � 0 implies
(by the Cauchy-Schwarz inequality) that |Xij | ≤

√
XiiXjj ≤ 1 since Tr(X) ≤ 1. We will

put these constraints in the outer SDP. Thus, `L = ρL = 1, and δ = ε
3 (sparsification is

not needed here). Let C represent the weighted combination of the constraints for the
Oracle. According to Corollary 6, the SDP can be ε approximately in Õ( 1

ε2
· [Tev(C, ε3)+

n2]) time.
It remains to estimate Tev(C, ε2). The matrix C is of the form p0( 1

αA− 1
nI) + p1( 1

nI−
J) +

∑
ij pijEij , where J is the all 1’s matrix, and p0, p1, pij for 1 ≤ i, j ≤ n are non-

negative weights summing to 1.
To bound the most negative eigenvalue, λn, of C, we use the Gershgorin circle theorem.

This implies that |λn| ≤ maxi{
∑

j |Cij |}. For the matrix C, the dominant contributors
to this maximum are the matrices 1

αA and J, the other matrices put together contribute
at most O(1) since p0 + p1 +

∑
ij pij = 1. For any i, we have

∑
j

1
α |Aij | ≤ 2n since

α ≥ 1
2 maxij Aij . Also, for any i,

∑
j |Jij | = n. Thus, the bound on |λn| is O(n).

Thus, by Lemma 32, γ ≥ Ω( εn), and hence by Lemma 33, Tev(C, ε2) = Õ(n
2.5
√
ε

) because
C is a dense matrix. Since

∑
ij |Cij | can be as large as Ω(n2), sparsification does not help

here.
Overall, the running time from Corollary 6 is Õ(n

2.5

ε2.5
). 2

For comparison, the best known interior point algorithm solves this SDP in Õ(n4)
time.

6.6.3 Embedding of finite metric spaces into `2

Given a finite metric space on n points specified by the pairwise distances {Dij}, em-
bedding into `2 with minimum distortion amounts to solving the following mathematical
program. For convenience of notation, let dij = D2

ij .

min α

∀i, j ∈ [n], i < j : dij ≤ Xii − 2Xij +Xjj ≤ α · dij
X � 0 (Embedding)

111



Here, since X � 0, there are vectors v1,v2, . . . ,vn ∈ Rn such that for all i, j ∈ [n],
we have Xij = vi · vj , and thus Xii − 2Xij + Xjj = ‖vi − vj‖2. Thus, if α∗ is the
optimum of this program, then the minimum distortion for embedding the metric into
`2 is

√
α∗. By Bourgain’s theorem [26], this minimum distortion is O(log n). Thus,

the optimum value α∗ of SDP Embedding is O(log2 n). We assume that the distances
are scaled so that

∑
ij dij = n2. We claim that this implies that there is an optimal

solution v1,v2, . . . ,vn which satisfies
∑

i ‖vi‖2 ≤ α∗n: we may assume that the optimal
solution satisfies

∑
i vi = 0, otherwise we can shift the origin to the sum of the vectors;

this does not change the pairwise distances ‖vi − vj‖2. Thus we have α∗
∑

ij dij ≥∑
ij ‖vi − vj‖2 = n

∑
i ‖vi‖2, which implies the claim. Since α∗ = O(log2 n), we may use

the trace bound Tr(X) ≤ O(log2(n) · n) in the SDP. Let the minimum squared internode
distance, minij{dij}, be denoted dmin.

Theorem 36. SDP (Embedding) can be approximated up to a 1 + O(ε) multiplicative
factor in Õ( n3

d2.5
minε

3.5 ) time.

Proof: We guess α using binary search in the range [1, O(log2 n)], and reduce the problem
to the following feasibility SDP. Here, P is the convex set P = {X ∈ Rn×n : X �
0,Tr(X) ≤ αn}.

∀i, j ∈ [n], i < j :
1
dij

(Xii − 2Xij +Xjj)− 1 ≥ 0

∀i, j ∈ [n], i < j : 1− 1
αdij

(Xii − 2Xij +Xjj) ≥ 0

X ∈ P (6.13)

We now estimate the width of each constraint. First, we note that since X � 0, let
v1, . . . ,vn ∈ Rn be vectors such that for all i, j ∈ [n], we have Xij = vi · vj . Thus,
Xii − 2Xij +Xjj = ‖vi − vj‖2. So we have

0 ≤ Xii − 2Xij +Xjj = ‖vi − vj‖2 ≤ 2‖vi‖2 + 2‖vj‖2 ≤ 2Tr(X) ≤ 2αn.

Thus, the first set of constraints of SDP (6.13) is (1, 2αn
dmin

) bounded. The second set of
constraints (1, 2n

dmin
) bounded.

Thus, by Theorem 30, an ε approximate solution to the SDP can be found in time
Õ( n

dminε2
· (Toracle + n2)). Note that we do not apply the hybrid algorithm of Corollary 6

here. It remains to estimate Toracle = O(Tev(C, δ), where C is the matrix representing the
weighted combination of all the constraints, and δ = ε

6αn or ε
3αn , depending on whether

we use the sparsification procedure or not.
The matrix C is of the form

∑
ij
pij
dij

(Tij − 1
2αnI) +

∑
ij

qij
αdij

( 1
2αnI − Tij), where for

all i, j ∈ [n], pij ≥ 0 and qij ≥ 0 and
∑

ij pij + qij = 1, and Tij is the matrix such that
Tij •X = Xii − 2Xij + Xjj . Note that ‖Tij‖ = 2, so we conclude that ‖C‖ ≤ O( 1

dmin
),

since C is a convex combination of the matrices 1
dij

(Tij − 1
2αnI) and 1

αdij
( 1

2αnI − Tij),
all of which have norms bounded by O( 1

dmin
). Thus, the most negative eigenvalue of C,
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Procedure Sparsify(C, ε)
for each i ≤ j ∈ [n] do
if |Cij | > ε√

n
then

C ′ji = C ′ij = Cij
else

C ′ji = C ′ij =


sgn(Cij) · ε√

n
with probability pij =

√
n|Cij |
ε

0 with probability 1− pij
return C′

Figure 6.1: The Sparsify procedure.

λn, can be bounded in absolute value by O( 1
dmin

). Thus, by Lemma 31, Tev(C, δ) can be

bounded by Õ( N
√
n√

εdmin
), where N is the number of non-zero entries in C, since δ ≥ Ω( ε

αn).
Sparsification could potentially reduce the number of matrix entries. Note that we

have
∑

ij |Cij | = Õ( 1
dmin

), again since C is a convex combination of matrices such that
the sum of the absolute values of their entries is O( 1

dmin
). So by Lemma 32, we have

γ ≥ Ω( εdmin
αn ), and so by Lemma 33 the number of entries could be reduced to Õ( n1.5

εdmin
).

Thus, the overall running time comes to

Õ

(
min

{
n3

d2.5
minε

3.5
,

n3.5

d1.5
minε

2.5

})
.

The first expression is better when dmin = ω(n−0.5). Interior point methods can solve
this SDP in time Õ(n4). Thus, the first expression is better than interior point methods
when dmin = ω(n−4), and the second expression is better when dmin = ω(n−0.333). Thus,
in the range of parameters when this algorithm beats the running time of interior point
methods, the first expression is always better. 2

6.7 Matrix sparsification

The results of this section originally appeared in a joint paper with Sanjeev Arora and
Elad Hazan [16]. In this section, we prove Lemma 33:

Lemma 33. Let C ∈ Rn×n be a symmetric matrix with N non-zero entries and let
S =

∑
ij |Cij |. Let δ > 0 be a given error parameter. Then there is a randomized procedure

which runs in Õ(N) time and with high probability produces a symmetric matrix C′ such
that C′ has O(

√
nS
δ ) non-zero entries and ‖C−C′‖2 ≤ δ.

Proof: The required procedure, Sparsify, is given in Figure 6.1. We set the parameter
ε = δ

16 . We now prove that it produces the desired result with high probability.
First, we prove that the number of non-zero entries in C is O(

√
nS
ε ) with high proba-

bility.
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Lemma 34. With probability at least 1− exp(−Ω(
√
nS
ε )), the matrix C′ contains at most

O(
√
nS
ε ) non-zero entries.

Proof: Since
∑

ij |Cij | = S, the number of entries with magnitude larger than ε√
n

is

at most
√
nS
ε . So without loss of generality, we may assume that all the entries have

magnitude smaller than ε√
n

.
The Chernoff bound [82] asserts that if X1, X2, . . . , Xn are indicator random variables

and X =
∑

iXi with E[X] = µ, then

Pr[X > (1 + ε)µ] <
[

eε

(1 + ε)1+ε

]µ
In our case, we set up indicator random variables Xij for i ≤ j which are 0 or 1 depending
on whether C ′ij = 0 or not. Let X =

∑
i≤j Xij . Then 2X is an upper bound on the

number of non-zero entries of C′. We have

E[X] =
∑
i≤j

pij =
∑
i≤j

√
n|Cij |
ε

≤
√
nS

ε
.

The claim follows by using the Chernoff bound with ε = e− 1. 2

Next, define E = C−C′. We will show that with high probability, for all unit vectors
x, we have |x>Ex| ≤ O(ε), which implies ‖C−C′‖2 ≤ O(ε).

Notice that for all coordinates i, j such that |Cij | ≥ ε√
n

, we have Eij = 0 . For the

rest of the coordinates, since E[C ′ij ] = sgn(Cij) · ε√
n
×
√
n|Cij |
ε = Cij , we conclude that

E[Eij ] = 0. We will now consider a ε0√
n

-grid on the unit sphere (ε0 is set to some constant,

say 1
2),

T =
{

x : x ∈ ε0√
n

Zn, ‖x‖2 ≤ 1
}
.

Feige and Ofek [39] give a bound on the size of T and show that it suffices to consider
only vectors in T , which we reprove here for completeness.

Lemma 35. The size of |T | is at most exp(cn) for c = ( 1
ε0

+ 2). If for every x,y ∈ T we
have |x>Ey| ≤ ε, then for every unit vector x, we have |x>Ex| ≤ ε

(1−ε0)2 .

Proof: Map every point in x ∈ T in a one-to-one correspondence with a n-dimensional
hypercube of side length ε0√

n
on the grid:

x 7→ Cx =
{

x + u : u ≥ 0, ‖u‖∞ ≤
ε0√
n

}
.

The maximum length of any vector in Cx is bounded by ‖x‖ + ε0 ≤ 1 + ε0, and thus
the union of these cubes is contained in the n-dimensional ball B of radius (1 + ε0). We
conclude:

|T | ×
(
ε0√
n

)n
=
∑
x∈T

Vol(Cx) ≤ Vol(B) =
πn/2

Γ(n/2 + 1)
(1 + ε0)n.
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And so:

|T | ≤ πn/2

Γ(n/2 + 1)

(
(1 + ε0)

√
n

ε0

)n
≤ exp

((
1
ε0

+ 2
)
n

)
.

Next, given any unit vector, x, let y = (1−ε0)x. By “rounding down” the coordinates
of y to the nearest multiple of ε0√

n
, we get a grid point z such that y ∈ Cz. Thus, the

maximum length of any vertex of Cz is bounded by ‖y‖ + ε0 = 1, so all vertices of Cz
are grid points in T . Express y as a convex combination of the vertices vi of Cz; viz.
y =

∑
i αivi with αi ≥ 0 and

∑
i αi = 1. Then we have

|y>Ey| = |(
∑
i

αivi)>E(
∑
i

αivi)| ≤
∑
i,j

αiαj |v>i Evj | ≤
∑
i,j

αiαjε = ε.

The second inequality above follows because we assumed that for all x′,y′ ∈ T , |x′>Ey′| ≤
ε. Finally, since y = (1− ε0)x, we have

|x>Ex| =
|y>Ey|

(1− ε0)2
≤ ε

(1− ε0)2
.

2

Let x,y ∈ T . Since E[Eij ] = 0, we conclude that E[x>Ey] = 0. We now a prove
strong concentration bound:

Lemma 36. With probability at least 1 − exp(−Ω(n)), for every x,y ∈ T it holds that
|x>Ey| ≤ cε.

Proof: We use the following bound from Hoeffding’s original paper [53]: let X1, ..., Xn

be independent random variables, such that Xi takes values in the range [ai, bi]. Let
X =

∑
iXi, and E[X] = µ. Then for any t > 0

Pr[|X − µ| ≥ t] ≤ 2 exp
(
− 2t2∑

i(bi − ai)2

)
.

Consider the random variables Zij = Eijxiyj , then x>Ey =
∑

ij Eijxiyj =
∑

ij Zij .

Since C ′ij is either sgn(Cij) · ε√
n

or 0, the squared range of Eij is ε2

n . Thus, the sum of

squared ranges for the variables {Zij , i ≤ j} at most
∑

i≤j
ε2

n x
2
i y

2
j ≤ ε2

n

∑
i x

2
i

∑
j y

2
j ≤ ε2

n ,

and similarly the sum of squared ranges for the variables {Zij , i > j} is bounded by ε2

n .
Since E[Zij ] = 0, by the Hoeffding bound we have:

Pr

|∑
i≤j

Zij | ≥ cε

 ≤ 2 exp

(
−2c2ε2

ε2

n

)
= 2 exp(−2c2n).

A similar bound holds for Pr[|
∑

i>j Zij | ≥ cε]. Since |x>Ey| = |
∑

i≤j Zij +
∑

i>j Zij |,
by the union bound we have

Pr[|x>Ey| ≥ 2cε] ≤ 4 exp(−2c2n).
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Since there are exp(2cn) pairs of vectors x, y ∈ T , the union bound implies that with
probability at least 1− exp(−Ω(n)), for all vectors x,y ∈ T , we have |x>Ey| ≤ cε. 2

Now, we finish the proof of Lemma 33. We set ε0 = 1
2 , so that c = 4. We set

ε = δ
16 in the Sparsify procedure. Thus, Lemma 36 shows that for all x,y ∈ T , we have

|x>Ey| ≤ δ
4 with high probability. Then Lemma 35 shows that for all unit vectors x, we

have |x>Ex| ≤ δ, as required. 2

6.8 Discussion

In this chapter we have described hybrid Lagrangian relaxation algorithms for solving
SDPs. The ideas are general though we customize them for some interesting SDPs. Each
iteration step is an approximate eigenvector computation, which is very efficient in prac-
tice, even though the theoretical worst case bounds listed here do not show this. (Even
so, in several cases the worst-case bounds provide speedups for specific SDPs over interior
point methods.) The main benefit comes from avoiding expensive Cholesky decomposi-
tions which interior point methods require. Also, since the final solution is obtained as
a convex combination of many rank 1 matrices, its Cholesky decomposition is automati-
cally obtained and there is no extra work to be done. Typically, approximation algorithms
require the Cholesky decomposition of the optimal solution.

The chief limitation of this method is chiefly from the polynomial dependence on 1
ε .

Some applications require ε to be very tiny and then this method is rendered useless. The
main goal of future work will be to reduce the dependence on 1

ε .
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Chapter 7

Graph Partitioning using
Expander Flows

In this chapter, we focus on some graph partitioning problems considered in Chapter 4,
viz. the Sparsest Cut and Balanced Separator problems for undirected graphs.
These problems ask for a partition of the input graph into two large pieces while min-
imizing the size of the “interface” between them, as measured by the number of edges
crossing the partition. As mentioned previously, such graph partitions are of fundamental
importance, appearing in the theory of Markov chains, geometric embeddings, divide-and-
conquer algorithms, clustering algorithms etc. In Chapter 4, we showed how to obtain
an O(

√
log n) factor approximation to the Sparsest Cut and Balanced Separator

problems in Õ(n2) time by approximately solving the SDP using a primal-dual approach.
In this chapter, we consider alternative approximation algorithms for these problems

using a notion (which appeared in the original Arora, Rao Vazirani (ARV) paper [18])
called expander flows. These are multicommodity flows in the graph whose demand graph
is an expander. The existence of an expander flow provides a lower bound on the expansion
of a graph, and ARV showed that an expander flow which bounds the expansion of the
graph to within a O(

√
log n) factor can be found, though their algorithm made use of the

ellipsoid algorithm and hence is quite inefficient.
We cast the problem of routing an expander as a linear feasibility program, and use the

basic Multiplicative Weights to solve it in time Õ(n2). Thus, we compute an O(
√

log n)
factor approximation to the Sparsest Cut and Balanced Separator problems in
Õ(n2) time. This matches the running time of the algorithms of Chapter 4, but the
technique is quite different, involving flow computations which also produce a certificate
of expansion.

The results of this chapter first appeared in a joint paper with Sanjeev Arora and Elad
Hazan [12].
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7.1 Graph partitioning: a recapitulation

We now recall some notation for the problems considered in this chapter. We are given
a graph G = (V,E) with specified capacities ce for every edge e. Let n := |V |,m := |E|.
For any cut (S, S̄) where S̄ = V \ S and |S| ≤ |V | /2, the edge expansion of the cut is
E(S, S̄)/ |S|, where E(S, S̄) is the total capacity of the edges crossing the cut. In the
Sparsest Cut problem we wish to determine the cut with the smallest edge expansion:

α(G) = min
S⊆V,|S|≤|V |/2

E(S, S̄)
|S|

. (7.1)

A cut (S, S̄) is c-balanced, for some parameter c ≤ 1/2, if both S, S̄ have at least c |V |
vertices. In the minimum c-Balanced Separator problem we wish to determine αc(G),
the minimum expansion of c-balanced cuts. The conductance of a cut (S, S̄) is the quantity
E(S, S̄)/E(S), where E(S) denotes the sum of degrees (in terms of edge capacities) of
nodes in S, and here we assume that E(S) ≤ E(V )/2. In the Graph Conductance
problem we wish to determine the cut with the smallest conductance:

Φ(G) = min
S⊆V,E(S)≤E(V )/2

E(S, S̄)
E(S)

. (7.2)

Efforts to design good approximation algorithms for these NP-hard problems have
spurred the development of many subfields of theoretical computer science. The earliest
algorithms relied on spectral methods introduced — in the context of Riemannian mani-
folds — by Cheeger [35] and improved by Alon and Milman [7] and Alon [6]. Though this
connection between eigenvalues and conductance only yields a weak approximation (the
worst-case approximation ratio is n), it has had enormous influence in a variety of areas,
including random walks, pseudorandomness, error-correcting codes, and routing.

Leighton and Rao [74] designed the first true approximation by giving O(log n)-
approximations for Sparsest Cut and Graph Conductance and O(log n)-pseudo-
approximations for the minimum c-Balanced Separator. They used a linear pro-
gramming relaxation of the problem based on multicommodity flows proposed in [88].
Leighton, Rao and others used similar ideas to design approximation algorithms for nu-
merous NP-hard problems, see the surveys [89, 95]. Furthermore, efforts to improve these
ideas led to progress in other areas, such as fast computations of multicommodity flows
and packing-covering linear programs [103, 85, 44], and efficient geometric embeddings
of metric spaces [75]; see also [19].

Arora, Rao and Vazirani (ARV) [18] designed an O(
√

log n)-approximation algorithm.
They use semidefinite programming (SDP), a technique introduced in approximation al-
gorithms by Goemans and Williamson [45]. The running time of the ARV algorithm
is dominated by the solution of this SDP, which takes Õ(n4.5) time using interior point
methods [5]. (Here and in the rest of this chapter, Õ(·) notation is used to suppress poly-
logarithmic factors.) New techniques in high-dimensional geometry introduced by their
analysis found immediate application in algorithms for other problems; e.g. the graph
partitioning algorithms considered in Chapter 4 (which are in turn inspired by the work
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of [2]), and embedding algorithms of negative type metric spaces into `2 [32, 17]. In Chap-
ter 4, we showed how to obtain an O(

√
log n) factor approximation to the Sparsest Cut

and Balanced Separator problems in Õ(n2) time by approximately solving the SDP
using a primal-dual approach.

In this chapter, we consider alternative approximation algorithms for these problems
using a notion called expander flows. These are multicommodity flows in the graph whose
demand graph (i.e., the weighted graph 〈dij〉ij where dij is the flow shipped between nodes
i, j) is an expander. Of course, Leighton and Rao had shown how to embed even the com-
plete graph (which in particular is an expander) in the host graph, so the important issue
here is the edge congestion (maximum amount of flow using an edge). The flows exhibited
by Arora, Rao, Vazirani are efficient enough to work with a

√
log n factor lower congestion

than Leighton-Rao flows. Thus these flows can be used to certify that the expansion is
Ω(α(G)/

√
log n). (Note that determining graph expansion is coNP-complete [24], so we

cannot expect to have succinct certificates that prove that the expansion is exactly α(G).)
In addition to being an interesting graph theoretic fact — analogous to, say, the ap-

proximate max-flow min-cut theorem that underlies Leighton-Rao’s result — the existence
of such expander flows seems to hint at a faster version of the ARV approximation al-
gorithm for Sparsest Cut. After all, computation of multicommodity flows is a highly
developed area today. Thus an approximation algorithm for Sparsest Cut could try to
route a multicommodity flow in the graph, and modify it using eigenvalue computations
that check if the current demands form an expander. If an expander flow exists (given a
certain upper bound on congestion) then the final multicommodity flow would converge to
it. If the expander flow doesn’t exist, the algorithm would presumably find a very sparse
cut that “proves” this fact. ARV [18] suggested this approach for designing faster algo-
rithms, though the best algorithm they could come up with used the Ellipsoid method,
and hence was less efficient even than the SDP-based one.

This chapter presents an Õ(n2) time randomized algorithm that uses expander flows to
compute a O(

√
log n)-approximation to Sparsest Cut. This essentially matches the run-

ning time of the best implementations of Leighton-Rao’s O(log n)-approximation (Benczúr
and Karger [22], the last paper in a long line of work), and also matches the running time
of the algorithms described in Chapter 4. The algorithm computes an expander flow
in a sparse weighted graph that is obtained by Benczúr and Karger using a (nontrivial)
random sampling on the original graph. This expander flow suffices to certify the expan-
sion of the original graph. Furthermore, the algorithm produces, in addition to expander
flows, a distribution on O(log n) balanced cuts, which can be viewed as an `1 metric, and
thus can be embedded in `22. Then we use the ideas of Arora-Rao-Vazirani to obtain the
O(
√

log n)-approximate sparsest cut from this metric.
The algorithm can also yield expander flows in any weighted graph on m edges in

Õ(m2) time.

Overview of methodology

As mentioned, we first use the sparsification technique of Benczúr-Karger (see Theo-
rem 17) to transform our graph to a sparse weighted graph in which the number of edges

119



m = Õ(n). The value of the sparsest cut is essentially unchanged, so we find expander
flows in the sparse graph.

Many papers (such as [85, 103]) have described efficient algorithms for packing and
covering problems based on the Multiplicative Weights algorithm of Section 2.3.2. The
linear program for finding expander flows also has packing and covering constraints, and
so we can apply the algorithm of Section 2.3.2 to solve it (actually, the dual to the linear
program). The issue is that the linear program has exponentially many variables, corre-
sponding to every path in the graph, and so the dual has exponentially many constraints.
However, by only considering shortest paths, we can restrict the number of constraints
to O(n2), at the expense of getting concave constraints (which can be handled using the
algorithm of Section 2.3.2).

The weights generated in the algorithm can now be interpreted as demands for a
multi-commodity flow. The Oracle in the Multiplicative Weights algorithm now needs
to check whether the demands do correspond to an actual expander flow. In the interest
of keeping the width low, the Oracle only checks if the demands correspond to an
approximate expander flow, viz. a “pseudo-expander flow”. Another reason for the need
to consider pseudo-expander flows arises from a lack of precision because the Oracle uses
approximate flow algorithms and eigenvalue computations. The final pseudo-expander
flow obtained is thus fairly coarse, but an expander flow is such a robust object that
anything even remotely resembling it can be easily turned into a true expander flow.

We design the Oracle carefully so that it runs in Õ(n2) time and yet manages to
keep the width O(1), thus ensuring that the Multiplicative Weights algorithm converges
in O(log n) rounds. The Oracle uses a combination of random sampling (above and
beyond the use of Benczúr-Karger at the very start), approximate min-cost concurrent
multicommodity computations, and approximate eigenvalue computations to generate its
response.

The outline appears in Section 7.2 and subsequent sections fill in the details. We note
that when the algorithm fails to result in an expander flow, then one can produce an
approximately optimum sparsest cut; this part relies on the analysis in [18].

7.2 Expander flows and algorithm overview

We now define expander flows and outline the main ideas in our algorithm.
All weighted graphs in this paper are symmetric, that is dij = dji for all node pairs

i, j. We call di =
∑

j dij the degree of node i. We emphasize that degrees can be fractions
(i.e., less than 1).

A multicommodity flow f in an capacitated graph G = (V,E) is an assignment of
demand dij ≥ 0 to each node pair {i, j} and a flow fp to every path p in the graph which
meets the demands; i.e. we can route dij units of flow between i and j, and can do
this simultaneously for all pairs without violating any edge capacities. We refer to the
complete weighted graph with edge {i, j} having weight dij as the demand graph of the
flow. Given a subset S ⊆ V the demand crossing the cut (S, S̄) is the capacity of the cut
(S, S̄) in the demand graph, i.e. d(S, S̄) =

∑
i∈S,j∈S̄ dij .
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Definition 5. The graph with edge weights 〈dij〉ij is a D-regular β-expander if it has
maximum degree at most D and for any subset S ⊆ V such that |S| ≤ n/2 the total weight
crossing the cut (S, S̄), viz. d(S, S̄) =

∑
i∈S,j∈S̄ dij, satisfies

d(S, S̄) ≥ βD|S|.

A multi-commodity flow f is called a D-regular β-pseudo expander flow (or just expander
flow for short) if its demand graph is a D-regular β-expander.

Note that we have relaxed D-regularity and only require maximum degree D; this is
without loss of generality since one could add self-loops to raise all degrees to D.

Lemma 37. If a graph G admits a multicommodity flow whose demand graph is a D-
regular β-expander, then its expansion is at least βD.

Proof: Let 〈dij〉ij be the demands in the D-regular β-expander flow. Then for any S ⊆ V
with |S| ≤ n/2, the capacity of the cut (S, S̄) must be at least the demand crossing it.
Thus,

E(S, S̄) ≥ d(S, S̄) ≥ βD|S|,

which implies that E(S,S̄)
|S| ≥ βD. Thus, the expansion of G is at least βD. 2

Another notion we will need is that of a pseudo-expander flow:

Definition 6. The graph with edge weights 〈dij〉ij is a D-regular (c, β)-pseudo expander
if it has maximum degree at most D and for any subset S ⊆ V such that cn ≤ |S| ≤ n/2
the total weight crossing the cut (S, S̄), viz. d(S, S̄) =

∑
i∈S,j∈S̄ dij, satisfies

d(S, S̄) ≥ βD|S|.

A multi-commodity flow f is called a D-regular (c, β)-pseudo expander flow (or just pseudo-
expander flow for short) if its demand graph is a D-regular (c, β)-pseudo expander.

Notice that a D-regular β-expander flow is in particular a D-regular (γ, β)-pseudo
expander flow for each γ. Just like expander flows, pseudo-expander flows can be used to
obtain lower bounds on the expansion of balanced cuts:

Lemma 38. If a graph G admits a multicommodity flow whose demand graph is a D-
regular (c, β)-pseudo expander, then the expansion of all c-balanced cuts is at least βD.

This lemma is proved just as before. The following theorem of Arora, Rao and Vazi-
rani [18] shows that the notions of expander flows and pseudo-expander flows allow us to
obtain O(

√
log n) approximations to the expansions of the Sparsest Cut and minimum

c-Balanced Separator respectively:

Theorem 37 ([18]). There is a constant β0 > 0 such that every graph G = (V,E) admits
a D-regular β0-expander flow, where D = Ω(α(G)/

√
log n). Further, every graph G admits

a D-regular (c, β0)-pseudo expander flow, where D = Ω(αc′(G)/
√

log n) for some c′ ≤ c.
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The essence of our work is to show how to efficiently compute such expander flows.
To understand this algorithm it helps to first look at an LP whose feasibility is implied
by the above Theorem. (This LP is mentioned in the introduction of [18] and motivated
the results of that paper.) Let D be the degree of interest; think of it as a “constant” in
the LP, not as a variable.

For all simple paths p in the graph, we have a non-negative variable fp. Let Pij be
the set of paths connecting node pair {i, j}, Pi∗ be the set of paths originating from node
i, and PS,S̄ be the set of paths having end points on either side of the cut (S, S̄). In the
following LP, we use the notation “∀S” to only refer to subsets of vertices of size at most
n/2. The Primal LP is

∀i :
∑
p∈Pi∗

fp ≤ D

∀e :
∑
p: e∈p

fp ≤ ce

∀S :
∑

p∈PS,S̄

fp ≥ β0D|S| (7.3)

The LP for D-regular (c, β0)-pseudo expander flows is the same as the one above except
that the third set of constraints is only over subsets of vertices S such that cn ≤ |S| ≤ n/2.
We give a unified treatment of both LPs, and in the following sections, whenever a subset
of vertices S occurs, it is implicitly assumed that |S| ≤ n/2, and, in the case of the c-
Balanced Separator problem, |S| ≥ cn. We will need to use the constant c even in
the context of Sparsest Cut, and in this case we set c = 1

2 .
As outlined in [18], the Primal LP can be solved to near-optimality in polynomial

time by an Ellipsoid-like method, using an eigenvalue computation as a separation or-
acle. To design a better algorithm we consider the dual to the LP and solve it using
the Multiplicative Weights algorithm of Section 2.3.2. Since the algorithm in that frame-
work maintains a distribution on all pure row strategies, it is important to work with
games where the number of pure row strategies is polynomial. In particular, we need a
polynomial-size representation of the flow. The standard representation uses variables fije
for each demand pair (i, j) ∈ V × V and edge e ∈ E. We do not know how to formulate
our algorithm using this representation, and even if we did, the number of variables (i.e.,
number of pure strategies for the row player) would be Ω(n2m), which would be a lower
bound on the running time1. The idea instead is to not use any representation of the
flows at all, and to maintain only the demands dij . Now the number of variables is

(
n
2

)
and so we at least have a prayer of achieving Õ(n2) running time.

We now consider the Dual LP to (7.3). In this Dual LP we have non-negative
1Note that it is possible to use random sampling to reduce the number of nonzero demands to O(n logn);

in fact this is done during every iteration of our algorithm while computing the best response for the column
player. However, the Multiplicative Weights update rule seems to require updating the distribution on all
row strategies, and indeed we update all O(n2) demands at every iteration.
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variables si, we, zS corresponding to vertex i, edge e, and subset S ⊆ V respectively.

min D
∑
i

si +
∑
e

cewe − β0D
∑
S

|S|zS

∀ij,∀p ∈ Pij : si + sj +
∑
e∈p

we −
∑

S: i∈S,j∈S̄

zS ≥ 0 (7.4)

Lemma 39. If the Primal is feasible, then the optimum of the Dual LP is non-negative.

Proof: This is a simple consequence of weak duality. Let fp be an assignment of flow to
paths p which satisfies (7.3). Then, if x = 〈s,w, z〉 is any feasible dual solution, then

0 ≤
∑
ij

∑
p∈Pij

fp

si + sj +
∑
e∈p

we −
∑

S: i∈S,j∈S̄

zS


=
∑
i

∑
p∈Pi∗

fpsi +
∑
e

∑
p3e

fpwe −
∑
S

∑
p∈PS,S̄

fpzS

≤
∑
i

Dsi +
∑
e

cewe − β0D
∑
S

|S|zS ,

because the fp’s satisfy (7.3). Thus, the Dual objective value is non-negative, as required.
2

As it stands, the Dual LP has exponentially many constraints corresponding to all
possible paths p in the graph. The Dual can be equivalently written with only O(n2)
constraints with the following observation. For any pair i, j, and for any dual solution
x = 〈s,w, z〉, let p be the shortest path between i and j under the edge lengths we,
i.e. p = arg minp∈Pij

∑
e∈pwe. Then if the dual constraint in (7.4) corresponding to p

is satisfied, then so are the constraints to all the other paths in Pij . Let lij(x) be the
length of the shortest path between i and j under the edge lengths we. Then we have the
following equivalent Dual program which has only

(
n
2

)
constraints:

min D
∑
i

si +
∑
e

cewe − β0D
∑
S

|S|zS

∀ij : si + sj + lij(x)−
∑

S: i∈S,j∈S̄

zS ≥ 0 (7.5)

In this case, the primal variables corresponding to the constraints for a pair of nodes
{i, j} is interpreted as aggregate demand dij between them.

Lemma 40. All constraints in the Dual program (7.5) are concave functions of the dual
variables x.

Proof: Since the only non-linear part of the constraints of the Dual program (7.5) are
the functions lij , it suffices to show that these functions are concave. For this purpose, let
x = 〈s,w, z〉 and x′ = 〈s′,w′, z′〉 be two vectors of dual variables, and let λ ∈ [0, 1]. We
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need to show that lij(λx + (1−λ)x′) ≥ λlij(x) + (1−λ)lij(x′) to show that lij is concave.
Now, let p be the shortest path from i to j under edge lengths λw + (1− λ)w′. Then

lij(λx + (1− λ)x′) =
∑
e∈p

λwe + (1− λ)w′e

= λ
∑
e∈p̃

we + (1− λ)
∑
e∈p̃

w′e

≥ λlij(x) + (1− λ)lij(x′),

because the path p has length at least lij(x) under w, and at least lij(x′) under w′, by
the definition of lij . 2

We now consider the convex domain of dual variables

Q′ = {x : D
∑
i

si +
∑
e

cewe ≤ βnD;
∑
S

|S|zS = n}.

where β � β0 is a small positive constant to be chosen later. This set is chosen so that
all dual vectors x ∈ Q′ make the Dual objective negative: for all x ∈ Q′, we have

D
∑
i

si +
∑
e

cewe − β0D
∑
S

|S|zS ≤ −(β − β0)nD < 0.

Now, consider the following feasibility problem:

∃? x ∈ Q′ : ∀ij : si + sj + `ij(x)−
∑

S: i∈S,j∈S̄

zS ≥ 0 (7.6)

The significance of this feasibility problem is given by the following lemma, proved in
Section 7.4:

Lemma 41. There is a constant δ > 0 such that if x ∈ Q′ satisfies the feasibility problem
(7.6) up to additive error δ, then there is an algorithm that uses x to find a c′-balanced
cut of expansion O(

√
log n ·D), for some c′ ≤ c.

We can now run the Multiplicative Weights algorithm of Section 2.3.2 to solve the
feasibility problem (7.6). If the algorithm manages to satisfy (7.6) over Q′, then it implies
that the current value of D is too high: there is no expander flow which meets the degree
bound D.

The Multiplicative Weights algorithm generates probability distributions p = 〈pij〉ij
on the constraints in every round. By scaling up the distribution by 1

2nD, we obtain a
set of demands 〈dij〉ij such that

∑
i<j dij = 1

2nD. These dij ’s correspond to demands for
a multicommodity flow problem; we emphasize that the demands need not correspond
to an expander flow: there may not be a flow 〈fp〉p satisfying these demands which also
satisfies the Primal constraints.

We can implement the required Oracle for the Multiplicative Weights algorithm
using a combination of mincost concurrent flow, eigenvalue computations, and random
sampling in Õ(n2) time. The width of the implementation of the Oracle turns out to be
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O(n), and thus by Theorem 6, the Multiplicative Weights algorithm converges in Õ(n2)
rounds. Thus the overall running time would be Õ(n2×n2) = Õ(n4). This is only slightly
better than solving SDPs or LPs.

Now we describe a related setting in which the losses are truncated and the convex
domain is restricted, so that the width is O(1). The implementation of the Oracle
is considerably more complicated now, but it still runs in Õ(n2) time. Then Theorem 6
implies that convergence occurs in O(log n) rounds, and the overall running time is Õ(n2).

First, we restrict the convex domain for the problem as follows:

Q :=
{
x ∈ Q′ : ∀i : si ≤ 1/ε and ∀S s.t. |S| < cn : zS = 0

}
. (7.7)

Here ε is a small constant defined in Section 7.3. Next, we truncate the lij ’s: define

`ij(x) = min {lij(x), 1/ε} . (7.8)

Since `ij is defined as the minimum of two concave functions (lij and the constant function
which takes the value 1/ε), it is also a concave function. Now, we consider the following
feasibility problem (here, we set c = 1

2 for the Sparsest Cut problem):

∃?x ∈ Q : ∀ij : si + sj + `ij(x)−
∑

S: i∈S,j∈S̄

zS ≥ 0 (7.9)

Since we truncated the lij ’s and restricted the domain Q′, if (7.9) is feasible, then so is
(7.6). Thus, it suffices to solve (7.9) up to the desired additive error δ.

Now we can see how these changes restrict the width of the Oracle to O(1): since
zS > 0 only for |S| ≥ cn, and

∑
S |S| zS = n, we have

∑
S zS ≤ 1/c. Thus, for any i, j

and any x ∈ Q, we have

−1
c
≤ si + sj + `ij(x)−

∑
S: i∈S,j∈S̄

zS ≤
3
ε
.

Thus, any implementation of an Oracle for this problem is (O(1), O(1))-bounded, and
thus the width is O(1).

Now, we consider the Oracle for this problem. Given a set of demands d = 〈dij〉ij ,
the Oracle needs to solve following feasibility problem:

∃? x ∈ Q′ :
∑
ij

dij

[
si + sj + `ij(x)−

∑
S: i∈S,j∈S̄zS

]
≥ 0 (7.10)

Recall that di =
∑

j dij and d(S, S̄) =
∑

i∈S,j∈S̄ dij . For notational convenience, we
define the payoff function for the Oracle to be the LHS in (7.10):

v(d,x) :=
∑
ij

dij

[
si + sj + `ij(x)−

∑
S: i∈S,j∈S̄zS

]
=
∑
i

disi +
∑
ij

dij`ij(x) +
∑
S

d(S, S̄)zS . (7.11)
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The Oracle’s objective now is to enforce non-negative payoff (as measured by v(d,x))
when given a set of demands d. The next theorem (proved in Section 7.3), describes an
implementation for the Oracle which runs in Õ(n2) time, with the property that if the
current set of demands d is such that the Oracle cannot enforce non-negative payoff
(which must happen close to convergence), then d “almost” represents an expander flow;
in fact we obtain a pseudo-expander flow. A pseudo-expander flow can be used to find
either an expander flow, or a cut of expansion O(D). We prove the following lemma in
Section 7.3:

Lemma 42. There is a randomized procedure, Oracle, which given a set of demands d,
runs in Õ(n2) time and

1. either produces an x ∈ Q with v(d,x) ≥ 0 in which exactly one set S ⊆ V with at
least cn vertices has a non-zero zS,

2. or else, Oracle fails. In this case, a D-regular (c, β2)-pseudo-expander flow can be
constructed from d, for some constant β2 which depends only on β.

This lemma is sufficient for the Balanced Separator problem. For the Sparsest
Cut problem, whenever the Oracle finds, and we obtains a D-regular (c, β2)-pseudo
expander flow, it runs the algorithm given by the following lemma (the stipulation on
the number of non-zero demands will be met by random sampling), which shows that
we can pass from a pseudo-expander-flow to an expander flow (and when we fail to so,
we can obtain a reason for the failure in form of a sparse cut). This lemma is proved in
Section 7.6. Note that the number of edges, m, is Õ(n), since we sparsify the graph first
using the techniques of Benczúr and Karger [22].

Lemma 43. Let f = 〈fp〉p be a D-regular (c, β)-pseudo-expander flow on a graph G.
Assume that the flow has non-zero demand on only O(n log n) pairs of vertices. Then,
there is a procedure that in time Õ(m1.5), finds either

1. a D-regular β2

130 expander flow,

2. or, a cut of expansion at most 1
cD.

Finally, if the Oracle never fails, then the Multiplicative Weights algorithm finds an
feasible solution for the feasibility problem (7.9) up to any specified additive error δ. In
this case, by Lemma 41, we can find a balanced cut of value O(

√
log n ·D) of the optimal.

Thus, putting Lemmas 41, 42 and 43 together (noting that we set c = 1
2), we immediately

have the following main theorem:

Theorem 38. For some universal constant β, there is a procedure, that given a graph G
and a value D, finds in Õ(n2) time either

1. a D-regular β-expander flow, or

2. a cut of expansion at most O(
√

log n ·D).
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If f is a D-regular β-expander flow, then it is easy to check that for any D′ ≤ D, D′

D f
is a D′-regular β-expander flow. Thus, by starting with a low value of D and doubling
it every time, we can find a value D∗ such the algorithm finds a D∗-regular β-expander
flow, and a cut of expansion at most O(

√
log n · D∗). Thus, by Lemma 37 we have

D∗ ≤ α(G) ≤ O(
√

log n ·D∗), and so we have the desired O(
√

log n) approximation to the
Sparsest Cut.

For the minimum c-Balanced Separator, by applying Lemmas 41 and 42 as before,
we immediately have the following theorem:

Theorem 39. For some universal constant β, there is a procedure, that given a graph G
and a value D, finds in Õ(n2) time either

1. a D-regular (c, β)-pseudo expander flow, or

2. a c′ balanced cut of expansion at most O(
√

log n ·D), for some c′ ≤ c.

7.2.1 A note on running time:

We make a few remarks on the Õ(n2) running time, which occurs many times in this
chapter and in particular in the implementation of Oracle. First, one can reduce the
number of nonzero demands to Õ(n) by random sampling. This is a known technique
from existing Sparsest Cut implementations (see eg [68], [22]) though we occasionally
need to add a few simple ideas.

In many places we need to find cuts (S, S̄) where the demand graph fails to expand
(i.e. d(S, S̄) = o(nD)) and the cut is large, namely |S| = Ω(n). Using the well-known
results of Cheeger and Alon we can do this using approximate eigenvalue computations
on the Laplacian of this sparse graph, which takes Õ(n) time by repeated matrix-vector
products. (This idea has been repeatedly rediscovered, but one reference is [71]). Using
the eigenvector and Theorem 40 we can find cuts (if any exist) where the demand graph
does not expand. Repeating the eigenvector method O(n) times we try to aggregate these
small cuts to have size Ω(n). If this aggregation fails to produce any large cuts that do
not expand, then we can throw away o(n) of the graph such that in the remaining graph
all cuts expand well. (In other words, we have a pseudo-expander flow already.) Thus the
total time is Õ(n2).

The Oracle procedure performs a min-cost concurrent multicommodity flow compu-
tation using the algorithm of Fleischer [40], which also takes time Õ(n2) since the number
of demands has been reduced to Õ(n) by random sampling.

Finally, we repeat the algorithm of Theorem 39 for successively doubling values of D.
Thus overall, the algorithm for approximating Sparsest Cut takes Õ(n2 · log(UL )) time,
where [L,U ] is a range of values for α(G).

We can bound U
L by O(n) as follows. Let the global min-cut value in the graph G be

C (this value can be approximated to a constant factor in O(m+ n) time using Matula’s
algorithm [80]). Then, for any cut (S, S̄) in the graph, E(S,S̄)

|S| ≥ C
n , so α(G) ≥ C

n . On
the other hand, the expansion of the min-cut is at most C, so α(G) ≤ C. Thus, we can
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take the range of α(G) to be [Cn , C], so that the O(
√

log n) approximation algorithm for
Sparsest Cut takes Õ(n2) time overall.

Similarly, for c-Balanced Separator, by removing minimum cuts recursively as
long as the total size of the removed subgraph is at most c′n, we can obtain a factor
O(n) approximation to αc′(G), as shown by Leighton and Rao [74]. Since we may have
to aggregate O(n) minimum cuts, the total amount of time needed to obtain the O(n)
approximation is O(mn) = Õ(n2). Thus, the O(

√
log n) pseudo-approximation algorithm

for the c-Balanced Separator takes Õ(n2) time as well.

7.3 Implementing Oracle

In this section we prove Lemma 42, restated here for convenience:

Lemma 42. There is a randomized procedure, Oracle, which given a set of demands d,
runs in Õ(n2) time and

1. either produces an x ∈ Q with v(d,x) ≥ 0 in which exactly one set S ⊆ V with at
least cn vertices has a non-zero zS,

2. or else, Oracle fails. In this case, a D-regular (c, β2)-pseudo-expander flow can be
constructed from d, for some constant β2 which depends only on β.

In each of the following cases, Oracle attempts to exploit certain characteristics of
the demands to find a suitable x, failing which, execution falls through to the next case.
To facilitate the search, Oracle may temporarily neglect part of the demands, however,
the final x it finds gives non-negative payoff even with the original demands. Recall that
for all i ∈ V , di =

∑
j dij and for all S ⊆ V , d(S, S̄) =

∑
i∈S,j∈S̄ dij . Also, let ε1, ε2 be

constants to be chosen later, and set ε = min{ε1, ε2} in (7.7) and (7.8).

Case 1: Many large degrees

Sort the vertices in decreasing order by di.
Case 1a: If the largest ε1βn degrees account for more than ε1nD demand, then we can
find an x ∈ Q with non-negative payoff by setting si = 1/ε1 for all these vertices. Set
zS = 2 for any S with n/2 vertices. All other variables are 0. Since d(S, S̄) ≤ 1

2nd, we
have

v(d,x) ≥ ε1nD · (1/ε1)− d(S, S̄) · 2 ≥ nD − nD ≥ 0.

Case 1b: Otherwise, Oracle modifies the demand graph. Vertices with the top ε1βn
degrees have their demands set to 0. The remaining degrees must be at most D

β : otherwise,
the removed demands summed up to at least ε1βn · Dβ = ε1nD, which we assumed is not
the case. The total demand discarded is at most ε1nD. Execution falls through to the
next case.
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Case 2: A large non-expanding cut

First, Oracle applies the Benczúr-Karger reduction to the (modified) demand graph
to reduce it to a set of O(n log n) non-zero demands such that all cuts (in particular,
degrees too) are approximately preserved. Let Gd be the demand graph obtained this way.
Oracle runs the procedure FindLargeCut(Gd, Dβ ,

c
2 ,

β2

2 ) (see Lemma 48 in Section 7.5)
This runs in Õ(n2) time since there are only O(n log n) non-zero demands in Gd.
Case 2a: Suppose it gives c

2 -balanced cut S with expansion at most β2

2 ·
D
β = β

2D. The

demand discarded in Case 1 is at most ε1nD ≤ 2ε1
c |S|D = β

2D|S|, if we set ε1 = βc
4 . Even

including this discarded demand we have d(S, S̄) ≤ βD|S|. Oracle constructs an x ∈ Q
with non-negative payoff by setting zS = n/ |S|, all si = β, all other variables are 0. The
payoff is

v(d,x) ≥ nD · β − d(S, S̄) · (n/|S|) ≥ βnD − βnD ≥ 0.

Case 2b: Otherwise, FindLargeCut returns a graph on at least (1 − c
2)n nodes such

that the induced demand graph has expansion least β4

32 ·
D
β = β3

32D. The demand on the
nodes left out is discarded. On the entire graph, all c-balanced cuts still expand by at
least β1D for β1 = β3

64 . Execution falls through to the next case.

Case 3: Unroutable demands

First, Oracle performs random sampling on the demands so that the number of nonzero
demands is Õ(n). In Section 7.7, we prove the following lemma via simple applications of
the Chernoff-Hoeffding bounds:

Lemma 44. We can randomly sample the demands to produce new demands, d̃ij, of
which at most O(n log2 n) are non-zero, so that for any δ > 0, with probability at least
1− n−Ω(logn), we have:

∀i : d̃i ≤ di +D

∀S, n/2 ≥ |S| ≥ cn : d̃(S, S̄) ≥ (1− δ)d(S, S̄)

∀x ∈ Q :
∑
ij

dij`ij(x) < nD =⇒
∑
ij

d̃ij`ij(x) < 7nD

Now, Oracle sets all si = 0, and since `ij(x)’s are truncated, the optimum choice of
we’s corresponds to solving the following LP (here, we abuse notation a bit and use `ij to
refer to the variables with the value `ij(x)):

Maximize
∑
ij

d̃ij`ij subject to

∀ij,∀p ∈ Pij : `ij ≤
∑
e∈p

we

∀ij : `ij ≤ 1/ε2∑
e

cewe ≤ βnD (7.12)
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We show how to approximately solve the above LP by considering the dual. This can
be thought of as a min-cost max-concurrent flow problem, which can be solved in sparse
graphs in Õ(n2) time using the algorithm of Fleischer [40]. Consider the following instance
of a min-cost max-concurrent flow problem: for every pair {i, j} we associate demand d̃ij .
We also associate a pseudo-edge between every pair {i, j} with infinite capacity and cost
b = 1/(βε2nD). Any real edge e has cost 0 and its original capacity ce. We impose the
budget constraint 1 on the total cost of the flow. We get the following LP and its dual:

max t min
∑
e

cew
′
e + φ′

∀ij :
∑
p∈Pij

y′p + t′ij ≥ d̃ijt ∀ij : l′ij ≤ bφ′

∀e :
∑
p3e

y′p ≤ ce ∀ij,∀p ∈ Pij : l′ij ≤
∑
e∈p

w′e

b
∑
ij

t′ij ≤ 1
∑
ij

d̃ijl
′
ij ≥ 1 (7.13)

Oracle solves this LP using Fleischer’s algorithm to within a constant multiplicative
factor, say 2. The algorithm runs in Õ(n2) time since there are only O(n log2 n) non-zero
demands.

The algorithm also yields the weights we such that 2t ≥
∑

e cew
′
e + φ′. We also get a

flow g = 〈gp〉p with congestion C by setting C = 1/t and scaling all g′p and t′ij by C to
get gp and tij . This routes all but

∑
ij tij of the demands with congestion C.

Next, we get a feasible solution we and `ij for LP (7.12): let k = βnD/(
∑

e cew
′
e+φ

′) ≥
βnD · C/2, and scale up the w′e, l

′
ij , φ

′ by k to get we, `ij , φ. Since
∑

e cewe + φ = βnD,∑
e cewe ≤ βnD and φ ≤ βnD; so bφ ≤ 1/ε2 as needed. Also,

∑
ij d̃ij`ij =

∑
ij d̃ij`

′
ij ·k ≥

βnDC/2.
Case 3a: If C > 14/β then

∑
ij d̃ij`ij > 7nD, so

∑
ij dij`ij ≥ nD. Then Oracle

constructs an x ∈ Q by using the given settings for we and `ij and assigning zS = 2 for
some S with n/2 vertices. Other variables are all 0. Then

v(d,x) ≥ nD − d(S, S̄) · 2 ≥ nD − nD ≥ 0

Case 3b: Otherwise C ≤ 14/β, then the Oracle fails. We then get a pseudo-expander
flow as explained below.

7.3.1 Finding a Pseudo-Expander flow

The flow g obtained by Oracle just before it failed routes all but
∑

ij tij of the total
demand with congestion at most 14/β. We discard the tij demands, which amount to
at most

∑
ij t
′
ij/t ≤ (1/b) · C ≤ 14ε2nD. The remaining demands are D

β + D regular.
If we choose δ = 1

2 in Lemma 44, then after random sampling, all c-balanced cuts have
expansion at least β1

2 D. By setting ε2 = β1c
56 , the total demand discarded is at most

β1c
4 nD. Thus, all c-balanced cuts still have expansion at least β1

4 D. We then scale the
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flow by β
14 so that the congestion becomes 1, all degrees are at most D, and all c-balanced

cuts have expansion at least β2D for β2 = β1β
56 . Thus, we end up with a D-regular

(c, β2)-pseudo-expander flow.

7.4 Finding a cut of expansion within O(
√

log n) of optimal

Since the width of the Oracle is O(1), Theorem 6 shows that if the Oracle does not fail
for T = O( logn

δ2 ) rounds, the Multiplicative Weights algorithm finds an x ∈ Q ⊆ Q′ which
satisfies (7.9) (and thus, (7.6)) up to an additive error of δ, where δ is a small constant
to be chosen later. In this section, we prove Lemma 41, which shows that in this case we
can find a cut of expansion O(

√
log n ·D). We restate Lemma 41 here for convenience:

Lemma 41. There is a constant δ > 0 such that if x ∈ Q′ satisfies the feasibility problem
(7.6) up to additive error δ, then there is an algorithm that uses x to find a c′-balanced
cut of expansion O(

√
log n ·D), for some c′ ≤ c.

Let x∗ = 〈s∗,w∗, z∗〉 ∈ Q′ satisfy the feasibility problem (7.6) up to additive error δ.
Since the Multiplicative Weights algorithm needs only O(log n) rounds to find such an x∗,
and only one zS is non-zero in any round, we conclude that x∗ has only O(log n) non-zero
z∗S ’s. We now construct an `22 embedding of the vertices i ∈ V using x∗:

Lemma 45. We can construct a unit vectors v1,v2, . . . ,vn such that 1
4

∑
ij ‖vi−vj‖2 =

c(1− c)n2, and for all pairs i, j, 1
4‖vi − vj‖2 =

∑
S: i∈S,j∈S̄

|S|
n z
∗
S

Proof: First we note that
∑

S
|S|
n zS = 1 for any x ∈ Q. There are N = O(log n)

sets S with non-zero z∗S . We construct vectors in RN , with a coordinate for each such

set S. For any vertex i, construct vector vi by setting vi(S) = ±
√
|S|
n z
∗
S depending on

whether i ∈ S or i ∈ S̄. Note that ‖vi‖2 =
∑

S
|S|
n zS = 1. Also, for any pair i, j,

the vector vi − vj has non-zero coordinates only for S such that i ∈ S, j ∈ S̄. Thus,
1
4‖vi − vj‖2 =

∑
S: i∈S,j∈S̄

|S|
n z
∗
S . So,

1
4

∑
ij

‖vi−vj‖2 =
∑
ij

∑
S: i∈S,j∈S̄

|S|
n
z∗S =

∑
S

|S|
n
z∗S ·

 ∑
ij: i∈S,j∈S̄

1

 =
∑
S

|S|
n
z∗S · |S||S̄|.

Since z∗S 6= 0 only if the cut (S, S̄) is c-balanced, we have |S||S̄| ≥ c(1− c)n2 for all such
S, and hence

1
4

∑
ij

‖vi − vj‖2 ≥
∑
S

|S|
n
z∗S · c(1− c)n2 = c(1− c)n2.

2

Now, we appeal to Theorem 19, restated here for convenience:
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Theorem 19. Let v1,v2, . . . ,vn be vectors of length at most 1, such that
∑

ij‖vi−vj‖2 ≥
an2. Let we be weights on edges and nodes and let α =

∑
ecewe. Then there is an

algorithm which runs in Õ(m1.5) time and finds a cut of value C which is c-balanced for
some constant c, such that there exists a pair of nodes i, j with the property that the graph
distance between i and j is at most O(

√
log n · αC ) and ‖vi−vj‖2 ≥ s where s is a constant

which only depends on a. Furthermore, this is true even if any fixed set of τn nodes are
prohibited from being i or j, for some small constant τ .

Now we can complete the proof of Lemma 41.
Proof:[Lemma 41]
Since x∗ ∈ Q′ satisfy the feasibility problem (7.6) up to additive error δ, we have

s∗i + s∗j + `ij(x∗)−
∑

S: i∈S,j∈S̄

z∗S ≥ −δ

∴ s∗i + s∗j + lij(x∗) ≥
∑

S: i∈S,j∈S̄

|S|
n
z∗S − δ,

since `ij(x∗) ≤ lij(x∗) = minp∈Pij
{∑

e∈pw
∗
e

}
.

Construct the unit vectors v1,v2, . . . ,vn of Lemma 45. Then for all pairs {i, j}, we
have

s∗i + s∗j + lij(x∗) ≥
1
4
‖vi − vj‖2 − δ.

Let c′, s, τ be the constants given by Theorem 19 for a = 4c(1 − c). Note that α =∑
e cew

∗
e ≤ βnD.

Since
∑

i s
∗
i ≤ βn, at most τn nodes have s∗i > β/τ . Let all such vertices form the set

A. We apply Theorem 19 to G with A being the set of τn forbidden vertices. We thus
get a cut of value C such that there is a pair of vertices i, j with the following properties:

1. s∗i , s
∗
j ≤ β/τ ,

2. the graph distance of i, j in G is at most O(
√

log n ·α/C) = O(
√

log n ·nD/C), and

3. ‖vi − vj‖2 ≥ s.

Further, we choose β = sτ
32 and δ = s

16 so that

lij(x∗) ≥
1
4
‖vi − vj‖2 − s∗i − s∗j − δ ≥

s

4
− 2β

τ
− δ =

s

8
.

Hence, we have O(
√

log n · nD/C) ≥ s
8 . Thus C

c′n ≤ O(
√

log n · D). This implies that
the expansion of the cut found is at most O(

√
log n ·D), as required. Since we have only

O(n log n) edges in the graph, this procedure runs in Õ(n1.5) time. 2
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7.5 Sparse cuts via eigenvalue computations

For a weighted graph G where the weight for pair {i, j} (j could possibly the same as i, to
allow for self-loops) is dij , the Laplacian L of G is the n× n symmetric matrix with rows
and columns indexed by nodes in G, such that L = D−1/2(D −A)D−1/2, where D is the
diagonal matrix of (weighted) node degrees, and A is the (weighted) adjacency matrix of
the graph G 2 Note that this definition of the Laplacian is different from the combinatorial
Laplacian defined in Chapter 4. However, the two are closely related in regular graphs.
The smallest eigenvalue of L is 0 corresponding to the eigenvector 〈

√
d1,
√
d2, . . . ,

√
dn〉>,

where di is the (weighted) degree of node i. The following well-known theorem that arises
from the work of Alon and Cheeger (for a proof see [36]) shows that the second smallest
eigenvalue of L gives us useful information about the conductance of G:

Theorem 40 (Alon-Cheeger). Let the conductance of a weighted graph G with n vertices
and m edges be c(G). Let the Laplacian of the graph be L, and denote its second smallest
eigenvalue by λL. Then:

2c(G) ≥ λL ≥
c(G)2

2

Furthermore, suppose we are given a vector x orthogonal to the 〈
√
d1,
√
d2, . . . ,

√
dn〉>

eigenvector, i.e.
∑

i

√
dixi = 0. Let λ := x>Lx

x>x
. Then there is a procedure SweepCut(G,x),

that in time Õ(m+ n) finds a cut with conductance at most
√

2λ.

The procedure SweepCut(G,x) operates as follows. Assume that the coordinates of x
are ordered in increasing value, x1 ≤ x2 ≤ . . . xn. For 1 ≤ k ≤ n−1, let Sk = {1, 2, . . . , k}.
Then the theorem shows that one of the cuts (Sk, S̄k) has conductance at most

√
2λ, and

thus can be found in time Õ(m+ n).
The optimal x for this procedure is an eigenvector belonging to the second smallest

eigenvalue of L. Computing this eigenvector may be computationally expensive if λL is
very close to 0. However, for our application, we only need to find a cut of conductance
less than some pre-specified constant β > 0. In this case, it suffices to find a vector x
such that its λ value is at most β2

2 . For this, we can use the power method, as explained
in the following lemma.

Lemma 46. Let λ > λL be a given parameter. Then we can find a vector x such that∑
i

√
dixi = 0 and x>Lx

x>x
≤ λ using O( logn

λ−λL ) matrix vector products with the matrix L.

Proof: An eigenvector of L belonging to the 0 eigenvalue is y = 〈
√
d1,
√
d2, . . . ,

√
dn〉>.

Furthermore, the largest eigenvalue of L is at most 2. Thus, the matrix 2I −L− 1
y>y

yy>

is positive semidefinite with largest eigenvalue 2 − λL. To get a vector x with Rayleigh
quotient at least 2−λ, we can use the power method with a random start. The analysis of
[71] indicates that the method succeeds with constant probability in O( logn

λ−λL ) iterations.
2

2We assume without loss of generality that no node has zero degree.
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Lemma 47. There is a randomized procedure, FindCut(G,λ), which finds a cut of con-
ductance at most

√
2λ in G, or with constant probability, concludes correctly that G has

conductance at least λ
4 . The procedure requires O( logn

λ ) matrix vector products with the
Laplacian of G.

Proof: Let λL be the second smallest eigenvalue of the Laplacian of G. If λL ≤ 1
2λ,

then with constant probability, O( logn
λ ) iterations of the power method, as described in

Lemma 46, suffice to find the desired x. Once x is found, we can run SweepCut(G,x)
to find a cut of conductance at most

√
2λ. Otherwise if λL ≥ 1

2λ, then by Theorem 40, G
has conductance at least 1

2λ. 2

One can iterate the FindCut procedure to find c-balanced separators:

Lemma 48. There is a procedure that, given a weighted graph G with degrees bounded
by D, a fraction c > 0, and a expansion bound β > 0, uses FindCut O(n) times and
produces either a cut of size cn with edge expansion less than βD, or a graph on at least
(1− c)n vertices on which every cut has expansion at least β2

8 D.

Proof: For a graph G, let GD be the graph G with each node augmented with (weighted)
self-loops to make the weighted degree exactly D. This ensures that a cut of conductance
φ in GD has expansion at least φD. We repeatedly use FindCut to get cuts of expansion
less than βD and aggregate them. The resulting set also has expansion less than βD.
When FindCut can no longer find cuts of expansion less than βD, then with constant
probability, the second smallest eigenvalue of the Laplacian of the remaining (augmented)
graph is at least β2

4 . Thus, by Theorem 40, every cut in the remaining graph has expansion
β2

8 D. This procedure, FindLargeCut, is given in Figure 7.1. The success probability
can be boosted up using standard repetition techniques. Here, G \ S is the subgraph
induced on the vertex set V \ S.

Procedure FindLargeCut(G,D, c, β)
// Returns a cut of expansion of expansion at most βD or
// a subgraph of G of size at least (1− c)n with expansion at least
β2

8 D
Initialization: S ← φ

while FindCut((G\S)D, β
2

2 ) finds a cut (T, T̄ ) of conductance at
most β

S ← S ∪ T
end while
if |S| ≥ cn then return the set S
else return the graph (G \ S)

Figure 7.1: The FindLargeCut procedure.

2
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7.6 Pseudo-Expander Flows

In this section we show how, given a pseudo-expander flow, we can either convert it into
an expander flow or find a sparse cut. We recall the definition of pseudo-expander flows.

Definition 6. The graph with edge weights 〈dij〉ij is a D-regular (c, β)-pseudo expander
if it has maximum degree at most D and for any subset S ⊆ V such that cn ≤ |S| ≤ n/2
the total weight crossing the cut (S, S̄), viz. d(S, S̄) =

∑
i∈S,j∈S̄ dij, satisfies

d(S, S̄) ≥ βD|S|.

A multi-commodity flow f is called a D-regular (c, β)-pseudo expander flow (or just pseudo-
expander flow for short) if its demand graph is a D-regular (c, β)-pseudo expander.

We now turn to the proof of Lemma 43, which we restate here for convenience:

Lemma 43. Let f = 〈fp〉p be a D-regular (c, β)-pseudo-expander flow on a graph G.
Assume that the flow has non-zero demand on only O(n log n) pairs of vertices. Then,
there is a procedure that in time Õ(m1.5), finds either

1. a D-regular β2

130 expander flow,

2. or, a cut of expansion at most 1
cD.

Proof: Let Gf be the demand graph for the given pseudo-expander flow. Let D be its
Laplacian, and let λD be the second smallest eigenvalue of D.

First, we run FindLargeCut(Gf , D, c,
β
2 ). Since Gf is the demand graph of a (c, β)-

pseudo-expander flow, the procedure cannot return a cut (S, S̄) in Gf that is c balanced
with expansion less than β

2D. Thus, it returns a subset of vertices S of size at most cn
such that the induced subgraph Gf \ S has expansion at least β2

32 .
Now, let L be the set S and cn−|S| arbitrarily removed nodes of S̄, and let R = V \L.

Note that |L| = cn and R = (1 − c)n. Let k = |R|
|L| ≤

1
c . We form a flow network by

connecting all nodes in L to a single (artificial) source with edges of capacity kD and all
nodes in R to a single (artificial) sink with edges of capacity D, and compute the max
flow in the network (with all original graph edges in G retaining their capacities). The
flow computation runs in Õ(m1.5) time using the algorithm of Goldberg and Rao [47].

Suppose the flow does not saturate all source edges. Then its value is less than kD|L|.
Let (T, T̄ ) be the min-cut found, with T being the side of the cut containing the source.
Let n` = |T ∩ L| and let nr = |T̄ ∩R|. Then the capacity of the original graph edges cut
is at most kD|L| − kD(|L| − n`)−D(|R| − nr) = D[kn` + nr − |R|]. The smaller side of
the cut contains at least min{n`, nr} nodes, and since kn` ≤ k|L| = |R| and nr ≤ |R|, the
expansion of the cut found is at most kD ≤ 1

cD.
Otherwise, suppose that the flow does saturate all source edges. Let g be this flow.

Consider the flow h = 1
2 f + 1

2kg. Then h is a D-regular flow. We claim that it is an Ω(c2)
expander flow.

Let (T, T̄ ) be a cut in the graph, with |T | ≤ |T̄ |. Let x = |T ∩ L| and y = |T ∩ R|.
Now we have two cases:

135



1. x ≥ β2

64 y:
Since g pumps kD flow into every node in T ∩ L, which eventually goes into the
sink, at least kDx flow must cross the cut (T, T̄ ). Thus, in the flow h, at least 1

2Dx
flow crosses the cut (T, T̄ ). Thus, the expansion of the cut (T, T̄ ) is at least

1
2Dx

x+ y
≥

1
2Dx

x+ 64
β2x

≥ β2

130
D

since β ≤ 1.

2. x ≤ β2

64 y:
Since T ∩R ⊆ S̄, and since the subgraph of Gf induced by S̄ has expansion at least
β2

32D, at least β2

32Dy flow in f must leave the set T ∩ R. Since f is D-regular, at
most Dx of this flow can terminate in nodes in T ∩L. Thus, since x ≤ β2

64 y, at least
β2

64Dy flow crosses the cut (T, T̄ ). So in h, at least β2

128Dy flow crosses the cut (T, T̄ ).
Thus, the expansion of the cut (T, T̄ ) is at least

β2

128Dy

x+ y
≥

β2

128Dy

y + β2

64 y
≥ β2

130
D

since β ≤ 1.

2

7.7 Random sampling on the demands

We now describe how to randomly sample the demands to reduce the number of non-zero
demands to O(n log2 n) while still preserving degrees, expansion of large cuts, and the
values of `ij(x)’s.

Recall that we only perform the random sampling if the steps corresponding to choos-
ing the si’s and the zS ’s do not result in an x that has positive payoff. Therefore:

∀i : di ≤
D

β

∀S, n/2 ≥ |S| ≥ cn : d(S, S̄) ≥ β1D|S| ≥ β1cnD

For random sampling, we choose the probability distribution D over pairs of nodes,
where the probability of {i, j} is pij = dij/Z where Z =

∑
k` dk` ≤

1
2nD. Now we form

the multiset S by choosing m independent samples {i, j} from D. Thus, in each of the
m rounds, we choose only 1 pair, for a total of m pairs. Set indicator random variable
Xs
ij = 1 or 0 depending on whether we choose {i, j} on the sth trial, 1 ≤ s ≤ m. Finally,

set the new sampled demands to be

d̃ij =
Z
∑

sX
s
ij

|S|

We use the following version of the Chernoff-Hoeffding bounds from [82]:
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Lemma 49. Let X =
∑
Xs be the sum of m independent identically distributed random

variables in [0, 1] such that E[Xs] = µ. Let δ > 0 be any small error parameter , and
b(δ) = (1 + δ) ln(1 + δ)− δ. Then

Pr[X/m ≥ (1 + δ)µ] < e−mb(δ)µ.

If δ > 2e− 1, the upper bound above can be replaced by 2−m(1+δ)µ. For δ < 1, we have

Pr[X/m ≤ (1− δ)µ] < e−mδ
2µ/2

Now we show the sampled demands approximate the original ones well with high
probability, if the number of samples is Ω(n log2 n). We restate Lemma 44 here for con-
venience:

Lemma 44. We can randomly sample the demands to produce new demands, d̃ij, of
which at most O(n log2 n) are non-zero, so that for any δ > 0, with probability at least
1− n−Ω(logn), we have:

∀i : d̃i ≤ di +D

∀S, n/2 ≥ |S| ≥ cn : d̃(S, S̄) ≥ (1− δ)d(S, S̄)

∀x ∈ Q :
∑
ij

dij`ij(x) < nD =⇒
∑
ij

d̃ij`ij(x) < 7nD

Proof: Let m = Ω(n log2 n) be the number of samples.

1. Fix any i. Define, for all 1 ≤ s ≤ m, Xs =
∑

j X
s
ij . All Xs ∈ {0, 1} and have

expectation di/Z. Define X =
∑

sXs. Then X/m = d̃i/Z. Set δ = D
di

. Now we
have two cases:

(a) δ ≤ 2e− 1:
Then di ≥ D

2e−1 ≥ D/6, and hence di/Z ≥ 1/3n. By Lemma 49, we conclude
that

Pr[d̃i ≥ di +D] = Pr[X/m ≥ (1 + δ)(di/Z)] < e−mb(δ)di/Z ≤ e−mb(β)/3n

since δ = D
di
≥ β, and so b(δ) ≥ b(β).

(b) δ ≥ 2e− 1:
Then (1 + δ)di/Z > D/Z ≥ 2/n. By Lemma 49, we conclude that

Pr[d̃i ≥ di +D] = Pr[X/m ≥ (1 + δ)(di/Z)] < 2−m(1+δ)di/Z < 2−2m/n.

If m = Ω(n log2 n), then any such event happens with probability < n−Ω(logn). By
the union bound over all n nodes,

Pr[∃i : d̃i ≥ di +D] < n−Ω(logn).
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2. Fix any S. Define, for all 1 ≤ s ≤ m, Xs =
∑

i∈S,j∈S̄ X
s
ij . All Xs ∈ {0, 1} and have

expectation d(S, S̄)/Z. Define X =
∑

sXs. Then X/m = d̃(S, S̄)/Z ≥ 2β1c. By
Lemma 49 above, we conclude that

Pr[d̃(S, S̄) ≥ (1− δ)d(S, S̄)] < e−mδ
2d(S,S̄)/2Z ≤ e−δ

2β1cm.

If m = Ω(n log2 n), then any such event happens with probability < e−Ω(n log2 n).
By the union bound over at most en choices of S,

Pr[∃S, |S| > n/5 : d̃(S, S̄) ≥ (1− δ)d(S, S̄)] < e−Ω(n log2 n)

3. Fix an x ∈ Q. Let we be the weight function on edges specified by x. Note that since
we truncate all path lengths to be at most 1/ε2, we may assume that all we ≤ 1/ε2.
We discretize the space of all possible weight functions on edges as follows. Let the
number of edges be N = O(n log n). We round the we values downwards to the
closest multiple of 1/N , to obtain the point x̃ ∈ Q. The number of possible such
discretized weight functions is bounded by (N/ε2)N = eO(n log2 n).

With some abuse of notation, let `ij = `ij(x) and ˜̀
ij = `ij(x̃). The discretization

ensures that |`ij− ˜̀
ij | ≤ 1. Since case 1. holds with high probability, we may assume

that all d̃i ≤ di +D. Thus, |
∑

ij d̃ij`ij −
∑

ij d̃ij
˜̀
ij | ≤

∑
ij d̃ij ≤ nD.

Define, for all 1 ≤ s ≤ m, Xs = ε2
∑

ij X
s
ij

˜̀
ij . All Xs ∈ [0, 1] (as ˜̀

ij ≤ ε−1
2 ) and have

expectation µ = ε2
∑

ij dij
˜̀
ij/Z. Define X =

∑
sXs. Then X/m = ε2

∑
ij d̃ij

˜̀
ij/Z.

Now, if
∑

ij dij`ij < nD, then
∑

ij dij
˜̀
ij < nD, and so µ < ε2nD/Z. Let 1 + δ =

6ε2nD/Z
µ . Note that δ > 2e − 1, and (1 + δ)µ ≥ 12ε2. By Lemma 49 above, we

conclude that,

Pr[
∑
ij

d̃ij`ij > 7nD] ≤ Pr[
∑
ij

d̃ij ˜̀ij > 6nD]

≤ Pr[X/m > (1 + δ)µ]

< 2−m(1+δ)µ

< 2−12ε2m.

Applying the union bound to all the eO(n log2 n) possible discretized metrics, we
obtain that if m = Ω(n log2 n) then

Pr[∃x ∈ Q :
∑
ij

dij`ij < nD but
∑
ij

d̃ij`ij > 7nD] < 2O(n log2 n)e−Ω(n log2 n)

= e−Ω(n log2 n).

Finally, the union bound over all three cases implies that the stipulation of the lemma
holds with probability at least 1− n−Ω(logn). 2
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we explored the power of the Multiplicative Weights Update rule in various
forms: the basic one where real valued weights are updated by multiplying them by
appropriate factors, and a matrix version where the “weights” are encapsulated by a
density matrix and the update rule uses the matrix exponential.

Both of these algorithms have numerous applications. The basic version, especially,
has been known for many years, and consequently has applications in very diverse areas
(see the survey [15]). In this thesis, we showed how to apply this algorithm to solve various
special semidefinite programs efficiently by reducing the problem to computing approx-
imate eigenvectors. We also showed how to obtain an O(

√
log n) approximation to the

Sparsest Cut and Balanced Separator problems in undirected weighted graphs by
embedding expander flows in the input graph using the Multiplicative Weights algorithm.

The bulk of the thesis concerned the matrix generalization, viz. the Matrix Multi-
plicative Weights algorithm. Using the Matrix Multiplicative Weights algorithm, we were
able to provide the first truly general method for designing fast, combinatorial, primal-
dual algorithms for semidefinite programming. Thus, we get the fastest known algorithms
for approximating the Sparsest Cut and Balanced Separator problems in directed
and undirected graphs to factors of O(log n) and O(

√
log n). We also obtained the fastest

known algorithms for approximating the constraint satisfaction problems Min UnCut
and Min 2CNF Deletion to a factor of O(

√
log n).

We also showed how to apply the Matrix Multiplicative Weights algorithm to deran-
domize Alon and Roichman’s [9] construction of expander graphs, to derandomize the
O(log n) approximation algorithm of Ahlswede and Winter [4], and to obtain an alterna-
tive proof of Aaronson’s [1] result on the learnability of quantum states by bounding the
fat-shattering dimension of the probabilistic concept class of quantum states.

In summary, the Multiplicative Weights framework is a powerful design primitive, and
the algorithms it yields usually have particularly simple analyses. It is simple and useful
enough that it should be viewed as a basic tool in the hands of an algorithm designer
along with divide-and-conquer, dynamic programming, random sampling, and the like.
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8.2 Future Work

• Solving more SDPs efficiently.
One direction for future research is approximating other problems based on SDP
such as Min Linear Arrangement, for which the currently known algorithms are
quite inefficient. We plan to apply the methods developed to SDPs which arise in
practice, such as for Air Traffic Flow scheduling and Sparse PCA.

• Linear time algorithm for approximating Sparsest Cut.
While an Õ(n2) time algorithm for the Sparsest Cut problem presented in this
thesis might seem hard to beat, and is certainly optimal for dense graphs, it is still
conceivable that there might be a linear time algorithm, more so if we are willing to
settle for a polylogarithmic approximation. Our fastest algorithm takes Õ(m+n1.5)
time algorithm (m is the number of edges) for an O(log n) approximation, and
it would be very interesting to obtain an Õ(m + n) time algorithm. This would
involve looking inside the various results such as Benczúr-Karger and Fleischer (or
Garg-Könemann) that are used in black-box fashion in the current algorithms.

• Quantum Computing.
The Matrix Multiplicative Weights algorithm generates density matrices, a central
notion in quantum mechanics used to model a quantum state. In this thesis we
described some quantum computing applications of the algorithm, and certainly
there are more applications waiting to be found.

• Learning algorithms.
The Matrix Multiplicative Weights algorithm has been independently discovered by
Learning theorists, who applied to online variance minimization [98], online Principal
Component Analysis [99, 100], etc. It would be very interesting to obtain more
learning algorithms using the Matrix Multiplicative Weights algorithm.

• “Combinatorializing” Interior Point methods.
While the Multiplicative Weights method is certainly quite powerful, its major draw-
back is that the algorithms it yields have running time dependent on a problem
specific parameter, the width, and that its dependence on the error ε is inverse
polynomial. Interior point methods do not have this issue. A natural question is
whether it is possible to use fast combinatorial subroutines within an interior point
algorithm to get a faster algorithm overall. In other words, can interior point algo-
rithms make effective use of the combinatorial structure of a given problem? Such
an algorithm will likely be truly practical.
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Õ(n2) time. In FOCS, pages 238–247, 2004.

[13] S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefinite
programming using the multiplicative weights update method. In FOCS, pages
339–348, 2005.

141



[14] S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefinite
programming using the multiplicative weights update method. In 46th FOCS, pages
339–348, 2005.

[15] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta
algorithm and applications. Manuscript, 2005. Preliminary draft of paper available
online at http://www.cs.princeton.edu/~satyen/ publications.php.

[16] S. Arora, E. Hazan, and S. Kale. A fast random sampling algorithm for sparsifying
matrices. In APPROX-RANDOM, pages 272–279, 2006.

[17] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. In
STOC, pages 553–562, 2005.

[18] S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and
graph partitioning. In STOC, pages 222–231, 2004.

[19] Y. Aumann and Y. Rabani. An (log ) approximate min-cut max-flow theorem and
approximation algorithm. SIAM J. Comput., 27(1):291–301, 1998.

[20] P. L. Bartlett and P. M. Long. Prediction, learning, uniform convergence, and
scale-sensitive dimensions. J. Comput. Syst. Sci., 56(2):174–190, 1998.

[21] S. Baswana. Dynamic algorithms for graph spanners. In ESA, 2006.
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Appendix A

Algorithms for Linear and
Semidefinite Programming

In this chapter, we give a high level overview of the well-known algorithms for LP and
SDP. These algorithms are quite general, and the ellipsoid and interior point methods in
particular solve LPs and SDPs (approximately) in polynomial time.

A.1 The Simplex Algorithm

The famous Simplex algorithm of Dantzig [38], while not polynomial time in the worst
case, gave the first practical way to solve LPs. The Simplex algorithm exploits the ge-
ometry of the LP: viz. the fact that the domain for the variables specified by the linear
constraints forms a convex polytope, and the linear objective function is optimized at
one of the vertices of the polytope. Thus, one can perform a walk on the vertices of the
polytope, each time moving to a neighboring vertex that improves the objective, until we
reach a vertex that is the local optimum among its neighboring vertices. This vertex is
then a global optimum since the objective function is linear.

Even now, the Simplex algorithm is one of the fastest ways to solve LPs in practice.
A theoretical justification of why the Simplex algorithm performs so well in practice
was given by Spielman and Teng [90] who proved that the smoothed complexity of the
shadow vertex Simplex algorithm is polynomial, i.e. if the input is perturbed slightly,
then with high probability the shadow vertex Simplex algorithm converges in polynomial
time. Kelner and Spielman [62] gave the first randomized Simplex type algorithm that
runs in polynomial time.

There is no simplex analogue for SDP, however, since the domain is not a convex
polytope because of the positive semidefiniteness constraint.

A.2 The Ellipsoid Algorithm

In 1979, Khachiyan [63] showed the breakthrough result that LPs can be solved in poly-
nomial time using the Ellipsoid method developed by Shor, Yudin and Nemirovskii in
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the 1970s. The Ellipsoid method can be viewed as performing binary search in high
dimensional space. A rigorous exposition can be found in [50].

Using a standard binary search on the value of the objective function, a convex opti-
mization problem can be reduced to the following feasibility problem: there is a convex
body K in Rn, and the objective is to find a point in K, or declare correctly that it is
empty. We are also given a value R such that K is contained in the ball of radius R
centered at the origin, and a value r such that if K is non-empty, then it contains a ball
of radius r. We are also given a separation oracle for K, i.e. an algorithm that decides
whether a given input point is in K or not, and if not, then it returns a hyperplane which
separates the input point from K.

Then the Ellipsoid algorithm repeatedly produces ellipsoids of ever-shrinking volume
which contain K, starting with the ball of radius R centered at the origin. At each stage,
the separation oracle is invoked with the center of the ellipsoid as input; either the point
lies in K, in which case we stop, or else it isn’t, and we get a hyperplane separating the
center of the ellipsoid from K. In the latter case, the algorithm generates an ellipsoid that
contains the intersection of the current ellipsoid with the half-space of the hyperplane that
contains K, with the property that the new ellipsoid has volume that is a factor exp( −1

O(n))
smaller than the volume of the current ellipsoid. Since the starting ellipsoid, viz. the ball
of radius R centered at the origin, has volume O(Rn), and assuming K is non-empty, its
volume is at least Ω(rn), within O(n log(R

n

rn )) = O(n2 log(R/r)) iterations we must obtain
a point in K; otherwise, we conclude that K is empty.

In the case of linear programs, we first reduce the problem to a feasibility instance
by doing binary search on the objective. Thus, we need to decide non-emptiness of a
convex polytope. A separation oracle for the convex polytope simply checks if any of the
linear constraints is violated by the input point; if so, the constraint gives the necessary
separating hyperplane.

It is possible to show that all vertices of the polytope have rational coordinates with the
numerator and denominator bounded by exp(L) where L is an input bit size parameter.
Assuming the polytope is non-degenerate, then it has n+ 1 affinely independent vertices,
and hence the simplex formed by them can be shown to have volume at least exp(−O(nL))
(note: all the ellipsoid algorithm needs is a lower bound on the volume of K. The
radius r of a contained ball is not necessarily required). Also, K can be shown to be
contained in a ball of radius exp(O(L)). Thus, the Ellipsoid algorithm decides feasibility
in O(n2L) iterations. Each iteration involves one call to the separation oracle; since this
involves checking each of the constraints at the current point, the separation oracle can be
implemented in O(mn) time. This dominates the running time for the other operations
in each iteration (including computing the new ellipsoid), so the overall running time
becomes O(mn3L).

Thus, even though the Ellipsoid algorithm runs in polynomial time, it is vastly im-
practical. Even so, the power of the Ellipsoid method comes from its ability to use a very
weak specification of the convex body in question, viz. in terms of a separation oracle.
This fact was exploited by Grötschel, Lovász and Schrijver [50] who applied it to SDPs
and gave applications of SDPs to combinatorial optimization.

To apply the Ellipsoid method to SDP, all one needs to do is provide a separation
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oracle. Again, this is simply done by checking if any of the linear constraints is violated by
the input point. If all of them are, then one needs to check the positive semidefiniteness
constraint, i.e. one needs to check whether the input point X has only non-negative
eigenvalues. This is easily done by computing its smallest eigenvalue λ. If it is negative,
then there is an associated eigenvector v ∈ Rn such that the v>Xv = λ < 0. This is the
same as saying that X•vv> < 0. On the other hand, any positive semidefinite X satisfies
X • vv> ≥ 0; thus, this linear constraint gives a separating hyperplane.

The Ellipsoid method applied to SDP is even more impractical, needing O(n4L) it-
erations to converge by an analysis similar to the one for LP, since the dimension of the
space of variables is now Θ(n2).

A more efficient algorithm with the same characteristics as the Ellipsoid algorithm
was developed by Vaidya [93]. This algorithm maintains convex polytopes, rather than
ellipsoids, which enclose K, such that their volume reduces by a constant factor in every
step. This algorithm needs O(nL) iterations to converge in the case of LPs, and O(n2L)
in the case of SDPs.

A.3 Interior Point Methods

The first truly practical polynomial time algorithm for LP was developed by Karmarkar
[60] using Interior Point methods. This method was further developed by Ye [102] who
gave an O(n3L) time algorithm for LP (here, L is a bit size complexity parameter).

Interior point methods rely on the theory of LP duality and complementary slackness.
These algorithms are much more involved than the Ellipsoid method, and we will not
consider them in any detail; we only describe a few key ideas.

Interior Point methods maintain a feasible primal and dual solution. The LP is op-
timized precisely when the duality gap, which is the difference between the values of
the primal and dual solution, is reduced to zero. We therefore make use of a carefully
constructed potential function of the current primal and dual solutions with two key prop-
erties: (a) at optimality, i.e. when the duality gap goes to zero, the potential function
goes to negative infinity, and (b) it consists of a logarithmic barrier function which tends
to keep the primal solution away from the boundary of the polytope. In fact, it suffices
to drive the potential down to −O(

√
nL); at this point, the primal and dual solutions are

already close enough in value that they can be rounded to optimality straight away.
The algorithm starts with a feasible primal and dual solution with potential O(

√
nL).

Then in each iteration, an affine scaling is applied to the primal and dual solution which
preserves the potential but takes the primal solution far away from the boundary of the
polytope. Then, since we want to decrease the potential function, a gradient descent step
is applied to either the primal or the dual variables (only). In either case, the gradient
needs to be projected into the feasible region so as to maintain the feasibility of the
new solutions. It is then shown that either the primal or dual gradient step reduces the
potential by at least a constant. Thus, only O(

√
nL) steps are needed to reduce the

potential to −O(
√
nL), at which point the algorithm stops. In each iteration, the most

expensive operation is the computation of the projected gradient. By using approximate
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solutions to linear equations, this can be accomplished in O(n2.5) time, thus yielding an
overall running time complexity of O(n3L).

This method was extended by Alizadeh [5] to the case of SDPs, and an interior point
algorithm for SDPs was presented with running time O(

√
m(n3 +m)L). A similar result

was obtained by Nesterov and Nemirovskii [83, 84].
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