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Abstract

In this dissertation we study two problems from the area of network design.

The first part discusses the multicommodity buy-at-bulk network design problem, a

problem that occurs naturally in the design of telecommunication and transportation net-

works. We are given an underlying graph and associated with each edge of the graph, a cost

function that represents the price of routing demand along this edge. We are also given a

set of demands between pairs of vertices each of which needs to be satisfied by paying for

sufficient capacity along a path connecting the vertices of the pair. In the multicommodity

network design problem the objective is to minimize the cost of satisfying all demands.

There are often situations where there is an initial fixed cost of utilizing an edge, or

there is discounting or economies of scale that give rise to concave cost functions. We have

an instance of the buy-at-bulk network design problem when the cost functions along all

edges are concave.

Unlike the case of linear cost functions, for which polynomial time algorithms exist,

the buy-at-bulk network design problem is NP-hard. We give the first non-trivial approx-

imation algorithm for the general case of the problem with arbitrary concave costs along

the edges. Our algorithm is conceptually very simple and has an approximation guarantee

of eO(
√

log n log log n ) log D, where n is the number of demand pairs and D is the maximum

demand.

The second part of the thesis examines the Terminal Backup problem that arises when

facilities storing data would like to be connected to at least one other facility for data backup

purposes. In the Terminal Backup problem we are given a graph with terminal nodes, non-
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terminal nodes and edge costs. The objective is to find the cheapest forest connecting every

terminal to at least one other terminal. We show that this problem is reducible to Simplex

Matching, a variant of 3D matching that we introduce.

In an instance of Simplex Matching, we are given a hypergraph with edges of size at

most three and edge costs associated with them. We show how to find the minimum cost

perfect matching of this hypergraph efficiently if the edge costs obey a simple and realistic

inequality we call the Simplex Condition.

While motivated by the desire of solving the Terminal Backup problem, the usefulness of

the Simplex Matching algorithm we develop is not limited to Terminal Backup. We briefly

discuss additional problems where Simplex Matching can be successfully employed.
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Chapter 1

Introduction

Consider a postal company that owns several types of trucks and airplanes and is in the

business of transporting packages between various locations. The characteristics of each

package are naturally a source and a destination as well as size that may be weight or

dimensions. The task that the company is faced with on a daily basis is deciding how to

route the packages so that the total routing cost is minimized.

A small truck might pick up a package at the sender’s home and drive it to the nearest

local shipping facility, where it would be loaded into a larger truck together with other

packages of similar destination and driven to the airport. At the airport the contents of this

truck and possibly others will be moved to a plane and sent to the next stop of the route to

the destination. Some of the packages may then be unloaded into a large truck and driven

to the local shipping facility near the destination of the package we started with and from

there into a small truck that would make a delivery at the final destination.

At each segment of the route of a package the company has a choice of using a combina-

tion of different types of trucks and possibly airplanes to transport all packages along this

segment. Typically it is cheaper to use a larger truck than several small trucks of the same

combined capacity and thus there are economies of scale to be captured by aggregating

traffic bound for similar destinations.

Now consider a scenario of similar flavor that occurs when designing telecommunication
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networks to route a given set of demands. There are several cable types available with each

type having a fixed per length cost and some capacity. We need to lay a collection of cables

along some of the edges of the network in order to install sufficient capacity to route all

demands. Bandwidth experiences significant economies of scale so the cost of routing a unit

of demand along a cable with higher capacity is less than if a lower capacity cable was used

and thus it is cost effective to aggregate traffic over large backbone links [1]. The objective

is to design a minimum cost network that allows all demands to be routed.

Notice that in both examples the function corresponding to the minimum cost of routing

demand along a given segment or edge is a sub-additive monotone function, reflecting the

existing economies of scale. Both scenarios as instances of the multicommodity buy-at-bulk

network design problem in which we seek to design a minimum cost network that satisfies

the demands between terminals from a given set of source-sink pairs such that the cost

functions of routing demand along the edges are sub-additive monotone functions.

1.1 Formal Definition of the Problem

The multicommodity buy-at-bulk network design problem is defined as follows. We are

given an underlying graph G(V, E) and a set of source-sink pairs D = {(si, ti)| si, ti ∈ V },
|D| = n. Associated with each edge e in the graph are a positive length le and a sub-additive

monotone function fe : Z+ → R+ that gives the cost (per unit length of e) of transporting

demand along e. Each source-sink pair has a demand given by the function δ : D → Z+.

The goal is to design a minimum cost network that carries δ(si, ti) units of demand from

si to ti for all demand pairs (si, ti). The cost of a feasible solution is determined by the

amount of demand routed along each edge. Let xe denote the amount routed along edge e.

Then the total cost of the solution is

∑

e∈E

fe(xe) le
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The problem can be classified according to two criteria. We say that the problem is

uniform when the cost functions along the edges are identical, i.e. fe = f for all e ∈ E;

otherwise we say it is non-uniform. Notice that in the non-uniform version the length of

an edge can be incorporated in its cost function so we can assume that le = 1 for all e ∈ E

without loss of generality. We refer to the problem as single-source when all source-sink

pairs share the same source terminal. When the source and sink terminals can be arbitrary

vertices in the graph, we refer to the problem as multi-source.

1.2 Brief Literature Survey

The multicommodity buy-at-bulk network design problem arises commonly in practical net-

work design, where the aim is to determine where one should buy capacity in order to satisfy

a set of demands. Situations in which there is a start-up cost, discounting or economies of

scale give rise to concave cost functions along the edges of the network [76]. Real world

problems from a variety of industries can be modeled as multicommodity buy-at-bulk net-

work design problems. The areas of application include telecommunications, transportation,

airline route planning, production planning, water and oil resource management, etc. [62]

The practical importance of the problem has made it a target of extensive study in the

Operations Research literature since the 70 ’s [13, 35, 38, 39, 76]. Salman et al. [67] give an

overview of the early work on the problem, which for the most part concentrates on heuris-

tics or on characterizing the optimal solutions of the problem and subsequently solving

small instances exactly.

1.2.1 Early Algorithmic Studies

One of the early algorithmic studies of the multicommodity buy-at-bulk problem was ini-

tiated by Salman et al. [67] They consider the single-source version of the problem where

the input consists of an undirected graph with one source and multiple sinks, each sink

v with a specified demand demv. Capacity on a link can be purchased in discrete units

(cables) u1 < u2 < . . . < ur with costs c1 < c2 < . . . < cr such that the cost per unit of
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capacity decreases c1/u1 > c2/u2 > . . . > cr/ur. They show that this problem is NP-hard

via reductions from both Steiner Tree and Knapsack. The reductions show two inherent

sources of hardness of the problem – connectivity (the problem is NP-hard even when only

one cable type is available) and choice of cables (the problem is NP-hard even when the

graph consists of a single edge). As it is unlikely that there exist polynomial time algorithms

that would solve the problem exactly, they turn to approximation algorithms.

Definition 1.2.1 An α-approximation algorithm for a minimization problem is an algo-

rithm that for any instance of the problem returns in polynomial time a feasible solution

with objective value at most a factor of α greater than the optimum for this instance.

Salman et al. [67] give an O(log(D/u1))-approximation algorithm for the Euclidean case

of the single-source multicommodity buy-at-bulk problem considered, where the vertices

are represented as points in the plane and the length function on the edges is the Eu-

clidean distance (here D =
∑

v demv is the total demand). Additionally, they give an

O(log n)-approximation algorithm when the metric is arbitrary and every source-sink path

is restricted to at most two edges, where n is the number of vertices in the underlying graph.

Mansour and Peleg [57] consider another special case of the problem in which there are

multiple sources and sinks but only one type of cable with a basic unit of capacity. Installing

any edge has a fixed cost that is the same across all edges, as well as a variable cost per

unit of capacity installed that is edge-dependent. They give an O(log n)-approximation

algorithm for this variant (or constant in the Euclidean case [67]).

1.2.2 Multi-source Uniform Case

Awerbuch and Azar [12] study the same framework as Salman et al. [67] and devise ap-

proximation algorithms that decouple the tasks of selecting the routes that connect each

source-sink pair and selecting the cables to be installed on each edge. If fe(xe) is the mini-

mum cost of routing xe units along the edge e, they note that even if computing fe exactly

is an integer min-knapsack problem that is NP-hard [56], a 2-approximation can be found
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in linear time. Consequently it is sufficient to determine how demand should be routed first

and then decide what cables to install along each edge.

To determine how to route the demands they use probabilistic metric approximation,

namely the fact that any metric can be α-probabilistically approximated by a set of tree

metrics over the same set of points. This means that there exists a polynomially computable

probability distribution over trees with the following two properties: distances between pairs

of points do not shrink in any of the trees in the distribution and expected distances over the

distribution on the tree metrics do not stretch by more than a factor of α. Using only the

fact that the edge cost functions are identical (and sub-additive) they define the following

randomized α-approximation algorithm: choose a random tree from the distribution that

α-probabilistically approximates the underlying graph metric of the problem and route

the demands along the unique paths between source-sink pairs in the selected tree. At

the time of publication, the best-known value of α was O(log2 n) due to Bartal [14], later

improved to O(log n log log n) by Bartal [15] and finally to O(log n) by Fakcharoenphol et

al. [34], where the construction is also derandomized. This results in the current best

approximation algorithm for the multi-source uniform version of the buy-at-bulk problem

with approximation guarantee of O(log n).

1.2.3 Single-source Uniform Case

The single-source uniform version of the problem has been extensively studied. Andrews

and Zhang [6] define the access network design problem, a special case of the single-source

uniform buy-at-bulk problem where the cost of installing capacity on the edges is a concave

piecewise linear function with K breakpoints. This corresponds to the scenario when K

different trunk-types are available, each having a start-up cost and a per unit cost of carrying

traffic between nodes in the network. They give an O(K2)-approximation algorithm for this

problem. The approximation factor was later improved to O(K) by Garg et. al [36] and

independently brought down to a constant by Guha et al. [40]

The general single-source uniform version of the problem can be approximated up to a
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constant 1 . Guha et al. [41] and Gupta et al. [43] give a randomized combinatorial constant

factor approximation algorithm that constructs a layered solution such that at every layer

the demand of a chosen set of source-sink pairs is satisfied at a fixed per unit cost. Talwar [72]

utilizes an LP rounding approach to give another constant factor approximation algorithm

and show that a natural LP formulation of the problem has a constant integrality gap2 .

1.2.4 Single-source Non-uniform Case

At the time of publication of the result that forms the basis of the first part of this disser-

tation [21], the only non-uniform version of the problem with a non-trivial approximation

algorithm was the single-source version. Meyerson et al. [59] present the Cost-Distance

problem where the goal is to find a Steiner tree that optimizes the sum of edge costs along

one metric and the sum of source-sink distances along an unrelated metric. They reduce the

non-uniform single-source buy-at-bulk problem to Cost-Distance by noticing that if each

edge is replaced with a suitable collection of edges each of which has a fixed cost and an

incremental cost of routing demand, then the optimum solution with the new edges is no

more than a factor of 2 away from the optimum to the original problem (this observation

is implicit in [12, 67]). They give a randomized combinatorial algorithm for Cost-Distance

with approximation guarantee of O(log k), where k is the number of source-sink pairs in

the instance. The algorithm proceeds by pairing up sinks (or the source and a sink) until

only the source remains. At each stage it finds a matching between the source and sinks,

chooses one vertex from each matched pair and transports all the demand from the other

vertex in the pair to the chosen one at a cost that is no more than a constant factor away

from the cost of the optimal solution. This results in a randomized O(log k)-approximation

algorithm for the non-uniform single-source case, later derandomized by Chekuri et al. [23]

by using an LP relaxation.

The analysis of the Cost-Distance algorithm from [59] uses the tree structure of the
1In other words there exists a constant factor approximation algorithm for it.
2If A′ is an LP relaxation of a minimization problem A and A(I) and A′(I) denote the optimal value of

A and A′ respectively on an instance I, then the integrality gap of the LP formulation A′ is the minimum
over all instances I of A(I)/A′(I).
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optimal solution in a crucial way and seems difficult to modify to accommodate the more

complex structure of the optimal solution to the multi-source version of the problem.

1.2.5 Rent-or-Buy Problem

An interesting special case of the multi-source uniform problem is the Rent-or-Buy problem,

where one can either rent capacity along each edge by paying per unit of capacity or buy

unlimited bandwidth at a large fixed cost M , resulting in a cost function of the form f(x) =

min{x,M}. The problem was first studied by Awerbuch et al. [11] in the online setting

(referred to as the network connectivity leasing problem) where they gave an O(log2 n)-

competitive algorithm by modifying a simple combinatorial algorithm for the Generalized

Steiner Tree problem. Bartal et al. [16] consider the network connectivity leasing problem

as the relaxed task systems corresponding to the generalized Steiner tree problem and give

an O(log n)-competitive algorithm.

The first constant factor algorithm for the rent-or-buy problem is due to Kumar et al.

[53] via a primal-dual algorithm. As they remark, the rent-or-buy problem seems to capture

the “route vs. gather” essence of the multicommodity buy-at-bulk network design problem.

Without knowledge of where demand could be aggregated any given source-sink pair would

try to route its demand along the edges of the shortest path between the two vertices,

renting capacity along them. The presence of other source-sink pairs makes aggregating

flow on some edges very profitable by buying a large quantity of capacity at a low per unit

cost.

Gupta et al. [42] give a simple improved constant factor approximation algorithm for the

multicommodity rent-or-buy problem. They mark each source-sink pair with probability 1
M

and buy the edges of an approximate Steiner forest connecting the marked pairs. The rest of

the pairs are connected via the shortest path in the graph given the already bought edges.

This conceptually simple algorithm provided some of the inspiration for our Inflated

Greedy algorithm. An essential part of Gupta et al.’s solution is a primal-dual type

algorithm for the generalized Steiner problem that allocates the total cost of building the
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Steiner forest to the source-sink pairs in a “fair” manner (a strict cost-sharing method),

making sure that no pair imposes a large burden on building the network but pays only a

small fraction of the total cost.

1.2.6 Our Contribution

At the time of publication of the result that forms the basis of the first part of this dis-

sertation [21], the non-uniform multicommodity buy-at-bulk network design problem was

the one remaining problem in buy-at-bulk network design for which no non-trivial approx-

imation results were known. The existing techniques for the single-source case (repeatedly

merging demand) and the uniform case (using approximations by tree metrics) fail in the

general case. Since there are multiple sources, the structure of the optimal solution can

be quite complex, making it difficult to merge routes by demand pairs. At the same time,

since every edge has a different cost function, there is no useful notion of length of edges to

enable the application of tree metrics.

We presented the first approximation algorithm to the multicommodity buy-at-bulk net-

work design problem in the general case. Our algorithm is an extremely simple randomized

greedy algorithm. In the non-uniform multi-source case it yields an approximation factor

of eO(
√

log n log log n ) log D, where n is the number of demand pairs and D is the maximum

demand. When our algorithm is applied to the non-uniform single-source version of the

problem, we get an approximation factor of O(log2 n) log D. It is interesting that when

applied to the single-source case, the algorithm achieves approximation ratio that is close

to that of the best known algorithm (O(log n) from [23, 59]). Our approach is reminiscent of

the greedy online algorithm for generalized Steiner tree by Awerbuch, Azar and Bartal [11]

as well as the techniques used by Meyerson [58] for designing online algorithms for network

design problems.
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1.2.7 Subsequent Results

As mentioned in Charikar and Karagiozova [21], one of the most interesting problems to

tackle was whether the approximation factor can be reduced to polylog(n), a possibility that

was not ruled out by the known hardness results at the time [5]. Another open problem

was to remove the dependence of the approximation factor on the maximum demand and

obtain a bound only in terms of the number of source-sink pairs. Both of these open

problems were resolved by Chekuri et al. [22] who give an approximation algorithm for

the general case of the problem of O
(
min{log3 n log D, log5 n log log n}). The algorithm

proceeds iteratively, constructing a partial solution of low density that connects some of the

remaining source-sink pairs. The main idea behind constructing such a low density partial

solution lies in showing the existence of one with a specific structure (junction-tree). They

present two algorithms for computing such a junction-tree: an LP relaxation for the case of

arbitrary demands and a greedy combinatorial algorithm based on computing shallow-light

trees when the maximum demand D is polynomial in n. For more details see Chapter 3

and [22].

1.2.8 Hardness Results

A natural question that occurs in the study of the buy-at-bulk network design problem

is how low we can hope to push the approximation factors for the various versions of

the problem. Andrews [5] shows that for any constant γ > 0 there is no O(log1/2−γ n)-

approximation algorithm for the non-uniform version and no O(log1/4−γ n)-approximation

algorithm for the uniform version unless NP ⊆ ZPTIME (npolylog(n)) 3 . Chuzhoy et al.

[25] show that no O(log log n)-approximation algorithm exists for the single-source version

under the same complexity assumption.

3Recall that ZPTIME (npolylong(n)) = RTIME (npolylong(n)) ∩ coRTIME(npolylong(n)) and equals the class
of problems solvable by a randomized algorithm that always returns the correct answer and has expected
running time O(npolylog(n)). [5]
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Problem variant Result Paper Year

single-source uniform, Euclidean O(log D) [67] 1997

single-source uniform, path length ≤ 2 O(log n) [67] 1997

multi-source uniform, one type of cable O(log n) [57] 1994

multi-source uniform, one type of cable, Euclidean O(1) [67] 1997

multi-source uniform O(log2 n) [12, 14] 1997

multi-source uniform O(log n log log n) [12, 15] 1998

multi-source uniform O(log n) [12, 34] 2003

access network design O(K2) [6] 1998

access network design O(K) [36] 2001

access network design O(1) [40] 2000

single-source uniform O(1) [41] 2001

single-source uniform O(1) [43] 2003

single-source uniform O(1) [72] 2002

single-source non-uniform O(log n) [59, 23] 2000

network connectivity leasing O(log2 n) [11] 1996

network connectivity leasing O(log n) [16] 1997

rent-or-buy O(1) [53] 2002

rent-or-buy O(1) [42] 2003

multi-source non-uniform eO(
√

log n log log n ) log D [21] 2005

multi-source non-uniform O(log3 n log D) [22] 2006

multi-source non-uniform O(log5 n log log n) [22] 2006

multi-source uniform, hardness Ω(log1/4−γ n) [5] 2004

multi-source non-uniform, hardness Ω(log1/2−γ n) [5] 2004

single-source non-uniform, hardness Ω(log log n) [25] 2005

Table 1.1: Buy-at-bulk approximation results



Chapter 2

The Inflated Greedy Algorithm

In this chapter we present Inflated Greedy – a randomized greedy algorithm for instances

of the multi-source non-uniform buy-at-bulk network design problem where each source-sink

pair needs to route a single unit of demand. The algorithm is conceptually very simple and

easy to implement as it only performs repeated shortest paths calculations. We show that

it has an eO(
√

log n log log n ) approximation guarantee, where n is the number of source-sink

pairs in the graph.

2.1 Inflated Greedy Description

The algorithm starts off by permuting the source-sink pairs and assigning an inflated de-

mand to each pair as a function of its position in the permutation. It proceeds by con-

structing a network in a greedy manner, going down the list of the source-sink pairs and

connecting each in the cheapest way possible.

Inflated Greedy Algorithm:

1. Randomly permute the source-sink pairs.

Let π = ((s1, t1), (s2, t2), . . . , (sn, tn)) be the chosen permutation.

2. Define a new demand function δ′ : D → R+ such that δ′(sk, tk) = n
k .

12
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3. For all k = 1, . . . , n in that order, connect sk to tk via the path with the smallest cost

of routing δ′(sk, tk) units of demand, using the network constructed for the previous

k − 1 pairs.

4. Route a single unit of demand between sk and tk along the path selected at the k-th

iteration of Step 3.

This algorithm is somewhat reminiscent of the algorithm of Gupta et al. [42] for the rent-

or-buy problem. Recall that the rent-or-buy problem is a special case of the multi-source

uniform buy-at-bulk network design problem where the cost functions along the edges are

of the form f(x) = min{x,M}, where M is usually very large. This means that unlimited

capacity can be bought on each edge for a price of M or capacity can be rented at a fixed

price per unit of demand routed along the edge. The algorithm of Gupta et al. takes as

input an instance of the rent-or-buy problem with unit demands for each source-sink pair.

It starts by marking each pair with probability 1
M and then buys the edges that connect all

the marked pairs. The source and sinks of any unmarked pairs are then connected greedily

via the shortest path in the graph. Notice that if a pair is marked we can think of its

demand being inflated by a factor of M in which case it pays off to buy the edges that

connect the source and sink of the pair. Any other pair that decides to use already bought

edges would not have to pay anything for routing capacity along them.

A similar situation occurs with the Inflated Greedy algorithm. By randomly per-

muting the source-sink pairs at the beginning we are performing a step like the marking

process in Gupta et al.’s rent-or-buy algorithm. The first pair in the permutation has its

demand inflated to n so when we buy sufficient capacity along some edges to satisfy this

demand, any subsequent pairs using those connecting edges would need to pay only a small

fraction of what the first pair paid to satisfy their inflated demands. After the k-th pair is

connected we have a forest along each edge of which we have paid for at least n
k units of

capacity and any subsequent pairs using those edges will need to pay only a small fraction

of what has already paid by the previous pairs.

The key challenge to solving the multicommodity buy-at-bulk problem is to decide which
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edges should be bought. Intuitively, we would like to buy edges that many source-sink pairs

would use to route their demand in a cheap way. However it seems difficult to decide

which edges would be useful. The approach taken by Inflated Greedy is based on the

motivation that if we had a representative random sample of source-sink pairs then the

edges required to connect the pairs in the sample are likely to prove useful for connecting

other source-sink pairs. Inflated Greedy processes the source-sink pairs in random order

and we can think of a size k prefix of the permutation π as a random sample of k source-sink

pairs. If this sample is to reflect the properties of the n source-sink pairs we have to make

sure that the total demand of the sample matches the total demand n and thus inflate the

demands of all pairs in the sample by a factor of n
k . In Step 2 of Inflated Greedy we

attempt to simulate this by assigning demand n
k to the k-th pair in the permutation.

When proving the performance guarantee of Inflated Greedy we will estimate the

cost of satisfying the inflated demands with respect to the optimal cost of satisfying the

original unit demands. At first glance it is not immediately clear why inflating the demands

by as much as Inflated Greedy does would not dramatically increase the cost. Notice,

however, that for any source-sink pair the demand gets inflated to n
i with probability 1

n for

all i = 1, 2, . . . , n, so on average the demand of each pair gets inflated by a factor of lnn.

Thus the expected cost of the optimal solution of satisfying the inflated demands would be

a factor of lnn away from the cost of the optimal solution of satisfying the original unit

demands since the cost functions along the edges are sub-additive.

2.2 Running Time

Connecting the k-th pair (sk, tk) in Step 3 of Inflated Greedy involves a simple shortest-

path calculation. To each edge e of the graph, we assign a length that is equal to the cost

of transporting additional n
k units of demand along it. Then we compute the shortest path

between sk and tk according to this length function. Notice that if the edge e has not been

used before, the length assigned to it is simply equal to fe

(
n
k

)
. Otherwise if xe units of

demand have already been routed along it, the length is fe

(
xe + n

k

)− fe (xe).
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This means that the algorithm only performs n shortest path calculations between two

vertices in the graph, resulting in a running time of O (n(|E|+ |V | log |V |)).

2.3 Analysis of Inflated Greedy

We will estimate the cost of satisfying the inflated demands, which is an upper bound on the

price we need to pay to route the unit demands once the paths have been selected (the edge

cost functions are monotone). Our goal is to prove that when Inflated Greedy selects a

path to connect the pair (sk, tk), it does so in a relatively cheap way. Instead of bounding

directly the cost of the shortest path selected in Step 3 of the algorithm, we will show that

there exists a path connecting (sk, tk) of specific structure, called an alternating path, that

costs relatively little to route n
k units of demand on. Since Inflated Greedy selects the

cheapest path to route n
k units of demand, a bound on the cost of such alternating path

automatically gives a bound on the cost of the path Inflated Greedy selects in Step 3.

2.3.1 Preliminaries

The path connecting sk to tk found by Inflated Greedy consists of segments that have

never been used before as well as segments that are part of the already constructed network.

Moreover, Inflated Greedy selects the cheapest path with this structure. We consider

a collection of paths (alternating paths) that is a subset of what Inflated Greedy can

choose from when connecting sk to tk in Step 3 of the algorithm.

Definition 2.3.1 An alternating path connecting sk to tk is a path consisting of alternating

segments S1, S
′
1, S2, S

′
2, . . . , Sg, S

′
g, Sg+1. The segments Si are paths along edges used in the

optimal solution to the original unit demands problem and the segments S′i are the complete

paths constructed in Step 3 of Inflated Greedy for demand pairs that preceded (sk, tk)

in π (see Figure 2.1).

Definition 2.3.2 The hops of an alternating path S1, S
′
1, S2, S

′
2, . . . , Sg, S

′
g, Sg+1 are the

segments S′1, S
′
2, . . . , S

′
g.
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sk
si1

ti1

si2

ti2
si3

ti3

tk

Figure 2.1: An alternating path connecting sk to tk. The straight line segments correspond
to the hops, the wavy segments consist of edges from the optimal solution (i1, i2, i3 < k).

The key idea is to show that there are cheap alternating paths connecting sk to tk.

In order to obtain an alternating path of low cost it is important to use only a few of

the available k − 1 paths as we would be paying for routing additional n
k units of demand

along each of them. We will restrict our attention to alternating paths connecting sk to tk

with at most gk hops (see Definition 2.3.2); gk is a parameter whose value will be specified

later. We will construct an auxiliary graph with vertices corresponding to contracted paths

used by the optimal solution and edges corresponding to a selection of the pairs (si, ti) for

i ≤ k. Then a cycle in this graph containing the edge that corresponds to (sk, tk) can be

viewed as a contracted version of an alternating path that connects sk and tk. There is a

tradeoff between the cost of the optimal solution path that was contracted at each vertex of

the auxiliary graph and its girth1 : the smaller the cost of the path corresponding to each

vertex, the larger the girth of the graph and vice versa. We will show that when we place an

upper bound on the cost at each vertex, the girth of the auxiliary graph is still sufficiently

small. This argument is reminiscent of the argument in [11] for online generalized Steiner

tree. In the Steiner tree case, once edges are bought, additional pairs can use them for free.

However, our argument is much more complicated by the fact that we may have to pay an

additional amount for edges that have already been used before.
1Recall that the girth of a graph is the length of its shortest cycle.
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2.3.2 Additional Notation

Let R = {(s1, t1), (s2, t2), . . . , (sk, tk)} be the set of the first k source-sink pairs in the

permutation π. Let CR
k be the cost (as a function of R) of connecting the k-th pair in Step 3

of the algorithm by routing δ′(sk, tk) units of demand along an alternating path with at most

gk hops. Let Ck = Eπ

[
CR

k

]
, where the expectation is taken over the random permutation

π. If Tn is the total cost incurred by Inflated Greedy of connecting all source-sink pairs

in D while satisfying the inflated demands then Eπ [Tn] ≤ ∑n
k=1 Ck. Naturally, Tn is an

upper bound on the cost of satisfying the original unit demands along the paths selected

in Step 3, as δ′(sk, tk) ≥ 1 and the edge cost functions are sub-additive. Finding an upper

bound on Eπ [Tn] directly results in a bound on the expected cost of routing the original

unit demands.

Let αR
k denote the cost of routing n

k units of demand along the portion of the alternating

path that corresponds to edges in the optimal solution, given that R is the set of the first

k source-sink pairs. Let βR
k be the cost of routing n

k units of demand along the hops of

the alternating path, again given that R is the set of the first k source-sink pairs. Then

CR
k = αR

k + βR
k . In the following subsections we will describe how to construct a good path

and bound the expected value of αR
k and βR

k corresponding to it. Note that throughout the

analysis we rely heavily on the randomization introduced by picking a random permutation

of the source-sink pairs and most of the quantities we bound are expectations of costs.

2.3.3 Bounding Eπ

[
αR

k

]

Consider how the first k source-sink pairs are connected in the optimal solution: let the

connected components of the union of the paths used to connect the elements of R be

A1, A2, . . . , Al where 1 ≤ l ≤ k2 (see Figure 2.2). For all i = 1, . . . , l let OPTR
i be the cost

of routing n
k units of demand along all edges of Ai and let ki be the number of source-sink

pairs served in Ai, where ki > 0 and
∑l

i=1 ki = k.

We will now argue that Eπ

[∑
i OPTR

i

]
is bounded from above by the cost of the optimal

2Strictly speaking, l is a function of R.
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Figure 2.2: (Left) The optimal solution for an instance with n = 11. (Right) The connected
components of the solution restricted to R for k = 7.

solution to the original unit demands problem, which we denote by OPT . Let e be an edge

in the optimal solution with xe units of demand routed along it. This means that there are

xe single unit demand source-sink pairs that utilize e. The probability that at least one of

those pairs belongs to R is at most min
{
1, xe

k
n

}
. The cost of routing n

k units of demand

along e is at most fe

(
n
k

)
no matter whether there already is some demand routed along e

or not (fe is sub-additive). Let cR
e denote the cost of routing n

k additional units of demand

along e. Hence Eπ[cR
e ] ≤ min

{
1, xe

k
n

}
fe

(
n
k

)
. It is easy to see that Eπ[cR

e ] ≤ fe(xe):

• If xe
k
n > 1, then Eπ[cR

e ] ≤ fe

(
n
k

) ≤ fe(xe) since fe is nondecreasing.

• If xe
k
n ≤ 1, then Eπ[cR

e ] ≤ xe
k
nfe

(
n
k

)
= xe

fe(n
k )

n
k

≤ fe(xe) since fe is sub-additive.

The above argument shows that Eπ

[∑
i OPTR

i

]
is at most OPT . When constructing

an alternating path connecting sk to tk, the segments that do not correspond to hops will

consist of edges from the connected components A1, A2, . . . , Al. The cost for this portion of

the alternating path will be exactly the cost of routing n
k units of demand along those edges.

Our goal is to show that we would need to pay only a small fraction of Eπ

[∑
i OPTR

i

]
.

Now consider one of the connected components Ai. Construct a tour Pi that passes

through all source-sink pairs and utilizes each edge no more than twice. If Ai is a tree,

double all its edges to obtain an Eulerian tour Pi. Otherwise, first remove edges from Ai to

break up the cycles and then double the remaining edges to obtain the tour Pi. The cost

of routing n
k units of demand along the edges of Pi is bounded by 2OPTR

i .
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Pi

Figure 2.3: (Left) Connected component Ai containing pairs (si1 , ti1), (si2 , ti2), . . . , (si7 , ti7).
(Right) The corresponding Eulerian tour Pi, divided into segments.

We will construct an auxiliary graph corresponding to Pi such that cycles in the auxiliary

graph that involve the pair (sk, tk) would correspond to augmenting paths connecting sk to

tk. Bounding the girth of the auxiliary graph will give us a bound on the number of hops

in an augmenting path connecting (sk, tk).

Auxiliary graph construction

If ki ≥ e
√

ln k ln ln k, divide Pi into ni = bk1−2/gk

i c segments of cost at most 2OPTR
i /ni.

This is easily achieved by picking an arbitrary point along Pi and traversing the cycle in

one direction, breaking up edges where the cost of the current segment exceeds the average

segment cost. We will set gk > 2, which is sufficient to guarantee that ni ≥ 2 for k large

enough.

Now construct an auxiliary graph H i
1 with ni vertices corresponding to the ni segments

of Pi. Two vertices u and v are connected by an edge in H i
1 if and only if there is a source-

sink pair from R with a source in one of the segments corresponding to u and v and a sink

in the other such segment (see Figure 2.4). Notice that we are allowing multiple edges and

self loops in H i
1. The resulting graph H i

1 has ni = bk1−2/gk

i c vertices and ki edges. We will

use the following result, due to Alon et al. [4], to bound the girth of H i
1:

Theorem 2.3.3 ([4]) The number of vertices n in a graph of girth g and average degree
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Figure 2.4: (Left) The Eulerian cycle Pi. (Right) The corresponding auxiliary graph H i
1.

at least d ≥ 2, satisfies:

n ≥ 4
⌊

d

2

⌋ g−2
2

Lemma 2.3.4 For gk < 4
√

ln k
ln ln k and k large enough, the girth of H i

1 is less than gk.

Proof: The average degree of H i
1 is 2ki

ni
= 2ki

bk1−2/gk
i c

≥ 2 and the condition of Theorem 2.3.3

is satisfied. If g denotes the girth of H i
1 then

g ≤ 2
lnni − ln 4

lnb ki
ni
c + 2

≤ 2
ln k

1−2/gk

i − ln 4

lnbk2/gk

i c
+ 2

=
(gk − 2) ln k

2/gk

i − 2 ln 4

lnbk2/gk

i c
+ 2

<
(gk − 2) ln

(
k

2/gk

i − 1
)

lnbk2/gk

i c
+ 2

≤ gk

In the second to last inequality we use the fact that k
2/gk

i ≥ gk for the choice of ki, gk and

k large enough. This allows us to complete the proof by showing that

ln
k

2/gk

i

k
2/gk

i − 1
≤ 1

k
2/gk

i − 1
<

2 ln 4
gk − 2

2
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Having the girth of H i
1 less than gk means that there exists a cycle Bi

1 in H i
1 of length

bi
1 < gk. The cost of routing n

k units of demand along the segments of Pi corresponding to

the vertices in Bi
1 is at most

2OPTR
i bk1−2/gk

i c−1bi
1 < 4 k

2/gk−1
i bi

1 OPTR
i

Cycle decomposition of Pi

Recall that edges of the cycle Bi
1 correspond to source-sink pairs in R. We would like to

partition all source-sink pairs into low-length cycles like Bi
1. Think about removing from

consideration the source-sink pairs that made up the edges of Bi
1. If the number of remaining

source-sink pairs is still large enough (i.e. at least e
√

ln k ln ln k) we repeat the auxiliary graph

argument to construct a graph H i
2 by splitting Pi into equal cost segments. The number

of vertices of H i
2 is b(ki − bi

1)
1−2/gkc and the number of edges is ki − bi

1. Then there exists

a cycle Bi
2 in H i

2 of length bi
2 < gk and the cost of routing n

k units of demand along the

segments of Pi corresponding to the vertices in Bi
2 is at most 4(ki − bi

1)
2/gk−1bi

1 OPTR
i .

We continue this procedure as long as the number of remaining source-sink pairs in Ai

that have not been associated with some cycle Bi
j is at least e

√
ln k ln ln k. We end up with a

collection of cycles Bi
1, . . . , B

i
p with lengths bi

j < gk such that
∑p

j=1 bi
j = k′i ≤ ki. We also

have ki− k′i < e
√

ln k ln ln k other source-sink pairs that do not belong to any cycle Bi
j . If the

pair (sk, tk) belongs to a cycle, we will use the alternating path corresponding to that cycle

to route the required n
k units of demand. We will start at sk, traverse the segment it is in

to find the terminal of the source-sink pair that corresponds to the next edge in the cycle,

then take a hop to the other terminal of that pair and continue in this manner until we

reach tk. The cost of the optimal solution segments of such a path will be bounded by the

cost of the cycle. If the pair (sk, tk) does not belong to any cycle we will route its demand

along an alternating path with no hops that simply traverses Pi to connect sk to tk.

The cost of routing n
k units of demand along the segments corresponding to the vertices

of a cycle Bi
j is at most 4(ki − bi

1 − . . . − bi
j−1)

2/gk−1bi
j OPTR

i . The bound on the cost

of routing n
k units of demand along the vertices of any given cycle might be quite large.
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However, since R is a random selection of k pairs and each of those pairs is equally likely

to have been chosen as the k-th one, the expected cost of servicing (sk, tk) will be averaged

across all cycles. The probability that we use the cycle Bi
j as the one to route demand along,

given that we use Ai, is
bi
j

ki
. Then the expected cost of routing n

k units of demand along the

segments corresponding to the vertices in the cycle to which (sk, tk) belongs, given that it

is in Ai, is less than
p∑

j=1

4(ki − bi
1 − . . .− bi

j−1)
2/gk−1bi

j Eπ

[
OPTR

i

] bi
j

ki

With probability ki−k′i
ki

the pair (sk, tk) will not belong to any of the cycles Bi
j and the

expected cost of routing n
k units of demand along optimal solution edges between sk and tk

given that (sk, tk) is in Ai will be Eπ

[
OPTR

i

] ki−k′i
ki

. Therefore the expected cost of routing

n
k units of demand along the optimal solution edges of an alternating path connecting sk to

tk as described by an auxiliary graph cycle or a direct path with no hops, given that (sk, tk)

is in Ai is less than
p∑

j=1

4(ki − bi
1 − . . .− bi

j−1)
2/gk−1bi

j Eπ

[
OPTR

i

] bi
j

ki
+ Eπ

[
OPTR

i

] ki − k′i
ki

In order to simplify this expression we will use the following:

Lemma 2.3.5 For 1 ≤ bi
j < gk and gk > 2

p∑

j=1

4(ki − bi
1 − . . .− bi

j−1)
2/gk−1bi

j
2 ≤ 2k

2/gk

i g2
k

Proof: Introduce new variables aj ∈ (0, 1) for j = 1, 2, . . . , ki such that aj = bi
j/gk for

j = 1, 2, . . . , k′i and aj = 1/gk for j = k′1 + 1, . . . , ki. Then the left hand side of the

inequality can be rewritten as
p∑

j=1

4(ap+ki−k′i + . . . + aj)2/gk−1aj
2g

2/gk+1
k

≤
p+ki−k′i∑

j=1

4(ap+ki−k′i + . . . + aj)2/gk−1ajg
2/gk+1
k

≤ 4g
2/gk+1
k

∫ ki/gk

0
t2/gk−1dt

≤ 2k
2/gk

i g2
k
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2

The lemma above allows us to bound the optimal solution portion of the alternating path

connecting sk to tk, given that the pair is in Ai by
(

2k
2/gk−1
i g2

k +
1
ki

e
√

ln k ln ln k

)
Eπ

[
OPTR

i

]

The probability that the k-th pair is in component Ai is ki
k . Hence the expected cost of

routing n
k units of demand along the optimal solution edges of an alternating path connecting

sk to tk as described by an auxiliary graph cycle or a direct path with no hops is less than

l∑

i=1

(
2k

2/gk−1
i g2

k +
1
ki

e
√

ln k ln ln k

)
ki

k
Eπ

[
OPTR

i

]

=
2g2

k

k

l∑

i=1

k
2/gk

i Eπ

[
OPTR

i

]
+

1
k
e
√

ln k ln ln k
l∑

i=1

Eπ

[
OPTR

i

]

≤ 2g2
k k2/gk−1 OPT +

1
k
e
√

ln k ln ln k OPT

Let (si1 , ti1), . . . (sib , tib) ∈ R \ {(sk, tk)} be the pairs that are responsible for the edges

of the cycle (sk, tk) belongs to, where 0 ≤ b < gk − 1. Consider the alternating path that

starts at sk, reaches si1 along edges of Pi, hops to ti1 , reaches si2 along edges of Pi, hops

to ti2 , etc. until it does one last hop to tib and from there finally reaches tk along edges of

Pi (see Figure 2.5). This is an alternating path with less than gk − 1 hops that connects sk

to tk and therefore the expected value of CR
k is at most equal to the expected cost of this

path. The result above places an upper bound on the expected value of the αR
k portion of

CR
k for this path:

Eπ[αR
k ] ≤ 2g2

k k2/gk−1OPT +
1
k
e
√

ln k ln ln k OPT

2.3.4 Bounding Eπ

[
βR

k

]

In this section we derive an upper bound on the cost of routing additional n
k units of demand

along the hops of an alternating path of the structure described in the previous section.

This completes the upper bound on the cost of using an alternating path of that kind to

route the inflated demand between sk and tk.
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Figure 2.5: (Left) A cycle in the auxiliary graph. (Right) The augmenting path connecting
(s7, t7) that corresponds to the cycle, b = 3.

For a given set R of the first k source-sink pairs, and pair (s, t) ∈ R, let CR,i
s,t denote the

cost to connect pair (s, t) given that R is the set of the first k source-sink pairs and (s, t)

was the i-th pair in the permutation. Notice that according to this notation CR,k
sk,tk

= CR
k

and Eπ[CR,i
s,t ] = Ci.

Consider the decomposition into cycles (with edges corresponding to pairs in R and

length less than gk) constructed by our analysis in the previous section. The probability

that the hop corresponding to the pair (s, t) is used to route the k-th pair is precisely

the probability that some pair in the cycle involving (s, t) is the k-th pair, i.e. at most gk
k .

Further, if (s, t) was the i-th pair, a demand of n
i was routed from s to t. The cost of routing

additional n
k units of demand is at most i

kCR,i
s,t (the edge cost functions are sub-additive).

Since we pick a random permutation π, the pair (s, t) is equally likely to be any of the first

k pairs. Hence, the expected cost of routing additional n
k units of demand along the hop

corresponding to (s, t) is at most

1
k − 1

k−1∑

i=1

i

k
Eπ[CR,i

s,t ] =
1

k − 1

k−1∑

i=1

iCi

k

This bounds the expected contribution of pair (s, t) to Eπ[βR
k ] by

gk

k

1
k − 1

k−1∑

i=1

iCi

k
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Then

Eπ[βR
k ] ≤

∑

(s,t)∈R

gk

k

1
k − 1

k−1∑

i=1

iCi

k

≤ gk

k − 1

k−1∑

i=1

i 1
k

∑
(s,t)∈R Ci

k

=
gk

k − 1

k−1∑

i=1

iCi

k

2.3.5 Refinement and Analysis of the Ck Bound

As CR
k = αR

k +βR
k , sections 2.3.3 and 2.3.4 give us a bound on Ck = Eπ[CR

k ] for k ≥ Nc where

Nc is a constant. For k < Nc we use the trivial bound on Ck that states that Ck ≤ OPT .

This is summarized below:

Theorem 2.3.6 For 2 < gk < 4
√

ln k
ln ln k

Ck ≤





OPT for k < Nc

2g2
k k2/gk−1OPT + 1

ke
√

ln k ln ln k OPT + gk

∑k−1
i=1

i
k

Ci

k−1 for k ≥ Nc

Notice that if we try to solve the recurrence relation above as it is, it would be difficult to

obtain a very good upper bound on Ck since the contribution of the summands i
kCi from the

βR
k part of the bound would be almost equal to Ci as i gets close to k−1. Intuitively, the first

pairs in the summation are the ones who overpay by a lot as they pay for routing n
1 , n

2 , . . .

units of demand. This means that if we use the paths corresponding to some fraction of

the first pairs only, the per unit routing cost would be small for adding n
k units of demand

to those paths. Following this reasoning, we would like to use only hops corresponding to

the first
⌊

k
rk

⌋
pairs out of the k − 1 that are already connected. rk is a parameter whose

value will be specified later such that k
k−1 ≤ rk ≤ k. Reasoning analogous to the analysis

in sections 2.3.3 and 2.3.4 yields
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Theorem 2.3.7 For 2 < gk < 4

√
ln b k

rk
c

ln lnb k
rk
c , rk such that k

k−1 ≤ rk ≤ k and N ′
c a constant

Ck ≤





OPT for k < N ′
c

2g2
k

⌊
k
rk

⌋2/gk−1
OPT + 1

b k
rk
ce

√
lnb k

rk
c ln lnb k

rk
c
OPT + gk

∑b k
rk
c−1

i=1
i
k

Ci⌊
k
rk

⌋
−1

for k ≥ N ′
c

Theorem 2.3.7 gives us a family of recursive bounds on Ck. We need to select the values

for gk and rk that would allow us to solve the recurrence relation and obtain a good bound

on Eπ[Tn] =
∑n

k=1 Ck, which is itself an upper bound on the performance of Inflated

Greedy. The following lemma shows a (near optimal) choice for the parameters gk and rk.

Lemma 2.3.8 The choice of γ = 1+
√

5
2 + ε, where ε > 0, rk = e

γ−1+1/γ
2

√
ln k ln ln k, and

gk = 2
⌈√

ln k
ln ln k

⌉
satisfies the requirements of Theorem 2.3.7 for k large enough.

The above choice of parameters gk and rk allows us to prove that

Lemma 2.3.9

Ck ≤





OPT for k < N ′
c

N ′
c

k eγ
√

ln k ln ln k OPT for k ≥ N ′
c

Proof: We proceed by induction on k. The first inequality holds trivially for any k < N ′
c.

Suppose that the second inequality holds for all i such that N ′
c ≤ i ≤ k − 1. Then

k Ck < 2 k g2
k

⌊
k

rk

⌋2/gk−1

OPT +
k

b k
rk
ce

√
lnb k

rk
c ln lnb k

rk
c
OPT + gk

∑b k
rk
c−1

i=1 i Ci⌊
k
rk

⌋
− 1

< 2 k g2
k

(
k

2rk

)2/gk−1

OPT + 2 rk e

√
ln k

rk
ln ln k

rk OPT

+ gk
N ′

c(N
′
c − 1)
k
rk

OPT + gk N ′
c e

γ
√

ln k
rk

ln ln k
rk OPT

< 64 k
ln k

ln ln k

(
k

rk

)√
ln ln k
ln k

−1

OPT + 2 rk e
√

ln k ln ln k OPT

+ gk rk N ′
c OPT + 4

√
ln k

ln ln k
eγ
√

(ln k−ln rk) ln ln kN ′
c OPT
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In the above derivations, we use various floor/ceiling inequalities: if x ≥ 3 then bxcα <

(x/2)α for α < 0 and bxc − 1 ≥ x/2; if x ≥ 1, dxe ≤ 2x. It is now easy to check that for

rk = e
γ−1+1/γ

2

√
ln k ln ln k each of the four final terms can be bounded by N ′

c
4 eγ

√
ln k ln ln kOPT

for k larger than some constant independent of N ′
c (consequently we can make sure we have

N ′
c greater than this constant). We omit the tedious but routine algebraic manipulations.

2

Finally, we need to compute the expected value of the total cost of Inflated Greedy.

Lemma 2.3.10 For Ck as given in Lemma 2.3.9, γ as given in Lemma 2.3.8,

Eπ[Tn] ≤
n∑

k=1

Ck < N ′
c OPT + N ′

c lnn eγ
√

ln n ln ln nOPT

Proof: Using the results from lemma 2.3.9, we have

n∑

k=1

Ck < N ′
c OPT +

n∑

k=N ′
c

N ′
c

k
eγ
√

ln k ln ln kOPT

≤ N ′
c OPT + N ′

c eγ
√

ln n ln ln n OPT
n∑

k=N ′
c

1
k

< N ′
c OPT + N ′

c ln n eγ
√

ln n ln ln n OPT

2

Thus we have proved the following theorem.

Theorem 2.3.11 Inflated Greedy approximates the non-uniform multi-source multi-

commodity buy-at-bulk network design problem up to a factor of eO(
√

log n log log n ), where n

is the total number of source-sink pairs and all source-sink pairs have unit demands.

2.4 Inflated Greedy in the Single-Source Case

It is interesting to note that the performance of Inflated Greedy in the single-source

case is far lower than its guarantee of eO(
√

log n log log n ) for the general case. In this section
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we will show that the algorithm gives an approximation of O(log2 n) in the single-source

case. This guarantee is not too far from the best known guarantee of O(log n) by [59].

The analysis proceeds in a similar manner to the one of the multi-source version detailed

in the previous section. A lot of the intricate details of the analysis are identical, hence

only the most salient features particular to the single-source case are presented.

Notice that since we are in the single-source case, s1 = s2 = . . . = s. We define αR
k and

βR
k as before: αR

k is the cost of routing n
k units of demand along edges of the optimal solution

connecting already existing paths chosen by Inflated Greedy, given that R is the set of

the first k source-sink pairs. βR
k is the cost of routing additional n

k units of demand along

the already constructed paths, again given that R is the set of the first k source-sink pairs.

The optimal solution in the single-source case is a tree, so instead of looking at alternat-

ing paths with hops, we will concentrate only on paths that consist of a sequence of optimal

solution edges used to connect tk to some other terminal ti, followed by the path chosen by

Inflated Greedy to connect ti to s. This greatly simplifies our analysis because we do

not have to go through the auxiliary graph and girth argument as before.

2.4.1 Bounding Eπ

[
αR

k

]

In Section 2.3 we proved that the expected cost of routing n
k units of demand along the

edges of the optimal solution is at most OPT . Let A denote the union of the paths used

to connect the first k pairs in the optimal solution. As before, we double the edges of A to

obtain an Eulerian tour P of expected cost at most 2OPT . We connect tk to the closest

one of s, t1, . . . , tk−1 along the cycle. Since π is a random permutation, the expected cost of

connecting tk will be equal to the average cost between any two of s, t1, . . . , tk. This gives

us

Eπ[αR
k ] ≤ 2OPT

k + 1
<

2OPT
k
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2.4.2 Bounding Eπ

[
βR

k

]

Notice that since tk connects to the closest one of s, t1, . . . , tk−1 we would be using at most

one of the existing paths. The expected cost of routing additional n
k units of demand along

the path used by the pair (si, ti) is no greater than i
kCi and we are equally likely to have

any of the first k − 1 pairs as the closest one. Therefore we have

Eπ[βR
k ] ≤

∑k−1
i=1

i
k Ci

k − 1

2.4.3 Analysis of the Ck Bound

The previous two subsections show that for k > 1

Ck <
2OPT

k
+

∑k−1
i=1

i
k Ci

k − 1

Let Uk =
∑k

i=1 i Ci. Then

Uk − Uk−1 < 2OPT +
Uk−1

k − 1

⇔ Uk

k
<

2OPT
k

+
Uk−1

k − 1

It immediately follows that Uk < 2 k H(k)OPT where H(k) = 1 + 1
2 + . . . + 1

k . Then

Eπ[Tn] ≤
n∑

k=1

Ck = OPT +
n∑

k=2

Uk − Uk−1

k
=

= OPT +
Un

n
− U1 +

n−1∑

k=2

Uk

k(k + 1)

≤ OPT
(

1 +
2 lnn

n
+ 2 ln2 n

)

Thus we get an approximation of O
(
log2 n

)
where n is the number of source-sink pairs.

Theorem 2.4.1 Inflated Greedy approximates the non-uniform single-source multi-

commodity buy-at-bulk network design problem up to a factor of O(log2 n), where n is the

number of source-sink pairs and all source-sink pairs have unit demands.
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2.5 Applying Inflated Greedy to the General Demands Case

The algorithm we presented and analyzed in the previous sections is designed to work in

the case when all source-sink pairs have unit demands. This suggests that if we want to use

Inflated Greedy in the general demands case we will need to apply it as a subroutine

on a subset of the source-sink pairs that have almost the same demand.

We start with a simple observation about the optimal solution in the general demands

case of the problem:

Lemma 2.5.1 In the optimal solution to the general demands problem, the demand of each

pair (s, t) is routed along a single path from s to t.

Proof: Let the number of units routed along each edge e in the optimal solution be x∗e.

Suppose that the demand of pair (s, t) is routed along at least two paths P1 and P2. Since

we are looking at the optimal solution, it would be more expensive to take away one unit of

demand from the path P1 and route it along the path P2 and vice versa. This means that

∑

e∈P2

(fe(x∗e + 1)− fe(x∗e)) >
∑

e∈P1

(fe(x∗e)− fe(x∗e − 1))

∑

e∈P1

(fe(x∗e + 1)− fe(x∗e)) >
∑

e∈P2

(fe(x∗e)− fe(x∗e − 1))

Adding the two inequalities and rearranging gives us

∑

e∈P1

(fe(x∗e − 1) + fe(x∗e + 1)− 2 fe(x∗e)) +
∑

e∈P2

(fe(x∗e − 1) + fe(x∗e + 1)− 2 fe(x∗e)) > 0

However, we know that the edge cost functions are sub-additive, so for any edge e ∈ E,

2 fe(x∗e) ≥ fe(x∗e − 1) + fe(x∗e + 1). This results in a contradiction and completes the proof.

2

Consider an instance of the non-uniform multicommodity buy-at-bulk network design

problem with a set of source-sink pairs D and demand function δ : D → Z+. Let D be the

value of the maximum demand of any source-sink pair, i.e. D = max{δ(s, t) | (s, t) ∈ D}.
Partition D into subsets D1,D2, . . . ,Dl such that (s, t) ∈ Di if and only if 2i−1 ≤ δ(s, t) < 2i.
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The pair with the largest demand D is in Dl so log D < l ≤ log D + 1. We modify the

demands of all source-sink pairs in Di to be 2i thus inflating them by no more than a factor

of 2. If the value of the optimal solution to the original instance is OPT and the value

of the optimal solution to the modified instance is OPT ′, then OPT ′ ≤ 2OPT since all

edge cost funcitons are sub-additive. Moreover, if the value of the optimal solution of the

subproblem defined by the source-sink pairs in Di is OPT ′
i, then clearly OPT ′

i ≤ OPT ′.

We are now ready to deal with each group Di separately. Consider the subproblem

defined on the original graph G with source-sink pairs in Di and demands inflated as above.

The optimal solution routes the demand of each source-sink pair along a single path between

the terminals of the pair. Since all source-sink pairs in Di have the same demand 2i, this

allows us to think of the 2i units of original demand as a single “unit of demand”. To that

effect, for each edge e define a new cost function f i
e : Z+ → R+ such that f i

e(x) = fe(2i x)

and set the demands to all pairs in Di to be unit demands. The optimal solution to this

new rescaled problem is exactly OPT ′
i. Running Inflated Greedy on the newly created

unit demands instance produces a solution of cost no greater than eO(
√

log n log log n )OPT ′
i.

Finally, we combine the solutions found when dealing with each of the demand groups

Di. Since the edge cost functions are sub-additive, the cost of the combined solution is no

greater than
l∑

i=1

eO(
√

log n log log n )OPT ′
i ≤ eO(

√
log n log log n ) log D OPT

This completes the proof that the algorithm for the general demands case described

above has an approximation factor of eO(
√

log n log log n ) log D.
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Conclusion

We give the first non-trivial approximation algorithm for the non-uniform multicommodity

buy-at-bulk network design problem. In an instance of the problem with unit demands our

Inflated Greedy algorithm has an approximation factor guarantee of eO(
√

log n log log n ).

Inflated Greedy can be used as a subroutine in a very intuitive way to obtain a

eO(
√

log n log log n ) log D approximation guarantee for the problem with general demands. A

very attractive feature of our algorithm is its simplicity - it is essentially a randomized greedy

algorithm and the intricacy lies within the analysis. Both Inflated Greedy and the al-

gorithm for the general demands case only perform n shortest path calculations between

two vertices in the graph, resulting in a running time of O(n(|E|+ |V | log |V |)).
One of the most interesting open problems was whether the approximation factor could

be reduced to polylog(n), a possibility not ruled out by the best known hardness results at the

time. Another open problem was to remove the dependance of the approximation factor on

the largest demand in the graph. Both of these open problems were resolved by Chekuri et

al. [22], who give an approximation algorithm with guarantee O
(
log3 nmin{log D, γ(n2)})

where γ(n) is the worst case distortion when embedding the metric induced by a graph on

n vertices into a distribution over its spanning trees. Using the best known bound for γ(n)

(O(log2 n log log n) by Elkin et al. [32]), this gives an O
(
min{log3 n log D, log5 n log log n})

guarantee.

32
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The algorithm proceeds iteratively. In each iteration it constructs a partial solution of

low density that connects some of the remaining source-sink pairs and removes them from

the graph. The density of the partial solution is defined as the ratio of the total cost of the

partial solution to the number of pairs that were still unconnected at the beginning of the

iteration. Using standard set-cover type analysis results in a polylogarithmic approximation

guarantee.

The main idea behind constructing the low density partial solution is to show the exis-

tence of one with a specific structure (junction-tree). Chekuri et al. define a junction-tree

with root r for a set of source-sink pairs A to be a tree that contains all source and sink

terminals such that the unique path in the tree connecting the source and sink of each pair

in A passes through the root r. They produce two approximation algorithms for finding

a junction-tree of low density. For arbitrary demands, they use an LP relaxation for the

single-source buy-at-bulk problem [23] to get an approximately low density junction-tree.

When the total demand D is polynomial in n they give a greedy combinatorial algorithm

that mainly uses a result on computing shallow-light trees by Hajiaghayi et al. [45] Putting

everything together results in an approximation algorithm for the general buy-at-bulk prob-

lem with the aforementioned polylogarithmic approximation guarantee.

The algorithms produce the above approximation guarantee that is a notable improve-

ment over the performance guarantee of our algorithm, yet the final algorithm is concep-

tually harder to understand and more complicated. It would be interesting to design a

conceptually simpler algorithm with similar or better approximation guarantee.

There is still a gap between the best known hardness result for the non-uniform buy-at-

bulk network design problem (O(log1/2 n) by Andrews [5]) and the performance of the best

algorithm (at best O(log3 n)). Closing this gap is the next interesting open problem.

Another avenue to explore is algorithms for the online non-uniform buy-at-bulk problem,

where the source-sink pairs are presented one at a time and the goal is to obtain a low

competitive ratio, i.e. produce a solution of cost not too much greater than the optimal

solution had all the source-sink pairs been known in advance. To the best of our knowledge,
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the only version of the buy-at-bulk problem that has been successfully attacked in the online

setting is the single-source uniform case, under the name of access network design problem,

where a there is a constant factor approximation algorithm.



Part II

Terminal Backup, 3D Matching

and Covering Cubic Graphs
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Chapter 4

Introduction

We study a problem from matching theory that we call Simplex Matching, originally mo-

tivated by looking at the Terminal Backup network design problem. In this chapter we

introduce both problems and discuss how Terminal Backup can be solved in polynomial

time if we had a polynomial time algorithm for Simplex Matching. We also briefly discuss

related work. A polynomial time algorithm for Simplex Matching will be presented in the

next chapter.

4.1 Motivation

Consider the problem of designing networks that can withstand the failure of some of the

links that comprise them. In order to achieve such survivability, we need to install an

appropriate number of redundant links while still keeping the overall cost of the network

low. In some networks the redundancy can be planned at the same time as the design of

the original network, while in others the extra links need to be added afterwards.

A specific problem that fits this framework is the problem of designing access net-

works that are a part of communication networks that connect subscribers to their service

providers. The structure of such a network is a rooted tree of customers at the leaves and

remote terminals at the intermediate nodes. If a link from a terminal to its parent fails, the

terminal has to relay the traffic through another terminal of the same or higher level [74].

36
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One of the parameters of the problem is whether the network between the remote ter-

minals is a single level tree (star network) or a multi level tree. If the network is a multi

level tree we have the Survivable Multi-Level Fat Tree problem [74], where we are given a

graph G with terminal nodes, non-terminal nodes and edge weights. There is an existing

rooted tree T spanning the terminals that does not contain non-terminal nodes. The goal

is to buy the cheapest set of edges such that every terminal can connect to the root of T

even after any single edge failure.

If the access tree between the remote terminals is a single level tree then we need to

augment the network in such a way that each terminal is connected to either one other

terminal or to the root. This can be modeled by the Terminal Backup problem:

Definition 4.1.1 (Terminal Backup) Given a graph consisting of terminal nodes, non-

terminal nodes and edges with costs associated to them, construct a network of minimum

cost that connects each terminal to at least one other terminal.

In Terminal Backup, the terminal nodes represent the facilities that need to be connected

for backup purposes. To do this we construct a network where every facility is connected

to at least one other facility. In other words, we need to find a forest of minimum cost such

that each of its connected components contains at least two terminals.

In [74], Xu et al. define the Survivable Multi-level Fat Tree and Terminal Backup

problems. They show that the former is NP-hard via a reduction from Geometric Steiner

Tree and give a 2-approximation algorithm for the problem that has as a subroutine a

polynomial time algorithm for Terminal Backup. Concurrently with [74] and motivated by

the Terminal Backup problem they define, we developed a polynomial time algorithm for

solving the Simplex Matching problem that can be used easily to solve Terminal Backup

(joint work with E. Anshelevich [8]). This algorithm and its proof of correctness form the

basis of the second part of this dissertation.
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Figure 4.1: (Left) An instance of Terminal Backup with its optimal solution, orange nodes
are terminals. (Right) The corresponding hypergraph with a cover that corresponds to the
optimal solution to the left, blue edges are 2d edges, the red edges form a 3d edge.

4.2 Simplex Cover

In the optimal solution of the Terminal Backup problem the removal of an edge would

disconnect at least one of the terminals. Therefore each connected component of the optimal

solution must consist of terminals connected to a central vertex (that may or may not be

a terminal) via a path that contains no terminal nodes. Moreover each such “star” can be

broken down further into components that connect 2 or 3 terminals each.

This structure of the optimal solution suggests an equivalent formulation of the problem.

Given a graph G with terminal nodes T and edge costs ce, form a hypergraph H(T , E) with

edges of size 2 and 3. For all terminals x, y ∈ T form a 2d edge in H of cost c(x, y) equal

to the cost of the shortest path between x and y in G. Similarly, for all triples of terminals

x, y, z ∈ T form a 3d edge in H of cost c(x, y, z) equal to the cost of the cheapest way to

connect all three x, y and z in G. The optimal solution to the Terminal Backup instance

defined by G and T corresponds to a cover of H by 2d and 3d edges (see Figure 4.1).

The problem of finding a minimum cost cover of the vertices of a hypergraph H with

edges of size 2 and 3 is not exactly equivalent to Terminal Backup. An additional constraint

on the edge costs (the Simplex Condition) is needed to complete the equivalence:
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Definition 4.2.1 (Simplex Condition) Given a hypergraph (H,E) with edges of size 2

and 3, if (x, y, z) ∈ E then (x, y), (y, z), (x, z) ∈ E and

c(x, y) + c(y, z) + c(x, z) ≤ 2 · c(x, y, z)

It is easy to see that the hypergraph corresponding to an instance of Terminal Backup

satisfies the Simplex Condition. First note that all 2d and 3d edges exist. Consider any

three terminals x, y, z ∈ T . Without loss of generality we can assume that the cheapest

way (of cost c(x, y, z)) to connect them in the original graph G utilizes some non-terminal

vertex p – if the cheapest way to connect them was a path between say x and z passing

through y then we could always create an extra non-terminal p that is at a distance 0 from

y and distance c(y, v) to any other vertex v in G. If we only wanted to connect two of the

terminals, we could not do worse than a path passing through p. This immediately shows

that c(x, y) + c(y, z) + c(x, z) ≤ 2 · c(x, y, z) (see Figure 4.2(b)).

x

y

z

(a)

x

z

y
p

(b)

Figure 4.2: The Simplex Condition in Simplex Matching and Terminal Backup.

We can now define Simplex Cover and claim that it is equivalent to Terminal Backup:

Definition 4.2.2 (Simplex Cover) Given a hypergraph with edges of size 2 and 3 that

satisfies the Simplex Condition, find the minimum cost edge cover.

Theorem 4.2.3 ([74]) The Simplex Cover problem is equivalent to Terminal Backup.
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4.3 Simplex Matching

A reduction similar to the one from perfect matching to edge cover (as in [68]) can show

that Simplex Cover can be solved via its matching version that we call Simplex Matching.

In a hypergraph, a perfect matching (often referred to as a packing) is simply a collection of

edges of the hypergraph such that every node of the graph appears in exactly one of those

edges.

Definition 4.3.1 (Simplex Matching) Given a hypergraph with edges of size 2 and 3

that satisfies the Simplex Condition, find the minimum cost perfect matching.

We will briefly outline the construction from [74] that is used in the reduction from

Simplex Cover to Simplex Matching. Given an instance H(T , E) of Simplex Cover make

another copy of H called H ′ and for every node x from H and its corresponding node x′

from H ′ form an edge (x, x′) with weight 2 miny:(x,y)∈E c(x, y). Solving Simplex Matching

on this augmented graph results in a minimum cost perfect matching M consisting of edges

in H, edges in H ′ and edges between vertices in H and H ′. If a vertex x from H is not

covered by an edge that goes between H and H ′ then its corresponding vertex x′ from H ′ is

also not covered by such an edge. Now it is easy to see that the cost of the selected edges in

H should be the same as the cost of the selected edges in H ′ otherwise the perfect matching

could be improved. To construct a feasible solution to Simplex Cover in H, first take the

portion of M that is entirely in H. For all vertices x ∈ E that were covered by (x, x′) edges

in M , add (x, y) ∈ E with cost c(x, y) = c(x,x′)
2 to cover x. It is not difficult to see that this

feasible solution to Simplex Cover has in fact minimum cost (the proof of this fact can be

found in Theorem 4 of [74]).

Note that Simplex Matching would be NP-hard without the additional constraints im-

posed by the Simplex Condition. This is easy to see by observing that if the hypergraph

contained edges of size 3 only we have exactly 3d-matching. In the next chapter we show

that Simplex Matching is solvable in polynomial time. This solves Terminal Backup, which

was the original motivation of our work.
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4.4 Related Work

Terminal Backup is similar to many Steiner-tree variations [20, 33, 44]. However, all such

variations are required to either connect particular pairs of terminals, connect terminals

from a particular set, or connect at least k terminals in total. The problem of finding the

cheapest forest with at least k terminals in each component has not been addressed before.

In addition, all of the above variations are NP-Hard while Terminal Backup is solvable in

polynomial-time for k = 2. For k > 2 the problem becomes NP-Hard, although there is a

2-approximation algorithm using techniques from [37].

Matching theory, as well as its extensions, is both extremely important and well-

studied. Perhaps surprisingly, there still remain basic matching problems that can be

solved efficiently, and yet are not solvable using existing matching algorithms and tech-

niques [26, 29, 46, 47]. We address one such problem, Simplex Matching, and show how to

solve it in polynomial time using an elegant covering argument. While Simplex Matching is

interesting in its own right as a nontrivial extension of non-bipartite minimum cost match-

ing, its main value lies in many (seemingly very different) problems that can be solved using

our algorithm. In the last chapter we will briefly discuss how Simplex Matching can be ap-

plied to the Project Assignment problem in which we have a set of projects and students

with project preferences. The goal is to break up the students into groups of at least 2 and

assign a project to each group so as to maximize the total student “happiness”.

Simplex Matching and especially Project Assignment are also very similar to variants of

facility location. In fact, we can use Simplex Matching to solve instances of facility location

where all open facilities have lower bounds of 2 and the facility costs obey the Simplex

Condition (the costs are all 0 or the cost of serving three clients is at least twice the cost

of serving two clients). Although this is a very special case of facility location, it is the

first result (to our knowledge) of a non-trivial facility location problem with lower bounds

[2, 40, 51] that can be solved efficiently.

Matching theory is a very large field (see [55]) and there are many algorithms for

weighted non-bipartite matching. A lot of work has also been done on exact packings,
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which are exact covers of a graph using more complicated combinatorial structures than

just edges. In this context, the standard matching can be thought of as a packing with

edges, i.e. a {K2}-packing. The study of packing has a lot in common with our work

as it deals with nontrivial extensions of matching, often using totally different methods.

For some results on packings, see for example [10, 24, 27, 28, 46, 52, 63], for surveys see

[26, 29, 47]. Especially relevant to our work is packing by edges and triangles ({K2,K3}
packing), since choosing a 3d edge in Simplex Matching is similar to choosing a triangle

for a packing. In [48], Hell and Kirkpatrick gave an elegant algorithm to find the perfect

{K2,K3}-packing in unweighted graphs, and [54] classified some types of packings that can

be found efficiently. Hell and Kirkpatrick’s algorithm can be easily extended to solve the un-

weighted version of Simplex Matching. The weighted case is significantly more complicated,

however, and cannot be solved by any simple extension of the unweighted algorithm. Since

Simplex Matching is a generalization of {K2,K3} packing, our algorithm gives a simple

and intuitive way to find the minimum cost {K2,K3} perfect packing. The algorithm we

provide is relatively simple to understand and implement but difficult to prove correct. In

the process of the proof we show some new results about covering cubic graphs with simple

combinatorial objects. Another relevant line of research is packing by cycles of length at

least three [17, 18].

Much of the literature on packing concerns itself with matching polyhedra. Unlike the

standard perfect matching, which has a nice characterization as a linear program, many sim-

ilar results for packing can be extremely complicated. While the weighted perfect matching

problem lends itself to a primal-dual algorithm, this is not true for Simplex Matching, for

which there is no nice linear program characterizing the solutions. [26, 29, 47, 54] give

polytope characterizations of other packing problems, although most of these are either

for unweighted versions, or for packing problems very different from ours. An exception is

Gyula Pap, who produces results similar to ours in [64] (including an efficient algorithm

for weighted {K2, K3} packing), although he uses different techniques and considers the

problem from a different perspective.
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Finally, Xu et al. [74] discuss the Terminal Backup problem in detail and provide an

implementation of our Simplex Matching algorithm together with some optimizations that

are important if the algorithm is to be actually used in practice.

4.5 Our Contribution

Our main contribution consists of providing a polynomial-time algorithm for Simplex Match-

ing, which can be used to solve a variety of related problems. The algorithm is very simple

conceptually. It starts with a perfect matching (packing) M , and at every step finds an

M -alternating 2-factor,1 such that augmenting M by this 2-factor creates a significantly

cheaper perfect matching. It is not surprising that such an algorithm exists, since the min-

imum cost perfect matching can be obtained from any perfect matching if we just augment

it by the correct 2-factor. What is surprising here is that a desirable 2-factor can be found

efficiently.

Figure 4.3: (Left) An M -alternating 2-factor. The green edges are in the matching M . 3d
edges are drawn as a star with 3 leaves (i.e., the nodes in the middle of these stars are not
real nodes). (Right) The dual of this 2-factor (see Section 5.3). The green nodes are in M .

Consider how a similar algorithm would behave if we wanted to find the minimum cost

perfect matching without any edges of size 3. Then any 2-factor is simply a collection of

cycles, and we could find an alternating cycle that decreases the matching cost sufficiently.

In the case of Simplex Matching, however, the 2-factors can have very complex structure

(see Figure 4.3) and finding a good M -alternating 2-factor may seem difficult.
1Recall that a 2-factor is a subgraph with every node in this subgraph having exactly 2 incident edges.
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To get around this problem, we show that there is no need to consider arbitrary 2-

factors like the one in Figure 4.3, as there always exist good 2-factors with simple structure

(containing at most two 3d edges), even in the weighted case. The proof of this is complex

and relies on our theorem about covering arbitrary cubic graphs with simple combinatorial

objects we call dual augmentors. For discussion on the relationship between our results and

other covering results, especially cycle covers [49, 50, 69, 75], see Section 5.4.



Chapter 5

Simplex Matching

We start by presenting a simple polynomial time algorithm for the unweighted version of

Simplex Matching, a problem that is of independent interest as a generalization of minimum

cost matching, and also provides intuition for and one of the ingredients of our algorithm

for weighted Simplex Matching. We then present a polynomial time algorithm for weighted

Simplex Matching. In the course of the analysis of its correctness we show some interesting

new results about covering cubic graphs with simple combinatorial objects we call dual

augmentors.

5.1 An Algorithm for Unweighted Simplex Matching

In the unweighted version of Simplex Matching we are given a hypergraph H(V, E) with

edges of size 2 and 3 such that for every edge (u, v, w) ∈ E, the edges (u, v), (u,w) and (v, w)

are also present. We desire to find a perfect matching if one exists. Hell and Kirkpatrick’s

algorithm for finding the perfect {K2,K3} packing in unweighted graphs from [48] could

be extended to solve the unweighted version of Simplex Matching. However, we would still

present our algorithm for solving this problem as it provides useful intuition about our

approach to solving weighted Simplex Matching.

Suppose we currently have a matching M of H. Define the size of the matching to be

the number of nodes it covers. We say that a path is M -alternating if each vertex of the

45
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path is either an endpoint of the path or is adjacent to exactly one edge from M and one

edge not from M . If there were no 3d edges and M was not a matching of maximum size,

we could always find an M -alternating path with endpoints not covered by M . We could

form a larger matching by substituting the edges of the augmenting path that are in M

with the ones that are not. We would like to prove that we can always augment M even in

the presence of 3d edges, except that the augmentation may not be with respect to a path.

We now define three types of M -alternating augmenting structures that we call unweighted

augmentors (see Figure 5.1):

Type-0: A Type-0 unweighted augmentor is an M -alternating path of 2d edges starting

and ending at nodes not covered by M .

Type-1: Let P be an M -alternating path starting with a node x not covered by M and end-

ing at a node v incident to a 3d-edge (v, u, w) ∈ M . A Type-1 unweighted augmentor

consists of P , (v, u, w) and (u,w).

Type-2: Let x be a node not covered by M and (u, v, w) 6∈ M . Let P1 and P2 be two

disjoint M -alternating paths, P1 connecting x to u and P2 connecting v to w. A

Type-2 unweighted augmentor consists of P1, P2 and (u, v, w).

Type-0 Type-1 Type-2

Figure 5.1: Simplex Matching Unweighted Augmentors. Edges in green are in M .

Notice that a Type-0 unweighted augmentor is a normal matching augmenting path.

We can augment the matching M by replacing the edges of the path that are in M with

those not in M to obtain a new matching that covers two extra vertices. Similarly when

we augment M by a Type-1 or Type-2 unweighted augmentor, we obtain a new matching
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with an extra matched node. This suggests an intuitive algorithm for finding the matching

of largest cardinality:

Start with the empty matching.

Repeat until done

Find an unweighted augmentor of Type-0, Type-1 or Type-2.

Augment the current matching by it.

We will prove the correctness of this algorithm in two steps. First we will show that if a

matching does not match as many nodes as the matching of largest cardinality then there

exists an unweighted augmentor of Type-0, Type-1 or Type-2 by which we can augment the

current matching to obtain a matching that covers more vertices. Then we will show that

such an unweighted augmentor can be found efficiently.

Lemma 5.1.1 Let M∗ be a maximum matching and let M be a smaller matching. Then

there exists an unweighted augmentor that can be used to augment M to a larger matching.

Proof: Suppose that there is a vertex u matched in M by an edge (u, v) such that u is not

matched in M∗. Since M∗ matches the most nodes, v is matched in M∗ by means of a 2d

edge (v, w), otherwise M∗ could be augmented to form a larger matching that includes u

as well. When thinking of how to augment M possibly using edges in M∗ we will ignore

the vertices u, v and w. More specifically we will show that there exists an unweighted

augmentor in H − {u, v, w} that can be used to augment M to a larger matching. We can

repeat this elimination of vertices until there is no vertex u matched in M by a 2d edge but

not matched in M∗. The portions of M∗ and M restricted to this “pruned” hypergraph

will be denoted by M̂∗ and M̂ respectively.

Consider the symmetric difference M̂∗⊕ M̂ of the two pruned matchings. Let Eextra be

the set of 2d edges completing the simplex of each 3d edge in M̂∗, i.e. Eextra = {(u, v) | ∃w ∈
V such that (u, v, w) ∈ M̂∗}. Let S = (M̂∗ ⊕ M̂) ∪ Eextra . Since M̂ is a smaller matching
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than M̂∗ there exists some node v not covered by M̂ that is the endpoint of an edge in

S. If there exists a M̂ -alternating path starting at v and ending either at another node

not covered by M̂ or at a 3d edge in M̂ , then we have a Type-0 or Type-1 unweighted

augmentor and we are done. Therefore we can assume that all M̂ -alternating paths (in

S) starting at v must either end at a 3d edge of M̂∗, or eventually encounter an already

visited vertex and form a cycle. All paths cannot end at a 3d edge of M̂∗, since we can

always take an edge in Eextra instead of the 3d edge and continue the path in this manner.

This means that there must be some M̂ -alternating path P starting from v that eventually

encounters an already visited vertex u (see Figure 5.2). The vertex u is incident to edges

v u

w2

w1

Figure 5.2: An M̂ -alternating path P that encounters an already visited vertex u. The
green edges are in M̂ , the red edge is in M̂∗.

e1 and e2 that are in S but not in M̂ . Since M̂∗ is a matching, one of these edges (say e1)

is in Eextra . By the definition of Eextra , there must be a 3d-edge (u,w1, w2) ∈ M̂∗. Since

M̂∗ is a matching, then e2 ∈ Eextra as well, and it must be that e1 and e2 are in fact (u,w1)

and (u,w2). Therefore, we can replace e1 and e2 with (u,w1, w2) in P to form a Type-2

unweighted augmentor. 2

It is now sufficient to show that an unweighted augmentor can be found efficiently. We

start with the following structure lemma:

Lemma 5.1.2 If G is an undirected graph (without 3d edges) and a matching M matches

all but 2k nodes of G then G has a perfect matching if and only if there are k edge-disjoint

M -alternating paths joining all 2k nodes together.
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Proof: If there are k such edge-disjoint paths, then we can augment M with these paths,

converting M into a perfect matching, as desired.

Conversely, suppose G has a perfect matching, and there are at most l < k edge-disjoint

M -alternating paths P1, P2, . . . , Pl connecting 2l of the unmatched nodes together. Notice

that these paths are also vertex-disjoint, since M is a matching and they are M -alternating.

Form a new matching M ′ by augmenting M with P = P1 ∪ P2 ∪ . . . ∪ Pl. Since M ′ is not

a perfect matching, there must exist an M ′-alternating path Pl+1 connecting two vertices

not matched by M ′. If Pl+1 is disjoint from P , then we are done. Otherwise, consider the

symmetric difference P ′ = P ⊕ Pl+1. Let dP ′(v) be the degree of a vertex v in P ′, i.e., the

number of edges in P ′ incident to v. Note that since the degree of vertices in P ∪ Pl+1 is

at most 3 then dP ′ ≤ 3 (Pl+1 is M ′-alternating and if it intersects some Pi ∈ P at a node

then it must also intersect it at an edge).

If v is not matched by M but is touched by P or Pl+1 then dP ′(v) = 1. If dP ′(v) were

higher then it would have to be at least 2 in P ∪ Pl+1, which means it must have a path

Pi from P starting at it and Pl+1 going through it. Since Pl+1 is M ′-alternating and the

end edges of all paths in P are in M ′, then it must be that Pl+1 contains the edge of Pi

incident to v. It follows that in this case dP ′(v) is no more than 1, a contradiction. If

dP ′(v) = 0, then all the edges in P ∪ Pl+1 incident to v are in P ∩ Pl+1. P has at most one

edge incident to v, which implies that v is an endpoint of some Pi ∈ P as well as of Pl+1.

But the endpoints of Pl+1 are not matched by M ′, while all endpoints of paths in P are

matched by M ′ by construction, a contradiction. Therefore, there are 2l + 2 vertices not

matched by M with degree exactly 1 in P ′.

We will show that the degree of all other vertices in P ′ is 0 or 2 and that for each vertex

v such that dP ′(v) = 2 exactly one edge of P ′ incident to v is in M .

Let v be a vertex contained in some Pi ∈ P and let e1, e2 be the edges of Pi incident

to v. If neither e1 nor e2 are in Pl+1 then clearly dP ′(v) = 2 and dP ′∩M (v) = 1 since Pi

is M -alternating. If both are in Pl+1 then dP ′(v) = 0. If only one of e1 and e2 is in Pl+1

(say e1) then there exists an edge e3 in Pl+1 but not in P with endpoint v, resulting in
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dP ′(v) = 2. Pi is M -alternating so either e1 or e2 is in M . If e1 ∈ M then e2 ∈ M ′ and

e1 /∈ M ′ by the construction of M ′. Since M ′ is a matching, e3 /∈ M ′ which contradicts the

fact that Pl+1 is M ′-alternating. Therefore it must be that e2 ∈ M and dP ′∩M (v) = 1 as

desired. Finally, if v ∈ Pl+1 and e1, e2 are edges in Pl+1 that are not in P , then dP ′(v) = 2

and dP ′∩M (v) = 1 since Pl+1 is M ′-alternating, and M ′ equals M everywhere except P .

We now know that P ′ consists of nodes of degree 1 with incident edges not in the

matching M and of nodes of degree 2 with exactly one incident edge in M . Therefore, P ′

is a collection of disjoint M -alternating paths and cycles joining 2l + 2 nodes unmatched

by M . This proves the lemma, since we now have a method of constructing l + 1 desired

paths from l, as long as there exists a matching with larger cardinality. 2

We finally have all the ingredients to find the largest matching of H in polynomial time.

Theorem 5.1.3 Given an unweighted graph H with 3d edges as defined above, we can find

the largest matching in polynomial time.

Proof: We start with an empty matching M and keep augmenting it by unweighted aug-

mentors. By Lemma 5.1.1 it is enough to show that we can find an unweighted augmentor in

polynomial time if one exists, since one will always exist if M is not maximal. We can find a

Type-0 and Type-1 unweighted augmentors using the standard “blossom-contracting” algo-

rithm of Edmonds [31]. The only thing left to show is that if M is not a maximal matching

and no Type-0 or Type-1 unweighted augmentors exist we can find a Type-2 unweighted

augmentor efficiently.

Fix a 3d-edge (u1, u2, u3) 6∈ M , and a vertex v not matched by M (we can enumerate

all such combinations). Now form a new graph G′ = (V ′, E′) by removing all 3d edges from

H and adding three extra vertices u′1, u
′
2, u

′
3 and the extra edges (u′i, ui). Let M ′ be the

portion of M that consists only of 2d edges. For every vertex w not matched in M ′ except

for {v, u1, u2, u3} add a vertex w′ with an edge (w′, w) to the new graph, and add the edge

(w′, w) to M ′.

Suppose there is a Type-2 unweighted augmentor connecting v to u1 and u1 to u2. Then
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there are disjoint M ′-alternating paths in G′ connecting v to u′1 and u′2 to u′3. Conversely, if

such disjoint M ′-alternating paths exist, then we can find a Type-2 unweighted augmentor.

Using Lemma 5.1.2 we can find these disjoint paths if such an unweighted augmentor exists

(using the algorithm for perfect matching, or using the proof of 5.1.2) and therefore we can

find the Type-2 unweighted augmentor itself. 2

The number of iterations of matching augmentation is O(n) where n is the number of

vertices in the graph. During each iteration we first check for Type-0 and Type-1 unweighted

augmentors in O(n2) time. If none are found we enumerate all pairs of a 3d edge and a

vertex (nm combinations where m is the number of edges in the graph) and look for two

disjoint M ′-alternating paths in time O(nm). Thus the final running time of the algorithm

is O(n3m2).

5.2 An Algorithm for Weighted Simplex Matching

Consider the problem of finding the perfect matching of minimum cost for the standard

case where all edges are of size 2. If a perfect matching M is not the minimum-weight one,

then there exists an alternating cycle of edges in M and edges not in M that could be used

to improve the current matching. We now show a similar condition for Simplex Matching.

Let M be a perfect matching of cost
∑

e∈M c(e). For any set of edges S, define a potential

function φM (S) =
∑

e∈M∩S c(e) − ∑
e∈S−M c(e). If we augment M by S by replacing all

edges in M ∩ S with the edges in S − M , the cost of the new set decreases by φM (S).

Moreover, if S is an M -alternating 2-factor then this is still a perfect matching.1 Let M∗

be a minimum cost perfect matching. The components of the symmetric difference M⊕M∗

are M -alternating 2-factors that augment M to M∗. Therefore, there always exists an M -

alternating 2-factor S with φM (S) ≥ 0. This suggests the following very intuitive algorithm

for finding the minimum cost weighted Simplex Matching :
1An M -alternating 2-factor is a set S such that every node in S has exactly two edges incident to it,

exactly one of which is in M .
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Start with any perfect matching.

Repeat until done

Find an alternating 2-factor with positive potential.

Augment the current matching by it.

If we could find the M -alternating 2-factor with maximum potential φM , we could

simply augment by it and get the minimum cost perfect matching. Instead, our algorithm

will proceed by finding an M -alternating 2-factor S with high φM (S) at each step, and

augmenting by it. Finding a 2-factor S with a high potential φM (S) seems difficult, since

2-factors for Simplex Matching can have a complex structure, as in Figure 4.3. We will

show, however, that there is no need to consider arbitrary 2-factors like that, because there

always exists a good 2-factor with simple structure: it should contain at most two 3d edges.

We call such 2-factors augmentors. More specifically, augmentors can be of the following

types (see Figure 5.3):

Type-0: A Type-0 augmentor is an M -alternating cycle of 2d edges. This is the same as

a 2d matching augmenting cycle.

Type-1: A Type-1 augmentor consists of two 3d edges (a1, a2, a3) and (b1, b2, b3) together

with M -alternating paths of 2d edges connecting a1 to b1, a2 to a3 and b2 to b3. These

paths must be disjoint and the entire augmentor must be M -alternating (so the 3d

edges may or may not be in M).

Type-2: Same as Type-1, but the paths connect a1 to b1, a2 to b2 and a3 to b3.

The majority of our work is devoted to proving that an augmentor with high potential

always exists. The following lemma allows us to claim that if this is true, then we can

improve the current perfect matching in polynomial time.

Lemma 5.2.1 Let A be an augmentor of maximum potential. We can find an M -alternating

2-factor S with φM (S) ≥ φM (A) in polynomial time (that may or may not be A itself).
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Type-0

a1a2

a3

b1 b2

b3

Type-1

a1

a2

a3

b1
b2

b3

Type-2

Figure 5.3: Simplex Matching Augmentors

Proof: Suppose A is of Type-0. Delete all 3d edges from H as well as all nodes that are

matched in M using 3d edges, forming a graph H ′ with no 3d edges. Find a minimum cost

matching M∗ of H ′. S = M∗ ⊕M |H′ gives us an M -alternating 2-factor to augment M

by. Since A is of Type-0 it cannot include any nodes incident to 3d edges of M , thus A is

contained in H ′. Augmenting by S results in the best possible matching in H ′, therefore

φM (S) ≥ φM (A).

Now suppose A is of Type-1 or Type-2. Fix the two 3d edges e1 and e2 that it contains

(there are only |E|2 possibilities). We will find the best M -alternating 2-factor with only

e1 and e2 as the 3d edges. To do this we form a new graph H ′ as above, except we leave

the nodes incident to e1 = (u1, u2, u3) and e2 = (v1, v2, v3) in H ′. If e1 6∈ M , form three

new nodes u′1, u
′
2, u

′
3 with edges (ui, u

′
i) of cost 0 and do likewise for e2. There are only six

unmatched nodes in H ′: either u1, u2, u3 if e1 ∈ M , or u′1, u
′
2, u

′
3 if e1 6∈ M , and similarly for

e2. Now find a minimum cost matching M∗ of H ′. M∗⊕M |H′ is an M -alternating 2-factor

except for the nodes that were unmatched in H ′ using M , which have degree 1. Add e1

and e2 to M∗ ⊕M |H′ (if e1 6∈ M , then adding it replaces the edges (ui, u
′
i)), forming an

M -alternating 2-factor S. As before, A is a possible way to augment M in H ′ and since S

is the best such way we have φM (S) ≥ φM (A).

We now choose the best one of the resulting |E|2 + 1 M -alternating 2-factors. 2

There are many ways to make the above algorithm run faster in practice. Notice that

we do not need to consider pairs of 3d edges (e1, e2) if e1 6∈ M is adjacent to a 3d edge of

M that is not e2. For more improvements, see Section 5.5 and [74].
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Using Lemma 5.2.1, we can restate our algorithm for finding the minimum cost weighted

Simplex Matching as shown below. The initial perfect matching can be found by the algo-

rithm for unweighted Simplex Matching described in the previous section.

Start with any perfect matching.

Repeat until done

Find an alternating 2-factor using Lemma 5.2.1.

Augment the current matching by the above 2-factor.

5.3 Dual Augmentors

We establish the running time of the above algorithm in Section 5.5, and now focus on its

correctness and termination. To prove this, we need to show that for any perfect matching

M that is not of minimum cost there exists an augmentor A with φM (A) > 0. We will

accomplish this by showing that every M -alternating 2-factor of positive potential contains

an augmentor of positive potential.

For any S we form a dual graph S that is easier to deal with than S (see Figures 4.3 and

5.4). First, we contract all 2d edges (u, v) of S such that u and v are not part of the same

3d edge. Then we replace each 3d edge e with a node ve. We then form an edge between

the new nodes if the 3d edges that produced them were adjacent. Note that this may result

in parallel edges as well as self-loops (self-loops occur if both (u, v, w) and (v, w) were in

S). The resulting graph S is a cubic (3-regular) graph. We will say that a node v ∈ S is in

M if its corresponding 3d edge of S is in M .

Let Sextra be the multiset of 2d edges (u, v) such that some 3d edge (u, v, w) is in S,

but (u, v) 6∈ S, as in Figure 5.4. Let S′ = S ∪ Sextra . We will associate a unique object

from S that we call a dual augmentor with each augmentor A in S′. The dual augmentor

is simply the subgraph of S corresponding to the dual of A, as shown in Figure 5.4. We

explore exactly what this means below, but the reader can look at Lemma 5.3.1 or Figure

5.5 for a compact definition of a dual augmentor. Dual augmentors are simply one of the
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×2

×2

×2

×2

Figure 5.4: (Top) An M -alternating 2-factor S with edges of Sextra shown as dashed lines.
To the right of it are some augmentors. (Bottom) The dual cubic graph S, and the corre-
sponding dual augmentors. The nodes of M are in green.

structures in Figure 5.5, with nodes of M having degree 1 or 3 (not 2).

Type-0: A Type-0 augmentor A of S′ is an M -alternating cycle of 2d edges, some of which

are in Sextra , like the third augmentor shown in Figure 5.4. After contracting all 2d edges

of S, A becomes a cycle of Sextra edges. In the dual graph S, A corresponds to a cycle of

nodes ve where each e is the 3d edge that produced one of the above Sextra edges. We refer

to these cycles as dual augmentors of Type-0. As A is M -alternating, it cannot be that any

of the above ve is in M , since then e ∈ M , which would mean that the endpoints of some

Sextra edge in A are contained in two edges of M .

Type-1: A Type-1 augmentor A will produce a dual augmentor of one of three kinds, as

shown in Figure 5.5. The M -alternating paths connecting a1 to b1, a2 to a3, and b2 to

b3 behave exactly as the cycle augmentor in the previous case, namely they correspond

to paths that do not contain vertices of M . This gives us a dual augmentor of Type-1c

in Figure 5.5 that is a path together with the two cycles attached to it, with only nodes

v(a1,a2,a3) and v(b1,b2,b3) possibly being in M .

Notice that if both (a1, a2, a3) and (a2, a3) are in A, then the “cycle” incident to

v(a1,a2,a3) in the dual augmentor is just a self-loop. Consider the special case, however,
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⇒
Type-0

a2

a3

a1
b2

b3

b1 ⇒

a2

a3

a1 b2

b3

b1 ⇒

a2

a3

a1 b2

b3

b1 ⇒

Type-1a

Type-1b

Type-1c

⇒
Type-2

Figure 5.5: Transforming augmentors into dual augmentors.

when (a1, a2, a3) ∈ M and (a2, a3) ∈ Sextra , as in many augmentors of Figure 5.4. We

cannot form a self-loop in the dual augmentor, because we only formed self-loops in S for

edges of S, not Sextra . Because of this, we simply have no loop at all, and we associate to

A a dual augmentor of Type-1a or Type-1b (depending if this special case occurs at both

(a1, a2, a3) and (b1, b2, b3) or just one of them). Notice that only nodes that are in M can

have degree 1 in a dual augmentor.

Type-2: By similar reasoning, we obtain a Type-2 dual augmentor shown in Figure 5.5,

with only the degree 3 nodes possibly being in M .

It is easy to see that the following lemma holds.

Lemma 5.3.1 There is a one-to-one correspondence between augmentors in S′ and dual

augmentors in the cubic graph S, and dual augmentors satisfy the following conditions (in

fact, these conditions are an alternate definition of dual augmentors):

1. Degree 2 everywhere except at most 2 nodes.

2. All degree 1 nodes are in M .

3. All degree 2 nodes are not in M .

In other words, dual augmentors are the structures in Figure 5.5, with the only nodes in

M being the ones of degree 1 or 3. The reason for considering the dual graph S instead of
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S is that we now have a cubic (i.e., 3-regular) graph and as the lemma below will show, our

goal now will be to cover this cubic graph with dual augmentors. While the same results

can be proven directly for S′ instead of S, their statements become a lot more complicated.

We now proceed to argue that there always exists an augmentor with high potential,

for which we need the concept of augmentor sum. Let A denote the set of all possible dual

augmentors contained in S. Then

Definition 5.3.2 (valid augmentor sum) A function α : A → N is a valid augmen-

tor sum of S if and only if there exists x > 0 such that for all edges e of S, we have
∑

A∈A,A3e α(A) = x.

In other words, a valid augmentor sum is a cover of S with dual augmentors so that

every edge is contained in exactly the same number of elements (which we call the cover

number). Given that there is a one-to-one correspondence between augmentors in S′ and

dual augmentors in S we can also view α as a weight assignment on the augmentors in S′.

Figure 5.4 illustrates a set of dual augmentors that form a valid augmentor sum by covering

every edge of S twice, as well as the augmentors of S′ they correspond to. The lemma below

shows that if φM (S) > 0, then the same must be true for at least one of the augmentors in

that list. The idea behind it is that if all augmentors corresponding to the dual augmentors

in α “add up” to S and S is improving, then so is some augmentor in the sum.

Lemma 5.3.3 Given a perfect matching M and an M -alternating 2-factor S such that

φM (S) > 0, there exists an augmentor A with φM (A) ≥ φM (S)
|S| if there exists a valid

augmentor sum α of S.

Proof: If we had a cover of S by augmentors, such that every edge of S is contained in the

same number of augmentors, then we would immediately know that some augmentor must

have positive potential. This follows easily since the total potential of the augmentors must

equal a multiple of φM (S). Unfortunately, we have such a cover of S and not S. As shown

in Figure 5.4, dual augmentors of S can correspond to augmentors that include edges in

Sextra and not S. In fact, if we look at Figure 5.4 we can see that there are some 3d edges
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of S that are not contained in any augmentors from the list, even if this list forms a valid

augmentor sum of S with a cover number of 2. Notice, however, that the edges of Sextra

corresponding to these 3d edges are included in the list of augmentors, which we will be

able to relate to the cost of the 3d edges using the Simplex Condition.

Let x be the cover number of α : A → N and let A be the set of augmentors in S′. Since

there is a one-to-one correspondence between A and A we will consider α as an integer

weight assignment to augmentors in S′. First we will compute how many times α covers an

edge in S ⊆ S′.

1. If e = (u, v) ∈ S then
∑

A∈A,A3e α(A) = x.

Proof : A 2d edge in S′ corresponds to some edge in S, which is covered exactly x

times.

2. If e = (u, v, w) ∈ S such that some (u, v) ∈ S then
∑

A∈A,A3e α(A) = x.

Proof : The condition implies that the node ve corresponding to e in S has a self-loop.

By construction, all dual augmentors containing ve must also contain the self-loop,

which is covered x times, so e is covered exactly x times.

3. If e = (u, v, w) ∈ M ∩ S such that e1 = (u, v), e2 = (v, w), e3 = (u,w) /∈ S then ∀i,
∑

A∈A,A3e α(A)− 2
∑

A∈A,A3ei
α(A) = x.

Proof : Consider the middle rightmost 3d edge of Figure 5.4. It appears in several

augmentors, with different corresponding edges from Sextra . What the above state-

ment implies is that each of these edges in Sextra are covered the same number of

times.

Let ve be the node in S corresponding to e. Each edge incident to ve appears in

dual augmentors exactly x times and each dual augmentor either contains all three

edges or exactly one of them, since the degree of a node in M is 1 or 3. Let a be

the number of dual augmentors in α containing all 3 edges incident to ve. Then all

remaining dual augmentors that contain ve must be organized as a set of size x− a of

triples such that each dual augmentor in the triple contains a different edge incident
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to ve. Every dual augmentor like this corresponds to an augmentor of S′ that contains

the edge e and also contains exactly one of e1, e2 or e3 in Sextra . The a augmentors

and the x− a triples of augmentors all contain e in S′, and so edge e is contained in

a + 3(x− a) augmentors, and each ei is contained in x− a augmentors, producing the

desired result.

4. If e = (u, v, w) ∈ S −M such that e1 = (u, v), e2 = (v, w), e3 = (u,w) 6∈ S then ∀i,
∑

A∈A,A3e α(A) + 2
∑

A∈A,A3ei
α(A) = x.

Proof : Let ve be the node in S corresponding to e. Each edge incident to ve appears

in dual augmentors exactly x times and each dual augmentor either contains all three

edges or exactly two of them, since the degree of ve in a dual augmentor can only be

2 or 3. Let a be the number of dual augmentors in α containing all 3 edges incident

to ve. These correspond exactly to the augmentors containing e in S′. The rest of the

dual augmentors that cover edges adjacent to ve must be organized as a set of size

(x− a)/2 of triples such that each dual augmentor in the triple contains two different

edges incident to ve, so that the entire triple covers each edge twice. A corresponding

triple of augmentors in S′ contains each of e1, e2 and e3 once. Therefore, edge e is

contained in a augmentors, and each edge ei is contained in (x− a)/2, producing the

result.

Using these covering results we can now bound x φM (S) = x
∑

e∈S φM (e). If e = (u, v),

or e = (u, v, w) ∈ S with some (u, v) ∈ S, we have x φM (e) =
∑

A∈A,A3e α(A)φM (e). If

e = (u, v, w) ∈ M ∩ S such that e1 = (u, v), e2 = (v, w), e3 = (u, w) /∈ S, then φM (e) = c(e)
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and φM (ei) = −c(ei), so

x φM (e) =
∑

A∈A,A3e

α(A)φM (e)− 2
∑

A∈A,A3ei

α(A)φM (e) ≤
∑

A∈A,A3e

α(A)φM (e)−
∑

A∈A,A3ei

α(A)(c(e1) + c(e2) + c(e3)) =

∑

A∈A,A3e

α(A)φM (e) +
∑

A∈A,A3ei

α(A)(φM (e1) + φM (e2) + φM (e3)) =

∑

A∈A,A3e

α(A)φM (e) +
∑

A∈A,A3e1

α(A)φM (e1) +

∑

A∈A,A3e2

α(A)φM (e2) +
∑

A∈A,A3e3

α(A)φM (e3)

The inequality above holds because of the Simplex Condition on e and the last equality

because
∑

A∈A,A3ei
α(A) is the same for all i = 1, 2, 3.

Similarly, if e = (u, v, w) ∈ S −M such that e1 = (u, v), e2 = (v, w), e3 = (u, w) /∈ S,

then φM (e) = −c(e) and φM (ei) = −c(ei), so

x φM (e) =
∑

A∈A,A3e

α(A)φM (e) + 2
∑

A∈A,A3ei

α(A)φM (e) ≤
∑

A∈A,A3e

α(A)φM (e)−
∑

A∈A,A3ei

α(A)(c(e1) + c(e2) + c(e3)) =

∑

A∈A,A3e

α(A)φM (e) +
∑

A∈A,A3e1

α(A)φM (e1) +

∑

A∈A,A3e2

α(A)φM (e2) +
∑

A∈A,A3e3

α(A)φM (e3)

Therefore we have that

x φM (S) ≤
∑

A∈A

∑

e∈A

α(A)φM (e) =
∑

A∈A
α(A)φM (A)

If for all A ∈ A, φM (A) < φM (S)
|S| , then the above inequality shows that x φM (S) <

φM (S)
|S|

∑
A∈A α(A). Now consider the dual augmentors corresponding to the augmentors A.

Every edge in S is covered exactly x times, hence
∑

A∈A α(A) ≤ x|E(S)|. By the definition

of S we know that |E(S)| ≤ |S|. Overall, this implies that x φM (S) < x φM (S), giving us

a contradiction, as desired. 2

Given a perfect matching M that is not minimum cost, we know there exists an M -

alternating 2-factor S with φM (S) > 0, since every component of the symmetric difference
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of M with the minimum cost perfect matching is such a 2-factor. By Lemma 5.3.3, it is

enough to show that S has a valid augmentor sum to prove that our algorithm finds the

minimum cost perfect matching. The following theorem completes the correctness proof.

Theorem 5.3.4 Any cubic multigraph S (possibly with self-loops) has a valid augmentor

sum α with respect to any set of nodes M .

5.4 Valid Augmentor Sums

In this section we can set aside our algorithm and Simplex Matching, and concentrate on

proving Theorem 5.3.4. We assume that we are given an arbitrary cubic multigraph S that

may contain self-loops, and some set M of nodes in S. We show that there always exists a

valid augmentor sum of S with respect to M .

To understand when such valid sums may exist, consider the special case of M = ∅.
In [69], Seymour states that we can cover any cubic 2-connected graph with cycles so that

every edge is in the same number of cycles. Since M = ∅, all cycles are dual augmentors

(they satisfy the conditions of Lemma 5.3.1), and so we always have a valid augmentor

sum. There has been much work in finding cycle covers with small cover numbers [49, 75],

and it is unknown if there always exists a cycle cover of a cubic 2-connected graph with

cover number 2 (this is the Cycle Double Cover Conjecture). Since we are only proving an

existence result, however, for our purposes the cover number does not need to be small.

The fact that M may not be empty complicates matters. For example, while forming

a cycle cover of a planar graph is easy, consider forming an augmentor sum of Figure 5.10,

or of K4 with |M | = 1. Lemma 5.3.1 puts degree constraints on nodes of M , which makes

augmentor sums much more difficult to deal with than cycle covers.

We start the proof of Theorem 5.3.4 with an easy lemma about augmentor sums.

Lemma 5.4.1 Let B be a collection of edge subsets of S, and β : B → N and xβ be such

that for all edges e in S,
∑

B∈B,B3e β(B) = xβ. If every B ∈ B has a valid augmentor sum

then S has a valid augmentor sum.
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Proof: Let αB be the augmentor sum for B ∈ B, and let xB be the cover number of αB. Let

x be the least common multiple of all xB and α′B = x
xB

αB, so α′B is a valid augmentor sum

of B with cover number x. α′B is defined only for dual augmentors in B but we can extend

it to the set of all dual augmentors A in S by setting α′B(A) = 0 for any dual augmentor A

of S not contained in B.

Define α(A) =
∑

B∈B β(B)α′B(A). Then for all e in S

∑

A∈A,A3e

α(A) =
∑

A∈A,A3e

∑

B∈B
β(B)α′B(A) =

=
∑

B∈B
β(B)

∑

A∈A,A3e

α′B(A) =

=
∑

B∈B,B3e

β(B) x = xβx

Since every edge of S appears in exactly xβx dual augmentors, α is a valid augmentor sum

of S. 2

We will also make use of the following cycle cover theorem, due to Seymour ([69]). The

lemma gives a sufficient condition for the existence of a valid cycle sum, which is defined in

the same way as a valid augmentor sum.

Theorem 5.4.2 ([69]) We are given a graph G with capacities cap(e). Let C(G) be the

collection of cycles in G and a valid circuit sum of G be a function β : C(G) → Q+ such

that for every edge e of G,
∑

C∈C(G),C3e β(C) = cap(e). Then, a valid circuit sum exists if

for every cut K, we have that for all e ∈ K, cap(e) ≤ ∑
e′∈K−e cap(e′).

We now proceed to construct a valid augmentor sum of S. We will prove Theorem 5.3.4

with a series of lemmata that show the existence of a valid augmentor sum of S in a different

way depending on the structure of S.

Lemma 5.4.3 If S is 3-connected and |M | 6= 1, then there exists a valid augmentor sum

of S.

Proof: Construct a new graph G by adding an extra node s to S, together with an edge

(s, v) for all v ∈ M (see Figure 5.6). Associate a capacity cap(e) to all edges e of G. If e is
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one of the new edges (s, v), set cap(e) = 3, otherwise set cap(e) = 1. By Theorem 5.4.2, we

know that there exists a valid circuit sum of G iff for all cuts K of G and all edges e ∈ K,

cap(e) ≤ ∑
e′∈K−e cap(e′). We now show that this holds true for G.

Any cut K in G contains at least three edges since G is 3-connected. If e ∈ K is such

that cap(e) = 1 then the above inequality is trivially satisfied (this also finishes the case of

|M | = 0). Otherwise, if e = (s, v) and K is the cut (s,G− s) then there is another edge of

capacity 3 in K since |M | ≥ 2. Finally, if e = (s, v) and K is not (s,G− s), then K − e is

also a cut in S and it contains at least three edges of capacity 1 since S is 3-connected.

Ss 3

3

3

Figure 5.6: Capacitated Graph G in Lemma 5.4.3

We will partition each cycle C with β(C) > 0 into dual augmentors as follows. Every

cycle that does not contain any nodes in M is contained in S and is trivially a Type-0 dual

augmentor. No cycle passes through two edges with capacity 1 incident to a node v ∈ M ,

since all other cycles passing through v would not be able to fill (s, v) to its capacity.

Therefore, every cycle entering a node in M must proceed to s. Removing all (s, v) edges

from these cycles gives us a collection of Type-1a dual augmentors in S. The valid circuit

sum β can be viewed as a fractional weight assignment on those Type-1a and Type-0 dual

augmentors such that every edge in S is covered exactly once. We can now multiply β by

a large enough constant to form a valid augmentor sum. 2

Section 5.4.1 addresses the special (and tricky) case when only a single node of S is in

M . Hence, from this point on we can assume that S is not 3-connected. The following

two lemmata provide us with augmentor sums for the cases when S is 1-connected or 2-

connected.



64

Lemma 5.4.4 Assume that all cubic multigraphs smaller than S have valid augmentor

sums and that S contains a bridge2 . Then S has a valid augmentor sum.

Proof: Let e = (u, v) be a bridge in S. Let the other two edges incident to u be e1(u)

and e2(u), and the other two edges incident to v be e1(v) and e2(v). Form two smaller

cubic multigraphs S1 and S2 by removing e and contracting e2(u) and e2(v), as in Figure

5.7. During this contraction, we delete nodes u and v. Notice that in the case where

e1(u) = e2(u) (u has a self-loop), this process just forms a loop without any nodes, which

is a dual augmentor of Type-0 and corresponds to a cycle with no 3d edges in S.

e

e1(u)

e2(u)

-

e1(v)

e2(v)

¾ ⇒ e1(u) e1(v)
S1 S2

Figure 5.7: Breaking S with a bridge into two smaller cubic multigraphs

By the assumption made in the statement of the lemma, there exist valid augmentor

sums α1 and α2 of S1 and S2, with corresponding cover values x1 and x2. If x is the least

common multiple of x1 and x2, then x
x1

α1 and x
x2

α1 are valid augmentor sums of S1 and S2

with cover value x. This gives us a multiset of size x of dual augmentors in S1 that contain

e1(u) and another multiset of size x of dual augmentors in S2 that contain e1(v). Pair up

the dual augmentors of the S1 multiset with the dual augmentors of the S2 multiset and let

(A1, A2) be one such pair. Consider the multigraph C resulting from adding e to A1 and

A2, again forming nodes u and v. If C has a valid augmentor sum regardless of what the

types of A1 and A2 are, then using Lemma 5.4.1 we can deduce that the entire graph S has

a valid augmentor sum.

Rather than providing a valid augmentor sum individually for all possible graphs C re-
2Recall that a bridge is an edge whose removal increases the number of connected components of the

graph.
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sulting from the pairing of the different types of dual augmentors, we give three simple rules

that reduce most of such possible graphs to trivial cases. Each of these rules decomposes C

into smaller graphs, such that if all these smaller graphs have valid augmentor sums, then

by Lemma 5.4.1 C also has a valid augmentor sum. We give a formal definition of these

rules below and Figure 5.8 illustrates them.

Rule 1: Suppose C contains a vertex v of degree 2, the removal of which disconnects C

into components C1 and C2. If C − C1 and C − C2 have valid augmentor sums, then by

Lemma 5.4.1 C also has a valid augmentor sum, as the edge sets of C − C1 and C − C2

cover every edge of C exactly once. We can also apply a similar rule if v is of degree 3.

This rule is made for the case where v ∈ M , since v has degree 1 in resulting graphs.

Rule 2: Suppose C contains a vertex v of degree 3, the removal of which disconnects C into

components C1, C2 and C3. As above, if C −C1, C −C2 and C −C3 have valid augmentor

sums then so does C, as these sets cover every edge of C twice. This rule should be used if

v 6∈ M since v has degree 2 in resulting graphs.

Rule 3: Suppose C contains two vertices u and v of degree 3, the removal of which partitions

C into components C1, C2, P1 and P2 as in Figure 5.8, where P1 and P2 are paths. As

above, if C − P1, C − P2 and C − C1 − C2 have valid augmentor sums then so does C,

since those graphs cover every edge of C twice. Similarly, if C − P1 − C2, C − P2 − C2,

C − C1 − P1 − P2 and C − C1 have valid augmentor sums then so does C.

We would apply the first variant of Rule 3 when either u, v ∈ M or u, v /∈ M , since it is

then that the cycle C −C1−C2 has a valid augmentor sum (if u, v ∈ M then it is a sum of

two dual augmentors). We would apply the second variant when u /∈ M and v ∈ M , since

then v always has degree 1 or 3, as needed by Lemma 5.3.1.

It is easy to check that no matter what two structures A1 and A2 from Figure 5.5 are

stitched together by a bridge to form C = A1 ∪ A2 ∪ e, we can always decompose them

into dual augmentors by repeated application of the above three rules. The only exception

occurs in the example below.

Let A1 be a dual augmentor of Type-1c, A2 be a dual augmentor of Type-2 and u /∈ M
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Rule 1: C1 C2

v ⇐ C1

v
C2

v

Rule 2: C1

C2

C3

v ⇐
C1

C2

v
C1

C3

v

C2

C3

v

Rule 3: C1 C2

P1

P2

u v ⇐ C1 C2

P1
u v

C1 C2

P2

u v
P1

P2

u v

⇐ C1

P1
u v

C1

P2

u v
C2

v
C2

P1

P2

u v

Figure 5.8: Rules for decomposing graphs into easier cases to prove the existence of aug-
mentor sums

lies on one of the cycles of A1. Moreover, suppose that the node of degree 3 on the same

cycle of A1 is in M . Then we would apply the second version of Rule 3, as shown in Figure

5.9.

A1 A2

u v
e

⇐
Rule 3

u u v u v

Figure 5.9: Sample reduction for Lemma 5.4.4

Graphs like the last one in Figure 5.9 and ones of similar structure are the only ones

that can be formed by this process of repeatedly decomposing C, such that they are neither

dual augmentors nor have a further decomposition that is possible using one of the three

rules above. For these types of graphs we show a valid augmentor sum directly in Figure

5.10. This completes the proof of the lemma. 2

The only case left now is if S is bridgeless, but not 3-connected, addressed below.

Lemma 5.4.5 Assume that all cubic multigraphs smaller than S have a valid augmentor

sum and that S contains two edges e1 and e2, the removal of which disconnects it. Then S

has a valid augmentor sum.
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×2 = + +

×4 = + + + + +

×2 = + + + + + +

×2 = + +

×2 = + + + + +

×1 = + + + +

Figure 5.10: Proof that the last remaining case of Lemma 5.4.4 has a valid augmentor sum.
Small circles indicate nodes of M , so this shows all possible cases.

Proof: We can assume that S is bridgeless. Let e1 = (u1, v1) and e2 = (u2, v2), so that

u1, u2 are in the same component of S−e1−e2. We proceed as in the proof of Lemma 5.4.4

to form two smaller cubic multigraphs S1 and S2 by removing e1 and e2, and forming two

new edges (u1, u2) and (v1, v2), as in Figure 5.11. Notice that the four nodes u1, u2, v1 and

v2 must be distinct, since if u1 = u2, then the third edge incident to u1 would be a bridge.

e1

e2

u1 v1

u2 v2

⇒
u1 v1

u2 v2

S1 S2

Figure 5.11: Breaking a 2-connected bridgeless S into two smaller cubic multigraphs

Similarly to Lemma 5.4.4, there exist valid augmentor sums for S1 and S2 with cover

value x. This means that there exists a multiset of size x of dual augmentors in S1 that

contain (u1, u2) and another multiset of size x of dual augmentors in S2 that contain (v1, v2).

Pair up the dual augmentors of the S1 multiset with the dual augmentors in the S2 multiset

and let (A1, A2) be one such pair. Consider the cubic multigraph C resulting from removing
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(u1, u2), (v1, v2) and adding e1 and e2 to A1 and A2. We will now show that C has a valid

augmentor sum, regardless of the types of A1 and A2, which finishes the proof using Lemma

5.4.1.

Figure 5.12 shows what each dual augmentor might look like once the edge (u1, u2)

(similarly (v1, v2)) is removed. The graph C is simply the joining of two of these objects

along the two “connector” vertices (marked with empty nodes).

Figure 5.12: Dual augmentors with an edge removed. From left to right these are: Type-
1a, Type-0, two versions of Type-1b (depending which edge is removed), two versions of
Type-1c, and Type-2.

It is easy to see that all possible ways to join these objects to form C have already been

proven to have a valid augmentor sum in Lemma 5.4.4, with the exception of the graph

formed when the two dual augmentors A1 and A2 are of Type-2. Figure 5.13 shows the

valid augmentor sum for this graph, which completes the proof of the lemma. 2

×2= + + +

×2= + +

×2= ×2 + ×2 + + +

×2= + + +

×2= + + +

×2= ×2 + ×2 + + + +

×1= + + + + +

Figure 5.13: Proof that the last remaining case of Lemma 5.4.5 has a valid augmentor sum.
Small circles indicate nodes of M , so this shows all possible cases.
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Using the above lemmata, we are now able to prove that our algorithm works correctly.

Proof of Theorem 5.3.4. We prove this by induction on the number of nodes in S.

The smallest cubic multigraph consists of two nodes u, v and the entire graph is a dual

augmentor of Type-2.

Now assume that all cubic multigraphs smaller than S have a valid augmentor sum. If

S is not connected consider each component separately and use the inductive hypothesis.

By Lemma 5.4.4, we have proved the inductive step for S containing a bridge, so we can

assume S is 2-connected. If S is 3-connected, we can use Lemma 5.4.3, Lemma 5.4.6, or

Lemma 5.4.7. Otherwise, we can use Lemma 5.4.5 together with the inductive hypothesis.

This finishes the proof.

5.4.1 Special Case: |M | = 1

This section is devoted to the special case where |M | = 1 and S is 3-connected.

Lemma 5.4.6 Assume that all cubic multigraphs smaller than S have valid augmentor

sums, and that there exists a cut of size 3 with more than a single node on each side. If S

is 3-connected and |M | = 1 then there there exists a valid augmentor sum of S.

Proof: This proof is similar to the proofs of Lemma 5.4.4 and Lemma 5.4.5. Let the cut

of size 3 be {e1, e2, e3}, and let M = {r}. Form two new 3-connected cubic multigraphs

S1, S2 by contracting each side of the cut into a single node, with r ∈ S1. S1 is a smaller

set with a single node of M , so by our assumption, there exists a valid augmentor sum α1

of S1. Let v be the node of S2 representing the contracted side of the cut. Here we have a

choice: do we say that v is in M or not? Call the first set S2, and the second set S′2. In the

first case, S2 is a set with a single node of M , which must have some valid augmentor sum

α2 with cover number y. In the second case, S′2 would have no nodes in M , so by Lemma

5.4.3, we also have a valid augmentor sum α′2, with cover number y′.

We can say something more specific about α2 and α′2. Since S′2 is a 3-connected set with

no nodes in M , by the proof of Lemma 5.4.3 we can assume that α′2 is a cycle cover (i.e.,
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the only dual augmentors appearing in it with positive weight are cycles). In particular, all

dual augmentors containing v in α′2 contain exactly two edges adjacent to v. On the other

hand, S2 is a 3-connected set with a single node v in M . By the proof of Lemma 5.4.7, we

can inductively show that all dual augmentors containing v in α2 contain all three edges

adjacent to it.

Now let w be the node of S1 representing the contracted side of the cut. Let a be the

number of times w appears in a dual augmentor of α1 containing all 3 edges of w, and b be

the number of times w appears in such a dual augmentor of α1 containing two edges of w.

Since w 6∈ M , these are the only options, and so the cover number of α1 is a + 2b/3.

The idea is that we are going to attach together α2 with the a dual augmentors above,

and α′2 with the other b dual augmentors. To do this, let x be the least common multiple

of y and 3y′/2, and form new augmentor sums xα1, xa
y α2, and 2xb

3y′ α
′
2. This means that

we now have xb dual augmentors containing exactly two edges of w in S1, and xb dual

augmentors containing exactly two edges of v in S′2, the latter coming from 2xb
3y′ α

′
2. Just as

in Lemma 5.4.4 and Lemma 5.4.5, we can pair up these dual augmentors into pairs (A1, A2).

Furthermore, since dual augmentors covering exactly two edges of a node must appear in

triples (so that all edges are covered the same number of times), we can make sure that

in every pair (A1, A2), both A1 and A2 use the same two edges from the set {e1, e2, e3}.
We can then form a multigraph C in S by patching A1 and A2 together, i.e., C consists of

edges in S corresponding to either A1 or A2. Since all dual augmentors in α′2 are cycles, C

must be a dual augmentor, since patching a dual augmentor in this manner together with

a cycle results in a dual augmentor again.

We now consider the xa dual augmentors containing exactly three edges of w in S1, and

xa dual augmentors containing exactly three edges of v in S2, the latter coming from xa
y α2.

We pair them up in the same way, and patch them together to form subgraphs C = A1∪A2

for each pair (A1, A2). All structures C that can be formed in this way are dual augmentors.

By taking the above subgraphs C, together with the dual augmentors of α1, α2, and α′2

that do not intersect v or w, we form a valid augmentor sum for S. 2
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The most difficult subcase of Theorem 5.3.4 is proven in the following main lemma of

this section, which requires different techniques from most of our other proofs. We prove

the cases when S is planar and non-planar separately. For the non-planar case, we show

that there must be some subdivision of K3,3 containing the node of M , and from this we

form a valid augmentor sum using Theorem 5.4.2. In the planar case, we use powerful

edge-coloring results.

Lemma 5.4.7 Assume that S does not have a cut of size 3 with more than a single node

on each side. If S is 3-connected and |M | = 1 then there exists a valid augmentor sum of

S.

Proof: Let M = {r}, the three nodes adjacent to r be v1, v2, v3, and denote the edge (r, vi)

by ei. First, we address the non-planar case, the proof of which is due largely to Paul

Seymour.

Non-planar Assume that S is not planar. We want to show that there exists a subdivision

of K3,3 in S with r as one of the degree-3 nodes in this K3,3. From Theorem 2.4 in [65], it

is easy to derive that this must hold. Specifically, delete r and its adjacent edges from S

to form a new graph S′. Using the notation of [65], let {v1, v2, v3} be the set of “special”

nodes Ω, and let the permutation Ω be (v1, v2, v3). The society (S′, Ω) is 3-connected, since

if there were a separation of size 2, then there would be an edge cut (since S′ is at most

cubic, and v1, v2, v3 have degree 2 in S′) of size 2 separating r from some node in S, which

contradicts S being 3-connected. We also need to show that S′ is not “rural”, which means

that it can be drawn in the plane without edge intersections, and so that the nodes of Ω

are on the outside face. S′ is not rural, since if it were, we could attach r again and make

S become planar. S′ cannot have a cross because |Ω| = 3. Therefore, by Theorem 2.4 in

[65], S′ must have a tripod. A tripod combined with r and e1, e2, e3 gives us exactly a

subdivision of K3,3.

Let K be this K3,3 instance, and let σ(K) be the subdivision of it found above. By

“a subdivision” we mean that σ(K) is obtained from K by adding nodes in the middle of
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u1 v1

r

v′1

v1

v2

v3

v′2
v′3

s

t

s

t

Figure 5.14: Proof of Lemma 5.4.7 (Left) A subdivision of K3,3 (Middle) An s-t path with
t ∈ P (u1, v

′
1) (Right) An s-t path with t ∈ P (u1, v

′
2)

edges. As pictured in Figure 5.14, let v′1, v
′
2, v

′
3 be the nodes adjacent to r in K, with v′i

appearing at the end of a path in σ(K) starting at vi, and let u1, u2 be the nodes in K that

are at distance 2 from r. For any u, v, define P (u, v) to be the unique path in σ(K) that

does not go through any degree 3 node except at its endpoints. Now we want to show that

there exists such a σ(K) with the length of P (r, v′i) equal to 1 for all i. Take a σ(K) as

above so that the lengths of P (r, v′i) are minimal. Suppose that there exists some path P

from s to t, disjoint from σ(K) except at endpoints, with s ∈ P (r, v′1). If t ∈ P (v′1, u1), then

we can form a new K3,3 instance by replacing P (t, v′1) with P , as in Figure 5.14(Middle).

This shortens the length of P (r, v′1), since s becomes the “new” v′1, giving a contradiction.

If t ∈ P (u1, v
′
2), we can similarly re-design K by replacing P (u1, v

′
1) with P , and making

t the “new” u1, as in Figure 5.14(Right). This also shortens P (r, v′1), and all other cases

can be reduced to these, so we can assume that all paths from nodes in P (r, v′i) must pass

through v′1, v
′
2, v

′
3 to reach nodes outside of ∪iP (r, v′i). However, if vi 6= v′i for all i, then the

cut consisting of the closest edges to v′i on each P (r, v′i) disconnects the graph with more

than one node on each side, which we assumed is impossible. This gives us that vi = v′i, as

desired.

Take this σ(K), which is really the union (although not a valid sum) of two dual aug-

mentors containing r: one with degree 3 at u1, and one with degree 3 at u2; both with

degree 3 at r. We will now form a valid augmentor sum α for S with the cover number of

2x. Set the α value of each of these dual augmentors to some value x. To complete this
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augmentor sum, we need to cover all edges not in σ(K) by 2x dual augmentors, and all

edges in σ(K) not adjacent to r by x. We do not need to cover the edges adjacent to r

anymore, since we already covered them with 2x, so we may as well remove them. This

gives us three nodes of degree 2. Suppose v is such a node, with incident edges (v, w1)

and (v, w2). v is not in M , so any dual augmentor must contain both (v, w1) and (v, w2).

Without loss of generality, we can replace such nodes v and both incident edges with a

single edge (w1, w2). This results in a cubic graph with edges that we need to cover either x

or 2x times. By Theorem 5.4.2, we know we can cover this graph with cycles in the desired

manner if it is 3-connected. If it were not, this would mean that there is some cut in this

graph consisting of only two edges f1, f2. This graph was constructed by removing r, and

then getting rid of the remaining degree 2 nodes, so this means that removing two edges

f1, f2 from S together with r disconnects S. Since r is degree 3, this implies that removing

three edges from S disconnects it. By our assumption, the only way this is possible is if

one side of the cut consists of a single node v that is adjacent to f1, f2, and r. However,

we contracted all nodes adjacent to r, so {f1, f2} could not be a cut in the resulting graph.

Therefore there exists a circuit sum of this graph, giving us a valid augmentor sum together

with the the augmentors in σ(K).

Planar We now address the planar case. Tait [71] showed that the Four Color Theorem

[9, 66] is equivalent to the following statement: “Every 2-connected cubic planar graph is

edge-3-colorable,” and more recently [19] proved this statement without relying on the Four

Color Theorem. Take such a coloring of S, where each color just forms a perfect matching.

Call these matchings M1,M2,M3 and form symmetric differences M1 ⊕M2,M2 ⊕M3, and

M3 ⊕M1. Each of these is a set of disjoint cycles, with every edge being in exactly two of

these. Consider what M1 ⊕M2 looks like with respect to r, and let C1 be the cycle of it

containing r, and C2 be the cycle of it containing the node adjacent to r attached by an

edge e of M3. Form a dual augmentor by taking C1∪C2∪{e} (note that C1 may equal C2).

Figure 5.15 shows what this object can look like. To check that this is a dual augmentor,

notice that the only nodes of degree 3 are the endpoints of e, since C1 and C2 are disjoint.
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The only node of M is r, which has degree 3, as desired.

M1

M2

M3
r

M1

M2

M1

M2

M3
r

M1

M2

Figure 5.15: The planar case in Lemma 5.4.7. (Left) C1 6= C2 (Right) C1 = C2

Now, take all the cycles of M1⊕M2,M2⊕M3,M3⊕M1, but replace C1, C2 by C1∪C2∪{e}
(and similarly for M2 ⊕ M3 and M3 ⊕ M1). If we take all of these dual augmentors and

cycles, we get a dual augmentor cover that covers the edges next to r three times and all

the other edges twice. Remove r and its adjacent edges. As in the non-planar case, we can

use Theorem 5.4.2 to show that we can cover the resulting graph with cycles so that every

edge appears in exactly the same number x of cycles. Together this gives a valid augmentor

sum, since we can multiply the cover above by x, combine it with the cycle cover, and end

up with a valid augmentor sum of size 3x. 2

5.5 Running Time

In this section we show that our algorithm for Simplex Matching runs in polynomial time.

Recall that the algorithm is simply:

Start with any perfect matching.

Repeat until done

Find an alternating 2-factor using Lemma 5.2.1.

Augment the current matching by the above 2-factor.
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We can find the initial perfect matching using the algorithm for unweighted Simplex

Matching presented in Section 5.1 or modify the {K2,K3} packing algorithm from [48].

If we are applying Simplex Matching to solve Terminal Backup or similar problems, then

there always exists a perfect matching without 3d edges, which we can find using traditional

matching algorithms. We need to estimate how much time it takes to find an alternating

2-factor according to Lemma 5.2.1 and how many times we need to repeat this step until

the optimal solution is reached given that we start from some arbitrary perfect matching.

We show that

Theorem 5.5.1 Our algorithm solves Simplex Matching with integer edge costs in polyno-

mial time.

Proof: Let OPT be the cost of the best perfect matching M∗, and let M be some perfect

matching. As mentioned before, M∗ ⊕ M is an M -alternating 2-factor with at most n

vertices, wherer n is the number of vertices of G. By Lemma 5.3.3 and Theorem 5.3.4

we know that there exists an augmentor A with φM (A) ≥ φM (M∗⊕M)
n . By Lemma 5.2.1

we can efficiently find an M -alternating 2-factor S such that φM (S) ≥ φM (A). Since

φM (M∗⊕M) = cost(M)−OPT , then every time we augment in our algorithm, we decrease

the cost by at least cost(M)−OPT
n .

Suppose that the initial matching we find is α times more expensive than OPT . If D

denotes the ratio of the maximum edge cost to the minimum edge cost then clearly α ≤ D.

During the first iteration we will decrease the cost of the matching by at least α−1
n OPT ,

resulting in a matching of cost at most (α− 1)
(

n−1
n

)
+ 1 more expensive than OPT . After

the second iteration the cost of the new matching will be at most a factor of (α−1)
(

n−1
n

)2+1

more expensive than OPT . It is easy to see that after the k-th step the cost of the current

matching would be at most a factor of (α− 1)
(

n−1
n

)k + 1 more expensive than OPT .

The algorithm terminates when Lemma 5.2.1 returns an alternating 2-factor that does

not improve the current matching. We claim that the current matching at this point has

cost OPT . Suppose this is not the case, then there exists an alternating 2-factor of positive

potential. By Lemma 5.3.3, there exists an augmentor with positive potential and since all
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edge costs are integers this potential is at least equal to 1. By Lemma 5.2.1 we can find an

alternating 2-factor with a potential at least 1 that improves the current matching and we

reach the desired contradiction.

Suppose that the algorithm terminated after k + 1 invocations of Lemma 5.2.1, the last

invocation being the one that returned an alternating 2-factor that did not improve the

matching. Since the edge costs are integral, it is easy to see that k ≤ t for any t is such that

(
(α− 1)

(
n− 1

n

)t

+ 1

)
OPT −OPT < 1

⇔
t >

ln(α− 1) + lnOPT
ln n

n−1

Given that α ≤ D and ln n
n−1 > 1

n , the Simplex Matching algorithm executes no more

than n (lnD + lnOPT ) invocations of Lemma 5.2.1. We can observe also that OPT can be

bounded by nD so the number of invocations of Lemma 5.2.1 is O(n ln D + n lnn).

Done in a naive manner, each invocation of Lemma 5.2.1 consists of running a minimum

cost weighted matching algorithm for every pair of 3d edges. This could take as long as

O(n3m2), where m is the number of 3d edges. However, there are some simple ways to

make this step run faster. We could take advantage of the fact that the minimum cost

matchings that we are calculating are extremely related. If we use an “augmenting path”

algorithm for calculating minimum cost matchings [30], then each calculation only takes

O(n2) time, resulting in a running time of O(n3 + n2m2) for each invocation of Lemma

5.2.1. The running time could be reduced further in the geometric setting. Finally, notice

that not all pairs of 3d edges need to be considered. A lot of the pairs can be eliminated in

advance, significantly reducing the running time. This is especially true when applying the

Simplex Matching algorithm to the Terminal Backup problem, or to any problem involving

covering instead of exact matching. For more details on optimizing the running time, see

Xu et al. [74].

Recall that in the first step of the algorithm we find a perfect matching in time O(n3m2)
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which is dominated by the running time of the invocations of Lemma 5.2.1. Since a perfect

matching exists we can assume that m is Ω(n). Thus the resulting running time of our

algorithm for weighted Simplex Matching is O(n3m2 ln D + n3m2 ln n)). 2

In the case where the edge costs are not integer, the running time will depend on how

these costs are represented. By running the augmentation algorithm until the improvement

is at most ε, we can obtain an algorithm that finds a solution that costs at most OPT + ε

in time polynomial in lnD, ln(1/ε) and n.



Chapter 6

Conclusion

We studied the Terminal Backup problem and showed how to reduce it to Simplex Matching,

a minimum cost perfect matching problem on hypergraphs with weighted edges of size 2 and

3 that satisfy the Simplex Condition. In the previous chapter we provided a polynomial time

algorithm for solving Simplex Matching. Here we present another natural problem, Project

Assignment, that is solvable in polynomial time via a reduction to Simplex Matching. We

also discuss future directions of research related to Terminal Backup and Simplex Matching.

6.1 Project Assignment

Consider a likely task a teacher might have to perform at the end of the semester – assigning

final projects to students. The teacher has a list of possible projects as well as data from

each of the students indicating how happy they will be to work on any one of the projects.

The goal is to assign each student to a project such that the total student “happiness” is

maximized and no student works alone.

More specifically, suppose that there is a utility function u(s, p) that indicates how much

a student s would like working on project p. We need to break the students into groups of at

least 2 and assign a project to each group such that the total sum of the students’ utilities

is maximized. This problem is a special case of facility location with lower bounds and can

be reduced to Simplex Matching. Notice that if the students were allowed to work alone,

78
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i.e. the groups can be of size 1, then the optimum would simply assign each student to the

project she likes best. If the groups need to be of size exactly 2, the problem is reducible

to non-bipartite matching (notice that not all projects need to be assigned, otherwise this

would be easily solvable by a flow argument). And if the group size had to be at least 3, the

problem becomes NP-Hard. The variant with group size at least 2, however, is reducible to

Simplex Matching and so has nontrivial structure that can be exploited to form an efficient

algorithm.

The reduction from Project Assignment to Simplex Matching is simple. Notice that if

the optimal solution forms groups of size larger than 3 then there is an equivalent solution

with groups of only 2 or 3 students. We form a hypergraph H with vertices corresponding

to the students and edges of size 2 or 3. For every two students s1 and s2 form an edge

(s1, s2) of weight equal to the smallest cost, expressed as a negation of utility, of assigning

students s1 and s2 to a project together. For every three students s1, s2 and s3 form an

edge (s1, s2, s3) of weight equal to the smallest cost of assigning s1, s2 and s3 to a project

together.

In the above hypergraph H all 2d edges (s1, s2) exist and if an edge (s1, s2, s3) corre-

sponds to a project p then its cost c(s1, s2, s3) is equal to −u(s1, p) − u(s2, p) − u(s3, p).

Moreover, the inequality c(si, sj) ≤ −u(si, p)−u(sj , p) holds for any pair of students (si, sj).

Summing up for all pairs of students (s1, s2), (s2, s3) and (s1, s3) gives us the inequality

portion of the Simplex Condition. Finding the optimal solution to the Project Assignment

problem is now reduced to solving Simplex Matching on H.

6.2 Future Directions

There are several natural directions to pursue that are suggested by our work. First of

all, the polynomial time algorithm for Simplex Matching is not strongly polynomial as its

running time depends on the ratio of the highest to the lowest cost in the hypergraph. It

would be interesting to remove that dependence.

In Theorem 5.3.4 we show that every cubic graph can be covered by dual augmentors that
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are simple combinatorial objects. Our hope is that our covering results and the techniques

used to obtain them will lead to more covering results where nodes have general degree

constraints.

Simplex Matching seems well suited to solve problems where some elements need to be

split up in groups of 2 or 3 and the problem can be made to satisfy the Simplex Condition.

Terminal Backup and Project Assignment are two seemingly different problems of this kind.

Recently Williams [73] has used the weighted Simplex Matching algorithm to show that the

2-anonymity optimization problem from data privacy is solvable in polynomial time (for

definition of k-anonymity see [70], for discussion of its complexity see [61], for approximation

algorithms see [3]). It appears that the ability to solve Simplex Matching efficiently is a

useful tool, so we can ask what other interesting problems could be solved via a reduction

to Simplex Matching or using the polynomial time algorithm for Simplex Matching as a

subroutine.

Finally, Terminal Backup seems very similar to a large number of network design prob-

lems, yet it is one of the few such problems that can be solved in polynomial time. The

polynomial time algorithm for Terminal Backup could provide us with an additional tool

when designing improved approximation algorithms for some harder network design prob-

lems.
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