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Abstract
IP networks today require massive effort to configure and
manage. Ethernet is vastly simpler to manage, but does
not scale beyond small local area networks. This paper de-
scribes an alternative network architecture called SEIZE that
achieves the best of both worlds: The scalability of IP com-
bined with the simplicity of Ethernet. SEIZE provides plug-
and-play functionality via flat addressing, while ensuring
scalability and efficiency through shortest-path routing and
hash-based location resolution. We implemented a proto-
type of SEIZE using the Click and XORP open-source rout-
ing platforms, and evaluated system performance on Emu-
lab. Additionally, to evaluate performance on larger scales,
we performed a simulation study driven by real-world traf-
fic traces and network topologies. Our experiments show
that SEIZE attains near-optimal path efficiency, while reduc-
ing control overhead and table size by roughly two orders of
magnitude compared with Ethernet bridging.

1. Introduction
Ethernet, developed in the mid 1970’s, stands as one of

the oldest networking technologies still in use today. It
has weathered the years extremely well due to its simplic-
ity and ease of configuration, and has become a widely used
building-block in many enterprise and access provider net-
works. Each host in an Ethernet is assigned a persistent
MAC address, and switches automatically learn host ad-
dresses and locations. The “plug-and-play” semantics sim-
plify many aspects of network configuration. Since address-
ing is persistent, many access controls may be statically con-
figured. Flat addressing simplifies the handling of topology
changes and host mobility, without requiring administrators
to perform address reassignment.

Despite these benefits, Ethernet is rarely used outside of
small Local Area Networks (LANs), for three main rea-
sons [1]. First, Ethernet relies on network-wide flooding to
discover the location of end hosts, resulting in large state
requirements and control message overhead that grow with
the size of the network. Scalability is a growing concern
due to increasing levels of host mobility, as well as network
deployments in developing regions where the topology may
change frequently [2]. Second, Ethernet does not allow arbi-
trary path selection, but forces paths to comprise a spanning
tree. Spanning trees perform well for small networks which
often do not have much physical redundancy anyway, but
introduces substantial inefficiencies on larger networks that
have more demanding requirements for low latency, load

balancing, and traffic engineering. Finally, popular boot-
strapping protocols, such as ARP (Address Resolution Pro-
tocol) and DHCP (Dynamic Host Configuration Protocol),
rely on broadcasting, which consumes excessive resources
and introduces security vulnerabilities and privacy concerns.

Network administrators sidestep these problems today
by interconnecting small Ethernet-based LANs using IP
routers. IP ensures efficient and flexible use of network-
ing resources via shortest-path routing, and has control over-
head and forwarding-table sizes that depend on the number
of IP prefixes, rather than the number of hosts. However,
introducing IP routers breaks many of the desirable proper-
ties of Ethernet. For example, network administrators must
now subdivide their address space and assign IP prefixes
across the topology, leading to wasted address space and
complex configuration tasks. Although DHCP automates
host address configuration, maintaining consistency between
DHCP servers and routers remains challenging. Mean-
while, administrators must reconfigure their DHCP servers
and routing protocols as the network design changes. More-
over, since IP addresses are not persistent identifiers, access-
control policies must be specified based on the host’s current
position, and updated when the host moves.

In this paper, we address the following question: Is
it possible to build a protocol that maintains the same
configuration-free properties as Ethernet bridging, yet
scales to large networks? To answer this question, we
present a scalable and efficient, zero-configuration enterprise
(SEIZE) architecture. Specifically, SEIZE offers the follow-
ing key features:

• Routing on persistent identifiers: To enable plug-
and-play routing, SEIZE automatically discovers end-
host MAC addresses and locations, and forwards pack-
ets based on MAC addresses. This minimizes configu-
ration and simplifies handling of mobile hosts.

• Efficient use of paths: For efficient resource utiliza-
tion and intuitive traffic engineering, SEIZE delivers
packets along shortest paths. A link-state routing pro-
tocol maintains a map of the switch-level interconnec-
tion topology, without disseminating the end-host lo-
cation information, similar to the way routing is done
inside Internet Service Provider (ISP) networks.

• Reducing control overhead and forwarding state:
Despite relying on per-host information to forward
packets, SEIZE does not require each switch to dis-
cover or maintain state for all end hosts, nor does



it require network-wide floods to discover host loca-
tion. Instead, SEIZE adopts a hash-based, on-demand
location-resolution scheme indexed on hosts’ identi-
fiers. In particular, SEIZE leverages the network-wide
view provided by a link-state routing protocol to form
a one-hop DHT [3], which stores the network location
of each host. Switches cache host information to opti-
mize the packet-forwarding paths and to avoid unnec-
essary queries. In enterprise networks, hosts typically
communicate with a small number of other hosts [4],
making on-demand resolution and caching quite effec-
tive.

Despite these novel features, SEIZE remains backwards-
compatible with existing applications and protocols running
at end hosts. For example, SEIZE allows hosts to gener-
ate broadcast ARP and DHCP messages, and internally con-
verts them into unicast-based queries to a directory service.
SEIZE switches can also handle general (i.e., non-ARP and
non-DHCP) broadcast traffic through multicasting. To of-
fer broadcast scoping and access control, SEIZE introduces
a flexible grouping scheme that is compatible with Virtual
LANs (VLANs).

This paper makes three key contributions. First, we pro-
vide a very simple, and yet highly scalable mechanism that
enables shortest-path forwarding while maintaining the se-
mantics of Ethernet (Sections 3 and 4). Second, we lever-
age simulations to evaluate the protocol over a wide variety
of workloads and network topologies, and analyze perfor-
mance (Section 5). Third, we describe a prototype imple-
mentation of SEIZE, and evaluate its performance through a
combination of microbenchmarks and end-to-end measure-
ments (Sections 6 and 7). Our initial results are promising:
SEIZE scales to networks containing two orders of magni-
tude more hosts than a traditional Ethernet. The first few
packets of a flow are subject to a small delay penalty, while
the remaining packets traverse shortest paths. SEIZE can
also handle network failures and host mobility without sig-
nificantly increasing control overhead.

2. Today’s Enterprise and Access Networks
To provide background for the remainder of the paper, and

to motivate SEIZE, this section explains why Ethernet bridg-
ing is limited to small LANs. Then we explain how hybrid
IP/Ethernet designs improve some aspects of scalability, but
introduce management complexity, eliminating many of the
“plug-and-play” advantages of Ethernet.

2.1 Ethernet bridging
An Ethernet network is composed of segments, each com-

prising a single physical layer 1. Ethernet bridges are used to
connect multiple segments into a multi-hop network, namely
a LAN, forming a single broadcast domain. Since too large
a broadcast domain unnecessarily overloads bridges and end
1In modern switched Ethernet networks, a segment is just a point-to-point
link connecting an end host and a bridge (switch), or a pair of bridges. Thus,
we use segment and link interchangeably.

hosts, administrators often logically subdivide the domain
into several smaller broadcast domains called VLANs. A
VLAN allows a set of hosts on different segments to com-
municate as though they were attached to the same physi-
cal wire. Each host in an Ethernet is assigned a globally
unique 48-bit MAC (Media Access Control) address. A
bridge learns how to reach hosts by inspecting the incoming
frames (packets), and associating the source MAC address
with the incoming port. A bridge stores this information in a
forwarding table that it uses to forward frames toward their
destinations. If the destination MAC address does not ap-
pear in the forwarding table, the bridge sends the frame on
all outgoing ports, initiating a network-wide flood. In addi-
tion to ensuring the frame reaches its destination, flooding
allows the rest of the network to learn the source’s location.
Bridges also flood frames that are destined to a broadcast
MAC address.

Despite Ethernet’s reliance on flooding and broadcasting,
bridges cannot detect forwarding loops because the Ether-
net frame does not carry a TTL value. Thus, networks
with rich topologies can experience broadcast storms, where
frames are repeatedly replicated and forwarded. To avoid
this, bridges coordinate to compute a spanning tree that is
used to forward frames. Network administrators first se-
lect and configure a single root bridge; then, the bridges
collectively compute a spanning tree. Links not present in
the spanning tree cannot be used to carry traffic, leading
to longer paths and inefficient use of resources. The inef-
ficiency of spanning trees and the reliance on network-wide
flooding prevents Ethernet from being adopted as a general
interconnection mechanism for large networks.
Globally disseminating every host’s location: Flooding
and source-learning introduce two problems in large net-
works. First, the forwarding table at each bridge can grow
very large because the table size remains proportional to
the number of end hosts in the network. A large forward-
ing table makes bridge design more challenging and expen-
sive. To boost look-up speed, most Ethernet bridges use
CAM (Content-Addressable Memory) to implement a for-
warding table. This type of memory is quite expensive and
power intensive, so using a smaller-sized CAM is important.
This requirement is particularly critical in building low-end
bridges, such as wireless access points. Second, the con-
trol overhead required to disseminate each end host’s infor-
mation can be very large, wasting link bandwidth and pro-
cessing resources. Since hosts power up/down and change
location relatively frequently compared to network infras-
tructure changes, flooding is an expensive way to keep per-
host information up-to-date. Moreover, malicious hosts can
intentionally trigger repeated network-wide floods through,
for example, address scanning attacks [5].
Inflexible route selection: Larger enterprise networks of-
ten have richer topologies, for greater reliability and perfor-
mance. Forcing all traffic to traverse a single spanning tree
leads to suboptimal paths and uneven link loads, with espe-
cially high load on the links near the root bridge. Choosing
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the right root bridge is extremely important, imposing an ad-
ditional burden on network administrators; still, even with
a good choice for the root bridge, a spanning tree is not an
efficient way to forward traffic. As a workaround, admin-
istrators may configure multiple VLANs, and use a sepa-
rate, disjoint spanning tree for each VLAN [6, 7]. Although
an improvement over using a single spanning tree, effective
use of per-VLAN trees requires fine-tuning each tree’s path,
which must be manually updated as traffic shifts. Moreover,
traffic within each VLAN must traverse a spanning tree, re-
sulting in suboptimal performance.
Dependence on broadcasting for basic operations: DHCP
and ARP are essential protocols used to assign IP addresses
and manage mappings between MAC and IP addresses,
respectively. A host broadcasts a DHCP-discovery mes-
sage whenever it believes its network attachment point has
changed. Broadcast ARP requests are typically generated
more frequently, whenever a host needs to know the IP ad-
dress of another host in the same broadcast domain. Since
hosts generate ARP queries individually, the overhead grows
in proportion to the number of communicating host pairs.
Back in the era of shared-medium Ethernet, broadcasting
DHCP and ARP queries was a reasonable design choice.
However, now that most Ethernet networks consist of point-
to-point links, relying on broadcasting for these frequent op-
erations is extremely wasteful [8]. In addition to degrading
network performance, every broadcast message must be pro-
cessed by every end host; since handling of broadcast frames
is often application or OS-specific, these frames are typi-
cally not handled by the network interface card, and instead
must interrupt the CPU [9]. Additionally, for portable de-
vices on low-bandwidth wireless links, receiving ARP pack-
ets can consume a significant fraction of the available band-
width, processing, and power resources. Moreover, the use
of broadcasting for ARP and DHCP opens vulnerabilities for
malicious hosts as they can easily launch network-wide ARP
or DHCP floods [8].

2.2 Hybrid IP/Ethernet architecture
To deal with Ethernet’s shortcomings in larger-scale envi-

ronments, administrators typically build enterprise and ac-
cess provider networks out of multiple Ethernet LANs in-
terconnected by IP routing. In these hybrid networks, each
LAN corresponds to an IP subnet and is given an IP prefix
representing the subnet. Each host in a LAN is assigned an
IP address from the subnet’s prefix. Assigning IP prefixes
to subnets, and associating subnets with router interfaces is
typically a manual process, as the assignment must follow
the hierarchical topology, yet must avoid fragmentation and
wasted namespace, and must take into account future use of
addresses to minimize later reassignment. Unlike a MAC
address, which functions as a host identifier, an IP address
functions as a locator, which denotes the host’s current lo-
cation in the network. Since forwarding a packet involves
both the MAC and IP addresses, routers run protocols such
as ARP to map between the two.

IP routers in a hybrid network cooperate to compute paths

among themselves using a routing protocol such EIGRP
(Enhanced Interior Gateway Routing Protocol) [10] or OSPF
(Open Shortest Path First) [11]. Since the IP routing proto-
col uses a different addressing model and path-selection pro-
cess from Ethernet, designing mechanisms to share routing
information across the two protocols has been a challenging
problem. Instead, typical deployments run the two protocols
independently and connect them together at certain fixed lo-
cations called default gateways. Unfortunately, this prevents
the shortest network-level paths from being visible across
LANs, making traffic engineering challenging for network
administrators to implement.

Nevertheless, the biggest problem of the hybrid archi-
tecture is its massive configuration overhead. Configuring
hybrid networks today represents an enormous challenge.
Some estimates put 70% of an enterprise network’s oper-
ating cost as maintenance and configuration, as opposed to
equipment costs [12]. In addition, involving human admin-
istrators in the loop increases reaction time to faults and in-
creases potential for misconfiguration.
Configuration overhead due to hierarchical addressing:
An IP router cannot function correctly until administrators
specify subnets on router interfaces, and direct routing pro-
tocols to advertise the subnets. Similarly, an end host can-
not access the network until it is configured with an IP ad-
dress corresponding to the subnet where the host is currently
located. DHCP automates the end-host configuration, but
introduces substantial configuration overhead for managing
the DHCP servers. In addition, maintaining consistency be-
tween subnet router configuration and DHCP address allo-
cation configuration is not a simple matter. Worse yet, main-
taining consistency among distributed DHCP servers is par-
ticularly challenging because there is no standard coordina-
tion protocol that can automatically adjust address allocation
policies across multiple DHCP servers. Finally, even after
this configuration has taken place, network administrators
must continually revise it to handle network design changes.
Complexity in implementing networking policies: Ad-
ministrators today use a collection of access controls, QoS
(Quality of Service) controls [13], and other policies to con-
trol the way packets flow through their networks. Today
these policies are typically defined based on IP prefixes.
However, since IP address ranges are assigned based on the
topology, changes to the network design require these poli-
cies to be rewritten. For the same reason, when a host’s
IP address changes due to mobility, a policy defined on the
host’s old address must be revised. One way to deal with
this is to configure one or several network-wide VLANs to
allow hosts to retain their IP address regardless of location.
However, all hosts on the same VLAN must be within the
same IP subnet in order to avoid all intra-LAN routes going
through the default gateway. Hence, deploying large VLANs
increases the total amount of broadcast traffic in the network
and VLAN state in switches as well. A second problem IP
introduces is that rewriting networking policies must hap-
pen immediately after the network design changes to prevent
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reachability problems and to avoid vulnerabilities. All these
problems stem from the fact that IP addresses are not as-
signed in a persistent fashion. Ideally, administrators should
only need to update policy configurations when the policy
itself changes, not when the network changes.

3. Scaling Ethernet With SEIZE
In this section, we describe the mechanisms SEIZE uses to

scale to large networks, deferring discussion of performance
enhancements to Section 4. We first introduce our main de-
sign decisions: flat addressing and shortest-path forwarding.
Then we describe how SEIZE manages host-location infor-
mation in a scalable fashion. Finally, we explain how SEIZE
responds to network changes, such as switch failures and
host mobility.

3.1 Flat addresses & shortest-path forwarding
SEIZE does not require changes to the addressing struc-

ture currently deployed in Ethernet networks. Packet for-
warding is based on destination MAC addresses. Paths used
for packet delivery are computed based on a switch-level
topology maintained by a link-state routing protocol.

3.1.1 MAC-based addressing and forwarding

Each end host in a SEIZE network is identified by a MAC
address, a 48-bit permanent identifier, and switches deliver
packets based on their destination MAC addresses. Since
MAC addresses are globally unique and hard-coded in each
Ethernet interface card, end-host configuration is not neces-
sary. This ensures backwards compatibility with the existing
Ethernet interface cards, device drivers, and protocol stacks.

End hosts may need IP addresses for application-level
compatibility and external reachability, but not for routing
within a SEIZE network. As such, the use of SEIZE simpli-
fies IP address assignment, since a single large address block
suffices for all hosts in the network. An end host can use any
unique IP address from the large prefix pool, regardless of
its current location. To identify the MAC address associated
with an IP address, end hosts use conventional ARP. To pre-
vent broadcast ARP requests from overwhelming the entire
network, SEIZE handles these requests via a more scalable
mechanism, as discussed later in Section 4.2.

3.1.2 Link-state protocol to maintain switch topology

Shortest-path forwarding requires that every SEIZE
switch knows the current network topology. SEIZE enables
this by running a link-state protocol. However, distributing
end-host information in link-state advertisements (LSAs), as
advocated in previous proposals [8, 14], would lead to se-
rious scaling problems. Instead, SEIZE’s link-state proto-
col maintains only the switch-level topology, which is much
more compact and stable. SEIZE switches use the link-state
information to compute shortest paths for unicasting, and
multicast trees for broadcasting.

To automate configuration of the link-state protocol,
SEIZE switches run a discovery protocol to determine which
of their links are attached to hosts, and which are attached

Figure 1: Packet forwarding and lookup in SEIZE.

to other switches. Distinguishing between these different
kinds of links is done by sending control messages that Eth-
ernet hosts do not respond to. This process is similar to how
Ethernet distinguishes switches from hosts when building its
spanning tree. To identify themselves in the link-state proto-
col, SEIZE switches determine their own unique switch IDs
without administrator involvement. Each switch does this
by choosing the MAC address of one of its interfaces as its
switch ID.

3.2 Managing host location information
Since per-host information is not disseminated in link-

state advertisements, SEIZE switches need some other way
to determine a destination host’s location. This is done in an
on-demand fashion, via a simple hashing mechanism. In par-
ticular, each host willing to receive packets uses consistent
hashing to map its MAC address to a switch identifier, and
places a pointer at that switch to the host’s current location.
We refer to this switch that stores the location as the relay.
A remote host may then contact the destination by sending
the packet via its access switch, which uses the same hash
function to identify which switch is the relay for the desti-
nation. The access switch then forwards the packet to the
relay, which in turn uses the pointer to forward the packet
to the destination. Figure 1 illustrates each step of this pro-
cedure, annotated with the subsection number in which the
step is described.

3.2.1 Host discovery by access switches

When an end host arrives at a SEIZE network, its access
switch discovers the host using traditional Ethernet mecha-
nisms. The access switch is responsible for forwarding pack-
ets to and from the end host, and ensuring the end host’s
relay correctly maintains the end host’s location. Similarly,
when an end host fails or disconnects from the network, this
access switch is responsible for detecting that the host has
left the network, and revoking the end host’s location infor-
mation from the network.

Switches can detect a host’s arrival and departure either
explicitly or implicitly, depending on the underlying link-
layer technology. For example, if the host’s Ethernet seg-
ment runs an 802.11-style network-association protocol, the
access switch can explicitly detect hosts’ arrival and depar-
ture. When such options are not available, switches can use
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the conventional 802.1D MAC learning scheme to detect ar-
rivals. Unfortunately, detecting departure in this case re-
quires polling end hosts periodically or monitoring loss of
link-layer acknowledgment messages.

3.2.2 Location registration

To efficiently maintain each end host’s location informa-
tion, all SEIZE switches jointly use a hash function F . F
receives a MAC address as an input, maps the input to one of
the switches in the network, and returns the mapped switch’s
identifier. Since each switch knows all the other switches’
identifiers via link-state advertisements from the routing pro-
tocol, F works identically across all switches.

When host a first arrives at access switch sa, the switch
learns a’s id maca, and computesF(maca). This hash value
is another switch ra’s id: ra = F(maca). Finally, sa in-
forms ra of a’s id maca and a’s location sa. Switch ra, the
relay switch for host a, then keeps a’s location information
in the form of the tuple (a, sa). If desired, standard DHT
load balancing mechanisms may be used to deal with switch
heterogeneity [15].

3.2.3 Location resolution and packet forwarding

Suppose host b connected to a different switch sb wants to
communicate with a. Since the link-state protocol does not
disseminate end-host information, when sb receives a packet
destined to a, it does not know how to reach a. Unlike Eth-
ernet bridging, where sb would flood the packet, instead the
SEIZE switch sb computes F(maca) = ra and sends the
packet to ra via unicast. Since ra might be multiple hops
away from sb, and the intermediate nodes between sb and ra

might not know the location of sa, sb encapsulates the orig-
inal packet inside an additional header. This outer header
uses ra as a destination address and uses link-state routing to
travel from sb to ra. Upon receiving the packet, ra decapsu-
lates it, looks up the destination address maca in its forward-
ing table, and obtains sa. Switch ra then re-encapsulates the
packet and sends it to sa. Packets are forwarded along the
shortest paths between sb and ra, and also between ra and
sa.

3.3 Responding to changes
There are two kinds of changes that can occur in a net-

work. First, the switch-level topology may change, if a new
switch/link is added to the network, an existing switch/link
fails, or a previously failed switch/link recovers. Second, the
host-location information may change, if a new host joins the
network, or an existing host fails or moves to a new switch.

3.3.1 Handling network topology changes

In networks, links or switches may fail, and the failure
may or may not partition the network into multiple discon-
nected components. Link failures are typically more com-
mon than switch failures, and partitions are very rare if the
network has sufficient redundancy.

In the case of a link failure/repair that does not partition a
network, the set of switches appearing in the link-state map

Figure 2: Host addresses are consistently hashed onto switches (si).

does not change. Since the hash function F is defined with
the set of switches in the network, the hash function Fnew

after the topology change is equivalent to the hash function
Fold before the change. Thus, for every host h, its old re-
lay switch rold

h = Fold(mach) is identical to its new relay
switch rnew

h = Fnew(mach) after the change. Hence all
that needs to be done is to update the link-state map to ensure
packets continue to traverse new shortest paths. In SEIZE,
this is simply handled by the link-state routing protocol.

However, if a switch fails or recovers, the set of switches
in the link-state map changes. Since there are now fewer
or more switches, there may be some hosts h whose rold

h

differs from rnew
h . To deal with this, two operations must

take place. First, for correctness reasons a host h’s loca-
tion information must be inserted at h’s new relay switch
rnew
h , since remote switches will begin forwarding packets

destined for h via rnew
h . SEIZE accomplishes this by hav-

ing h’s access switch monitor h’s current relay’s liveness by
observing link-state advertisements. When the current re-
lay fails, sh computes Fnew(mach) , obtains a new relay
switch rnew

h and re-registers h’s location information with
the new relay. Second, h’s location information must even-
tually be removed from rold

h for garbage collection purposes,
since remote switches will no longer be forwarding packets
via rold

h to h. SEIZE relays accomplish this by triggering
a scan over stored location information when the link-state
topology changes. Entries that no longer hash to the local
switch are evicted. This eviction takes place after a grace
period to ensure correct packet delivery during the link-state
convergence.

This procedure correctly handles network partitions. The
link-state protocol ensures that each switch will be able to
see only switches present in its partition. Therefore, each
network partition comes to use the same hash function ap-
plied over a different set of switches. If two hosts are part
of the same partition, SEIZE will correctly forward packets
between them. When a host sends a packet to a host belong-
ing to an unreachable partition, the packet will be discarded
by the relay switch, as the switch will not be aware of the
destination host’s location.

To minimize the amount of control overhead required
to deal with topology changes, SEIZE utilizes Consistent
Hashing [16] for F . This mechanism is illustrated in Fig-
ure 2. A consistent hashing function maps keys to bins such
that the arrival or departure of a bin causes minimal changes
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in the mapping of other keys to bins. In SEIZE, each switch
comprises a bin, and each host MAC address corresponds to
a key. Formally, given a set S = {s1, s2, ..., sn} of switch
identifiers, and an end host a and its MAC address maca,

F(maca) = argmin∀si∈S{D(H(maca),H(si))}

where H is a regular hash function2, and D(x, y) is a simple
metric function computing the counter-clockwise distance
from x to y on the circular hash-space of H. This means
F maps a host to the switch with the closest identifier not
exceeding that of the host on the hash space of H. As an
optimization, a host may be additionally mapped to the next
k closest switches along the hash ring, to improve resilience
to multiple failures. However, in our evaluation, we will as-
sume this optimization is disabled by default.

The use of consistent hashing ensures that on average, a
single switch failure or recovery triggers |N |/|S| host re-
registration events, where |N | is the number of end hosts
and |S| is the number of switches in the network. That is,
in a network with 100,000 end hosts and 1,000 switches, a
single switch failure generates only 100 host re-registration
messages on average.

3.3.2 Handling host location changes

When a host h moves to a new location, three things must
happen. First, h’s new access switch snew

h must learn that it
is responsible for the host. Second, h’s relay switch rh must
learn of h’s new location. The mechanisms introduced in
Section 3.2.1 and Section 3.2.2 handle this by having snew

h

send a registration message to rh upon arrival of h. Note that
the relay switch rh selected by F does not change when h’s
location changes. Finally, h’s old access switch sold

h must
learn that it is no longer responsible for h. SEIZE handles
this by having sold

h deregister h if it detects h is unreachable.
As an optimization, the relay switch rh notifies sold

h with a
pointer to the new location snew

h before rh updates h’s loca-
tion information.

4. SEIZE Performance Enhancements
The previous section left several performance issues un-

addressed. First, forwarding every data packet through the
relay would result in longer paths, with higher delay. In
this section we describe an optimization based on caching
that allows the majority of packets to traverse the shortest
path to the destination. Second, in order to support legacy
Ethernet hosts, SEIZE must support broadcast traffic. To
deal with this, we describe how switches handle ARP and
DHCP through unicast-based queries, and how administra-
tors can scope broadcast traffic. Finally, we describe several
other performance-related optimizations, including latency
reduction in a geographically distributed network. Note that,
with all these mechanisms for performance enhancements
and backwards-compatibility, SEIZE still preserves its key
principle: to make host information available only when and
where it is needed.
2In our prototype, we used MD5 asH.

4.1 Reducing path inflation
By storing each host’s state only at its access and relay

switches, SEIZE reduces control overhead and forwarding
state. However, by delivering all packets through a relay
switch, path lengths may potentially increase in length up to
twice the network’s diameter. In this section we describe an
optimization called cut-through forwarding, which is based
on a similar mechanism used in some ATM (Asynchronous
Transfer Mode) networks [17]. Cut-through forwarding al-
lows most packets of a flow to traverse the shortest path to
the destination. Additionally, we describe how administra-
tors can build a hierarchical SEIZE network to further reduce
path inflation.

4.1.1 Cut-through forwarding (CTF)

CTF works by having the relay switch inform the ingress
switch of the destination’s location. The ingress switch then
temporarily caches this information, and uses it to forward
packets directly along the shortest network-level path with-
out traversing the relay switch. This mechanism is illustrated
in Figure 1. When host a’s relay switch ra receives a packet
destined to a from sb, ra recognizes that this is a relayed
packet because a is not directly connected to ra. Thus ra

notifies sb that a’s current location is sa. Then sb temporar-
ily caches this information in its forwarding table and uses it
to deliver subsequent packets directly to sa. Although CTF
requires additional control messages to inform the ingress of
the host’s location, its benefit is much larger than its penalty
especially in enterprise and access provider networks be-
cause most hosts communicate with a small number of popu-
lar hosts, such as mail/file/Web servers, printers, VoIP gate-
ways, and the Internet gateway [4]. Additionally, to pre-
vent forwarding tables from growing unnecessarily large,
the ingress switch sb applies various cache-management
policies. For correctness, however, the cache-management
scheme must not evict the location information of the hosts
that are directly connected to sb or are registered with sb for
relaying.

Use of CTF requires a slight modification to the host mo-
bility handling mechanism introduced in Section 3.3.2 be-
cause entries cached by CTF must be kept up-to-date as hosts
move. If CTF is disabled, when host a moves from sold

a to
snew

a , it is sufficient for snew
a to update a’s old location in-

formation at the relay switch ra, and for ra to update the
old access switch sold

a . When using CTF, even after updat-
ing the information at ra, sold

a may receive packets destined
to a because other switches in the network might have stale
information in their forwarding tables. To deal with this,
switches discard cached entries after a short timeout period.
In addition, when sold

a receives packets destined to a, it can
explicitly notifies ingress switches that sent the packets of
a’s new location. To minimize service disruption, sold

a also
forwards those misdelivered packets to snew

a .

4.1.2 Localizing paths with hierarchy

When using SEIZE in a large, geographically distributed
network (e.g., an enterprise composed of multiple remote
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sites interconnected by VPNs), relaying could result in a
large latency penalty, as the relay may lie far from the source
and destination. Moreover, forwarding through a large num-
ber of switches that are not on the shortest path may degrade
overall communication quality (i.e., loss probability, avail-
ability, etc.). These problems become even worse the when
source and destination are very close to each other. Although
CTF ensures that only the first few packets of each flow ex-
perience these problems, some special applications that are
highly sensitive to path quality can still suffer.

To deal with this, SEIZE may be configured in a hierarchi-
cal fashion. A hierarchical network is divided into several
regions, and a backbone providing long-distance connectiv-
ity across regions. Each region is connected to the backbone
via its own border switch, and the backbone is composed of
the border switches of all regions. Every switch in a region
knows the identifier of the region’s border switch, because
the border switch advertises its role through the link-state
protocol. In such an environment, SEIZE ensures that re-
gional traffic is handled entirely within its own region, and
only inter-region traffic is forwarded through the backbone.
SEIZE ensures this by defining a separate regional and back-
bone hash ring. When a host a joins a region P and is reg-
istered with a regional relay rP

a (i.e., a relay switch for a
in region P ), rP

a additionally forwards a’s information to
region P ’s border switch bP . Then bP hashes a’s MAC ad-
dress again onto the backbone ring and registers a to another
backbone switch bQ

a . Switch bQ
a may then cache a’s loca-

tion. As an optimization to reduce load on border switches,
bQ
a may hash a and stores a’s location at a switch within

its own region Q, rather than storing a’s location directly.
A similar process is used to forward packets from a remote
host to a.

4.2 Reducing broadcast overhead
To perform the same semantics as Ethernet bridging,

SEIZE needs to support broadcasting. However, in a large
network, broadcasting may significantly overload switches
and end hosts. SEIZE presents two independent mecha-
nisms that both contribute to solving the problem. First, we
propose to sidestep the problem of broadcasting by convert-
ing ARP and DHCP queries to unicast messages. Second,
to handle other broadcast traffic efficiently, we proposes a
scoping mechanism which is similar to, but more flexible
than, VLANs.

4.2.1 Eliminating broadcasting from ARP and DHCP

To support ARP without network-wide broadcasting,
SEIZE switches use the same hash-based resolution scheme
introduced in the previous section but with IP addresses as
keys. Upon learning host a’s IP address, the access switch
sa

3, sa registers a’s MAC address maca and IP address ipa

with a resolver switch F(ipa). Later, when another host b
issues a broadcast ARP request to resolve a’s MAC address

3This could happen when an explicit association process between a and sa

takes place. When explicit association is not available, sa can still learn
this from the first IP packet sent by a or from DHCP messages sent to a.

maca associated with ipa, b’s access switch sb converts the
request to a unicast query to F(ipa), instead of broadcasting
the request network-wide.

SEIZE also resolves DHCP messages without broadcast-
ing. When an access switch receives a broadcast DHCP
discovery message from an end host, the switch delivers
the message directly to a DHCP server via unicast, in-
stead of broadcasting it network-wide. SEIZE implements
this mechanism using the existing DHCP relay agent stan-
dard [18]. This standard is used when an end host needs
to directly communicate with a DHCP server that is located
in a different broadcast domain. The standard proposes that
a host’s IP gateway forward a DHCP discovery to a DHCP
server via IP routing. In SEIZE, a host’s access switch can
perform the same proxy function with Ethernet encapsula-
tion.

4.2.2 Group-based broadcast scoping

In addition to ARP and DHCP, there are several other
sources of broadcast traffic, including IP multicast, service
discovery, and file sharing programs. To support this broad-
cast traffic in a scalable fashion, we need a VLAN-like
broadcast scoping mechanism. As a solution, SEIZE intro-
duces a notion of group. A groups is defined as a set of
hosts who share the same broadcast domain regardless of
their locations. Unlike VLANs, however, a broadcast do-
main in SEIZE does not limit unicast reachability between
hosts because a SEIZE switch can resolve any host’s loca-
tion in the network without relying on domain-wide flood-
ing. Thus, groups provide several additional advantages over
Ethernet’s VLAN-based approach. First, a group does not
have to correspond to an IP subnet. Each host in a group can
use its own site-local IP address, and changing groups does
not force a host to change its IP address. Second, a unicast
flow between two hosts belonging to different groups takes
the shortest path, not through IP gateways.

With this definition of a group, broadcast scoping works
as follows. All broadcast packets within a group are deliv-
ered through a multicast tree sourced at a dedicated switch,
namely a broadcast root, of the group. The mapping be-
tween a group and its broadcast root is again determined by
the same hash function F using a group’s identifier as an in-
put. When a switch, for the first time, detects an end host
that is a member of group g4, the switch issues a join mes-
sage that is carried up to the nearest graft point on the tree
toward g’s broadcast root. Note that, by virtue of F , all the
switches along the new branch taken by the join message can
consistently map group g to its broadcast root. When a host
departs, its access switch prunes a branch if necessary. As a
result, each switch in a network maintains local knowledge
about which of its interfaces belongs to which groups. Fi-
nally, when an end host in g sends a broadcast frame, the
host’s access switch encapsulates and forwards the frame
4The way administrators associate hosts with corresponding groups and
policies is beyond the scope of this paper. For Ethernet, a policy manage-
ment framework that can automate this task (e.g., mapping an end host or
flow to a VLAN) is already available [19], so SEIZE can employ the same
model.
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along g’s multicast tree. In a manner similar to IP multicast’s
RPF (Reverse Path Forwarding) mechanism, each switch ig-
nores packets received from the interface that points to the
source, thereby ensuring loop-freedom and avoiding broad-
cast storms.

4.2.3 Separating access control from broadcasting

Unlike Ethernet bridging, which unavoidably misuses
VLANs for both broadcast scoping and access control,
SEIZE can separate the two functions because groups scope
only broadcast traffic. For unicast scoping (i.e., access con-
trol), groups in SEIZE only provide a name space upon
which access-control policies are defined. Specifically, the
access-control mechanism in SEIZE works as follows. First,
each host’s group membership is determined by the host’s
access switch and registered with the host’s relay switch
along with other information (e.g., location, or addresses).
Access control policies are then applied when a host at-
tempts to resolve a destination’s location. In particular, when
a source host b sends a unicast packet to a, b’s access switch
forwards the packet to the relay ra for a. The relay switch
forwards the packet to a only if the access-control policy
registered at ra permits communication between b’s group
gb and a’s group ga.

5. Simulations
In this section, we start by describing our simulation en-

vironment. Next, we describe SEIZE’s performance under
workloads collected from several real operational networks.
We also investigate SEIZE’s performance in alternate envi-
ronments by generating host mobility and topology changes.
In Section 7 we will also describe some validation to cross-
check our simulation results with those of the prototype im-
plementation.

5.1 Methodology
To evaluate performance of SEIZE, we would ideally like

to have several pieces of information: complete layer-two
topologies from a number of representative enterprises and
access providers, traces of all traffic sent on every link in
their topologies, the set of hosts at each switch/router in the
topology, and a trace of host movement patterns. Unfor-
tunately, network administrators (understandably) were not
able to share this detailed information with us due to privacy
concerns and also because administrators typically do not
log events on such large scales. To deal with this, we lever-
aged real traces where possible, and supplemented them with
synthetic traces. To generate the synthetic traces, we made
several assumptions about workload characteristics, and var-
ied these characteristics to measure the sensitivity of SEIZE
to our assumptions.

In our simulator, we replayed packet-level traces collected
from the LBNL (Lawrence Berkeley National Lab) campus
network by Pang et. al. [20]. There are four sets of traces,
each collected over a period of 10 to 60 minutes, containing
traffic to and from roughly 9,000 end hosts distributed over
22 different subnets. To evaluate sensitivity of SEIZE to net-

work size, we artificially injected additional hosts into the
trace. We did this by creating a set of virtual hosts, each of
which communicated with a set of random destinations. We
selected this set so as to ensure that the distribution of incom-
ing and outbound flows across hosts was not substantially
changed. We also tried injecting MAC scanning attacks and
artificially increasing the rate at which hosts send [5].

We measured SEIZE’s performance on four representa-
tive topologies. Entp-campus is the campus network of
a large (roughly 40,000 students) university in the United
States, containing 517 routers and switches. Ap-small (AS
3967) is a small access provider network consisting of 87
routers, and Ap-large (AS 1239) is a larger network with
315 routers [21]. Because SEIZE switches are intended to
replace both IP routers and Ethernet bridges, the routers
in these topologies are considered as SEIZE switches in
our evaluation. To investigate a wider range of environ-
ments, we also constructed a model topology called Entp-
model, which represents a typical enterprise network com-
posed of four full-meshed core switches each of which con-
nects to a tree of twenty one switches. This roughly char-
acterizes a commonly-used topology in building enterprise
networks [22].

Our topology traces were anonymized, and hence lack
information about how many hosts are connected to each
switch. To deal with this, we leveraged CAIDA Skitter
traces [23] to roughly characterize this number for networks
reachable from the Internet. However, the CAIDA skitter
traces form a sample representative of the wide-area, it is
not clear they apply to the smaller-scale networks we model.
Hence for Entp-model and Entp-campus, we assume that
hosts are evenly distributed across switches.

Given a fixed topology, the performance of SEIZE and
Ethernet bridging can vary depending on input traffic pat-
terns. To quantify this variation we repeated each simulation
run 25 times, and plot the average of these runs with confi-
dence intervals. For each run we vary the seed to the simu-
lator, which causes the number of hosts per switch, and the
mapping between hosts and switches, to change. Addition-
ally for Ethernet bridging’s case, we varied spanning trees by
randomly selecting one of the core switches as a root bridge.

5.2 Baseline performance

5.2.1 Stretch

Figure 3a shows the relative latency penalty, or stretch,
of Ethernet and SEIZE within the Entp-model topology. We
measure stretch by dividing the time the packet was in transit
by the delay along the shortest path through the topology.
Ethernet incurs some small stretch because it sends packets
over a spanning tree. We compute Ethernet’s spanning tree
by computing the shortest path from the root bridge to each
switch, using link delay as a metric. When CTF is disabled
(SEIZE REL), stretch is increased by an additional amount.
However, when CTF is enabled (SEIZE CTF), the stretch
penalty nearly disappears. This is because only the first few
packets of a flow must traverse the relay, while the others
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Figure 3: (a) CDF of stretch in Entp-model (b) CDF of stretch in Ap-large (c) Effect of CTF cache timeout in Ap-large.

traverse the shortest path. We identified similar results on
the Entp-campus topology, which is another local network.

Figure 3b shows stretch on the AS 1239 topology (Ap-
large). Interestingly, stretch increases as compared to the
smaller Entp-model topology. This happens because AS
1239 has a larger number of long-distance links, so for-
warding over non-shortest paths via Ethernet’s spanning tree
incurs larger costs. Unfortunately, SEIZE REL increases
this penalty even further. However, using CTF reduces this
penalty to 1 for nearly all packets. We found SEIZE per-
forms similarly on the AS 3967 topology (Ap-small). If
desired, the path localization scheme introduced in Sec-
tion 4.1.2 could be applied to further reduce stretch.

In our experiments, we used CTF with a timeout-based
cache eviction policy with entries evicted after 60 seconds
of unused period. To verify the effect of the timeout setting
on stretch, we varied it from 1 to 60 seconds. As shown in
Figure 3c, CTF performs well across a wide range of timeout
values.

5.2.2 Forwarding table size

Figure 4a shows the amount of state per switch in the
Entp-large topology. Ethernet requires more state than
SEIZE with CTF disabled (SEIZE REL). This happens be-
cause Ethernet stores per-host information entries at almost
every bridge. In a network with s switches and h hosts,
each Ethernet bridge must store an entry for each destina-
tion, resulting in O(sh) state across the network. However
SEIZE requires O(h) state since only the access and relay
switches need to store location information for each destina-
tion. In this particular topology, SEIZE reduces forwarding-
table size by roughly a factor of 22. As shown in Figure 4b,
these gains increase to a factor of 64 in Ap-large because
there are a larger number of switches in that topology. Un-
fortunately, while the use of CTF drastically reduces stretch,
we can see that it increases SEIZE’s average forwarding-
table size by roughly a factor of 1.5. However, even with
this penalty, SEIZE reduces table size compared with Eth-
ernet by roughly a factor of 16. This value increases to a
factor of 41 in Ap-large. If desired, network administrators
can vary the amount of space allocated to cache cut-through
forwarding entries, so as to trade off stretch and space re-
quirements. Finally, Figure 3c shows that the increase of

table size due to a larger CTF timeout is modest.

5.2.3 Control overhead

Figure 4c shows the amount of control overhead generated
by SEIZE and Ethernet. We compute this value by comput-
ing the total number of control messages — unnecessarily
flooded packets in the case of Ethernet bridging — over all
links in the topology during the experiment, then dividing
by the number of switches, then dividing by the duration
of the trace. SEIZE significantly reduces control overhead
as compared to Ethernet. This happens because Ethernet
generates network-wide floods for the significant majority
of packets, while SEIZE leverages unicasts to disseminate
host location. Here we again observe that use of CTF de-
grades performance slightly. Namely, SEIZE CTF increases
control overhead roughly from 0.1 to 1 packet per second
as compared to SEIZE REL in a network containing 30K
hosts. However, SEIZE CTF’s overhead still remains a fac-
tor of 1000 less than that of Ethernet. As shown in Figure 3c,
SEIZE CTF retains low control overhead as long as the CTF
cache timeout is not set unreasonably small.

5.3 Sensitivity to network dynamics

5.3.1 Effect of network instability

Figure 5a shows performance during switch failures.
Here, we cause switches to fail randomly, with failure inter-
arrival times drawn from a Pareto distribution with α = 2.0,
with varying mean values. Switch recovery interarrival time
is also drawn from the same distribution, with an average of
30 seconds. We found SEIZE is able to deliver a larger frac-
tion of packets than Ethernet. This happens because SEIZE
is able to use all links in the topology to forward packets,
while Ethernet can only forward over a spanning tree. Addi-
tionally, after a switch failure, Ethernet must recompute this
tree, which causes outages until the process completes. We
also found that use of CTF improved availability. This is
because traffic forwarded through a relay shares fate with a
larger number of switches, including the relay itself.

5.3.2 Effect of host mobility

To investigate the effect of host mobility on SEIZE perfor-
mance, we randomly move hosts between access switches.
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Figure 4: (a) Table size increase in Entp-model (b) Table size increase in Ap-large (c) Control overhead in Ap-large.
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Figure 5: Sensitivity to network dynamics: Effect of (a) switch failure in Entp-model (b) mobility in Entp-campus.

We drew mobility times from a Pareto distribution with
α = 2.0 and varying interarrival times. For high mobil-
ity rates, we found SEIZE’s loss rate was lower than that
of Ethernet, as shown in Figure 5b. This happens because
when a host moves in an Ethernet, it takes some time for
switches to evict the stale location information, and re-learn
the host’s new location. Although some Ethernet implemen-
tations flood when a host moves, this increases control over-
head. On the other hand, SEIZE provides both low loss and
control overhead by relying on unicasts to update host state.

6. Implementation
Our simulation results indicate that SEIZE performs effi-

ciently on several network topologies. To verify SEIZE’s
performance and practicality through a real deployment,
we implemented a prototype SEIZE switch using two
open-source routing software platforms: Click [24] and
XORP [25]. Figure 6 shows the overall structure of our
implementation. SEIZE’s control plane is divided into two
functional modules: i) maintaining the switch-level topol-
ogy, and ii) managing end-host information. We used XORP
to realize the first functional module, and used Click to
implement the second. Finally, we also extended Click
to implement SEIZE’s data-plane logic, including consis-
tent hashing and packet encapsulation. Our control and
data plane modifications to Click are implemented as the
SeizeSwitch element shown in Figure 6.

6.1 Maintaining switch-topology with XORP

Figure 6: Implementation architecture.

XORP is an extensible open-source software router [25],
which consists of several routing protocols and management
functions. As previously mentioned, SEIZE relies on a link-
state protocol to provide reachability between switches. We
configured XORP’s OSPF protocol daemon to provide this
function. In particular, we run a XORP OSPF process which
contains a complete switch-level network map that is pop-
ulated by exchanging LSAs with other switches. Based
on this network map, the XORP RIBD (Routing Informa-
tion Base Daemon) runs Dijkstra’s shortest-path algorithm
to construct its own routing table. Once this routing table
is created, RIBD installs the table into the forwarding plane
process, which we implement with user-level Click. Click
uses this finalized version of routing table (i.e., a forwarding
table) to determine a next hop. The FEA (Forwarding En-
gine Abstraction) in XORP handles inter-process communi-
cation between XORP and Click.

However, XORP’s OSPF implementation assumes each
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network node (router or switch) is identified by an IP ad-
dress, as opposed to a MAC address. Because of this, our
prototype does not automatically select its identifier from
the MAC addresses assigned its interfaces. Instead, each
switch is assigned a unique IP address on its loop-back in-
terface, and advertises that address via a router LSA. Hence,
when switches forward data packets across multiple hops
(i.e., from ingress to egress or relay), they use Ethernet-in-IP
encapsulation. We later plan to extend our implementation
to perform Ethernet-in-Ethernet encapsulation for improved
efficiency and simplicity. We note that other link-state pro-
tocols such as IS-IS [26] work with non-IP interfaces, but
XORP does not currently support these protocols.

When our prototype switch is first started up, a script is
run to detect the status of each network interface card. It
then executes a simple neighbor-discovery protocol to de-
termine which interfaces are connected to other switches,
and over each of these interfaces it initiates an OSPF session
and exchange LSAs. The link weight associated with the
OSPF adjacency is by default set to be the link latency. If
desired, another metric may be used. Meanwhile, the switch
begins to receive packets through switch-to-host interfaces
and learns end-hosts’ information. All the processes consti-
tuting a SEIZE switch are spawned and managed by a single
master process.

6.2 Building SEIZE control plane in Click
As previously mentioned, SEIZE employs several control

messages to handle host information, including host regis-
tration, location notification for CTF, and host re-registration
due to topology changes. We implemented this functional-
ity as part of the Click process because most SEIZE control
messages are triggered by data packets except the host re-
registration due to topology changes. Specifically, we made
two changes to Click.

First, in order to forward packets, the SEIZE switch must
know the location of remote hosts. To deal with this, we
implemented the HostLocTable module. The HostLocTable
is populated with three kinds of host information: (a) the
outbound port for every local host; (b) the locator (access
switch’s id) for every remote host for which this switch is a
relay; and (c) the locator for every remote host cached via
CTF. An insertion or deletion on this table takes place when
a new host arrives, an existing host leaves, a host is reg-
istered with or deregistered, or cached host information is
evicted from the switch. For each insertion or deletion of
a locally-attached host, the SeizeSwitch generates a corre-
sponding registration or deregistration message.

Second, we modified Click to monitor changes on the
link-state map maintained by XORP, and to send registra-
tion messages when a host must change to a different relay.
The Click process can handle this by monitoring the for-
warding table that XORP installs/modifies when topology
change occurs. Each entry in this forwarding table is a map
between a switch’s identifier s and the next hop switch n that
should be used to reach s. Whenever the table changes, Click
populates a consistent hash ring with every switch identifier

Figure 7: Packet processing flowchart.

found in the table. This hash ring allows for the Click data
plane to perform consistent hashing to map a host to its re-
lay. When topology change occurs and it alters the num-
ber of unique switch identifiers in this forwarding table, the
SeizeSwitch first modifies the hash ring by adding/deleting
the switch on the ring. If this change to the ring triggers
hosts re-registration, the SeizeSwitch issues corresponding
registration messages. For host registration and notification,
we implemented a simple acknowledgment-based protocol
to ensure reliable delivery.

6.3 Building SEIZE data plane in Click
The way the SEIZE data plane handles each packet is il-

lustrated in Figure 7. Packet processing utilizes the three
data structures we mentioned above: the forwarding table to
determine a next hop, the consistent hash ring to map a host
to a relay, and the HostLocTable to determine host location
information.

The switch first learns an incoming packet’s source MAC
address, and looks up the corresponding entry in Host-
LocTable. If there is no corresponding entry, a new one is
created and stored along with the port on which the packet
was received. Note that only ingress switch performs this
process, because switches should not learn sources from
frames received through switch-to-switch interfaces.

Then the switch looks up the destination MAC address
in the HostLocTable. If the look-up fails, the switch ex-
ecutes the consistent hash function F with the destination
MAC address. It then obtains a corresponding relay switch’s
identifier, encapsulates the packet with that identifier, and
determines the next hop from the forwarding table. IP then
delivers the packet via regular shortest-path forwarding. On
the other hand, if the look-up succeeds, there are three pos-
sibilities: The switch knows the destination host because
(i) the host is directly connected to it, (ii) the host is reg-
istered with the switch for relaying, or (iii) the host’s lo-
cation is cached at the switch due to CTF. In case (i), the
switch simply sends out the packet to a corresponding out-
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put port. In cases (ii) or (iii), the switch encapsulates the
packet with the identifier of the destination’s access switch
contained in the retrieved HostLocTable entry, and deter-
mine the next hop via the forwarding table. Additionally
for (ii), the switch must send a host location notification
message to the ingress for CTF. Note that this host location
resolution procedure takes place only at ingress, relay, and
egress switches. All the other intermediate switches sim-
ply forward packets based on the next-hop information from
their forwarding table. SEIZE switches distinguish encapsu-
lated packets from regular packets via the Protocol ID field
in the IP header. In an implementation using Ethernet-in-
Ethernet encapsulation, the EtherType field in the outer Eth-
ernet header would provide the same functionality.

7. Implementation Results
In this section we report performance results from a de-

ployment of our prototype implementation on Emulab [27].
First, we compare performance with our simulator to val-
idate correctness. Next, we present a set of microbench-
marks to evaluate per-packet processing overheads. Then, to
evaluate dynamics of a SEIZE network, we measure control
overhead and switch state requirements over time. Finally,
we investigate impact of SEIZE on application-level perfor-
mance, through a combination of web benchmarks [28] and
TCP throughput measurements.
Cross-validation: To ensure simulation results collected
in the previous section would roughly characterize perfor-
mance of a real SEIZE deployment, we conducted exper-
iments to cross-validate the simulator and implementation.
We did this by configuring the simulator and implemen-
tation with identical traffic traces, topology, and protocol
parameters. We then measured stretch, control overhead,
and forwarding-table size for both Ethernet and SEIZE. We
found that average stretch, control overhead, and table size
from implementation results were within 3% of the values
given by the simulator. In general, we found these metrics
exhibit similar trends under all the topologies and workloads
we tried.
Packet processing overhead: Table 1 shows the per-packet
processing time for both SEIZE and Ethernet. We measure
this as the time from when a packet enters the switch’s in-
bound queue, to the time it departs. We break this time down
into the major components shown in Figure 7. From the ta-
ble, we can see that ingress and relay switches in SEIZE
require more processing time than Ethernet. This happens
because SEIZE has to encapsulate a packet and then look up
the forwarding table with the outer header. When a desti-
nation location is unknown at ingresses, our implementation
also requires to run a particularly heavyweight MD5 hash.
We chose MD5 only because it was widely used. Since
SEIZE does not rely on MD5’s security properties, we plan
to replace it with one of the much more efficient software
hashing algorithms or hardware implementations as part of
future work. However, SEIZE requires less packet process-
ing overhead than Ethernet at other hops on a path except

an ingress (and a relay when CTF is disabled). Because
of this, we found that SEIZE with CTF requires less over-
all processing time on paths longer than 3.03 switch-level
hops. As a comparison point, we found the average number
of switch-level hops between hosts in a real university cam-
pus network (Entp-campus) to be over 4 for the vast majority
of host pairs.

Table 1: Per-packet processing time in micro-sec.

learn look-up chash encap look-up Total
src host tbl fwrd tbl

SEIZE-ingress 0.61 0.63 2.22 0.67 0.62 4.75
(dst loc unknown)

SEIZE-ingress 0.61 0.63 - 0.67 0.62 2.53
(dst loc known)

SEIZE-relay - 0.63 - 0.67 0.62 1.92
SEIZE-egress - 0.63 - - - 0.63
SEIZE-others - - - - 0.67 0.67

Ethernet 0.63 0.64 - - - 1.27

Effect of network dynamics: To evaluate the dynamics
of SEIZE and Ethernet, we instrumented the switch’s in-
ternal data structures to periodically measure performance
information. Figures 8a and 8b show control overhead
and forwarding-table size, respectively, measured over one-
second intervals. We can see that SEIZE has much lower
control overhead when the systems are first started up. How-
ever, SEIZE’s performance advantages do not come from
cold-start effects, as it retains lower control overhead even
after the system converges. As a side note, the forwarding-
table size in Ethernet is not drastically larger than that of
SEIZE in this experiment because we are running on a small
four node topology. However, since the topology has ten
links (including links to hosts), Ethernet’s control overhead
remains substantially higher. Finally, we investigate per-
formance by injecting host scanning attacks [5]. Figure 8c
shows control overhead where a single host scans 5000 ran-
dom destination hosts that do not exist in the network, at 300
and 600 seconds into the trace. In Ethernet, every scanning
packet sent to a destination generates a network-wide flood
unless the destination’s MAC address is already cached.
This results in increased control overhead when hosts scan.
In SEIZE, each scan generates one unicast packet to the relay
for every scanned host. The SEIZE relay then forwards the
packet to the destination. If the scan targets destinations that
do not exist in the network, the packet would be discarded at
the relay.
Impact on application-level performance: We evaluated
SEIZE’s effect on application traffic by performing web per-
formance benchmarks. Here, we configure a topology con-
sisting of four switches connected in a full mesh via links
with 10 to 20 msec of delays. We place four hosts h0, h1,
h2, h3, one at each of the four switches. We then use the
Flexiclient web benchmark tool [28] to generate a collection
of test files and request patterns, and measure the amount of
time required for hosts to download these files using both
SEIZE and Ethernet. Table 2 shows this time with three file
sizes ranging from 5KB to 500KB over 50 trials. At first,
one might think that SEIZE with CTF may increase down-
load latency, as the first few packets may traverse a differ-
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Figure 8: Effect of network dynamics: (a) table size (b) control overhead (c) control overhead during a scanning attack.

Figure 9: Fail-over performance: Impact on a TCP flow by a: (a) switch
failure, (b) switch recovery (before optimization), (c) switch recovery
(after optimization).
ent path from later packets, possibly resulting in reordering.
However, as can be seen from the table, this effect is negli-
gible, and has little effect of download time. Note that the
performance of Ethernet in the case of h1 and h3 is worse
than that of SEIZE because traffic between h0 and h1/h3 is
forwarded through the root bridge h2.

Table 2: Web performance benchmarks, download time per file [sec].

SEIZE-CTF SEIZE-REL Ethernet
h1 h2 h3 h1 h2 h3 h1 h2 h3

5KB 0.07 0.10 0.06 0.07 0.11 0.06 0.15 0.09 0.10
50KB 0.15 0.22 0.11 0.15 0.26 0.11 0.35 0.21 0.23
500KB 0.57 0.82 0.42 0.57 0.99 0.42 1.36 0.81 0.88

Fail-over performance: Figure 9 shows the effect of
switch failure on application level performance. Here we
disable CTF, induce failures of the relay switch, and measure
throughput of TCP when all packets are forwarded through
the relay. We set the OSPF hello interval to 1 second, and
dead interval to 3 seconds. After the relay fails, there is some
convergence delay before packets are sent via the new relay.
We found that SEIZE restores connectivity quickly, typically
on the order of several hundred milliseconds after the dead
interval. This allows TCP to recover within several seconds
in total, as shown in Figure 9a. We found performance dur-
ing failures could be improved by having the access switch
register hosts with the next switch along the ring in advance,
avoiding an additional re-registration delay. When a switch
is repaired, there is also a transient outage while routes move
back over to the new switch. Figure 9b shows TCP can re-

cover in several seconds from switch repairs as well. We
found performance during recoveries could be improved by
continuing to forward packets through the old relay for a
grace period, as shown in Figure 9c. In general, optimizing
an Ethernet network to attain low convergence delay exposes
the network to a high chance of broadcast storms, making it
nearly impossible to realize in a large network.

8. Related Work
There are two main bodies of related work. First, there has

been work on improving efficiency of network forwarding.
SmartBridges [29] and RBridges [14] leverage a link-state
protocol to disseminate information about bridge connectiv-
ity. This eliminates the need to maintain a spanning tree and
improves forwarding paths. CMU-Ethernet [8] also lever-
ages link-state, but replaces per-host broadcasting by placing
host information in LSAs. Viking [6] used multiple spanning
trees for faster fault recovery, which can be dynamically ad-
justed to conform to changing load. However, all these four
approaches rely on network-wide floods to disseminate in-
formation about hosts, which may interfere with scaling to
large networks.

Second, there has been work on using hashing to sup-
port flat addressing. Ray et al.’s resolution scheme [30] was
done in parallel with ours [1] and also eliminates network-
wide broadcast with a hash-based mechanism. However, it
continues to rely on a spanning tree for forwarding, which
may lead to imbalanced load and suboptimal paths. In addi-
tion, VRR [31], ROFL [32] and UIP [33] rely on building a
network-layer Distributed Hash Table (DHT), and using the
DHT structure to route. Of these, VRR primarily targeted
wireless ad-hoc networks, and UIP targeted NAT bridging,
and ROFL extended these techniques to operate at the net-
work layer. ROFL faces scaling and performance issues in
large networks, primarily in terms of router state require-
ments and stretch [32]. Moreover, SEIZE does not require
nodes to consistently manage a multi-hop DHT structure,
which may simplify some aspects of troubleshooting and
engineering traffic. Instead, SEIZE leverages the network-
wide view given by a link-state routing protocol to provide a
one-hop DHT [3]. This ensures switches can process resolu-
tion queries via a single look-up operation on the hash space,
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which in turn allows to provide much stronger bounds on la-
tency as compared to protocols like ROFL.

9. Conclusion
Operators today face significant challenges in managing

and configuring large networks. Many of these problems
arise from the complexity of administering IP networks. Tra-
ditional Ethernet is not a viable alternative (except perhaps
in small LANs) due to poor scaling and inefficient path se-
lection.

We believe that SEIZE takes an important first step to-
wards solving these problems, by providing scalable self-
configuring routing. SEIZE provides effective protocols to
discover neighbors and operates efficiently with its default
parameter settings. Hence, in the simplest case, network
administrators do not need to modify any protocol settings.
However, SEIZE also provides add-ons for administrators
who wish to customize network operation.

Experiments with our initial prototype implementation
show that SEIZE provides efficient routing with low latency,
quickly recovers after failures, and handles host mobility and
network churn with low control overhead.

Moving forward, we are currently extending our imple-
mentation into kernel-level Click, with the goal to im-
prove packet processing speeds and reaction time to network
changes. In addition, we are interested in investigating the
deployability of SEIZE. We are also interested in ramifi-
cations of SEIZE on switch architectures, and how to de-
sign switch hardware to efficiently support SEIZE. Finally,
to ensure deployability, this paper assumes Ethernet stacks
at end hosts are not modified. It would be interesting to
consider what performance optimizations are possible if end
host software can be changed.
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