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Abstract

A transient fault is a temporary, one-time event that causes a change in state or erroneous signal
transfer in a digital circuit. These faults do not cause permanent damage, but when they strike con-
ventional processors, they may result in incorrect program execution. While detecting and correcting
faults in first-order data may be accomplished relatively easily by adding redundancy, protecting against
faults during control flow transfers is substantially more difficult. This paper analyzes the problem of
maintaining the control-flow integrity of a program in the face of transient faults from a formal theo-
retical perspective. More specifically, we augment the operational semantics of an idealized assembly
language with additional rules that model erroneous control-flow transfers. Next, we explain a strategy
for detecting control-flow errors based on previous work by Oh [11] and Reis [16]. In order to reason
about the correctness of the strategy relative to our fault model, we develop a new assembly-level type
system designed to guarantee that any control flow transfer to an incorrect block will be caught before
control leaves that block. The key technical result of the paper is a rigorous proof of this fundamental
control-flow property for well-typed programs. We also prove that this new typed assembly language
is sufficiently expressive to serve as a target for type-preserving compilation from a simple language of
while programs.

1 Introduction

In recent decades, microprocessor performance has been increasing exponentially, due in large part to smaller
and faster transistors. While such transistors yield performance enhancements, their lower threshold voltages
and tighter noise margins make them less reliable [3, 19, 10], rendering processors that use them more
susceptible to transient faults. Transient faults or soft errors are often caused by external events, such as
an energetic particle striking silicon atoms within a chip. These faults do not cause permanent damage, but
may result in incorrect program execution by altering signal transfers or stored values.

While transient faults are currently rare, they have already been noticed in commodity processors and
have caused significant failures. In 2000, Sun Microsystems acknowledged that cosmic rays interfered with
cache memories and caused crashes in server systems at major customer sites, including America Online,
eBay, and dozens of others [4]. More recently at the Los Alamos Neutron Science Center, Hewlett Packard
acknowledged their AlphaServer ES45 supercomputer was frequently crashing due to soft errors [7].

More importantly, as each processor generation increases clock rates, lowers voltages and increases the
density of transistors, transient faults are more likely to occur. Figure 1, which is taken from work by Shenkar
Borkar [5], illustrates the current and projected future trends in transient fault rates relative to chip feature
size. With current trends suggesting fault rates are increasing at approximately 8% per chip generation, we
may see a 100% rise in transient faults in just seven years.

In order to counter the future threat of transient faults, researchers from industry and academia have
been searching for solutions to the reliability problem in both hardware and software. Broadly speaking, with
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Figure 1: Transient Fault Rates vs. Feature Size

sufficient hardware resources, hardware-only solutions are more efficient for a single, fixed reliability policy,
but software-only solutions are more flexible and less costly. In terms of flexibility, software-only solutions
may be deployed immediately on current hardware that already exists in the field, simply by recompiling the
application in question. Consequently, if Los Alamos Labs is repeatedly suffering from soft errors because
of insufficient protection in their current supercomputing facilities, software solutions offer the hope of an
effective way to solve their problem right now. In terms of cost-effectiveness, recent studies have shown that
software techniques for fault tolerance often add approximately 35% overhead [16] to the computation with
no additional hardware cost, whereas a standard double- or triple- modular redundancy technique will add
100% or 200% to the hardware cost, with some additional performance overhead for communication between
replicas. Hence, depending upon where a given application sits in the cost-performance-reliability trade-off
space, software, hardware or some mix of the two may be the preferred solution.

Unfortunately, devising software solutions to the problem of transient faults, and making sure they are
correct, is an extremely difficult task. Just as the many possible interleavings of threads make it difficult to
reason about the properties of concurrent programs, the many possible scenarios in which transient faults
can arise make it difficult to reason about the properties of faulty programs. Moreover, just as conventional
testing is often an ineffective way to uncover bugs in concurrent programs, testing is likely to be an ineffective
way to uncover reliability errors in possibly faulty programs.

Faced with these challenges, we and other researchers at Princeton have recently begun to develop type-
theoretic techniques for reasoning about software in the presence of transient faults. In our first effort [21], we
devised a lambda calculus called λzap to serve as a highly idealized model for unreliable computations. The
operational semantics of the calculus specify that any value may suddenly be corrupted during execution.
However, programs are able to replicate computations and use atomic voting operations to check replicas
against one another to detect and recover from transient faults. A type system for λzap guarantees that any
well-typed program is fault tolerant. In our second piece of work [13], we studied fault tolerance in the more
realistic setting of assembly language with specialized hardware instructions to aid detection of faults. Once
again we devised a type system (this time called TALFT) and rigorously proved that it guarantees a strong
fault tolerance property for all well-typed programs. From a theoretical perspective, these type systems
codify formal reasoning techniques that allow programmers to prove strong reliability properties of their
programs. Equally importantly, from a practical perspective, these type systems can be implemented and
used to check the correctness of compiler outputs. Using a type checker to verify these reliability properties,
where possible, is vastly superior to conventional testing as the type checker gives perfect coverage relative
to the fault model whereas any test suite will be highly incomplete.

Despite the progress made to date, this prior work skirts the issue of how to reason about code that
not only incurs faults to first-order data, but also may go wrong during a control flow transfer. The faulty
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lambda calculus λzap avoids the issue altogether by assuming the existence of high-level atomic operations
to simultaneously check for errors, recover and jump to a new control flow point. The fault-tolerant typed
assembly language TALFT admits the possibility of faults to the program counter, but requires a highly
specialized instruction set and additional nonstandard hardware state to detect those faults.

Surprisingly, however, researchers [11, 16] have developed techniques for detecting certain classes of
control-flow errors entirely in software. As mentioned above, software techniques have an advantage over
hardware in that they may be deployed selectively and immediately at low cost to solve problems that arise
in the field. Unfortunately, none of these new techniques have been proven sound. Oh et al. [11] evaluate the
effectiveness of their techniques empirically, showing the number of harmful faults decreases by an order of
magnitude, but give no specification of exactly which faults they attempt or do not attempt to detect. Reis
et al. [16] lay out in careful English exactly which faults they believe their system defends against and where
they believe the vulnerabilities remain. However, they give no mathematical specification of the semantics
of their target machine, their fault model or their desired properties, and they make no attempt to prove
that their claims are correct.

Though these techniques are promising, many theoretical questions remain. In particular, is it possible
to characterize the effectiveness of these techniques analytically as opposed empirically? In other words, can
we prove that such techniques are sound with respect to an interesting and non-trivial, though incomplete,
fault model? One of the key benefits of such an analysis is that it would guarantee an important fragment
of the problem has been thoroughly solved and thereby free researchers to study auxiliary instrumentation
techniques that address the remaining incompleteness. Perhaps more importantly, the formal fault model
would define an important hardware/software interface: The software has been proven to handle faults that
lie within the model; future hardware designers need only provide mechanisms to catch those faults that lie
outside the model. While this latter point may appear of little importance since TALFT already demonstrates
how to design a sound hybrid hardware-software protection system, the key difference is that such results
would show how to shift a substantial portion of the control-flow checking burden from the hardware to
software. This may lead to much simpler hardware designs as well as the opportunity to trade performance
for reliability at compile time as opposed to hardware design time.

In this paper we attack these theoretical questions following a similar strategy to our earlier work. First,
we define an incomplete, yet simple, elegant and non-trivial control-flow fault model — one in which faults
can cause jump instructions and conditional branches to transfer control to the beginning of any program
block. Next, we develop a type system that guarantees a strong fault tolerance property relative to this
fault model. We have proven our type system is sound and also have demonstrated that it is sufficiently
expressive that we can compile a classic while programs into well-typed programs in the language.

To summarize, there are three main contributions of this research.

• We have defined the first procedure (a type system) for verification of assembly code in the presence
of transient control-flow faults. From a technical perspective, the type system introduces a novel way
of classifying the reliability properties of program values and entire machine states, generalizing the
earlier “color systems” used by λzap and TALFT . The type system is also of interest for the way it
uses a collection of abstract types to track the state of the fault tolerance protocol.

• We have formulated a powerful fault-tolerance theorem for our type system and have developed the
proof techniques that allow us to validate it. The key technical challenge we overcome is the fact
that after a control-flow fault has occurred, it is impossible to count on almost any standard program
invariant. So, how can one carry out a proof of type preservation under such circumstances?

• We have demonstrated that our type system is suitably expressive by showing how to compile a simple
language of while programs into well-typed assembly language. We prove our translation is type-
preserving.

The rest of the paper explains the problem of transient control flow faults and our techniques for reasoning
about them in more detail. First, Section 2 gives additional intuition about the problem and solution by
explaining a simple assembly-language protocol for detecting control-flow errors. This protocol is a simplified
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version of the protocols used by Oh [11] and Reis [16]. Section 3 begins the more formal work by defining the
syntax and operational semantics of an idealized assembly language. It also shows how to model erroneous
control-flow transfers by adding special rules to the standard operational semantics. Section 4 defines the type
system that guarantees that assembly code follows the simple protocol outlined earlier in Section 2. This type
system, particularly the special value and machine state typing rules, codify the major invariants needed to
prove type safety and the subsequent strong reliability properties. Section 5 sketches the major components
of the fault-tolerance proof. Section 6 shows that our typed assembly language is sufficiently expressive that
it is possible to translate while programs into well-typed, fault-tolerant code. Finally, Section 7 discusses
further related work and Section 8 concludes. Throughout the paper we provide proof sketches of the key
lemmas and theorems. The complete proofs are provided in an online appendix [14].

2 Informal Overview

When a transient fault causes the actual sequence of control flow blocks visited by a program to deviate
from the expected sequence, we say a control-flow error has occurred. In this paper, control-flow errors arise
in three different ways: (1) there may be a fault to the target address of a jump instruction; (2) there may
be a fault to the target address of a conditional jump instruction; or (3) there may be a fault to the boolean
used to decide whether to jump or fall through a conditional. Such faults may occur immediately prior to
attempting the control-flow transfer or at any other time during the computation. However, whenever a
control-flow operation is executed, we assume execution is either transferred to the beginning of some valid
block, or to some invalid block or illegal instruction. In the latter case, we assume the hardware immediately
catches an attempt to execute the illegal instruction. We do not consider the possibility that a fault causes
a control flow transfer to a legal instruction in the middle of some valid block.

As is standard, we adhere to the Single Event Upset model [15, 17], which states that only one fault
may occur during an execution. However, even though just one fault occurs, faulty values may be copied,
propagated and used in any way an ordinary value may be used. Hence, a single fault can lead to arbitrarily
many corrupted values if not caught soon after it occurs.

The goal of this work is to develop and prove correct a software protocol that guarantees such control-
flow errors can never go undetected. The central challenge in this endeavor is to overcome the problem that
no single value can ever be trusted to be correct — a transient fault may strike any value in any register.
Consequently, as is usual in fault tolerance, the solution is to avoid relying on any single value by replicating
the critical state and checking replicas against one another. In this case, the critical state is the value of
the program counter. Checking the correctness of a control-flow transfer involves creating a replica of the
intended control-flow destination and then checking the replica against the real program counter to detect
any difference.

To be more specific, compiled code creates the replica prior to any control-flow transfer by moving the
intended destination into a designated register. We refer to this register as the intentions register ri. This
intentions register is part of the global “calling convention” for fault-tolerant control flow transfers. We fix
the register so that all jump targets know where to find the intended destination, even when there has been
a control-flow fault.

As an example, to jump to address L2, one might use the following code sequence. In this code, we leave
ellipsis in between instructions to emphasize our system allows flexible scheduling of instructions — ordinary
instructions may be interleaved with the instructions used to guarantee fault tolerance.

L1: ...

movi ri, L2

...

movi r2, L2

...

jmp r2

4



Since the intentions register ri plays a special role in the protocol for detecting control-flow errors, we will
need to type check the move instruction that loads this register in a special way. To designate the move as
special, we henceforth write it intend L2 rather than movi ri, L2 as in the following example code.

L1: ...

intend L2

...

movi r2, L2

...

jmp r2

If the intentions register has been set properly prior to all jump instructions, the jump targets are able
to catch control flow errors. To be specific, all jump targets should be instrumented with the following code.

Lk: movi r2, Lk

...

sub r2, r2, ri

...

brz r2, lrecover

...

Here, the current block address Lk is loaded into some register r2. That register is then compared with
the contents of ri and if there is any difference, control is transferred to lrecover, an address containing
recovery code.1 Once again, since the branch to the recovery code plays a special role in the fault-tolerance
protocol, we give it the special syntax recovernz r2. Thus, our detection code will henceforth be written
as follows.

L2: movi r2, L2

...

sub r2, r2, ri

...

recovernz r2

...

As an example of how a transient fault might be caught using our protocol, suppose register r2 is
corrupted just prior to attempting to execute the jump to L2 in block L1. Upon arrival at some erroneous
control flow block, say L3, the intended destination L2 remains safely untouched in register ri, though,
unnervingly, all other program invariants may be disrupted. The target code compares the contents of ri
(i.e., L2) with L3, which it loaded into r2 after arriving at the current block. It detects a difference and
jumps to the recovery code.

One must also consider what happens if faults strike at different times or in different places. For instance,
the jump target might have been corrupted much earlier than we suggested above, perhaps just after being
initially loaded into r2, instead of just prior to the jump. Will that make a difference? In this case, no.
Likewise, rimight be corrupted, either before or after jumping. In this case, we reach the correct destination,
but it appears as though there was a fault because ri differs from the current block label (assuming the
fault occurs prior to the subtraction). Unable to tell the difference between a fault in the intentions register
and a fault in the control-flow transfer itself, we jump to recovery code.2 A number of other scenarios must
also be analyzed — in order to have confidence in the solution, one must do so in a principled, disciplined
fashion.

1Since recovery is a secondary issue to detection, we do not consider it in this paper.
2Adding a third redundant piece of state would make it possible to differentiate between a real control-flow error and a fault

to ri. It would also make recovery relatively easy. However, we content ourselves with a relatively simple fault-detection-only

scheme in this paper.
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It is important to observe that similar, but subtly different code sequences do not adequately protect
against faults. In particular, optimizations like copy propagation, common subexpression elimination and
some code motion transformations, are no longer semantics-preserving in the context of transient faults. For
instance, the following simple change to the way block L1 was written above leads to a vulnerability.

L1: movi r2, L2 (*)

...

movi ri, r2 (**)

...

jmp r2

Here, a single transient fault to r2 anywhere between execution of instructions (*) and (**) results in
an uncaught control-flow fault as both the jump target and the intentions register will simultaneously be
incorrect.

Likewise, the code motion transformation illustrated below shifts the move from a target block into the
jumping block and creates a vulnerability.

L1: movi r2, L2

intend L2

movi r3, L2

jmp r2

Lk: sub r3, r3, ri (***)

recovernz r3

...

Above, a fault to r2 causes a control-flow error, but testing r3 against ri at line (***) will not help detect
the fault. The conclusions to draw from these examples are that the correctness properties of this code
are indeed subtle and that verifying fault tolerance properties after the compiler has completed its suite of
performance optimizations may help detect errors in code generation.

Conditional Branches. The protocol for handling conditional branches is slightly more involved than the
case for jumps, but follows a similar pattern. We begin by assuming that the condition for the jump is held
in registers r4 and r4’. These two registers must be independent replicas of one another. In other words, in
the absence of faults, they should contain the same boolean value, and moreover, a fault to one should have
no impact on the value of the other. Given this assumption (which will be verified by our type system), the
following code sequence sets up a conditional branch, which may fall through to L2 or may jump to L3. The
code uses a conditional branch brz r4, r3, which jumps to r3 if r4 is zero and otherwise falls through to
L2. It also uses a conditional move cmovz r4’, ri, r3’, which moves the contents of r3’ into ri if r4’ is
zero, and otherwise does nothing. 3

L1: ...

// assumes r4 and r4’ are independent replicas

...

movi r3, L3

movi r3’, L3

...

intend L2

cmovz r4’, ri, r3’

3Many architectures including the IA-32 following the Pentium Pro, the Sparc V-9 and the IA-64 have conditional moves.

If the architecture does not have a a conditional move, a conditional branch and a move instruction can be used instead, but

this branch will not be protected against faults.
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colors c ::= G | B | O
colored values v ::= c n

code memory C ::= · | C, `→ b

registers r ::= ri | r1 | . . . | rn

register file R ::= · | R, r → v

history h ::= `1, . . . , `n

instructions i ::= movi rd v | sub rd rs rs

| intend rt | intendz rz rt

| recovernz rz

blocks b ::= i; b | jmp rt | brz rz rt

state Σ ::= (C, h,R, b)
final states F ::= Σ | recover(h) | hwerror(h)

Figure 2: Machine State Syntax.

brz r4, r3

L2: ...

...

L3: ...

Again, to notate the special role of ri and simplify the presentation, we will henceforth write the conditional
move cmovz r4’, ri, r3’ as intendz r4’, r3’. Intuitively, the intend instruction unconditionally sets
the intentions register, whereas the intendz instruction conditionally sets the intentions register. The error-
detection code in blocks labeled L2 and L3 is identical to the error-detection code discussed earlier for jumps,
as it must be.

Summary With just a few, well-thought-through instructions, it is possible to create a redundant copy
of the intended destination of any control flow transfer prior to initiating the transfer itself. Moreover, at
any control-flow target, it is possible to use that redundant copy to check that code has actually arrived at
the proper place. However, as our examples illustrated, it is also easy to make slight errors in the process.
In addition, since transient faults can occur at so many different places in the protocol and influence so
many different bits of state, one needs proof to believe such a protocol will work. Hence, in the following
sections, we make the machine’s operational semantics and fault model precise and develop a sound type
system strong enough to verify that the “good” instruction sequences we have discussed in this section are
indeed fault tolerant.

3 The Control-Flow Machine

For clarity and elegance, we will work with a minimal assembly instruction set involving move (movi),
subtraction (sub), jump (jmp) and conditional branch if zero (brz) instructions as well as the special macros
intend, intendz and recovernz.4 Instruction operands include constant values v and registers r. In the
previous section, values were written unannotated, but from this point forward we annotate every value with
a color (either green G , blue B or orange O). These colors have no operational significance, but they play

4The examples in the previous section assumed intend took a constant argument, whereas our calculus specifies it takes a

register argument. If the reader find this disturbing, the examples can easily be rewritten to insert a move instruction prior to

the intend. Alternatively, with little work, we could add a constant-argument intend instruction to the calculus.
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a special role in the type system and proof of correctness. The only kind of value is an integer. In general,
meta-variable n ranges over integers, but when we wish to emphasize that an integer will be used as an
address, we use the meta-variable `.

Instructions are grouped together in code blocks b. These blocks are always terminated by either a jump
or a conditional branch instruction. Code memory C is a partial map from addresses to valid code blocks b.
Addresses are ordered, and we use the notation `+1 to refer to the address of the block following the block
at `. If a block at ` ends with a conditional branch, we assume ` + 1 inhabits the domain of C — in other
words, conditional branches always have a block to fall through to.

The register file R is a mapping from registers to the colored values they contain. The registers include
the intentions register ri and a number of general-purpose registers r1 through rn. We use the notation R(r)
to denote the contents of r in R. We use the notation R[r 7→ v] to denote a new register file R′ created by
updating R so it maps r to v. When we wish to refer to the unannotated integer n as opposed to the colored
value c n in a register r in R, we use the notation Rval(r). Similarly, Rcol(r) refers to the color annotating
the value in r.

An ordinary abstract machine state Σ is a tuple containing code C, history h, register file R and code
block to be executed b. The history h is a sequence of labels. It records the code blocks visited during the
current execution. In addition to ordinary abstract machine states, there are two special “final states.” The
state recover(h) represents a state in which a transient fault has occurred and has been caught. The labels
in history h were visited during the execution. The state hwerror(h) represents a state in which a transient
fault causes transition to an invalid address. Figure 2 summarizes the syntax of the assembly language and
machine states.

3.1 Dynamic Semantics

We model the dynamic semantics of the assembly language using a small step operational semantics. In
general, the single step operational judgments have the form Σ −→k F where k, which is either zero or one,
records the number of faults that occur during the step.

The Fault Model. The most interesting rules in the system are the rules modeling faults. The primary
rule (zap-reg) simply states that the value in any register may be corrupted arbitrarily, though its color tag
(which has no operational significance) remains unchanged.

R(r) = c n

(C, h,R, b) −→1 (C, h,R[r 7→ c n′], b
(zap-reg)

The rule above may fire at any time. In particular, it may fire just prior to execution of a jump (jmp rt) or
a branch (brz rz rt), corrupting the jump target in register rt. Such a fault models a control-flow error. Of
course, it is equally possible that any other register is corrupted.

For uniformity in our fault model, we also consider errors in execution of the recovernz rz instruction.
Recall, this instruction is merely a macro for the conditional branch brz rz `recover. However, since `recover is a
constant, it is unaffected by faults in registers modeled by the zap-reg rule (our other branching instructions
take arguments in registers). To simulate a fault that causes control to jump somewhere other than the
`recover label when the rz register contains a non-zero value, we add the following rules.

Rval(rz) 6= 0

(C, h,R, recovernz rz; b) −→1 (C, h,R,C(`))
(zap-recovernz1)

Rval(rz) 6= 0

(C, h,R, recovernz rz; b) −→1 hwerror(h)
(zap-recovernz2)

The zap-recovernz1 rule expresses the possibility that a fault causes execution to jump to some random
block labeled ` rather than the recovery code block. The zap-recovernz2 rule expresses the possibility that
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(C, h,R, movi rd v; b) −→0 (C, h,R[rd 7→ v], b)
(movi)

v′ = Rcol(ra) (Rval(ra)−Rval(rb))

(C, h,R, sub rd ra rb; b) −→0 (C, h,R[rd 7→ v′], b)
(sub)

(C, h,R, intend rt; b) −→0 (C, h,R[ri 7→ R(rt)], b)
(intend)

Rval(rz) = 0

(C, h,R, intendz rz rt; b) −→0 (C, h,R[ri 7→ R(rt)], b)
(intendz-set)

Rval(rz) 6= 0

(C, h,R, intendz rz rt; b) −→0 (C, h,R, b)
(intendz-unset)

Rval(rz) = 0

(C, h,R, recovernz rz; b) −→0 (C, h,R, b)
(recovernz-ok)

Rval(rz) 6= 0

(C, h,R, recovernz rz; b) −→0 recover(h)
(recovernz-halt)

Rval(rz) = 0 Rval(rt) ∈ Dom(C)

(C, h,R, brz rz rt) −→0 (C, (h,Rval(rt)), R[ri 7→ O Rval(ri)], C(Rval(rt)))
(brz-taken)

Rval(rz) 6= 0 `+1 ∈ Dom(C)

(C, h,R, brz rz rt) −→0 (C, (h, `+1), R[ri 7→ O Rval(ri)], C(`+1))
(brz-untaken)

Rval(rz) = 0 Rval(rt) 6∈ Dom(C)

(C, h,R, brz rz rt) −→0 hwerror(h)
(brz-hw-error)

Rval(rt) ∈ Dom(C)

(C, h,R, jmp rt) −→0 (C, (h,Rval(rt)), R[ri 7→ O Rval(ri)], C(Rval(rt)))
(jmp)

Rval(rt) 6∈ Dom(C)

(C, h,R, jmp rt) −→0 hwerror(h)
(jmp-hw-error)

Figure 3: Operational Semantics.
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Static Expressions
exp kinds κ ::= κint | κhist

exp contexts ∆ ::= · | ∆, x : κ
exps e ::= x | n | e− e | e?e : e
substitutions S ::= · | S, e/x

Types
stage description ρ ::= check | ok | go | goz
basic types τ ::= int | ρ | ∀[∆](Γ, σ)
value types t ::= 〈c, τ, e〉
type option τ opt ::= τ | undef

Context Typing
heap typing Ψ ::= · | Ψ, `→ τ
reg file types Γ ::= · | Γ, r → t
history typing σ ::= ε | x | σ ◦ e

zap tags Z ::= · | c | CF

Figure 4: Typing Syntax.

a fault causes control to jump to an illegal address. Attempted execution of code at this address results in
immediate transition to the final state hwerror(h), where h represents the sequence of blocks visited not
including the illegal address.

Other Operational Rules. All other operational rules are presented in Figure 3. The majority of these
rules are quite unsurprising. For instance, the movi rule implements the move by updating the register file.
Notice that the index on the arrow is “0” indicating no fault occurs during this transition. Naturally, the
intend rule is very similar to movi as intend is just a macro for a move into ri.

Skipping to the bottom of the figure, it is important to notice there are two rules for expressing the
semantics of a jmp rt instruction. The jmp rule fires whenever rt contains the address of a valid block.
Of course, due to a fault earlier in execution, the address in rt may not be the intended destination for
this jump. In addition to transferring control to the new block, this instruction does some bookkeeping.
In particular, it extends the current history with the destination address and it changes the color of ri to
be orange. The latter effect facilitates the proof of correctness and will be explained in further detail in
Section 4. The second rule for jmp semantics fires whenever rt does not contain the address of a valid block.
In this case, there is an attempt to transfer control to an illegal address, which is caught by the hardware.
The rules for conditional branches follow a similar pattern to those for the unconditional jumps.

4 Typing

The design of the type system is based on three main concepts:

• Classifying the reliability properties of values.

• Using abstract types to make sure that the fault tolerance protocol proceeds in the correct order, with
no steps omitted or inappropriate steps inserted.

• Equivalence checking to ensure that redundant values act as proper backups to the original.

The following paragraphs explain the main intuitions behind each concept. Later subsections will give precise
details.
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Classifying the Reliability Properties of Values. Since faults occur completely unpredictably and at
run time, it is not possible for the type system to know which values have incurred faults or to track the
propagation of presumed faulty values precisely. It is not possible to know exactly values may or may not
be trusted. Consequently, as is usual, the type system will have to approximate these properties somehow.
It does so by assigning each value to one of several compile-time “groups” and ensuring that each member
of a group has related reliability properties. As a mnemonic, each group has an associated color c, which
may be either green, blue or orange.

As we saw in Section 2, the protocol for detecting faults in software involves keeping redundant copies
of the values used in control flow transfers and using these to check for correct control flow. We will refer
to the main computation as the green computation, and the redundant copies as the blue (or ”backup”)
computation. Most values either belong to the green group or to the blue group. These two groups have
the property that they are redundant and independent. In other words, a fault in a green value can never
percolate to a blue value and vice versa. Consequently, when corresponding green and blue values are
compared at least one of them must be correct, even when a fault has occurred. This mutual independence
property is ensured by a series of simple checks in the type system that guarantee that green values are not
used to construct blue values and vice versa.

But what if a control-flow fault has occurred? In that case, almost all program invariants are invalidated,
including any properties of either blue or green values. Fortunately, though, the defining characteristic of
orange values is preservation of their properties in just this situation.

There are two general mechanisms by which one can guarantee orange values maintain their expected
properties in the face of a control-flow fault. The first mechanism is to ensure that the orange value in
question is not live across the control-flow transfer: If the value has been constructed in the current block
and does not depend upon values in previous blocks, a control-flow error will not influence its properties.
This first mechanism is used in the checking code at the beginning of each program block. In particular, the
operation that moves a label into a register at the beginning of a block may label its results orange:

Lk: movi r2, Lk // r2 is orange

...

sub r2, r2, ri

...

recovernz r2

...

The second mechanism involves ensuring that every possible control-flow transfer maintains the invariant in
question. If the invariant is true across every control-flow transfer, then it is true no matter where control
winds up. This second mechanism is used to classify the contents of ri as orange across every control-flow
transfer. Just as the type system isolates green values from blue and blue from green, orange is also isolated
from the other two. Again, the purpose is to avoid having a fault in one color influence the others.

While values are classified using colors, entire machine states are classified using a related concept called
zap tags. Intuitively, each zap tag specifies which colors may no longer be trusted. For example, if zap tag
Z is empty (written “·”), then there have been no faults during the computation, and all values, no matter
what their color, satisfy the standard invariants associated with their compile-time type. On the other hand,
if Z is a color c, then there has been a fault to a value colored c and, moreover, the corruption may have
spread to any other value colored c. Consequently, values colored c will not necessarily satisfy any particular
properties associated with their compile-time type.

The final zap tag CF classifies machine states after a control-flow error has occurred. In this case, control
may have transfered somewhere totally unexpected, and so we know nothing about green or blue values.
Fortunately, though, the properties of orange values remain valid.

Figure 5 summarizes the properties that hold under each zap tag while in block `. We say a value is
trusted if it satisfies standard canonical forms properties (e.g., a value with code type is actually a pointer
to valid code). We say a value is untrusted when we cannot guarantee standard canonical forms properties
hold.

11



Zap Tag G values B values O values ` correct
· trusted trusted trusted yes
G untrusted trusted trusted yes
B trusted untrusted trusted yes
O trusted trusted untrusted yes
CF untrusted untrusted trusted no

Figure 5: Properties of colored values and zap tags.

We say a zap tag Z is a subtype of another Z ′, written Z ≤ Z ′, when the values in machine states
classified by Z are more trusted than the values in machine states classified by Z ′. Hence the empty zap tag
is a subtype of all other zap tags, and both B and G zap tags are a subtype of CF .

Typing Protocol Stages. The instructions in each block can be thought of as being divided into three
distinct stages – the checking code, the block body, and the exit code. Each of these stages has its own distinct
invariants. The type of intentions register ri encodes the current stage and ensures that the stages occur in
the correct order. It also guarantees no part of the protocol can be omitted or any inappropriate instruction
added. These stages may be summarized as follows.

1. The checking code compares the intended target with the current location to determine if there has
been a control flow fault. In this region, ri must be colored orange and have basic type check.

2. In the block body, we already know the control flow correctly transferred to this block. At the end of
this sequence, there is some green register that holds the target label for the next control flow transfer
and some blue register that holds the duplicate copy of this label. In the absence of faults, these two
values are equal. In this region, ri must have basic type ok.

3. The exit code sequence sets the intended target and transfers control to the new block. In the exit
code sequence, ri is colored blue and has type go when an intention has been set, and type goz when a
conditional intention has been set. As we saw in Section 3.1, ri is recolored orange during the execution
of the control flow transfer.

For example, consider the example code sequences from Section 2 shown in Figure 6. On entry, each
block first checks that control has reached this block correctly, and sets its intentions before transferring
control to another block.

Testing Value Equivalence. There are many places in the fault tolerance protocol where we require a
blue value to be an independent and redundant copy of a green value. To ensure that blue and green values
are equal in the absence of faults, we characterize them accurately using a language of static expressions.
Moreover, many of the typing rules require that corresponding expressions are equal.

Onward. Now that we have summarized the intuitions behind the main concepts, we will proceed with
the technical details.

4.1 Value Typing

The type of a value is a triple 〈c, τ, e〉. The color c is assigned according to the intuitions expressed in the
previous subsection. A basic type τ is either an integer, a code type, or a special type that indicates the
state of the fault tolerance protocol.

The third component e is a static expression that describes the value in more detail. These expressions
are used to require that blue and green computations compute identical results in the absence of faults.
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L1: movi r1, L1

...

sub r1, r1, ri

...

recovernz r1























checking code

.

.

.







block body

intend L2

...

movi r2, L2

...

jmp r2























exit code

Figure 6: Example: Protocol Stages.

These expressions include variables x, integers n, subtraction e1 − e2 and conditional expressions e1?e2 : e3

which equal e2 when e1 is non-zero and e3 when e1 is zero.
Expression judgments are shown in Figure 7. The kinding judgment ∆ ` e : κ holds when all the free

variables in e are contained in ∆. Expression e has kind κint when it describes an integer and kind κhist

when it describes a history typing. Expression variables x are the only expressions that can have type κhist.
Judgments ∆ ` σ wf, ∆ ` Γ wf, and ∆ ` τ wf hold when all expressions used in these constructs are
well-kinded. The judgment ∆ ` S : ∆′ holds when S provides substitutions for all variables in ∆′, and the
substituted expressions are well-formed in ∆.

The function [[e]] supplies the denotation of the closed static expression e as an integer. The judgments
∆ ` e1 = e2 and ∆ ` e1 6= e2 hold when the relation holds for all substitutions of the variables in ∆.
∆ ` σ1 = σ2 simply extends this relationship to all expressions in the two sequences.

Value Typing Judgment. The value typing judgment has the form ∆;Ψ `Z v : t and is shown in
Figure 8. The context ∆ contains free expression variables, and the heap type Ψ maps integer addresses to
basic types. The zap tag Z characterizes the current state of the machine as explained earlier. Z is always
the empty tag when a user checks a program at compile time. It only takes on other values at run time for
the purposes of the proof of preservation.

The main value typing judgment depends upon an auxiliary judgment with the form Ψ ` n : τ . This
auxiliary judgment allows integer n to be given either a basic int type, a stage description type ρ, or a code
type Ψ(n). If e is equal to n and Ψ ` n : τ , then c n can always be given the type 〈c, τ, e〉. However, if
the zap tag Z is a color c, then all values c n can also be typed using any basic type and any well-formed
expression — such a general rule reflects the fact that we can make no guarantees about such values. When
the zap tag is CF , then any green and blue value can be given any type, including giving green values blue
types and vice versa. In other words, as mentioned earlier, when there has been a control-flow fault, all bets
are off for green and blue values.

Value Subtyping. There is also a subtyping relationship ∆ ` t ≤ t′. This judgment allows type 〈c, τ, e〉 to
be subtype of 〈c, int , e′〉 whenever ∆ ` e = e′. Register File subtyping is a basic extension of value subtyping
that requires every register in the first register file type to be a subtype of the corresponding register in the
second. The subtyping judgment is used to type check control flow transfers.
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∆ ` e : κ

x ∈ Dom(∆)

∆ ` x : ∆(x)
(wf-var)

∆ ` n : κint
(wf-int)

∆ ` e1 : κint ∆ ` e2 : κint

∆ ` e1 − e2 : κint

(wf-sub)
∆ ` e1 : κint ∆ ` e2 : κ ∆ ` e3 : κ

∆ ` e1 ? e2 : e3 : κ
(wf-ifexp)

∆ ` σ wf

∆ ` ε wf
(wf-σ-ε) ∆ ` e : κ

∆ ` σ ◦ e wf
(wf-σ)

∆ ` Γ wf
∀r. Γ(r) = 〈c, τ, e〉 ∧ ∆ ` e : κ

∆ ` Γ wf
(wf-R)

∆ ` τ wf

∆ ` int wf
(wf-int)

∆ ` ρ wf
(wf-ρ)

(∆ ∪∆′) ` Γ′ wf (∆ ∪∆′) ` σ′ wf

∆ ` ∀[∆′](Γ′, σ′) wf
(wf-∀[∆′](Γ′, σ′))

∆ ` S : ∆′

∆ ` · : ·
(subst-emp-t)

∆ ` S : ∆′ ∆ ` e : κ x /∈ (∆ ∪∆′)

∆ ` S, e/x : (∆′, x : κ)
(subst-t)

[[e]]

[[n]] = n
[[e1 − e2]] = [[e1]]− [[e2]]
[[eb ? et : ef ]] = if [[eb]] then [[et]] else [[ef ]]

∆ ` e = e

∆ ` e1 : κint ∆ ` e2 : κint ∀S. · ` S : ∆ =⇒ [[S(e1)]] = [[S(e2)]]

∆ ` e1 = e2
(e-eq)

∆ ` e1 : κint ∆ ` e2 : κint ∀S. · ` S : ∆ =⇒ [[S(e1)]] 6= [[S(e2)]]

∆ ` e1 6= e2
(e-neq)

∆ ` σ = σ

∆ ` ε = ε
(ε-eq)

∆ ` e1 = e2 ∆ ` σ1 = σ2

∆ ` σ1 ◦ e1 = σ2 ◦ e2
(σ-eq)

Figure 7: Static Expression Judgments.
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Ψ ` n : τ

Ψ ` n : int
(int-t)

Ψ ` n : Ψ(n)
(address-t)

Ψ ` n : ρ
(ρ-t)

∆;Ψ `Z v : t

Ψ ` n : τ ∆ ` e = n

∆;Ψ `Z c n : 〈c, τ, e〉
(val-t)

∆ ` e : κint

∆;Ψ `c c n : 〈c, τ, e〉
(val-zap-c-t)

∆ ` e : κint c′ = B or c′ = G

∆;Ψ `CF c n : 〈c′, τ, e〉
(val-zap-CF-t)

∆ ` t ≤ t′

∆ ` e1 = e2

∆ ` 〈c, τ, e1〉 ≤ 〈c, τ, e2〉
(subtp-reflex)

∆ ` e1 = e2

∆ ` 〈c, τ, e1〉 ≤ 〈c, int, e2〉
(subtp-int)

∆ ` Γ ≤ Γ′

∀r. Γ1(r) ≤ Γ2(r)

∆ ` Γ1 ≤ Γ2
(Γ-subtp)

Figure 8: Value Typing Judgment and Subtyping Judgment.

∆;Ψ; Γ ` i : Γ′

rd 6= ri

∆;Ψ; Γ ` movi rd c n : Γ[rd 7→ 〈c, int, n〉]
(movi-t)

rd 6= ri Γ(ra) = 〈c, int , ea〉 Γ(rb) = 〈c, int , eb〉

∆;Ψ; Γ ` sub rd ra rb : Γ[rd 7→ 〈c, int, ea − eb〉]
(sub-t)

Γ(ri) = 〈ci, ok, ei〉 Γ(rt) = 〈B ,∀[∆t](Γt, σt), et〉

∆;Ψ; Γ ` intend rt : Γ[ri 7→ 〈B, go, et〉]
(intend-t)

Γ(ri) = 〈B , go, ei〉 Γ(rt) = 〈B ,∀[∆t](Γt, σt), et〉
Γ(rz) = 〈B , int , ez〉 t′ = 〈B , goz, ez?ei : et〉

∆;Ψ; Γ;` intendz rz rt : Γ[ri 7→ t′]
(intendz-t)

Figure 9: Instruction Typing Judgment.
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4.2 Instruction Typing

Figure 9 presents the instruction typing judgment, which has the form ∆;Ψ; Γ ` i : Γ′. As before, ∆ contains
free expression variables and Ψ types heap addresses. Γ acts as the precondition for the instruction, mapping
registers to their corresponding types prior to execution of the instruction. Γ′ acts as the postcondition for
the instruction, mapping registers to types guaranteed after execution of the instruction.

The simplest instruction to type check is the movi rd c n instruction. It merely updates the type of rd to
be 〈c, int , n〉. The subtraction instruction sub rd ra rb requires that the values being subtracted are integers.
Notice it also requires the integers arguments have the same color as the result – this restriction prevents
faults in values with one color to influence another. These two instructions place no restrictions on the type
of ri, so they can occur during any stage of a block.

The unconditional intention instruction intend rt requires that ri has basic type ok. This restriction
guarantees any new intend will occur after the checking code has been completed. Intentions are part of the
blue computation, so the register that is used to set the intention must contain a blue value with code type.
The type of ri is updated to reflect the new static expression and the new stage go.

The conditional intention instruction intendz rz rt is similar, although it must occur after an uncon-
ditional intention. In other words, to set intentions for a conditional branch, first use intend to set ri to
contain the address of the fall through block, and then conditionally set it to contain the branch target. The
resulting type of ri has basic type goz and a conditional expression guarded by the expression ez describing
rz. If ez is nonzero, then ri will be described by ei, which describes the fall through branch. Otherwise, it
is described by et, which describes the branch target.

Despite the fact that recovernz is syntactically an instruction, it is type-checked using the block typing
judgment because it affects the set of free expression variables.

4.3 Block Typing

The block typing judgment ∆;Ψ; Γ;σ; ei; τ opt ` b contains a number of new pieces of information. In
addition to ∆, Ψ, and Γ, the block typing judgment is parameterized by a sequence σ, an expression ei, and
a type option τ opt.

The sequence σ contains a list of expressions that describe the locations in the current history h. While
typing a block at location `, σ has the form xh ◦ ` meaning that the program has already visited some
unknown sequence of locations (xh) leading up to this point and that the label of the current block is `. The
judgment ∆ ` σ1 = σ2 holds when each expression in σ1 is equal to the corresponding expression in σ2 for
all substitutions of the variables in ∆.

The expression ei describes the intended target when the transfer occurred to the current label `. If
control flow correctly transfered to `, then ∆ ` ei = `.

The option type τ opt contains the type of the label `+1 if such a label exists. It is used when a branch
falls through to the subsequent block to determine the type of that block.

The block typing rules are presented in Figure 10. The first rule, sequence-t, is used when the first
instruction in a block is one of the basic instructions described previously. Descriptions of the other rules
follow.

Recovery. There are three distinct rules for checking recovernz rz. All of them require the instruction
to occur in the first stage of the block when ri contains an orange value with basic type check. The operand
register rz compares this value to the current label.

The first rule recovernz-t applies when ri is described by variable xi. This is the rule used by a programmer
to check correctness of their program at compile time. Control only proceeds past this point in the block
if xi is equal to the expression e`, which describes the current location, so the remainder of the block is
typed by substituting e` for xi. The types of ri and rz are updated to reflect the deletion of xi. Judgment
∆ ` Γ/ri/rz wf and ∆ ` σ wf hold when all variables used in registers other than ri and rz as well as the
expressions in σ are all contained in ∆. Since none of these pieces of state contain xi, they do not need to
be modified.
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∆;Ψ; Γ;σ; ei; τ opt ` b

∆;Ψ; Γ ` i : Γ′ ∆;Ψ; Γ′;σ; ei; τ opt ` b

∆;Ψ; Γ;σ; ei; τ opt ` i; b
(sequence-t)

Γ(ri) = 〈O , check, xi〉
Γ(rz) = 〈O , int , ez〉
∆, x : κint ` ez = e` − xi

∆ ` Γ/ri/rz wf ∆ ` σ wf ∆ ` e` : κint

Γ′ = Γ[rz 7→ 〈O , int , 0〉][ri 7→ 〈B , ok, e`〉]
∆;Ψ; Γ′;σ ◦ e`; e`; τ opt ` b

(∆, x : κint);Ψ; Γ;σ ◦ e`;xi; τ opt ` recovernz rz; b
(recovernz-t)

Γ(rz) = 〈O , int , ez〉 · ` ez = ei − e`

Γ(ri) = 〈O , check, ei〉 · ` ei = e`

·; Ψ; Γ[ri 7→ 〈O , ok, ei〉];σ ◦ e`; ei; τ opt ` b

.; Ψ; Γ;σ ◦ e`; ei; τ opt ` recovernz rz; b
(recovernz-eq-t)

Γ(rz) = 〈O , int , ez〉 · ` ez = ei − e`

Γ(ri) = 〈O , check, ei〉 · ` ei 6= e`

.; Ψ; Γ;σ ◦ e`; ei; τ opt ` recovernz rz; b
(recovernz-neq-t)

Γ(ri) = 〈B , goz, e′

z?e
′

f : e′

t〉
∆ ` e′

f = e` + 1

Γ(rz) = 〈G , int , ez〉
∆ ` ez = e′

z

Γ(rt) = 〈G ,∀[∆t](Γt, σt), et〉
∆ ` et = e′

t

∃St . ∆ ` St : ∆t

∆ ` Γ[ri 7→ 〈O , check, e′

t〉] ≤ St(Γt)
∆ ` σ ◦ e` ◦ e

′

t = St(σt)
∃Sf . ∆ ` Sf : ∆f

∆ ` Γ[ri 7→ 〈O , check, e′

f 〉] ≤ Sf (Γf )

∆ ` σ ◦ e` ◦ e
′

f = Sf (σf )

∆;Ψ; Γ;σ ◦ e`; ei;∀[∆f ](Γf , σf ) ` brz rz rt

(brz-t)

Γ(ri) = 〈B , go, e′

t〉
Γ(rt) = 〈G ,∀[∆t](Γt, σt), et〉
∆ ` et = e′

t

∃St . ∆ ` St : ∆t

∆ ` Γ[ri 7→ 〈O , check, e′

t〉] ≤ St(Γt)
∆ ` σ ◦ e` ◦ et = St(σt)

∆;Ψ; Γ;σ ◦ e`; ei; t ` jmp rt
(jmp-t)

Figure 10: Block Typing Judgment.
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The other two rules recovernz-eq-t and recovernz-neq-t are needed to carry out the proof of type preser-
vation (particularly the substitution lemma), but would never be used to type check programs prior to
execution. In these situations, xi has already been replaced with a closed expression ei that describes the
intentions register at block entry. Here, it is evident that either · ` ei = e` or not, so there is one typing rule
for each situation. The rule recovernz-neq-t does not place any requirements on the remainder of the block
since control does not proceed past this point.

Control Flow Transfers. In order to verify unexpected transfers from the end of one block to the be-
ginning of any other, code blocks must have the same basic precondition. To be specific, each block must
expect that the intentions register ri contains an orange value with basic type check that is described by a
variable xi. This variable does not occur anywhere else in the function precondition. This condition entails
every target block can accept any orange value in ri.

The rule jmp-t requires that ri has type 〈B , go, e′

t〉 specifying that the intention must already have been
set before the jump. Also, the current jump target has a code type and is described by an expression et that
is equal to e′

t. This enforces that in the absence of faults, the duplicate target is equal to the target.
The target label precondition contains a set of expression variables ∆t and requires a register file described

by Γt and a history described by σt. There is some substitution St for the variables in ∆t so that the current
register file type and sequence are subtypes of those required by the target. (The register file subtyping
judgment is a straightforward extension of the value subtyping judgment.)

The jmp rt and brz rz rt instructions recolor the blue intention register to be orange when control is
transfered to a new block. At first, this seems to contradict the rule that faults to a value of one color should
never corrupt values of other colors. However, because the target block doesn’t place any restrictions on the
expression describing ri, the variable xi that describes the value can be instantiated with the value itself.
Because of this, a blue value that is not trusted can become a trusted orange value during a control flow
transfer, continuing to leave only the blue values untrusted.

The rule brz-t is similar, but adds in the conditional register rz and specifies both the fall through and
the branch cases.

4.4 Machine State Typing

Code Memory Typing. The judgment ` C : Ψ describes the invariants for code memory. As described
previously, all blocks must have the same basic precondition. The register ri is described by the type
〈O , check, xi〉. The other registers are colored either blue or green, and their static expressions do not
contain the variable xi. If a label ` has type ∀[∆](Γ, xh ◦ `), then code at that label must be well-typed given
Ψ, ∆, Γ, xh ◦ `, the intention expression xi, and the fall through label type Ψ(`+ 1).

Register File Typing. The judgment Ψ `Z R : Γ states that register file R has type Γ under zap tag Z
given heap typing Ψ. It holds when each register in R has the corresponding type in Γ under Z. And again,
values with colors that are affected by Z are not trusted to have their given types.

History Typing. A history h is described by sequence σ when each location is equal to the corresponding
expression.

Machine State Typing. A machine state Σ is well-typed under zap tag Z when each of its elements is
well-typed, and two additional invariants hold. (1) If Z is CF then the current location ` is not equal to
the intended location ei. Otherwise, if Z is not CF , then these two are equal. (2) If the current block b
has proceeded past the checking stage, then it must be the case that ` is equal to ei. These two invariants
together imply it is not possible for code past the checking stage of a block to be well-typed under the CF
zap tag. Consequently, a proof of type preservation will imply that any control-flow error will be caught in
the checking stage of the next block.
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` C : Ψ

∀` ∈ Dom(C) ∪Dom(Ψ) .
Ψ(`) = ∀[∆](Γ, xh ◦ `)
∆ = ∆′, xi : κint, xh : κhist

Γ = Γ′, ri 7→ 〈O , check, xi〉
∀r′ ∈ Dom(Γ′) . Γ′(r′) 6= 〈O , τ ′, e′〉
∆′ ` Ψ(`+ 1) wf ∆′ ` Γ′ wf
∆;Ψ; Γ;xh ◦ `;xi; Ψ(`+ 1) ` C(`)

` C : Ψ
(C-t)

Ψ ` R : Γ

∀r. ·; Ψ `Z R(r) : Γ(r)

Ψ `Z R : Γ
(R-t)

` h : σ

` () : ε
(h-empty-t) ` h : σ · ` e = n

` (h, n) : σ ◦ e
(h-app-t)

`Z (C, h,R, b)

` C : Ψ
Ψ `Z R : Γ
` (h, `) : σ
(Z = CF ) ? (· ` ei 6= `) : (· ` ei = `)
Γ(ri) 6= 〈O , check, ei〉 =⇒ . ` ei = `
·; Ψ; Γ;σ; ei; Ψ(`+ 1) ` b

`Z (C, (h, `), R, b)
(Σ-t)

Figure 11: Machine State Typing.
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4.5 Typing Lemmas

In this section, we briefly explain the main lemmas used to prove type safety.

Expression Equality. Expression equality is transitive. Conditional expression ez?ef : et is equal to
either et or ef depending on the value of ez.

Lemma 1 (Expression Equality)
1. If ∆ ` e1 = e2 and ∆ ` e2 = e3 then ∆ ` e1 = e3

2. If ∆ ` σ1 = σ2 and ∆ ` σ2 = σ3 then ∆ ` σ1 = σ3

3. If ∆ ` ez = 0 then ∆ ` ez?ef : et = et.

4. If ∆ ` ez 6= 0 then ∆ ` ez?ef : et = ef .
Proof: By the definition of ∆ ` e = e and ∆ ` σ = σ and the definition of [[e]].

Substitution. Substituting an expression of kind κ for a free variable of kind κ preserves typing. Applying
a substitution S that provides substitutions for a number of free variables also preserves typing.

Lemma 2 (Substitution)
1. If ∆, x : κ ` e′ : κ′ and ∆ ` e : κ then ∆ ` e′[e/x] : κ′

2. If ∆, x : κ ` e1 = e2 and ∆ ` e : κ then ∆ ` e1[e/x] = e2[e/x]

3. If (∆, x : κ);Ψ `Z v : t and ∆ ` e : κ then ∆;Ψ `Z v : t[e/x]

4. If (∆, x : κ);Ψ; Γ;σ; ei; τ opt ` b and ∆ ` e : κ then ∆;Ψ; Γ[e/x];σ[e/x]; ei[e/x]; τ opt[e/x] ` b

5. If (∆1,∆2) ` e′ : κ′ and ∆1 ` S : ∆2 then ∆1 ` S(e′) : κ′

6. If (∆1,∆2) ` e1 = e2 and ∆1 ` S : ∆2 then ∆1 ` S(e1) = S(e2)

7. If (∆1,∆2);Ψ `
Z v : t and ∆1 ` S : ∆2 then ∆1; Ψ `

Z v : S(t)

8. If (∆1,∆2);Ψ; Γ;σ; ei; τ opt ` b and ∆1 ` S : ∆2 then ∆1; Ψ;S(Γ);S(σ);S(ei);S(τ opt) ` b

Proof:

1. By induction on the structure of ∆, x : κ ` e′ : κ′

2. By case analysis on the structure of ∆, x : κ ` e1 = e2 using Part 1.

3. By case analysis on the structure of (∆, x : κ);Ψ `Z v : t using Parts 1 and 2.

4. By induction on the structure of (∆, x : κ);Ψ; Γ;σ; ei; τ opt ` b using Parts 1-3. The case for rule
(recovernz-t) divides into two subcases depending on if ez = 0 and uses rule (recovernz-eq-t) or rule
(recovernz-neq-t) as appropriate.

5-8. By induction on the size of ∆2, using Parts 1-4 respectively.
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Subtyping. If a value has a type t and this type is a subtype of t′, then the value can also be given type
t′.

Lemma 3 (Subtyping)
If ∆ ` t ≤ t′ and ∆;Ψ `Z v : t then ∆;Ψ `Z v : t′

Proof: By induction on the derivation of ∆;Ψ `Z v : t. Each case uses inversion of the subtyping rules
and Lemma 1 (Expression Equality).

Canonical Forms. If a value c n has type 〈c′, τ ′, e′〉 under zap tag Z, then our knowledge about n depends
both on the base type τ ′ and also the relationship between Z and c′.

If Z = CF and the color in the type is G or B , then the judgment may be been derived using rule
(val-zap-CF-t), so we know nothing about n. However, we do know that the expression has kind κint.

If Z is c′, then the judgment may have been derived by rule (val-zap-c-t), so again we only know that
the expression e′ has kind κint.

The remaining case applies when Z is not equal to the color in the type c′ and when either Z 6= CF
or the color in the type is neither G nor B . In this case the judgment must have been derived using rule
(val-t), so we know the color tag on the value is equal to the color tag in the type and the expression e′ is
equal to the value n. In addition, if τ ′ is a code type, we also know that n is a valid code address.

Lemma 4 (Canonical Forms)
If · ; Ψ `Z c n : 〈c′, τ ′, e′〉 and ` C : Ψ then

1. If Z = CF and (c′ = B or c′ = G), then · ` e′ : κint.

2. If Z = c′ then c = c′ and · ` e′ : κint.

3. If Z 6= c′ and (Z 6= CF or (c′ 6= B and c′ 6= G)) then

• c = c′

• · ` e′ = n

• τ ′ = ∀[∆](Γ, σ) =⇒ n ∈ Dom(C)

Proof: By inspection of ·; Ψ `Z c n : 〈c′, τ ′, e′〉.

Color Weakening. If a value has a type t under zap tag Z, then that value also has type t under any zap
tag Z ′ that is a supertype of Z.

Lemma 5 (Color Weakening)
If ∆;Ψ `Z v : t and Z ≤ Z ′ then ∆;Ψ `Z′

v : t

Proof: By case analysis of ∆;Ψ `Z v : t and the definition of Z ≤ Z ′.

4.6 Type Safety

We have proven that the TALCF type system is sound using the standard notion of Progress and Preservation.
Progress asserts that machine states well-typed under the empty zap tag can take a step to another ordinary
machine state. States that are well-typed under any zap can also take a step, but this step may reach any
state, including recover(h) or hwerror(h).

Theorem 6 (Progress)
1. If ` Σ then Σ −→0 Σ′.
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2. If `Z Σ then Σ −→0 F .

Proof: The proof for each part is by case analysis on the current block b of Σ using Lemma 1 (Expression
Equality) and Lemma 4 (Canonical Forms). The complete proof appears in the online appendix [14].

Preservation states that execution preserves typing. States well-typed under the empty zap tag continue
to be so after taking a non-faulty step. States typed under any zap also remain well-typed after a non-faulty
step, but the zap tag may escalate to a supertype. This elevation might occur at control flow transfers.
A zap tag of B or G becomes CF whenever the corruption has spread to the operands being used in the
transfer. This way the block that results from the transfer can be well-typed under CF even when control
has transferred to a totally unexpected block. The intentions register is always the only orange value that is
live across control flow transfers, and we have already seen that it is well-typed even when a control fault has
occurred. Finally, a state is well-typed under the empty zap tag and takes a faulty step, then the resulting
state is well-typed under some color c.

Theorem 7 (Preservation)
1. If ` Σ and Σ −→0 Σ′ then ` Σ′

2. If `Z Σ and Σ −→0 Σ′ then ∃Z ′ . `Z′

Σ′ and Z ≤ Z ′.

3. If ` Σ and Σ −→1 Σ′ then ∃c . `c Σ′

Proof: The proof for each part is by case analysis on the corresponding single step judgment using Lemma 1
(Expression Equality), Lemma 4 (Canonical Forms), and Lemma 5 (Color Weakening). Cases for the jump
and branch rules also use Lemma 2 (Substitution) and Lemma 3 (Subtyping). The complete proof appears
in the online appendix [14].

5 Fault Tolerance Theorem

In this section, we first present a handful of definitions and lemmas relating machine states to other states,
and then use these to formally state and prove the Fault Tolerance Theorem. Brief proof sketches are
provided, and complete proofs are available in the online appendix [14].

5.1 Machine State Simulation

We say that a faulty value simulates a fault-free value under color c if the values are equal when they are
not colored by c.

c′ n
c
∼ c′ n

(sim-val)
c n

c
∼ c n′

(sim-val-zap)

A faulty machine state Σf simulates a fault-free state Σ under color c if Σf is well-typed under c, Σ is
well-typed under the empty zap tag, and the two states are identical modulo the values in registers colored
c.

` (C, h,R, b) `c (C, h,Rf , b) ∀r.Rf (r)
c
∼ R(r)

(C, h,Rf , b)
c
∼ (C, h,R, b)

(sim-Σ)
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5.2 Block Execution

The Block Step Lemma states that given a non-faulty computation and a corresponding faulty version Σf , if
the non-faulty computation can take a non-faulty step to some other state in the same block, then the faulty
computation will either also take a step within the current block or will take a single step to the recover
state.

Lemma 8 (Block Step)
If Σf

c
∼ (C, h,R, b) and (C, h,R, b) −→0 (C, h,R′, b′) then either

1. Σf −→0 Σ′

f and Σ′

f

c
∼ (C, h,R′, b′), or

2. Σf −→0 recover(h)

Proof: By case analysis of (C, h,R, b) −→0 (C, h,R′, b′) and Theorem 7 (Preservation).

In order to reason about block execution, we extend the single step relation Σ −→k Σ′ from Section 3
to create the judgment Σ ;k F which states that F is the result of executing the current block of Σ while
incurring k faulty transitions. Execution proceeds up to the control-flow transfer statement at the end of the
current block or the recover state if the block terminates prematurely by transitioning to recovery code. For
example, if Σ = (C, h,R, i1; ...; in; jmp rt), then either F = (C, h,R′, recover(h)) or F = (C, h,R′, jmp rt).

Σ ;k F

(C, h,R, b) −→0 recover(h)

(C, h,R, b) ;0 recover(h)
(blk-eval-recover)

(C, h,R, jmp rt) ;0 (C, h,R, jmp rt)
(blk-eval-jmp)

(C, h,R, brz rz rt) ;0 (C, h,R, brz rz rt)
(blk-eval-brz)

(C, h,R, b) −→k1
(C, h,R′, b′) (C, h,R′, b′) ;k2

F

(C, h,R, b) ;(k1+k2) F
(blk-eval-sequence)

The Block Execution Lemma states that given a faulty computation Σf that simulates a non-faulty
computation, the result of executing the faulty block will either simulate the result of executing the non-
faulty block, or executing the faulty block will result in recover(h).

Lemma 9 (Block Execution)
If Σf

c
∼ (C, h,R, b) and (C, h,R, b) ;0 Σ′ then either

1. Σf ;0 Σ′

f and Σ′

f

c
∼ Σ′, or

2. Σf ;0 recover(h)

Proof: By induction on the structure of (C, h,R, b) ;0 Σ′ and Lemma 8 (Block Step).
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5.3 Fault Recovery

The CF Fault Step Lemma states that once a control flow fault has occurred, execution will either step
within the same block or will step to recovery code.

Lemma 10 (CF Fault Step)
If `CF (C, h,R, b) then either

1. (C, h,R, b) −→0 (C, h,R′, b′) and `CF (C, h,R′, b′)

2. (C, h,R, b) −→0 recover(h).

Proof: By case analysis on the structure of b using Theorem 7 (Preservation).

The Fault Recovery Lemma states that once a control flow fault has occurred, control will always reach
recovery code before exiting the current block.

Lemma 11 (CF Fault Block Execution)
If `CF (C, h,R, b) then (C, h,R, b) ;0 recover(h).

Proof: By induction on the length of b and Lemma 10 (CF Fault Step).

5.4 Block Transitions

In order to reason about transitions between blocks, we define the judgment Σ =⇒` Σ′ whenever
(C, h,R, b) −→0 (C, (h, `), R′, b′). In other words, control transfers from the end of one block to the beginning
of another block ` in a single step.

Σ =⇒` Σ′

(C, h,R, b) −→0 (C, (h, `), R′, b′)

(C, h,R, b) =⇒` (C, (h, `), R′, b′)
(trans-eval)

The Block Transition Lemma states that whenever a non-faulty computation transitions to a new block, the
corresponding faulty computation will either (1) transition to the same block and continue to be indistin-
guishable from the non-faulty computation, (2) trigger a hardware error, or (3) transition to an incorrect
block where the error will be detected before control leaves the incorrect block.

Lemma 12 (Block Transition)
If Σf

c
∼ (C, h,R, b) and (C, h,R, b) =⇒` Σ′ then either

1. Σf =⇒` Σ′

f and Σ′

f

c
∼ Σ′

2. Σf −→0 hwerror(h)

3. Σf =⇒`′

Σ′

f and Σ′

f ;0 recover(h, `′)

Proof: By case analysis of the structure of (C, h,R, b) =⇒` Σ′ and Lemma 11 (CF Fault Block Execution).
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5.5 Program Execution

The judgment Σ =⇒h
k F states that machine state Σ executes through a sequence of blocks h to reach state F

while incurring k faulty transitions. In other words, if Σ = (C, h1, R, b), then F is either (C, (h1, h), R
′, jmp rt),

(C, (h1, h), R
′, brz rz rt), hwerror(h1, h), or recover(h1, h).

Σ =⇒h
k Σ′

Σ ;k F

Σ =⇒
()
k F

(prog-exec-blk)

Σ =⇒h
k Σ′ Σ′ −→0 hwerror(h′, h)

Σ =⇒h
k hwerror(h′, h)

(prog-exec-seq-hwerror)

Σ =⇒h
k1

Σ′ Σ′ =⇒` Σ′′ Σ′′
;k2

F

Σ =⇒
(h,`)
(k1+k2)

F
(prog-exec-seq-trans-blk)

The Faulty Execution Lemma states that if a faulty execution Σf simulates a non-faulty execution Σ
under some color c, then Σf behaves in one of four possible ways with regards to Σ. (1) Executing Σf results
in the same sequence of blocks h as executing Σ and the resulting faulty state simulates the corresponding
non-faulty state under the same color c. (2) Executing Σf results in an attempt to transfer control to an
invalid address outside the domain of code memory and triggers a hardware fault. Prior to the occurrence
of the hardware fault, the execution of Σf visits the same blocks as the execution of Σ. (3) While executing
Σf , a fault is detected and control is transferred to recovery code even though no incorrect blocks have been
visited. This situation can be caused by a fault affecting the intentions register or the checking code. (4)
While executing Σf , control veers off course to a block that is not visited in the execution of Σ. In this case,
the checking code in the invalid block catches the error and transfers control to the recovery code.

Lemma 13 (Faulty Execution)
If Σf

c
∼ Σ and Σ =⇒h

0 Σ′ then either:

1. Σf =⇒h
0 Σ′

f and Σ′

f

c
∼ Σ′

2. Σf =⇒
hf

0 hwerror(h′, hf ) and hf is a prefix of h

3. Σf =⇒
hf

0 recover(h′, hf ) and hf is a prefix of h

4. Σf =⇒
hf

0 recover(h′, hf ) and hf = (h1, l
′) and h = (h1, l, h2)

Proof: By induction on the structure of Σ =⇒h
0 Σ′, Lemma 9 (Block Execution) and Lemma 12 (Block

Transition).
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5.6 The Fault Tolerance Theorem

A program is fault-tolerant if any execution of the program with a single fault behaves in one of four possible
ways with regards to the original, non-faulty computation. (1) The faulty computation visits the same
sequence of blocks as the original and the resulting faulty state simulates the corresponding original state
under some color c. (2) The faulty computation attempts to transfer control to an invalid address outside
the domain of code memory and triggers a hardware fault. Prior to the occurrence of the hardware fault, the
faulty computation visits the same blocks as the original computation. (3) The faulty computation detects a
fault in software and jumps to recovery code even though no incorrect blocks have been visited. This situation
can be caused by a fault affecting the intentions register or the checking code. (4) The faulty computation
veers off course to a block that does not match the corresponding block in the original computation. In this
case, the checking code in the invalid block catches the error and transfers control to the recovery code.

Theorem 14 (Fault Tolerance)
If ` Σ and Σ =⇒h

0 Σ′ then at least one of the following cases applies and all derivations Σ =⇒
hf

1 F where
length(hf ) ≤ length(h) fit one of these cases:

1. Σ =⇒h
1 Σ′

f and ∃c . Σ′

f

c
∼ Σ′

2. Σ =⇒
hf

1 hwerror(h′, hf ) and hf is a prefix of h

3. Σ =⇒
hf

1 recover(h′, hf ) and hf is a prefix of h

4. Σ =⇒
hf

1 recover(h′, hf ) and hf = (h1, l
′) and h = (h1, l, h2)

Proof: By case analysis on the structure of Σ =⇒h
0 Σ′. In essence, arbitrarily divide the computation

Σ =⇒h
0 Σ′ into two pieces with some Σ′′ as the intermediate state. Use one of the fault rules to step Σ′′ to

Σ′′

f . If c is the color of the value that faults, then Σ′′

f

c
∼ Σ′′. Then use Lemma 13 (Faulty Execution) with

Σ′′

f

c
∼ Σ′′ and the remainder of the computation from Σ′′ to Σ′ to determine what happens after the fault.

Use these results and the first half of the computation to show that one of the four cases applies to the entire
computation containing a single fault.

6 Translation

In order to show that TALCF is sufficiently expressive to be of interest, we define a simple language of while
loops, and show how to compile statements in this language into well-typed TALCF programs.

6.1 A Simple While Loop Language

The while loop language statements consist of simple assignment, subtraction, if statements, while loops, and
sequences of statements. As all the variables in this language contain integers, the well-formedness judgment
V ` s simply enforces that all variables v in s exist in the variable context V .

s ::= v := n | vd := va − vb

| if0 vz then s1 else s2 | while vz 6= 0 do s
| s1; s2
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6.2 Checking Code and Exit Code Macros

The translation rules and lemmas make use of the following macros that implement the protocol from
Section 2. These macros make use of two temporary registers: tg and tb.

Macro “check `” generates the checking code at the entry of block ` to check that control has correctly
transferred to this block. Macro “intendjmp `t” sets the intention and then executes the jump to target block
`t. Finally, macro “intendzbrz rz `t `f” uses register r′

z to conditionally set the intention to fall through to
block `f or branch to block `t, and then uses register rz to execute the conditional branch.

check ` ≡ movi tg O `; sub tg tg ri;
recovernz tg

intendjmp `t ≡ movi tb B `t; intend tb;
movi tg G `t; jmp tg

intendzbrz rz `t `f ≡ movi tb B `f ; intend tb;
movi tb B `t; intendz r′

z tb;
movi tg G `t; brz rz tg

6.3 Translating Variable Context V

Since all variables are considered live at all program points, every assembly-level instruction block will have
essentially the same signature. If the context V contains variable v1,. . . ,vn, then each block in the translation
requires 2n + 3 registers: a green copy rk and a blue copy r′

k for each variable vk, the intention register ri,
and two temporary registers tg and tb. (We have made no effort to optimize this translation, it merely serves
to demonstrate the theoretical expressiveness of the target language.)

The function [[V ]]` generates the code type of the code at label `. The generated ∆ contains all the
expression variables that are need in Γ and σ. Each label will have a slightly different history typing σ,
since the sequence ends with the current label. Register file typing Γ gives types to each of the 2n + 3
registers. Register rk is green and r′

k is blue. Both registers have basic type int and are described by the
same expression variable xk, which enforces that they are equal on entry to the block. Register ri is orange,
has basic type check, and is described by expression variable xi. Again, since we have not optimized the
translation, we will assume that during block transitions tg always contains a green value and tb always
contains a green value. They may hold values of other colors during the body of a block.

[[V ]]` = ∀[∆](Γ, σ)

choose fresh variables x1, ..., xn, xh, xri
, xg, xb, xo

∆ = x1 : κint, . . . , xn : κint, xh : κhist, xri
: κint, xg : κint, xb : κint

σ = xh ◦ `
Γ = { r1 : 〈G , int , x1〉, r′

1 : 〈B , int , x1〉, . . . , rn : 〈G , int , xn〉, r′

n : 〈B , int , xn〉,
ri : 〈O , check, xri

〉,
tg : 〈G , int , xg〉, tb : 〈B , int , xb〉 }

[[v1, . . . , vn]]` = ∀[∆](Γ, σ)
(trans-V)

The function GenΨ(V,L) computes the heap typing Ψ that maps each label in L to its corresponding type

GenΨ(V,L)

GenΨ(V, ·) = ·
GenΨ(V, (L, `)) = GenΨ(V,L), ` 7→ [[V ]]`
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6.4 Partial Translations

A 4-tuple of objects (L,C,~i, `) is used to track the code generated during the translation. C is the code
memory that contains all blocks generated so far. L contains labels that may be referred to by blocks in C
but whose corresponding blocks have not yet been generated. ` is the label that will be assigned to the block
that is currently being generated. ~i contains the list of instructions for this block that have been generated
so far. The instructions for checking the checking code and exit code are not included and will be added
when the block is added to C.

The judgment V ; Ψ1 ` C : Ψ2 is used to type code memory C as it is being generated. There are two
disjoint heaping typings: Ψ1 contains labels that may be referenced by C but whose corresponding code
blocks may not have been generated yet, and Ψ2 contains the types for the blocks that have already been
generated. Both Ψ1 and Ψ2 map each label ` to [[V ]]`. In addition, each label in Ψ2 has a type that can be
used to type check corresponding block.

V ; Ψ1 ` C : Ψ2

Dom(Ψ1) ∩Dom(Ψ2) = ∅
∀` ∈ Dom(Ψ1) . Ψ1(`) = [[V ]]`
Dom(C) = Dom(Ψ2)
∀` ∈ Dom(Ψ2) .

Ψ2(`) = [[V ]]` = ∀[∆]( (Γ, ri 7→ 〈O , check, xi〉), xh ◦ ` )
∧ ∆; (Ψ1 ∪Ψ2); (Γ, ri 7→ 〈O , check, xi〉); (xh ◦ `); xi; (Ψ1 ∪Ψ2)(`+ 1) ` C(`)

V ; Ψ1 ` C : Ψ2
(C-wf)

Judgment V `~i wf states that ~i is a sequence of pairs of instructions that perform duplicate moves and
subtractions. For example, the following is a well-formed list of instructions.

movi r3 G 3; movi r′

3 B 3; sub r4 r5 r6; sub r′

4 r′

5 r′

6; . . .

Using these definitions, we say a partial translation (L,C,~i, `) is well-formed when the code memory C
is well-formed using the heap typings calculated from the label ` and the labels in L and the labels already
in the domain of C. In addition, the instruction list ~i is well-formed.

V ` (L,C,~i, `) wf

Ψ1 = GenΨ(V, (L, `))
Ψ2 = GenΨ(V,Dom(C))
V ; Ψ1 ` C : Ψ2

V `~i wf

V ` (L,C,~i, `) wf
(partial-trans- wf)

The Block Construction Lemma says that the instruction list ~i from a well-formed partial translation can be
used to construct a block by adding checking code to the beginning and exit code to the end. The exit code
can refer to any existing label `′ as the jump target. The exit code can be a conditional branch only if the
fall-through block `+ 1 exists. The new code memory formed by adding this new block is also well-formed.

Lemma 15 (Block Construction)
If V ` (L,C,~i, `) wf then ∀`′ ∈ ((L, `) ∪Dom(C)) .

1. GenΨ(V,L) ` C[ ` 7→ check `; ~i; intendjmp `′ ] : GenΨ(V, (Dom(C), `))

2. If l + 1 ∈ ((L, `) ∪Dom(C))
then GenΨ(V,L) ` C[ ` 7→ check `; ~i; intendzbrz rz `′ `+ 1 ] : GenΨ(V, (Dom(C), `))

28



Proof: Using the macro definitions, the definition of V ` (L,C,~i, `) wf, and instruction typing rules from
Section 4.2.

6.5 Translating Statements

The main translation judgment [[V ` s]](L,C,~i, `) = (L′, C ′,~i′, `′) extends the existing partial translation
(L,C,~i, `) with the translation of statement s.

The statement translation rules are shown in Figure 12. Translating simple assignment and subtrac-
tion statements simply adds pairs of assembly instructions to the end of the current instruction sequence.
Sequencing two statements uses the partial translation from the first statement to translate the second.

Translating if0 statements requires the addition of new blocks: `f contains the fallthrough branch, `t

contains the true branch, and `m is where the two branches merge. The function NumBlock(s) calculates
the number of blocks generated by the translation of s. The current block b` contains checking code, the
code~i generated for the block so far, and ends with a conditional branch to `t (and an automatic fallthrough
to `f ). The new label `t is the starting point for the code generated for the true branch s1. The ending label
of this code `′

t finishes by merging back to the common block at `m. The translation of the false branch is
similar. The final code memory contains all blocks generated by either branch as well as the blocks ending
each branch by jumping to the merge block `m. The label in the resulting partial translation is `m.

Translating while statements also requires the addition of new blocks. The current block at ` is ter-
minated with an unconditional jump to a beginning block at `b that tests the condition and branches to
an ending label `e if the condition fails. Otherwise it falls through to the block at `s which contains the
translation of s and terminates with a jump back to the beginning block. The label in the resulting partial
translation is `e.

The Statement Translation Lemma says that given a well-formed partial translation (L,C,~i, `), translating
a statement s results in another well-formed partial translation. In addition, the new set of undefined labels
L′ is equal to that in the original partial translation.

Lemma 16 (Statement Translation)
If [[V ` s]](L,C,~i, `) = (L′, C ′,~i′, `′) and V ` (L,C,~i, `) wf

then V ` (L′, C ′,~i′, `′) wf and L = L′

Proof: Using the definition of V ` (L,C,~i, `) wf and Lemma 15 (Block Construction).

6.6 The Translation Theorem

To translate a statement s as a stand-alone program, it is translated as in the previous section with 1 as
the starting label. Because there is no halt instruction in TALCF , code is added to the last block in the
translation to create an infinite loop at label `halt. The function InitRegFile(V ) creates an initial register
file that maps each register used to translate V to 0.

The assembly language program corresponding to s is the TALCF state consisting of the generated code
memory, a history with only the first location, an initial register file, and code to jump to the first label in
code memory. If the original statement is well-formed, then the translation is well-typed.

Theorem 17 (Translation)
If [[V ` s]](., ., ., 1) = (., C,~i, `) then

` ( C[` 7→ check `;~i; intendjmp `halt][`halt 7→ check `halt; intendjmp `halt], 0, InitRegFile(V ), intendjmp 1 )

Proof: Using Lemma 16 (Statement Translation), Lemma 15 (Block Construction), the block typing rules
from Section 4.3, and the machine state typing rules from Section 4.4.
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[[V ` s]](L,C,~i, `) = (L′, C ′,~i′, `′)

~i′ =~i; movi rk G n; movi r′

k B n

[[V ` v := n]](L,C,~i, `) = (L,C,~i′, `)
(t-assign)

~i′ =~i; sub rk ra rb; sub r′

k r′

a r′

b

[[V ` vd := va − vb]](L,C,~i, `) = (L,C,~i′, `)
(t-sub)

[[V ` s1]](L,C,~i, `) = (L1, C1,~i1, `1)

[[V ` s2]](L1, C1,~i1, `1) = (L2, C2,~i2, `2)

[[V ` s1; s2]](L,C,~i, `) = (L2, C2,~i2, `2)
(t-seq)

`f = `+ 1
`t = `f +NumBlocks(s1)
`m = `t +NumBlocks(s2)

b` = check `; ~i; intendzbrz rz `f `t

[[V ` s1]]((L, `f ), C[` 7→ b`], ·, `t) = (L′

t, C
′

t,~i
′

t, `
′

t)

b′

t = check `′

t; ~i
′

t; intendjmp `m

[[V ` s2]]((L, `t), C[` 7→ b`], ·, `f ) = (L′

f , C
′

f ,
~i′f , `

′

f )

b′

f = check `′

f ;
~i′f ; intendjmp `m

C ′ = (C ′

t ∪ C ′

f )[`
′

t 7→ b′

t][`
′

f 7→ b′

f ]

[[V ` if0 vz then s1 else s2]](L,C,~i, `) = (L,C ′, ·, `m)
(t-if)

`b = `+ 1
`s = `b + 1
`e = `s +NumBlocks(s)

C ′′ = C[` 7→ check `; ~i; intendjmp `b]
[`b 7→ check `b; intendzbrz rz `e `s]

[[V ` s]]((L, `e), C
′′, ·, `s) = (L′

s, C
′

s,~i
′

s, `
′

s)

C ′ = C ′

s[`
′

s 7→ check `′

s; ~i
′

s; intendjmp `b]

[[V ` while vz 6= 0 do s]](L,C,~i, `) = (L′

s, C
′, ·, `e)

(t-while)

Figure 12: Translation of While Programs
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7 Related Work

There is a long history of research into techniques for delivering fault tolerance in the presence of transient
faults. What sets the current work apart from the vast majority of the literature is the use of a provably sound
type system to verify reliability properties of low-level code. As mentioned in the introduction, this research
follows previous work on λzap [21] and TALFT [13]. However, neither λzap nor TALFT provided software
mechanisms for guaranteeing control-flow integrity. Recently, Elsman [6] has shown how to extend λzap so
that the atomic voting operations can be broken down into a series of conditional statements. However,
again, there is no treatment of control-flow.

Perhaps the most closely related work to the current paper is CFI, a provably-sound technique for
enforcing control-flow integrity in a security context [1, 2]. The goal of CFI is to guarantee that machine
code obeys a predefined “control-flow policy” that constrains the sequence of blocks control can move through.
The key distinction between CFI and our own work is the threat model, which makes all the difference. CFI
attackers can modify arbitrary amounts of machine state in arbitrary ways; this sort of attacker models
the threat posed by buffer-overflow vulnerabilities effectively. However, CFI attackers cannot touch three
reserved registers during the execution of certain code sequences. Protecting against transient faults is, on
the one hand, easier, because the attacker can only modify a single value as opposed to arbitrary amounts
of state arbitrarily many times, but, on the other hand, more difficult, because no single bit of state can
be a priori guaranteed to be protected. On balance, it appears that having just that tiny bit of protected
state makes the solution and proof of correctness of the CFI problem simpler than the corresponding fault
tolerance problem. For instance, the CFI checker can be defined as a relatively straightforward series of
context-insensitive conditions on the code; there is no need for a sophisticated type system. It is also the
case that the structure of the desired theorems are somewhat different. In the case of CFI, the running
code must satisfy a security policy specified as a control-flow graph. In our case, the desired end result is a
simulation theorem that guarantees that every faulty run of the program is properly related to the non-faulty
run.

Our work builds upon many past research efforts in fault tolerance, particularly those that deal with
control-flow checking. For example, Oh et al. [11] developed a pure software control-flow checking scheme (CFCSS)
where each control transfer generates a run-time signature that is validated at each block entry point. The
SWIFT system [16], another software-only fault tolerance system, also uses signature checking very much
like that in the current paper. Venkatasubramanian, Hayes and Murray [20] proposed a technique called
Assertions for Control Flow Checking (ACFC) that assigns an execution parity to each basic block and de-
tects faults based on parity errors. Schuette and Shen [18] explored control-flow monitoring (ARC) to detect
transient faults affecting the program flow on a Multiflow TRACE 12/300 machine with little extra overhead.
Ohlsson and Rimen [12] developed a technique to monitor software control flow signatures without building
a control flow graph. However, this latter technique requires additional hardware: A coprocessor is used
to dynamically compute the signature from the running instruction stream and a watchdog timer is used
to detect the absence of block signatures. The distinguishing feature of our research is not the control-flow
checking procedure itself, but the type system we designed to verify the code and our proof that well-typed
programs are indeed fault tolerant. These previous efforts did not rigorously specify the properties they
intended to enforce nor did they prove their techniques actually enforce them.

Naturally, our research also builds upon previous work in the verification of low-level code including the
original typed assembly language (TAL) [8] and proof-carrying code (PCC) [9]. However, both TAL and
PCC operate under the assumption of nonfaulty hardware and therefore ignore the major issues of reliability
on which this paper has focused.

8 Conclusion

Current trends in hardware design including increased transistor density, decreased voltages and increased
clock rates are decreasing the reliability of modern processors. While these effects are currently limited,
for the most part, to high-end clusters and supercomputing facilities, they pose a broader threat to future
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systems. One way to counter this trend is to shift some of the burden for reliability into software. How-
ever, reasoning about the correctness of software running on faulty hardware is an extremely difficult task,
particularly when faults may affect program control flow.

In this paper, we defined a simple abstract machine that exhibits control-flow faults and we analyzed
the correctness of a software protocol for detecting them. Our analysis proceeded through the definition of
a type system that guarantees programs are reliable relative to a simple fault model. From a theoretical
perspective, the type system serves as a tool for reasoning about the correctness of faulty programs. From
a practical perspective, it may be implemented and used as a debugging tool in compilers that purport
to generate reliable code. We have rigorously proven strong reliability properties for our type system and
have shown it is sufficiently expressive to serve as the target for compilation of a simple language of while
programs. Overall, we believe this is the first successful attempt at reasoning rigorously about software
mechanisms for controlling control flow faults.
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