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Abstract

Maximum entropy (maxent) approach, formally equivalent to maximum likelihood,

is a widely used density-estimation method. When input datasets are small, maxent

is likely to overfit. Overfitting can be eliminated by various smoothing techniques,

such as regularization and constraint relaxation, but theory explaining their prop-

erties is often missing or needs to be derived for each case separately. In this dis-

sertation, we propose a unified treatment for a large and general class of smoothing

techniques. We provide fully general guarantees on their statistical performance and

propose optimization algorithms with complete convergence proofs. As special cases,

we can easily derive performance guarantees for many known regularization types

including L1 and L2-squared regularization. Furthermore, our general approach

enables us to derive entirely new regularization functions with superior statistical

guarantees. The new regularization functions use information about the structure of

the feature space, incorporate information about sample selection bias, and combine

information across several related density-estimation tasks. We propose algorithms

solving a large and general subclass of generalized maxent problems, including all

discussed in the dissertation, and prove their convergence. Our convergence proofs

generalize techniques based on information geometry and Bregman divergences as

well as those based more directly on compactness.

As an application of maxent, we discuss an important problem in ecology and con-

servation: the problem of modeling geographic distributions of species. Here, small

sample sizes hinder accurate modeling of rare and endangered species. Generalized

maxent offers several advantages over previous techniques. In particular, general-

ized maxent addresses the problem in a statistically sound manner and allows prin-

cipled extensions to situations when data collection is biased or when we have access

to data on many related species. The utility of our unified approach is demonstrated

in comprehensive experiments on large real-world datasets. We find that general-

ized maxent is among the best-performing species-distribution modeling techniques.

Our experiments also show that the contributions of this dissertation, i.e., regulari-

zation strategies, bias-removal approaches, and multiple-estimation techniques, all

significantly improve the predictive performance of maxent.
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Chapter 1

Introduction

Density estimation is a central task in classical statistics as well as statistical learn-

ing theory. This dissertation focuses on three problems in density estimation: estima-

tion from few samples, estimation from biased samples, and simultaneous estimation

of several related densities.

These three problems share one underlying goal: the efficient use of the training

data. For example, given a small number of samples in a many-dimensional space,

an efficient approach should use the information from all the dimensions. Many clas-

sical techniques fail in this scenario, suffering from the “curse of dimensionality.” We

are interested in techniques that overcome the curse of dimensionality, enabling a

large number of dimensions for small datasets. When data is collected in a biased

manner, any knowledge about the bias should improve the predictive performance.

We look for techniques that efficiently incorporate information about the bias. Fi-

nally, when estimating several densities whose datasets are organized into overlap-

ping groups, such as a hierarchy, the signal shared by the densities in a group should

improve the accuracy of individual estimates. Successful multiple-estimation tech-

niques seek balance between the information from the groups and the information

from the individual datasets.

Our work is motivated by a new application of density estimation to modeling

distributions of plant or animal species, a critical problem in conservation biology

and ecology. We are given a set of locations, features describing them, and samples

of where different species were observed. Our goal is to estimate the distribution of

locations favored by each species based on the features of the kinds of places in which

they are found. For example, we will consider species sampled from North America,

such as the yellow-throated vireo, blue-headed vireo, and loggerhead shrike. All loca-

tions in North America are described by environmental variables such as elevation,

annual precipitation, and average daily temperature. This dataset is described in

more detail in Chapter 5.
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Species distribution modeling exemplifies our three problems. We are often in-

terested in modeling rare species, so the number of available samples may be quite

small, calling for a technique that performs well for small sample sizes. The avail-

able data is often biased toward locations that are easier to access such as areas near

roads, towns, airports, and waterways. The sample selection bias, reflecting the col-

lectors’ effort, can be estimated from the set of visited sites. The estimate of the bias

provides additional information which can assist in removing the bias. Finally, even

though the number of samples per species is quite small, we frequently have access

to datasets containing many related species, such as the North American dataset. In

such cases, it is desirable to share the strength of prediction across multiple species,

using multiple-estimation techniques.

To address the problems of small-sample estimation, biased-sample estimation,

and multiple estimation, we apply the principle of maximum entropy, and develop a

single unified approach. The resulting framework combines key benefits of solutions

to all three problems. Estimates from a small number of samples take advantage of

a large numbers of features, the information about the sample selection bias is used

for bias removal, and the group structure is easily incorporated to further improve

the quality of predictions.

1.1 Overview of the Maximum-Entropy Principle

The maximum-entropy principle (maxent) originated in statistical mechanics, in the

work of Boltzmann (1871c,b,a) and Gibbs (1902). As an approach to density estima-

tion, it was first proposed by Jaynes (1957), and has since been used in many areas

outside statistical mechanics (Kapur and Kesavan, 1992). In computer science, it has

been particularly popular in natural language processing (Berger et al., 1996; Della

Pietra et al., 1997).

In maxent, one is given a set of known constraints on the target distribution. The

target distribution is then estimated by a distribution of maximum entropy satisfying

the given constraints. The constraints are frequently based on a set of samples from

the target distribution and represented using a set of features (real-valued functions)

defined on the sample space. Typically, the constraints require the expectation of

every feature to match its empirical average.

In species-distribution modeling, the goal is to estimate the density of a species

over the pixels in a map. Features are simple functions derived from the environmen-

tal variables, and constraints are based on the observed occurrences of the species.

For example, when modeling the distribution of the yellow-throated vireo across the

pixels of North America, we may use the constraint derived from the feature “an-

2



nual precipitation,” saying that the mean annual precipitation favored by the yellow-

throated vireo should equal the average observed precipitation.

To determine the maxent distribution, it is possible to apply the method of La-

grange multipliers. By the Karush-Kuhn-Tucker optimality conditions, the maxent

distribution is the maximum-likelihood distribution from an exponential family with

features acting as sufficient statistics. In statistical mechanics, such exponential-

family distributions are called Gibbs distributions. A detailed derivation of the equiv-

alence of maximum entropy and maximum likelihood is in Chapter 2.

The first question that we should answer before delving into the details of the

principle of maximum entropy is, "Why maximize the entropy?" or, equivalently,

"Why use Gibbs distributions?" We will see below that this question has been quite

satisfactorily answered by many different authors. The second question, important

for a concrete implementation, is, "What are the right constraints?" This is studied

and will be the subject of the theory we develop in Chapter 3. To answer the first

question and understand the significance of the second question, we take a brief his-

torical detour.

1.1.1 Maximum Entropy in Statistical Mechanics

We begin with the work of Boltzmann (1871c,b,a), who studied properties of gas bod-

ies, viewed as systems composed of a large number of molecules. One of his central

concerns was how the macroscopic state of the system is influenced by the micro-

scopic properties of the system. The macroscopic state (macrostate) includes proper-

ties such as total volume, total number of molecules, and total energy. The micro-

scopic state (microstate) is described by the properties of individual molecules such

as their velocities and positions.

To simplify the discussion, assume that the molecules of the gas body occupy

discrete states. These can be obtained, for example, by the discretization of positions

and velocities of the molecules. A crucial quantity on both the macroscopic and the

microscopic scale is the energy. The energy of each molecule is the sum of the kinetic

energy, which depends only on the velocity of the molecule, and the potential energy,

which depends only on the position of the molecule within a force field. We assume

that the division of the state space into discrete cells is fine enough so that the energy

of molecules within the same cell is almost constant, but coarse enough to allow a

large number of molecules per cell. The microstate of the system can be viewed as a

vector, listing for each molecule the cell it occupies. The macrostate is determined by

the histogram of molecule counts across cells. Therefore, to describe the macrostate,

it suffices to calculate the most likely histogram.

Here, Boltzmann appealed to the “principle of indifference,” and posited that all

3



the microstates are equally likely. Thus, the most likely histogram is the one that

can be realized by the largest number of microstates. To be more concrete, label the

discrete cells as 1,2, . . .,K , denote the number of molecules in the k-th cell by Nk, and

the total number of molecules by N. The total number of ways to realize a concrete

allocation into cells is described by the multinomial coefficient

N!
N1!N2! · · ·NK !

. (1.1)

Boltzmann looked for the set of occupancies Nk for which the number of possible

realizations (1.1) is the maximum, while respecting the law of conservation of energy

K∑

k=1
NkEk = E . (1.2)

Here, Ek is the energy associated with the state k and E is the total energy.

Instead of maximizing Eq. (1.1) directly, it is computationally simpler to maximize

its logarithm. The logarithm of Eq. (1.1) plays a central role in thermodynamics.

When multiplied by Boltzmann’s constant, it defines the thermodynamic entropy:

thermodynamic entropy∝ ln
(

N!
N1!N2! · · ·NK !

)
≈

(
K∑

k=1
Nk ln

N

Nk

)
.

In the last step, we used Stirling’s approximation. Boltzmann’s problem can be

rephrased in terms of frequencies pk = Nk/N as

maximize
K∑

k=1
N pk ln

1
pk

(1.3)

subject to the constraint
K∑

k=1
pkEk = E/N . (1.4)

Now, using the method of Lagrange multipliers, we arrive at the solution to Boltz-

mann’s problem: the Boltzmann distribution

pk ∝ eλEk .

Here, λ is the Lagrange multiplier ensuring that the average-energy constraint (1.4)

is satisfied. Using the expression for the Boltzmann distribution, it is now possible

to study various properties of gas bodies, for example, the distribution of gas density

in a gravitational field.

4



1.1.2 Jaynes-Kullback Principle of Maximum Entropy

Boltzmann’s reasoning can be re-interpreted using information theory and gener-

alized to problems outside statistical mechanics. This was first noticed by Jaynes

(1957), who even suggested that statistical mechanics “may become merely an exam-

ple of statistical inference.”

Jaynes, influenced by the information-theoretical work of Shannon (1948), argued

that the thermodynamic entropy in Boltzmann’s problem should be replaced by the

information-theoretic entropy, quantifying how uncertain we are about the system.

Our only knowledge about the system is summarized by the average-energy con-

straint (1.4). Among all distributions satisfying this constraint, we should choose

the one that is “maximally non-committal with regard to the missing information,”

i.e., the one with the largest information-theoretic entropy

H(p)=−
K∑

k=1
pk ln pk .

Since the information-theoretic entropy is a multiple of the thermodynamic entropy,

its maximization yields the result that is identical to Boltzmann’s solution.

Moreover, the principle of maximum entropy can be viewed as a generalization

of the principle of indifference applied by Boltzmann. In statistical inference, the

principle of maximum entropy tells us to represent an unknown distribution by the

maximum-entropy distribution satisfying a given set of constraints. In Boltzmann’s

problem, the only feature is the energy, and the Boltzmann distribution is a one-

feature instance of a Gibbs distribution.

In general, let the states be denoted by x and the state space by X. If every state

is assigned a vector of feature values f (x) then the resulting Gibbs distribution takes

the form

p(x)∝ eλ·f (x)

for the appropriate vector of Lagrange multipliers λ.

The information-theoretic justification of Jaynes was generalized by Kullback

(1959) who assumed that in addition to a set of constraints we are also given a dis-

tribution q0, serving as a default guess—the distribution we would choose if we had

no data. He suggested choosing the distribution that is the closest to q0 among all

the distributions satisfying the constraints. The measure of closeness is the relative

entropy,

D(p ∥ q0)=
∑

x∈X

p(x) ln
p(x)
q0(x)

,

also known as the Kullback-Leibler divergence, measuring how much information

5



about the outcome could be gained by knowing p instead of approximating it by q0.

If q0 is uniform then the minimum relative entropy criterion is the same as the

maximum entropy criterion. The resulting Gibbs distributions take the form

p(x)∝ q0(x)eλ·f (x) .

The information-theoretic motivation of Jaynes and Kullback was described by

Beneš (1965) as “a reasonable and systematic way of throwing up our hands.” How-

ever, it is not clear why the information-theoretic quantities such as entropy and

relative entropy should be appropriate for the density estimation task. Even though

a large body of research seems satisfied with the purely information-theoretic moti-

vation (see, for example, references in Shore and Johnson, 1980), the apparent mis-

match between the task at hand and the maximum-entropy principle prompted a

large body of theoretical research, resulting in a variety of theoretical justifications.

We mention three approaches, addressing maxent from three different perspectives:

large-deviation theory, axiomatic derivation, and game theory.

1.1.3 Large-deviation Theory

The first perspective, large-deviation theory, is related to the original application of

maximum entropy in statistical mechanics. Informally, large-deviation theory stud-

ies probabilities of unlikely events. In statistical mechanics, the unlikely events cor-

respond to macrostates (or histograms) with submaximal entropy.

For example, we saw in Boltzmann’s problem that the number of realizations of

an empirical distribution p by N particles is

N!
N1!N2! · · ·NK !

= eN(H(p)+o(1)) , (1.5)

where o(1) denotes an arbitrary function with limit zero as N tends to infinity. Thus,

the maximum-entropy distribution p̂ can be realized by

eN(H(p̂)+o(1)) (1.6)

microstates. We would like to compare this number with the total number of realiza-

tions whose entropy is submaximal, i.e., whose entropy is less than H( p̂)−ε for some

fixed ε.

For any particular histogram p, the number of realizations is given by Eq. (1.5).

Thus, if H(p) ≤ H( p̂)− ε then the number of realizations of the histogram p will be

at most eN(H(p̂)−ε+o(1)). The number of histograms with entropy at most H( p̂)− ε is

trivially bounded by the total number of histograms of N particles, each in one of K
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states. This is at most (N +1)K . Thus the total number of realizations with entropy

at most H( p̂)−ε is at most

(N +1)K eN(H(p̂)−ε+o(1)) = eN(H(p̂)−ε+o(1)) .

If N is sufficiently large, this number of realizations will be exponentially smaller

than the number of realizations of p̂. Thus, among all empirical distributions satis-

fying the constraints, all but an exponentially small fraction lie inside an arbitrarily

small neighborhood of the maximum-entropy distribution.

The previous reasoning assumes that all realizations are a priori equally likely.

When each molecule is assigned to its cell according to an a priori distribution q0, the

entropy H(p) in the previous arguments needs to be replaced by the negative relative

entropy −D(p ∥ q0).

The foregoing arguments are special cases of Sanov’s theorem (Sanov, 1957),

which states that the empirical distribution under a set of constraints approaches the

maximum-entropy distribution. Sanov’s theorem can be further generalized to a set

of results known as conditional limit theorems (Van Campenhout and Cover, 1981;

Csiszár, 1984; Grünwald, 2001). For example, assume that the constraints define a

convex set of probability distributions and samples are drawn independently from q0,

which itself does not satisfy the constraints. Then it can be argued by Csiszár’s con-

ditional limit theorem that the conditional distribution of the first sample, on the

condition that the empirical distribution p satisfies the constraints, converges to

the maximum entropy distribution p̂. The statement of Csiszár’s conditional limit

theorem is significantly stronger than that of Sanov’s theorem. Rather than a state-

ment about the empirical distribution of all N particles, it is a statement about the

marginal distribution of a single particle.

Sanov’s theorem and conditional limit theorems characterize the properties of

the empirical state of a system under known conditions, assuming that the empirical

state is generated by the distribution q0. They provide a strong justification for

maxent in statistical mechanics (Csiszár, 1995), but it is not clear how useful they

are in statistical inference, when q0 is a mere default estimate, and the goal is to

infer the unknown sample-generating distribution.

1.1.4 Axiomatic Approaches

The problem of statistical inference is addressed more directly by axiomatic approach-

es (Shore and Johnson, 1980; Skilling, 1988; Csiszár, 1991). These approaches begin

by formulating a set of properties desirable for consistent statistical inference, such

as invariance under changes of coordinates and consistency under decompositions
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into disjoint subsystems. From these properties it is then derived that the only

method of statistical inference which satisfies all the conditions simultaneously is

the principle of maximum entropy.

Unfortunately, the desirable properties postulated in axiomatic approaches are

not entirely self-evident. In this respect, axiomatic approaches resemble the original

justifications of Jaynes and Kullback. The desirability conditions—be it the max-

imum ignorance of Jaynes, the minimum relative entropy of Kullback, or a set of

consistency properties of Shore and Johnson—are somewhat arbitrary and seem ex-

ternal to the problem of density estimation (at least from the perspective of a machine

learning practitioner, such as the author).

In this dissertation, the solution quality is often evaluated on a test set consisting

of samples which are withheld during training. Frequencies observed in the test set

are seen as approximations of some “true” probabilities, which would be obtained in

the limit of infinitely many samples. This view of probabilities is called frequency

interpretation (Hájek, 2007).

In machine learning and statistics, the most common alternative to frequency

interpretation is Bayesian interpretation. Bayesian interpretation postulates prior

probabilities over all densities in a given family. After seeing the evidence, an or-

thodox Bayesian does not produce a single density estimate, but instead derives a

posterior distribution over all possible densities based on the prior and the evidence.

A less orthodox Bayesian may choose a single density that maximizes the posterior.

Frequency and Bayesian interpretations relate density estimation problems to

observed samples either directly, through frequencies, or indirectly, through the pos-

terior. Such a link is, however, missing in the justifications of maximum entropy

introduced above. Information-theoretic arguments are based on the principle of

maximum indifference, and therefore yield classical interpretation of probabilities

(Hájek, 2007). This interpretation is what we use when analyzing a shuffled deck

of cards. We assume that each permutation is equally likely, similar to Boltzmann’s

assumption that each microstate is equally likely. Axiomatic approaches are similar

to the principle of indifference in that they try to deduce probabilities “from the basic

principles,” rather than from a model of sample generation. The principle of indiffer-

ence is replaced by a set of consistency requirements. Both lines of justification shed

little light on how to derive constraints from the observations.

1.1.5 Game-theoretic Perspective

The final justification of maximum entropy, introduced by Topsøe (1979), adopts a

view that is more accessible to frequency interpretation. We will exploit this view to

connect sample generation with density estimation.
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Topsøe frames maxent within game theory similar to the decision-theoretic setup

of classical statistics. Specifically, he considers the density-estimation game with

two players: nature and the decision maker. Nature is allowed to choose any dis-

tribution π that satisfies a given set of constraints. The decision maker only knows

the set of constraints, but not the distribution π, and would like to choose a distribu-

tion q that achieves the largest expected log likelihood relative to the log likelihood

achieved by a default estimate q0. Thus the decision maker tries to maximize

∑

x∈X

π(x) ln q(x)−
∑

x∈X

π(x) ln q0(x)=
∑

x∈X

π(x) ln
q(x)
q0(x)

.

The best strategy of the decision maker is to choose the distribution q̂ that maximizes

the worst-case log likelihood:

q̂ = argmax
q∈∆

min
π∈P

(
∑

x∈X

π(x) ln
q(x)
q0(x)

)
,

where ∆ denotes the set of all densities on a given sample space and P denotes the set

of densities satisfying given constraints. Topsøe shows that the max-min likelihood

density q̂ is identical to the minimum relative entropy (or maximum entropy) density

p̂ = argmin
p∈P

D(p ∥ q0) .

One might ask, “Why maximize the likelihood?" and there are several justifica-

tions, including optimal gambling and optimal coding (Cover and Thomas, 1991). Are

these justifications less arbitrary than the justifications of maxent by information

theory and axiomatic derivations?

We believe that there is a difference. Instead of imposing desirability conditions

and seeking the rational guess of the distribution, max-min likelihood directly iden-

tifies the performance measure and optimizes it relative to the “true” distribution.

The assumption about the existence of a single true distribution (obtained possibly

in the limit of infinitely many samples) is inherently frequentist. Thus, max-min

likelihood can be viewed as a frequentist interpretation of maximum entropy. In this

work, we adopt the frequentist view, but for historical reasons we continue to refer

to the problem as maxent. We use the name maxent for both the maximum entropy

formalism of Jaynes and the minimum relative entropy formalism of Kullback.
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1.1.6 Maximum Entropy versus Maximum Likelihood

As mentioned before, maxent with equality constraints based on empirical averages

is equivalent to maximum likelihood in an exponential family. The dual interpre-

tation of maxent as maximum likelihood has been suggested as an alternative jus-

tification of maxent (Jaynes, 1978). However, the maximum-likelihood setting in

classical statistics (see, for example, Lehmann and Casella, 1998, Chapter 6) differs

from the maxent setting in several aspects. First, in maximum likelihood, the true

distribution is assumed to be from the same family as the distributions over which

the likelihood is maximized. Maxent poses no parametric assumptions on the truth.

Second, the goal of maximum likelihood is parameter estimation rather than density

estimation, so the analysis typically focuses on the asymptotic properties of parame-

ter estimates. In maxent, it is more natural to compare actual distributions instead

of parameters: the maxent distribution with the true distribution, or possibly the

maxent distribution with the best approximation of the truth by a Gibbs distribution.

Thus, likelihood serves as a measure of maxent performance rather than a device for

estimating parameters.

1.1.7 Constraints and Overfitting in Maximum Entropy

A crucial question arising in any concrete implementation of maxent is how to choose

the set of constraints. The most common are equality constraints on feature expec-

tations, introduced in the original papers of Jaynes and Kullback. Although other

types of constraints appear in the literature (Csiszár, 1975; Jaynes, 1978; Shore and

Johnson, 1980; Khudanpur, 1995), they have received little attention in practical ap-

plications until the 2000s. Yet, according to the max-min likelihood interpretation,

the choice of correct constraints may be essential. For if the true distribution does

not lie in the set P, then the decision maker is foolishly optimizing against a wrong

enemy. Conversely, if the set P is too large, then the decision maker is too cautious,

optimizing against the enemies that should be perhaps ruled out.

When equality constraints are based on empirical averages, it should not be sur-

prising that maxent can severely overfit the training data. For instance, in our ap-

plication, we sometimes consider threshold features for each environmental variable.

These are binary features equal to one if an environmental variable is larger than a

fixed threshold and zero otherwise. Thus, there is a continuum of features for each

variable, and together they force the maxent distribution to be non-zero only at val-

ues achieved by the samples. The problem is that in general, the empirical averages

of features will almost never be equal to their true expectations, so the target dis-

tribution does not satisfy the constraints imposed on the output distribution. This
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problem is exacerbated by small sample sizes. From the dual perspective, the ex-

ponential family is too expressive and the maximum likelihood distribution overfits.

Common approaches to counter overfitting are parameter regularization (Lau, 1994;

Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001; Zhang, 2005), introduction

of a prior (Williams, 1995; Goodman, 2004), feature selection (Berger et al., 1996;

Della Pietra et al., 1997), discounting (Lau, 1994; Rosenfeld, 1996; Chen and Rosen-

feld, 2000), and constraint relaxation (Khudanpur, 1995; Kazama and Tsujii, 2003;

Jedynak and Khudanpur, 2005).

Regularization techniques control overfitting by introducing a penalty term in

the dual objective (i.e., log likelihood). The penalty is usually a monotone function

of a norm of the parameter vector, such as the ℓ1 norm (the sum of absolute val-

ues) or the ℓ2 norm (the Euclidean norm). Optimization of the regularized objective

seeks balance between goodness of fit and complexity of the solution. A Bayesian ap-

proach to prevent overfitting is introduction of a prior and, instead of maximization

of likelihood, maximization of the posterior. The resulting models thus balance prior

knowledge with the observed data. Other approaches, including feature selection,

discounting, and constraint relaxation, maximize entropy subject to adjusted con-

straints which encourage simpler solutions. Thus, there are many ways of modifying

maxent to control overfitting calling for a general treatment.

1.2 Outline and Contributions

In this work, we study a generalized form of maxent. Although mentioned by other

authors as fuzzy maxent (Lau, 1994; Chen and Rosenfeld, 2000; Lebanon and Laf-

ferty, 2001), we give the first complete theoretical treatment of this very general

framework, including fully general and unified performance guarantees, algorithms,

and convergence proofs. Our unified treatment leads to a principled approach to

problems of small-sample estimation, biased estimation, and multiple estimation.

In the problem of estimating a single density, from small as well as large samples,

our general results allow us to easily derive performance guarantees for many known

regularized formulations, including ℓ1, ℓ2, ℓ2
2, and ℓ1+ℓ2

2 regularizations. More specif-

ically, we derive guarantees on the performance of maxent solutions compared to the

“best” Gibbs distribution q⋆. Our guarantees are derived by bounding deviations of

empirical feature averages from their expectations, a setting in which we can take

advantage of a wide array of uniform convergence results. Our bounds depend very

favorably on the number or complexity of features. For example, we prove that ℓ1-

regularized maxent yields accurate models as long as the features are bounded and

their number is smaller than the exponential of the sample size.
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A crucial insight of our general analysis is that maxent relaxations corresponding

to tighter constraints on the feature expectations yield better performance guaran-

tees. We use this insight throughout the dissertation to derive novel regularization

functions and a corresponding analysis for our three problems. In our first problem,

small-sample estimation, the performance of ℓ1 regularization can be improved when

some information about the structure of the feature space is available, for example,

when some features are known to be squares or products of other “base” features, cor-

responding to constraints on variances or covariances of the base features. We apply

our general framework to derive improved generalization bounds using an entirely

new form of regularization. These results improve on bounds for previous forms of

regularization by up to a factor of eight—an improvement that would otherwise re-

quire a 64-fold increase in the number of training examples.

In Chapter 4, we propose algorithms solving a large and general subclass of gen-

eralized maxent problems. We show convergence of our algorithms using a technique

that unifies previous approaches and extends them to a more general setting. Specif-

ically, our unified approach generalizes techniques based on information geometry

and Bregman divergences (Della Pietra et al., 1997, 2001; Collins et al., 2002) as well

as those based more directly on compactness. The main novel ingredient is a modi-

fied definition of an auxiliary function, a customary measure of progress, which we

view as a surrogate for the difference between the primal and dual objective rather

than a bound on the change in the dual objective.

Standard maxent algorithms such as iterative scaling (Darroch and Ratcliff, 1972;

Della Pietra et al., 1997), gradient descent, Newton and quasi-Newton methods (Cesa-

Bianchi et al., 1994; Malouf, 2002; Salakhutdinov et al., 2003), and their regularized

versions (Lau, 1994; Williams, 1995; Chen and Rosenfeld, 2000; Kazama and Tsujii,

2003; Goodman, 2004; Krishnapuram et al., 2005) perform a sequence of feature-

weight updates until convergence. In each step, they update all feature weights.

This is impractical when the number of features is very large. Instead, we propose a

sequential-update algorithm that updates only one feature weight in each iteration,

along the lines of algorithms studied by Collins, Schapire, and Singer (2002), and

Lebanon and Lafferty (2001). This leads to a boosting-like approach permitting the

selection of the best feature from a very large class. For instance, for ℓ1-regularized

maxent, the best threshold feature associated with a single variable can be found in

a single linear pass through the (pre-sorted) data, even though conceptually we are

selecting from an infinite class of features. Other boosting-like approaches to density

estimation have been proposed by Welling, Zemel, and Hinton (2003), and Rosset and

Segal (2003).

Sequential updates are especially desirable when the number of features is very
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large or when they are produced by a weak learner. When the number of features

is relatively small, yet we want to use benefits of regularization to prevent overfit-

ting on small sample sets, it might be more efficient to solve generalized maxent by

parallel updates, similar to standard algorithms such as iterative scaling and quasi-

Newton approaches. To address this problem, we derive a parallel-update version of

our algorithm, generalizing the iterative-scaling approaches mentioned above, and

prove its convergence.

In Chapter 5, we return to the application of maxent to species-distribution mod-

eling. We explore the performance of ℓ1-regularized maxent in an application of

estimating distributions of four bird species in North America. We analyze how the

choice of the feature set influences the predictive accuracy of maxent, depending on

the number of occurrence records. We explore effects of regularization on predictive

accuracy and interpretability of the maxent models.

We also evaluate maxent on a comprehensive dataset of 226 species from 6 re-

gions. This dataset was developed by a working group at the National Center for

Ecological Analysis and Synthesis (NCEAS) as part of a large-scale comparison of

species distribution modeling methods (Elith, Graham et al., 2006). We refer to the

data as “the NCEAS dataset,” and the comparison of methods as “the NCEAS com-

parison.” Both the NCEAS dataset and methods participating in the NCEAS compar-

ison are described in more detail in Chapter 5. Here, we simply note that the NCEAS

dataset has two portions: the training portion, with data of low quality as typical in

many applications, and the evaluation portion, obtained by independent, rigorously

planned surveys.

In preliminary experiments on the North American bird dataset, we observed

that the performance of maxent depends on the choice of feature classes and the

amount of regularization. We optimize the performance of maxent on the NCEAS

dataset by tuning the regularization parameters on a small portion of the training

data. The models are then constructed from all of the training data and evaluated

on the evaluation data.

Among the twelve methods in the NCEAS comparison, ℓ1-regularized maxent is

among the best methods alongside boosted regression trees (Leathwick et al., 2006),

generalized dissimilarity models (Ferrier et al., 2002) and multivariate adaptive re-

gression splines with the community-level selection of basis functions (Leathwick

et al., 2005). Among these, however, maxent is the only method designed for presence-

only data. The remaining methods are based on regression and require data on

species absence. Since the data on species absence is expensive to collect and thus

missing in most datasets, the absences are usually replaced by pseudo-absences. This

complicates the analysis as well as interpretation of the resulting models.
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The careful tuning of maxent regularization parameters on the NCEAS dataset

has one additional goal: to determine well-performing “default settings.” Default

settings are desirable, because the parameter tuning may be prohibitively time-con-

suming to do separately for each species, or unreliable for small or biased datasets.

Additionally, even with the abundance of good quality data, users interested in the

application of species models need not have the statistical knowledge required for

detailed tuning. To assess the quality of the settings determined from the NCEAS

training data, we compare their performance with the optimal performance of the

settings tuned on the evaluation data itself. We find that the potential improvements

in performance are very small, and conclude that the settings determined on the

NCEAS training data can be used as default settings.

In Chapter 6, we explore maxent solutions to the problem of biased estimation.

We propose two bias correction approaches. The first approach is based on our gen-

eralization analysis, according to which the maxent constraints should determine

tight confidence regions for the unbiased feature means. We use the biased sample

and the information about sample-selection bias to determine unbiased confidence re-

gions. The second approach first estimates the biased distribution, using the biased

sample, and then factors the bias out. We evaluate our bias correction approaches

on a synthetic dataset as well as the NCEAS dataset. We view the training portion

of the NCEAS dataset as the biased training data and the evaluation portion as the

unbiased test data. The information about sample selection bias is provided by the

total of training records across all species, demonstrating how the collectors’ effort

varies across the regions of interest.

We find that bias correction approaches improve maxent performance in both syn-

thetic and real-data experiments. The improvement in performance on the NCEAS

dataset is especially dramatic, comparable with the gap between the four best per-

forming methods and the remaining eight methods of the NCEAS comparison. In-

clusion of bias information leads to similar improvements in regression-based tech-

niques.

In Chapter 7, we turn to the problem of multiple estimation. We use insights from

our generalization analysis to develop hierarchical maximum entropy density estima-

tion, a procedure that allows sharing of information among single-density problems.

The datasets are grouped, and the individual estimates are adjusted to reflect that

grouping. With this approach, estimates from small sample sizes are influenced

by the estimates for which we have more confidence; estimates from large sample

sizes are less influenced by others. In statistics, this is known as hierarchical/multi-

level modeling (Gelman and Hill, 2007) or shrinkage, introduced by Stein (1956) and

James and Stein (1961). In machine learning, hierarchical models have been used,
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for example, by McCallum et al. (1998) and Teh et al. (2005). These methods are also

related to multitask or transfer learning (Caruana, 1993; Baxter, 2000; Raina et al.,

2006)

In hierarchical maximum entropy, we assume that we are given a fixed class hi-

erarchy. We fit the joint distribution of all classes, placing constraints on individual

class distributions as well as on groups of classes defined by the hierarchy. We show

that our approach is closely related to maximum a posteriori estimation with a hi-

erarchical prior, or maximum likelihood estimation with hierarchical regularization

(shrinkage). We apply our generalization theory and demonstrate how to choose hy-

perparameters in this setting. We prove strong generalization guarantees. We report

the utility of hierarchical maximum entropy on a small synthetic dataset and on two

regions of the NCEAS dataset.

Work in this dissertation overlaps with the previously published work of the au-

thor (Phillips, Dudík, and Schapire, 2004; Dudík, Phillips, and Schapire, 2004; Dudík,

Schapire, and Phillips, 2006; Elith, Graham et al., 2006; Dudík and Schapire, 2006;

Dudík, Phillips, and Schapire, 2007; Dudík, Blei, and Schapire, 2007; Phillips and

Dudík, 2007; Phillips, Dudík et al., 2007).
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Chapter 2

Maximum Entropy and Convex

Duality

In this chapter, we introduce a generalization of maxent and derive its convex dual—

maximum regularized log likelihood. This generalization has been mentioned by

other authors as fuzzy maxent (Lau, 1994; Chen and Rosenfeld, 2000; Lebanon and

Lafferty, 2001), but the duals were derived only for a few specific cases. We derive

the general dual using a convex-analysis result known as Fenchel’s duality theorem.

Before describing the generalized maxent setting, we review the basic maxent setting

of Jaynes and Kullback.

2.1 Basic Maximum Entropy

The goal of density estimation is to estimate an unknown density π over a sample

space X. Throughout this dissertation we assume that X is discrete; hence any den-

sity π can be identified with a probability mass function on X. As empirical informa-

tion, we are given a set of samples x1, . . . , xm drawn independently at random from π.

The corresponding empirical distribution is denoted by π̃:

π̃(x)= 1
m

m∑

i=1
1(xi = x)

where 1(P(x)) denotes the binary indicator, which is a function of x, equal to one

when the predicate P(x) is true, and equal to zero when the predicate P(x) is false.

The available information about the space X is expressed by features f j where f j :

X → R and j comes from an index set J. The set of features is denoted by F, the

vector of all features is denoted by f .

One naive approach to estimating π is an approximation by the empirical distri-
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bution π̃. However, when the size of the sample space X is much larger than the

number of samples m, the empirical distribution π̃ will be quite distant, under any

reasonable measure, from π.

On the other hand, for a given function f , we do expect EX∼π̃[ f (X )], the empirical

average of f , to be rather close to its true expectation EX∼π[f (X )]. It is quite natu-

ral, therefore, to seek an approximation p under which f j ’s expectation is equal to

EX∼π̃[ f j(X )] for every f j. There will typically be many distributions satisfying these

constraints. The maximum entropy principle suggests that, from among all distri-

butions satisfying these constraints, we choose the one of maximum entropy, i.e., the

one that is closest to uniform. However, the default estimate of π, i.e., the distribution

we would choose if we had no sample data, may be in some cases non-uniform. In a

more general setup, we therefore seek a distribution that minimizes entropy relative

to the default estimate q0.

Instead of maximizing entropy or minimizing the relative entropy, we could posit

a family of distributions qλ parameterized by λ, and approximate π by the maximum

likelihood distribution from the family, i.e., by the distribution which maximizes the

likelihood of the data
m∏

i=1
qλ(xi) .

It can be proved (Della Pietra et al., 1997) that the maximum entropy distribution

and the maximum likelihood distribution are equal when the family of distributions

is the exponential family with features as sufficient statistics and the distribution q0

as the base measure; in other words, when the family is defined by

qλ(x)= q0(x)
eλ·f (x)

Zλ

where Zλ =∑
x∈X q0(x)eλ·f (x) is the normalizing constant, and λ ∈R

n is the vector of

parameters. Distributions qλ will also be referred to as Gibbs distributions.

Instead of maximizing the likelihood, we could equivalently minimize the empiri-

cal log loss (negative normalized log likelihood relative to the default q0)

Lπ̃(λ)=− 1
m

m∑

i=1
ln

qλ(xi)
q0(xi)

.

Summarizing the previous, we obtain the following two optimization problems

min
p∈∆

D(p ∥ q0) subject to Ep[f ]=Eπ̃[f ] (2.1)

inf
λ∈RJ

Lπ̃(λ) (2.2)
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where ∆ is the simplex of probability distributions over X. We use the shorthand

Ep[f ] for EX∼p[f (X )].

In general, we write

Lr(λ)=−Er

[
ln

qλ

q0

]
= ln Zλ−λ ·Er[f ] (2.3)

to denote the log loss of qλ on the distribution r relative to the default q0. It differs

from the relative entropy D(r ∥ qλ) only by the additive constant D(r ∥ q0):

Lr(λ)=D(r ∥ qλ)−D(r ∥ q0) . (2.4)

We will use the two interchangeably as objective functions. In particular, note that

Eq. (2.2) minimizes the relative entropy between the empirical distribution π̃ and

distributions q in the closure of the exponential family.

2.2 Feature Types and Exponential Families

The choice of feature types determines the exponential family used in the maxent

dual to approximate π. We stress that π need not belong to this exponential family.

Here we discuss various feature types and the resulting exponential families. To be

concrete, we consider the species modeling setup where features are derived from

environmental variables v : X→R, v ∈V. Environmental variables might be continu-

ous, such as altitude, annual precipitation, and average temperature, or categorical,

such as soil type or vegetation type.

2.2.1 Linear, Quadratic, and Product Features

For a continuous variable v, its corresponding linear and quadratic features are de-

fined by

fv(x)= v(x) , fv2(x)= v2(x) .

For a pair of distinct continuous variables v, w, the corresponding product feature is

fvw(x)= v(x)w(x) .

Linear features in basic maxent require that the expectations of individual variables

match their empirical means. For example, an average elevation where a yellow-

throated vireo was observed should match the expected elevation according to the

maxent model. Linear and quadratic variables jointly constrain both means and

variances of the environmental variables. Product features with the respective linear
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features constrain means and covariances.

For an example of an exponential family resulting from these features, consider

the feature set including linear and quadratic features. In this case, Gibbs distribu-

tions take the form

qλ(x)= q0(x)exp

{
∑

v∈V

[
λv2 v2(x)+λvv(x)

]} /
Zλ . (2.5)

Formally, this resembles a Gaussian with uncorrelated components. Specifically, con-

sider a Gaussian random variable taking values ξ ∈RK , with mean µ, and a diagonal

covariance matrix with variances σ2
1, . . . ,σ2

K . The density of ξ is then

p(ξ)∝ exp

{
K∑

k=1
− (ξk −µk)2

2σ2
k

}
∝ exp

{
K∑

k=1

[
− 1

2σ2
k
ξ2

k +
µk

σ2
k
ξk

]}
. (2.6)

Now, identifying components ξk with variables v, and setting λv = µk/σ2
k and λv2 =

−1/(2σ2
k ), we find that the exponents of Eqs. (2.5) and (2.6) formally agree. The only

difference is that the base measure of the Gaussian density is the Lebesgue measure

whereas the base measure of qλ is q0. However, as a result, the two exponential fam-

ilies have qualitatively different properties. For example, λv2 can be both positive

and negative, whereas the variance σ2
k is always nonnegative. Thus, the exponen-

tial family defined by Eq. (2.5) includes multimodal distributions, whereas diagonal

Gaussian distributions defined by Eq. (2.6) are always unimodal.

2.2.2 Categorical Indicator Features

For a categorical variable v : X → C, where C is a discrete subset of R, we define a

categorical indicator for each category c ∈C as fv=c(x)=1(v(x)= c).

2.2.3 Threshold Features

For a continuous variable v and a threshold θ, there are two threshold features

fv≥θ(x)=1(v(x)≥ θ) , fv<θ(x)=1(v(x)< θ) .

Formally, we consider a continuum of threshold features for each variable. In prac-

tice, it suffices to consider a single threshold between each pair of consecutive values

appearing in the sample space X. Thus, in the worst case, there will be |X|−1 dis-

tinct threshold features for each variable. Note that for each variable, the sum of

its threshold features weighted by the corresponding λ’s can express an arbitrary

piecewise constant function of the variable. Linear combinations of threshold fea-
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tures across all variables can represent arbitrary additive “responses” in the expo-

nent. The response refers to the exponent of the Gibbs distribution when viewed as

a function of environmental variables rather than the point x. For example, Eq. (2.5)

models arbitrary quadratic responses (without interactions, which can be introduced

by adding product features).

2.2.4 Hinge Features and Splines

Threshold features can model arbitrary piecewise constant functions. The resulting

responses to environmental variables will be, however, discontinuous. To obtain con-

tinuous responses, we introduce hinge features, which model continuous piecewise

linear functions of variables. There are two types of hinge features for each continu-

ous variable v and threshold θ

fhinge;v≥θ(x)=





v(x)−θ

vmax−θ
if v(x)≥ θ

0 if v(x)< θ,

fhinge;v<θ(x)=





0 if v(x)≥ θ

θ−v(x)
θ−vmin

if v(x)< θ,

where vmin and vmax are the minimum and maximum values of v on X. The scaling

by vmax−θ and θ−vmin ensures that hinge features have values in [0,1].

Formally, hinge features can be defined in terms of clamped linear functions

h(t;a, b)=





0 if
t−a

b−a
< 0

t−a

b−a
if

t−a

b−a
∈ [0,1]

1 if
t−a

b−a
≥ 1 .

Specifically,

fhinge;v≥θ(x)=h(v(x);θ,vmax) , fhinge;v<θ(x)=h(v(x);θ,vmin) .

Similar to threshold features, we only consider a single threshold between each

pair of consecutive variable values. Unlike threshold features, it is not possible to

represent all hinge features in this manner. However, when hinge features are used

jointly with threshold features, then one hinge and one threshold feature at the same

threshold can represent a hinge feature at an arbitrary threshold between the two

given variable values.
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v(x)≥ θ

return λv≥θ

v(x)< θ

return λv<θ

(a)

v1(x)≥ θ1 v1(x)< θ1

v2(x)≥ θ2 v2(x)< θ2

return λ1

return λ2 return λ3

(b)

Figure 2.1. Examples of a regression stump (a), and a regression tree (b).

Hinge features give rise to continuous response functions, but their first deriva-

tives are discontinuous. When a higher-order continuity is needed then hinge fea-

tures can be replaced by a suitable spline basis.

2.2.5 Regression Trees and Multivariate Splines

Threshold and hinge features model arbitrary additive responses. Here we consider

their generalizations that model higher-order interactions. Consider a pair of thresh-

old features fv≥θ and fv<θ for a fixed variable v and threshold θ. The linear combina-

tion

λv≥θ fv≥θ(x)+λv<θ fv<θ(x)

can be viewed as a regression stump which assigns the value λv≥θ to the points x

with v(x) ≥ θ, and value λv<θ to the points x with v(x) < θ, as depicted in Fig. 2.1(a).

Threshold features can be generalized to implement regression trees of arbitrary

depth by introducing more complicated features corresponding to paths from the root

to leaves. For example, the regression tree in Fig. 2.1(b) can be represented by the

linear combination

λ1 f1(x)+λ2 f2(x)+λ3 f3(x)

where f1, f2, f3 are decision-path features, or simply decision paths,

f1(x)=1(v1(x)≥ θ1)

f2(x)=1({v1(x)< θ1}∩ {v2(x)≥ θ2})

f3(x)=1({v1(x)< θ1}∩ {v2(x)< θ2}) .
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Note that decision paths can be written as products of threshold features, for exam-

ple,

f2(x) =1({v1(x)< θ1}∩ {v2(x)≥ θ2})=1(v1(x)< θ1)1(v2(x)≥ θ2) .

In classification, decision-path features are building blocks of alternating decision

trees (Freund and Mason, 1999).

Similar to decision paths, it is possible to introduce products of hinge features,

which we call path hinge features, yielding continuous versions of regression trees.

For example, f2 could be replaced by

f ′2(x)=h(v1(x);θ1,v1;min)h(v2(x);θ2,v2;max) .

In regression settings, path hinge features are used for example in multivariate adap-

tive regression splines (Friedman, 1991). Again, if smooth first or second derivatives

are desired, it is possible to use products of higher-order splines.

2.3 Overfitting and Smoothing

As mentioned in Chapter 1, maxent can severely overfit training data when the con-

straints on the output distribution are based on empirical averages, especially for a

very large number of features. For instance, constraints derived from threshold or

hinge features force the output distribution to be non-zero only at values achieved by

the samples (see Fig. 2.2).

The problem is that in general, the empirical averages of features will almost

never be equal to their true expectations, so the target distribution itself does not

satisfy the constraints imposed on the output distribution. From the dual perspective,

the chosen exponential family is too expressive. As a result, maxent fits an overly

complex solution to the training data, while failing to capture the dependencies of

the true distribution.

Common approaches to counter overfitting are parameter regularization (Lau,

1994; Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001; Zhang, 2005), intro-

duction of a prior (Williams, 1995; Goodman, 2004), feature selection (Berger et al.,

1996; Della Pietra et al., 1997), discounting (Lau, 1994; Rosenfeld, 1996; Chen and

Rosenfeld, 2000) and constraint relaxation (Khudanpur, 1995; Kazama and Tsujii,

2003). Here we briefly discuss each of them.
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(a) Occurrence records.

temp. range elevation

temperature no. wet days

(b) Example environmental variables.

(c) Maxent model: overfitting. (d) Maxent model with ℓ1 regularization.

Figure 2.2. Overfitting and regularization. We have used hinge features derived from seven
environmental variables (four of them shown) to model the bird species “yellow-throated
vireo” (more details in Section 5.3). (a,b) Maxent inputs: ten occurrence records and exam-
ples of environmental variables (larger values shown darker or red). (c) Maxent without
regularization overfits, zooming on a small number of pixels whose environmental-variable
values are represented exactly in the training set. Note the high predicted probabilities
(shown as darker or red) located in the exact centers of the circles which correspond to the
locations of training samples. The remaining dark pixels exactly match at least one of the
environmental-variable values observed in the training set. (d) The overfitting disappears
with the use of regularization.
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2.3.1 Feature Selection and Constraint Exclusion

Perhaps the simplest way to obtain smoother distributions is to delete some of the

constraints since maximizing the entropy subject to fewer constraints yields distri-

butions closer to uniform. For categorical variables, we may, for example, omit con-

straints on indicators of the categories with too few observations. Alternatively, we

could employ a more sophisticated feature selection scheme, weeding out “unreliable”

features, such as features with large sample variances.

A technique complementary to constraint exclusion is feature induction. In fea-

ture induction, one begins with a relatively simple set of features, for example, thresh-

old features, and then introduces new features to improve the training accuracy. New

features are derived from the existing feature set. For example, beginning with

threshold features as trivial decision paths, one may consider all decision paths ob-

tained by appending a single node to all existing decision paths.

2.3.2 Discounting

Discounting techniques are applied predominantly to categorical features. Discount-

ing is based on the observation that categories with low counts in the training sample

typically overestimate true probabilities of occurrences, whereas categories with zero

counts typically underestimate these probabilities. Instead of removing the corre-

sponding constraints altogether, discounting decreases the target mean values for in-

dicators of low-count categories and adds the missing mass to zero-count categories.

2.3.3 Regularization

Regularization is a common approach to smoothing in optimization and approxima-

tion, originally introduced by Tikhonov (1963b,a), Ivanov (1962), and Phillips (1962)

as a method of finding solutions to ill-posed problems. In statistics, regularization

was first introduced implicitly as shrinkage (Stein, 1956; James and Stein, 1961),

and later explicitly as part of ridge regression (Hoerl and Kennard, 1970).

The main idea is to include in the objective a penalty for the ruggedness of the

solution. The goal is to remove some of the noise present in finite sampling and to

make the optimum unique. The two most commonly used penalty functions are the

ℓ1 norm

‖λ‖1 =
∑

j∈J

|λ j|

and the ℓ2 norm squared

‖λ‖2
2 =

∑

j∈J

λ2
j .
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In the context of least squares regression, they are called the lasso penalty and the

ridge penalty. They can be applied to the maximum likelihood problem as follows:

min
λ∈RJ

[
Lπ̃(λ)+β‖λ‖1

]
, min

λ∈RJ

[
Lπ̃(λ)+ α

2
‖λ‖2

2

]
.

Here, β and α are tuning parameters specifying the tradeoff between the tightness

of fit, as expressed by the log loss, and the complexity of the solution, as expressed

by the regularization. To understand how the norms characterize the complexity of

the solution, consider the example of threshold features. Here larger values of |λ j|
correspond to larger jumps in response curves of the corresponding variables.1 Hinge

features behave similarly, with larger values of |λ j| corresponding to larger changes

in the slope. As a result, the responses characterized by large norms are more rugged

and possibly more prone to fitting models of the noise.

2.3.4 Introduction of a Prior

In frequentist settings, maxent is often justified by its dual formulation as the max-

imum likelihood. In Bayesian settings, the likelihood function should be comple-

mented with a prior over parameters, and instead of maximizing the likelihood, we

should determine the posterior distribution, or, less orthodoxly, maximize the poste-

rior. For example, if the prior over λ is a Gaussian with mean zero and a diagonal

covariance matrix with components σ2
j then the posterior is proportional to

(
∏

j∈J

e−λ
2
j /(2σ

2
j )

)(
m∏

i=1
qλ(xi)

)
.

Taking the negative log of the posterior, we find that maximizing the posterior is

equivalent to minimizing the ℓ2
2-regularized log loss:

min
λ∈RJ

[
Lπ̃(λ)+

∑

j∈J

λ2
j

2mσ2
j

]
.

Similarly, ℓ1-style regularization is equivalent to a Laplace prior. Other priors give

rise to other regularization types, and conversely other regularizations can be viewed

as representing various priors.

1Responses modeled by threshold features are additive, so they can be decomposed into responses
to individual variables.
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ψa(u)

u0−1
(a)

ψb(u)

u0−1
(b)

Figure 2.3. Examples of convex functions which are not closed. (a) ψa(u)= u2 if u >−1, and
ψa(u)=∞ otherwise. (b) ψb(u)= u2 if u >−1, ψb(−1)= 1.5, and ψb(u)=∞ if u <−1.

2.3.5 Constraint Relaxation

A crucial problem with basic maxent is that the true distribution itself does not match

the constraints exactly. There are many possibilities how to relax constraints. For

example, equality constraints can be relaxed to inequalities

∣∣Ep[ f j]−Eπ̃[ f j]
∣∣≤β j for all j ∈ J.

The maxent distribution under the relaxed constraints is closer to the default distri-

bution q0. Thus, when q0 is uniform, the solution of relaxed maxent will be smoother

than the solution of basic maxent.

Note that constraints need not be separable, i.e., they need not decompose into

independent constraints on individual feature means. For example, consider the vec-

tor of categorical indicators f C derived from a single categorical variable v : X → C.

For an arbitrary distribution p, the expectation Ep[f C] is itself a distribution over

categories. Thus, it may be more natural to use relative entropy to measure the de-

viation between Eπ̃[f C] and Ep[f C], and hence introduce a non-separable inequality

constraint

D
(
Ep[f C]

∥∥ Eπ̃[f C]
)
≤β . (2.7)

2.4 Convex Analysis Background

We have seen that there are many ways to prevent overfitting in maxent, calling for a

unified treatment. Before we introduce such a treatment, we will need a few concepts

from convex analysis. These concepts will be used throughout this dissertation. For

a more detailed exposition see Rockafellar (1970) or Boyd and Vandenberghe (2004).
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u

ψ(u)

tangent
with slope λ

intercept at −ψ∗(λ)

Fenchel’s inequality:

ψ(u)≥λu−ψ∗(λ)︸ ︷︷ ︸
equation of tangent with slope λ

Figure 2.4. Convex conjugates and Fenchel’s inequality. Value −ψ∗(λ) is defined as the
vertical-axis intercept of the tangent to ψ’s epigraph with slope λ.

Consider a function ψ :Rn → (−∞,∞]. The effective domain of ψ is the set domψ=
{u ∈ R

n : ψ(u) < ∞}. A point u where ψ(u) < ∞ is called feasible. The epigraph

of ψ is the set of points above its graph {(u, t) ∈ R
n ×R : t ≥ ψ(u)}. We say that ψ

is convex if its epigraph is a convex set. A convex function is called proper if it is

not uniformly equal to ∞. It is called closed if its epigraph is closed. For a proper

convex function, closedness is equivalent to lower semi-continuity (ψ is lower semi-

continuous if liminfu′→uψ(u′) ≥ψ(u) for all u). Examples of convex functions which

are not closed are given in Fig. 2.3.

If ψ is a closed proper convex function then its conjugate ψ∗ : Rn → (−∞,∞] is

defined by

ψ∗(λ)= sup
u∈Rn

[λ ·u−ψ(u)] . (2.8)

The conjugate provides an alternative description of ψ in terms of tangents to ψ’s

epigraph. Specifically, −ψ∗(λ) is defined as the vertical-axis intercept of a tangent

to ψ’s epigraph (see Fig. 2.4). The definition of the conjugate immediately yields

Fenchel’s inequality

∀λ, u : λ ·u ≤ψ∗(λ)+ψ(u) ,

which simply states that the graph of a convex function lies above its tangent (see

Fig. 2.4). It turns out that the conjugate ψ∗ is a closed proper convex function and

ψ∗∗ =ψ (for a proof see Rockafellar, 1970, Corollary 12.2.1).2

In this work we use several examples of closed proper convex functions. The

first of them is the relative entropy, viewed as a function of its first argument and

2Convex conjugates are defined for arbitrary functions (not necessarily closed or convex) and
Fenchel’s inequality remains valid. However, the identity ψ=ψ∗∗ holds only for closed proper convex
functions.
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extended to R
X as follows:

ψ(p)=





D(p ∥ q0) if p ∈∆

∞ otherwise
(2.9)

where q0 ∈∆ is assumed fixed. In the following two propositions we derive the conju-

gate of the relative entropy.

Proposition 2.1. If p, q ∈∆ then D(p ∥ q)≥ 0, with equality if and only if p = q.

Proof. By Jensen’s inequality

D(p ∥ q)=
∑

x∈X

p(x) ln
p(x)
q(x)

=−
∑

x∈X

p(x) ln
q(x)
p(x)

≥− ln

(
∑

x∈X

p(x)
q(x)
p(x)

)
=− ln

(
∑

x∈X

q(x)

)
= 0 ,

with equality if and only if p(x)/q(x) is a constant, i.e., if p(x) = q(x) for all x (since

both p and q are probability densities).

Proposition 2.2. The conjugate of the relative entropy is the log partition function

ψ∗(r)= ln

(
∑

x∈X

q0(x)er(x)

)

where r is a vector in R
X and its components are denoted by r(x).

Proof. To argue that −ψ∗(r) specifies vertical-axis intercepts of tangents to ψ’s epi-

graph, it suffices to show that Fenchel’s inequality is satisfied for all r ∈RX and p ∈∆,

and that for every r ∈RX there exists pr ∈∆ for which Fenchel’s inequality holds with

equality.

Set

pr(x)= q0(x)er(x)

∑
x∈X q0(x)er(x)

.

First we show that Fenchel’s inequality holds:

∑

x∈X

r(x)p(x)−ψ∗(r)=
∑

x∈X

r(x)p(x)− ln

(
∑

x∈X

q0(x)er(x)

)

=
∑

x∈X

p(x) ln
(

er(x)
∑

x∈X q0(x)er(x)

)

=D(p ∥ q0)−D(p ∥ pr)

≤D(p ∥ q0)=ψ(p)
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where the last inequality follows by Proposition 2.1. By Proposition 2.1, we also

obtain than equality holds instead of the last inequality if p = pr.

The second example of a closed proper convex function is the unnormalized rela-

tive entropy

D̃(p ∥ q0)=
∑

x∈X

[
p(x) ln

(
p(x)
q0(x)

)
− p(x)+ q0(x)

]
.

Fixing q0 ∈ [0,∞)X, the unnormalized relative entropy can be extended to a closed

proper convex function of its first argument:

ψ(p)=





D̃(p ∥ q0) if p(x)≥ 0 for all x ∈X

∞ otherwise.

The conjugate of the unnormalized relative entropy is a scaled exponential shifted to

the origin:

ψ∗(r)=
∑

x∈X

q0(x)
(
er(x)−1

)
.

Similar to the relative entropy, the unnormalized relative entropy D̃(p ∥ q) is always

non-negative, and zero if and only if p = q. Its conjugate can be derived directly by

setting partial derivatives on the right-hand side of Eq. (2.8) equal to zero.

The relative entropy is a measure of the distance between distributions, whereas

the unnormalized relative entropy is a measure of the distance between non-negative

vectors. Although neither of them is a metric (for example, they are not symmetric),

they satisfy the following two properties

(B1) B(a ∥ b)≥ 0

(B2) if B(at ∥ bt)→ 0 and bt → b⋆ then at → b⋆,

where B stands for either D or D̃. These properties are motivated by the formalism

of Bregman divergences (Bregman, 1967; Censor and Lent, 1981; Censor and Zenios,

1997), which generalize some common distance measures such as the squared Eu-

clidean distance.3

Next example of a closed proper convex function is a convex indicator of a closed

convex set C ⊆ R
n, denoted by IC, which equals 0 when its argument lies in C and

infinity otherwise. We will also use the notation I(P(u)) or I(u;P(u)) to denote IC(u)

3Property (B1) is satisfied by all Bregman divergences, whereas property (B2) is satisfied by all
Bregman divergences under further conditions on at and bt (see Censor and Zenios, 1997, Definition
2.1.1). The unnormalized relative entropy is a Bregman divergence. The relative entropy is not a
Bregman divergence because its domain has an empty interior. However, in many applications, the
relative entropy inherits properties of Bregman divergences because it is a restriction of the unnor-
malized relative entropy to the simplex.
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where P(u) is a predicate defining the set C. The conjugate of a convex indicator is a

support function, which satisfies (by the definition of conjugacy)

I∗C(λ)= sup
u∈C

λ ·u . (2.10)

For C = {c}, we obtain I∗{c}(λ) = λ · c. For a box B = {u : |u j| ≤ β j for all j}, we obtain

an ℓ1-style conjugate I∗B(λ) = ∑
j β j|λ j|. For a Euclidean ball B′ = {u : ‖u‖2 ≤ β}, we

obtain an ℓ2-style conjugate, I∗B′(λ)=β‖λ‖2.

If C is a convex hull of two closed convex sets C1, C2 then

I∗C(λ)=max{I∗C1
(λ),I∗C2

(λ)} . (2.11)

(For a proof see Rockafellar, 1970, Corollary 16.5.1.) In particular, if C is a convex

polytope with vertex set V then

I∗C(λ)=max
u∈V

λ ·u . (2.12)

The final example is a square of the Euclidean norm ψ(u) = ‖u‖2
2/(2α), whose

conjugate is also a square of the Euclidean norm ψ∗(λ)=α‖λ‖2
2/2.

The following identities can be proved from the definition of the conjugate func-

tion:

if ϕ(u)= aψ(bu+ c) then ϕ∗(λ)= aψ∗(λ/(ab))−λ · c/b (2.13)

if ϕ(u)=ψ(Au) then ϕ∗(λ)=ψ∗(A−⊤λ) (2.14)

if ϕ(u)=∑
j ϕ j(u j) then ϕ∗(λ)=∑

j ϕ
∗
j (λ j) (2.15)

where a> 0, b 6= 0, c ∈Rn, A is an invertible square matrix, A−⊤ denotes the transpose

of the inverse of A, and u j,λ j refer to the components of u,λ.

A convex function is called polyhedral if its epigraph is an intersection of a finite

number of halfspaces. Proper polyhedral functions are always closed and their conju-

gates are also polyhedral. Examples of polyhedral functions include linear functions,

the ℓ1 norm, and box indicators.

Next, assume that ϕ :Rn → (−∞,∞] can be written as a sum of two closed proper

convex functions ϕ1 and ϕ2 such that one of the following conditions is satisfied:

(i) domϕ1 = R
n, (ii) domϕ2 = R

n, or (iii) ϕ1 and ϕ2 are polyhedral and domϕ1 ∩
domϕ2 6= ;. Then the conjugate ϕ∗ is the infimal convolution of ϕ∗

1 and ϕ∗
2 (see

Rockafellar, 1970, Theorem 20.1)

ϕ∗(λ)= inf
λ′

[
ϕ∗

1 (λ′)+ϕ∗
2 (λ−λ′)

]
. (2.16)
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We conclude with a version of Fenchel’s Duality Theorem which relates a convex

minimization problem to a concave maximization problem using conjugates. The

following result is essentially Corollary 31.2.1 of Rockafellar (1970) under a stronger

set of assumptions (for a proof see Rockafellar, 1970).

Theorem 2.3 (Fenchel’s Duality). Let ψ : Rn → (−∞,∞] and ϕ : Rm → (−∞,∞] be

closed proper convex functions and A be a real-valued m× n matrix. Assume that

domψ∗ =R
n or domϕ=R

m. Then

inf
u

[
ψ(u)+ϕ(Au)

]
= sup

λ

[
−ψ∗(A⊤λ)−ϕ∗(−λ)

]
.

We refer to the minimization over u as the primal problem and the maximization

over λ as the dual problem. When no ambiguity arises, we also refer to the minimiza-

tion of the negative dual objective as the dual problem. We call u a primal feasible

point if the primal objective is finite at u. If the primal has a feasible point, i.e., if

its objective is proper, then we say that the primal is feasible. Similarly, we define

feasibility for the dual.

2.5 Generalized Maximum Entropy

In this dissertation we study a generalized maxent problem

min
p∈∆

[
D(p ∥ q0)+U(Ep[f ])

]
(2.17)

where U : Rn → (−∞,∞] is an arbitrary closed proper convex function. It is viewed

as a potential for the maxent problem. We further assume that q0 is positive on X,

i.e., D(p ∥ q0) is finite for all p ∈∆ (otherwise we could restrict X to the support of q0),

and there exists a distribution whose vector of feature expectations is a feasible point

of U (this is typically satisfied by the empirical distribution). These two conditions

imply that the problem (2.17) is feasible.

The definition of generalized maxent captures many cases of interest including

basic maxent, ℓ1-regularized maxent and ℓ2
2-regularized maxent. Basic maxent is ob-

tained by using a point indicator potential U(0)(u) = I(u =Eπ̃[f ]). The ℓ1-regularized

version of maxent, as shown by Kazama and Tsujii (2003), corresponds to the relax-

ation of equality constraints to box constraints

∣∣Eπ̃[ f j]−Ep[ f j]
∣∣≤β j .

Box constraints are represented by the potential U(1)(u)= I(|Eπ̃[ f j]−u j| ≤β j for all j).

Finally, as noted by Chen and Rosenfeld (2000) and Lebanon and Lafferty (2001), ℓ2
2-
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regularized maxent is obtained using the potential U(2)(u)= ‖Eπ̃[f ]−u‖2
2/(2α) which

incurs an ℓ2
2-style penalty for deviating from empirical averages.

The primal objective of generalized maxent will be referred to as P:

P(p)=D(p ∥ q0)+U(Ep[f ]) .

Note that P attains its minimum over ∆, because ∆ is compact and P is lower semi-

continuous. The minimizer of P is unique by strict convexity of D(p ∥ q0).

To derive the dual of Eq. (2.17), define the matrix F with elements Fjx = f j(x) and

use Fenchel’s duality:

min
p∈∆

[
D(p ∥ q0)+U(Ep[f ])

]
=min

p∈∆

[
D(p ∥ q0)+U(Fp)

]

= sup
λ∈RJ

[
− ln

(∑
x∈X q0(x)exp

{
(F⊤λ)x

})
−U∗(−λ)

]
(2.18)

= sup
λ∈RJ

[
− ln Zλ−U∗(−λ)

]
. (2.19)

In Eq. (2.18), we apply Theorem 2.3. We use (F⊤λ)x to denote the entry of F⊤λ in-

dexed by x. In Eq. (2.19), we note that (F⊤λ)x =λ· f (x) and thus the expression inside

the logarithm is the normalization constant of qλ. The maximization in Eq. (2.19) is

the maxent dual. Its objective will be referred to as Q:

Q(λ)=− ln Zλ−U∗(−λ) .

There are two formal differences between generalized maxent and basic maxent.

The first difference is that the constraints of the basic primal (2.1) are stated rela-

tive to empirical expectations whereas the potential of the generalized primal (2.17)

makes no reference to Eπ̃[f ]. This difference is only superficial. It is possible to hard-

wire the distribution π̃ in the potential U, as we saw in the example of U(0)(u). In

the latter case, it would be more correct, but perhaps overly pedantic, to make the

dependence of the potential on π̃ explicit and use the notation U(0)(u; π̃).

The second difference, which seems more significant, is the difference between

the duals. The objective of the basic dual (2.2) equals the log loss relative to the

empirical distribution π̃, but the generalized dual contains no log-loss terms. We will

see that the generalized dual can be expressed in terms of the log loss as well. In

fact, it can be expressed in terms of the log loss relative to an arbitrary distribution,

including the empirical distribution π̃ as well as the unknown distribution π.

We next describe shifting, the transformation of an “absolute” potential to a “rela-

tive” potential. Shifting is a technical tool which simplify proofs in the next chapters,

and will also be used to rewrite the generalized dual in terms of the log loss.
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Table 2.1. Absolute and relative potentials, and their conjugates.

potential (absolute and relative) conjugate potential
generalized maxent:

U(u) U(u) U∗(λ)
Ur(u) U(Er[f ]−u) U∗(−λ)+λ ·Er[f ]
Uπ̃(u) U(Eπ̃[f ]−u) U∗(−λ)+λ ·Eπ̃[f ]

basic constraints:
U(0)(u) I(u =Eπ̃[f ]) λ ·Eπ̃[f ]
U(0)

r (u) I(u =Er[f ]−Eπ̃[f ]) λ · (Er[f ]−Eπ̃[f ])
U(0)

π̃ (u) I(u = 0) 0

box constraints:
U(1)(u) I(|Eπ̃[ f j]−u j| ≤β j for all j) λ ·Eπ̃[f ]+

∑
j β j|λ j|

U(1)
r (u) I(|u j − (Er[ f j]−Eπ̃[ f j])| ≤β j for all j) λ · (Er[f ]−Eπ̃[f ])+

∑
j β j|λ j|

U(1)
π̃ (u) I(|u j| ≤β j for all j)

∑
j β j|λ j|

ℓ2
2 penalty:

U(2)(u) ‖Eπ̃[f ]−u‖2
2/(2α) λ ·Eπ̃[f ]+α‖λ‖2

2/2
U(2)

r (u) ‖u− (Er[f ]−Eπ̃[f ])‖2
2/(2α) λ · (Er[f ]−Eπ̃[f ])+α‖λ‖2

2/2
U(2)

π̃ (u) ‖u‖2
2/(2α) α‖λ‖2

2/2

2.5.1 Shifting

For an arbitrary distribution r and a potential U, let Ur denote the function

Ur(u)=U(Er[f ]−u) .

This function will be referred to as the potential relative to r or simply the relative

potential. In contrast, the original potential U will be referred to as the absolute

potential. In Table 2.1, we list the potentials discussed so far, alongside their versions

relative to an arbitrary distribution r, and relative to π̃ in particular.

From the definition of a relative potential, we see that the absolute potential can

be expressed as U(u) = Ur(Er[f ]− u). Thus, it is possible to implicitly define an

absolute potential U by defining a relative potential Ur for a particular distribution

r. The potentials U(0), U(1), U(2) of the basic maxent, maxent with box constraints, and

maxent with ℓ2
2 penalty could thus have been specified by defining U(0)

π̃ (u) = I(u = 0),

U(1)
π̃ (u)= I(|u j| ≤β j for all j) and U(2)

π̃ (u)= ‖u‖2
2/(2α).

The conjugate of a relative potential, the conjugate relative potential, is obtained,

according to Eq. (2.13), by adding a linear function to the conjugate of U:

U∗
r (λ)=U∗(−λ)+λ ·Er[f ] . (2.20)
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Table 2.1 lists U(0)∗, U(1)∗, U(2)∗, and the conjugates of the corresponding relative po-

tentials.

2.5.2 Generalized Dual as Minimization of a Regularized Log

Loss

We will now show how the dual objective Q(λ) can be expressed in terms of the

log loss relative to an arbitrary distribution r. This will highlight how the dual of

generalized maxent extends the dual of basic maxent.

Comparing Eq. (2.20) with Eq. (2.3), we obtain

Lr(λ)+U∗
r (λ)= ln Zλ+U∗(−λ)=−Q(λ) . (2.21)

Thus the maximization of Q(λ) is equivalent to the minimization of Lr(λ)+U∗
r (λ).

Setting r = π̃ we obtain a dual analogous to the basic dual (2.2):

inf
λ∈RJ

[
Lπ̃(λ)+U∗

π̃(λ)
]

. (2.22)

From Eq. (2.21), it follows that the λ minimizing Lr(λ)+U∗
r (λ) does not depend on

a particular choice of r. As a result, the minimizer of (2.22) is also the minimizer

of Lπ(λ)+U∗
π(λ). This observation will be used in Chapter 3 to prove performance

guarantees.

The objective of Eq. (2.22) has two terms. The first of them is the empirical log

loss. The second one is the regularization term penalizing “complex” solutions. The

regularization term need not be non-negative and it does not necessarily increase

with any norm of λ. On the other hand, it is a proper closed convex function and if

π̃ is feasible then by Fenchel’s inequality the regularization is bounded from below

by −Uπ̃(0). From a Bayesian perspective, U∗
π̃ corresponds to negative log of the prior,

and minimizing Lπ̃(λ)+U∗
π̃(λ) is equivalent to maximizing the posterior.

For basic maxent, we obtain U(0)∗
π̃ (λ) = 0 and recover the basic dual. For the box

potential, we obtain U(1)∗
π̃ (λ)=∑

jβ j|λ j|, which corresponds to an ℓ1-style regulariza-

tion and a Laplace prior. For the ℓ2
2 potential, we obtain U(2)∗

π̃ (λ) = α‖λ‖2
2/2, which

corresponds to an ℓ2
2-style regularization and a Gaussian prior.

In basic maxent, maxent with box constraints, and maxent with ℓ2
2 regularization,

it is natural to consider dual objectives relative to π̃. In other cases, the use of an

absolute potential may be more natural, such as when applying the relative-entropy

inequality constraints on categorical indicators (Eq. 2.7). In Chapter 6, we will also

see that it is possible to define a meaningful absolute potential when the empirical

distribution π̃ is not available, and we only have access to a sample from the biased
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distribution. To capture this generality, we formulate generalized maxent without

reference to the empirical distribution, using only the absolute potential.

2.5.3 Maxent Duality

We know from Eq. (2.19) that the generalized maxent primal and dual have equal

values. In this section, we show the equivalence of the primal and dual optimizers.

Specifically, we show that the maxent primal (2.17) is solved by the Gibbs distribution

whose parameter vector λ solves the dual (possibly in a limit). This parallels the

result of Della Pietra, Della Pietra, and Lafferty (1997) for basic maxent and gives

additional motivation for the view of the dual objective as the regularized log loss.

Theorem 2.4 (Maxent Duality). Let q0,U,P,Q be as above. Then

min
p∈∆

P(p)= sup
λ∈RJ

Q(λ) . (i)

Moreover, for a sequence λ1,λ2, . . . such that

lim
t→∞

Q(λt)= sup
λ∈RJ

Q(λ)

the sequence of qt = qλt has a limit and

P
(
lim
t→∞

qt

)
=min

p∈∆
P(p) . (ii)

Proof. Eq. (i) is a consequence of Fenchel’s duality as was shown earlier. It remains

to prove Eq. (ii). We will use an alternative expression for the dual objective. Let r

be an arbitrary distribution. Combining Eqs. (2.4) and (2.21) yields

Q(λ)=−D(r ∥ qλ)+D(r ∥ q0)−U∗
r (λ) . (2.23)

Let p̂ be the minimizer of P and λ1,λ2, . . . maximize Q in the limit. Then

D( p̂ ∥ q0)+U p̂(0)= P( p̂)= sup
λ∈Rn

Q(λ)= lim
t→∞

Q(λt)

= lim
t→∞

[
−D( p̂ ∥ qt)+D( p̂ ∥ q0)−U∗

p̂(λt)
]

.

Denoting the terms with the limit zero by o(1) and rearranging yields

U p̂(0)+U∗
p̂(λt)=−D( p̂ ∥ qt)+ o(1) .

The left-hand side is non-negative by Fenchel’s inequality, so D( p̂ ∥ qt) → 0 by the
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non-negativity of relative entropy. Therefore, by property (B2), every convergent

subsequence of q1, q2, . . . has the limit p̂. Since the qt’s come from the compact set ∆,

we obtain qt → p̂.

Thus, in order to solve the primal, it suffices to find a sequence of λ’s maximizing

the dual. This will be the goal of algorithms in Sections 4.1 and 4.2.
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Chapter 3

Statistical Guarantees

All the justifications of maxent introduced in Chapter 1 view the set of constraints

as part of the input specification. In this chapter, we explore how the choice of con-

straints influences the quality of the resulting models.

In Section 2.3, we saw several examples of “reasonable” constraint sets, motivated

from different perspectives. A common motivation is to choose constraints that are

likely to be satisfied by the true distribution. For example, in basic maxent, empirical

averages are assumed to be good estimates of true expectations. This assumption is

further refined by introducing inequality constraints, which allow for uncertainty in

empirical estimates, based on the observation that true expectations should not be

expected to match the empirical averages exactly, but only within some error bounds.

Similarly, in discounting, the crucial observation is that the positive empirical counts

of rare events overestimate the true probabilities, and thus they need to be scaled

down. By introducing inequalities and discounting, we follow the intuition that the

constraints should reflect our beliefs about the true distribution rather than simply

summarize the empirical data.

This approach can be motivated by the max-min likelihood interpretation of max-

ent. According to the max-min likelihood interpretation, maxent optimizes the worst-

case performance on distributions satisfying the constraints. If the constraints are

too restrictive, we may miss the unknown true distribution, and nothing can be said

about the performance of maxent. If the constraints are too weak then maxent is too

conservative, optimizing against many unlikely distributions. Is it possible to say

anything more specific about which constraints should yield better performance?

In this chapter, we develop theory addressing this very question. Specifically, we

develop a quantitative understanding of how various choices of constraints influence

the performance of maxent. As a result, we are able to derive novel instances of gen-

eralized maxent with favorable theoretical performance. From the dual perspective,

our guarantees provide a principled method of choosing hyperparameters in various
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regularization functions.

There have been many studies of maxent and logistic regression, which is a con-

ditional version of maxent, with various types of regularization, such as ℓ1-style reg-

ularization (Khudanpur, 1995; Williams, 1995; Kazama and Tsujii, 2003; Ng, 2004;

Goodman, 2004; Krishnapuram et al., 2005), ℓ2
2-style regularization (Lau, 1994; Chen

and Rosenfeld, 2000; Lebanon and Lafferty, 2001; Zhang, 2005) as well as some other

types of regularization such as ℓ1+ℓ2
2-style (Kazama and Tsujii, 2003), ℓ2-style regu-

larization (Newman, 1977) and a smoothed version of ℓ1-style regularization (Dekel

et al., 2003). In a recent work, Altun and Smola (2006), inspired by earlier parts of

this dissertation (Dudík et al., 2004), derive duality and performance guarantees for

settings in which the entropy is replaced by an arbitrary Bregman or Csiszár diver-

gence and regularization takes the form of a norm raised to a power greater than

one. With the exception of Altun and Smola’s work and Zhang’s work, the mentioned

studies do not give performance guarantees applicable to our case, although Krish-

napuram et al. (2005) and Ng (2004) prove guarantees for ℓ1-regularized logistic

regression. Ng also shows that ℓ1-regularized logistic regression may be superior to

the ℓ2
2-regularized version in a scenario when the number of features is large and

only a small number of them is relevant. Our results will indicate a similar behavior

for unconditional maxent.

In linear models, ℓ2
2, ℓ1, and ℓ1+ ℓ2

2 regularization have been used under the

names ridge regression (Hoerl and Kennard, 1970), lasso regression (Tibshirani, 1996),

and elastic nets (Zou and Hastie, 2005), respectively. Lasso regression, in particular,

has generated a lot of interest in recent statistical theory and practice. A frequently

mentioned benefit of the lasso is its bias toward sparse solutions. The same bias is

also present in ℓ1-regularized maxent, but it is not our focus. We are interested in de-

riving performance guarantees. Similar guarantees are derived by Donoho and John-

stone (1994) for linear models with the lasso penalty. In a recent study, van de Geer

(2006) derives non-asymptotic performance guarantees for a wide range of loss func-

tions with ℓ1 regularization, including log loss analyzed here. Van de Geer’s results,

qualitatively similar to ours, are derived independently of our work on ℓ1-regularized

maxent (Dudík et al., 2004). The relationship between the lasso approximation and

the sparsest approximation in linear models is explored, for example, by Donoho and

Elad (2003). In online learning literature, density estimation in exponential families

is explored by Azoury and Warmuth (2001). Although our results resemble the “re-

gret” bounds common in online learning, our analysis departs from the online setup,

and exploits (in fact, relies on) statistical properties of the data.
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3.1 Generalization Lemma

We start by deriving a lemma on which we base all of our generalization guarantees.

This lemma will be referred to as the generalization lemma.

As a warm-up, consider maxent with box constraints. Its solution optimizes the

regularized empirical log loss Lπ̃(λ)+∑
j β j|λ j|. On the other hand, our goal is to do

well on the true distribution π, to optimize the true log loss Lπ. We express the true

log loss in terms of the empirical log loss using Eq. (2.3):

Lπ(λ)= ln Zλ−λ ·Eπ[f ]

= ln Zλ−λ ·Eπ̃[f ]+λ · (Eπ̃[f ]−Eπ[f ])

=Lπ̃(λ)+λ · (Eπ̃[f ]−Eπ[f ]) . (3.1)

Unfortunately, Eπ[f ] in Eq. (3.1) is unknown. However, assuming that |Eπ̃[ f j]−
Eπ[ f j]| ≤β j, the inner product in Eq. (3.1) can be bounded as

λ · (Eπ̃[f ]−Eπ[f ])≤
∑

j∈J

β j|λ j| .

Plugging in Eq. (3.1) yields

Lπ(λ)≤Lπ̃(λ)+
∑

j∈J

β j|λ j| . (3.2)

Thus, in this instance, the regularized empirical log loss is an upper bound on the

true log loss. Therefore, by minimizing the regularized log loss we also minimize the

guarantee on the generalization performance.

It is not a coincidence that the dual objective can be used to bound the true log

loss. In general, when the potential is an arbitrary convex function, the inner product

in Eq. (3.1) can be bounded by Fenchel’s inequality

λ · (Eπ̃[f ]−Eπ[f ])≤U∗
π̃(λ)+Uπ̃(Eπ̃[f ]−Eπ[f ]) , (3.3)

yielding a bound on Lπ(λ):

Lπ(λ)≤Lπ̃(λ)+U∗
π̃(λ)+Uπ̃(Eπ̃[f ]−Eπ[f ])

=Lπ̃(λ)+U∗
π̃(λ)+U(Eπ[f ]) . (3.4)

Thus, the dual objective combined with the potential of the true feature expectations

bounds the true log loss. For the box potential, the term U(Eπ[f ]) equals zero when-

ever the true expectation of each f j differs from its empirical average by at most β j,
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yielding the same upper bound as in Eq. (3.2).

Since the potential of the true expectations is independent of λ, the dual solution

always optimizes an upper bound on the performance according to Eq. (3.4). Yet, the

dual solution could be a poor approximation of π if this upper bound is too weak. A

separate concern is that the choice of the feature set was poor and no Gibbs distribu-

tion provides a good model of π. We do not address the latter concern and compare

the maxent density with the best Gibbs distribution. This is the tightest comparison

we can hope for since maxent densities are constrained to take the form of Gibbs

distributions.

Let λ̂ denote the solution of the dual Q.1 In the generalization lemma below, we

bound the difference between the log loss Lπ(λ̂) of qλ̂ on the true distribution, and

the log loss Lπ(λ⋆) of an arbitrary Gibbs distribution qλ⋆ on π. In particular, the

bound holds for the Gibbs distribution minimizing the true log loss Lπ.

Lemma 3.1 (Generalization Lemma). Let λ̂ maximize Q. Then for an arbitrary Gibbs

distribution qλ⋆

Lπ(λ̂)≤Lπ(λ⋆)+2U(Eπ[f ])+U∗(λ⋆)+U∗(−λ⋆) (i)

Lπ(λ̂)≤Lπ(λ⋆)+2Uπ̃(Eπ̃[f ]−Eπ[f ])+U∗
π̃(λ⋆)+U∗

π̃(−λ⋆) (ii)

Lπ(λ̂)≤Lπ(λ⋆)+ (λ⋆− λ̂) · (Eπ[f ]−Eπ̃[f ])+U∗
π̃(λ⋆)−U∗

π̃(λ̂) . (iii)

Proof. According to Eq. (2.21),

Q(λ)=−Lπ(λ)−U∗
π(λ) .

Since λ̂ maximizes Q(λ), it also minimizes Lπ(λ)+U∗
π(λ). Therefore, for an arbi-

trary λ⋆,

Lπ(λ̂)+U∗
π(λ̂)≤Lπ(λ⋆)+U∗

π(λ⋆) .

Hence,

Lπ(λ̂)≤Lπ(λ⋆)+U∗
π(λ⋆)−U∗

π(λ̂)

=Lπ(λ⋆)+U∗(−λ⋆)−U∗(−λ̂)+ (λ⋆− λ̂) ·Eπ[f ] , (3.5)

where the last equality follows by shifting, i.e., Eq. (2.20). Now, similar to Eq. (3.3),

1We assume that the supremum of Q is attained at a finite λ̂, but the results generalize to cases
when the supremum is attained only in a limit.
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we bound the inner product on the right-hand side of Eq. (3.5) by Fenchel’s inequality:

(λ⋆− λ̂) ·Eπ[f ]=λ⋆ ·Eπ[f ]+ (−λ̂) ·Eπ[f ]

≤U∗(λ⋆)+U(Eπ[f ])+U∗(−λ̂)+U(Eπ[f ]) .

Plugging in Eq. (3.5) yields part (i) of the lemma. Part (ii) is obtained from part (i) by

shifting. Similarly, part (iii) follows directly from Eq. (3.5) by shifting.

Remark. Notice that π and π̃ in the statement and the proof of the Generalization

Lemma can be replaced by arbitrary distributions p1 and p2.

According to the Generalization Lemma(i,ii), the gap in performance between

qλ̂ and qλ⋆ depends on the potential of true feature expectations and on the (sym-

metrized) regularization of λ⋆. This bound gives a concrete foundation to the view

that the true distribution should satisfy the constraints. It suggests that we should

ensure the low potential of true feature expectations. To obtain specific guarantees,

we choose U to optimize the trade-off between the potential U(Eπ[f ]) and the sym-

metrized regularization U∗(λ⋆)+U∗(−λ⋆).

The guarantee of the Generalization Lemma(iii) is tighter than parts (i) and (ii),

but it is more difficult to interpret, because of its dependence on λ̂, which is itself

a random variable. To obtain interpretable bounds from part (iii), it is necessary to

bound the deviation of λ̂ from the optimal λ⋆ explicitly.

We now apply the Generalization Lemma to some specific cases of interest.

3.2 Indicator Potentials

First, we discuss the case which closely corresponds to the notion of potential as a

constraint set. This is the case when U is an indicator of a closed convex set C,

such as U(0) and U(1). The right-hand side of the Generalization Lemma(i) is then

infinite unless Eπ[f ] lies in C. To apply the Generalization Lemma(i), we ensure

that Eπ[f ] ∈ C with high probability. Therefore, we choose C as a confidence region

for Eπ[f ]. If Eπ[f ] ∈C then for any Gibbs distribution qλ⋆

Lπ(λ̂)≤Lπ(λ⋆)+ I∗C(λ⋆)+ I∗C(−λ⋆) . (3.6)

The expression I∗C(λ⋆)+ I∗C(−λ⋆) is by Eq. (2.10) equal to

sup
u∈C

[
λ⋆ ·u

]
+sup

u∈C

[
−λ⋆ ·u

]
= sup

u∈C

[
λ⋆ ·u

]
− inf

u∈C

[
λ⋆ ·u

]
.
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C
λ⋆

projection of C

Figure 3.1. Performance of indicator potentials. The solution subject to constraints defining
a confidence region C lags behind the optimal Gibbs distributions qλ⋆ by at most I∗C(λ⋆)+
I∗C(−λ⋆). This amount is proportional to the projection of C onto a line parallel with λ⋆.
Thus, smaller confidence regions yield better performance guarantees.

In other words, I∗C(λ⋆)+ I∗C(−λ⋆) is equal to the largest difference within the set of

scalar products of λ⋆ with points in C. For a fixed λ⋆, this difference is proportional

to the size of C’s projection onto a line parallel with λ⋆ (see Fig. 3.1). Thus, smaller

confidence regions yield shorter projections, which in turn yield better performance

guarantees.

A common method of obtaining confidence regions is to bound the difference be-

tween empirical averages and true expectations (see Appendix A). Before moving to

specific examples, we state a general result for convex regions centered at empirical

averages.

Theorem 3.2. Assume that Eπ̃[f ]−Eπ[f ] ∈βC0 where C0 is a closed convex set sym-

metric around the origin, β > 0, and βC0 denotes {βu : u ∈ C0}. Let λ̂ minimize

Lπ̃(λ)+βI∗C0
(λ). Then for an arbitrary Gibbs distribution qλ⋆

Lπ(λ̂)≤Lπ(λ⋆)+2βI∗C0
(λ⋆) .

Proof. Set Uπ̃(u) = IβC0(u). By assumption Eπ̃[f ]−Eπ[f ] ∈ βC0, and hence by the

Generalization Lemma(ii)

Lπ(λ̂)≤Lπ(λ⋆)+ I∗βC0
(λ⋆)+ I∗βC0

(−λ⋆) .

Furthermore

I∗βC0
(λ)= sup

u∈βC0

λ ·u = sup
u′∈C0

λ ·βu′ =β sup
u′∈C0

λ ·u′ =βI∗C0
(λ) .

The result now follows by the symmetry of C0, which implies the symmetry of IC0 ,

which, in turn, implies the symmetry of I∗C0
.
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3.2.1 Maxent with ℓ1 Regularization

Our first set of statistical guarantees concerns the box potential introduced in the

previous sections. Recall that the box potential and the corresponding regularization

are

U(1)
π̃ (u)= I

(
|u j| ≤β j for all j

)
, U(1)∗

π̃ (λ)=
∑

j∈J

β j|λ j| .

We will not be able to use Theorem 3.2 as is, because of the feature-dependent scaling

β j in U(1)
π̃ . However, it is straightforward to verify that Theorem 3.2 can be modified

as follows: If |Eπ̃[ f j]−Eπ[ f j]| ≤β j for all j ∈ J and λ̂ minimizes Lπ̃(λ)+∑
j β j|λ j| then

Lπ(λ̂)≤Lπ(λ⋆)+2
∑

j∈J

β j|λ⋆j |. (3.7)

Thus, to bound the true loss Lπ(λ̂) by Theorem 3.2, we need to find bounds β j on

|Eπ[ f j]−Eπ̃[ f j]|. For a finite set of bounded features, we can prove the following:

Theorem 3.3. Assume that features f j are bounded in [0,1]. Let δ> 0 and let λ̂ min-

imize Lπ̃(λ)+∑
jβ j|λ j| with β j =β=

√
ln(2|J|/δ)/(2m) for all j. Then with probability

at least 1−δ, for every Gibbs distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+2‖λ⋆‖1

√
ln(2|J|/δ)

2m
.

Proof. By Hoeffding’s inequality (Theorem A.1), for a fixed j, the probability that

|Eπ[ f j]−Eπ̃[ f j]| exceeds β is at most 2e−2β2m = δ/|J|. By the union bound, the proba-

bility of this happening for any j is at most δ. The theorem now follows by Eq. (3.7).

Theorem 3.3 shows that the difference in performance between the distribution

computed by minimizing ℓ1-regularized log loss and the best Gibbs distribution be-

comes small rapidly as the number of samples m increases. Note that this difference

depends only moderately on the number of features. Specifically, fix ‖λ⋆‖1 and let

the number of samples m grow to infinity. If at the same time the logarithm of the

number of features grows slower than m, then the gap between the maxent solution

and the best Gibbs distribution goes to zero. This is the case even as the best Gibbs

distribution gradually improves due to more and more expressive feature sets.

The error bounds β j in Theorem 3.3 are somewhat coarse, since they are identical

for all the features. In practice, some features are more reliable than others, and the

use of the reliability information should improve the estimates.

The next result improves error estimates β j by incorporating feature specific in-
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formation. As a starting point we use the approximation

∣∣Eπ̃[ f j]−Eπ[ f j]
∣∣=O

(√
Vπ[ f j]/m

)
, (3.8)

where Vπ[ f j] is the variance of f j under π. Eq. (3.8) holds, by the Central Limit

Theorem, with probability 1−δ for any fixed δ. (For a statement of the Central Limit

Theorem, see for example Lehmann and Casella, 1998, Theorem 8.9.) In order to

turn Eq. (3.8) into the β j settings with provable performance guarantees, we need

to address two issues. First, the feature variances are not known, so they need to

be estimated. We will use upper bounds obtained by McDiarmid’s inequality (see

Appendix A) for the empirical estimates of the variances

V′
π̃[ f j]=

m

m−1
Vπ̃[ f j]=

∑
i
(
f j(xi)−Eπ̃[ f j]

)2

m−1
=

m
(
Eπ̃[ f 2

j ]−Eπ̃[ f j]2
)

m−1
. (3.9)

Second, Eq. (3.8) is an asymptotic statement with an unknown multiplicative con-

stant. To obtain non-asymptotic bounds on |Eπ̃[ f j]−Eπ[ f j]| we will use Bernstein’s

inequality (see Appendix A).

We believe that the resulting settings of the β j ’s are in practice more useful than

the settings of Theorem 3.3 because they differentiate between features depending

on the empirical-error estimates computed from the sample data. Motivated by these

settings, in Chapter 5 we describe experiments that use β j =β0

√
V′

π̃[ f j]/m, where β0

is a single tuning constant. This approach is equivalent to a common practice in

statistics when the features are scaled to unit sample variances, resulting in trans-

formed features f ◦j (x) = f j(x)
/ √

V′
π̃[ f j] and a single feature-independent regulariza-

tion parameter β◦
j = β◦. Theorem 3.4 below justifies this practice and also suggests

replacing the sample variance by a slightly larger value V′
π̃[ f j]+O(1/

p
m).

Theorem 3.4. Assume that features f j are bounded in [0,1]. Let δ > 0 and let λ̂

minimize Lπ̃(λ)+∑
j β j|λ j| with

β j =

√
2ln(4|J|/δ)

m
·

√√√√
V′

π̃[ f j]+

√
ln(2|J|/δ)

2m
+ ln(4|J|/δ)

18m
+ ln(4|J|/δ)

3m
.

Then with probability at least 1−δ, for every Gibbs distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+2
∑

j∈J

β j|λ⋆

j | .
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Proof. Let

β′
j =

√
ln(4|J|/δ)

3m
·

√

6Vπ[ f j]+
ln(4|J|/δ)

3m
+

ln(4|J|/δ)
3m

.

We will show that |Eπ̃[ f j]−Eπ[ f j]| > β′
j with probability at most δ/(2|J|), and also

β′
j ≥β j with probability at most δ/(2|J|). Then by the union bound, we obtain that

∣∣Eπ̃[ f j]−Eπ[ f j]
∣∣≤β′

j ≤β j

for all j with probability at least 1−δ.

Consider a fixed j and let ε= ln(4|J|/δ)/3m. Thus,

β′
j =

p
ε
(√

6Vπ[ f j]+ε+
p
ε
)

β j =
p

6ε

√√√√
V′

π̃[ f j]+

√
ln(2|J|/δ)

2m
+ ε

6
+ε

=
p
ε

(√
6
[
V′

π̃[ f j]+
√

ln(2|J|/δ)/(2m)
]
+ε+

p
ε

)
.

By Bernstein’s inequality (Theorem A.2)

P
(∣∣Eπ̃[ f j]−Eπ[ f j]

∣∣>β′
j

)
≤ 2exp

{
−

3mβ′2
j

6Vπ[ f j]+2β′
j

}

= 2exp

{
−

3mε
(
6Vπ[ f j]+ε+2

p
ε
√

6Vπ[ f j]+ε+ε
)

6Vπ[ f j]+2
p
ε
√

6Vπ[ f j]+ε+2ε

}

= 2exp {−3mε}= 2exp{− ln(4|J|/δ)}= δ/(2|J|) .

To bound the probability that β′
j ≥β j, it suffices to bound the probability of

Vπ[ f j]≥V′
π̃[ f j]+

√
ln(2|J|/δ)

2m
.

We will use McDiarmid’s inequality (Theorem A.3) for the function

s(y1, y2, . . . , ym)=
∑m

i=1 y2
i

m−1
−

(∑m
i=1 yi

)2

m(m−1)
.

Note that V′
π̃[ f j] = s

(
f j(x1), f j(x2), . . . , f j(xm)

)
and E

[
V′

π̃[ f j]
]
= Vπ[ f j]. To apply McDi-

armid’s inequality, we need to bound

sup
y1,...,ym,y′i∈[0,1]

∣∣s(y1, . . . , ym)− s(y1, . . . , yi−1, y′i, yi+1, . . . , ym)
∣∣ (3.10)
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for every i. By symmetry, it suffices to consider a single index i. Fix i, use y to denote

yi, and y′ to denote y′i. Let Sm−1 = y1 +·· ·+ yi−1 + yi+1 +·· ·+ ym. Then the difference

inside the absolute value of Eq. (3.10) is

s(y1, . . . , yi−1, y, yi+1, . . . , ym)− s(y1, . . . , yi−1, y′, yi+1, . . . , ym)

= y2 − y′2

m−1
− (Sm−1 + y)2 − (Sm−1 + y′)2

m(m−1)

=
my2 −my′2 −S2

m−1 −2Sm−1 y− y2 +S2
m−1 +2Sm−1 y′+ y′2

m(m−1)

=
1
m

[
y2 − y′2 −2

Sm−1

m−1
y+2

Sm−1

m−1
y′

]

=
1
m

[(
y−

Sm−1

m−1

)2

−
(
y′−

Sm−1

m−1

)2]
. (3.11)

Note that the value inside the brackets of Eq. (3.11) is bounded in [−1,1] because

y, y′ ∈ [0,1] and Sm−1 ∈ [0, m−1]. Plugging in Eq. (3.10) yields, for every i,

sup
y1,...,ym,y′i∈[0,1]

∣∣s(y1, . . . , ym)− s(y1, . . . , yi−1, y′i, yi+1, . . . , ym)
∣∣≤ 1

m
.

Thus, by McDiarmid’s inequality,

P


Vπ[ f j]≥V′

π̃[ f j]+

√
ln(2|J|/δ)

2m


≤ exp

{−2 ·
[
ln(2|J|/δ)/2m

]

m · (1/m)2

}

= exp
{
− ln(2|J|/δ)

}
= δ/(2|J|) .

Hence, β′
j ≥β j with probability at most δ/(2|J|), completing the proof.

An often cited characteristic of ℓ1 regularization is that it induces sparsity (Tib-

shirani, 1996). We mention one particular aspect of sparsity which is easy to check

for ℓ1 regularization. We say that a solution λ̂ of an optimization problem is robustly

sparse if all of its zero-valued components remain zero under perturbations of param-

eters. The definition of robust sparsity states that the components of λ̂ are never zero

just by a lucky coincidence (in the choice of parameters). To see how ℓ1 regularization

induces this property, notice that its partial derivatives are discontinuous at λ j = 0.

As a consequence, if the regularized log loss is uniquely minimized at a point where

the j0-th component λ̂ j0 equals zero, then the optimal λ̂ j0 will remain zero even if

the parameters β j and the expectations Eπ̃[ f j] are slightly perturbed.

So far we have considered features bounded in [0,1]. The results of this section,

however, easily generalize to feature classes that are bounded in arbitrary finite in-

tervals. Note that features are bounded whenever the sample space is finite. To
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obtain guarantees, it suffices to scale the β j ’s by the individual feature ranges and

use the previous results. We refer to the size of the range as the diameter and use

the notation D( f j). Specifically, the diameter of a function f : X→R is defined as

D( f )= sup
x,x′

∣∣ f (x)− f (x′)
∣∣ .

For the sake of completeness, we state versions of Theorems 3.3 and 3.4 which include

the dependence on feature diameters.

Theorem 3.5. Assume that features f j are of bounded diameters. Let δ> 0 and let λ̂

minimize Lπ̃(λ)+∑
j β j|λ j| with either of the following settings:

β
Hoeffding
j = D( f j)

√
ln(2|J|/δ)

2m
(i)

βBernstein
j = D( f j)

√
ln(4|J|/δ)

2m
·

√√√√4V′
π̃[ f j]

D( f j)2 +

√
8ln(2|J|/δ)

m
+ 2ln(4|J|/δ)

9m

+D( f j)
ln(4|J|/δ)

3m
. (ii)

Then with probability at least 1−δ, for every Gibbs distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+2
∑

j∈J

β j|λ⋆

j | .

The results of this section bound the performance of ℓ1-regularized maxent in

terms of feature diameters, feature variances, the logarithm of the feature-set size,

and the norm ‖λ‖1. Feature diameters, feature variances, and the logarithm of the

feature-set size can be viewed as measures of the feature complexity, whereas the

norm ‖λ‖1 is a measure of the Gibbs-distribution complexity. In the next sections,

we derive alternative complexity measures.

3.2.2 Maxent with Polyhedral Regularization

In this section, we consider potentials which are indicator functions of polytopes.

The simplest case is the box indicator U(1), explored in Section 3.2.1. However, when

additional knowledge about the structure of the feature space is available, we show

that other polytopes yield tighter confidence regions and hence better performance

guarantees.

Specifically, when values of f (x) lie inside a polytope with a possibly very large

number of facets then a symmetrized version of this polytope can be used as a proto-

type for the confidence region. For example, suppose that values f (x) lie inside the
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polytope2 {u ∈ R
J : ak ≤ ηk ·u ≤ bk for all k ∈K} where ηk ∈ R

J,ak ∈ R, bk ∈ R. Then

the following holds:

Theorem 3.6. Let ηk,ak, bk be as above. Let δ> 0 and let λ̂ minimize Lπ̃(λ)+βI∗C0
(λ)

with β =
√

ln(2|K|/δ)/(2m) and C0 = {u : |ηk ·u| ≤ bk −ak for all k}. Then with proba-

bility at least 1−δ, for every Gibbs distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+ I∗C0
(λ⋆)

√
2ln(2|K|/δ)

m
.

Proof. By Hoeffding’s inequality, for a fixed k, the probability that |ηk·(Eπ̃[f ]−Eπ[f ])|
exceeds β(bk −ak) is at most 2e−2β2m = δ/|K|. By the union bound, the probability of

this happening for any k is at most δ. Thus, Eπ̃[f ]−Eπ[f ] ∈βC0 with probability at

least 1−δ and the claim follows from Theorem 3.2.

Remark. Instead of applying Hoeffding’s inequality, it is possible to incorporate infor-

mation about variances of random variables ηk · f and apply Bernstein’s inequality,

similar to Theorem 3.4.

The performance bound of Theorem 3.6 decreases as 1/
p

m with an increasing

number of samples and grows only logarithmically with the number of facets of the

bounding polytope. Thus, bounding polytopes can have a very large number of facets

and still yield good bounds for moderate sample sizes. When deciding between sev-

eral polytopes based on this bound, the increase in the number of facets should be

weighed against the decrease in the regularization I∗C0
as we demonstrate in the fol-

lowing examples.

Linear and Quadratic Features

As a specific application, consider linear and quadratic features derived from vari-

ables V. For simplicity assume that the variables are scaled to take values in [0,1].

Thus, both v(x) ∈ [0,1] and v2(x) ∈ [0,1] for all v ∈ V. Box constraints yield the guar-

antee

Lπ(λ̂)≤Lπ(λ⋆)+‖λ⋆‖1

√
2ln(4|V|/δ)

m
.

The bounding polytope corresponding to box constraints is depicted in Fig. 3.2(a). It

is derived from the bounding inequalities

0≤ v ≤ 1 , 0≤ v2 ≤ 1 ,

2For technical reasons, we represent polytopes as intersections of bands rather than intersections
of halfspaces.
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(c) Bounding polytope.

uv

uv2

sample average

(d) Confidence region derived from
the polytope (c).
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(e) Bounding polytope.
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(f) Confidence region derived from
the polytope (e).

Figure 3.2. Examples of indicator potentials for linear and quadratic features.
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which yield the prototype polytope

C0 = {u : |uv| ≤ 1, |uv2 | ≤ 1 for all v} . (see Fig. 3.2b)

Noting that the pairs (v(x),v2(x)) lie only on a thin sliver inside the box [0,1]× [0,1],

we can instead consider tighter bounding inequalities

0≤ v ≤ 1 , −1
4
≤ v2 −v ≤ 0 , (see Fig. 3.2c)

yielding

C′
0 =

{
u :

∣∣uv
∣∣≤ 1,

∣∣uv2 −uv
∣∣≤ 1

4
for all v

}
, (see Fig. 3.2d)

and the guarantee

Lπ(λ̂)≤Lπ(λ⋆)+ I∗C′
0
(λ⋆)

√
2ln(4|V|/δ)

m
.

In this case, it is possible to derive I∗C′
0

explicitly by Eq. (2.12). For a single variable v,

the polytope C′
0 defined on components uv and uv2 has vertices (−1,−5/4), (−1,−3/4),

(1,5/4), (1,3/4). Thus

I∗C′
0;v(λv,λv2)=max

{
−λv −

5
4
λv2 , −λv −

3
4
λv2 , λv +

5
4
λv2 , λv +

3
4
λv2

}

=max
{∣∣∣∣λv +

5
4
λv2

∣∣∣∣,
∣∣∣∣λv +

3
4
λv2

∣∣∣∣
}

=
∣∣λv +λv2

∣∣+
∣∣∣∣
1
4
λv2

∣∣∣∣ ,

where the last inequality follows from the identity

max{|a|, |b|}= |a−b|
2

+ |a+b|
2

.

Summing I∗C′
0;v across all variables v, we obtain

I∗C′
0
(λ)=

∑

v∈V

(∣∣λv +λv2

∣∣+
∣∣∣∣
1
4
λv2

∣∣∣∣
)

.

Note that I∗C′
0
(λ) may be up to eight times smaller than ‖λ‖1 (if λv = −λv2 for all v)

while I∗C′
0
(λ) is at most 1.25-times larger than ‖λ‖1 (if λv = 0 for all v). Thus, com-

pared with the box potential, the bound may decrease up to eight times, or increase

1.25 times. The introduced improvement would require a 64-fold increase in the

number of training samples using ℓ1 regularization, whereas in the worst case, we
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perform as well as ℓ1 regularization with about 1.56-times fewer samples.

Of course, it is possible to construct even tighter bounding polytopes, which lie

strictly inside the box [0,1]× [0,1], at the cost of enlarging the number of constraints.

For example, we may consider the bounds

0≤ v2 ≤ 1 , −
1
4
≤ v2 −v ≤ 0 , −1≤ v2 −2v ≤ 0 , (see Fig. 3.2e)

yielding

C′′
0 =

{
u :

∣∣uv2

∣∣≤ 1,
∣∣uv2 −uv

∣∣≤ 1
4

,
∣∣uv2 −2uv

∣∣≤ 1 for all v
}

, (see Fig. 3.2f)

and the guarantee

Lπ(λ̂)≤Lπ(λ⋆)+ I∗C′′
0
(λ⋆)

√
2ln(6|V|/δ)

m
. (3.12)

In this case, the relative increase of the bound due to a larger size of K is

√
ln(6|V|/δ)
ln(4|V|/δ)

=

√
1+

ln1.5
ln(4|V|/δ)

,

which is close to one for moderate sizes of V, whereas the decrease due to a tighter

confidence region may still be eightfold compared with the box potential.

The specific form of I∗C′′
0

can be derived by noticing that for a single variable v, the

vertices of C′′
0 defined on components uv and uv2 have coordinates ±(1,1), ±(3/4,1),

±(3/4,1/2). Similar to I∗C′
0
, we can then derive

I∗C′′
0
(λ)=

∑

v∈V

(∣∣∣∣
3
4
λv2 +

3
4
λv

∣∣∣∣+
∣∣∣∣
1
4
λv2 +

1
8
λv

∣∣∣∣+
∣∣∣∣
1
8
λv

∣∣∣∣
)

.

Linear, Quadratic, and Product Features

In this example, we expand the feature set to include also product features fvw(x) =
v(x)w(x) where v,w ∈V. Instead of the single inequality

0≤ vw ≤ 1 ,

we can for example consider

0≤ vw ≤ 1

−1≤ vw−v ≤ 0

−1≤ vw−w ≤ 0

−1≤ vw−v−w ≤ 0

−
1
2
≤ vw−

v+w

2
≤ 0

−1
2
≤ vw− v2 +w2

2
≤ 0

−1
2
≤ vw− v+w

2
+ v2 +w2

2
≤ 0 .
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Similar to the previous example, a constant-factor increase in the number of con-

straints |K| yields only a slight relative increase in the generalization bound for a

moderate number of variables. This is outweighed by the decrease of the bound due

to a tighter confidence region.

3.2.3 Maxent with ℓ2 Regularization

In some cases, tighter performance guarantees are obtained by using confidence re-

gions which take the shape of a Euclidean ball. More specifically, we consider the

potential and conjugate

U(
p

2)
π̃ (u)= I

(
‖u‖2 ≤β

)
, U(

p
2)∗

π̃ (λ)=β‖λ‖2 .

We obtain performance guarantees using the same technique as in the previous sec-

tions: we bound the deviation ‖Eπ̃[f ]−Eπ[f ]‖2 and then apply Theorem 3.2.

As the first step we bound the expectation of the deviation ‖Eπ̃[f ]−Eπ[f ]‖2. Then

we use McDiarmid’s inequality to obtain a probabilistic bound on ‖Eπ̃[f ]−Eπ[f ]‖2.

By Jensen’s inequality,

E
[
‖Eπ̃[f ]−Eπ[f ]‖2

]
=E

[√
‖Eπ̃[f ]−Eπ[f ]‖2

2

]

≤
√

E
[
‖Eπ̃[f ]−Eπ[f ]‖2

2

]
=

√
trΣ
m

(3.13)

where Σ is the feature covariance matrix with elements Σ j j′ =Eπ[ f j f j′]−Eπ[ f j]Eπ[ f j′].

Thus, to bound the expectation of ‖Eπ̃[f ]−Eπ[f ]‖2 it suffices to bound the trace of

the feature covariance matrix.

Lemma 3.7. Let D2(f ) = supx,x′∈X‖f (x)− f (x′)‖2 be the ℓ2 diameter of f and let Σ

denote the feature covariance matrix. Then trΣ≤ D2(f )2/2.

Proof. Consider independent random variables X , X ′ distributed according to π. Let

f , f ′ denote the random variables f (X ) and f (X ′). Then

E
[
‖f − f ′‖2

2

]
=E[f · f ]−2E[f ] ·E[f ′]+E[f ′ · f ′]

= 2E[f · f ]−2E[f ] ·E[f ]

= 2
∑

j∈J

[
E[ f 2

j ]− (E[ f j])
2
]
= 2trΣ .

Since ‖f − f ′‖2 ≤ D2(f ), we obtain trΣ≤ D2(f )2/2.
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Now we can use McDiarmid’s inequality to prove an ℓ2 version of Hoeffding’s

inequality.

Lemma 3.8. Let D2(f ) be the ℓ2 diameter of f and let δ > 0. Then with probability

at least 1−δ

‖Eπ̃[f ]−Eπ[f ]‖2 ≤
D2(f )
p

2m

[
1+

√
ln(1/δ)

]
.

Proof. Consider independent samples X1, . . . , Xm distributed according to π and the

random variable u(X1, . . . , Xm)=∑
i(f (X i)−Eπ[f ])= m(Eπ̃[f ]−Eπ[f ]). We will bound

E[‖u‖2] and use McDiarmid’s inequality (Theorem A.3) to show that

P
(
‖u‖2 −E[‖u‖2]≥ D2(f )

√
m ln(1/δ)/2

)
≤ δ . (3.14)

By Eq. (3.13) and Lemma 3.7, we obtain

E[‖u‖2]≤
p

mtrΣ≤ D2(f )
p

m/2 .

Now, by the triangle inequality,

sup
X1,...,Xm ,X ′

i

∣∣∣
∥∥u(X1, . . . , Xm)

∥∥
2 −

∥∥u(X1, . . . , X i−1, X ′
i, X i+1, . . . , Xm)

∥∥
2

∣∣∣

≤ sup
X i ,X ′

i

∥∥f (X i)− f (X ′
i)
∥∥

2 ≤ D2(f ) ,

and Eq. (3.14) follows by McDiarmid’s inequality.

Finally, we can derive a guarantee on the performance of ℓ2-regularized maxent.

Theorem 3.9. Let δ> 0 and let λ̂ minimize Lπ̃(λ)+β‖λ‖2 with

β= D2(f )
[
1+

√
ln(1/δ)

]
/
p

2m .

Then with probability at least 1−δ, for every Gibbs distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+
‖λ⋆‖2D2(f )

p
m

(p
2+

√
2ln(1/δ)

)
.

Unlike results of the previous sections, this bound does not explicitly depend on

the number of features and only grows with the ℓ2 diameter of the feature space. The

ℓ2 diameter is small, for example, when the feature space consists of sparse binary

vectors.

An analogous bound can also be obtained for ℓ1-regularized maxent in terms of
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the ℓ∞ diameter of the feature space

Lπ(λ̂)≤Lπ(λ⋆)+ ‖λ⋆‖1D∞(f )
p

m

√
2ln(2|J|/δ) .

This bound increases with the ℓ∞ diameter of the feature space and also grows slowly

with the number of features. It provides some insight for when we expect ℓ1 regulari-

zation to perform better than ℓ2 regularization. For example, consider a scenario in

which the total number of features is large, but the best approximation of π can be

derived from a small number of relevant features. Increasing the number of irrele-

vant features, we may keep ‖λ⋆‖1, ‖λ⋆‖2 and D∞(f ) fixed while increasing D2(f ) as

Ω(
√

|J|). The guarantee for ℓ2-regularized maxent then grows as Ω(
√

|J|) while the

guarantee for ℓ1-regularized maxent grows only as Ω(
√

ln|J|). Note, however, that

in practice the distribution returned by ℓ2-regularized maxent may perform better

than indicated by this guarantee. For a comparison of ℓ1 and ℓ2
2 regularization in the

context of logistic regression see Ng (2004).

When non-overlapping groups of features can be bounded separately in the ℓ2

norm, Lemma 3.8 can be used to bound the ℓ2-norm deviation in each specific group,

and the union bound can be used to bound probability of deviation in any group. As

a result, we obtain guarantees for the regularization

β1‖λ1‖2+β2‖λ2‖2 · · ·+βG‖λG‖2 .

Here, we used λg, g = 1, . . . ,G, to denote groups of parameters that correspond to

the respective groups of features. According to Lemma 3.8, we should set βg ∝
D2(fg)/

p
m. When each group consists of exactly one feature, we obtain ℓ1 regulari-

zation. In the general case, we obtain the regularization known from linear models

as the group lasso (Yuan and Lin, 2006). According to our guarantees, we benefit

from partitioning the variables into groups as long as

G∑

g=1
‖λ⋆

g‖2D2(fg)
p

lnG ≤ ‖λ⋆‖2D2(f ) . (3.15)

The leading
p

lnG on the left-hand side comes from the union bound across the in-

dividual groups.3 Eq. (3.15) holds, for example, when groups are uncorrelated, and

3 More precisely, we benefit from partitioning the variables into groups if

G∑

g=1
‖λ⋆

g‖2D2(fg)
(p

2+
√

2ln(G/δ)
)
≤ ‖λ⋆‖2D2(f )

(p
2+

√
2ln(1/δ)

)
. (3.16)

Assuming that the number of groups is large enough, specifically, lnG ≥ ln(1/δ)
ln(1/δ)−1 , we obtain that
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only a small proportion of them is relevant, as we discuss next.

Without loss of generality assume that D2(f1) = D2(f2) = ·· · = D2(fG). Lack of

correlation between groups means that D2(f )2 ≈∑
g D2(fg)2, i.e., D2(fg)= D2(f )/

p
G.

Assume that only the groups 1, . . . ,G⋆ are relevant, where G⋆ ≤G, and for simplicity

assume that they are equally relevant in the sense that ‖λ⋆

1‖2 = ·· · = ‖λ⋆

G⋆‖2 (the re-

maining parameters are zero). Thus, ‖λ⋆

g‖2 = ‖λ⋆‖2/
p

G⋆ for g = 1, . . . ,G⋆. Plugging

these in the left-hand side of Eq. (3.15), we obtain

G∑

g=1
‖λ⋆

g‖2D2(fg)
p

lnG =
G⋆‖λ⋆‖2p

G⋆
·
D2(f )

p
lnG

p
G

= ‖λ⋆‖2D2(f )

√
G⋆ lnG

G
.

Thus Eq. (3.15) is satisfied if G⋆ ≤ G/ lnG, i.e., if the relevant groups form no more

than a logarithmic fraction of all groups.

Consider sparsity-inducing properties of ℓ2 regularization. Since the sole discon-

tinuity of the derivative of the ℓ2-norm is at zero, there are only two sparsity levels:

either all coordinates of λ̂ are zero or none of them are. When groups of parameters

are regularized separately, this means that either all parameters in a given group

λ̂g are zero or none of them are. This can be viewed as a group-level version of the

sparsity-inducing property of the ℓ1 regularization, hence the name “group lasso.”

Generalizations

The previous results for ℓ2-regularized maxent immediately generalize to the cases

where the values f (x) belong to an arbitrary Hilbert space H. Parameter vectors λ

are then taken from H as well, and the standard inner product and the ℓ2 norm are

replaced by their Hilbert-space equivalents. In machine learning, the most promi-

nent examples of Hilbert spaces are reproducing kernel Hilbert spaces, used heavily

in support vector machine literature (see for example Schölkopf and Smola, 2002).

A separate line of generalizations arises by replacing the ℓ2-ball constraints by

ellipsoid constraints. These are represented using a positive definite matrix A, defin-

ing the potential and regularization

Uπ̃(u)= I
(√

u⊤Au ≤β
)

, U∗
π̃(λ)=β

√
λ⊤A−1λ .

Eq. (3.16) follows from Eq. (3.15). Thus, Eq. (3.15) poses stronger requirements than necessary, but it
simplifies the exposition.
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Ellipsoid indicators can be reduced to the ℓ2-ball indicator by the transformation

f ′(x)=A1/2 f (x) , λ′ =A−1/2λ

where A1/2 is the unique symmetric positive definite matrix such that A1/2A1/2 = A.

As a result, we obtain guarantees for ellipsoid potentials analogous to those for the

ℓ2-ball potential, with D2(f ) replaced by

DA(f )= sup
x,x′∈X

√(
f (x)− f (x′)

)⊤
A

(
f (x)− f (x′)

)
.

The previous can be generalized even further by considering a pair of conjugate

norms ‖·‖A and ‖·‖A∗ , and the potential and regularization

Uπ̃(u)= I
(
‖u‖A ≤β

)
, U∗

π̃(λ)=β‖λ‖A∗ .

Unfortunately, general bounds on deviations ‖Eπ̃[f ]−Eπ[f ]‖A are not available, so

they need to be derived explicitly for specific norms. Box and polyhedral potentials

of previous sections are examples of norm indicators.4 The specific bounds were ob-

tained by directly bounding the deviations of averages from expectations. In this

section, we have explored an alternative, two-step approach. The first step was an

upper-bound on the expected deviation

E
[
‖Eπ̃[f ]−Eπ[f ]‖A

]
,

which was in our case derived from specific properties of the ℓ2 norm. The second

step was an application of McDiarmid’s inequality (as in Lemma 3.8) and it required

only the triangular inequality, which makes it applicable to arbitrary norms.

3.3 Smooth Potentials

The guarantees we have derived for indicator potentials have many favorable prop-

erties. Most notably, they provide regularization settings that achieve good perfor-

mance compared with arbitrary Gibbs distributions. However, in certain situations

there are computational and statistical reasons to use other types of potentials.

First, the indicator potentials may lead to multiple vectors λ̂ specifying the unique

maxent distribution. When features are linearly dependent, there will be infinitely

4To obtain norms, we need to exclude degeneracies such as zero-width and infinite-width boxes and
polytopes. More precisely, all symmetric bounded closed convex sets with non-empty interior can be
viewed as norm-one balls (Rockafellar, 1970, Theorem 15.2).

56



many λ’s specifying every distribution. This may be problematic if λ̂ is used for ex-

trapolation into new sample spaces in which the features need no longer be linearly

dependent. In species distribution modeling, the extrapolation is used, for exam-

ple, to assess impact of changes in the environment on species distributions. The

uniqueness of λ̂ can be achieved by introducing strictly convex regularization func-

tions. Strictly convex regularizations allow us to prioritize among otherwise equal

solutions. For example, we might prefer solutions that spread the parameter weights

across a larger group of features, rather than rely on a single feature. Strictly convex

regularization functions correspond to smooth potentials.5 Unfortunately, indicator

potentials IC are not smooth, because they have an “edge” at the boundary of C.

The second concern is the lack of smoothness of the regularization function. While

smoothness is not necessary for efficient convex optimization, many existing tech-

niques, such as the Newton method, rely on the existence of second derivatives. The

derivatives of I∗C are discontinuous at zero, and hence the second derivatives are not

defined at zero. This problem can be prevented by using smooth approximations of

I∗C.

The final reason to deviate from indicator potentials is to ensure feasibility of the

maxent primal. The maxent primal is always feasible when indicators are derived

from empirical distributions. However, when indicators are derived by other means,

such as from feature averages sampled at a different resolution, it may be difficult to

guarantee feasibility. The problem is that the indicator potential may be infinite for

all possible vectors of feature expectations realizable on a given sample space. This

can be prevented by introducing finite-valued potentials.

Finite-valued potentials also yield guarantees on the expected performance of

maxent. For example, the right-hand side of the Generalization Lemma(i) includes

the term U(Eπ[f ]). If the potential U is derived from empirical data (such as the

previously mentioned potentials, derived from Eπ̃[f ]), then the term U(Eπ[f ]) is a

random variable. If U(Eπ[f ]) is infinite with a non-zero probability, then the Gener-

alization Lemma(i) cannot be used to prove any guarantees on the expected perfor-

mance. On the other hand, if U is always finite and the expectation of U(Eπ[f ]) is

finite, then we obtain guarantees on the expected performance of maxent.

In this section, we first examine a smooth approximation of ℓ1 regularization and

then turn to examples derived from ℓ2
2 regularization.

5More precisely, essentially strictly convex regularization functions are derived from essentially
smooth potentials. For the definition and the correspondence of essential smoothness and essential
strict convexity see Rockafellar (1970), Section 26.
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3.3.1 Maxent with Smoothed ℓ1 Regularization

We analyze a smooth approximation to ℓ1-regularization, similar to one used by

Dekel et al. (2003),

U(≈1)∗
π̃ (λ)=

∑

j∈J

α jβ j lncosh(λ j/α j)=
∑

j∈J

α jβ j ln
( eλ j/α j + e−λ j /α j

2

)
.

Constants α j > 0 control the tightness of fit to the ℓ1 norm while constants β j ≥ 0

control scaling (see Fig. 3.3). Note that cosh x≤ e|x|. Hence

U(≈1)∗
π̃ (λ)≤

∑

j∈J

α jβ j ln e|λ j |/α j =
∑

j∈J

α jβ j|λ j|/α j =
∑

j∈J

β j|λ j| . (3.17)

The potential corresponding to U(≈1)∗
π̃ is

U(≈1)
π̃ (u)=∑

j α jβ jD
(
1+u j/β j

2

∥∥∥∥
1
2

)

where, for a, b ∈ [0,1], D(a ∥ b) is a shorthand for D((a,1− a) ∥ (b,1− b)). To derive

U(≈1)
π̃ , notice that U(≈1)∗

π̃ decomposes into a sum of functions of individual coordinates,

so it suffices to derive a single coordinate potential U(≈1)
π̃, j :

U(≈1)
π̃, j (u j)= sup

λ j

[
u jλ j −α jβ j ln

(
eλ j /α j + e−λ j /α j

2

)]

=α jβ j sup
λ j

[
u j ·

λ j

α jβ j
− ln

(
1
2

exp
{
β j ·

λ j

α jβ j

}
+

1
2

exp
{
−β j ·

λ j

α jβ j

})]

=α jβ j sup
λ′

j:=λ j/α jβ j

[
u jλ

′
j − ln

(
1
2

eβ jλ
′
j + 1

2
e−β jλ

′
j

)]
(3.18)

=α jβ j D
((

1+u j/β j

2
,
1−u j/β j

2

) ∥∥∥∥
(
1
2

,
1
2

))
. (3.19)

Eq. (3.18) follows by a change of variables. The maximization in Eq. (3.18) takes

the form of a basic-maxent dual over a two-point space, say X = {0,1}, with a single

feature f (0) = β j, f (1) = −β j, and the empirical expectation Eπ̃[ f ] = u j. Thus, by

maxent duality, the value of the supremum equals D(p ∥ (1/2,1/2)), where p comes

from a closure of the set of Gibbs distributions and Ep[ f ] = u j. However, the only

distribution on X that satisfies the expectation constraint is

p(0)=
1+u j/β j

2
, p(1)=

1−u j/β j

2
,

hence Eq. (3.19) follows.
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λ

U(≈1)∗
π̃ (λ)

β|λ|

(a) Regularization U(≈1)∗
π̃ .

u

U(≈1)
π̃ (u)

β−β
(b) Potential U(≈1)

π̃ .

Figure 3.3. Smoothed ℓ1 regularization and the corresponding potential.

The potential U(≈1)
π̃ can be viewed as a smooth upper bound on the box potential

U(1)
π̃ in the sense that the gradient of U(≈1)

π̃ is continuous on the interior of the effective

domain of U(1)
π̃ and the norm of the gradient approaches ∞ on the border (see Fig. 3.3).

Note that if |u j| ≤β j for all j then D
(

1+u j /β j

2

∥∥∥ 1
2

)
≤D

(
0

∥∥∥ 1
2

)
= ln2 and hence

U(≈1)
π̃ (u)≤ (ln2)

∑
jα jβ j . (3.20)

Applying bounds (3.17) and (3.20) in the Generalization Lemma(ii), we obtain an

analog of Eq. (3.7).

Theorem 3.10. Assume that for each j, |Eπ̃[ f j]−Eπ[ f j]| ≤β j. Let λ̂ minimize Lπ̃(λ)+
U(≈1)∗

π̃ (λ). Then for an arbitrary Gibbs distribution qλ⋆

Lπ(λ̂)≤Lπ(λ⋆)+2
∑

j β j|λ⋆

j |+ (2ln2)
∑

j α jβ j .

To obtain guarantees analogous to those for ℓ1-regularized maxent, it suffices

to choose sufficiently small α j ’s. For example, in order to perform well relative to

distributions qλ⋆ with
∑

jβ j|λ⋆

j | ≤ L1, it suffices to set α j = (εL1)/(nβ j ln2). Then

Lπ(λ̂)≤Lπ(λ⋆)+2(1+ε)L1 .

For example, we can derive an analog of Theorem 3.3. We relax the constraint that

features are bounded in [0,1] and, instead, provide a guarantee in terms of the ℓ∞
diameter of the feature space.
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Theorem 3.11. Let δ,ε,L1 > 0 and let λ̂ minimize Lπ̃(λ)+αβ
∑

j lncosh(λ j/α) with

α= εL1

n ln2
, β= D∞(f )

√
ln(2n/δ)

2m
.

Then with probability at least 1−δ

Lπ(λ̂)≤ inf
‖λ⋆‖1≤L1

Lπ(λ⋆)+ (1+ε)L1D∞(f )
p

m
·
√

2ln(2n/δ) .

Thus, maxent with the smoothed ℓ1 regularization performs almost as well as

ℓ1-regularized maxent, provided that we specify an upper bound on the ℓ1 norm of

λ⋆ in advance. However, as a result of removing discontinuities in the gradient, the

smoothed ℓ1 regularization lacks the sparsity-inducing properties of ℓ1 regulariza-

tion.

According to Theorem 3.11, the guarantees for smoothed ℓ1 regularization con-

verge to those for ℓ1 regularization as α j → 0. At the same time the objective be-

comes less smooth in some regions and less convex (more flat) in other regions. This

has a negative impact on the convergence properties of many convex-optimization

methods. For example, the number of iterations of gradient descent increases with

increasing condition number of the Hessian. In our case, this condition number in-

creases as α j → 0. Similarly, the number of iterations of Newton’s method depends

on the condition number and the Lipschitz constant of the Hessian, both of which in-

crease as α j → 0. Thus, in choosing α j, we trade an improvement in the performance

guarantees for an increase in the running time.

Generalizations

Although we have worked with explicit forms of U(≈1)
π̃ and U(≈1)∗

π̃ , the only properties

used in the proofs were upper and lower bounds placing coordinate potentials U(≈1)
π̃, j

between the displaced versions of U(1)
π̃, j:

I
(
|u j| ≤β j

)
≤ U(≈1)

π̃, j (u j) ≤ I
(
|u j| ≤β j

)
+α jβ j ln2 .

Equivalently, it is possible to consider bounds on the conjugates:

β j|λ j|−α jβ j ln2 ≤ U(≈1)∗
π̃, j (λ j) ≤ β j|λ j| .

(The lower bound was not proved, but it is straightforward to derive from the inequal-

ity cosh x ≥ e|x|/2.)

The previous bounds (or similar) are satisfied by a large class of smooth approxi-
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mations to ℓ1 regularization. For example, Lee et al. (2006) consider

Uπ̃, j(u j)= I
(
|u j| ≤β j

)
−α j

√
β2

j −u2
j

U∗
π̃, j(λ j)=β j

√
λ2

j +α2
j .

For this potential and regularization, it is straightforward to show that

I
(
|u j| ≤β j

)
−α jβ j ≤ Uπ̃, j(u j) ≤ I

(
|u j| ≤β j

)

β j|λ j| ≤ U∗
π̃, j(λ j) ≤ β j|λ j|+α jβ j ,

which yields guarantees similar to those obtained for U(≈1)∗
π̃ .

3.3.2 Maxent with ℓ2
2 Regularization

So far we have considered potentials that take the form of an indicator function or

its smooth approximation. In this section we present results for the ℓ2
2 potential U(2)

π̃

of Section 2.5 and the corresponding conjugate U(2)∗
π̃ :

U(2)
π̃ (u)=

‖u‖2
2

2α
, U(2)∗

π̃ (λ)=
α‖λ‖2

2

2
.

The potential U(2)
π̃ grows continuously with increasing distance from empirical aver-

ages, while the conjugate U(2)∗
π̃ corresponds to ℓ2

2 regularization.

The main difference from the previously considered potentials is that U(2)
π̃ is finite-

ly-valued. As a result, the primal will always be feasible. Another consequence of the

finitely-valued potential is that it is possible to derive guarantees on the expected

performance (in addition to probabilistic guarantees).

In the previous sections, we obtained guarantees by optimizing tuning constants.

Here, we will not be able to optimize the tuning constant uniformly across all λ⋆. Our

guarantees will require an a priori bound on ‖λ⋆‖2. This is analogous to the guar-

antees derived by Zhang (2005) for the expected performance of conditional maxent.

However, we are able to obtain a better multiplicative constant.

Note that we could derive expectation guarantees by simply applying the Gener-

alization Lemma(ii) and taking the expectation over a random sample:

Lπ(λ̂)≤Lπ(λ⋆)+
‖Eπ[f ]−Eπ̃[f ]‖2

2

α
+α‖λ⋆‖2

2 (3.21)

E
[
Lπ(λ̂)

]
≤Lπ(λ⋆)+

trΣ
αm

+α‖λ⋆‖2
2 .

Here, Σ is the feature covariance matrix (similar to Eq. 3.13). We improve this guar-
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antee by using the Generalization Lemma(iii) with qλ⋆ chosen to minimize Lπ(λ)+
U(2)∗

π̃ (λ), and explicitly bounding (λ⋆−λ̂) · (Eπ[f ]−Eπ̃[f ]) by a stability result similar

to Zhang (2005).

Lemma 3.12. Let λ̂ minimize Lπ̃(λ)+α‖λ‖2
2/2 where α> 0. Then for every qλ⋆

Lπ(λ̂)≤Lπ(λ⋆)+
‖Eπ[f ]−Eπ̃[f ]‖2

2

α
+
α‖λ⋆‖2

2

2
.

Proof. By assumption

λ̂= argmin
λ

[
Lπ̃(λ)+α‖λ‖2

2/2
]

.

Further, let

λ⋆⋆ = argmin
λ

[
Lπ(λ)+α‖λ‖2

2/2
]

.

As the first step, we show that
∥∥λ⋆⋆− λ̂

∥∥
2 ≤

‖Eπ[f ]−Eπ̃[f ]‖2

α
. (3.22)

Assume that λ⋆⋆ 6= λ̂ (otherwise Eq. 3.22 holds). Let g(λ) denote ln Zλ. This is the

cumulant or the log partition function of the exponential family, which is convex in

λ (Kapur and Kesavan, 1992). By convexity of the cumulant g(λ) and the squared

norm α‖λ‖2
2/2, the gradients of

Lπ(λ)+α‖λ‖2
2/2= ln Zλ−λ ·Eπ[f ]+α‖λ‖2

2/2

Lπ̃(λ)+α‖λ‖2
2/2= ln Zλ−λ ·Eπ̃[f ]+α‖λ‖2

2/2

at their respective minima must equal zero:

∇g(λ⋆⋆)−Eπ[f ]+αλ⋆⋆ = 0

∇g(λ̂)−Eπ̃[f ]+αλ̂= 0

Taking the difference yields

α(λ⋆⋆− λ̂)=−(∇g(λ⋆⋆)−∇g(λ̂))+ (Eπ[f ]−Eπ̃[f ]) .

Taking inner product of both sides with (λ⋆⋆− λ̂), we obtain

α‖λ⋆⋆− λ̂‖2
2 =−(λ⋆⋆− λ̂) · (∇g(λ⋆⋆)−∇g(λ̂))+ (λ⋆⋆− λ̂) · (Eπ[f ]−Eπ̃[f ])

≤ (λ⋆⋆− λ̂) · (Eπ[f ]−Eπ̃[f ]) (3.23)

≤ ‖λ⋆⋆− λ̂‖2‖Eπ[f ]−Eπ̃[f ]‖2 . (3.24)
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Eq. (3.23) follows because, by convexity of g(λ), for all λ1,λ2

(∇g(λ2)−∇g(λ1)) · (λ2 −λ1)≥ 0 .

Eq. (3.24) follows by the Cauchy-Schwartz inequality. Dividing (3.24) by α‖λ⋆⋆− λ̂‖2

we obtain Eq. (3.22). Now, by the Generalization Lemma(ii), the Cauchy-Schwartz

inequality, Eq. (3.22) and the optimality of λ⋆⋆, we obtain

Lπ(λ̂)≤Lπ(λ⋆⋆)+ (λ⋆⋆− λ̂) · (Eπ[f ]−Eπ̃[f ])+U(2)∗
π̃ (λ⋆⋆)−U(2)∗

π̃ (λ̂)

≤Lπ(λ⋆⋆)+‖λ⋆⋆− λ̂‖2‖Eπ[f ]−Eπ̃[f ]‖2 +
α‖λ⋆⋆‖2

2

2
−
α‖λ̂‖2

2

2

≤Lπ(λ⋆⋆)+
‖Eπ[f ]−Eπ̃[f ]‖2

2

α
+
α‖λ⋆⋆‖2

2

2

≤Lπ(λ⋆)+
‖Eπ[f ]−Eπ̃[f ]‖2

2

α
+
α‖λ⋆‖2

2

2
.

Lemma 3.12 improves on Eq. (3.21) in the leading constant of ‖λ⋆‖2
2 which is α/2

instead of α. Taking the expectation over a random sample and bounding the trace of

Σ in terms of the ℓ2 diameter (see Lemma 3.7), we obtain an expectation guarantee.

We can also use Lemma 3.8 to bound ‖Eπ[f ]−Eπ̃[f ]‖2
2 with high probability, and

obtain a probabilistic guarantee. The two results are presented in Theorem 3.13

with the tradeoff between the guarantees controlled by the parameter s.

Theorem 3.13. Let L2, s> 0 and let λ̂ minimize Lπ̃(λ)+α‖λ‖2
2/2 with

α= sD2(f )

L2
p

m
.

Then

E
[
Lπ(λ̂)

]
≤ inf

‖λ⋆‖2≤L2

Lπ(λ⋆)+
L2D2(f )

p
m

·
s+ s−1

2

and if δ> 0 then with probability at least 1−δ

Lπ(λ̂)≤ inf
‖λ⋆‖2≤L2

Lπ(λ⋆)+
L2D2(f )

p
m

·
s+ s−1

(
1+

p
ln(1/δ)

)2

2
.

The bounds of Theorem 3.13 are similar to the probabilistic guarantees for ℓ2-

regularized maxent. As mentioned earlier, they differ in the crucial fact that the

norm ‖λ⋆‖2 needs to be bounded a priori by a constant L2. It is this constant rather

than a possibly smaller norm ‖λ⋆‖2 that enters the bound.
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Similar to the bounds for ℓ2-regularization, the bounds in this section generalize

to arbitrary Hilbert-space and ellipsoid regularizations. The guarantees also gener-

alize to regularizations obtained by taking squares of arbitrary norms as long as the

corresponding concentration and expectation bounds are available.

Maxent with ℓ2 Regularization versus ℓ2
2 Regularization

Note that the performance guarantees for maxent with ℓ2 and ℓ2
2 regularization differ

whenever we require that β and α be fixed before running the algorithm. We now

show that if all possible values of β and α are considered then the sets of models

generated by the two maxent versions are the same.

Let Λ
(
p

2),β and Λ
(2),α denote the respective solution sets for maxent with ℓ2 and

ℓ2
2 regularization:

Λ
(
p

2),β = argmin
λ∈RJ

[Lπ̃(qλ)+β‖λ‖2] (3.25)

Λ
(2),α = argmin

λ∈RJ

[Lπ̃(qλ)+α‖λ‖2
2/2] . (3.26)

If β,α> 0 then Λ
(
p

2),β and Λ
(2),α are non-empty because the objectives are lower semi-

continuous and approach infinity as ‖λ‖2 increases. For β= 0 and α= 0, Eqs. (3.25)

and (3.26) reduce to basic maxent. Thus, Λ(
p

2),0 and Λ
(2),0 contain the λ’s for which

Eqλ[f ]=Eπ̃[f ]. This set will be empty if the basic maxent solutions are attained only

in a limit.

Theorem 3.14. Let Λ(
p

2) =⋃
β∈[0,∞]Λ

(
p

2),β and Λ
(2) =⋃

α∈[0,∞]Λ
(2),α. Then Λ

(
p

2) =Λ
(2).

Proof. First note that Λ
(
p

2),∞ = Λ
(2),∞ = {0}. Next, we will show that Λ

(
p

2) \ {0} =
Λ

(2) \ {0}. Taking derivatives in Eqs. (3.25) and (3.26), we obtain that λ ∈Λ
(
p

2),β \ {0}

if and only if

λ 6= 0 and ∇Lπ̃(qλ)+βλ/‖λ‖2 = 0 .

Similarly, λ ∈Λ
(2),α \{0} if and only if

λ 6= 0 and ∇Lπ̃(qλ)+αλ= 0 .

Thus, any λ ∈ Λ
(
p

2),β \ {0} is also in the set Λ
(2),β/‖λ‖2 \ {0}, and conversely any λ ∈

Λ
(2),α \{0} is also in the set Λ(

p
2),α‖λ‖2 \{0}.

The proof of Theorem 3.14 rests on the fact that the contours of the regularization

functions ‖λ‖2 and ‖λ‖2
2 coincide. We could easily extend the proof to include the
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equivalence of Λ(
p

2), Λ(2) with the set of solutions to the problem

min
λ∈RJ

[
Lπ̃(qλ)+ I

(
‖λ‖2 ≤ 1/γ

)]

where γ ∈ [0,∞]. Similarly, one could show the equivalence of the solutions with

regularizations β‖λ‖1, α‖λ‖2
1/2 and I(‖λ‖1 ≤ 1/γ).

The main implication of Theorem 3.14 is for maxent density estimation with se-

lection of regularization parameters by the minimization of the held-out or cross-

validated empirical error. In those cases, maxent versions with ℓ2, ℓ2
2 (and ℓ2-ball

indicator) regularization yield the same solution. Thus, we prefer to use the compu-

tationally least intensive method. This will typically be ℓ2
2-regularized maxent whose

potential and regularization are smooth.

However, the solution sets Λ
(
p

2),β and Λ
(2),α differ in their sparsity-inducing prop-

erties. We have noted that ℓ2 regularization has two sparsity levels: either all coor-

dinates of λ remain zero under perturbations, or none of them are. This is because

the sole discontinuity of the gradient of the ℓ2-regularized log loss is at λ= 0. On the

other hand, ℓ2
2 regularization is smooth and therefore does not induce sparsity.

3.3.3 Maxent with ℓ1+ℓ2
2 Regularization

Finally, we consider regularization that has both ℓ1-style and ℓ2
2-style terms. We will

be able to derive both the expectation and probabilistic guarantees as in the case of

ℓ2
2 regularization, while retaining sparsity-inducing properties (and some generaliza-

tion properties) of ℓ1 regularization. To simplify the discussion, we apply the same

regularization parameters β and α across all coordinates:

U(1+2)∗
π̃ (λ)=β‖λ‖1 +

α‖λ‖2
2

2
, U(1+2)

π̃ (u)=∑
j

∣∣|u j|−β
∣∣2
+

2α
.

Here α and β are positive constants, and |x|+ =max{0, x} denotes the positive part of

x. To derive U(1+2)
π̃ , notice that U(1+2)∗

π̃ decomposes into a sum of functions of individual

coordinates, so it suffices to derive a single coordinate potential U(1+2)
π̃, j :

U(1+2)
π̃, j (u j)= sup

λ j

(
u jλ j −β|λ j|−

αλ2
j

2

)

= sup
λ j: u jλ j=|u j ||λ j |

(
α

2
· |λ j | ·

[
2
(
|u j|−β

)

α
−|λ j|

])
. (3.27)

In Eq. (3.27) we note that for each pair ±λ j, it suffices to consider the value whose

sign agrees with u j. Next, distinguish two cases. First, if |u j| ≤β then the bracketed
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expression is non-positive, hence the supremum is attained at λ j = 0 and its value

equals 0. Second, for |u j| > β, the supremum is attained when |λ j| = (|u j|−β)/α, in

which case its value equals (|u j|−β)2/(2α), completing the derivation of (3.27). Using

similar techniques as in the previous sections we can derive the following theorem.

Theorem 3.15. Let δ,L2 > 0, and let λ̂ minimize Lπ̃(λ)+β‖λ‖1 +α‖λ‖2
2/2 with α =

D2(f )min{1/
p

2,
p

mδ}
/

(2L2
p

m) and β= D∞(f )
√

ln(2|J|/δ)/(2m). Then

E
[
Lπ(λ̂)

]
≤ inf

‖λ⋆‖2≤L2

[
Lπ(λ⋆)+

‖λ⋆‖1D∞(f )
p

m

√
2ln(2|J|/δ)

]
+

L2D2(f )
p

m
·min

{
1
p

2
,
p

mδ

}
,

and with probability at least 1−δ

Lπ(λ̂)≤ inf
‖λ⋆‖2≤L2

[
Lπ(λ⋆)+ ‖λ⋆‖1D∞(f )

p
m

√
2ln(2|J|/δ)

]
+ L2D2(f )

p
m

· 1
2

min
{

1
p

2
,
p

mδ

}
.

Proof. We only need to bound U(1+2)
π̃ (Eπ̃[f ]−Eπ[f ]) and its expectation and use the

Generalization Lemma(ii). By Hoeffding’s inequality and the union bound, the po-

tential is zero with probability at least 1−δ, immediately yielding the second claim.

To bound the expectation, notice that with the remaining probability at most δ

U(1+2)
π̃ (Eπ̃[f ]−Eπ[f ])≤

‖Eπ̃[f ]−Eπ[f ]‖2
2

2α
≤ D2(f )2

2α
,

hence E
[
U(1+2)

π̃ (Eπ̃[f ]−Eπ[f ])
]
≤ δD2(f )2/(2α). On the other hand, we can bound the

trace of the feature covariance matrix by Lemma 3.7 and obtain

E
[
U(1+2)

π̃ (Eπ̃[f ]−Eπ[f ])
]
≤

E
[
‖Eπ̃[f ]−Eπ[f ]‖2

2

]

2α
= trΣ

2mα
≤ D2(f )2

4mα
.

Hence

E
[
U(1+2)

π̃ (Eπ̃[f ]−Eπ[f ])
]
≤

D2(f )2

2mα
·min

{
1
2

, mδ

}

and the first claim follows.

Setting δ = s/m, we bound the difference in performance between the maxent

distribution and any Gibbs distribution of a bounded weight vector by

O

(
‖λ⋆‖1D∞(f )

√
ln(2m|J|/s)+L2D2(f )

p
s

p
m

)
.

Now the constant s can be tuned to achieve the optimal tradeoff between ‖λ⋆‖1D∞(f )

and L2D2(f ). Notice that the sparsity inducing properties of ℓ1 regularization are

preserved in ℓ1+ℓ2
2 regularization because partial derivatives of β‖λ‖1+α‖λ‖2

2/2 are
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discontinuous at zero.

Finally, we point out how the results in this section generalize to regularizations

defined by arbitrary pairs of norms ‖·‖A and ‖·‖B as long as the corresponding con-

centration and expectation bounds are available. Specifically, consider the regulari-

zation

U∗
π̃(λ)=β‖λ‖B∗ +

α‖λ‖2
A∗

2
where ‖·‖A∗ and ‖·‖B∗ are norms dual to ‖·‖A and ‖·‖B. The potential can then be

bounded above using Eq. (2.16),

Uπ̃(u)= inf
u′

[
I
(
‖u′‖B ≤β

)
+
‖u−u′‖2

A

2α

]

≤ min
u′∈{0,u}

[
I
(
‖u′‖B ≤β

)
+
‖u−u′‖2

A

2α

]

=min

{
I
(
‖u‖B ≤β

)
,
‖u‖2

A

2α

}
, (3.28)

yielding guarantees similar to Theorem 3.15.

3.4 Infinite Feature Classes

So far we have considered the generalization properties of maxent on finite feature

classes bounded in the ℓ∞ norm as well as the generalization properties on possibly

infinite feature classes bounded in the ℓ2 norm. In the former case, we have found

that the ℓ1 regularized maxent generalizes well if the number of features is smaller

than an exponential of the number of samples. In the latter case, the ℓ2-regularized

maxent generalizes well regardless of the dimensionality. While these requirements

seem rather modest, there are several interesting feature classes for which the pre-

vious results do not give satisfying guarantees.

For example, consider threshold features, hinge features, and decision paths de-

rived from a set of variables V. If we consider the continuum of possible thresholds

for each variable v ∈ V then these feature classes have infinite sizes and infinite ℓ2

diameters. Even if we consider only one threshold value between consecutive pairs of

values that the variables v attain on X, the number of features and the ℓ2 diameters

of the corresponding feature spaces will depend on the size of the sample space X,

which may be significantly larger than the number of samples m.

In this section we prove guarantees that do not require bounded ℓ2 diameters

and do not depend explicitly on the number of features or the size of X. They will

allow working with potentially infinite feature classes including classes of threshold
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features, hinge features, and decision paths. Our approach is based on ℓ1-regularized

maxent. To bound the empirical errors we use a set of uniform convergence results

known as Vapnik-Chervonenkis theory (VC theory).

3.4.1 VC bounds

VC theory was extensively developed by Vapnik and Chervonenkis (1968, 1971, 1974).

Before proving specific results, we define some relevant concepts, following the expo-

sition of Devroye et al. (1996), Chapters 12 and 13.

First, we define the growth function s(F, m), for a set of binary features F and

the number of samples m, as the largest number of distinct labelings assigned by

features in F to any set of m samples. In symbols:

s(F, m)= max
x1,...,xm∈X

∣∣∣
{(

f (x1), . . . , f (xm)
)

: f ∈F
}∣∣∣ .

The VC dimension of F is the largest number of samples for which all possible label-

ings exist:

d(F)=max{m : s(F, m)= 2m} .

The growth function can be bounded in terms of the VC dimension by Sauer’s lem-

ma (Vapnik and Chervonenkis, 1971; Sauer, 1972):

s(F, m)≤
d(F)∑

i=0

(
m

i

)
.

If m > 2d(F) then the right-hand side of Sauer’s lemma can be further bounded (see

Devroye et al., 1996, Theorem 13.3), yielding the simpler inequality

ln s(F, m)≤ d(F) ln(em/d(F)) . (3.29)

A central result of VC theory is the uniform convergence of empirical averages

of feature classes with finite VC dimension to their means, regardless of the actual

number of features. Compared with Theorem 3.3, the number of features |J| is typ-

ically replaced by the growth function s, and ln|J| is replaced by the VC dimension.

For example, we can derive the following result:

Theorem 3.16. Let F be a set of binary features indexed by j ∈ J and let λ̂ minimize

Lπ̃(λ)+∑
j β j|λ j| with β j = β =

√
[ln s(F, m2)+ ln(1/δ)+ ln(4e8)]/(2m) for all j. Then
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with probability at least 1−δ, for every Gibbs distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+2‖λ⋆‖1

√
ln s(F, m2)+ ln(1/δ)+ ln(4e8)

2m
.

Proof. By Theorem A.5, we obtain that |Eπ[ f j]−Eπ̃[ f j]| ≤β for all the f j ’s simultane-

ously, with probability at least 1−δ. The statement of the theorem now follows by

Theorem 3.2.

Next, we consider a few applications of Theorem 3.16 for specific feature classes.

Example 3.17. Half-spaces. Consider the set of binary features defined as indicators

of half-spaces using at most γ variables; for example, threshold features are half-

spaces in a single variable. For any fixed γ-tuple of variables, there exist at most

2mγ labelings induced by half-spaces in these variables (see, for example, Devroye

et al., 1996, Corollary 13.1). Summing over all possible γ-tuples yields

s(F, m)≤
(
|V|
γ

)
2mγ ≤ 2|V|γmγ .

For the β j ’s chosen according to Theorem 3.16, the performance of the half-space

features can be bounded as

Lπ(λ̂)≤Lπ(λ⋆)+2‖λ⋆‖1

√
γ ln(m2|V|)+ ln(1/δ)+ ln(8e8)

2m
.

Note that even though the number of features is potentially infinite, we get a mean-

ingful bound as long as γ ln(m2|V|) = o(m). Thus, if γ is fixed, as in threshold features,

then the log of the number of variables specifies the feature complexity in a similar

way as the log of the number of features in Section 3.2.1.

Example 3.18. Spaces of bounded VC dimension. If d(F) is finite then the growth

function can be bounded by Eq. (3.29) for m> 2d(F). Theorem 3.16 then yields mean-

ingful bounds as long as d(F) ln(em2/d(F))= o(m). Examples of binary features with

bounded VC dimension include half-spaces, Euclidean balls and ellipses, defined on

at most γ variables from the set V. VC dimensions of these classes, similar to VC

dimensions of half-spaces, depend polynomially on γ and logarithmically on |V|.

Example 3.19. Decision paths. Threshold features over the variables V define at

most 2m|V| distinct labelings on any m examples. Labelings by decision paths of

length ℓ are conjunctions of ℓ threshold-feature labelings. Thus, the number of label-
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ings they induce is at most (
2m|V|

ℓ

)
≤ (2m|V|)ℓ .

Notice that threshold features are decision paths of length one. For the β j ’s chosen

by Theorem 3.16, the performance of threshold features and decision paths can be

bounded as

Lπ(λ̂)≤Lπ(λ⋆)+2‖λ⋆‖1

√
ℓ ln(2m2|V|)+ ln(1/δ)+ ln(4e8)

2m
.

Thus, we get a meaningful bound as long as ℓ ln(2m2|V|) = o(m). Similarly to half-

spaces, if the path length ℓ is fixed then the log of the number of variables specifies

the feature complexity.

Example 3.20. Conjunctions of spaces of bounded VC dimension. Similar to the

view of decision paths as conjunctions of threshold features, it is possible to consider

conjunctions of classes of bounded VC dimension such as those mentioned in Exam-

ple 3.18.

Among infinite feature classes introduced in Section 2.2, threshold features and

decision paths are the only examples of binary-valued features, and therefore the

only examples that fit directly in VC theory. Interesting examples of real-valued

infinite feature classes are hinge features and splines. We will show that their per-

formance, as well as performance of arbitrary features with a finite “total variation,”

can be bounded using the results for threshold features and decision paths. Before

proving guarantees for infinite classes of real-valued features, we analyze ℓ1 regular-

ization of threshold features and decision paths in more detail.

3.4.2 ℓ1 Regularization of Threshold Features

We begin with a more detailed analysis of threshold features. Threshold features are

highly expressive, because they can model arbitrary additive responses to variables

(i.e., arbitrary responses without pairwise or higher-order interactions). We analyze

the cost of this generality.

Suppose we are given an arbitrary response function to a single variable v. What

is the penalty incurred by using threshold features to express this function?

Consider a simple model qg that depends on a single variable v ∈V and is param-

eterized by a response g :R→R,

qg(x)= q0(x)eg(v(x))/Zg ,
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where Zg ensures that the probabilities sum to one over X. Threshold features can

be used to represent qg, because the space X is finite, and therefore g can be modeled

on X exactly as a finite sum of step functions.

To determine an explicit representation of g, assume that |X| = N, and sort the

values v(x), x ∈ X, in an increasing order, calling them θ0, . . . ,θN−1. Step functions

1(t; t ≥ θi), used to derive threshold features, can be used to represent g as

g(t)= g(θ0)+
N−1∑

i=1

(
g(θi)− g(θi−1)

)
1(t; t ≥ θi) . (3.30)

The constant g(θ0) is normalized out of the exponent, whereas the differences g(θi)−
g(θi−1) correspond to the coefficients of threshold features 1(x;v(x) ≥ θi). Using ℓ1-

regularized maxent with threshold features for the variable v, and with β set accord-

ing to Example 3.19, we obtain by Theorem 3.16

Lπ(λ̂)≤Lπ(g)+2β
N−1∑

i=1
|g(θi)− g(θi−1)| ,

where we used Lπ(g) to denote the log loss

−Eπ

[
ln

qg

q0

]
.

Thus, the response g is penalized by

N−1∑

i=1
|g(θi)− g(θi−1)| .

This expression measures how much the value of g changes over the domain of g. In

our specific case, this expression corresponds to the “total variation” of g. To be more

precise, the total variation of a function g : [tmin, tmax]→R is defined as

V (g)= sup
t0<t1<···<tn

n∈N,t0=tmin ,tn=tmax

[
n∑

i=1
|g(t i)− g(t i−1)|

]
. (3.31)

If g is continuously differentiable then it can be shown that

V (g)=
∫tmax

tmin

∣∣∣∣
dg(t)

dt

∣∣∣∣dt .
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Thus, we have argued that threshold features in a single variable minimize

Lπ̃(g)+β

∫tmax

tmin

∣∣∣∣
dg(t)

dt

∣∣∣∣dt

over responses g for which the integral is defined. Total-variation regularization

has been successfully applied, for example, in image restoration (Strong and Chan,

2003). The approach is similar to smoothing splines (see, for example, Wahba, 1990;

or Hastie et al., 2001, Chapter 5), which minimize

Lπ̃(g)+β

∫tmax

tmin

(
d2 g(t)

dt2

)2

dt .

Thus, responses obtained by the ℓ1-regularized maxent with threshold features can

be viewed as the ℓ1 versions of solutions obtained by smoothing splines.

3.4.3 ℓ1 Regularization of Decision Paths

The previous observations can be generalized to responses with a constant level of

interaction when threshold features are replaced by decision paths. Before proving a

theorem for the general case, we need a few definitions.

Assume that all variables are bounded in [tmin, tmax] and let G : [tmin, tmax]|V| →
R denote an arbitrary response function. The corresponding Gibbs distribution is

defined as

qG(x)= q0(x)eG(v(x))/ZG ,

where v denotes the vector of all variables and ZG is the normalization constant.

Again, we will write Lr(G) for

−Er

[
ln

qG

q0

]
.

We say that the order of interaction (or simply the order) of G is ℓ if G can be written

as

G(t)=
∑

i∈I

g i(tki ) (3.32)

where g i : [tmin, tmax]ℓ → R, ki ∈ {1, . . ., |V|}ℓ, i comes from an index set I, and tki

denotes the vector (tki,1, tki,2 , . . . , tki,ℓ).

In the previous section, we used threshold features to express a function g in a

single variable, beginning from the “left” extreme of g’s range and gradually adding

step functions to approximate g. In this section, we will use decision paths to express

functions g i and start from a “corner”, where the “corner” will refer to one of the ver-

tices of the hypercube [tmin, tmax]ℓ. For mathematical convenience, we will assume

72



that functions g i in Eq. (3.32) are constant on the hypercube-bounding hyperplanes

that are adjacent to the corner. More precisely, we say that g : [tmin, tmax]ℓ →R has

the corner property if there exists a vector c ∈ {tmin, tmax}ℓ such that g(t)= g(c) when-

ever tk = ck for some k ∈ {1, . . .,ℓ}. The vector c is called a corner of g. We say that a

response G of order ℓ has the corner property, if all the functions in the decomposition

of Eq. (3.32) have the corner property.

Next, we define a multivariate version of total variation. Among several (non-

equivalent!) versions, the Vitali variation (Vitali, 1908; Fréchet, 1910; Lebesgue,

1910) is the right choice for our purposes. For a sufficiently smooth function g :

[tmin, tmax]ℓ →R, its Vitali variation V (g) is defined as

V (g)=
∫tmax

tmin

· · ·
∫tmax

tmin

∣∣∣∣
∂ℓg(t1, . . . , tℓ)
∂t1 · · ·∂tℓ

∣∣∣∣dt1 · · ·dtℓ .

If the function g is not differentiable then the partial derivatives need to be replaced

by differences. Specifically, define the k-th-coordinate difference operator ∆k;δ, pa-

rameterized by δ, as

∆k;δ(g; t1, . . . , tℓ)= g(t1, . . . , tℓ)− g(t1, . . . , tk−1, tk −δ, tk+1, . . . , tℓ) .

Let Π be an arbitrary subdivision of the box [tmin, tmax]ℓ by axes-aligned hyperplanes.

Thus Π is specified by ℓ sequences (one along every axis)

tmin = t1,0 < t1,1 < ·· · < t1,n1 = tmax

...

tmin = tℓ,0 < tℓ,1 < ·· · < tℓ,nℓ
= tmax .

For a subdivision Π, let δk,i denote the difference tk,i − tk,i−1. The Vitali variation of

g is defined as the least upper bound on the sums of the form

n1∑

i1=1

n2∑

i2=1
· · ·

nℓ∑

iℓ=1

∣∣∣∆1;δ1,i1
∆2;δ2,i2

· · ·∆ℓ;δℓ,iℓ
(g; t i1, t i2, . . . , t iℓ)

∣∣∣ (3.33)

taken over all possible subdivisions Π.

Later in this section, we will see that G can be decomposed into a sum of decision

paths weighted by coefficients corresponding to the values of the ℓ-th order difference

in Eq. (3.33); note that this is a natural generalization of the single-variable case

considered in the previous section. Next we state a few properties of the difference

operator and Vitali variation (proofs are omitted).

73



Proposition 3.21 (Linearity of Difference).

∆k;δ(a1 g1 +a2 g2; t)= a1∆k;δ(g1; t)+a2∆k;δ(g2; t)

where g1 and g2 are functions, a1 and a2 are scalars, and a1 g1 + a2 g2 refers to the

function t 7→ a1 g1(t)+a2 g2(t).

Proposition 3.22. ∆k;δ(g)= 0 if and only if g is constant along the k-th coordinate.

Proposition 3.23 (Distributive Law for Difference).

∆1;δ1∆2;δ2 · · ·∆ℓ;δℓ(g; t)=
∑

b∈{0,1}ℓ
(−1)(

∑
k bk) g(t−Db)

where D is a diagonal matrix with entries Dkk = δk.

Proposition 3.24. Vitali variation does not change under monotone transformations

of coordinates. Specifically, let g : [tmin, tmax]ℓ →R and g′ : [t′min, t′max]ℓ →R such that

g′(t′1, . . . , t′ℓ)= g(h1(t′1), . . . , hℓ(t′ℓ))

where h1, . . . , hℓ are strictly monotone continuous functions mapping the endpoints

t′min, t′max to the endpoints tmin, tmax. Then V (g′)=V (g).

Now, we are ready to state and prove the theorem characterizing solutions of

ℓ1-regularized maxent with decision paths.

Theorem 3.25. Let F be the set of decision paths of length ℓ. The ℓ1-regularized

maxent problem

inf
λ

(
Lπ̃(λ)+β‖λ‖1

)
(3.34)

is equivalent to the minimization

inf
G

(
Lπ̃(G)+β

∑

i∈I

V (g i)
)

(3.35)

where G is taken from the set of responses of order ℓ with the corner property, decom-

posed as in Eq. (3.32). Moreover, if λ̂ solves the maxent problem for

β=

√
ℓ ln(2m2|V|)+ ln(1/δ)+ ln(4e8)

2m

then with probability at least 1−δ, for all responses G⋆ of order ℓ with the corner

property, decomposed as in Eq. (3.32),

Lπ(λ̂)≤Lπ(G⋆)+2β
∑

i∈I

V (g⋆

i ) .
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The theorem states that ℓ1-regularized maxent with decision paths of length ℓ

corresponds to regularized log loss optimization within a class of responses of order ℓ.

If G is sufficiently smooth then the condition that its order of interaction be ℓ is

equivalent to requiring that G vanish after taking (ℓ+1)-st derivative with respect

to any set of ℓ+1 distinct coordinates. The corner property can always be achieved,

for example, by slightly enlarging the range of G. The regularization penalty for

using G can then be expressed without referring to the decomposition of G as

β

(tmax− tmin)|V|−ℓ

∫tmax

tmin

· · ·
∫tmax

tmin

∑

k∈{1,...,|V|}ℓ

∣∣∣∣∣
∂ℓG(t1, . . . , t|V|)

∂tk1 · · ·∂tkℓ

∣∣∣∣∣dt1 · · ·dt|V| .

Similar to bounds in the previous sections, this penalty can be decomposed into a

factor corresponding to the Gibbs-distribution complexity and a factor corresponding

to the feature-space complexity. Complexity of the Gibbs distribution qG is measured

by the integral above, whereas the feature-space complexity, i.e., the complexity of

using decision paths, is captured by β, roughly proportional to ℓ ln(m|V|), as we have

derived earlier by VC theory. (For a more refined analysis of generalization properties

of decision paths in classification, see for example Golea et al., 1998.)

Proof of Theorem 3.25. We focus on a single term g = g i in the decomposition of G.

Similar to threshold features, we will show that g can be written as a constant plus

a weighted sum of decision paths such that the corresponding ℓ1 penalty is V (g).

Summing contributions across all functions g i then yields the results of the theorem.

Assume that |X| = N. Thus any variable v can attain at most N distinct values

on X. By Proposition 3.24, we can transform variables v so that g has a corner at 0

and v(x) ∈ {0,1, . . ., N −1} for all v ∈ V, x ∈ X. This transformation has no impact on

expressivity or regularization of decision paths, since we can appropriately transform

their decision thresholds and possibly change their decision inequalities from ≤ to >
or vice versa. From now on, we restrict the domain of g to the lattice {0,1, . . ., N−1}ℓ.

Because of the corner property, the function g(t)− g(0) can be nonzero only on the

set T = {1,2, . . ., N −1}ℓ. Note that the decision paths 1(t; t ≥ θ), where θ ∈ T, form a

basis for the vector space of functions on T. To see this, consider the lexicographic

ordering of T. The decision path 1(t; t ≥ θ) equals one if t = θ, but equals zero if t

precedes θ (it can be both zero and one if t follows θ in the lexicographic ordering).

Thus, proceeding “left” to “right” in this ordering (this corresponds to proceeding

“from the corner”), we can express an arbitrary function on T. Since the space of

functions on T is |T|-dimensional, and we consider only |T| decision paths, they form

a basis. Thus, there exist unique coefficients aθ such that the function g can be
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written as

g(t)= g(0)+
∑

θ∈T

aθ1(t≥ θ) . (3.36)

Let ∆k be a shorthand for ∆k;1. We saw that in the one-dimensional case, the co-

efficient aθ would be equal to g(θ)− g(θ− 1) = ∆1(g;θ). We will show that in the

multidimensional case, the coefficient aθ is simply a higher-order difference. Opera-

tors ∆k are linear, hence their composition is linear as well. To derive aθ, we apply

∆1 · · ·∆ℓ to both sides of Eq. (3.36), and evaluate the result at a point t⋆ ∈ T:

∆1 · · ·∆ℓ

(
g(t); t⋆

)
=∆1 · · ·∆ℓ

(
g(0)+

∑

θ∈T

aθ1(t ≥ θ); t⋆
)

=
∑

θ∈T

aθ∆1 · · ·∆ℓ

(
1(t ≥ θ); t⋆

)
(3.37)

=
∑

θ∈T

aθ

∑

b∈{0,1}ℓ
(−1)(

∑
k bk)

1(t⋆−b ≥ θ) (3.38)

=
∑

θ∈T

aθ

∑

b∈{0,1}ℓ
(−1)(

∑
k bk)

1(t⋆ ≥ θ+b)

=
∑

θ∈T

aθ1(t⋆ = θ) (3.39)

= at⋆ (3.40)

Eq. (3.37) follows by linearity and Proposition 3.22. Eq. (3.38) follows by Proposi-

tion 3.23. In Eq. (3.39) we used the principle of inclusion and exclusion

1(t⋆ = θ)=1(t⋆ ≥ θ)−1

((
{t⋆1 ≥ θ1 +1}∩ {t⋆−1 ≥ θ−1}

)

∪
(
{t⋆2 ≥ θ2 +1}∩ {t⋆−2 ≥ θ−2}

)

...

∪
(
{t⋆ℓ ≥ θℓ+1}∩ {t⋆−ℓ ≥ θ−ℓ}

))

=
∑

b∈{0,1}ℓ
(−1)(

∑
k bk)

1(t⋆ ≥ θ+b) ,

where t−k denotes the (ℓ−1)-tuple obtained from t by deleting tk, i.e., the (ℓ−1)-tuple

(t1, . . . , tk−1, tk+1, . . . , tℓ).

Eq. (3.40) implies that the weights aθ of the decision paths 1(t; t≥ θ) in Eq. (3.36)

are equal to ∆1 · · ·∆ℓ(g;θ). Therefore, the contribution of g to the regularization in

problem Eq. (3.34) is at most

β
∑

θ∈T

∣∣∣∆1 · · ·∆ℓ(g;θ)
∣∣∣≤βV (g) . (3.41)
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Summing across all the g i ’s, we obtain

inf
λ

(
Lπ̃(λ)+β‖λ‖1

)
≤ inf

G

(
Lπ̃(G)+β

∑

i∈I

V (g i)
)

.

Next note that decision paths have the corner property and their Vitali varia-

tion equals one. When multiplied by λ j, their Vitali variation becomes |λ j|. Thus,

plugging the responses of Eq. (3.34) into Eq. (3.35), we obtain the same value of the

regularized objective. Hence,

inf
G

(
Lπ̃(G)+β

∑

i∈I

V (g i)
)
≤ inf

λ

(
Lπ̃(λ)+β‖λ‖1

)
,

which completes the proof of the first part of the theorem. The second part follows

from Eq. (3.41) applied to g⋆

i .

The crucial step in the proof of Theorem 3.25 was the decomposition

g i(t)= g i(0)+
∑

θ∈T

(
∆1 · · ·∆ℓ(g i;θ)

)
1(t≥ θ) . (3.42)

Next, we will use this decomposition to prove performance guarantees for infinite

classes of real-valued features.

3.4.4 Infinite Classes of Real-valued Features

We consider classes of real-valued features derived from a finite set of variables V.

To relate variables to features, we use the concept of a dictionary. A dictionary G of

order ℓ is a set of pairs (k j, g j), where k j ∈ {1, . . ., |V|}ℓ, g j :Rℓ →R, and j comes from

an index set J. The dictionary G specifies the feature set F(G)= { f j} j∈J where

f j(x)= g j(vk j (x)) .

For example, threshold features are specified by the dictionary

{(
k,1(t; t ≥θ)

)
: k ∈ {1, . . ., |V|},θ ∈R

}

∪
{(

k,1(t; t <θ)
)

: k ∈ {1, . . ., |V|},θ ∈R
}

.

Hinge features are specified by the dictionary

{(
k,h(t;θ,vk;min)

)
: k ∈ {1, . . ., |V|},θ ∈ [vk;min,vk;max]

}

∪
{(

k,h(t;θ,vk;max)
)

: k ∈ {1, . . . , |V|},θ ∈ [vk;min,vk;max]
}

.
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Next, we consider the generalization properties of ℓ1-regularized maxent with the

feature set F(G). A crucial problem is determining the set of error bounds β j so that

|Eπ̃[ f j]−Eπ[ f j]| ≤β j for all j ∈ J, or, equivalently

∣∣∣Eπ̃

[
g j(vk j )

]
−Eπ

[
g j(vk j )

]∣∣∣≤β j for all j.

To obtain bounds β j, we will use the decomposition (3.42).

Consider a single index j and let g = g j and k = k j. The empirical error of the

average Eπ̃[g(vk)] can be bounded as

∣∣∣Eπ̃[g(vk)]−Eπ[g(vk)]
∣∣∣

=
∣∣∣∣
∑

θ∈T

(
∆1 · · ·∆ℓ(g;θ)

)(
Eπ̃[1(vk ≥ θ)]−Eπ[1(vk ≥ θ)]

)∣∣∣∣

≤
( ∑

θ∈T

∣∣∣∆1 · · ·∆ℓ(g;θ)
∣∣∣
)

sup
θ∈T

∣∣∣Eπ̃[1(vk ≥ θ)]−Eπ[1(vk ≥ θ)]
∣∣∣

≤V (g) sup
θ∈T

∣∣∣Eπ̃[1(vk ≥ θ)]−Eπ[1(vk ≥ θ)]
∣∣∣ . (3.43)

Note that the supremum over θ on the right-hand side is simply a supremum over

empirical errors of decision-path averages, which can be bounded using VC theory

similar to Example 3.19. Hence, we obtain the following theorem.

Theorem 3.26. Let G be a dictionary of order ℓ. Let λ̂ minimize Lπ̃(λ)+∑
j β j|λ j| for

the feature set F(G) and

β j =V (g j)

√
ℓ ln(2m2|V|)+ ln(1/δ)+ ln(4e8)

2m
.

Then, for an arbitrary Gibbs distribution qλ⋆ , with probability at least 1−δ,

Lπ(λ̂)≤Lπ(λ⋆)+2
∑

j∈J

β j|λ⋆

j | .

Theorem 3.26 can be viewed as a generalization of performance guarantees for

decision paths, derived in Example 3.19, to real-valued features of bounded order.

In particular, if G represents decision paths of length ℓ then we obtain the bound of

Example 3.19.

Theorem 3.26 outlines some qualitative properties of feature sets that lead to

good performance. Specifically, the theorem states that two crucial properties are

the order of interaction and Vitali variation. We will see below that both can be

determined easily for all feature classes considered in Section 2.2. However, bounds

β j obtained from Theorem 3.26 should be considered with caution, because they are
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based on the bound (3.43), which may be overly pessimistic.

For example, when features are scaled so that each of them has Vitali variation

one then our theorem suggests regularization equal to that of decision paths of the

same order of interaction. Thus, hinge features, which have order one and Vitali

variation one, should be regularized the same as threshold features. Similarly, linear

features scaled to [0,1], which are just special cases of hinge features, should be

regularized the same as threshold features. However, we will see in Chapter 5 that

in practice, the best-performing regularization of hinge features is one half of the

best-performing regularization of threshold features.

For linear features, the values β j required by Theorem 3.26 can be compared to

the values required by Theorem 3.3. Specifically, Theorem 3.26 requires

β j =

√
ln(2|V|/δ)+ ln(4m2e8)

2m
,

whereas Theorem 3.3 only

β j =

√
ln(2|V|/δ)

2m
.

In practice, linear features can be regularized at even lower levels, as we will see in

Chapter 5.

We finish this section by determining variations of the feature classes from Sec-

tion 2.2.

Example 3.27. Hinge features and monotone dictionaries of order one. Consider

dictionaries of order one, containing only monotone functions (non-decreasing or non-

increasing). To determine the total variation of a monotone function, notice that all

of the differences on the right-hand side of the definition Eq. (3.31) have the same

sign. Therefore, if g is monotone then its variation equals the difference between its

maximum and minimum, i.e., V (g) = D(g). Thus, for example, hinge features have

total variation one. Theorem 3.26, for monotone dictionaries of order one, yields the

setting

β j = D(g j)

√
ln(2|V|/δ)+ ln(4m2e8)

2m
,

which can be viewed as a generalization of Theorem 3.5(i), replacing size of the fea-

ture set by its VC dimension.

Example 3.28. Decision paths, hinge paths, and product dictionaries. Several natu-

ral feature classes, such as decision paths and hinge paths, can be defined as products

of simpler features. If the component features are defined in terms of dictionaries, it

is natural to define the composite features in terms of dictionaries as well.
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Specifically, let G1, . . . ,Gℓ be dictionaries with index sets J1, . . . ,Jℓ. The product

dictionary G = G1G2 · · ·Gℓ has the index set J = J1 ×J2 × ·· · ×Jℓ, and contains pairs

(k j, g j), where j = ( j1, . . . , jℓ) ∈ J, such that

k j = (k j1, . . . , k jℓ)

g j(t1, . . . , tℓ)= g j1(t1)g j2(t2) · · · g jℓ(tℓ) .

Using the distributive law in the definition of the Vitali variation for g j, we obtain

V (g j)=V (g j1)V (g j2) · · ·V (g jℓ) .

Since threshold features and hinge features have total variations equal to one, deci-

sion paths and hinge paths have Vitali variations equal to one as well.
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Chapter 4

Algorithms

In the previous chapter, we have discussed performance bounds for maxent with

various types of regularization. Now we turn our attention to algorithms for solving

generalized maxent problems. We propose two algorithms for generalized maxent

with complete proofs of convergence. Our algorithms cover a wide class of potentials

including basic, box and ℓ2
2 potentials. Polyhedral and ℓ2-ball potentials do not fall in

this class, but the corresponding maxent problems can be transformed into versions

for which our algorithms can still be applied.

4.1 Selective-update Algorithm

There are a number of algorithms for finding the basic maxent distribution, espe-

cially iterative scaling and its variants (Darroch and Ratcliff, 1972; Della Pietra et al.,

1997). The selective-update algorithm for maximum entropy (SUMMET) described in

this section modifies one weight λ j at a time, as explored by Collins, Schapire, and

Singer (2002) in a similar setting. This style of coordinate-wise descent is convenient

when working with a very large (or infinite) number of features. The original Dar-

roch and Ratcliff algorithm also allows single-coordinate updates. Goodman (2002)

observes that this leads to a much faster convergence than with the parallel ver-

sion. However, updates are performed cyclically over all features, which renders

the algorithm less practical with a large number of irrelevant features. Similarly,

the sequential-update algorithm of Krishnapuram et al. (2005) requires a visitation

schedule that updates each feature weight infinitely many times.

SUMMET differs since the weight to be updated is selected independently in

each iteration. Thus, the features whose optimal weights are zero may never be

updated. This approach is particularly useful in ℓ1-regularized maxent which often

yields sparse solutions.

As explained in Section 2.5, the goal of the algorithm is to produce a sequence

81



λ1,λ2, . . . maximizing the objective Q. In this and the next section we assume that

the number of features is finite and the potential U is decomposable as defined below:

Definition 4.1. A potential U : RJ → (−∞,∞] is called decomposable if it can be

written as a sum of coordinate potentials U(u) =∑
j U j(u j), each of which is a closed

proper convex function bounded from below.

As a consequence of this definition, the conjugate potential U∗ equals the sum

of conjugate coordinate potentials U∗
j (see Eq. (2.15)) and U∗

j (0) = supu j
[−U j(u j)] is

finite for all j.

Throughout this section we assume that values of features f j lie in the interval

[0,1] and that features and coordinate potentials are non-degenerate in the sense

that ranges f j(X) and intersections domU j ∩ [0,1] differ from {0} and {1}. In Sec-

tion 4.3 we show that a generalized maxent problem with a decomposable potential

can always be reduced to a non-degenerate form.

Our algorithm works by iteratively adjusting the single weight λ j that maximizes

(an approximation of) the change in Q. To be more precise, suppose we add δ to λ j.

Let λ′ be the resulting vector of weights, identical to λ except that λ′
j =λ j +δ. Then

the change in the objective is

Q(λ′)−Q(λ)=− ln Zλ′ −U∗(−λ′)+ ln Zλ+U∗(−λ)

=− ln
(
Eqλ

[
eδ f j

])
−

∑

j′∈J

[
U∗

j′(−λ
′
j′)−U∗

j′(−λ j′)
]

(4.1)

≥− ln
(
Eqλ

[
1+ (eδ−1) f j

])
−U∗

j (−λ j −δ)+U∗
j (−λ j) (4.2)

=− ln
(
1+ (eδ−1)Eqλ

[ f j]
)
−U∗

j (−λ j −δ)+U∗
j (−λ j) . (4.3)

Eq. (4.1) uses

Zλ′ =
∑

x∈X

q0(x)eλ·f (x)+δ j f j(x) = Zλ

∑

x∈X

qλ(x)eδ j f j(x) . (4.4)

Eq. (4.2) is because eδx ≤ 1+ (eδ−1)x for x ∈ [0,1] by convexity.

Let F j(λ,δ) denote the expression in (4.3):

F j(λ,δ)=− ln
(
1+ (eδ−1)Eqλ

[ f j]
)
−U∗

j (−λ j −δ)+U∗
j (−λ j) .

Our algorithm, shown in Fig. 4.1, on each iteration, maximizes this lower bound over

all choices of ( j,δ), and for the maximizing j adds the corresponding δ to λ j. We

assume that for each j the maximizing δ is finite, which is always the case for non-

degenerate potentials and features (see Section 4.3). Note that F j(λ,δ) is strictly

concave in δ so we can use any of a number of search methods to find the optimal δ.
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Input: finite domain X

default estimate q0

features f1, . . . , fn where f j : X→ [0,1], f j(X) 6= {0} and f j(X) 6= {1}
decomposable potential U where domU j ∩ [0,1] 6= {0} and domU j ∩ [0,1] 6= {1}

Output: λ1,λ2, . . . maximizing Q

Let λ1 = 0

For t =1,2, . . . :

• let ( j⋆,δ⋆)= argmax
( j,δ)

[
− ln

(
1+ (eδ−1)Eqλ

[ f j]
)
−U∗

j (−λ j −δ)+U∗
j (−λ j)

]

• λt+1, j =
{

λt, j⋆ +δ⋆ if j = j⋆

λt, j otherwise

Figure 4.1. Selective-update algorithm for maximum entropy (SUMMET).

4.1.1 Solving ℓ1-Regularized Maxent

For maxent with box constraints (which subsumes basic maxent), the optimizing δ

can be derived explicitly. First note that

F (1)
j (λ,δ)=− ln

(
1+ (eδ−1)Eqλ

[ f j]
)
−U(1)∗

j (−λ j −δ)+U(1)∗
j (−λ j)

=− ln
(
1+ (eδ−1)Eqλ

[ f j]
)
+δEπ̃[ f j]−β j(|λ j +δ|− |λ j |)

since

U(1)∗
j (−µ j)=U(1)∗

π̃, j (µ j)−µ jEπ̃[ f j]=β j|µ j|−µ jEπ̃[ f j] .

The optimum δ can be obtained for each j via a simple case analysis on the sign of

λ j+δ. In particular, using calculus, we see that we only need consider the possibility

that δ=−λ j or that δ is equal to

ln
(
(Eπ̃[ f j]−β j)(1−Eqλ

[ f j])

(1−Eπ̃[ f j]+β j)Eqλ
[ f j]

)
or ln

(
(Eπ̃[ f j]+β j)(1−Eqλ

[ f j])

(1−Eπ̃[ f j]−β j)Eqλ
[ f j]

)

where the first and second of these can be valid only if λ j + δ ≥ 0 and λ j + δ ≤ 0,

respectively. The complete algorithm, ℓ1-SUMMET, is shown in Fig. 4.2.

4.1.2 Reductions from Non-decomposable Potentials

Polyhedral and ℓ2-ball potentials are not decomposable. When a polyhedral poten-

tial is represented as an intersection of halfspaces ηk ·u ≥ ak, it suffices to use trans-

formed features f ′k(x) = ηk · f (x) with coordinate potentials corresponding to the in-

equality constraints.

For the ℓ2-ball potential, we replace the constraint ‖Eπ̃[f ]−Ep[f ]‖2 ≤ β by an
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Input: finite domain X

default estimate q0

examples x1, . . . , xm ∈X

features f1, . . . , fn where f j : X→ [0,1], f j(X) 6= {0} and f j(X) 6= {1}
non-negative regularization parameters β1, . . . ,βn where β j > 0 if Eπ̃[ f j] ∈ {0,1}

Output: λ1,λ2, . . . minimizing Lπ̃(λ)+∑
j β j|λ j|

Let λ1 = 0

For t =1,2, . . . :

• ( j⋆,δ⋆)= argmax
( j,δ)

[
− ln

(
1+ (eδ−1)qt[ f j]

)
+Eπ̃[ f j]δ−β j(|λt, j +δ|− |λt, j|)

]

for each j it suffices to consider the following possibilities (whenever defined)

δ+ = ln
(
(Eπ̃[ f j]−β j)(1− qt[ f j])

(1−Eπ̃[ f j]+β j)qt[ f j]

)
, δ0 =−λt, j , δ− = ln

(
(Eπ̃[ f j]+β j)(1− qt[ f j])

(1−Eπ̃[ f j]−β j)qt[ f j]

)

and choose δ+ if λt, j +δ+> 0, δ− if λt, j +δ−< 0, and δ0 otherwise

• λt+1, j =
{

λt, j⋆ +δ⋆ if j = j⋆

λt, j otherwise

Figure 4.2. Selective-update algorithm for ℓ1-regularized maxent (ℓ1-SUMMET).

equivalent constraint ‖Eπ̃[f ]−Ep[f ]‖2
2 ≤β2, and obtain an equivalent primal

min
p∈∆

D(p ∥ q0) subject to ‖Eπ̃[f ]−Ep[f ]‖2
2 ≤β2 . (4.5)

If β> 0 then, by Lagrange duality and Slater’s conditions (Boyd and Vandenberghe,

2004, Chapter 5), the value of Eq. (4.5) is the same as the value of

max
µ≥0

min
p∈∆

[
D(p ∥ q0)+µ(‖Eπ̃[f ]−Ep[f ]‖2

2−β2)
]

. (4.6)

The max-min value of Eq. (4.6) is attained at the saddle-point of the objective, at

(µ̂, p̂), where p̂ minimizes Eq. (4.5). Since the outer maximization of Eq. (4.6) is con-

cave in µ, we can employ a range of search techniques to find the optimal µ, evaluat-

ing the inner minimum by ℓ2
2-regularized SUMMET of this section (or PLUMMET of

the next section).

4.1.3 Convergence

In order to prove convergence of SUMMET, we will measure its progress toward

solving the primal and dual. One measure of progress is the difference between the
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primal evaluated at qλ and the dual evaluated at λ:

P(qλ)−Q(λ)= [D(qλ ∥ q0)+U(Eqλ[f ])]− [− ln Zλ−U∗(−λ)]

=Eqλ[λ · f − ln Zλ]+U(Eqλ[f ])+ ln Zλ+U∗(−λ)

=U(Eqλ[f ])+U∗(−λ)+λ ·Eqλ[f ] .

By Theorem 2.3, this difference is non-negative and equals zero exactly when qλ

solves the primal and λ solves the dual.

For a decomposable potential, Fenchel’s inequality in each coordinate implies that

the difference is zero exactly when

U j(Eqλ
[ f j])+U∗

j (−λ j)+λ jEqλ
[ f j]= 0

for all j. When coordinate potentials express equality and inequality constraints,

this characterization corresponds to the Karush-Kuhn-Tucker conditions (Rockafel-

lar, 1970) .

For many potentials of interest, including equality and inequality constraints, the

difference between the primal and dual may remain infinite throughout the compu-

tation. Therefore, we propose to use an auxiliary function as a surrogate for this

difference. The auxiliary function is defined, somewhat non-standardly, as follows:

Definition 4.2. A function A :RJ ×R
J → (−∞,∞] is called an auxiliary function if

A(λ,a)=U(a)+U∗(−λ)+λ ·a+B(a ∥Eqλ[f ])

where B(· ∥ ·) :RJ ×R
J → (−∞,∞] satisfies conditions (B1) and (B2) (see p. 29).

The interpretation of an auxiliary function as a surrogate for the difference be-

tween the primal and dual objectives is novel. Unlike the previous applications of

auxiliary functions (Della Pietra et al., 1997, 2001; Collins et al., 2002), we do not

assume that A(λ,a) bounds a change in the dual objective and we also make no con-

tinuity assumptions. The reason for the former is technical: we need to allow a more

flexible relationship between A and a change in the dual objective to accommodate

algorithms both with single-coordinate and parallel updates. The absence of con-

tinuity assumptions is, however, crucial in order to allow arbitrary (decomposable)

potentials. The continuity assumption is replaced by property (B2). Compared with

previous applications, our form of auxiliary function is more restrictive as the only

flexibility is in choosing B, which is a function of Eqλ[f ] rather than qλ.

An auxiliary function is always non-negative since U(a)+ U∗(−λ) ≥ −λ · a by

Fenchel’s inequality and hence A(λ,a) ≥ B(a ∥ Eqλ[f ]) ≥ 0. Moreover, if A(λ,a) = 0
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then Eqλ[f ]= a and A(λ,a)= P(qλ)−Q(λ)= 0, i.e., by maxent duality, qλ solves the

primal and λ solves the dual.

It turns out, as we show in Lemma 4.4 below, that the optimality property gen-

eralizes to the case when A(λt,at) → 0 provided that Q(λt) has a finite limit. In

particular, it suffices to find a suitable sequence of at’s for λt’s produced by an algo-

rithm to show its convergence. Note that the optimality in the limit trivially holds

when λt’s and at’s come from a compact set, because A(λ̂, â) = 0 at a cluster point of

{(λt,at)} by the lower semi-continuity of U and U∗.

In the general case, we follow the technique used by Della Pietra et al. (1997)

for basic maxent: we consider a cluster point q̂ of {qλt} and show that (i) q̂ is pri-

mal feasible and (ii) the difference P(q̂)−Q(λt) approaches zero. In basic maxent,

A(λ,a)=B(Eπ̃[f ] ∥Eqλ[f ]) whenever finite. Thus, (i) is obtained by (B2), and noting

that P(q̂)−Q(λ) = D(q̂ ∥ qλ) yields (ii). For a general potential, however, claims (i)

and (ii) seem to require a novel approach. In both steps, we use decomposability and

the technical Lemma 4.3 (proved in Section 4.1.3). Thus, for the non-compact case,

decomposability seems crucial in the present approach.

Lemma 4.3. Let Ur be a decomposable potential relative to a primal-feasible point r.

Let S = domUr = {u ∈RJ : Ur(u) <∞} and Tc = {λ ∈RJ : U∗
r (λ) ≤ c}. Then there exists

αc ≥ 0 such that λ ·u ≤αc‖u‖1 for all u ∈ S,λ∈ Tc.

Lemma 4.4. Let λ1,λ2, . . . ∈ R
J, a1,a2, . . . ∈ R

J be sequences such that Q(λt) has a

finite limit and A(λt,at)→ 0 as t →∞. Then limt→∞Q(λt)= supλQ(λ).

Proof. Let qt denote qλt . Distributions qt come from the compact set ∆, so we can

choose a convergent subsequence. We index this subsequence by τ and denote its

limit by q̂. We assume that the subsequence was chosen in such a manner that values

A(λτ,aτ) and Q(λτ) are finite. We do this without loss of generality because the limits

of A(λτ,aτ) and Q(λτ) are finite. We will show that limτ→∞Q(λτ) = supλQ(λ). The

lemma will then follow since limτ→∞Q(λτ)= limt→∞Q(λt).

As noted earlier, A(λ,a) ≥ B(a ∥ Eqλ[f ]). Since B(aτ ∥ Eqτ[f ]) is non-negative

and A(λτ,aτ) → 0, we obtain B(aτ ∥Eqτ[f ])→ 0. Thus, aτ → Eq̂[f ] by property (B2).

Rewriting A in terms of the potential and the conjugate potential relative to an arbi-

trary primal-feasible point r, we obtain

A(λτ,aτ)=Ur(Er[f ]−aτ)+U∗
r (λτ)−λτ · (Er[f ]−aτ)+B(aτ ∥Eqτ[f ]) . (4.7)

Rearranging terms of Eq. (4.7), noting that A(λτ,aτ)→ 0 and B(aτ ∥Eqτ[f ])→ 0, and

denoting the vanishing terms by o(1), we get

Ur(Er[f ]−aτ)=−U∗
r (λτ)+λτ · (Er[f ]−aτ)+ o(1) . (4.8)
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We use Eq. (4.8) to prove first the feasibility and then the optimality of q̂ with respect

to the primal objective.

Feasibility. We bound the right-hand side of Eq. (4.8) and take limits to show that

Ur(Er[f ]−Eq̂[f ]) is finite. The first term is bounded by Fenchel’s inequality:

−U∗
r (λτ)≤−λτ ·0+Ur(0)=Ur(0) , (4.9)

which is finite by the feasibility of r. In order to bound λτ · (Er[f ]−aτ), the second

term of Eq. (4.8), we use Lemma 4.3. First note that Er[f ]−aτ is a feasible point of

Ur for all τ by Eq. (4.7) and the finiteness of A(λτ,aτ). Next, we need to show that

U∗
r (λτ) is bounded above by a constant. We rearrange Eq. (2.23),

U∗
r (λτ)=−Q(λτ)−D(r ∥ qτ)+D(r ∥ q0) ,

and bound the right-hand side, term by term: −Q(λτ) has a finite limit and is thus

bounded above; −D(r ∥ qτ) is non-positive; and D(r ∥ q0) is a finite constant. Hence

we can apply Lemma 4.3, and obtain

λτ · (Er[f ]−aτ)≤αr‖Er[f ]−aτ‖1 (4.10)

for some constant αr independent of τ. Plugging Eqs. (4.9) and (4.10) in Eq. (4.8) and

taking limits, we obtain by lower semi-continuity of Ur

Ur(Er[f ]−Eq̂[f ])≤Ur(0)+αr‖Er[f ]−Eq̂[f ]‖1 .

Thus q̂ is primal feasible.

Optimality. Since the foregoing holds for any primal feasible r, we can set r = q̂

and obtain

Uq̂(Eq̂[f ]−aτ)=−U∗
q̂(λτ)+λτ · (Eq̂[f ]−aτ)+ o(1) (4.11)

≤−U∗
q̂(λτ)+αq̂‖Eq̂[f ]−aτ‖1+ o(1) . (4.12)

Eq. (4.11) follows from Eq. (4.8). Eq. (4.12) follows from Eq. (4.10). Taking limits, we

obtain

Uq̂(0)≤ lim
τ→∞

[
−U∗

q̂(λτ)
]

. (4.13)
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Now we are ready to show that Q(λτ) maximizes the dual in the limit:

P(q̂)=D(q̂ ∥ q0)+Uq̂(0)

≤D(q̂ ∥ q0)+ lim
τ→∞

[
−U∗

q̂(λτ)
]

(4.14)

= lim
τ→∞

[
D(q̂ ∥ q0)−D(q̂ ∥ qτ)−U∗

q̂(λτ)
]

(4.15)

= lim
τ→∞

Q(λτ) (4.16)

≤ sup
λ

Q(λ)≤ P(q̂) . (4.17)

Eq. (4.14) follows from Eq. (4.13). Eq. (4.15) follows from the continuity of relative

entropy since qτ → q̂. Eq. (4.16) follows from Eq. (2.23). Eq. (4.17) follows by maxent

duality. Eqs. (4.14)–(4.17) show that

P(q̂)= lim
τ→∞

Q(λτ) .

Hence, by maxent duality, q̂ minimizes the primal and λτ maximizes the dual as

τ→∞.

Theorem 4.5. SUMMET produces a sequence λ1,λ2, . . . for which

lim
t→∞

Q(λt)= sup
λ

Q(λ) .

Proof. It suffices to show that Q(λt) has a finite limit and present an auxiliary func-

tion A and a sequence a1,a2, . . . for which A(λt,at)→ 0.

Note that Q(λ1) =Q(0) =−U∗(0) is finite by the decomposability of the potential,

and Q is bounded above by the feasibility of the primal. Let Ft, j = maxδ F j(λt,δ).

Note that Ft, j is non-negative since F j(λt,0) = 0. Since Ft, j bounds change in the

objective from below, the dual objective Q(λt) is non-decreasing and thus has a finite

limit.

In each step of the algorithm

Q(λt+1)−Q(λt)≥ Ft, j ≥ 0 .

Since Q has a finite limit, differences Q(λt+1) −Q(λt) converge to zero and thus

Ft, j → 0. We use Ft, j to define an auxiliary function. To begin, we rewrite Ft, j us-
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ing Fenchel’s duality:

Ft, j =max
δ

[
− ln

(
1+ (eδ−1)Eqt[ f j]

)
−U∗

j (−λt, j −δ)+U∗
j (−λt, j)

]

=max
δ

[
− ln

{(
1−Eqt[ f j]

)
e0·δ+Eqt[ f j]e

1·δ
}
−U′∗

j (−δ)
]
+U∗

j (−λt, j) (4.18)

=min
ā,a

[
D

(
(ā,a)

∥∥ (1−Eqt[ f j],Eqt[ f j])
)
+U′

j(0 · ā+1 ·a)
]
+U∗

j (−λt, j) (4.19)

= min
0≤a≤1

[
D(a ∥Eqt[ f j])+U j(a)+λt, j ·a

]
+U∗

j (−λt, j) . (4.20)

In Eq. (4.18), we rearranged terms inside the logarithm so they would take the form

of a partition function. We write U′∗
j (u) for U∗

j (u−λt, j). In Eq. (4.19), we applied

Theorem 2.3, noting that the conjugate of the log partition function is relative entropy

(see Section 2.4). The value of the relative entropy D
(
(ā,a)

∥∥ (1−Eqt[ f j],Eqt[ f j])
)

is

infinite whenever (ā,a) is not a probability distribution, so it suffices to consider pairs

where 0 ≤ a ≤ 1 and ā = 1−a. In Eq. (4.20), we use D(a ∥ Eqt [ f j]) as a shorthand for

D
(
(1−a,a)

∥∥ (1−Eqt[ f j],Eqt[ f j])
)
. We use Eq. (2.13) to convert U′

j into U j:

U′
j(0 · ā+1 ·a) =U′

j(a)=U j(a)+λt, j ·a .

The minimum in Eq. (4.20) is always attained because a comes from a compact set

and the minimized expression is lower semi-continuous in a. We use at, j to denote a

value attaining this minimum. Thus

Ft, j =U j(at, j)+U∗
j (−λt, j)+λt, jat, j +D(at, j ∥Eqt[ f j]) .

Note that D(a ∥ b) satisfies conditions (B1) and (B2); hence the sum B(a ∥ b) =
∑

j D(a j ∥ b j) also satisfies (B1) and (B2). We use this to derive the auxiliary func-

tion

A(λ,a)=
∑

j∈J

[
U j(a j)+U∗

j (−λ j)+λ ja j +D(a j ∥Eqλ
[ f j])

]
.

Now A(λt,at)=
∑

j Ft, j → 0, and the result follows by Lemma 4.4.

Proof of Lemma 4.3

We will first prove a single coordinate version of Lemma 4.3 and then turn to the

general case.

Lemma 4.6. Let ψ :R→ (−∞,∞] be a proper closed convex function. Let S = domψ=
{u ∈ R : ψ(u) < ∞} and Tc = {λ ∈ R : ψ∗(λ) ≤ c}. Then there exists αc ≥ 0 such that

uλ≤αc|u| for all u ∈ S,λ∈ Tc.
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Proof. Inequality uλ≤αc|u| holds for an arbitrary αc if u = 0. We determine αc sepa-

rately for cases u ∈ S+ = S∩ (0,∞) and u ∈ S− = S∩ (−∞,0) and choose the maximum.

Assume S+ 6= ; and pick an arbitrary u+ ∈ S+. Then for any λ ∈ Tc by Fenchel’s

inequality

u+λ≤ψ(u+)+ψ∗(λ)≤ψ(u+)+ c

and thus

λ≤ ψ(u+)+ c

u+
.

Now for any u ∈ S+

uλ≤ u ·
ψ(u+)+ c

u+
≤ |u| ·

∣∣∣∣
ψ(u+)+ c

u+

∣∣∣∣ .

Similarly, if S− 6= ; then we can choose an arbitrary u− ∈ S− and obtain for all u ∈ S−

uλ≤ |u| ·
∣∣∣∣
ψ(u−)+ c

u−

∣∣∣∣.

To complete the proof we choose

αc =max
{∣∣∣∣

ψ(u+)+ c

u+

∣∣∣∣,
∣∣∣∣
ψ(u−)+ c

u−

∣∣∣∣
}

setting the respective terms to 0 if S+ or S− is empty.

Proof of Lemma 4.3. Assume that Ur(u)<∞ and thus by decomposability Ur, j(u j)<
∞ for all j. Also assume that U∗

r (λ) = ∑
j U∗

r, j(λ j) ≤ c. By Fenchel’s inequality

U∗
r, j(λ j) ≥ −Ur, j(0) which is finite by the feasibility of r. Since the sum of U∗

r, j(λ j)

is bounded above by c and individual functions are bounded below by constants, they

must also be bounded above by some constants c j. By Lemma 4.6 applied to coordi-

nate potentials, we obtain that u jλ j ≤ α j|u j| for some constants α j. The conclusion

follows by taking αc =max j α j.

4.2 Parallel-update Algorithm

Much of this dissertation has tried to be relevant to the case in which we are faced

with a very large number of features. However, when the number of features is rel-

atively small, it may be reasonable to maximize Q using an algorithm that updates

all features simultaneously on every iteration. In this section, we describe a variant

of generalized iterative scaling (Darroch and Ratcliff, 1972) applicable to generalized

maxent with an arbitrary decomposable potential, and prove its convergence. Note

that gradient-based or Newton methods may be faster in practice similar to the un-

regularized case (Malouf, 2002).
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Input: finite domain X

default estimate q0

features f1, . . . , fn where f j : X→ [0,1], f j(X) 6= {0} and
∑

j f j(x)≤ 1 for all x ∈X

decomposable potential U where domU j ∩ [0,1] 6= {0}

Output: λ1,λ2, . . . maximizing Q(λ)

Let λ1 = 0

For t =1,2, . . . :
• for each j, let

δ j = argmax
δ

[
−Eqt [ f j](e

δ−1)−U∗
j (−λt, j −δ)+U∗

j (−λt, j)
]

• update λt+1 =λt +δ

Figure 4.3. Parallel-update algorithm for maximum entropy (PLUMMET).

Input: finite domain X

default estimate q0

examples x1, . . . , xm ∈ X
features f1, . . . , fn where f j : X→ [0,1], f j(X) 6= {0} and

∑
j f j(x)≤ 1 for all x ∈X

nonnegative regularization parameters β1, . . . ,βn where β j > 0 if Eπ̃[ f j]= 0

Output: λ1,λ2, . . . minimizing Lπ̃(λ)+∑
j β j|λ j|

Let λ1 = 0

For t =1,2, . . . :
• for each j, let

δ j = argmax
δ

[
−Eqt [ f j](e

δ−1)+δEπ̃[ f j]−β j(|λt, j +δ|− |λt, j|)
]

it suffices to consider the following possibilities (whenever defined)

δ+ = ln
(
Eπ̃[ f j]−β j

Eqt [ f j]

)
, δ0 =−λt, j , δ− = ln

(
Eπ̃[ f j]+β j

Eqt [ f j]

)

and choose δ+ if λt, j +δ+> 0, δ− if λt, j +δ−< 0, and δ0 otherwise

• update λt+1 =λt +δ

Figure 4.4. Parallel-update algorithm for ℓ1-regularized maxent (ℓ1-PLUMMET).

Throughout this section, we make the assumption (without loss of generality)

that, for all x ∈ X, f j(x) ≥ 0 and
∑

j f j(x) ≤ 1, and features and coordinate potentials

are non-degenerate in the sense that the feature ranges f j(X) and the intersections

domU j ∩ [0,1] differ from {0}. Note that this differs from the notion of degeneracy in

SUMMET.

Similarly to SUMMET of the previous section, our parallel-update algorithm for

maximum entropy (PLUMMET) is based on an approximation of the change in the
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objective Q, in this case the following, where λ′ =λ+δ:

Q(λ′)−Q(λ)=− ln Zλ′ −U∗(−λ′)+ ln Zλ+U∗(−λ)

=− ln
(
Eqλ

[
eδ·f

])
−U∗(−λ−δ)+U∗(−λ) (4.21)

≥
∑

j∈J

[
−(eδ j −1)Eqλ

[ f j]−U∗
j (−λ j −δ j)+U∗

j (−λ j)
]

. (4.22)

Eq. (4.21) uses Eq. (4.4). For Eq. (4.22), note first that if x j ∈ R and p j ≥ 0 with
∑

j p j ≤ 1 then

exp
(∑

j∈J

x j p j

)
−1≤

∑

j∈J

(ex j −1)p j .

(See Collins et al. (2002) for a proof.) Thus,

lnEqλ

[
exp

(∑

j∈J

δ j f j
)]

≤ lnEqλ

[
1+

∑

j∈J

(eδ j −1) f j
]

= ln
(
1+

∑

j∈J

(eδ j −1)Eqλ
[ f j]

)

≤
∑

j∈J

(eδ j −1)Eqλ
[ f j]

since ln(1+ x)≤ x for all x >−1.

PLUMMET, shown in Fig. 4.3, on each iteration, maximizes Eq. (4.22) over all

choices of the δ j ’s. For the basic potential U(0), this algorithm reduces to the general-

ized iterative scaling of Darroch and Ratcliff (1972). For ℓ1-style regularization, the

maximizing δ can be calculated explicitly (see algorithm ℓ1-PLUMMET in Fig. 4.4).

Again, it turns out that all the components of the maximizing δ are finite as long as

the features and potentials are non-degenerate (see Section 4.3). As before, we can

prove the convergence of PLUMMET, and thus also of ℓ1-PLUMMET.

Theorem 4.7. PLUMMET produces a sequence λ1,λ2, . . . for which

lim
t→∞

Q(λt)= sup
λ

Q(λ) .

Proof. The proof mostly follows the same lines as the proof of Theorem 4.5. Here we

sketch the main differences.

Let qt denote qλt and Ft denote the lower bound on the change in the objective:

Ft = sup
δ

∑

j∈J

[
−Eqt[ f j](e

δ j −1)−U∗
j (−λt, j −δ j)+U∗

j (−λt, j)
]

.

As before, Q(λt) has a finite limit and Ft → 0. We can rewrite Ft using Fenchel’s
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duality:

Ft = sup
δ

∑

j∈J

[
−Eqt[ f j](e

δ j −1)−U′∗
j (−δ j)

]
+U∗(−λt) (4.23)

= inf
a≥0

∑

j∈J

[
D̃(a j ∥Eqt[ f j])+U′

j(a j)
]
+U∗(−λt) (4.24)

= inf
a≥0

[
D̃(a ∥Eqt [f ])+U(a)+λt ·a+U∗(−λt)

]
. (4.25)

In Eq. (4.23) we write U′∗
j (u) for U∗

j (u−λt, j). In Eq. (4.24) we use Theorem 2.3, noting

that the conjugate of u0(eu −1) is the unnormalized relative entropy (see p. 29). In

Eq. (4.25) we convert U′
j back into U j and take the sum over j. Note that D̃(a ∥Eqt[f ])

increases without bound if ‖a‖∞ →∞ and, by Fenchel’s inequality,

U(a)+λt ·a+U∗(−λt)≥ 0

so in Eq. (4.25) it suffices to take an infimum over the a’s of bounded norm, i.e., over

a compact set. By lower semi-continuity we thus obtain that the infimum is attained

at some point at and

Ft = D̃(at ∥Eqt [f ])+U(at)+U∗(−λt)+λt ·at .

Since D̃(a ∥ b) satisfies conditions (B1) and (B2), we obtain that

A(λ,a)= D̃(a ∥Eqλ[f ])+U(a)+U∗(−λ)+λ ·a

is an auxiliary function. Noting that A(λt,at) = Ft → 0 and using Lemma 4.4 yields

the result.

4.3 Ensuring Finite Updates

In this section, we discuss how to ensure that features and coordinate potentials are

non-degenerate in SUMMET and PLUMMET, and show that non-degeneracy implies

that updates in both algorithms are always finite.

4.3.1 Non-degeneracy in SUMMET

In SUMMET, we assume that f j(X)⊆ [0,1]. In the context of this algorithm, a feature

f j is degenerate if f j(X) = {0} or f j(X) = {1} and a coordinate potential U j is degener-

ate if domU j ∩ [0,1] = {0} or domU j ∩ [0,1] = {1}. In order to obtain non-degenerate

features and non-degenerate coordinate potentials, it suffices to preprocess the sam-
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ple space X and the feature set as follows:

1. For all j: if domU j ∩ [0,1]= {0} then X← {x ∈X : f j(x)= 0}.

2. For all j: if domU j ∩ [0,1]= {1} then X← {x ∈X : f j(x)= 1}.

3. For all j: if f j(x)= 0 for all x ∈X then remove feature f j.

4. For all j: if f j(x)= 1 for all x ∈X then remove feature f j.

Whenever U j is degenerate, steps 1–2 guarantee that f j will be eventually removed

in steps 3–4. These f j ’s could be removed immediately in steps 1–2, but steps 3–4

are still necessary because features may be degenerate even when the corresponding

potentials are not. Also note that steps 1–2 must precede steps 3–4 since restricting

X may introduce new degenerate features.

The preprocessing described above yields an equivalent form of the primal. By

restricting the sample space in steps 1–2, we effectively eliminate distributions that

are nonzero outside the restricted sample set. Note that those distributions are infea-

sible because their feature means lie outside domU. In steps 3–4, we simply remove

constant terms of the potential function.

Theorem 4.8. Let λ and Q(λ) be finite and f j,U j non-degenerate. Then F j(λ,δ) is

maximized by a finite δ.

Proof. We will show that F j(λ,δ) → −∞ if δ → ±∞. Thus, it suffices to consider δ

from a compact interval and the result follows by upper semi-continuity of F j. First,

consider the case δ→∞. Let r be an arbitrary feasible distribution. Rewrite F j(λ,δ)

as follows:

F j(λ,δ)=− ln
(
1+ (eδ−1)Eqλ

[ f j]
)
−U∗

j (−λ j −δ)+U∗
j (−λ j)

=− ln
{

eδ
[
e−δ(1−Eqλ

[ f j])+Eqλ
[ f j]

]}
+δEr[ f j]−U∗

r, j(λ j +δ)+U∗
r, j(λ j)

=− ln
[
e−δ(1−Eqλ

[ f j])+Eqλ
[ f j]

]
−δ(1−Er[ f j])−U∗

r, j(λ j +δ)+U∗
r, j(λ j).

(4.26)

Suppose that Er[ f j]< 1. Then F j(λ,δ)→−∞: the first term of (4.26) is bounded above

by − ln(Eqλ
[ f j]) which is finite by the non-degeneracy of f j; the second term decreases

without bound; the third term is bounded above by Ur, j(0) by Fenchel’s inequality;

and the fourth term is a finite constant because Q(λ) is finite. In the case Er[ f j] = 1,

the second term equals zero, but the third term decreases without bound because,

by the non-degeneracy of U j, there exists ε> 0 such that Ur, j(ε) = U j(1−ε) <∞ and

hence by Fenchel’s inequality −U∗
r, j(λ j +δ)≤−(λ j +δ)ε+Ur, j(ε).

Now consider δ→−∞ and rewrite F j(λ,δ) as follows:

F j(λ,δ)=− ln
(
(1−Eqλ

[ f j])+ eδEqλ
[ f j]

)
+δEr[ f j]−U∗

r, j(λ j +δ)+U∗
r, j(λ j) .
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Assuming that Er[ f j] > 0, the second term decreases without bound and the remain-

ing terms are bounded above. If Er[ f j] = 0 then the third term decreases without

bound because, by the non-degeneracy of U j, there exists ε > 0 such that Ur, j(−ε) =
U j(ε)<∞, and thus by Fenchel’s inequality −U∗

r, j(λ j +δ)≤ (λ j +δ)ε+Ur, j(−ε).

Corollary 4.9. Updates of SUMMET are always finite.

Proof. We proceed by induction. In the first step, both λ1 and Q(λ1) are finite (see

proof of Theorem 4.5). Now suppose that in step t, λt and Q(λt) are finite. Then by

Theorem 4.8, all considered coordinate updates will be finite, so λt+1 will be finite

too. Since Q(λt+1) ≥Q(λt) and Q(λ) is bounded above (see proof of Theorem 4.5), we

obtain that Q(λt+1) is finite.

4.3.2 Non-degeneracy in PLUMMET

In this case, we assume that f j(x) ≥ 0 and
∑

j f j(x) ≤ 1 for all x ∈X. We call a feature

f j degenerate if f j(X) = {0} and a coordinate potential U j degenerate if domU j ∩
[0,1]= {0}. To obtain non-degenerate features and coordinate potentials, it suffices to

preprocess the sample space X and the feature set as follows:

1. For all j: if domU j ∩ [0,1]= {0} then X← {x ∈X : f j(x)= 0}.

2. For all j: if f j(x)= 0 for all x ∈X then remove feature f j.

Similarly to SUMMET, this preprocessing derives an equivalent form of the primal.

Using analogous reasoning as in Theorem 4.8, we show below that non-degeneracy

implies finite updates in PLUMMET.

In each iteration of the algorithm we determine updates δ j by maximizing

F j(λ,δ)=−Eqλ
[ f j](e

δ−1)−U∗
j (−λ j −δ)+U∗

j (−λ j)

=−Eqλ
[ f j](e

δ−1)+δEr[ f j]−U∗
r, j(λ j +δ)+U∗

r, j(λ j) .

It suffices to prove that F j(λ,δ) →−∞ if δ→±∞, given that Q(λ) and λ j are finite

and f j and U j are non-degenerate.

First, we rewrite F j as follows:

F j(λ,δ)=−eδ
[
Eqλ

[ f j]− e−δEqλ
[ f j]− e−δδEr[ f j]

]
−U∗

r, j(λ j +δ)+U∗
r, j(λ j) .

If δ →∞ then the expression in the brackets approaches Eqλ
[ f j], which is positive

by the non-degeneracy of f j. Thus the first term decreases without bound while the

second and third terms are bounded from above. Next, rewrite F j as

F j(λ,δ)= δ

[
Er[ f j]−

eδ

δ
Eqλ

[ f j]+
1
δ

Eqλ
[ f j]

]
−U∗

r, j(λ j +δ)+U∗
r, j(λ j) .
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If δ→−∞ then the expression in the brackets approaches Er[ f j]. Thus, if Er[ f j] > 0

then the first term decreases without bound and the other two terms are bounded

above. If Er[ f j] = 0 then the first term approaches Eqλ
[ f j] and the second term

decreases without bound because, by the non-degeneracy of U j, there exists ε > 0

such that Ur, j(−ε)=U j(ε)<∞ and hence by Fenchel’s inequality −U∗
r, j(λ j+δ)≤ (λ j+

δ)ε+Ur, j(−ε).
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Chapter 5

Modeling Distributions of Species

In this chapter we put to use the theory and algorithms developed in the preceding

chapters. We turn to the application of this dissertation: the problem of modeling

geographic distributions of species.

Species-distribution modeling is a critical topic in ecology and conservation bi-

ology: to protect a threatened species, one first needs to know its environmental

requirements, i.e., its ecological niche (Hutchinson, 1957). The ecological niche de-

termines the potential distribution of the species (Anderson and Martínez-Meyer,

2004; Phillips et al., 2006), i.e., the set of locations where the species could persist

or where conditions may become suitable under the future climate (Hannah et al.,

2005). Further applications include predicting the spread of invasive species and

infectious diseases (Welk et al., 2002; Peterson and Shaw, 2003), as well as under-

standing ecological processes such as speciation (Graham et al., 2006), or identifying

areas of regional endemism (Raxworthy et al., 2003).

As mentioned earlier, the input for species-distribution modeling consists of a list

of occurrences and data on a number of environmental variables. The most basic goal

is to predict which areas within a region of interest are within the species’ potential

distribution. The potential distribution can then be used to estimate the species’

realized distribution, for example by removing areas where the species is known to

be absent because of deforestation or other habitat destruction. Although a species’

realized distribution may exhibit some spatial correlation, the potential distribution

does not, so considering spatial correlation is not necessarily desirable during species

distribution modeling. In our approach, we therefore do not enforce or make use

of spatial correlation, and derive maxent constraints based on the environmental

variables only.

Quite a number of approaches have been suggested for species distribution mod-

eling, including neural nets, nearest neighbors, genetic algorithms, generalized lin-

ear models, generalized additive models, bioclimatic envelopes, boosted regression
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trees, and more; see Elith (2002) and the NCEAS comparison (Elith, Graham et

al., 2006). The NCEAS comparison evaluates an implementation of ℓ1-regularized

maxent (partly developed in this dissertation) as one of a group of twelve methods

in the task of modeling species distributions. We will use the data from this com-

parison and mention some of the results in more detail below. For now, we remark

that in the NCEAS comparison, maxent is placed among the best methods along-

side boosted regression trees (Leathwick et al., 2006), generalized dissimilarity mod-

els (Ferrier et al., 2002) and multivariate adaptive regression splines with the com-

munity level selection of basis functions (Moisen and Frescino, 2002; Leathwick et al.,

2005). Among these, however, maxent is the only method designed for presence-only

data. This is a typical scenario as most of the typical datasets have no information

about the failure to observe the species at any given location.

In maxent, the distribution of a single species is modeled as an unknown den-

sity π over the set of pixels in the study area. This set of pixels is called the back-

ground and corresponds to the sample space X. Recorded presence localities are

samples x1, . . . , xm, drawn from X according to π. The default distribution q0 is

uniform over X.

To understand how π represents the realized distribution of the species, consider

the following (idealized) sampling strategy. An observer first picks a random pixel x

from the study area, and then records 1 if the species is present at the pixel x, and 0

if the species is absent. If we denote the response variable (presence or absence) as y,

then π(x) is the conditional probability distribution p(x | y= 1), i.e., the probability of

the observer being at x, given that the species is present. According to Bayes’ rule, π

is proportional to the species’ probability of occurrence, p(y= 1 | x). Indeed,

p(y= 1 | x)=
p(x | y= 1)p(y= 1)

p(x)

where p(x) equals 1/|X| for all x, and p(y = 1) is the prevalence of the species in the

study area. However, if we have only presence-only data, we cannot determine the

species’ prevalence (Phillips et al., 2006). Therefore, instead of modeling p(y = 1 | x),

maxent models the distribution p(x | y= 1). In this respect, maxent differs from other

statistical approaches used in species distribution modeling, such as generalized ad-

ditive models, boosted regression trees and multivariate adaptive regression splines

mentioned above, which are based on logistic regression, and therefore require bi-

nary training data. Under the lack of absence data, these approaches use surrogate

absences, for example drawn uniformly at random from X, and instead of p(y= 1 | x)

they estimate its monotone approximation, p(s= 1 | x), where s is a surrogate for the

response y (Phillips, Dudík et al., 2007).
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In this chapter, we focus exclusively on ℓ1-regularized maxent. We begin with

a set of preliminary experiments evaluating maxent in the task of estimating dis-

tributions of four bird species in North America. Specifically, we analyze how the

choice of the feature set influences the predictive accuracy of maxent, depending on

the number of occurrence records of the modeled species. We also explore the effects

of regularization on predictive accuracy and interpretability of the maxent models.

Using the insights from the preliminary experiments, we then carry out a com-

prehensive evaluation on a large and diverse dataset, consisting of 226 species from

six regions. This data was developed by a working group at the National Center

for Ecological Analysis and Synthesis (NCEAS) as part of the previously mentioned

large-scale comparison of species-distribution modeling methods (Elith, Graham et

al., 2006). We refer to the data as “the NCEAS data,” and the comparison of methods

as “the NCEAS comparison.” The NCEAS data consists of two independent datasets:

the training dataset, with the data of low quality typical of many applications; and

the evaluation dataset, obtained by rigorously planned surveys. We optimize the per-

formance of maxent by tuning the feature-set and regularization settings on a small

portion of the training data. The models are then constructed from all of the training

data and evaluated on the evaluation data. We compare the maxent performance

with the performance of several techniques included in the NCEAS comparison.

Careful tuning of the feature-set and regularization settings of maxent on the

NCEAS data has an additional goal: determining well-performing “default settings.”

Default settings are desirable because parameter tuning may be prohibitively time-

consuming to do separately for each species, or unreliable for small or biased datasets.

Additionally, even with the abundance of good quality data, users interested in the

application of species models may not have the statistical knowledge required for

detailed tuning. To assess the quality of the settings determined from the NCEAS

training data, we compare the performance of these settings with the optimal perfor-

mance of the settings tuned on the evaluation data itself.

5.1 Maxent Implementation

As mentioned in Section 2.2, maxent uses features derived from environmental vari-

ables of two types: (i) continuous and (ii) categorical. Continuous variables take

arbitrary real values corresponding to measured quantities such as altitude, annual

precipitation, and maximum summer temperature. Categorical variables take only a

limited number of values (typically 2–20) such as soil type or vegetation type. When

a categorical variable quantifies the degree of some property (on a discrete scale), it

can also be viewed as a continuous variable, for example, soil fertility. This type of
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categorical variable is referred to as discrete ordinal. We will typically view discrete

ordinal variables as continuous and point out whenever this is not the case.

In our experiments, we used the Maxent1 software for species habitat modeling

(Phillips, Dudík, and Schapire, 2007). The software implements ℓ1-SUMMET, de-

scribed in Chapter 4, with six feature classes: linear (L), quadratic (Q), product (P),

threshold (T), hinge (H), and categorical indicator (C) features.

For a given set of environmental variables, it is possible to choose many combina-

tions of feature classes. Combinations commonly used in Maxent are LC, LQC, (L)HC,

(L)QHC, TC, and (L)QPHTC. Note that linear features, when scaled to take values in

the interval [0,1], are special cases of hinge features, so it is redundant to use L and

H features simultaneously (that is why we have placed them in parentheses above).

5.2 Performance Measures

A natural measure of performance applicable to maxent is log loss, introduced in Sec-

tion 2.1. Up to a constant, it equals the negative log likelihood of the test data, i.e.,

the sum of the negative log probabilities that the maxent model assigns to test local-

ities. Smaller values correspond to better prediction (higher likelihood). The default

distribution, in our case uniform, achieves a zero log loss. The true distribution π

achieves the minimum log loss, equal to the negative of its relative entropy from the

default: −D(π ∥ q0).

Another performance measure, applicable to any species-distribution modeling

method, is the area under the ROC curve (AUC) (Hanley and McNeil, 1982), which

uses a binary-labeled test set to measure the quality of a ranking of map cells. Specif-

ically, the AUC is the probability that a randomly chosen test positive will be ranked

above a randomly chosen test negative. In a test set containing both presences and

absences, the presences are positives and the absences are negatives. A random rank-

ing (as well as a uniform ranking) has on average an AUC of 0.5, whereas a perfect

ranking achieves the best possible AUC of 1.0. Models with AUC values above 0.75

are considered potentially useful (Elith, 2002).

It is also possible to use ROC curves with presence-only test data (Phillips et al.,

2006). In that case we interpret as negatives all grid cells with no occurrence lo-

calities, even if they support good environmental conditions for the species. The

maximum AUC is therefore less than one (Wiley et al., 2003), and is smaller for

wider-ranging species.

1We italicize “Maxent” to distinguish the name of the software from the abbreviation “maxent,”
which we have used throughout this dissertation for “maximum-entropy density estimation.”
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5.3 Preliminary Experiments

5.3.1 Data and Experimental Design

In our first set of experiments we use Maxent to model distributions of bird species,

based on occurrence records in the North American Breeding Bird Survey (Sauer

et al., 2001), an extensive dataset consisting of thousands of occurrence localities for

North American birds and used previously for species distribution modeling (Peter-

son, 2001). A preliminary version of these experiments and others was evaluated by

Phillips, Dudík, and Schapire (2004).

We selected four species with a varying number of occurrence records: Hutton’s

Vireo (198 occurrences), Blue-headed Vireo (973 occurrences), Yellow-throated Vireo

(1611 occurrences) and Loggerhead Shrike (1850 occurrences). The occurrence data

of each species was divided into ten random partitions: in each partition, 50% of

the occurrence localities were randomly selected for the training set, while the re-

maining 50% were set aside for testing. The environmental variables use a North

American grid with 0.2 degree square cells. We used seven continuous environmen-

tal variables: elevation, aspect, slope, annual precipitation, number of wet days, av-

erage daily temperature and temperature range. The first three derive from a digital

elevation model for North America USGS (2001), and the remaining four were in-

terpolated from weather station readings (New et al., 1999). Each environmental

variable is defined over a 386 × 286 grid, of which 58,065 points have data for all

environmental variables. We used linear, quadratic, product, and threshold features.

The remaining feature types available in Maxent (hinge features and categorical in-

dicators) will be explored in the following sections.

Motivated by Theorem 3.4, we reduced the β j ’s to a single regularization parame-

ter β0 by using β j =β0

√
V′

π̃[ f j]/m. According to the bounds of Sections 3.2.1 and 3.4,

we expect that β0 will depend on the number and complexity of features. Therefore,

we expect that different values of β0 will be optimal for different combinations of the

feature types.

On each training set, we ran maxent with four different subsets of the feature

types: L, LQ, LQP, and T. We ran two types of experiments. First, we ran maxent

on increasing subsets of the training data and evaluated log loss on the test data.

We took an average over ten partitions and plotted the log loss as a function of the

number of training examples. These plots are referred to as learning curves, or m-

curves, because they plot the performance as a function of the number of training

examples m. Second, we also varied the regularization parameter β0 and plotted the

log loss for fixed numbers of training examples as functions of β0. These curves are

referred to as sensitivity curves, or β-curves, because they plot the performance as a
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Figure 5.1. Learning curves. Log loss averaged over 10 partitions as a function of the number
of training examples. Numbers of training examples are plotted on a logarithmic scale.

function of the regularization parameters β j.

In addition to these curves, we show how Gibbs distributions returned by maxent

can be interpreted in terms of contribution of individual environmental variables to

the exponent. The corresponding plots are called feature profiles. We give examples

of feature profiles returned by maxent with and without regularization.

5.3.2 Results

Fig. 5.1 shows learning curves for the four studied species. We set β0 = 0.1 in L,

LQ and LQP runs and β0 = 1.0 in T runs. This choice is justified by the sensitivity

curve experiments described below. In all cases, the performance improves as more

samples become available. This is especially striking in the case of threshold features.

In the absence of regularization, maxent would exactly fit the training data with

delta functions around sample values of the environmental variables which would

result in severe overfitting even when the number of training examples is large. As

the learning curves show, regularized maxent does not exhibit this behavior.

Note the heavy overfitting of LQ and LQP features on the smallest sample sizes

of Blue-headed Vireo and Loggerhead Shrike. A more detailed analysis of the sensi-

tivity curves suggests that this overfitting could be alleviated by using larger values

of β0, resulting in curves qualitatively similar to those of other species. Similarly,

performance of linear features, especially for larger feature sizes, could be somewhat

improved using smaller regularization values. Such fine-tuning will be explored in

Sections 5.5 and 5.7.

Fig. 5.2 shows the sensitivity of maxent to the regularization value β0. Note the

remarkably consistent minimum at β0 ≈ 1.0 for threshold feature curves across dif-

ferent species, especially for larger sample sizes. It suggests that for the purposes

of ℓ1 regularization,
√

V′
π̃[ f j]/m are good estimates of |Eπ̃[ f j]−Eπ[ f j]| for threshold

features. For L, LQ, and LQP runs, the minima are much less pronounced as the
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Figure 5.2. Sensitivity curves. Log loss averaged over 10 partitions as a function of β0 for a
varying number of training examples. For a fixed value of β0, maxent finds better solutions
(with smaller log loss) as the number of examples grows. Values of β0 are plotted on a log
scale.

number of samples increases and do not appear at the same value of β0 across differ-

ent species nor for different sizes of the same species. Benefits of regularization in

L, LQ, and LQP runs diminish as the number of training examples increases. One

possible explanation is that the relatively small number of features (compared with

threshold features) prevents overfitting for large training sets.

To derive feature profiles, recall that maxent with a uniform default distribution

returns the Gibbs distribution qλ(x) ∝ eλ·f (x) minimizing the regularized log loss.

For L, LQ, and T runs, the exponent is additive in contributions of individual envi-
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Figure 5.3. Feature profiles learned on the first partition of the Yellow-throated Vireo. For
every environmental variable, its additive contribution to the exponent of the Gibbs distribu-
tion is given as a function of its value. Profiles have been shifted for clarity. This corresponds
to adding a constant in the exponent, which has no effect on the resulting models since con-
stants in the exponent cancel out with the normalization factor.

ronmental variables. Plotting this contribution as a function of the corresponding

environmental variable we obtain feature profiles for the respective variables. Note

that adding a constant to a profile has no impact on the resulting distribution as

constants in the exponent cancel out with the normalization. For L models profiles

are linear functions, for LQ models profiles are quadratic functions, and for T mod-

els profiles can be arbitrary piecewise constant functions. These profiles provide an

easier to understand characterization of the distribution than the vector λ.

Fig. 5.3 shows feature profiles for an LQ run on the first partition of the yellow-

throated vireo and two T runs with different values of β0. The value of β0 = 0.01 only

prevents components of λ from becoming extremely large, but it does little to prevent

heavy overfitting with numerous peaks capturing single training examples. Raising

β0 to 1.0 completely eliminates these peaks. This is especially prominent for the as-

pect variable where the regularized T as well as the LQ model show no dependence,

while the insufficiently regularized T model overfits heavily. Note the rough agree-

ment between LQ profiles and regularized T profiles. Peaks in these profiles can be

interpreted as intervals of environmental conditions favored by a species. However,

such interpretations should be made with caution because the objective of maxent

is based solely on the predictive performance. To see why this could be problematic,

consider two strongly correlated environmental variables, only one of which has a

causal effect on the species. Maxent has no knowledge which of the two variables is

truly relevant, and may easily pick the wrong one, leaving the profile of the relevant

one flat. Thus, interpretability is affected by correlations between variables.
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Table 5.1. Regions of the NCEAS dataset.

Code Region Environmental variables Species
AWT Australian wet tropics 13 continuous 40
CAN Canada 10 continuous, 1 categorical 20
NSW North-east New South Wales 12 continuous, 1 categorical 54
NZ New Zealand 13 continuous 52
SA South America 11 continuous 30
SWI Switzerland 13 continuous 30

5.4 The NCEAS Data

The NCEAS data consists of two independent datasets for 226 species from 6 regions

of the world. The first dataset contains presence-only data, i.e., a set of geographic

coordinates of recorded presence localities for each species together with a set of

environmental variables for each of the 6 regions (see Table 5.1). The number of

presence localities per species ranges from 2 to 5822, with a median of 57. These

presence-only data constitute the training data used to make the models. The second

data set is presence-absence evaluation data: for each species, the evaluation data

contains a set of localities of confirmed presence and a set of localities of confirmed

absence. The number of test sites (presence and absence combined) ranges from 102

to 19120. The presence-only localities are derived from museum and herbarium-type

collections, while the presence-absence data are derived from rigorous surveys that

sample across both environmental and geographic space. For more details, see Elith,

Graham et al. (2006).

5.5 Tuning Maxent on the NCEAS Training Data

In the preliminary experiments of Section 5.3, we saw that the choice of the feature

set and the regularization parameters influences the predictive performance of max-

ent. In this section, we describe tuning of regularization parameters and selection

of the best-performing feature sets. The regularization parameters and feature sets

will be determined using solely the presence-only training data. The resulting con-

figuration (except for the hinge features, added later, but explored here) was used

to construct the maxent models in the NCEAS comparison. The configuration (in-

cluding hinge features) corresponds to the default settings of Maxent versions 1.8.3

through the time of writing (at least version 2.3.4).
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Table 5.2. Species used for tuning Maxent settings. The fourth column gives the number
of occurrence records in the presence-only dataset that was used for parameter tuning. The
last column identifies lists the tuning experiments in which the species was included. Exper-
iments of Sections 5.5.2, 5.5.3, 5.5.4, and 5.5.5 are referred to as Reg, Cat, Ord, and Opt.

Region/code Species Group #PO Experiments
AWT/ausrob Austrochaperina robusta frog 193 Reg L, LQ, LQP, T; Opt
AWT/bhe Lichenostomus frenatus bird 351 Opt
AWT/coporn Cophixalus ornatus frog 337 Opt
AWT/cryliv Cryptocarya lividula plant 44 Opt
AWT/ghr Heteromyias albispecularis bird 484 Opt
AWT/guiacu Guioa acutifolia plant 56 Reg L, LQ, LQP; Opt
AWT/lamcog Lampropholis coggeri reptile 165 Opt
AWT/sapbas Saproscincus basiliscus reptile 177 Opt

CAN/amcr American Crow bird 483 Cat; Opt
CAN/cogr Common Grackle bird 721 Reg L, LQ, LQP, C, T; Cat; Opt
CAN/eato Eastern Towee bird 119 Cat; Opt
CAN/gcki Golden Crowned Kinglet bird 18 Cat; Opt
CAN/hosp House Sparrow bird 615 Cat; Opt
CAN/inbu Indigo Bunting bird 138 Reg L, LQ, LQP, C; Cat; Opt
CAN/modo Mourning Dove bird 749 Cat; Opt
CAN/wtsp White-throated Sparrow bird 313 Cat; Opt

NSW/basp2 Falsistrellus tasmaniensis mammal 28 Cat; Opt
NSW/dbsp2 Calyptorhynchus lathami bird 426 Reg L, LQ, LQP, C, T; Cat; Opt
NSW/dbsp7 Myzomela sanguinolenta bird 315 Cat; Ord; Opt
NSW/nbsp2 Tyto tenebricosa bird 120 Cat; Ord; Opt
NSW/otsp7 Eucalyptus campanulata plant 69 Cat; Ord; Opt
NSW/rusp2 Cyathea leichhardtiana plant 42 Cat; Opt
NSW/srsp5 Eulamprus murrayi reptile 186 Cat; Opt
NSW/srsp7 Pseudechis porphyricaus reptile 118 Reg L, LQ, LQP, C; Cat; Opt

NZ/clefor Clematis forsteri plant 36 Opt
NZ/coppro Coprosma propinqua plant 40 Opt
NZ/drauni Dracophyllum uniflorum plant 174 Reg L, LQ, LQP, T; Ord; Opt
NZ/libbid Libocedrus bidwillii plant 105 Opt
NZ/metper Metrosideros perforata plant 87 Opt
NZ/metrob Metrosideros robusta plant 48 Opt
NZ/phyalp Phyllocladus alpinus plant 211 Opt
NZ/prutax Prumnopitys taxifolia plant 130 Reg L, LQ, LQP; Ord; Opt

SA/amphpani Amphilophium paniculatum plant 88 Reg L, LQ, LQP, T; Opt
SA/arrabrac Arrabidaea brachypoda plant 203 Reg L, LQ, LQP; Opt
SA/arracinn Arrabidaea cinnomomea plant 49 Opt
SA/cydiaequ Cydista aequinoctialis plant 138 Opt
SA/distmagn Distictella magnoliifolia plant 81 Opt
SA/fridspec Fridericia speciosa plant 57 Opt
SA/lundvirg Lundia virginalis plant 36 Opt
SA/parapyra Paragonia pyramidata plant 216 Opt

SWI/abialb Abies alba plant 3357 Opt
SWI/acepse Acer pseudoplatanus plant 2800 Ord; Opt

Continued on next page. . .

106



Table 5.2—Continued.

Region/code Species Group #PO Experiments
SWI/betpen Betula pendula plant 468 Opt
SWI/fagsyl Fagus sylvatica plant 5528 Reg L, LQ, LQP, T; Ord; Opt
SWI/pincem Pinus cembra plant 279 Reg L, LQ, LQP; Ord; Opt
SWI/pinunc Pinus uncinata plant 291 Opt
SWI/poptre Populus tremula plant 154 Opt
SWI/pruavi Prunus avium plant 613 Opt

5.5.1 Data

The environmental variables in the NCEAS dataset cover grids of about 10 million

cells. In order to speed up the experiments of this section, we downscaled the resolu-

tion of all grids to yield 1.5 million cells. We selected a small subset of species in each

region to use for tuning purposes. Our goal was to include a diverse set of biological

groups and a wide range of sample sizes. Table 5.2 lists the selected species as well

as experiments where they were used (experiments are described below).

In the tuning experiments, we measured the performance of Maxent for various

parameter settings as follows. We randomly partitioned occurrence records of every

species into a training set with 60% of the records and the test set with 40% of the

records. We ran Maxent on the training set and evaluated its performance on the test

set and took the average over 5–10 random partitions (see below). In all the tuning

experiments, the performance is measured in terms of log loss and AUC. Since the

tuning is done with presence-only data, the AUC values used in tuning are calculated

with background data in place of absences.

5.5.2 Tuning Regularization Parameters (Reg)

In Section 5.3, we reduced the β j ’s to a single regularization parameter β0 by using

β j =β0

√
V′

π̃[ f j]/m. Here, we allow more flexibility and allow β0 to depend on the fea-

ture class. The resulting regularization parameters are called βL,βQ,βP,βT,βH,βC.

The goal of the first set of tuning experiments was to determine the values of

regularization parameters yielding good performance in all six regions for varying

numbers of occurrence records. We ran Maxent for different feature-set settings (L,

LQ, LQP, T, H, C). For each setting, we assumed a single regularization parameter;

in particular, for the LQ setting we kept βL = βQ, and for the LQP setting we kept

βL =βQ =βP.

For each feature class setting, we varied the number of occurrences (by consid-

ering nested subsets of the full training set) and the value of the regularization pa-

rameter β. The number of occurrences was chosen from the geometrically increasing

sequence {6, 10, 17, 30, 55, 100, 178, 316, 1000, 3162}, and the values of β from the
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geometrically increasing sequence {0.02, 0.05, 0.10, 0.22, 0.46, 1.0, 2.2, 4.6} chosen

to bracket the range of suitable values suggested by the preliminary experiments

of Section 5.3. For each number of occurrences, we determined the average perfor-

mance over five random partitions as a function of β, thus obtaining the β-curves.

Peaks of β-curves (minima of log loss curves and maxima of AUC curves) correspond

to optimal choices of β for each particular species. Results from the preliminary ex-

periments were used to restrict the set of β’s and numbers of occurrences to intervals

where the peaks are likely to occur; in particular, L runs were not configured on large

sample sizes and LQP runs were not configured on small sample sizes. Also note that

C runs were only possible for regions CAN and NSW, with one categorical variable

in each region.

For each feature class setting and number of occurrences, we selected the best β

by visual inspection of β-curves. The goal was to choose β performing well in terms of

both log loss and AUC on all of the evaluated species. We first excluded curves where

Maxent was not performing well: log loss β-curves where Maxent never reached per-

formance below zero (the log loss of the uniform distribution) and AUC curves that

remained below 0.7 (based on the recommendations of Elith (2002) that values above

0.75 are considered potentially useful). On the remaining curves, we used visual in-

spection to employ two strategies that could be loosely termed as “mean criterion”

and “median criterion”. According to the former criterion, we chose the value β that

was close to the peak of β-curves of as many species as possible. According to the

latter criterion, we chose β at which about half of the β-curves were increasing and

half were decreasing. The latter criterion was used whenever the peak was not iden-

tifiable in β-curves (they were monotone). The optimal values of β for numbers of

occurrences not represented in the evaluated sequence were obtained by piecewise

linear interpolation.

5.5.3 Combining Continuous and Categorical Variables (Cat)

In the initial block of tuning experiments (Reg, Section 5.5.2), the regularization

parameter for binary indicators βC was determined in Maxent runs with a single

categorical variable. When categorical variables are used with additional continuous

variables, the total number of features increases, so we expect that higher values of

βC will yield better performance (see the guarantees of Section 3.2.1). In this set of

experiments, we explored a range of alternative settings of βC in runs including L, Q

and P features derived from continuous variables.

We carried out LC, LQC and LQPC runs with βL,βQ,βP equal to the previously

determined optimum and for three different settings of βC. The first βC setting,

βC = low, corresponds to the value determined in the initial block of experiments;
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the second setting βC = βLQP corresponds to using the same regularization for bi-

nary indicators as for L, Q and P features; and the third setting βC = β1/2
LQP · low1/2,

which equals the geometric average of the previous two settings, corresponds to an

intermediate regularization choice.

While being a reasonable intermediate choice, the geometric average setting has

a disadvantage in that it depends on whether L, LQ or LQP features are used. In ad-

dition, even though it lies between settings low and βLQP which are piecewise linear,

the geometric setting is not piecewise linear. For simplicity and consistency with the

other feature classes, we prefer using a piecewise linear function independent of the

feature set used. We therefore included a fourth setting for βC, namely a piecewise

linear setting which we chose to approximate the geometric average setting. We used

some prior knowledge and approximated geometric averages for the feature set (one

of L, LQ and LQP) which we expected to be the best at each number of occurrences.

For each setting of βC, we plotted the average performance over 10 partitions

as a function of an increasing number of samples from nested subsets of sizes {5,

10, 20, 40, 75, 150, 300, 750, 2000},2 obtaining m-curves. The best setting of βC

was again chosen by visual inspection of graphs with the goal being to perform well

on all evaluated species both in terms of AUC and log loss. In the current block

of experiments, we marked all discrete ordinal variables as categorical to obtain a

larger number of categorical variables and hence a more reliable tuning of βC.

5.5.4 Using Discrete Ordinal Variables (Ord)

Next, we explored the effect of treating discrete ordinal variables as categorical or

continuous. For the former case, we used the optimal βC determined in the previ-

ous experiment. For the latter case, we consider two settings of βC: the previously

determined optimal setting and the baseline setting βC = βLQP which uses a single

regularization parameter for all features (this was the setting in versions of Maxent

prior to 1.8.3). The optimal setting is determined by visual inspection of m-curves for

LC, LQC and LQPC runs.

5.5.5 Choosing Optimal Feature Sets (Opt)

The final goal of the tuning experiments was to decide which sets of feature classes

to use for what numbers of species occurrences. We used the previously determined

regularization parameters for the LC, LQC, LQPC and LQPTC runs. The optimal

2Note that this sequence differs from the sequence used in Section 5.5.2. The rationale behind
choosing a different sequence was to evaluate Maxent for the training set sizes where the interpolated
values of β are used.
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Table 5.3. Regularization parameters determined by tuning Maxent on presence-only data.
Values in boldface were determined exactly, values in italics are linearly interpolated or ex-
trapolated, with the exception that the values to the right of the listed ranges remain con-
stant. For binary indicator features, the “low” settings were determined using a single (cate-
gorical) variable, while the piecewise linear settings (used for the current version of Maxent,
version 2.3.4) were chosen to approximate the geometric average of the “low” setting and βL.

Number of occurrence records
0 6 10 17 30 100

Linear features: βL 1.0 1.0 1.0 0.72 0.2 0.05

Linear and quadratic features: βL,βQ 1.3 1.0 0.8 0.5 0.25 0.05

Linear, quadratic and product features: βL,βQ,βP 2.6 2.0 1.6 0.9 0.55 0.05

Hinge features: βH 0.5 0.5 0.5 0.5 0.5 0.5

Threshold features: βT 2.0 1.94 1.9 1.83 1.7 1.0

Binary indicators, a single categorical variable, “low”: βC 0.2 0.2 0.2 0.1 0.05 0.05

Binary indicators, “piecewise linear”: βC 0.65 0.53 0.45 0.25 0.15 0.05

ranges for different feature class settings were determined by visual inspection of

m-curves. H features were not part of this block of experiments. Their optimal range

was determined by an inspection of the β-curves from Section 5.5.2.

5.5.6 Results

By visual inspection of β-curves for L, LQ, LQP, T, H, and C runs, we propose the

regularization parameter settings given in the top portion of Table 5.3. Values set in

boldface were determined exactly, while the others were obtained from the boldface

values by interpolation or extrapolation. Values for occurrence counts below 100 are

linearly interpolated between the two closest counts. Values above 100 are kept the

same as for 100.3 Note that for each feature class, the value of β is monotonically

non-increasing in the number of occurrence records. For L, Q, and P features, there

appears to be a significant decrease in the values of the optimal settings. In other

words, model performance is optimized if we use error bounds that decrease in width

somewhat faster than the theory suggests (see Section 3.2.1).

To demonstrate how we determined these settings, consider the β-curves for the

LQ run (Figure 5.4). First, we exclude log loss plots that are uniformly above zero

(the log loss of the uniform distribution) and the AUC plots that are uniformly worse

than 0.7 (our cutoff for informative AUC) since they indicate poor fits that cannot

3More precisely, values between the highest and lowest bold settings are linearly interpolated be-
tween the two closest bold settings. Values above the highest bold settings are kept the same as the
highest bold settings, and the values below the lowest bold settings are linearly extrapolated from the
two lowest bold settings.
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Figure 5.4. A subset of the β-curves for LQ runs of Maxent. Performance of Maxent is
evaluated as a function of the regularization parameter β where βL = βQ = β. Different
curves correspond to different numbers of occurrences m. Performance is evaluated in terms
of log loss and AUC. Based on these curves, the regularization parameters βL,βQ listed in
Table 5.3 were chosen to obtain satisfactory performance on the evaluated subset of species.
The resulting values are default settings for Maxent versions 1.8.3 through at least 2.3.4.

be mitigated by regularization. Based on the remaining plots, we fill out the line

LQ of Table 5.3. For example, for six samples, we determine the optimal setting as

βL =βQ = 1.0. At this value, nine β-curves reach the peak performance, four β-curves

have their peaks to the right of 1.0, and five β-curves have their peaks to the left of

1.0.4

When using both continuous and categorical variables, the geometric average set-

4The curves with the peak performance at β = 1.0 are the log loss curves of AWT/ausrob,
AWT/guiacu, CAN/inbu, SWI/fagsyl, and the AUC curves of AWT/ausrob, CAN/cogr, NSW/dbsp2,
NZ/drauni, SWI/fagsyl. The curves with peaks to the right of 1.0 are the log loss curves of CAN/cogr,
NSW/dbsp2, NSW/srsp7, and the AUC curve of NSW/srsp7. The curves with peaks to the right of 1.0
are the log loss curve of SA/arrabrac and the AUC curves of AWT/guiacu, CAN/inbu, SA/arrabrac,
SWI/pincem. The remaining curves were excluded.
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Figure 5.5. Curves showing performance as a function of sample size (m-curves) averaged
over all evaluated species (eight species per region). Performance is evaluated in terms of log
loss and AUC. By visual inspection, we determined the ranges of sample sizes in which to use
the different sets of feature classes as: LC features for 2–9 samples, LQC features for 10–79
samples and LQPTC features for 80 and more samples.

ting for βC gave the best performance in more than half of the m-curves and never

gave the worst performance. Piecewise linear settings (Table 5.3) performed simi-

larly to the geometric average settings (plots omitted), and they are therefore used

as the settings for βC in the current version of Maxent (versions 1.8.3 through at

least version 2.3.4).5 Discrete ordinal variables perform the best when viewed as

continuous (details not shown).

Finally, we determined optimal combinations of feature classes. Figure 5.5 shows

the performance of four feature class settings. From the figures, we determined

ranges of individual feature classes as follows: LC features for 2–9 samples, LQC

features for 10–79 samples, LQPTC features for 80 and more samples. These were

the feature classes used in the NCEAS comparison. Hinge features were added af-

terwards. Their β-curves exhibited good performance already for low numbers of

occurrences; therefore their optimal range was determined as 15 and more samples.

5.6 The NCEAS Comparison

In this section, we present a subset of results of the NCEAS comparison. The NCEAS

comparison indicated that the twelve evaluated species-distribution modeling meth-

ods can be approximately divided according to their performance into three groups.

5The geometric average settings were used for the NCEAS comparison, and the piecewise linear
settings were added afterwards as a simplification.
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Figure 5.6. Comparison of Maxent and other species distribution modeling techniques. The
results for all the methods except for Maxent with hinge features are taken from the NCEAS
comparison.

The top performing group consists of methods that allow high expressivity of the

models while controlling their complexity. The second group consisted largely of gen-

eral purpose regression techniques. Finally, the worst-performing group consisted

of methods that ignored the characteristics of the studied region and worked solely

with the presences.

In Fig. 5.6, we report results for ℓ1-regularized maxent and boosted regression

trees (BRT) from the top group; generalized adaptive models (GAM) and multivari-

ate adaptive regression splines (MARS) from the second group; and BIOCLIM from

the third group. BRT, GAM, and MARS are based on logistic regression. BIOCLIM

views presences as points in the environmental space and estimates the species dis-

tribution by fitting an envelope around the presences.

The results indicate that Maxent is comparable with BRT, and outperforms the

remaining techniques, with the exception of the region Ontario. In the latter region,

the poor performance of all the techniques, except BIOCLIM, can be explained by a

large amount of sample selection bias. We will return to this example in Chapter 6.

113



5.7 Evaluating the Maxent Tuning

5.7.1 Experimental Design

We evaluate the performance of Maxent as tuned in Section 5.5 using the presence-

absence (evaluation) portion of the NCEAS data. The goal of this evaluation is to

compare the tuned settings of regularization parameters (based solely on presence-

only data) with the best possible settings for the given evaluation data. To obtain

the best possible settings, we tune regularization parameters to yield the best per-

formance when models are trained on the presence-only dataset and evaluated on

the presence-absence dataset. We call the latter parameter settings “pa-tuned”, in

contrast to the “po-tuned” values determined in Section 5.5.

In po-tuning of Section 5.5, a single set of regularization parameters is applied

across all regions. However, it is conceivable that different sets of parameters may

be appropriate for different regions, and better performance is obtained by tuning

the parameters for each region separately. In pa-tuning, we therefore distinguished

two cases: regional tuning and global tuning. In the former case, a separate set of

regularization parameters is chosen to maximize the average AUC of the species in

the relevant region only. In the latter case, a single set of regularization parameters

is chosen to maximize the average AUC across all species.6

Sets of pa-tuned regularization parameters were obtained by a local search. We

tried to optimize the value of the AUC on the presence-absence data by making in-

cremental changes in parameters. We began with the po-tuned parameter values

and then cyclically iterated through feature classes, trying to increase or decrease

the corresponding regularization parameter. This was repeated until no changes in

parameters yielded an improvement. We considered multiplicative changes in reg-

ularization parameters by a factor of
p

2 or 1/
p

2. We allowed at most an 8-fold

increase or decrease relative to the po-tuned parameter setting. Each feature class

was applied in the same range of numbers of occurrences as determined by po-tuning

in Section 5.5.5. To speed up tuning, we replaced the background (consisting of 1.5

million cells even after downsampling), by a random sample of 10,000 cells. Since

the running time of Maxent depends linearly on the number of background points,

the subsampling results in a significant speed-up while exhibiting almost no deterio-

ration of the predictive performance (Phillips and Dudík, 2007).
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Table 5.4. The AUC performance of Maxent with globally and
regionally optimized parameters.

improvement from default
default globally regionally
settings optimized optimized

settings settings
AWT 0.693 0.004 0.015
CAN 0.594 0.008 0.023
NSW 0.711 0.005 0.022
NZ 0.733 0.008 0.009
SA 0.796 0.007 0.014
SWI 0.803 0.003 0.001

all species 0.726 0.006 0.014

5.7.2 Results

In Table 5.4, we compare performance of po-tuned Maxent parameters and pa-tuned

parameters. Global pa-tuning results in an improvement of average AUC by 0.006

whereas regional pa-tuning improves the AUC by 0.014.

In Table 5.5, we report parameters obtained by global pa-tuning and medians

of parameters obtained by regional pa-tuning. For regions AWT and NSW, the re-

gional tuning was performed separately for each taxonomic group (birds and plants

in AWT,7 and small mammals, reptiles, birds and plants in NSW), resulting in a total

of 10 regionally optimized parameter sets. Each median is thus taken over a set of

10 values.

To compare pa-tuned regularization parameters with po-tuned regularization pa-

rameters, we determined the median training set size in each range and report the

corresponding po-tuned values. Note that the pa-tuned values are almost always

larger than the po-tuned values. Larger regularization represents increased uncer-

tainty in feature-expectation estimates as a result of differences between training

and test distributions. This is in line with the intuition that if training and test

distributions differ, it is preferable to predict distributions that are more spread-out.

According to Table 5.4 the benefits of pa-tuning seem fairly small. They are of

similar magnitude as the within-group differences in the NCEAS comparison. It is

6Note that global tuning puts a somewhat larger weight on regions with more species.
7An early version of the NCEAS data contained additional taxonomic groups in region AWT, see

Table 5.2, which were excluded in pa-tuning because of low data quality. Since the quality of po-data
for these groups was similar to that of the remaining groups, they were included in po-tuning to obtain
a more diverse dataset.
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Table 5.5. Overview of pa-tuned parameters: globally optimized parameters and medians of
10 regionally optimized parameters. The global settings optimize the average performance
across all species. The regional settings optimize the performance separately for each of 10
taxonomic groups in the 6 regions.

number of occurrences
2–9 10–14 15–79 ≥ 80

βL: global optimum 1.00 1.41
regional median 1.00 1.00
default∗ 1.00 .71

βQ: global optimum 1.41 .50 .35†

regional median 1.00 .85 .05
default∗ .71 .23 .05

βP: global optimum .35†

regional median .04
default∗ .05

βT: global optimum 2.00
regional median 1.21
default∗ 1.00

βH: global optimum .35 .50
regional median .85 .50
default∗ .50 .50

βC: global optimum 1.41 .50 .03∗∗ .03
regional median .71 .50 .18 .04
default∗ .53 .39 .14 .05

∗ po-tuned values for the median training-set size in each range: 6, 12, 36, and 221
† the largest possible value in local search
∗∗ the smallest possible value in local search

tempting to use the pa-tuned settings as default settings in Maxent, since they give

marginally better performance on the evaluation data. However, doing so may result

in overfitting to this particular evaluation dataset, since the pa-tuned settings are

being evaluated here on the same data on which they were tuned. Therefore, in

the following chapters we use the po-tuned settings, which have been validated on

independent test data.
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Chapter 6

Biased Density Estimation

In this chapter, we study maxent density estimation under sample selection bias. In

density estimation it is very common to assume access to independent samples from

the distribution being estimated. In practice, this assumption is violated for various

reasons. For example, in species distribution modeling most sampling is done in

locations that are easier to access, such as areas close to towns, roads, airports or

waterways (Reddy and Dávalos, 2003). This presents a significant sample-selection

bias since roads and waterways are often correlated with topography and vegetation

which also influence species distributions. New unbiased sampling may be expensive

or even impossible, if original landcover has been cleared, so much can be gained by

using the extensive existing biased data.

Although the available data may have been collected in a biased manner, we usu-

ally have some information about the nature of the bias. In species distribution

modeling, some factors influencing the sampling distribution are well known, such

as distance from roads, towns, etc. In addition, a list of visited sites may be available

and viewed as a sample of the sampling distribution itself. If such a list is not avail-

able, the set of sites where any species from a large group has been observed may be

a reasonable approximation of all visited locations.

We will assume that the sampling distribution (or an approximation) is known

during training, but we require that models not use any knowledge of sample selec-

tion bias during testing. This requirement is vital for species distribution modeling

where models are often applied to a different region or under different climatic con-

ditions.

We propose two approaches that incorporate sample selection bias in maximum

entropy density estimation. The first approach uses a bias correction technique sim-

ilar to that of Zadrozny (2004) and Zadrozny et al. (2003) to obtain unbiased con-

fidence regions from biased samples. We prove that, as in the unbiased case, this

produces models whose log loss approaches that of the best possible Gibbs distribu-
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tion (with increasing sample size).

In contrast, our second approach estimates the biased distribution and then fac-

tors the bias out. When the target distribution is a Gibbs distribution, the solution

again approaches the log loss of the target distribution. When the target distribution

is not Gibbs, we demonstrate that the second approach need not produce the optimal

Gibbs distribution (with respect to log loss) even in the limit of infinitely many sam-

ples. However, we observe good empirical performance for moderate sample sizes. In

addition, the second approach can be easily extended to situations, in which we only

have access to samples from the sampling distribution (such as the list of all visited

sites in species distribution modeling) instead of the distribution itself.

One of the challenges in studying methods for correcting sample selection bias

is that unbiased data sets, though not required during training, are needed as test

sets to evaluate performance. Unbiased data sets are difficult to obtain—this is the

very reason why we study this problem! Thus, it is almost inevitable that synthetic

data must be used. In Section 6.4, we describe synthetic experiments evaluating

performance of our two approaches.

In Section 6.5, we consider sample selection bias in the context of species distri-

bution estimation. We evaluate our debiasing approaches on the NCEAS dataset.

The NCEAS training data is biased, whereas the NCEAS evaluation data has been

collected independently in a reasonably unbiased manner.

A somewhat surprising result of our real-data experiments is that the empirical

version of our second approach (factor-bias-out) outperforms other approaches, al-

though its performance guarantees are the weakest. A similar approach has been

previously used with regression-based techniques (Ferrier et al., 2002; Zaniewski

et al., 2002). We compare the performance of maxent and other methods from the

NCEAS comparison using this debiasing approach. Similarly to Section 5.7, we eval-

uate the effect of the regularization tuning on maxent with bias correction.

Related Work

A traditional field where sample selection bias arises is econometrics. In economet-

rics, the data from surveys is affected by factors such as attrition, nonresponse and

self selection (Heckman, 1979; Groves, 1989; Little and Rubin, 2002). An approach

to coping with sample selection bias has been suggested by Heckman (1979) in linear

regression. Here the bias is first estimated and then a transform of the estimate is

used as an additional regressor.

In the machine learning community, sample selection bias has been recently con-

sidered for classification problems by Zadrozny (2004). Here the goal is to learn a

decision rule from a biased sample. The problem is closely related to cost-sensitive
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learning (Elkan, 2001; Zadrozny et al., 2003) and the same techniques such as re-

sampling or differential weighting of samples apply.

However, the methods of the previous two approaches do not apply directly to

density estimation where the setup is “unconditional,” i.e., there is no dependent

variable, or, in the classification terminology, we only have access to positive exam-

ples, and the cost function (log loss) is unbounded. In addition, in the case of mod-

eling species distributions, we face the challenge of sample sizes that are very small

(2–100) by machine learning standards.

6.1 Setup for Biased Density Estimation

In biased density estimation, our goal is to estimate the target distribution π, but

samples do not come directly from π. For nonnegative functions p1, p2 defined on X,

let p1 p2 denote the distribution obtained by multiplying weights p1(x) and p2(x) at

every point and renormalizing:

p1 p2(x)= p1(x)p2(x)∑
x′ p1(x′)p2(x′)

.

We assume that samples x1, . . . , xm come from the biased distribution πσ where σ is

the sampling distribution. This setup corresponds to the situation when an event

occurs at the point x with probability proportional to π(x) while we perform an in-

dependent observation with probability σ(x). Let y denote a binary response, equal

to one if the event (for example, the species presence) is observed and zero if the

event is not observed. If we denote the probability under the described sampling sce-

nario as Pσ, then Pσ(x) =σ(x) and Pσ(y= 1 | x)∝ π(x). Thus, samples come from the

distribution

Pσ(x | y= 1)∝Pσ(x)Pσ(y= 1 | x)∝πσ(x) .

The empirical distribution of m samples drawn from πσ will be denoted by π̃σ.

We assume that σ is known and strictly positive on X. The smallest and largest

sampling density are denoted as σmin = minxσ(x) and σmax = maxxσ(x). Note that

σmin > 0 because X is finite.

6.2 Approach I: Debiasing Averages

Our first approach is based on maxent with an indicator potential corresponding to

the confidence region for unbiased averages. Since we do not have direct access to

samples from π, we use a version of the Bias Correction Theorem of Zadrozny (2004)

to convert expectations with respect to πσ to expectations with respect to π.
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Theorem 6.1 (Bias Correction Theorem, Zadrozny, 2004; first in Zadrozny et al.,

2003, as Translation Theorem).

Eπσ[f /σ]
Eπσ[1/σ]

=Eπ[f ] .

Proof. Calculate

Eπσ[f /σ]=
∑

x∈X

πσ(x)
f (x)
σ(x)

=
∑

x∈X

π(x)σ(x)
Eπ[σ]

f (x)
σ(x)

= 1
Eπ[σ]

∑

x∈X

π(x)f (x)= Eπ[f ]
Eπ[σ]

.

Similarly,

Eπσ[1/σ]=
Eπ[1]
Eπ[σ]

=
1

Eπ[σ]
.

Dividing the two expressions, we obtain the result.

Hence, in order to obtain a confidence region for Eπ[f ], it suffices to obtain con-

fidence intervals for Eπσ[ f j/σ], j ∈ J and Eπσ[1/σ]. Such confidence intervals can be

derived from biased empirical averages for example by the Hoeffding or Bernstein

inequalities as we saw in Section 3.2.1.

Assume that such intervals are given. Let [c j, d j], j ∈ J denote confidence inter-

vals for Eπσ[ f j/σ], j ∈ J, and [c′, d′] denote a confidence interval for Eπσ[1/σ] such that

c′ > 0 (this is always possible since σ(x) ≥ σmin). If the expectations Eπσ[ f j/σ], j ∈ J,

and Eπσ[1/σ] lie in their corresponding confidence intervals then by Theorem 6.1

c j

d′ ≤Eπ[ f j]≤
d j

c′
for all j ∈ J.

This set of constraints defines the box-shaped confidence region used in our first

debiasing approach

B =
{

u ∈RJ :
c j

d′ ≤ u j ≤
d j

c′
for all j

}
. (6.1)

The corresponding potential and regularization are defined by

U(u)= IB(u)

U∗(−λ)= I∗B(−λ)=
∑

j∈J

[
−1

2

(
c j

d′ +
d j

c′

)
λ j +

1
2

(
d j

c′
−

c j

d′

)
|λ j|

]
, (6.2)

where the regularization is derived by Eq. (2.13) from the observation that B is a box

centered at
〈
(c j/d′+d j/c′)/2

〉
j∈J

with width d j/c′− c j/d′ along the j-th coordinate.

When the intervals [c j, d j], j ∈ J, and [c′, d′] are derived by Hoeffding’s inequality,

we obtain the following theorem (similar to Theorem 3.3 for unbiased maxent).
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Theorem 6.2. Assume that features f j, j ∈ J are bounded in [0,1]. Let the bias σ be

bounded in [σmin,σmax] where σmin > 0. Let δ > 0 and let λ̂ minimize ln Zλ+ I∗B(−λ)

where I∗B(−λ) is defined by Eq. (6.2) with

c j =Eπ̃σ[ f j/σ]−β d j =Eπ̃σ[ f j/σ]+β

c′ =max
{
1/σmax, Eπ̃σ[1/σ]−β

}
d′ =Eπ̃σ[1/σ]+β

where

β= 1
σmin

√
ln(2(n+1)/δ)

2m
.

Then with probability at least 1−δ, for every Gibbs distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+
‖λ⋆‖1 +

∑
j∈J Eπ[ f j]|λ⋆j |p

m
· ασmax

σmin
(6.3)

where α=
√

2ln(2(|J|+1)/δ).

Moreover, if m≥
(
αEπ[σ]/σmin

)2 then with probability at least 1−δ, for every Gibbs

distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+
‖λ⋆‖1 +

∑
j∈J Eπ[ f j]|λ⋆j |p

m
· αEπ[σ]

σmin

(
1− 1

p
m

αEπ[σ]
σmin

)−1

. (6.4)

Before proving Theorem 6.2, we discuss how this theorem expresses the “price

of bias,” i.e., the amount by which the guarantees for the debiasing potential IB lag

behind the box potential U(1) for unbiased estimation.

Comparing Theorem 6.2 with Theorem 3.3, we note two differences. The first

is the additive difference: the ℓ1-norm of Theorem 3.3 is replaced by the ℓ1-norm

plus the term
∑

j∈J Eπ[ f j]|λ⋆j |. This suggests that the particular debiasing potential

IB has more problems fitting target distributions that put more probability on high

feature values. This seems somewhat artificial and is due to the fact that the width of

confidence intervals estimated by IB for Eπ[ f j] and Eπ[ f ′j], where f ′j(x)= 1− f j(x), is in

general different.1 A simple approach, short of replacing the potential IB, is doubling

the feature set, using f ′j alongside f j for every j. This modification will guarantee

that the additive difference is at most ‖λ⋆‖1/2, i.e., the worst-case multiplicative

increase (due to the additive term) is by a factor of 1.5.

The second difference is multiplicative. The multiplicative constant of Theo-

rem 3.3 is roughly equal to α, whereas the multiplicative constant of Theorem 6.2

is equal to ασmax/σmin for small m, and approximately equal to αEπ[σ]/σmin for

1The reason is that
∣∣∣ c j

d′ −
d j

c′

∣∣∣ 6=
∣∣∣ e−d j

d′ − e−c j

c′

∣∣∣ for general e; in our case, e =Eπ̃σ[1/σ].

121



larger m. These multiplicative constants, always greater than α, reflect the depen-

dence on the bias. Intuitively, this dependence should not be surprising. For small

values of m, we cannot distinguish whether undersampling of certain areas of sample

space is due to π or due to the sample selection bias; this difficulty is quantified by the

ratio σmax/σmin. For larger values of m, we get a slightly better ratio of Eπ[σ]/σmin,

quantifying the correlation between the target distribution and the bias. This ratio

reflects the intuition that the effects of π and σ on the sampling process are more

difficult to disambiguate if π puts large weight on points with a large bias.

Proof of Theorem 6.2. For the settings of c j, d j, c′, d′ assumed by the theorem, we ob-

tain by Hoeffding’s inequality and the union bound that with probability at least 1−δ,

c j ≤ Eπσ[ f j/s]≤ d j for all j and c′ ≤Eπσ[1/σ]≤ d′ (note that c′ is set to the minimum

possible value of 1/σ(x) whenever the lower bound obtained by Hoeffding’s inequality

would be smaller). We further analyze the case when all of these inequalities hold.

Then Eπ̃[f ] lies in B as defined in Eq. (6.1). Hence by Eq. (3.6)

Lπ(λ̂)≤Lπ(λ⋆)+ I∗B(λ⋆)+ I∗B(−λ⋆) . (6.5)

Using Eq. (6.2) we obtain

I∗B(−λ⋆)+ I∗B(λ⋆)=
∑

j∈J

(
d j

c′
−

c j

d′

)
|λ⋆j |

=
∑

j∈J

(
(d j − c j)|λ⋆j |

c′
+ d′− c′

c′
·

c j|λ⋆j |
d′

)

≤
∑

j∈J

2β
c′

(
|λ⋆j |+Eπ[ f j]|λ⋆j |

)
(6.6)

=
‖λ⋆‖1+

∑
j∈J Eπ[ f j]|λ⋆j |p

m
· α

σminc′
(6.7)

Eq. (6.6) follows since d j− c j = 2β, d′− c′ ≤ 2β, and c j/d′ ≤Eπ[ f j]. The last inequality

holds because c j ≤Eπσ[ f j/σ], d′ ≥Eπσ[1/σ], and hence by Theorem 6.1

c j

d′ ≤
Eπσ[ f j/σ]

Eπσ[1/σ]
=Eπ[ f j] .

Eq. (6.7) follows since 2β = α/(σmin
p

m). To obtain the bounds (6.3) and (6.4), it

now suffices to bound 1/c′ and combine Eq. (6.7) with Eq. (6.5). Using the bound

1/c′ ≤σmax, we obtain Eq. (6.3). To prove Eq. (6.4), note that

Eπσ[1/σ]≤ d′ ≤ c′+2β .
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Figure 6.1. Comparison of the box and polyhedral debiasing potentials. Box B is the
smallest box covering the extreme boxes B1 and B2 corresponding to the extreme values of
the denominator in Theorem 6.1. Polytope C is the union of boxes across all values of the
denominator (one of these boxes is shown dotted).

Hence, if Eπσ[1/σ]≥ 2β then

1
c′

≤
1

Eπσ[1/σ]−2β

=
(

1
Eπ[σ]

−
α

σmin
p

m

)−1

(6.8)

=Eπ[σ]
(
1−

1
p

m

αEπ[σ]
σmin

)−1

. (6.9)

Eq. (6.8) follows by Theorem 6.1 and the definitions of α and β. Note that the condi-

tion Eπσ[1/σ] ≥ 2β is equivalent to the assumption m ≥
(
αEπ[σ]/σmin

)2. Combining

Eqs. (6.9), (6.7), and (6.5), we obtain Eq. (6.4).

In the previous discussion, we have shown how Theorem 6.1 can be used to con-

struct a box-shaped confidence region for Eπ[f ] based on confidence intervals [c j, d j]

for Eπσ[ f j/σ] and [c′, d′] for Eπσ[1/σ]. However, Theorem 6.1 and the same confidence

intervals can also be used to obtain a tighter (polyhedral) confidence region for Eπ[f ].

The tighter confidence region, denoted C, is derived from the observation that the

value Eπσ[1/σ] required in the denominator of Theorem 6.1 is the same across all
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features f j:

C =
⋃

c′≤t≤d′

{
u ∈RJ :

c j

t
≤ u j ≤

d j

t
for all j

}
= convex hull(B1 ∪B2) (6.10)

where B1, B2 are boxes corresponding to the extreme values of t

B1 =
{

u :
c j

c′
≤ u j ≤

d j

c′
for all j

}
, B2 =

{
u :

c j

d′ ≤ u j ≤
d j

d′ for all j
}

.

In Fig. 6.1 we show the boxes B1, B2, and B (see Eq. 6.1) as well as the polytope C.

Note that the polytope C is smaller than the box B, hence it should yield better per-

formance guarantees. The potential and regularization corresponding to the polytope

C are

U(u)= IC(u)

U∗(−λ)= I∗C(−λ)= max
t∈{c′,d′}

[
∑

j∈J

−(c j +d j)λ j + (d j − c j)|λ j|
2t

]
, (6.11)

where the regularization is derived by Eq. (2.11).

Using the same settings for [c j, d j] and [c′, d′] as in Theorem 6.2, we obtain the

following (tighter) guarantee.

Theorem 6.3. Assume that features f j, j ∈ J are bounded in [0,1] and the bias σ is

bounded in [σmin,σmax],σmin > 0. Let δ> 0 and set c j, d j, c′, d′,β,α as in Theorem 6.2.

Let λ̂ minimize ln Zλ+ I∗C(−λ) where

I∗C(−λ)= max
t∈{c′,d′}

[−λ ·Eπ̃σ[f /σ]+β‖λ‖1

t

]
. (6.12)

Then with probability at least 1−δ, for every Gibbs distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+ ‖λ⋆‖1 +|λ⋆ ·Eπ[f ]|
p

m
· ασmax

σmin
. (6.13)

Moreover, if m≥
(
αEπ[σ]/σmin

)2 then with probability at least 1−δ, for every Gibbs

distribution qλ⋆ ,

Lπ(λ̂)≤Lπ(λ⋆)+ ‖λ⋆‖1 +|λ⋆ ·Eπ[f ]|
p

m
· αEπ[σ]

σmin

(
1− 1

p
m

αEπ[σ]
σmin

)−1

. (6.14)

The bounds (6.13) and (6.14) improve over the bounds of Theorem 6.2 because

they replace
∑

j∈J Eπ[ f j]|λ⋆j | by the smaller term |λ⋆ ·Eπ[f ]|. Improvement in the
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guarantee due to the polyhedral regularization will be most significant when λ⋆ and

Eπ[f ] are close to orthogonal.

Proof of Theorem 6.3. Similarly to Theorem 6.2, we analyze the case when all the

instances of Hoeffding’s inequality used to set the confidence intervals [c j, d j] and

[c′, d′] hold. Note that for our settings of c j, d j, c′, d′, the regularization I∗C(−λ⋆),

defined in Eq. (6.11), indeed equals the expression given in Eq. (6.12). As in Theo-

rem 6.2, it suffices to bound I∗C(λ⋆)+ I∗C(−λ⋆) and apply Eq. (3.6).

Let ũ denote Eπ̃σ[f /σ]. Rewrite Eq. (6.12) using the identity max{a, b}= (a+b)/2+
|a−b|/2:

I∗C(−λ)=
(

1
c′
+

1
d′

)−λ · ũ+β‖λ‖1

2
+

(
1
c′
−

1
d′

)∣∣−λ · ũ+β‖λ‖1
∣∣

2
.

Hence,

I∗C(−λ)+ I∗C(λ)=
(

1
c′
+ 1

d′

)
β‖λ‖1 +

(
1
c′
− 1

d′

)∣∣−λ · ũ+β‖λ‖1
∣∣+

∣∣λ · ũ+β‖λ‖1
∣∣

2

=
(

1
c′
+ 1

d′

)
β‖λ‖1 +

(
1
c′
− 1

d′

)
max{|λ · ũ|,β‖λ‖1} (6.15)

where Eq. (6.15) follows because max{|a|, |b|} = |a+ b|/2+ |a− b|/2. Next, we bound

|λ · ũ| from above using our assumption that |Eπ̃σ

[
f j/σ

]
−Eπσ

[
f j/σ

]
| ≤β for all j:

|λ · ũ| = |λ ·Eπ̃σ[f /σ]| ≤ |λ ·Eπσ[f /σ]|+β‖λ‖1 . (6.16)

Furthermore, by Theorem 6.1 and the assumption Eπσ[1/σ]≤ d′, we obtain

|λ ·Eπσ[f /σ]| =Eπσ[1/σ]|λ ·Eπ[f ]| ≤ d′|λ ·Eπ[f ]| . (6.17)

Combining Eqs. (6.15), (6.16), and (6.17) yields

I∗C(−λ)+ I∗C(λ)≤
(

1
c′
+

1
d′

)
β‖λ‖1 +

(
1
c′
−

1
d′

)(
d′|λ ·Eπ[f ]|+β‖λ‖1

)

=
2β‖λ‖1

c′
+

d′− c′

c′
|λ ·Eπ[f ]|

≤ 2β
c′

(‖λ‖1 +|λ ·Eπ[f ]|)

where the last inequality follows because d′ ≤ c′+2β. The bounds (6.13) and (6.14)

can now be derived by expressing 2β as α/(σmin
p

m) and bounding 1/c′ as in Theo-

rem 6.2.

In practice, confidence intervals [c j, d j] and [c′, d′] may be determined from sam-
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Input: finite domain X

default estimate q0

strictly positive sample selection bias σ

features f j : X→ [0,1]
samples x1, . . . , xm ∈X

regularization parameter β0

Output: qλ̂ approximating the target distribution

Let γ′ =minx∈X1/σ(x) , δ′ =maxx∈X1/σ(x)

β′ = β0p
m

·min
{

V′
π̃σ[1/σ],

δ′−γ′

2

}

[c′, d′]=
[
Eπ̃σ[1/σ]−β′, Eπ̃σ[1/σ]+β′] ∩

[
γ′,δ′

]

For j ∈ J:
γ j =minx∈X f j(x)/σ(x) , δ j =maxx∈X f j(x)/σ(x)

β j =
β0p
m

·min
{

V′
π̃σ[ f j/σ],

δ j −γ j

2

}

[c j, d j]=
[
Eπ̃σ[ f j/σ]−β j, Eπ̃σ[ f j/σ]+β j

]
∩

[
γ j,δ j

]

Solve maxent with potential IB (or IC) where B (or C) is defined in Eq. (6.1) (or Eq. 6.10)

Figure 6.2. Maxent with debiasing of averages.

ple variances similar to confidence intervals used in unbiased ℓ1-regularized maxent.

In the experiments of Sections 6.4 and 6.5, we will use the approximations

|Eπσ[1/σ]−Eπ̃σ[1/σ]| ≈β0

√
V′

π̃σ
[1/σ]/m , |Eπσ[ f j/σ]−Eπ̃σ[ f j/σ]| ≈β0

√
V′

π̃σ
[ f j/σ]/m

where β0 is a single tuning constant. After restricting the confidence intervals in

a natural fashion, we obtain the algorithm in Fig. 6.2. Alternatively, we could use

bootstrap or other types of estimates for the confidence intervals.

6.2.1 Solving Maxent with the Polyhedral Potential IC

We discuss two approaches to solving maxent with potential IC. The first approach

explicitly enumerates the bounding hyperplanes of C and then applies one of the

algorithms of Chapter 4. However, as we will see below, the number of bounding

hyperplanes of C is quadratic in the number of features |J|, so the resulting algorithm

will be too slow when the number of features is large. Therefore, for a large number

of features we suggest an alternative approach. The alternative approach finds the

appropriate t in Eq. (6.10) by a line search while calling maxent with box constraints

in each iteration. The box constraints are over the original set of features of size |J|,
and thus the resulting algorithm may be significantly faster.
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Explicit Optimization

Following the intuition of Fig. 6.1, it is possible to derive C explicitly as an intersec-

tion of a box and a cone

C =
{

u :
c j

d′ ≤ u j ≤
d j

c′
for all j ∈ J and (6.18)

d juk −u jck ≥ 0 for all j, k ∈ J, j 6= k
}

. (6.19)

To see how the box and conic constraints of Eqs. (6.18) and (6.19) define C, first

consider the prototype box

B0 =
{
u : c j ≤ u j ≤ d j

}

and note that

C =
⋃

1/d′≤t0≤1/c′
t0B0 , (6.20)

where t0 corresponds to 1/t of Eq. (6.10). Note that the constraints of Eq. (6.19)

are satisfied if and only if u = αu0 for some α ≥ 0 and u0 ∈ B0. The constraints

of Eq. (6.18) guarantee that u lies inside the box B (enclosing C), which restricts

the range of α to [1/d′,1/c′]. Thus, altogether these constraints specify C. The total

number of constraints grows quadratically with the size of the feature set |J|.

Line-search Optimization

Instead of using the explicit form of C, we will show how the decomposition in

Eq. (6.20) can be used to solve maxent more efficiently.

Specifically, consider a “slice” of the primal objective

P0(p, t0)=D(p ∥ q0)+ It0B0(Ep[f ]) .

The primal objective

P(p)=D(p ∥ q0)+ IC(Ep[f ])

can be expressed in terms of the sliced primal as

P(p)= min
1/d′≤t0≤1/c′

P0(p, t0) .

Thus, the maxent primal can be re-formulated as

min
p∈∆

min
1/d′≤t0≤1/c′

P0(p, t0)= min
1/d′≤t0≤1/c′

min
p∈∆

P0(p, t0) .

We solve the outer minimization on the right-hand side by a line search, evaluating
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the inner minimization in each iteration. Note that the inner minimization is a

maxent problem with the box potential It0B0 , which can be solved using ℓ1-SUMMET

or ℓ1-PLUMMET. It turns out that the outer minimization is convex, so it can be

solved efficiently using standard techniques. To see that the outer minimization is

convex, consider the function

P̂0(t0)=min
p∈∆

P0(p, t0) ,

which is being minimized over t0 ∈ [1/d′,1/c′]. Note that It0B0(u) is jointly convex over

t0 ≥ 0 and u ∈ R
J. Thus, P0(p, t0), defined above, is jointly convex in p and t0, and

hence P̂0(t0) is convex in t0 (note that the epigraph of P̂0 can be viewed as a “shadow”

of P0’s epigraph). Since the number of features of the inner optimization is only |J|, as

opposed to O(|J|2) obtained by a reduction from the explicit representation of IC, the

algorithm based on the optimization of t0 may significantly outperform the explicit

optimization if the number of features is large.

6.3 Approach II: Factoring Bias Out

Our second approach does not approximate π directly, but first uses maxent to esti-

mate the distribution πσ and then converts this estimate into an approximation of π.

If the default estimate of π is q0 then the default estimate of πσ should be q0σ. In

the first step of our approach, we apply unbiased maxent with the appropriate regu-

larization to the empirical distribution π̃σ with the default estimate q0σ. This yields

a distribution

q0σ(x)eλ̂·f (x)/Z

approximating πσ. To obtain an estimate of π, we simply factor out σ, and obtain the

distribution

q0(x)eλ̂·f (x)/Z′ .

To distinguish among Gibbs distributions derived from various default distributions,

we will prefix “Gibbs” by the corresponding default distribution. Thus the previous

two examples are instances of q0σ-Gibbs and q0-Gibbs distributions respectively.

If we use ℓ1-regularized maxent to estimate πσ then the resulting approach cor-

responds to ℓ1-regularized maximum likelihood estimation of π by q0-Gibbs distribu-

tions. When π itself is q0-Gibbs then the distribution πσ is q0σ-Gibbs. Performance

guarantees for unbiased maxent imply that estimates of πσ converge to πσ as the

number of samples increases. Since σmin > 0, the estimates of π obtained by factor-

ing out σ converge to π as well.
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Table 6.1. Comparison of distributions q⋆ and q⋆⋆ minimiz-
ing D(π ∥ qλ) and D(πσ ∥ qλσ) in Example 6.4.

x f (x) π(x) σ(x) πσ(x) q⋆(x) q⋆⋆σ(x) q⋆⋆(x)
1 (0,0) 0.4 0.4 0.64 0.25 0.544 0.34
2 (0,1) 0.1 0.4 0.16 0.25 0.256 0.16
3 (1,0) 0.1 0.1 0.04 0.25 0.136 0.34
4 (1,1) 0.4 0.1 0.16 0.25 0.064 0.16

When π is not q0-Gibbs then πσ is not q0σ-Gibbs either. The present approach

approximates π by a q0-Gibbs distribution q̂ = qλ̂ which, with an increasing number

of samples, minimizes D(πσ ∥ qλσ) rather than D(π ∥ qλ). Our next example shows

that these two minimizers may be different. Thus, unlike the solution of maxent with

a debiasing potential, the solution of maxent with factor-bias-out does not necessarily

approach the best Gibbs distribution even as the number of samples grows to infinity.

Example 6.4. Consider the space X = {1,2,3,4} with two features f1, f2. Features

f1, f2, target distribution π, sampling distribution σ and the biased distribution

πσ are given in Table 6.1. We use the uniform distribution as a default estimate.

The minimizer of D(π ∥ qλ) is the unique uniform-Gibbs distribution q⋆ such that

Eq⋆[f ] =Eπ[f ]. Similarly, the minimizer q⋆⋆σ of D(πσ ∥ qλσ) is the unique σ-Gibbs

distribution for which Eq⋆⋆σ[f ] = Eπσ[f ]. Solving for these exactly, we find that q⋆

and q⋆⋆ are as given in Table 6.1, and that these two distributions differ.

6.3.1 Using the Empirical Sampling Distribution

As mentioned in the introduction, knowing the sampling distribution σ exactly is

unrealistic. However, we often have access to samples from σ. Within the factoring-

bias-out framework, it is possible to use an empirical estimate σ̃ instead of σ.

Specifically, assume that σ is unknown but that, in addition to samples x1, . . . , xm

from πσ, we are also given a separate set of samples x(1), x(2), . . . , x(M) from σ. We use

the factor-bias-out approach with the sampling distribution σ replaced by

σ̃(x)= 1
M

M∑

i=1
1(x(i) = x) .

To simplify the algorithm, we note that instead of using q0σ̃ as a default estimate

for πσ, it suffices to replace the sample space X by Xσ̃ = {x(1), x(2), . . . , x(M)} and use q0

restricted to Xσ̃ as a default. The last step of factoring out σ̃ is equivalent to using λ̂,

returned for space Xσ̃, on the entire sample space X.
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When the sampling distribution σ is correlated with feature values, Xσ̃ might not

cover all feature ranges. In that case, re-projecting on X may yield poor estimates

outside of these ranges. We therefore do “clamping”, i.e., we restrict values f j(x) to

their ranges over Xσ̃ and cap values of the exponent λ̂ · f (x) at its maximum over Xσ̃.

6.4 Synthetic Experiments

Conducting real-data experiments to evaluate bias correction techniques is difficult,

because bias is typically unknown and samples from unbiased distributions are not

available. Therefore, synthetic experiments are often a necessity for precise evalua-

tion. In this section we describe a set of synthetic experiments; in the next section

we turn to experiments on real data.

Experimental Design

We generated three target uniform-Gibbs distributions π1, π2, π3 over a domain X

of size 10,000. These distributions were derived from linear, quadratic, and product

features derived from 10 variables v1, . . . ,v10. The values vk(x) were chosen indepen-

dently and uniformly in [0,1]. Fixing the variables, we generated parameter vectors

λ capturing a range of different behaviors.

Let US denote a random variable uniform over the set S. Each instance of US

corresponds to a new independent variable. We set

λv2
k
=U{−1,0,1}U[1,5]

λvk =




λv2

k
U[−3,1] if λv2

k
6= 0,

U{−1,1}U[2,10] otherwise.

Weights λvkvk′ , k < k′ were chosen to create correlations between variables that would

be observable, but not strong enough to dominate over the effects of linear and

quadratic features. We set λvkvk′ =−0.5 or 0 or 0.5 with respective probabilities 0.05,

0.9 and 0.05.

In maxent algorithms, we used linear and quadratic features derived from vari-

ables including v1, . . . ,v6 (relevant variables) as well as additional (irrelevant) vari-

ables v11, . . . ,v14, generated similarly to the previous variables. Once generated, we

used the same set of variables in all experiments.

We generated a sampling distribution σ correlated with target distributions. More

specifically, σ was a Gibbs distribution generated from linear and quadratic features

derived from variables v5, . . . ,v8 and additional variables v15,v16. The parameters of
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Table 6.2. Summary of variables and feature types used in synthetic experiments. Target
distributions π1, π2, π3, the sampling distribution σ, and the maxent distribution q̂ are all
uniform-Gibbs, derived from the shown features and variables.

Feature Variables
types v1,v2,v3,v4 v5,v6 v7,v8 v9,v10 v11,v12,v13,v14 v15,v16

target π1,π2,π3 LQP
p p p p

maxent model q̂ LQ
p p p

bias σ LQ
p p p
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Figure 6.3. Learning curves for synthetic experiments. Performance is measured in terms of
relative entropy to the target distribution as a function of an increasing number of training
samples. The number of samples is plotted on a log scale.

the sampling distribution were set to λvk = 0 and λv2
k
= −1. The choice of variables

and feature types is summarized in Table 6.2.

For every target distribution, we evaluated the performance of unbiased maxent,

maxent with debiasing potential IB and IC, as well as the factor-bias-out approach

using exact knowledge of σ and an empirical distribution σ̃ consisting of 1,000 or

10,000 samples. Performance was evaluated in terms of relative entropy to the tar-

get distribution. We used training sets of sizes 10 to 1,000. We considered three

randomly generated training sets and took the average performance for settings of

β0 from the range [0.01,100.00]. We report results for the best β0, chosen separately

for each average. The rationale behind this approach is that we want to explore the

potential performance of each method.

131



Table 6.3. Results of real-data experiments. Average performance of unbiased maxent and
bias correction approaches over all species in six regions. Results of bias correction ap-
proaches are set in boldface if they are significantly better than those of unbiased maxent
according to a paired t-test at the 5% significance level.

Log loss AUC
difference from unbiased difference from unbiased

unbiased debias factor factor unbiased debias factor factor
maxent avgs bias out bias out maxent avgs bias out bias out

(box) (empir.) (box) (empir.)
AWT -0.44 0.14 0.12 0.11 0.69 -0.02 0.02 0.03

CAN -1.33 0.21 0.24 0.50 0.58 0.06 0.11 0.15

NSW -0.82 0.47 0.65 0.78 0.71 -0.06 0.00 0.01
NZ -0.47 0.55 0.44 0.31 0.72 -0.05 0.00 0.01
SA -1.09 0.96 0.53 0.48 0.78 -0.10 -0.00 -0.00
SWI -1.41 0.78 0.65 0.60 0.81 -0.02 0.03 0.03

Results

Figure 6.3 shows the results at the optimal β as a function of an increasing num-

ber of samples. The factor-bias-out approach with the exact bias or 10,000 samples

is always better than unbiased maxent. Maxent with debiasing potentials is worse

than the unbiased maxent for small sample sizes, but as the number of training sam-

ples increases, it soon outperforms unbiased maxent and eventually also outperforms

factor-bias-out. The two debiasing potentials lead to different performance only for

small training set sizes. Factor-bias-out with empirical bias improves as the num-

ber of samples increases, approaching the performance of factor-bias-out with exact

knowledge of the bias.

6.5 Real-data Experiments

We compared the performance of our bias correction approaches with that of unbiased

maxent as well as other species distribution modeling techniques using the NCEAS

dataset (see Section 5.4). We used the training presence-only portion of the data to

construct models, assuming that the occurrence records are biased. The evaluation

presence-absence portion of the data was viewed as the unbiased test set.

6.5.1 Evaluation of the Bias Removal Approaches

Experimental Design

We evaluated the performance of unbiased maxent, maxent with debiasing box po-

tential, factor-bias-out, and empirical factor-bias-out. In all cases, we used thresh-
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old features and categorical indicators, regularized according to the default settings

given in Table 5.3.

We treated training occurrence locations for all species in each region as the sam-

ples from the sampling distribution. These were used directly in empirical factor-

bias-out. To apply the other debiasing approaches, we estimated the sampling dis-

tribution using unbiased maxent with threshold features and categorical indicators

with the default regularization. The resulting debiased distributions were evaluated

on test presences according to log loss and on test presences and absences according

to AUC (see Section 5.2). Sampling distribution estimation is also the first step in

the work of Zadrozny (2004). In contrast with that work, however, our evaluation

measures do not use the sampling-distribution estimate and hence do not depend on

its quality.

Results

In Table 6.3 we show performance of the three bias correction approaches compared

with unbiased maxent. All three algorithms yield on average a worse log loss than

unbiased maxent. In contrast, when the performance is measured in terms of AUC,

factor-bias-out (both with the estimated bias and the empirical bias) yields on av-

erage the same or better AUC as unbiased maxent in five out of six regions. Im-

provements in regions AWT, CAN, and SWI are dramatic enough that both of these

methods perform better (according to AUC) than any method evaluated in the origi-

nal NCEAS comparison (see Section 5.6).

6.5.2 The NCEAS Comparison Incorporating the Bias Removal

According to the previous experiments the best performance on the NCEAS data

(measured by AUC) is obtained by empirical factor-bias-out. This approach replaces

the sample set X by a set of occurrences of all of the species in the same region,

viewed as samples from the biased sampling distribution. We expect that a better

empirical estimate of the sampling distribution is obtained if we restrict the set of

species to those that are likely to be collected in a similar manner, species within

the same target group, since these are likely to share similar sample selection bias.

We refer to this particular choice of the empirical bias distribution as target-group

background. In this and the next section, we will explore the use of maxent with

target-group background.

The use of target-group background is not restricted to maxent. In particular,

target-group background can be readily incorporated in regression based techniques,

which require surrogates for the absence of the species. Instead of choosing these sur-
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Figure 6.4. Comparison of Maxent and other species distribution modeling techniques using
target-group background to remove the bias. The results are taken from the work of Phillips,
Dudík et al. (2007).

rogate absences from the entire region at random (similar to using the entire region

or its subsample as the sample space in maxent), we can use the target-group back-

ground. The approach was suggested earlier by Ferrier et al. (2002) and Zaniewski

et al. (2002) and comprehensively investigated by Phillips, Dudík et al. (2007). In

Fig. 6.4, we summarize some of the findings of Phillips, Dudík et al. (2007) compar-

ing the performance of maxent with that of the other species distribution modeling

methods.

We consider the same set of techniques as in Section 5.6: BRT, maxent, MARS,

GAM, and BIOCLIM. All of the methods, except for BIOCLIM, allow incorporating

target-group background. There are two target groups in AWT (birds and plants),

four target groups in NSW (birds, plants, mammals, and reptiles), and only one tar-

get group in each of the remaining regions. To obtain maxent models, we used the

Maxent software with the default settings determined in Section 5.5 including hinge

features.

Fig. 6.4 shows that the performance of all four methods that allow incorporating
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Table 6.4. Maxent performance in terms of AUC for globally and regionally optimized param-
eters, using either random or target-group background.

Random background Target-group background
improvement from default improvement from default

default globally regionally default globally regionally
settings optimized optimized settings optimized optimized

settings settings settings settings
AWT 0.693 0.004 0.015 0.729 0.000 0.009
CAN 0.594 0.008 0.023 0.719 0.011 0.020
NSW 0.711 0.005 0.022 0.742 0.009 0.020
NZ 0.733 0.008 0.009 0.741 0.009 0.011
SA 0.796 0.007 0.014 0.793 0.003 0.005
SWI 0.803 0.003 0.001 0.837 0.006 0.006

all species 0.726 0.006 0.014 0.757 0.006 0.012

the target-group background significantly improves. Note that the Ontario anomaly,

on which we commented in Section 5.6, disappears after the bias removal. Maxent

remains among the top performing approaches alongside BRT.

6.5.3 Evaluating the Maxent Tuning

In the previous section we have seen that the default settings of Maxent lead to good

performance using the target-group background. However, the tuning of Section 5.5

ignored sample-selection bias, so it is conceivable that a different set of regularization

parameters will yield better performance. In this section, we evaluate the extent of

such improvement, using the same experimental design as in Section 5.7.

Specifically, we perform a local search in the space of possible regularization pa-

rameters to optimize the performance of maxent models. Maxent models are con-

structed from the training portion of the NCEAS data and evaluated on the evalu-

ation portion of the NCEAS data. The resulting parameters are referred to as pa-

tuned.

In Table 6.4, we compare the performance of the default settings with the per-

formance of pa-tuned settings. For comparison, we also list the results for unbiased

maxent. Both global and regional pa-tuning result in a similar improvement of AUC

as for the unbiased maxent. Note that the improvement due to the use of target-

group background is significantly larger than the improvement due to the global or

regional pa-tuning.

In Table 6.5, we report parameters obtained by global pa-tuning and medians of

parameters obtained by regional pa-tuning. Again, for comparison we include the
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Table 6.5. Overview of pa-tuned parameters: globally optimized parameters and medians of
10 regionally optimized parameters. The global settings optimize the average performance
across all species. The regional settings are optimized separately for each of 10 taxonomic
groups in the 6 regions.

Random background Target-group background
number of occurrences number of occurrences

2–9 10–14 15–79 ≥ 80 2–9 10–14 15–79 ≥ 80
βL: global optimum 1.00 1.41 2.00 1.41

regional median 1.00 1.00 1.00 1.00
default∗ 1.00 .71 1.00 .71

βQ: global optimum 1.41 .50 .35† 2.00 1.00 .35†

regional median 1.00 .85 .05 1.00 .71 .07
default∗ .71 .23 .05 .71 .23 .05

βP: global optimum .35† .35†

regional median .04 .11
default∗ .05 .05

βT: global optimum 2.00 8.00†

regional median 1.21 1.71
default∗ 1.00 1.00

βH: global optimum .35 .50 .71 1.41
regional median .85 .50 1.21 .50
default∗ .50 .50 .50 .50

βC: global optimum 1.41 .50 .03∗∗ .03 .50 1.00 .13 .25
regional median .71 .50 .18 .04 .71 .50 1.00 .04
default∗ .53 .39 .14 .05 .53 .39 .14 .05

∗ po-tuned values for the median training-set size in each range: 6, 12, 36, and 221
† the largest possible value in local search
∗∗ the smallest possible value in local search

results for unbiased maxent. Similar to the unbiased case, the pa-tuned values are

larger than the default values, suggesting additional uncertainty in feature-mean es-

timates, possibly due to the imperfect knowledge of the sampling distribution. Since

the improvement due to pa-tuning is only marginal, we suggest using the default

settings to prevent possible overfitting of our evaluation data.

6.6 Discussion

We have proposed two approaches that incorporate information about sample selec-

tion bias in maxent and demonstrated their utility in synthetic and real-data experi-
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ments. Experiments also raise several questions that merit further research.

Maxent with debiasing potentials has the strongest performance guarantees, but

it performs the worst in real-data experiments and catches up with other methods

only for moderate sample sizes in synthetic experiments. This may be due to poor

estimates of unbiased confidence intervals and could be possibly improved using a

different estimation method.

Maxent with factor-bias-out improves over unbiased maxent in terms of AUC over

real data, but is worse in terms of log loss. This disagreement suggests that methods

which aim to optimize AUC directly could be more successful in species modeling,

possibly implementing a version of the factor-bias-out approach.

Maxent with empirical factor-bias-out performs the best on real world data, pos-

sibly due to the direct use of samples from the sampling distribution rather than a

sampling distribution estimate. However, this method comes without performance

guarantees and does not exploit the knowledge of the full sample space.

Some of the paradoxes mentioned above could be explained by presence of identi-

cal or similar sample-selection bias in both the training and the evaluation data. Let

σ be the sampling distribution used to collect the training data. Recall that unbiased

maxent returns the distribution q̂ which, with an increasing number of biased sam-

ples, optimizes D(πσ ∥ qλ); maxent with a debiasing potential optimizes D(π ∥ qλ);

maxent with factor-bias-out optimizes D(πσ ∥ qλσ). If another sampling distribu-

tion σ′ is used to collect the evaluation data then the test AUC will be a proxy for

D(πσ′ ∥ q̂σ′) (since absences share the sample-selection bias with presences, so q̂ is

effectively “normalized” only against points under the same bias), whereas the test

log loss corresponds to D(πσ′ ∥ q̂) (since q̂ is normalized uniformly over the entire re-

gion). If σ and σ′ are similar, then, indeed, unbiased maxent will optimize the test log

loss and maxent with factor-bias-out will optimize the test AUC, as we have observed.

The possibility of shared sample-selection bias in the NCEAS data is partly explored

by Phillips, Dudík et al. (2007) with a somewhat indefinite conclusion: a shared sam-

pling distribution seems to play a role, but its effects are difficult to distinguish from

the effects of factoring the bias out. Better understanding of this interplay may lead

to further improvements of bias correction techniques.
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Chapter 7

Multiple-density Estimation

Many real-world applications, including species-distribution modeling, require solv-

ing multiple related learning problems. In this chapter, we use the insights of the

generalization analysis of Chapter 3 to develop a maximum-entropy approach to

multiple-density estimation.

Specifically, we study the problem of simultaneously estimating several probabil-

ity distributions on the same space, where the datasets for each are organized into

overlapping groups such as a hierarchy. In problems of multiple estimation, we can

typically either pool our data or treat each estimation problem individually. In pool-

ing data, we obtain a confident estimate from a large sample but ignore the important

differences between datasets. On the other hand, individual estimates address the

separate nature of each dataset but may lead to poor generalization because of small

sample sizes.

In maxent, pooling of the data corresponds to choosing constraints based on the

feature averages across samples in all the datasets, whereas individual estimation

is based on averages within each dataset separately. Here, we develop hierarchical

maximum entropy density estimation (HME), a procedure that lies in the powerful

middle-ground between these choices. The datasets are grouped, and the constraints

are imposed simultaneously using averages in each dataset as well as averages

within groups of datasets. Using the general theory developed in Chapter 3, we show

that for an appropriate choice of regularization parameters it is possible to share in-

formation within groups and also account for differences between the datasets. The

density estimates from small sample sizes are influenced by the estimates for which

we have more confidence; estimates from large sample sizes are less influenced by

others. In statistics, this is known as hierarchical/multi-level modeling (Gelman

and Hill, 2007) or shrinkage (originally introduced by Stein, 1956; and James and

Stein, 1961). In machine learning, hierarchical models have been used, for example,

by McCallum et al. (1998) and Teh et al. (2005). These methods are also related to
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multitask or transfer learning (Caruana, 1993; Baxter, 2000; Raina et al., 2006).

In the first part of this chapter, we develop the theory of HME including duality

results and generalization guarantees similar to maxent duality (Theorem 2.4) and

the Generalization Lemma (Lemma 3.1). As a specific instance of the developed the-

ory, we study a hierarchical version of ℓ1-regularized maxent, ℓ1-regularized HME.

We show that ℓ1-regularized HME is closely related to maximum a posteriori estima-

tion with a hierarchical prior, or maximum likelihood estimation with hierarchical

regularization (shrinkage). We prove strong generalization guarantees. The guar-

antees depend favorably both on the number of features and the number of groups.

They provide guidance to choosing hyperparameters.

In the second part of the chapter, we explore the utility of ℓ1-regularized HME on

synthetic data and two large-scale real-world datasets from species distribution mod-

eling. Specifically, we evaluate HME on the data from regions AWT and NSW of the

NCEAS dataset (see Section 5.4), where the taxonomy of species provides a natural

hierarchy. For example, AWT contains bird species such as the golden bowerbird or

the tooth-billed catbird and plant species such as the black treefern or the black tulip

oak. In recent solutions to species distribution modeling, including all methods of the

NCEAS comparison (see Section 5.6), each species distribution is modeled separately,

even though some methods use combined data in the preprocessing stages to trans-

form the environmental space (Ferrier et al., 2002) or to construct a set of possibly

relevant features (Leathwick et al., 2005). When modeling distributions of rare or

endangered species, the number of occurrence records of a species is typically fewer

than ten, and, as expected, the resulting estimates of its distribution are poor. With

our approach, the information from several species is combined to produce better es-

timates for each individual species. A crucial insight is that a bird’s distribution is

likely to be more similar to other bird distributions than it is to plant distributions.

Our results in Section 7.7 show significant improvements in predictive performance

in both AWT and NSW.

7.1 Hierarchical Maximum Entropy Setup

Our goal is to model multiple densities over the same sample space.1 Density estima-

tion problems are referred to as classes, which are organized into groups; note that

we are not performing classification. The set of classes will be denoted Y, the set of

groups will be denoted G. Individual groups g ∈ G specify subsets of Y, thus G is a

subset of the power set 2Y.

1The restriction that the densities are over the same sample space simplifies the exposition, but it
could be omitted.
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In AWT, the set Y contains 10 plant and 10 bird species. The set G contains three

groups: plants with 10 elements, birds with 10 elements, and all species with 20

elements (see Fig. 7.1). Note that we make no requirements on the composition of

groups. In particular, groups can arbitrarily overlap. For example, in NSW (Fig. 7.2),

we consider the groups trees and rainforest plants, which intersect in the set of rain-

forest trees.

The sample space shared by the estimation problems is denoted X. As in single-

density estimation, the space X is described by features f j, j ∈ J, which may also

depend on the class y, i.e., f j : X×Y→R. Input consists of pairs (x1, y1), (x2, y2), . . . ,

(xm, ym) ∈ X×Y, representing a pooled sample across all classes. In AWT, y1 may

be the golden bowerbird, and x1 geographic coordinates where it was observed. We

assume that samples (xi, yi) come from an unknown joint distribution π and use the

maximum entropy principle to approximate π. Our interest lies in approximating

conditional distributions of location given species, πy(x) = π(x | y). This is in contrast

to logistic regression, where the goal is to approximate π(y | x) for classification.

Using maxent separately for each class would mean imposing constraints on the

class distributions based on the feature averages within each class, such as requir-

ing the model of the golden bowerbird to match the average altitude and the average

squared altitude in which the golden bowerbird was observed. In HME, we use the

group information to leverage information across species. In addition to requiring

that feature expectations of each individual class be close to their empirical aver-

ages, we also require that feature expectations for each group be close to the group

empirical averages. Thus, in AWT, we require that expectation of altitude across all

birds is not too far from the average altitude across all samples from the group birds.

Since the total number of samples in the group birds is larger than, for example, the

number of samples of the class golden bowerbird, we can be more confident about our

estimates of the means. This amounts to sharing information across all bird species.

We express both class and group constraints in terms of conditional expectations

on the joint distribution. Before presenting a general form of HME in Section 7.2, we

focus on a specific example based on ℓ1-regularized maxent:

min
p∈∆

D(p ∥ q0)

s.t. p(y) = π̃(y) for all y ∈Y
∣∣Eπ̃[ f j | y]−Ep[ f j | y]

∣∣≤βy, j for all y ∈Y, j ∈ J
∣∣Eπ̃[ f j | y ∈ g]−Ep[ f j | y ∈ g]

∣∣≤βg, j for all g ∈G, j ∈ J.

(7.1)

Here, ∆ is the simplex of probability distributions over X×Y, q0 is a default estimate,

p(y) is the marginal probability of class y, and βy,f , βg,f are widths of box constraints.
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Note that if G=;, ℓ1-regularized HME reduces to a series of ℓ1-regularized max-

ent problems for each class: given fixed class probabilities, the joint relative entropy

is minimized when class relative entropies are minimized. When G is non-empty, the

set of constraints in ℓ1-regularized HME is more restrictive than a series of single-

class maxent problems, so the resulting solutions differ.

Similar to single-class maxent, we will see that HME is equivalent to a regu-

larized maximum likelihood problem. When class probabilities are fixed as above,

the relative entropy is minimized by a distribution which takes the form p(x, y) =
π̃(y)qλy;y(x), where qλy;y is a Gibbs distribution on X, parameterized by λy ∈ R

J

given the default estimate q0;y := q0(· | y) and features f j(·, y). Eq. (7.1) is equivalent

to the following regularized maximum likelihood problem:

max
λ∈RY×J

η∈RG×J

{
1
m

m∑

i=1

(
ln qλyi;yi (xi)

)

−
∑

y∈Y, j∈J

(
π̃(y)βy, j

∣∣∣λy, j −
∑

g:y∈g
ηg, j

∣∣∣
)
−

∑

g∈G, j∈J

(
π̃(g)βg, j

∣∣ηg, j
∣∣
)}

.
(7.2)

Here, we used π̃(g) for the probability that y ∈ g under the distribution π̃. The ob-

jective of Eq. (7.2) is a function of vectors λy, which describe class distributions qλy ,

and vectors ηg, which account for effects of membership in different groups. The goal

is to optimize log likelihood of the data (the first term) under an ℓ1-style penalty for

deviating from group effects (the second term), which are themselves regularized by

an ℓ1-style penalty (the third term).

In the following sections, we prove a general duality result and a generalization

lemma for HME. The duality for ℓ1-regularized HME and the performance guaran-

tees will follow as special cases.

7.2 HME with General Regularization

Similar to generalized single-class maxent, constraints in HME are represented by

arbitrary convex functions. We introduce two types of constraints: (i) constraints on

class and group probabilities, i.e., on p(y) and p(g), and (ii) constraints on conditional

feature expectations, i.e., on Ep[f | y] and Ep[f | g], where Ep[f | g] is a shorthand

for Ep[f | y ∈ g]. We consider the following general formulation of HME:

min
p∈∆

[
D(p ∥ q0)+V(pY, pG)+

∑

y∈Y

p(y)Uy(Ep[f | y])+
∑

g∈G

p(g)Ug(Ep[f | g])
]

(7.3)

where pY is the marginal distribution over classes, pG is the vector of group prob-

abilities 〈p(g)〉g∈G, and V : RY ×R
G → (−∞,∞] as well as Uy : RJ → (−∞,∞] and
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Ug :RJ → (−∞,∞] are closed proper convex functions. Functions V, Uy, and Ug spec-

ify a potential for the joint estimation problem. We assume that domV is a subset of

(0,∞)G, and Eq. (7.3) is feasible.

For example, the potential of ℓ1-regularized HME, Eq. (7.1), is defined by

V(t, t(group))= I(t= π̃Y)

Uy(u)= I
(∣∣Eπ̃[ f j | y]−u j

∣∣≤βy, j for all j ∈ J
)

Ug(u)= I
(∣∣Eπ̃[ f j | g]−u j

∣∣≤βg, j for all j ∈ J
)

.

To prove HME versions of maxent duality and the Generalization Lemma, we will

reduce the HME primal, Eq. (7.3), to the generalized maxent primal, Eq. (2.17), and

use the theory of Chapters 2 and 3.

7.3 Reduction to Generalized Maxent

In generalized maxent, constraints are expressed as a potential on unconditional

expectations, but HME defines a potential on marginal probabilities and conditional

feature expectations. We begin the reduction by introducing a new set of features

derived from f j, and then show that HME potential is a closed proper convex function

of unconditional expectations of the new features.

Specifically, we introduce new features indexed by y ∈Y and (y, j) ∈Y×J:

1y(x′, y′)=1(y′ = y)

hy, j(x
′, y′)=1(y′ = y) f j(x

′, y′) .

Features 1y are class indicators, features hy, j are the original features f j restricted

to a single class y. The class probabilities, group probabilities, and the corresponding

conditional expectations can be expressed using 1y and hy, j as

p(y)=∑
x′∈X,y′∈Y p(x′, y′)1(y′ = y)=Ep[1y] (7.4)

p(g)=∑
y∈g p(y) =∑

y∈g Ep[1y] (7.5)

Ep[f | y]=
∑

x′∈X,y′∈Y f (x′, y′)p(x′, y′)1(y′ = y)

p(y)
=

Ep[hy]

Ep[1y]
(7.6)

Ep[f | g]=
∑

y∈g p(y)Ep[f | y]

p(g)
=

∑
y∈g Ep[hy]

∑
y∈g Ep[1y]

(7.7)

where hy denotes the vector of features 〈hy, j〉 j∈J.

Next we will rewrite Eqs. (7.4)–(7.7) and the HME potential into a more compact
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form, so that we can argue that the HME potential is a closed proper convex function

of the feature expectations, and, in the next section, derive an explicit conjugate.

We begin by rewriting expressions for p(g) and Ep[f | g], using the group-mem-

bership matrix M ∈ {0,1}G×Y with entries Mgy =1(y ∈ g),

p(g)=MgEp[1Y] (7.8)

Ep[f | g]=
(Mg ⊗IJ)Ep[h]

MgEp[1Y]
(7.9)

where 1Y denotes the vector of features 1y, h is the concatenation of hy’s, and Mg

is the row of M indexed by g. The notation ⊗ is used for the tensor (or Kronecker)

product and IJ for an identity matrix of size |J|. For a pair of matrices A ∈ R
m×n,

B ∈Rk×ℓ, their tensor product A⊗B ∈Rmk×nℓ is defined as

A⊗B=




A11B A12B . . . A1nB

A21B A22B . . . A2nB

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Am1B Am2B . . . AmnB




where the A i j ’s are the entries of A. The tensor product in Eq. (7.9) is needed to

ensure that only the components hy, j with the identical indices j are matched in the

summations
∑

y∈g Ep[hy, j], represented as the evaluation of (Mg ⊗IJ)Ep[h].

Using Eqs. (7.8) and (7.9), the HME potential can be written as a function of

feature expectations t=Ep[1Y] and u =Ep[h]:

U(t, u)=V(t,Mt)+
∑

y∈Y

tyUy

(
uy

ty

)
+

∑

g∈G

(Mgt)Ug

(
(Mg ⊗IJ)u

Mgt

)
(7.10)

where uy is the slice of vector u corresponding to Ep[hy]. To simplify Eq. (7.10), we

consider an extended group set Ḡ = Y∪G, containing both groups and classes.2 We

extend the matrix M into a matrix M̄ ∈ {0,1}Ḡ×Y by adding the elements M̄yy′ =1(y=
y′). Thus

M̄=
(
IY

M

)
. (7.11)

Eq. (7.10) can now be simplified to

U(t, u)=V(M̄t)+
∑

ḡ∈Ḡ

(M̄ḡt)U ḡ

(
(M̄ ḡ ⊗IJ)u

M̄ḡt

)
. (7.12)

2Note that Y∩G = ; since G consists of subsets of Y. Even if G contains singletons {y}, these are
formally different from classes y. Thus |Ḡ| = |Y∪G| = |Y|+ |G|.
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To complete the reduction to the generalized maxent, it remains to argue that U is a

closed proper convex function.

First, note that U is proper by the feasibility assumption. To prove convexity and

closedness, we use the fact that both of these properties are preserved under linear

transformations of arguments (Rockafellar, 1970, Theorems 5.7 and 9.5). Thus, it

suffices to rewrite U as

U(t, u)=U′(M̄t, (M̄⊗IJ)u
)

(7.13)

and prove the convexity and closedness of

U′(t′, u′)=V(t′)+
∑

ḡ∈Ḡ

t′ḡU ḡ(u′
ḡ/t′ḡ) (7.14)

where t′ ∈RḠ, u′ ∈RḠ×J (note the difference from t ∈RY, u ∈RY×J).

Convexity of U′ follows by convexity of V and U ḡ, because convexity is preserved

under perspective transformation, i.e., the operation (t′ḡ, u′
ḡ) 7→ t′ḡU ḡ(u′

ḡ/t′ḡ) defining

terms of the sum above (see Rockafellar, 1970, page 35; or Boyd and Vandenberghe,

2004, Section 3.2.6). To show that U′ is closed, it suffices to argue that it is a sum

of closed functions. In our case, these are the function V and closures of the terms

t′ḡU ḡ(u′
ḡ/t′ḡ), where closures are the largest closed functions bounding the terms from

below (Rockafellar, 1970, Section 7). It can be shown that the closure of the per-

spective transformation equals the perspective transformation if t′ḡ > 0 (Rockafellar,

1970, page 67). Otherwise, i.e., for t′ḡ ≤ 0, we have V(t′)=∞ by assumption and hence

U′(u′, t′)=∞ regardless of the value of the terms in the sum, so we can substitute the

closure values for the actual terms without loss of generality. Thus, U′ is indeed equal

to a sum of closed functions, which completes the reduction to generalized maxent.

In the following sections we place mild assumptions on the potential functions V,

Uy, and Ug to obtain specific duality results and generalization guarantees.

7.4 Polyhedral HME

We saw that U is a closed proper convex function of the expectations of 1y, hy, j, so the

duality results and performance guarantees for generalized maxent apply. However,

we would like the duality and the performance guarantees to be interpretable from

the point of view of the HME potential functions V, Uy, Ug. In this section, we

will express U∗ in terms of V∗, U∗
y, and U∗

g. To accomplish this, we will need an

additional assumption that V, Uy, and Ug are polyhedral as in the example of ℓ1-

regularized HME. Other choices of hierarchical polyhedral potentials are obtained

similar to Sections 3.2.2 and 6.2.
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To derive the conjugate of U, we begin by deriving the conjugate of U′ defined in

Eq. (7.14):

U′∗(s′,λ′)= sup
t′,u′

(
s′ · t′+λ′ ·u′−U′(t′, u′)

)

= sup
t′,u′

(
s′ · t′+λ′ ·u′−V(t′)−

∑

ḡ∈Ḡ

t′ḡ ·U ḡ(u′
ḡ/t′ḡ)

)
(7.15)

= sup
t′,u′

(∑

ḡ∈Ḡ

t′ḡ ·
[
λ′

ḡ ·u
′
ḡ/t′ḡ + s′ḡ −U ḡ(u′

ḡ/t′ḡ)
]
−V(t′)

)

= sup
t′

(∑

ḡ∈Ḡ

t′ḡ ·
[
s′ḡ + sup

u′′
ḡ:=u′

ḡ/t′ḡ

(
λ′

ḡ ·u
′′
ḡ −U ḡ(u′′

ḡ)
)]

−V(t′)
)

= sup
t′

(∑

ḡ∈Ḡ

t′ḡ ·
[
s′ḡ +U∗

ḡ(λ′
ḡ)

]
−V(t′)

)
(7.16)

=V∗
(〈

s′ḡ +U∗
ḡ(λ′

ḡ)
〉

ḡ∈Ḡ

)
. (7.17)

Eq. (7.15) follows by Eq. (7.14), Eqs. (7.16) and (7.17) from the definition of conjugacy.

To derive U∗, we will combine Eqs. (7.13) and (7.17) using the identity for conju-

gacy under linear transformations, Eq. (2.14). However, we cannot apply Eq. (2.14)

immediately, because the matrices in Eq. (7.13) are not square. We will extend the

matrices into invertible square matrices, and appropriately extend the vectors t and

u. Specifically, let

¯̄M=
(
IY 0Y0⊤

G

M IG

)
(7.18)

where 0Y and 0G are all-zero vectors of sizes |Y| and |G|. Note that ¯̄M is a square

matrix in a lower triangular form without zeros on the diagonal, so it is invertible.

Comparing with Eq. (7.11), we find that the first argument on the right-hand side of

Eq. (7.13), M̄t, can be rewritten as

M̄t =
(
IY

M

)
t =

(
IY 0Y0⊤

G

M IG

)(
t

0G

)
= ¯̄M

(
t

0G

)
.

Similarly,

(M̄⊗IJ)u = ( ¯̄M⊗IJ)

(
u

0G×J

)
.

Thus,

U(t, u)=U′′(t,0G, u,0G×J) (7.19)

where, for t′′ ∈RḠ, u′′ ∈RḠ×J, the function U′′ is defined by

U′′(t′′, u′′)=U′( ¯̄Mt′′, ( ¯̄M⊗IJ)u′′) . (7.20)
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Next, we will express U′′∗ in terms of U′∗ (using Eq. 2.14) and then U∗ in terms of

U′′∗ using the following technical proposition characterizing the conjugates of “slices”

of polyhedral functions.

Proposition 7.1. Let ϕ : Rn → (−∞,∞], ψ : Rn+m → (−∞,∞] be proper polyhedral

functions such that ϕ(u)=ψ(u,0). Then ϕ∗(λ)= infη′ ψ∗(λ,η′).

Proof. Define χ :Rn+m → (0,∞] by

χ(u,v)=ψ(u,v)+ I(v= 0) (7.21)

where u ∈Rn, v ∈Rm. Thus, ϕ(u)= infvχ(u,v). Therefore,

ϕ∗(λ)= sup
u

[
λ ·u−ϕ(u)

]

= sup
u,v

[
λ ·u+0 ·v−χ(u,v)

]
= χ∗(λ,0) . (7.22)

In order to derive ϕ∗, it suffices to derive χ∗. First rewrite Eq. (7.21) as

χ(u,v)=ψ(u,v)+ I{0}(v)+ I∗{0}(u) ,

noting that I∗{0}(u)= u ·0= 0. Now, by Eq. (2.16)

χ∗(λ,η)= inf
λ′,η′

[
ψ∗(λ′,η′)+ I∗{0}(η−η′)+ I{0}(λ−λ′)

]

= inf
λ′,η′

[
ψ∗(λ′,η′)+ I(λ=λ′)

]
= inf

η′
ψ∗(λ,η′) .

Combining with Eq. (7.22) yields the result of the proposition.

Hence

U∗(s,λ)= inf
s(group)∈RG

η∈RG×J

U′′∗(s, s(group),λ,η) (7.23)

= inf
s(group)∈RG

η∈RG×J

U′∗
(

¯̄M
−⊤

(
s

s(group)

)
, ( ¯̄M

−⊤
⊗IJ)

(
λ

η

))
. (7.24)

Eq. (7.23) follows by Proposition 7.1, using the fact that U′ is polyhedral (because V

and U ḡ are polyhedral and the polyhedral property is preserved by the perspective

transformation). Eq. (7.24) follows by Eq. (2.14).

To obtain an expression for U∗ in terms of V∗, U∗
y, and U∗

g, it now suffices to

combine Eqs. (7.17) and (7.24). Before doing so, we briefly discuss the form of the

146



matrix ¯̄M
−⊤

. This matrix will be denoted E, because it converts class and group

parameters sy, λy, s(group)
g , ηg appearing in Eq. (7.24), into class effects and group

effects s′y, λ′
y, s′g, λ′

g appearing in Eq. (7.17). These effects, rather than the actual

parameters, are regularized by the conjugates V∗, U∗
y, U∗

g. To explicitly derive E,

note that
¯̄M
⊤
(

IY −M

0G0⊤
Y

IG

)
=

(
IY M

0G0⊤
Y

IG

)(
IY −M

0G0⊤
Y

IG

)
= IḠ .

Thus,

E= ¯̄M
−⊤

=
(

IY −M

0G0⊤
Y

IG

)
.

Therefore, class and group effects are

s′y =Ey

(
s

s(group)

)
= sy−

∑
g:y∈g

s(group)
g s′g =Eg

(
s

s(group)

)
= s(group)

g (7.25)

λ′
y = (Ey⊗IJ)

(
λ

η

)
=λy−

∑
g:y∈g

ηg λ′
g = (Eg ⊗IJ)

(
λ

η

)
=ηg . (7.26)

Note that the expressions for λ′
y and λ′

g in Eq. (7.26) are regularized in the dual of

ℓ1-regularized HME, Eq. (7.2). Combining Eqs. (7.17), (7.24), (7.25), and (7.26), we

finally obtain the expression for the conjugate potential

U∗(s,λ)= inf
s(group)∈RG

η∈RG×J

V∗
(〈

sy−
∑

g:y∈g
s(group)

g +U∗
y

(
λy−

∑
g:y∈g

ηg

)〉

y∈Y

,
〈

s(group)
g +U∗

g(ηg)
〉

g∈G

)
.

(7.27)

Note that the only step relying on the condition that V, Uy, and Ug are polyhedral

is Eq. (7.23). If Eq. (7.23) holds for specific non-polyhedral potentials then Eq. (7.27)

holds as well.

7.5 Polyhedral HME with Fixed Class Probabilities

In this section we derive a duality result and a generalization lemma for a class of

potentials which includes ℓ1-regularized HME. Specifically, we study the case when

potentials Uy, Ug are polyhedral and V is a point indicator, specified by a probability

distribution c on Y,

V(t, t(group))=
∑

y∈Y

I(ty = c(y))+
∑

g∈G

I(t(group)
g = c(g)) .
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This setting corresponds to fixing class probabilities to c(y). Using the fact that

p(y)= c(y), the objective of HME, Eq. (7.3), can be rewritten as

min
p∈∆

s.t. pY=cY

[
D(c ∥ q0;Y)+

∑

y∈Y

c(y)
[
D(py ∥ q0;y)+Uy(Ep[f | y])

]
+

∑

g∈G

c(g)Ug(Ep[f | g])
]

(7.28)

where q0;Y is the marginal distribution of q0 over classes. Note that the first term

of Eq. (7.28) is constant. The second term is a sum of single-class maxent objectives,

weighted by c(y). The third term is a sum of group constraints, weighted by c(g).

Thus, components c(y) are perhaps better understood as measures of importance of

individual classes rather than the actual probabilities.

We use Eq. (7.27) to derive the conjugate potential, which will in turn be used to

derive a duality result and a generalization lemma. As the first step, note that for

s′′′ ∈RY and s′′′(group) ∈RG

V∗(s′′′, s′′′(group))=
∑

y∈Y

c(y)s′′′y +
∑

g∈G

c(g)s′′′(group)
g .

Thus the inner expression in Eq. (7.27) can be rewritten as

V∗
(〈

sy−
∑

g:y∈g
s(group)

g +U∗
y

(
λy−

∑
g:y∈g

ηg

)〉

y∈Y

,
〈

s(group)
g +U∗

g(ηg)
〉

g∈G

)

=
∑

y∈Y

c(y)sy−
∑

y∈Y,g∈G

1(y ∈ g)c(y)s(group)
g +

∑

y∈Y

c(y)U∗
y

(
λy−

∑
g:y∈g

ηg

)

+
∑

g∈G

c(g)s(group)
g +

∑

g∈G

c(g)U∗
g(ηg)

=
∑

y∈Y

c(y)sy+
∑

y∈Y

c(y)U∗
y

(
λy−

∑
g:y∈g

ηg

)
+

∑

g∈G

c(g)U∗
g(ηg) .

Hence the expression for V∗ does not depend on s(group). By Eq. (7.27), we obtain

U∗(s,λ)= inf
η∈RG×J

[∑

y∈Y

c(y)sy+
∑

y∈Y

c(y)U∗
y

(
λy−

∑
g:y∈g

ηg

)
+

∑

g∈G

c(g)U∗
g(ηg)

]
. (7.29)

Now, we are ready to state and prove the duality result for polyhedral HME with

fixed class probabilities. We consider the primal objective Eq. (7.28) without the

constant term D(c ∥ q0;Y)

PHME(p)= I(pY = c)+
∑

y∈Y

c(y)
[
D(py ∥ q0;y)+Uy(Ep[f | y])

]
+

∑

g∈G

c(g)Ug(Ep[f | g])
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and show that its minimization is equivalent to the maximization of the weighted

version of the objective Q of the single-class maxent (see Section 2.5) with group

regularization terms

QHME(λ,η)=
∑

y∈Y

c(y)
[
− ln Zλy;y −U∗

y

(
−λy+

∑
g:y∈gηg

)]
−

∑

g∈G

c(g)U∗
g(−ηg) .

Theorem 7.2. Let PHME, QHME be defined as above. Assume that Uy, Ug are polyhe-

dral, c(y) 6= 0 for all y, and PHME is proper. Then

min
p∈∆

PHME(p)= sup
λ∈RY×J

η∈RG×J

QHME(λ,η) . (i)

Moreover, for a sequence λ(1),η(1),λ(2),η(2), · · · such that

lim
t→∞

QHME(λ(t),η(t))= sup
λ∈RY×J

η∈RG×J

QHME(λ,η)

the sequence of qt, where qt(x, y)= c(y)q
λ(t)

y ;y(x), has a limit and

PHME

(
lim
t→∞

qt

)
=min

p∈∆
PHME(p) . (ii)

Note the similarity of Theorem 7.2 (HME duality) and Theorem 2.4 (maxent du-

ality). Indeed, maxent duality will be the crucial step in the proof of HME duality.

Before embarking on the proof of Theorem 7.2, we point out why it is not an immedi-

ate corollary of maxent duality under the reduction of HME to generalized maxent.

Using Eq. (7.10), we find that the objective of generalized maxent is

P(p)=D(p ∥ q0)+ I(pY = cY)+
∑

y∈Y

Ep[1y]Uy

(
Ep[hy]

Ep[1y]

)
+

∑

g∈G

(Mg1Y)Ug

(
(Mg ⊗IJ)Ep[h]

MgEp[1Y]

)

=D(pY ∥ q0;Y)+
∑

y∈Y

c(y)D(py ∥ q0;y)+ I(pY = cY)

+
∑

y∈Y

c(y)Uy

(
Ep[hy]

c(y)

)
+

∑

g∈G

c(g)Ug

(
(Mg ⊗IJ)Ep[h]

c(g)

)
(7.30)

where Eq. (7.30) follows by replacing p(y) by c(y) since these are identical whenever

P is finite. Note that by the reduction, Eq. (7.30) equals the objective of Eq. (7.28),

and hence differs from PHME only by the constant D(pY ∥ q0;Y).

We can derive the matching dual objective using the expression for the conjugate
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potential, Eq. (7.29),

Q(s,λ)=− ln Zs,λ− inf
η∈RG×J

[
−

∑

y∈Y

c(y)sy+
∑

y∈Y

c(y)U∗
y

(
−λy+

∑
g:y∈g

ηg

)
+

∑

g∈G

c(g)U∗
g(−ηg)

]

(7.31)

where Zs,λ is the normalization constant of the Gibbs distribution qs,λ defined over

X×Y

qs,λ(x, y)= q0(x, y)e
∑

y′∈Y

[
sy′1y′ (x,y)+λy′ ·hy′ (x,y)

]

Zs,λ
= q0(x, y)esy+λy·f (x,y)

Zs,λ
.

(The last equality follows from the definition of 1y and hy.)

Notice that Q is a function of s and λ, whereas QHME is a function of λ and η.

The proof below shows maximization of Q and QHME is equivalent up to the constant

difference of D(pY ∥ q0;Y) as in the primal.

Proof of Theorem 7.2. As mentioned above, to prove part (i), we use the reduction to

generalized maxent and appeal to maxent duality:

D(c ∥ q0;Y)+min
p∈∆

PHME(p)

=min
p∈∆

P(p)= sup
s∈RY

λ∈RY×J

Q(s,λ) (7.32)

= sup
s∈RY

λ∈RY×J

[
− ln Zs,λ− inf

η∈RG×J

[
−

∑

y∈Y

c(y)sy+
∑

y∈Y

c(y)U∗
y

(
−λy+

∑
g:y∈g

ηg

)
+

∑

g∈G

c(g)U∗
g(−ηg)

]]

= sup
s∈RY

λ∈RY×J

sup
η∈RG×J

[
− ln Zs,λ+

∑

y∈Y

c(y)sy−
∑

y∈Y

c(y)U∗
y

(
−λy+

∑
g:y∈g

ηg

)
−

∑

g∈G

c(g)U∗
g(−ηg)

]

= sup
λ∈RY×J

η∈RG×J

[
D(c ∥ q0;Y)+

∑

y∈Y

c(y)
[
− ln Zs,λ−U∗

y

(
−λy+

∑
g:y∈g

ηg

)]
−

∑

g∈G

c(g)U∗
g(−ηg)

]

(7.33)

=D(c ∥ q0;Y)+ sup
λ∈RY×J

η∈RG×J

QHME(λ,η) . (7.34)

Eq. (7.32) follows by maxent duality where P and Q are given in Eqs. (7.30) and (7.31).

Eq. (7.33) follows by setting the partial derivatives of the objective with respect to sy

equal to zero. Specifically, the partial derivatives with respect to sy are equal to zero

if and only if

sy = ln Zs,λ+ ln
c(y)

q0(y)
− ln Zλy;y (7.35)

150



and hence the term
∑

y∈Y c(y)sy becomes

ln Zs,λ+D(c ∥ q0;Y)−
∑

y∈Y

c(y) ln Zλy;y ,

yielding Eq. (7.33). Eq. (7.34) follows from the definition of QHME and proves part (i)

of the theorem.

To prove part (ii), we use maxent duality as well. We set s(t) according to Eq. (7.35)

and show that the resulting sequence Q(s(t),λ(t)) maximizes the generalized dual.

First, notice that Q(s(t),λ(t)) is bounded from below by D(c ∥ q0;Y)+QHME(λ(t),η(t)):

Q(s(t),λ(t))

=− ln Zs(t),λ(t) − inf
η∈RG×J

[
−

∑

y∈Y

c(y)s(t)
y +

∑

y∈Y

c(y)U∗
y

(
−λ(t)

y +
∑

g:y∈g
ηg

)
+

∑

g∈G

c(g)U∗
g(−ηg)

]

≥− ln Zs(t),λ(t) −
[
−

∑

y∈Y

c(y)s(t)
y +

∑

y∈Y

c(y)U∗
y

(
−λ(t)

y +
∑

g:y∈g
η(t)

g

)
+

∑

g∈G

c(g)U∗
g(−η(t)

g )
]

=D(c ∥ q0;Y)+QHME(λ(t),η(t)) . (7.36)

Eq. (7.36) follows similarly to Eqs. (7.33) and (7.34), since s(t) is set according to

Eq. (7.35). Taking the limit on the right-hand side and the limit inferior on the left-

hand side of Eq. (7.36) yields

liminf
t→∞

Q(s(t),λ(t))≥D(c ∥ q0;Y)+ lim
t→∞

QHME(λ(t),η(t))

=D(c ∥ q0;Y)+sup
λ,η

QHME(λ,η) (7.37)

where the last equality follows by the assumption of the theorem. Previously, in

Eqs. (7.32)–(7.34), we showed that

sup
s,λ

Q(s,λ)=D(c ∥ q0;Y)+sup
λ,η

QHME(λ,η) . (7.38)

Combining Eqs. (7.37) and (7.38), we thus obtain that Q(λ(t), s(t)) maximizes the gen-

eralized dual. Therefore, the distributions qs(t),λ(t) converge to the primal solution.

However, for our choice of s(t), we have qs(t),λ(t) = qt, hence part (ii) follows.

Similar to the dual of generalized maxent, the HME dual QHME can be rewritten

in a shifted form

QHME(λ,η)=
∑

y∈Y

c(y)
[
−Lr y(λy; y)−U∗

y;r
(
λy−

∑
g:y∈gηg

)]
−

∑

g∈G

c(g)U∗
k;r(ηg)
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where

Lr y(λy; y)=Er y

[
− ln

qλy;y

q0;y

]

is log loss of the class distributions qλy;y on r y, and U∗
y;r, U∗

g;r are conjugates of

potentials shifted according to conditional expectations:

Uy;r(u)=Uy(Er[f | y]−u) , Ug;r(u)=Ug(Er[f | g]−u) .

If we shift the dual to π̃ then it can be interpreted as a regularized log likelihood

problem (similar to the single-class case discussed in Section 2.5.2). Substituting the

box constraints, and setting c = π̃Y, we obtain ℓ1-regularized HME and its dual from

Section 7.1.

In addition to the duality, we can also prove a generalization lemma, similar to

the one derived in Section 3.1. Analogous to single-class maxent, we compare perfor-

mance of HME solutions against the best performance among all Gibbs distributions,

weighted by c(y). Here, we only state a version of Lemma 3.1(ii), but the remaining

parts can be derived similarly.

Lemma 7.3 (HME Generalization Lemma). Let λ̂, η̂ maximize QHME. Then for arbi-

trary λ⋆, η⋆

∑

y∈Y

c(y)Lπy(λ̂y; y)≤
∑

y∈Y

c(y)Lπy(λ⋆

y; y)

+
∑

y∈Y

c(y)
[
2Uy;π̃(Eπ̃[f | y]−Eπ[f | y])

+U∗
y;π̃

(
λ⋆

y −
∑

g:y∈gη
⋆

g

)
+U∗

y;π̃
(
−λ⋆

y +
∑

g:y∈gη
⋆

g

)]

+
∑

g∈G

c(g)
[
2Ug;π̃(Eπ̃[f | g]−Eπ[f | g])+U∗

g;π̃(η⋆

g )+U∗
g;π̃(−η⋆

g )
]

.

Proof. The result follows immediately by Lemma 3.1(ii).

In the next section, we will apply the foregoing general results to ℓ1-regularized

HME.

7.6 ℓ1-Regularized HME

We consider a hierarchical generalization of ℓ1-regularized maxent. Specifically, we

consider fixed class probabilities, p(y) = c(y), and the box potentials representing
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Figure 7.1. The hierarchy of species in the Australian wet tropics dataset. Numbers in
parentheses indicate the number of training records. At the lowest level, we list only the
number of species and report the median number of training records.
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Figure 7.2. The hierarchy of species in the North-east New South Wales dataset. Numbers
in parentheses indicate the number of training records. At the lowest level, we list only the
number of species and report the median number of training records. Note that the children
of plants correspond to overlapping groups. This hierarchy, therefore, cannot be represented
as a tree.

inequality constraints

∣∣Eπ̃[ f j | y]−Ep[ f j | y]
∣∣≤βy for all y ∈Y, j ∈ J (7.39)

∣∣∣Eπ̃[ f j | g]−
∑
y∈g

π̃(y | g)Ep[ f j | y]
∣∣∣≤βg for all g ∈G, j ∈ J. (7.40)

This slightly differs from the version introduced in Section 7.1. For simplicity, we

assume that constraint widths depend only on the group or class, but not on the

feature index j, and we allow class importance c(y) to differ from π̃(y).

HME with class importance can be interpreted as follows: samples (xi, yi) come

from an unknown distribution π, but our goal is to perform well relative to the distri-

bution µ, which weights individual classes according to their importance,

µ(x, y)= c(y)π(x | y) .

Equivalently, µ(y)= c(y) and µ(x | y)=π(x | y).
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Under this interpretation, Eq. (7.39) reflects the assumption µ(x | y)=π(x | y) and

captures the approximation

Eπ̃[ f j | y]≈Eπ[ f j | y]=Eµ[ f j | y] .

Eq. (7.40) expresses the approximation

Eπ[ f j | g]≈
∑
y∈g

π̃(y | g)Eπ[ f j | y]=
∑
y∈g

π̃(y | g)Eµ[ f j | y] .

Notice that the potentials Ug resulting from Eq. (7.40) are not in terms of fea-

ture expectations conditioned on the group membership. In order to derive an HME

formulation, instead of f j we consider

f ′j(x, y)=
π̃(y)
c(y)

f j(x, y) .

The constraints of Eqs. (7.39) and (7.40) can then be rewritten as

∣∣∣∣Eπ̃[ f j | y]− c(y)
π̃(y)

Ep[ f ′j | y]
∣∣∣∣≤βy for all y ∈Y, j ∈ J (7.41)

∣∣∣∣Eπ̃[ f j | g]−
c(g)
π̃(g)

Ep[ f ′j | g]
∣∣∣∣≤βg for all g ∈G, j ∈ J. (7.42)

Applying the duality results of the previous section, we obtain the dual of ℓ1-regular-

ized HME.

Theorem 7.4. Let λ̂ ∈RY×J, η̂∈RG×J optimize

sup
λ∈RY×F

η∈RG×F

{
1
m

m∑

i=1

c(yi)
π̃(yi)

ln qλyi;yi (xi)

−
∑

y∈Y

c(y)βy

∥∥∥∥λy−
∑

g:y∈g

π̃(y | g)
c(y | g)

ηg

∥∥∥∥
1
−

∑

g∈G

c(g)βg‖ηg‖1

}
.

(7.43)

Then p(x, y)= c(y)qλ̂y;y(x) minimizes PHME with the constraints (7.39) and (7.40).

Proof. The result follows by Theorem 7.2, applied to features f ′j and constraints in

Eqs. (7.41) and (7.42), using the dual objective shifted to the empirical distribution.

7.6.1 Performance Guarantees

Performance guarantees for ℓ1-regularized HME can be derived similar to the guar-

antees of Sections 3.2.1 and 3.4. For example, for a finite set of features bounded in

154



[0,1] we can derive an analog of Theorem 3.3. Below, we use my and mg to denote

the number of samples with yi = y and yi ∈ g.

Theorem 7.5. Assume that f j : X×Y → [0,1]. Let δ > 0 and let λ̂ maximize the

regularized likelihood of Eq. (7.43) with βy =β0/
p

my,βg =β0/
p

mg where

β0 =
√

ln(2|Y||J|+2|G||J|)/2 .

Then with probability at least 1−δ, for all λ⋆ ∈RY×J,η⋆ ∈RG×J,

∑

y∈Y

c(y)Lπy(λ̂y; y)≤
∑

y∈Y

c(y)Lπy(λ
⋆

y; y)

+2β0
∑

y∈Y

c(y)
p

my

∥∥∥∥λ
⋆

y −
∑

g:y∈g

π̃(y | g)
c(y | g)

η⋆

g

∥∥∥∥
1
+2β0

∑

g∈G

c(g)
p

mg

∥∥η⋆

g

∥∥
1 .

Proof. Instead of drawing pairs (xi, yi) independently from π, we first draw yi ’s inde-

pendently from π and then draw each xi from πyi . It suffices to show that for any

choice of yi ’s, the statement of the theorem is true with probability at least 1−δ over

the draw of xi ’s. We first consider the constraints on group expectations Eπ̃[ f j | g].

If the yi ’s are fixed then for an arbitrary f j and g, the empirical mean Eπ̃[ f j | g] is

an average of mg independent (but not identically distributed!) random variables

bounded in [0,1]. Expectation of this empirical mean, conditioned on the yi ’s, is

∑
y∈g

π̃(y | g)Eπ[ f j | y] .

Thus, by Hoeffding’s inequality, the probability that the deviation

∣∣∣Eπ̃[ f j | g]−
∑
y∈g

π̃(y | g)Eπ[ f j | y]
∣∣∣

exceeds βg is at most δ/(|Y||J|+ |G||J|). Similarly, the probability that any particular

constraint on the class expectation Eπ̃[ f j | y] is not satisfied is at most δ/(|Y||J|+|G||J|).
Hence, by the union bound, the probability that this will happen for any g ∈ G, j ∈ J

or y ∈Y, j ∈ J is at most δ.

Theorem 7.5 quantifies the benefits of multiple-density estimation. First, notice

that even when a moderately large number of groups is introduced, β0 increases

only slowly. Thus, the performance does not deteriorate compared with an empty

hierarchy, as long as the number of groups grows at most polynomially with the

number of classes. In most applications, the number of groups is much smaller than

the number of classes, so the increase in β0 is relatively small.
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Next, we show how group information improves learning. Consider a simple ex-

ample of estimating distributions of several bird species with an equal number of

occurrences and equal importance, i.e., my = m/|Y| and c(y) = 1/|Y| for all y. Further,

assume that distributions of these birds are similarly influenced by about half the

features, and distinctly influenced by the other half. For example, the birds are influ-

enced in the same way by precipitation and vegetation, but different birds respond

differently to temperature. Denote the first subset of features as shared and the sec-

ond subset of features as distinct. We compare how our generalization guarantees

change if we introduce the group birds.

First, fix parameters λ⋆

y of the optimal Gibbs distributions. Since species depend

similarly on shared, we assume that slices of parameters λ⋆

y,shared corresponding to

shared are roughly equal; denote the shared parameter values as λ⋆

shared. For an

empty hierarchy, the gap between maxent solutions and best Gibbs distributions

weighted by c(y) is

2β0
∑

y∈Y

c(y)
p

my

∥∥λ⋆

y

∥∥
1 =

2β0√
m|Y|

∑

y∈Y

∥∥λ⋆

y

∥∥
1

=
2β0√
m|Y|

∑

y∈Y

∥∥λ⋆

y,distinct

∥∥
1 +2β0

√
|Y|
m

∥∥λ⋆

shared

∥∥
1 . (7.44)

Now, add the group birds, and set η⋆

birds,shared =λ⋆

shared and η⋆

birds,distinct = 0. Accord-

ing to Theorem 7.5, the gap between maxent solutions and best Gibbs distributions

is now

2β′
0

∑

y∈Y

c(y)
p

my

∥∥λ⋆

y −η⋆

birds

∥∥
1+2β′

0
c(birds)
p

mbirds
‖η⋆

birds‖

=
2β′

0√
m|Y|

∑

y∈Y

∥∥λ⋆

y,distinct

∥∥
1 +

2β′
0p

m

∥∥λ⋆

shared

∥∥
1 . (7.45)

First note that the multipliers β′
0 in Eq. (7.45) are slightly larger than β0 in Eq. (7.44),

as the number of groups has increased from zero to one. Apart from that, the first

term of Eq. (7.45), accounting for distinct parameters of the bird species, is identi-

cal to the first term of Eq. (7.44). On the other hand, the second term, accounting

for shared parameters of the bird species, is effectively divided by the square root

of the number of species, taking advantage of the group information. Already for a

moderate number of species, for example, 10 or 20, this decrease may be quite sig-

nificant. Assuming that relevance of distinct is similar to the relevance of shared,

i.e., ‖λy,distinct‖1 ≈ ‖λy,shared‖1, the gap in performance between maxent distributions

and best Gibbs distributions is reduced almost twofold. This means that by using
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the group information, we obtain predictions which would require four times as many

samples in single-class estimation. If shared features are more relevant than distinct

features then the gap shrinks by an even larger amount, resulting in even more sig-

nificant savings. Thus, as intuitively expected, larger amounts of information shared

within groups yield larger savings over single-class maxent. Similarly, larger num-

bers of samples within groups yield larger savings.

We briefly discuss dependence of the guarantee of Theorem 7.5 on the number

of features |J|. Mainly notice that the guarantee grows very moderately with the

number of features. In particular, as long as the number of features grows subexpo-

nentially with the number of training examples, our bound is nontrivial. However,

when using data on species with very few samples, it may be necessary to restrict the

number of features for some species. In the AWT example, this may mean dropping

constraints on quadratic features for species with an insufficient number of records.

Expectations of quadratic features can be still constrained, conditioned on groups

that contain these species, provided that the total number of samples within the

groups is sufficiently large.

In Theorem 7.5, we used Hoeffding’s inequality and the union bound. Using other

techniques, it is possible to prove bounds for potentially infinite feature classes. For

instance, when F is a class of binary features with VC dimension d then Theorem A.4

yields a version of Theorem 7.5. The only change is in setting β0 according to

β0 =

√
32

[
d ln

( em

d

)
+ ln

(
8|Y|+8|G|

δ

)]
. (7.46)

Thus, we obtain guarantees for infinite feature classes, analogous to those of Sec-

tion 3.4.

7.6.2 ℓ1-Regularized HME as MAP with a Hierarchical Prior

So far, we have considered two interpretations of the HME problem. The first inter-

pretation is the maximization of entropy subject to constraints on conditional expec-

tations. The second interpretation is the maximization of regularized log likelihood.

Here, we introduce a third interpretation. We show that when G describes a tree hi-

erarchy, HME can be viewed as maximum a posteriori under a hierarchical Laplace

prior. The HME interpretation is more general since it allows arbitrary groups. In

addition, HME guides the process of choosing hyperparameters and provides insights

into generalization properties.

In this section, we limit our attention to tree hierarchies, such as the AWT hier-

archy in Fig. 7.1. For tree hierarchies, it is natural to set up a hierarchical model, in
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which we associate a vector of Gibbs-distribution parameters λn with each node n.

Let N denote the set of all nodes in the hierarchy, including leaves y corresponding

to our individual classes. A hierarchical Laplace prior, conditioned on y1, . . . , ym, can

be specified as

λroot ∼ e−αroot‖λroot‖1 (7.47)

λn |λparent(n) ∼ e−αn‖λn−λparent(n)‖1 for all n 6= root (7.48)

xi |λyi ∼ qλyi;yi (xi) for all i. (7.49)

This corresponds to the directed graphical model with structure identical to the hi-

erarchy, with a separate random variable λn assigned to each node. The root is

distributed according to Eq. (7.47), the remaining nodes depend on their parents ac-

cording to Eq. (7.48), and observations, described by Eq. (7.49), are attached at the

bottom.

For example, in AWT, the process of drawing samples x1, . . . , xm given y1, . . . , ym

can be described as first drawing the parameter λall species according to its prior, then

choosing λbirds and λplants conditioned on λall species, then drawing λy conditioned on

the respective groups, such as λgolden bowerbird conditioned on λbirds, and finally choos-

ing observations xi in which yi = golden bowerbird, conditioned on λgolden bowerbird.

To derive the equivalence of Eq. (7.43) with a hierarchical Laplace prior, we set

class importance equal to empirical probabilities and multiply the objective by m:

m∑

i=1
ln qλyi;yi(xi)−

∑

y∈Y

(
myβy

∥∥∥λy−
∑

g:y∈g
ηg

∥∥∥
1

)
−

∑

g∈G

(
mgβg

∥∥ηg

∥∥
1

)
. (7.50)

To show that the regularization in Eq. (7.50) corresponds to the hierarchical prior

described above, we identify each inner node n with the set g(n) ⊆ Y containing all

classes y which are descendants of n. We set G = {g(n) : n is an inner node} and es-

tablish the correspondence by setting λn, for each inner node n, equal to the sum of

contributions ηg(n′) over n′ on the path from the root to the node n. The second and

third terms in Eq. (7.50) then become

−
∑

y∈Y

(
myβy

∥∥λy−λparent(y)
∥∥

1

)
−mrootβroot

∥∥λroot
∥∥

1 −
∑

n∈N\Y\{root}

(
mnβn

∥∥λn −λparent(n)
∥∥

1

)

where mn and βn are shorthand for mg(n) and βg(n). The equivalence with the hier-

archical Laplace prior is now obtained by setting αn = mnβn. Thus, similar to the

single-class case, maximizing the regularized log likelihood corresponds to maximiz-

ing the posterior.
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7.7 Experiments

We evaluate HME, specifically ℓ1-regularized HME with fixed class importance, on

synthetic and real data. In both cases, we use SUMMET of Section 4.1. Class impor-

tance in all of our experiments equals empirical probabilities. We use variance-based

regularization parameters similar to the previous chapters

βy, j =β0

√
V′

π̃[ f j | y]/my (7.51)

βg, j =β0

√
V′

π̃[ f j | g]/mg , (7.52)

where β0 is a single tuning parameter and V′
π̃[ f j | y], V′

π̃[ f j | g] are unbiased empirical

estimates of f j ’s variance within a class y or a group g.

7.7.1 Synthetic Data

Experimental Design

We first study a synthetic toy-example which simulates species-distribution model-

ing. We consider a synthetic map consisting of 100 pixels described by two features:

precipitation (prec) and temperature (temp). Values of prec are equally spaced in

[0,1] and values of temp are defined as temp= (2 ·prec−1)2 (we make no claims about

physical plausibility of this model). We study two synthetic species: icebird and

sunbird. Both prefer low precipitation, but they differ in their temperature require-

ments: icebird prefers low temperatures while sunbird prefers high temperatures.

We assume that true distributions of icebird and sunbird are Gibbs distributions

with parameters λicebird = (−5,−2), λsunbird = (−3,1).

We have 100 observations of sunbird and vary the number of observations of

icebird between 3 and 10,000. For each number of occurrences, we estimate the

distribution of icebird using both single-class maxent, and HME with a single group

birds= {icebird,sunbird}. The tuning parameter β0 is set to 0.5.

Results

In Figure 7.3, we present our results. For each HME run, we report values of the

HME parameters of the class icebird and the group birds. For temp, the HME pa-

rameters of icebird agree with its single-class parameters. This matches the intu-

ition behind the bound of Section 7.6.1: the temperature requirements of icebird and

sunbird are different, so pooled estimates provide no advantage; the best setting of

the birds parameter is zero and the best setting of the icebird parameter matches the

single-class case. For prec, the situation is rather different. The parameter ηbirds,prec
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Figure 7.3. Synthetic experiments. The precipitation and temperature parameters of classes
icebird and sunbird, and the group birds, are fitted by HME as the number of occurrences of
icebird increases (the number of occurrences of sunbird is fixed at 100). Performance of the
icebird models is reported in terms of relative entropy to the truth. Both the HME models
and the single-species models of icebird converge to the truth, but HME performs better for
small sample sizes, taking advantage of the group estimate of the precipitation parameter.

shows that birds prefer low precipitation. This information is used with small sample

sizes of icebird: λicebird,prec matches ηbirds,prec. As the number of samples increases,

single-class estimates for icebird become more accurate than group estimates, which

is reflected in the HME parameters. In the top plot of Fig. 7.3, we see that the HME

model performs better than the single-class model. As expected, the improvement is

especially dramatic for small sample sizes. For moderate and large sample sizes, the

HME estimates match single-class estimates exactly.

7.7.2 Real Data

Experimental Design

Next, we demonstrate the performance of HME on a real-world dataset, specifically

on the regions AWT and NSW from the NCEAS dataset (see Section 5.4). To avoid

problems with sample-selection bias, we use only the training (presence-only) portion

of the data. We use a randomly chosen half of species in both AWT and NSW (we

withhold the other half for future experiments) with linear and quadratic features

derived from continuous environmental variables. We take advantage of the previous
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tuning (Section 5.5) and use refined versions of Eqs. (7.51) and (7.52)

βy, j =β′
0βLQ(my)

√
V′

π̃[ f j | y]/my

βg, j =β′
0βLQ(mg)

√
V′

π̃[ f j | g]/mg ,

where βLQ(my) and βLQ(mg) are tuned regularization parameters (see the second

line of Table 5.3) and β′
0 is a single tuning “hypermultiplier.” Note that the region

NSW contains one categorical variable (see Table 5.1). To simplify the evaluation,

this variable is omitted from the experiments.

We evaluate the performance of HME in terms of log likelihood (negative log loss)

and AUC using five-fold cross-validation. The complete hierarchies, with the average

number of training occurrences across all folds, are given in Figs. 7.1 and 7.2.

We run HME with three types of hierarchy for AWT and four types of hierarchy for

NSW. In both regions we consider empty hierarchies, hierarchies of depth one, with

the single group all species, and hierarchies of depth two. In AWT, the hierarchy of

depth two is the complete hierarchy, in NSW, the hierarchy of depth two includes the

groups all species, birds, bats, small reptiles, and plants. In NSW, we also consider a

hierarchy of depth four (the complete hierarchy). Note that this hierarchy contains

overlapping groups, so it cannot be expressed as a tree; however, this is not a problem

for our setup. The hierarchies are referred to as h0, h1, h2, and h4, according to their

depth.

Results

In Figure 7.4, we report results for a range of smoothing parameters β′
0. In each

region, we show the average across all species. In AWT, performance of HME im-

proves, both in terms of log likelihood and AUC, as the hierarchy gets more specific.

The improvement is observed across the majority of species and values of β′
0.3

In NSW, the plots indicate that on average h1 differs very little from the empty

hierarchy h0, whereas hierarchies h2 and h4 perform better, with h2 being the best

according to the AUC plot. However, on the species level, all three non-empty hi-

erarchies lead to improvements.4 We do not analyze the choice of the smoothing

3Specifically, log likelihood is improved by h1 over h0 on 19 out of 20 species, and by h2 over h1
on 15 out of 20 species, across all values of β′

0. Results for AUC are similar. The performance of h1
improves over h0 on 19 out of 20 species, and h2 improves over h1 on 14 out of 20 species.

4Specifically, h1, h2, and h4 improve the log loss compared with h0 on 18, 19, and 17 out of 27
species, respectively, across all values β′

0. The improvements in AUC are observed for 17, 16, and 17
out of 27 species, respectively. If we only consider β′

0 ∈ [0.4,0.6] then log loss improves for 19, 20, and
19 out of 27 species, respectively, and an improvement in AUC on 20, 21, and 19 out of 27 species,
respectively.
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Figure 7.4. Performance of hierarchies with different depth over a range of smoothing param-
eters β′

0. In AWT, the hierarchies h1 and h2 perform consistently better and are more robust
to changes in β′

0 than the empty hierarchy h0; no hierarchy beyond depth two is available. In
NSW, h1, h2, and h4 perform better than h0. The average performance of h1 and h0 appears
similar, but h1 improves the log likelihood of 18 out of 27 species, a significant departure
from random improvements.

parameter β′
0. We assume that in a concrete application, β′

0 is set to a fixed value or

determined by model selection.

The main benefit of HME should be observed on species with small numbers of

samples. In Fig. 7.5, we show how the improvement due to the use of the group

information varies across sample sizes. In AWT, we report results using h2 with

β′
0 = 0.4; in NSW, we report results using h2 with β′

0 = 0.6. In AWT, the improvement

is extremely consistent, and it appears to agree with the difference in relative entropy

that we observed in synthetic experiments (Fig. 7.3). In NSW, we see the same trend

on the vast majority of species. However, the performance seems significantly worse

in one case. It is the species with the smallest number of training occurrences—

four. This poor result may be as much due to the limits of our method as due to the

variance in the evaluation results, since in the case of this species we are performing
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Figure 7.5. Improvement in performance using HME. We report the difference in test log
likelihood between HME and single-class maxent for every species. The depth of the hierar-
chy is two. The improvement is the most dramatic for small sample sizes. The performance
is significantly worse only in one case: a NE New South Wales species with only four training
occurrence records.

five-fold cross-validation with only five samples. Among seven species with ten or

fewer training records, this is the only species whose test performance significantly

drops.
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Chapter 8

Conclusion

In this dissertation, we have provided a unified and complete account of maxent

with generalized regularization. We have proved general performance guarantees

and proposed versions of iterative scaling that incorporate regularization. We have

applied this unified analysis to problems of small-sample estimation, biased estima-

tion, and multiple estimation, and extensively evaluated maxent in an application to

species-distribution modeling.

In Chapter 3, we have carried out analysis of several regularization types and pre-

sented scenarios in which these regularizations may be useful. Theoretical analysis

in Chapters 6 and 7 (biased estimation and multiple estimation) focused on methods

derived from ℓ1-regularized maxent, but it should be straightforward to generalize

to convex regularizations using techniques of Chapter 3. For instance, considering

HME with ℓ2
2 regularization would yield analysis of maxent with a hierarchical Gaus-

sian prior. Techniques presented in this dissertation apply to arbitrary log-concave

priors, including many widely used ones, such as those in the exponential family. The

maximum entropy interpretation enhances our understanding of their generalization

properties.

In our experiments (Chapters 5–7), we saw that ℓ1 regularization facilitated

learning in many-dimensional spaces, and its principled extensions to biased esti-

mation and multiple estimation lead to additional improvements. Further empirical

study is needed to verify whether the theory derived for other regularization types

corresponds to their performance. Note that the quality of regularization can be

assessed from two different perspectives: performance over test data and running

time. The tradeoff between statistical guarantees and computational efficiency is

an interesting question open for future research. In particular, convergence rates of

algorithms presented in this dissertation are not known.

We have explored one direction of generalizing maxent: replacing equality con-

straints by an arbitrary convex potential in the primal or, equivalently, adding a
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convex regularization term to the maximum likelihood estimation in the dual. An

alternative line of generalizations arises by replacing relative entropy in the primal

objective by an arbitrary Bregman or Csiszár divergence along the lines of Altun

and Smola (2006), and Collins, Schapire, and Singer (2002). Modified duality results

and modified algorithms apply in the new setting, but performance guarantees do

not directly translate to the case when divergences are derived from samples. Diver-

gences of this kind are used in many cases of interest such as logistic regression (a

conditional version of maxent) and boosting. Generalizing the presented approach to

these settings would increase our understanding of regularization and could poten-

tially lead to new algorithms for classification and regression.

We have demonstrated the utility of generalized maxent in a novel application

to species distribution modeling. We believe it is a scientifically important area that

deserves the attention of the machine learning community while presenting some

interesting challenges. Even though maxent fits the problem of species distribution

modeling cleanly and effectively, there are many other techniques that could be used

such as Markov random fields or mixture models. We leave the question of alterna-

tive machine learning approaches to species distribution modeling open for future

research.
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Appendix A

Empirical Error Inequalities

In this appendix, we list the empirical error inequalities used throughout this disser-

tation. All of the results are adapted from Devroye et al. (1996).

Theorem A.1 (Hoeffding’s inequality, Theorem 8.1 of Devroye et al., 1996; first in

Hoeffding, 1963). Let X1, . . . , Xm be independent random variables such that X i ∈
[0,1] with probability one. Denote their average by X̃m =

(∑m
i=1 X i

)
/m. Then, for any

ε> 0,

P
(
X̃m −E[X̃m]≥ ε

)
≤ e−2ε2m and P

(
X̃m −E[X̃m]≤−ε

)
≤ e−2ε2m .

Theorem A.2 (Bernstein’s inequality, Theorem 8.2 of Devroye et al., 1996; first in

Bernstein, 1946). Let X1, . . . , Xm be independent real-valued random variables with

zero mean such that X i ≤ 1 with probability one. Denote their average by X̃m =(∑m
i=1 X i

)
/m, and the average variance by σ2 =

(∑m
i=1 V[X i]

)
/m. Then, for any ε> 0,

P
(
X̃m > ε

)
≤ exp

(
− mε2

2σ2 +2ε/3

)
.

Theorem A.3 (McDiarmid’s inequality, Theorem 9.2 of Devroye et al., 1996; first in

McDiarmid, 1989). Let X1, . . . , Xm be independent random variables taking values in

a set A and assume that s : Am →R satisfies

sup
x1,...,xm,x′i∈A

∣∣s(x1, . . . , xm)− s(x1, . . . , xi−1, x′i, xi+1, . . . , xm)
∣∣≤ ci , 1≤ i ≤ m .

Then, for any ε> 0,

P
{
s(X1, . . . , Xm)−E[s(X1, . . . , Xm)]≥ ε

}
≤ e−2ε2

/∑m
i=1 c2

i

and P
{
E[s(X1, . . . , Xm)]− s(X1, . . . , Xm)≥ ε

}
≤ e−2ε2

/∑m
i=1 c2

i .
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The next two theorems bound deviations of empirical frequencies from true prob-

abilities; specifically, deviations between the following two measures derived from

independent random variables X1, . . . , Xm:

π̃(A)= 1
m

m∑

i=1
1(X i ∈ A) (A.1)

π(A) =E[π̃(A)]= 1
m

m∑

i=1
P(X i ∈ A) . (A.2)

Measure π̃ corresponds to the average empirical distribution, whereas π corresponds

to the average distribution. The first measure is a random quantity, the second is its

expectation.

Theorem A.4. Let X1, . . . , Xm be independent random variables and A a class of sets.

Then, for any ε> 0,

P

(
sup
A∈A

|π̃(A)−π(A)| > ε

)
≤ 8s(A, m)e−mε2/32

where π̃ and π are defined in Eqs. (A.1) and (A.2), and s is the growth function (see

Section 3.4.1).

Theorem A.4 is a version of Theorem 12.5 of Devroye et al. (1996) (first in Vapnik

and Chervonenkis, 1971), restated for independent, but not necessarily identically

distributed random variables. The original theorem assumes that the random vari-

ables are identically distributed and independent, but its proof remains valid when

the identical-distribution requirement is omitted.

Theorem A.5 (Theorem 12.8 of Devroye et al., 1996; first in Devroye, 1982). Let

X1, . . . , Xm be independent identically distributed random variables and A a class of

sets. Then, for any ε> 0,

P

(
sup
A∈A

|π̃(A)−π(A)| > ε

)
≤ 4e8s(A, m2)e−2mε2

where π̃ and π are defined in Eqs. (A.1) and (A.2), and s is the growth function (see

Section 3.4.1).

Theorem A.5 improves the multiplicative constant in the exponent of Theorem A.4

at the cost of increasing the coefficient in front of the exponential and imposing

an additional requirement that the random variables X1, . . . , Xm be identically dis-

tributed.
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at http://stacks.iop.org/IP/19/S165.

Teh, Y. W., M. I. Jordan, M. J. Beal, and D. M. Blei (2005). Sharing clusters among

related groups: Hierarchical Dirichlet processes. In Advances in Neural Informa-

tion Processing Systems 17: Proceedings of the 2004 Conference, Cambridge, MA.

MIT Press.

Tibshirani, R. (1996). Regression shrikage and selection via the lasso. Journal of the

Royal Statistical Society (Series B) 58(1), 267–288.

Tikhonov, A. N. (1963a). Regularization of incorrectly posed problems. Soviet Math.

Dokl. 4, 1624–1627. Translated from Dokl. Akad. Nauk SSSR, 153(1), 49–52,

1963. Cited in Encyclopaedia of Mathematics (Hazewinkel, 1987), s.v. “ill-posed

problems”.

177

http://www.mbr-pwrc.usgs.gov/bbs/bbs.html
http://www.mbr-pwrc.usgs.gov/bbs/bbs.html
http://www.mbr-pwrc.usgs.gov/bbs/bbs.html
http://www.mbr-pwrc.usgs.gov/bbs/bbs.html
http://stacks.iop.org/IP/19/S165
http://stacks.iop.org/IP/19/S165
http://stacks.iop.org/IP/19/S165
http://stacks.iop.org/IP/19/S165
http://stacks.iop.org/IP/19/S165


Tikhonov, A. N. (1963b). Solution of incorrectly formulated problems and the regu-

larization method. Soviet Math. Dokl. 4, 1035–1038. Translated from Dokl. Akad.

Nauk SSSR, 151(3), 501–504, 1963. Cited in Vapnik (1999), pp. 9 and 235; and

Encyclopaedia of Mathematics (Hazewinkel, 1987), s.v. “ill-posed problems”.

Topsøe, F. (1979). Information theoretical optimization techniques. Kybernetika 15(1),

8–27.

Uffink, J. (2004, Winter). Boltzmann’s work in statistical physics. In E. N. Zalta

(Ed.), The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/

win2004/entries/statphys-Boltzmann/.

USGS (2001). HYDRO 1k, elevation derivative database. http://edcdaac.usgs.gov/

gtopo30/hydro/. United States Geological Survey, Sioux Falls, South Dakota.

Van Campenhout, J. M. and T. M. Cover (1981). Maximum entropy and conditional

probability. IEEE Transactions on Information Theory IT-27, 483–489.

van de Geer, S. A. (2006, June). High-dimensional generalized linear models and the

lasso. Technical Report 133, ETH Seminar für Statistik.

Vapnik, V. N. (1999). The Nature of Statistical Learning Theory (second ed.). New

York: Springer-Verlag.

Vapnik, V. N. and A. Ya. Chervonenkis (1968). On the uniform convergence of relative

frequencies of events to their probabilities. Dokl. Akad. Nauk SSSR 181(4). In

Russian.

Vapnik, V. N. and A. Ya. Chervonenkis (1971). On the uniform convergence of rel-

ative frequencies of events to their probabilities. Theory of Probability and its

Applications 16(2), 264–280.

Vapnik, V. N. and A. Ya. Chervonenkis (1974). Theory of Pattern Recognition. Moscow:

Nauka. In Russian.

Vitali, G. (1908). Sui gruppi di punti e sulle funzioni di variabili reali. Atti Accad.

Sci. Torino 43, 75–92. Cited in Encyclopaedia of Mathematics (Hazewinkel, 1987),

s.v. “Vitali variation”.

Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM.

Welk, E., K. Schubert, and M. H. Hoffmann (2002). Present and potential distri-

bution of invasive mustard (Alliara petiolata) in North America. Diversity and

Distributions 8, 219–233.

178

http://plato.stanford.edu/archives/win2004/entries/statphys-Boltzmann/
http://plato.stanford.edu/archives/win2004/entries/statphys-Boltzmann/
http://plato.stanford.edu/archives/win2004/entries/statphys-Boltzmann/
http://plato.stanford.edu/archives/win2004/entries/statphys-Boltzmann/
http://plato.stanford.edu/archives/win2004/entries/statphys-Boltzmann/
http://plato.stanford.edu/archives/win2004/entries/statphys-Boltzmann/
http://edcdaac.usgs.gov/gtopo30/hydro/
http://edcdaac.usgs.gov/gtopo30/hydro/
http://edcdaac.usgs.gov/gtopo30/hydro/
http://edcdaac.usgs.gov/gtopo30/hydro/


Welling, M., R. S. Zemel, and G. E. Hinton (2003). Self supervised boosting. In

Advances in Neural Information Processing Systems 15: Proceedings of the 2002

Conference, pp. 665–672. Cambridge, MA: MIT Press.

Wiley, E. O., K. M. McNyset, A. T. Peterson, C. R. Robins, and A. M. Stewart (2003).

Niche modeling and geographic range predictions in the marine environment using

a machine-learning algorithm. Oceanography 16(3), 120–127.

Williams, P. M. (1995). Bayesian regularization and pruning using a Laplace prior.

Neural Computation 7(1), 117–143.

Yuan, M. and Y. Lin (2006). Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society (Series B) 68(1), 49–

67.

Zadrozny, B. (2004). Learning and evaluating classifiers under sample selection bias.

In Proceedings of the Twenty-first International Conference on Machine Learning,

pp. 903–910. New York: ACM Press. Also available at http://doi.acm.org/10.1145/

1015330.1015425.

Zadrozny, B., J. Langford, and N. Abe (2003). Cost-sensitive learning by cost-

proportionate example weighting. In Proceedings of the Third IEEE International

Conference on Data Mining, pp. 435–442.

Zaniewski, A. E., A. Lehmann, and J. M. Overton (2002). Predicting species spatial

distributions using presence-only data: A case study of native New Zealand ferns.

Ecological Modelling 157, 261–280.

Zhang, T. (2005). Class-size independent generalization analysis of some discrimina-

tive multi-category classification. In Advances in Neural Information Processing

Systems 17: Proceedings of the 2004 Conference, Cambridge, MA, pp. 1625–1632.

MIT Press.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society (Series B) 67, 301–320.

179

http://doi.acm.org/10.1145/1015330.1015425
http://doi.acm.org/10.1145/1015330.1015425
http://doi.acm.org/10.1145/1015330.1015425
http://doi.acm.org/10.1145/1015330.1015425

	Title
	Abstract
	Acknowledgements
	Contents
	Introduction
	Overview of the Maximum-Entropy Principle
	Maximum Entropy in Statistical Mechanics
	Jaynes-Kullback Principle of Maximum Entropy
	Large-deviation Theory
	Axiomatic Approaches
	Game-theoretic Perspective
	Maximum Entropy versus Maximum Likelihood
	Constraints and Overfitting in Maximum Entropy

	Outline and Contributions

	Maximum Entropy and Convex Duality
	Basic Maximum Entropy
	Feature Types and Exponential Families
	Linear, Quadratic, and Product Features
	Categorical Indicator Features
	Threshold Features
	Hinge Features and Splines
	Regression Trees and Multivariate Splines

	Overfitting and Smoothing
	Feature Selection and Constraint Exclusion
	Discounting
	Regularization
	Introduction of a Prior
	Constraint Relaxation

	Convex Analysis Background
	Generalized Maximum Entropy
	Shifting
	Generalized Dual as Minimization of a Regularized Log Loss
	Maxent Duality


	Statistical Guarantees
	Generalization Lemma
	Indicator Potentials
	Maxent with L1 Regularization
	Maxent with Polyhedral Regularization
	Maxent with L2 Regularization

	Smooth Potentials
	Maxent with Smoothed L1 Regularization
	Maxent with L2^2 Regularization
	Maxent with L1+L2^2 Regularization

	Infinite Feature Classes
	VC bounds
	L1 Regularization of Threshold Features
	L1 Regularization of Decision Paths
	Infinite Classes of Real-valued Features


	Algorithms
	Selective-update Algorithm
	Solving L1-Regularized Maxent
	Reductions from Non-decomposable Potentials
	Convergence

	Parallel-update Algorithm
	Ensuring Finite Updates
	Non-degeneracy in SUMMET
	Non-degeneracy in PLUMMET


	Modeling Distributions of Species
	Maxent Implementation
	Performance Measures
	Preliminary Experiments
	Data and Experimental Design
	Results

	The NCEAS Data
	Tuning Maxent on the NCEAS Training Data
	Data
	Tuning Regularization Parameters (Reg)
	Combining Continuous and Categorical Variables (Cat)
	Using Discrete Ordinal Variables (Ord)
	Choosing Optimal Feature Sets (Opt)
	Results

	The NCEAS Comparison
	Evaluating the Maxent Tuning
	Experimental Design
	Results


	Biased Density Estimation
	Setup for Biased Density Estimation
	Approach I: Debiasing Averages
	Solving Maxent with the Polyhedral Potential I_C

	Approach II: Factoring Bias Out
	Using the Empirical Sampling Distribution

	Synthetic Experiments
	Real-data Experiments
	Evaluation of the Bias Removal Approaches
	The NCEAS Comparison Incorporating the Bias Removal
	Evaluating the Maxent Tuning

	Discussion

	Multiple-density Estimation
	Hierarchical Maximum Entropy Setup
	HME with General Regularization
	Reduction to Generalized Maxent
	Polyhedral HME
	Polyhedral HME with Fixed Class Probabilities
	L1-Regularized HME
	Performance Guarantees
	L1-Regularized HME as MAP with a Hierarchical Prior

	Experiments
	Synthetic Data
	Real Data


	Conclusion
	Empirical Error Inequalities
	Bibliography

