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Abstract

A key problem in biology is understanding the work of proteins. While protein se-

quences have been mostly determined for many organisms, the functions of these

proteins and how they work together to accomplish them are much less understood.

An important source of information for addressing these questions is protein interac-

tion data. Protein interactions, which, taken together, can be represented as networks

or graphs, have been determined on a large scale for several organisms. In this work,

we study the relationship between protein function and interaction network topol-

ogy, focusing on protein-protein physical interaction networks. We address both the

task of assigning function to individual proteins and the more global question of the

organizational principles underlying these networks.

In the first part of this thesis, we explore the use of physical interaction networks

for predicting protein function. We begin by discussing which topological proper-

ties of interaction networks should be taken into account by network-based function

prediction algorithms, using as illustrations some earlier approaches to this problem.

Then, using these desiderata as guidelines, we introduce an original network-flow

based algorithm for predicting protein function. This algorithm, FunctionalFlow,

takes advantage of both network topology and some measure of locality, and, as a

result, has improved performance over previous methods. Finally, we show that per-

formance can be improved substantially as we consider multiple data sources and

introduce edge weights to reflect data reliability.

In the second part of this thesis, we take a different view at the topology-function

relationship and use known information about protein molecular function to attempt

to uncover the organizational principles of physical interaction networks. We exam-

ine the networks from the perspective of “pathway schemas,” or recurring patterns

of interaction among different types of proteins. Proteins in these schemas tend
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to act as functional units within diverse biological processes. We discuss compu-

tational methods for automatically uncovering statistically overrepresented schemas

in protein-protein interaction maps and touch upon the comparative-interactomics

aspects of this problem. Coming back to the task of improving our understanding

of protein function, we conclude by demonstrating how overrepresented schemas can

suggest new insights into the biological function of proteins.
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Chapter 1

Introduction

This thesis is largely concerned with proteins, the workhorse molecules of living organ-

isms. Genome sequencing efforts have made available protein (as well as non-coding)

sequences for a large number of organisms, yet in many cases not much more is known.

Broadly speaking, in this thesis we address two questions concerning proteins that are

fundamental to our understanding of biology: what do proteins do and how do they

work together to do it. We attempt to answer these questions via analysis of high-

throughput experimental data sets, and in particular, large-scale protein interaction

data.

High-throughput biology provides a radically new look at proteins within their

cellular context. Using a modern analogy, the high-throughput view can be likened

to taking satellite images, whereas traditional experiments on individual proteins play

the role of street-level photographs of individual houses or city blocks. The genome-

wide view can bring to light a protein that has not yet come into the sight of a

traditional experiment, like the obscure house behind a tall fence on the outskirts of

a city which the photographer never got to. High-throughput data makes it possible

to ask questions about such uncharacterized proteins—which may have been difficult
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to trace experimentally or which simply belong to pathways or organisms that have

not been sufficiently studied. Additionally, and more importantly, analysis of high-

throughput data can begin to reveal answers to these questions and can provide a

glimpse at what these proteins do and how they do it. In addition, the relatively

unbiased nature of proteome-wide experiments and the sheer scale of the resulting

data make it possible to ask questions about the organizational principles that govern

life; these types of questions would be difficult or impossible to ask with traditional

pathway-oriented data. As a result, it is now feasible to try to uncover the modularity

of cellular organization, the interplay between different pathways, or other organizing

principles of protein networks—just as a satellite image of a city makes it possible to

see its layout and organization.1

At the same time, the advent of high-throughput technology has changed the

relationship between data and knowledge in biology. Whereas traditional experiments

usually concern particular pathways or molecules in an organism and are intended

to answer a certain question or evaluate a particular hypothesis, high-throughput

biology often produces data which are yet to be placed within biological context.

The large scale of high-throughput data requires considerable computational efforts

to elucidate it. In this work, we focus on one family of genome-wide data sets: protein

interactions.

1.1 Introduction to protein interaction networks

“Protein interaction” is a fairly broad term that is used to refer to a wide range of

relationships between proteins. Protein interactions can describe concrete relation-

1Perhaps a comparison to satellite images is too optimistic at this point. As we discuss later,
due to experimental noise, it is more accurate to draw the analogy with first-generation aerial
photographs, shot in poor lighting with a weak lens.
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ships, such as physical interactions between proteins or between proteins and other

molecules, or regulatory relationships, where one protein regulates the transcription

of the gene coding for the other protein, or phosphorylation relationships, where one

protein phosphorylates the other. Other types of interactions describe more abstract

relationships between proteins, such as “genetic” interactions which describe the re-

lationship between two genes with respect to the well-being of the organism (e.g.,

synthetic lethality), or coexpression interactions, in which two proteins are said to be

interacting if they have similar expression patterns (under some set of conditions).

Finally, protein interactions may represent functional associations; here two proteins

are said to interact if they take part in the same biological process in the cell.

Protein interactions can be naturally represented as a graph, or a protein interac-

tion network, in which vertices correspond to proteins and edges connect interacting

proteins. If the underlying interactions are intrepreted as being symmetric, as is

the case of protein physical interactions or coexpression interactions, the graph is

undirected. If there is a clear directionality to the interactions, as in the case of reg-

ulatory or phosphorylation interactions, the graph is directed. Hybrid networks can

be built by combining different interaction networks. Together with metabolic net-

works, which include metabolites in addition to proteins, the combination of various

protein networks, many of which can be determined on a genomic scale, is a pow-

erful source of information about the workings of cells. Analysis of these networks

can provide hints to the organization of the cell, can help elucidate protein function

and can provide an understanding of the interplay between proteins. After all, pro-

teins do not perform their cellular roles in isolation, but do so in collaboration with

other proteins. Here, we focus on physical protein-protein interaction data, although

many of our techniques can be readily extended to other types of binary experimental

interactions.
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1.2 Our focus: Topology and function in physical

interaction networks

In this thesis, we analyze aspects of the relationship between protein interactions and

protein function. Before we proceed, therefore, we need to discuss what we mean by

protein function.

The word “function” in relation to proteins has a fairly broad meaning. Usually,

one considers two views of protein function. Following the terminology of the Gene

Ontology [2], we will call them molecular function, which describes the biochemical

activity of a protein, and biological process, which specifies a more abstract notion of

the role the protein plays in the cell or the pathway in which it participates. These

views of protein function are largely orthogonal: proteins with the same molecular

function can take part in different pathways, and a pathway is built of proteins of

various molecular functions. From the perspective of function prediction, molecular

functions, which correspond to the intrinsic features of the protein, are often predicted

based on sequence or structural similarity to proteins of known function, whereas

biological processes, being fundamentally collaborative, are often predicted based on a

protein’s functional interaction partners (e.g., the protein it interacts with physically).

In this thesis, we will look at both views of protein function.

Not surprisingly, these roughly orthogonal aspects of protein function obey differ-

ent general principles with respect to protein interaction: interacting proteins tend

to participate in the same biological process, whereas the life of the cell relies on

the interaction of proteins that often have different molecular function. In the first

part of this thesis, we focus on the biological processes in which proteins participate,

and develop algorithms for analyzing protein physical interaction graphs in order to

predict protein function. We exploit and extend the principle of guilt by association,
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which is the basis of most of the work of this kind. This portion of our work helps

elucidate how network topology should be used in making predictions about the bio-

logical processes of proteins. In the second part of the thesis, we look at the molecular

features of proteins, and focus specifically on the interaction between proteins that

may have different molecular features. We introduce algorithms for automatically in-

ferring what types of proteins or groups of proteins tend to interact with each other,

and in what topology, in order to accomplish diverse biological processes. Whereas

the first part of the thesis uses protein interaction graphs to predict biological pro-

cesses of individual proteins, the second part of the thesis attempts to uncover how

the cell is organized with respect to the molecular function of proteins. The first

part of the thesis uses network topology to predict biological process function and

the second part of the thesis uncovers over-represented topologies between proteins

of particular molecular function.

1.3 Determination of protein interactions

Protein interactions can be roughly divided into those that are determined experi-

mentally and those that are created computationally. In the former case, the results

of an experiment can be quite naturally interpreted as interactions between pairs of

proteins. In this case, the bulk of the work in determining the protein interactions

is done by the experimentalist. Physical [41], [107], genetic (e.g., synthetic lethal-

ity [103]), regulatory [79], and phosphorylation [43] interactions are among members

of this category.

Since this thesis is largely focused on protein-protein physical interactions, we

briefly describe the high-throughput technologies used to determine them. Exper-

imental techniques for determining physical protein-protein interactions have been
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dominated by the yeast two-hybrid method and complex pull-down methods. In the

yeast two-hybrid, one protein is fused to an activator domain of a transcription factor

for a yeast reporter gene, and the other protein is fused to its DNA-binding domain;

the expression of the reporter is evidence of interaction [9]. In the pull-down meth-

ods, a bait protein is used to identify other proteins (preys) that are co-complexed

with it [36, 80]. A variant of the two-hybrid method which uses a split ubiquitin

insted of the transcription factor [47] has been used more recently on a large scale

to probe membrane protein interactions missed by the two-hybrid method [64]. As a

result, interactions covering a large portion of the interactomes of several organisms,

including yeast, fruit fly, worm C. elegans, and human have been compiled [97].

On the other hand, computational interactions, as the name suggests, are deter-

mined by a computational biologist, perhaps based on other kinds of experimental

data. Thus, relationship of coexpression is established on the basis of numerical data

about levels of gene expression under various conditions and/or over a period of time.

The usual approach to converting this numerical data into binary interactions is to

measure the similarity between the expression profiles of all pairs of proteins and

to consider as coexpressed (i.e., interacting) those pairs for which the coexpression

measure is sufficiently high. It is up to the computational biologist to decide on the

measure of similarity (e.g., Pearson correlation coefficient [22], mutual information [3],

or others), on the ways of combining the expression profiles over different experiments

or time series (several of which are discussed in [38]), and on other aspects of the task,

such as the desired semantics of interaction (discussed below). Other types of compu-

tational interactions have been determined via coevolution [73], conservation of gene

order [13], gene fusion events [23], and the tendency of proteins to co-occur in scien-

tific literature [45]. An area of active and fruitful research is establishing functional

interactions by computational integration of data of different types, which usually
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include both experimental and basic computational interactions [54, 105, 114].

Of course, the distinction between experimental and computational interactions is

somewhat blurred, since even experimental interactions require some computational

processing—in the very least, a decision on where to draw the cutoff in the strength of

the experimental evidence for interaction, such as the binding affinity of a transcrip-

tion factor for its binding site. In addition, computational effort is used to consruct

experimental interaction networks in a way that deals with experimental noise, which

will be discussed shortly.

Finally, there are efforts to use computational techniques to predict experimental

interactions. These include, for example predicting physical protein-protein interac-

tions using sequence features including domains [31], sometimes focusing on particular

types of interactions (e.g., coiled-coil interactions [25]), or other types of evidence such

as gene fusion in other organisms or the existence of orthologs interacting in another

genome (see [91] for a review). These studies are meant to augment the corre-

sponding experimental efforts; ideally, computationally predicted interactions can be

treated in the same way as experimental ones.

1.4 Challenges of interaction network analysis

There are certain challenges that one faces when studying protein interaction net-

works; most of them have to do with features or weaknesses of experimental tech-

niques used for determining the interactions. These include dealing with experimental

noise and incompleteness, understanding the dynamics of the interactions, and inter-

preting the “meaning” of a type of interaction data (i.e., its semantics). We focus our

discussion primarily on physical protein-protein interaction data in this section.
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1.4.1 Quality of experimental data

High-throughput experiments tend to be both noisy and incomplete, especially since

many of them involve new (at the time of the experiment) technology. For example,

it has been estimated that at least half the interactions reported by the early high-

throughput two-hybrid screens in yeast are spurious [110].

One way to deal with noise in physical interaction data is to assign edge weights

that reflect the reliability of the data underlying the interaction. Usually, a different

type of data is used to measure the reliability of the interaction; for example, ex-

pression has been used to evaluate physical protein interaction data [16], and, in our

work on function prediction in Chapter 2, we use biological process information for

the same purpose. In addition, it is common practice in physical interaction network

analysis, which we follow, to exclude proteins that have a large number of interaction

partners, as they may be “promiscuously” interacting in the experiment.

Besides being noisy, physical interaction maps are incomplete. Determination of

interaction partners for all proteins in an organism have not always been attempted.

Moreover, the experiments are also believed to have high false-negative rates, even

for interactions that are detectable by the experimental technique. For example, the

overlap between two early high-throughput screens using the yeast two-hybrid tech-

nology [41, 107] is only 16.8%-20.4% of the two experiments’ core data [41], which

should be attributed both to false positives and false negatives in the results of

these experiments. Moreover, certain types of interactions may be missed because

of the nature of the experimental techniques. Interactions that are conditioned on

post-translational modification, for example, are likely to be severely underestimated.

Similarly, certain types of proteins, such as those that are integral to the membrane

pose particular challenge to interaction assays. Of course, the development of new

experimental techniques, the improvement of existing ones, and the execution of new
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experiments should lead to improvement both in the coverage of interaction data and

in its accuracy (if one, for example, chooses to ignore the earlier less reliable data

sets). For example, a large-scale screen specifically designed to capture the interac-

tions between membrane proteins has been performed in yeast [64].

While noise in physical interaction data is certainly an issue, the methods we

develop in this thesis are performed on the “global” scale. Such analysis alleviates

some of the data quality problems, since it does not rely on any single interaction.

For example, when global interaction data is used, the flow of information (e.g.,

“functional flow” of Chapter 2) may circumvent the missing edge(s). Similarly, we

judge the significance of recurring interaction patterns (in Chapter 3) via comparison

to randomized networks; this should reduce the effect of false interactions, since they

would be indistinguishable from “random.”

1.4.2 Dynamics of interaction networks

One salient feature (that may also be known as a bug) of many protein interaction

networks in their present state is that they give a static view of the interactome—in

other words, our “aerial photograph” is taken with a very long exposure. Experiments

for determining protein interactions may take place outside of the cell which is being

studied and under conditions that may not reflect the conditions in the cell when

the interaction takes place. Yeast two-hybrid experiments for determining physical

interactions are an important example. The outcome of such experiments is thus

information that an interaction may take place, but not the conditions under which

it takes place—not to mention, in the case of multicellular organisms, the type of

cell in which it would occur. Conversely, many interactions may be missed because

the experimental conditions under which they are assayed are different from what

is required for the proteins to interact. In contrast, gene expression is usually
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studied in a condition-specific manner; however, it is a task for the computational

biologist constructing coexpression interactions to make sure that the condition of

the experiment is reflected in the coexpression interactions.

In response to this weakness in physical interaction datasets, there have been sev-

eral recent computational studies that endeavored to incorporate information about

interaction dynamics into the study of interaction networks. Among them are stud-

ies that looked at physical interactions in condition-dependent manner, using gene

expression [33] to get a glimpse at interaction dynamics or GO biological process

annotations [77] for “biological context” in which the interactions may take place.

Such analysis has revealed, for example, that proteins that appear as hubs (highly

connected proteins) in the static interaction network, can be split into those that

interact with all their neighbors simultaneously and those that bind their partners

at different times or in different locations [33]. Other studies have looked at the dy-

namics of complex formation [14] and of regulatory networks [58], once again, using

expression data for information of when proteins may be active.

So far, the analysis of network dynamics has largely focused on topological prop-

erties of networks under different conditions. As this approach to network analysis

matures, dynamical views should become prominent in other types study of interac-

tion networks.

In this thesis, we largely view protein interaction networks as a static picture.

However, some of our work in network analysis reveals patterns that are likely to be

indicative of protein pathway dynamics (Chapter 3). Deciphering such patterns is an

intriguing topic for follow-up research.

10



1.4.3 Semantics

Another issue with interaction networks that needs awareness is the semantic interpre-

tation of interactions. The meaning of interactions is perhaps of particular concern for

researchers who construct computational interactions. Since these researchers have a

degree of control over defining what constitutes an interaction, they may try to define

interactions in a way that suits their purpose. For example, much research on protein

interaction network analysis concerns using interaction information beyond a pro-

tein’s immediate interaction partners to predict protein function (in the first part of

this thesis, we address this question in the context of physical interaction networks).

However, an alternative approach to this problem might be to design a network of

computational interactions in which relevant functional information is nearly guar-

anteed to be contained in the interaction partners of a protein; in such networks,

long-range relationships would be “short-circuited.” Alternatively, one may be faced

with the opposite task of constructing a sparser computational interaction network

which contains only direct interactions. An example of such task is constructing in-

teraction networks based on coexpression data. Similarity of expression profiles of

two proteins, A and C, may indicate both direct relationship between them or an

indirect relationship that is mediated by a third protein B (or group of proteins).

To address this effect, [3] have used a heuristic approach to construct networks of

expression-based interactions that are likely to be direct.

Although physical interaction data is more readily interpretable, the semantics of

the physical interactions is not always obvious, as different experimental techniques

give different views of interaction. Two-hybrid techniques, for example, detect pairs

of proteins that are likely to be directly interacting, whereas pull-down experiments

reveal instead complex co-membership with the bait protein. The actual topology of

interactions between the bait and the prey proteins and especially among the prey
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proteins is not immediate from the pull-down data. Usually, interactions found in

pull-down experiments are represented according to either the “spoke” model in which

a bait protein are connected to every prey protein or the “matrix” model in which

interactions are assumed between all pairs of proteins that participate in a pull-down.

There have been computational studies meant to shed light on the interpretation of

pull-down, such as a method to to determine complex co-membership based on two-

hybrid and pull-down data [86]. Even if an interaction is believed to be direct, it

can have different interpretations: some types of physical interactions play structural

roles, some form complexes that perform various functions, and some are involved in

transmitting information through the cell. Furthermore, interactions may be more-

or-less permanent (e.g., between members of stable complexes), or transient, as is

often the case between signaling molecules.

Understanding of the semantics of protein interactions is important for design

and application of computational methods for network analysis. For example, the

network-based function prediction algorithm we develop in Chapter 2, Function-

alFlow, was designed for physical protein-protein interaction networks, with the

awareness of two properties of these networks: first, that each interaction is infor-

mative by itself and cannot be derived from other interactions, and that the network

may contain highly connected subgraphs which correspond to protein complexes.

The assumption that each interaction is a non-reducible piece of evidence for asso-

ciation between proteins, leads to insights about the features of network structure

that should be taken into account in design of network-based function-prediction al-

gorithms (Section 2.2). At the same time, FunctionalFlow can be readily applied to

other networks of undirected binary experimental interactions; we demonstrate that

including information about genetic interactions improves predictive performance.

For the same reason, FunctionalFlow would not perform well on computational net-
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works with “transitive closure” of interactions, such as a coexpression network in

which proteins need only to have sufficiently similar expression profiles to be consid-

ered interacting. However, if the same network is filtered to focus on direct interctions

using the approach of [3], then the inclusion of the filtered network improves the pre-

dictive performance.

FunctionalFlow’s accomodation of protein complexes in the networks permits us

not to dwell on the interpretation of pull-down data; however, we give more attention

to this problem in the research presented in in Chapter 3, where we look for overrep-

resented patterns of interaction. Indirect interactions that may arise from complex

comembership would only obscure our findings; therefore, we specifically filtered the

interaction data to include only interactions that are likely to be direct.

1.5 Our contributions

Protein interaction networks offer hope of understanding the workings of a living

organism, the organization of pathways and the interplay between them. In this thesis,

we study “what do proteins do and how do they interact to do it”. More specifically,

we study the interplay between protein function and topology, first focusing on the

use of network topology for protein biological process prediction, and then looking

at the organizational principles of interaction networks while taking into the account

biological features of the proteins.

We begin in Chapter 2 by looking at the problem of biological process prediction

based on physical interaction data. Since the function of many proteins is unknown

or known poorly, understanding protein function is an important challenge of mod-

ern biology. In this task, some of the proteins have known functional annotations,

whereas others do not and need to be assigned biological process information. Many
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methods have been devised to address this problem, and the majority of them are

based on the principle of guilt by association, which predicts that interacting pro-

teins tend to participate in the same process. The simplest approach to this problem

involves assigning to a protein the process in which the majority of its interaction

partners participate [87]. However, it may be desirable to use more global informa-

tion about the interaction network, such as larger neighborhoods around the protein

in question, either because the immediate neighbors are poorly or not at all annotated

(this is especially relevant for organisms that have not yet been sufficiently studied)

and thus do not provide enough information, or simply because one believes that

global information is valuable for function prediction. In Chapter 2 of this thesis, we

examine some physical interaction network-based methods for function prediction. In

particular, we look at the importance of different features of the interaction networks,

such as topology or distance in the graph, using these methods for illustration. We

then propose a novel function prediction algorithm FunctionalFlow, based on graph

flow, which incorporates these features and as a result achieves superior performance.

Interestingly, we find that if a protein has sufficiently many annotated interaction

partners, it is best to use just the local neighborhood for function prediction; how-

ever, for a large number of proteins for which the immediate neighborhood “signal”

is not as strong—which is the case for many newly sequenced organisms with few

functional annotations—FunctionalFlow brings improved functional prediction. We

conclude this chapter by addressing the issue of noise in physical interaction net-

works and proposing a simple edge-weighting scheme that reflects the reliability of

underlying interactions, and showing that this scheme improves the performance of

the methods considered, and finally showing how we can gain greater improvement

in performance by adding synthetic lethality interactions.

Then, in Chapter 3, we turn to elucidating the organizational principles of protein
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interaction networks. This has been an area of fruitful research, which has previ-

ously focused on topological properties of the networks, such as their degree distribu-

tion [46], on finding dense subgraphs which correspond to protein complexes [94], on

overrepresented graph substructures [65], and so on. This type of analysis has largely

ignored the features of proteins and treated the graph as unlabeled. We, on the other

hand, turn our attention to patterns of interaction between proteins having various

molecular features. We propose a bottom-up view of protein networks that focuses

on the “building blocks” of which they are constructed. Towards such analysis, we

introduce pathway schemas as a means of describing recurring patterns of interactions

that tend to act as functional units. Pathway schemas are defined by descriptions

of proteins (i.e., protein features) and the interactions among them (i.e., a specific

topology). Simple pathway schemas associated with signaling can consist, for exam-

ple, of a kinase interacting with another kinase, or a GTPase interacting with both

a GTPase activating protein and a GEF protein which reverts it. Building on work

on finding overrepresented subgraphs or motifs, we use a collection of randomized

graphs to find overrepresented pathway schemas. We present a statistical framework

for uncovering schemas that are overrepresented in the protein interaction network

compared to a collection of similar random networks and develop an algorithm for au-

tomatically uncovering such schemas. We present our results for four small topologies

and allow proteins to be described via Pfam domains [4]. We uncover many pathway

schemas that are over-represented in protein-protein interaction networks compared

to randomized graphs having the same properties. They include both well-known

interacting units as well as putative novel structures. In the end, we come back to

the problem of biological process prediction, and show how the patterns we uncover

can help predict the cellular role of uncharacterized proteins and protein families.

Overall, our work suggests that pathway schemas are a powerful new paradigm for
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modularizing cellular networks.

Thesis organization

In Chapter 2, we discuss using protein interaction data to predict biological processes

of proteins. In Chapter 3, we look at the organizational principles of the interac-

tion networks and introduce pathway schema analysis which incorporates interaction

topology and protein features. In Chapter 4, we conclude and discuss future directions

for research.
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Chapter 2

Whole-proteome prediction of

protein function via

graph-theoretic analysis of

interaction maps

2.1 Introduction

A major challenge in the post-genomic era is to determine protein function at the

proteomic scale. Even the best-studied model organisms contain a large number of

proteins whose functions are currently unknown. For example, about one-third of the

proteins in the baker’s yeast Saccharomyces cerevisiae remain uncharacterized. Tra-

ditionally, computational methods to assign protein function have relied largely on

sequence homology. The recent emergence of high-throughput experimental datasets

has led to a number of alternative, non-homology based methods for functional an-

notation including biological process annotation. These methods have generally ex-
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ploited the concept of guilt by association, where proteins are functionally linked

through either experimental or computational means.

Large-scale experiments have linked proteins that physically interact [29, 30, 36,

41, 57, 78, 107], that are synthetic lethals [103, 104] and that are coexpressed [21] or

coregulated [34, 55]. In addition, computational techniques linking pairs of proteins

include phylogenetic profiles [28,73], gene clusters [70], conserved gene neighbors [13]

and gene fusion analysis [23,59]. Perhaps not surprisingly, integrating the information

from several sources provides the best method for linking proteins functionally [44,

54, 60, 105, 109].

It has been postulated that analysis of the resulting protein networks should help

the understanding of protein function (for a recent review, see [89]). In this chap-

ter, we focus on the problem of predicting protein function by analyzing proteins as

components within protein interaction networks.

Physical interaction network-based protein function prediction has been an area

of active research. Several groups have attempted to partition interaction networks

into functional modules that correspond to sets of proteins that are part of the same

cellular function or take part in the same protein complex. Then, an uncharacterized

protein can be classified according to the functional annotation of the characterized

members of the same cluster (e.g., taking the most frequent annotation of the cluster

members). Other groups have used machine learning techniques to address the prob-

lem. Many of these approaches can be extended to the data integration framework,

which usually results in improved performance. We review some of these methods in

section 2.1.1.

The research described here is most closely related to the attempts to classify

proteins according to functional annotations of their network neighbors. Schwikowski

et al. [87] use physical interaction data for baker’s yeast, and predict the biological
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process for each protein by considering its neighboring interactions and taking the

three most frequent annotations. While such a simple majority vote approach, which

we refer to as Majority, has clear predictive value, it takes only limited advantage

of the underlying graph structure of the network. For example, in the interaction

network given in Figure 2.1, Majority would assign functions to proteins d and f ,

but not to protein e, even though our intuition might indicate that protein e has the

same function as proteins d and f ; there are several examples in the yeast proteome

similar to this one [87]. Naturally, one wishes to generalize this principle to consider

functional linkages beyond the immediate neighbors in the interaction graph, both

to provide a systematic framework for analyzing the entirety of physical interaction

data for a given proteome and to make predictions for proteins with no annotated

interaction partners.

Hishigaki et al. [35] extend Majority by predicting a protein’s function by look-

ing at all proteins within a particular radius and finding over-represented functional

annotations. However, this approach, which we refer to as Neighborhood, does not

consider any aspect of network topology within the local neighborhood. For exam-

ple, Figure 2.2 shows two interaction networks that are treated equivalently when

considering a radius of 2 and annotating protein a; however, in the first case, there

is a single link that connects protein a to the annotated proteins, and in the second

case, there are several independent paths between a and the annotated proteins, and

moreover, two of these proteins are directly adjacent to a.

Two papers [48,108] subsequent to [35,87] exploit the global topological structure

of the interaction network by annotating proteins so as to minimize the number of

times different annotations are associated with neighboring proteins. [48] additionally

consider the case where edges in physical interaction networks are weighted using

gene-expression data. We refer to this overall approach as GenMultiCut, as it is a
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Figure 2.1: A protein interaction graph. Nodes represent proteins and edges represent interactions
between proteins. For example, protein d interacts with proteins a, b, c and e. Proteins a, b, c, g, h

and i (shown in black) are known to take part in the same biological process, and proteins d, e and
f are unannotated.
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Figure 2.2: Two protein interaction graphs that are treated identically by Neighborhood with
radius 2 when annotating protein a. Dark colored nodes correspond to proteins that are known to
take part in the same process.

generalization of the well-studied multiway k-cut problem in computer science. While

GenMultiCut takes into account more global properties of interaction maps, it does

not reward local proximity in the graph. For example, if only two proteins have

annotations in a particular network, all other proteins will be labeled by one of these

annotations, regardless of the size of the network.

To overcome the weaknesses of previous methods, we introduce an algorithm,

FunctionalFlow, for annotating protein function in interaction networks. Function-

alFlow uses the idea of network flow, which is dual to the notion of graph cut (e.g.,

see [11]). Each protein of known functional annotation is treated as a ‘source’ of

‘functional flow’ which is then propagated to unannotated nodes, using the edges in

the interaction graph as a conduit. This propagation is governed by simple local

rules. By considering a formulation based on flow, we can incorporate a distance ef-

fect. That is, the effect of each annotated protein on any other protein decreases with

increasing distance between them. In addition, network connectivity is exploited, as

each edge has a ‘capacity’ and multiple paths between two proteins result possibly in
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more flow between them. After simulating the spread of this functional flow for a fixed

number of time steps (so that flow from a source is restricted to a local neighborhood

around it) we obtain the ‘functional score’ for each protein. This score corresponds

to the amount of flow for that function the protein has received over the course of

simulation. In contrast to Majority, FunctionalFlow considers functional annotations

from proteins that are not immediate neighbors, and thus can annotate proteins that

have no neighbors with known annotations. In contrast to Neighborhood, Function-

alFlow considers the underlying topology of the graph, and the multiple edge-disjoint

interaction paths between two proteins give additional evidence for common function.

Finally, in contrast to GenMultiCut, FunctionalFlow takes into account network lo-

cality.

We compare the performance of FunctionalFlow with Majority, Neighborhood and

GenMultiCut. In the process, we reformulate the computational problem given by

the objective function of [108] and [48] as an integer linear program (ILP), and as

opposed to the previous two studies, we find optimal (not heuristic) solutions to the

problem using ILP. Since we find optimal solutions, we directly test the utility of

the GenMultiCut objective function. In addition, we show how to obtain multiple

optimal solutions using ILP, and show that this is one way to incorporate the idea

of distance implicitly within the GenMultiCut framework. In cross-validation testing

on the yeast physical interaction network, we show that FunctionalFlow outperforms

Neighborhood and GenMultiCut, and has better performance than Majority in pre-

dicting the function of proteins with few (or no) annotated protein neighbors. We

estimated that at the time of writing this paper, there were, in the yeast proteome,

∼ 1200 such unannotated proteins where FunctionalFlow would make improved pre-

dictions over Majority. This number (at the time of writing this paper) was 2400 for

fruit fly, and the fraction of such proteins should be much higher for less characterized
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proteomes. Finally, we propose a simple weighting scheme that captures the variation

in reliability of the experimental data that form the basis of the interaction network,

and show that this scheme results in improved performance for all methods.

Overall, we demonstrate that network analysis algorithms such as FunctionalFlow

provide an effective new line of attack in determining protein function. Moreover, we

show empirically that network analysis algorithms for function prediction obtain the

best performance when incorporating overall network topology, network distance and

edges weighted by a reliability parameter estimated from multiple data sources. The

FunctionalFlow method we introduce incorporates these features and outperforms

previously published methods. While all of our cross-validation testing has been on

baker’s yeast, FunctionalFlow is likely to be especially useful in characterizing less-

studied proteomes.

2.1.1 Further related work

The locality effect in FunctionalFlow is similar in some ways to the locally constrained

diffusion kernel developed by [106]. However, the flow in the FunctionalFlow algo-

rithm is limited by capacities on edges, and in the context of our method, this prevents

all the proteins that have the same annotation but have largely overlapping paths to

protein a from exerting too much influence on a. Moreover, [106] use the diffu-

sion kernel with support vector machines, whereas FunctionalFlow is not a learning

method and does not require any training data to be used.

Alternate machine learning approaches for predicting protein function using phys-

ical interaction data include those based on Markov Random Fields (MRFs) [18,56].

In a way, MRFs are a probabilistic extension to the multicut formulation. MRFs

are probabilistic graphical models in which the probability of labeling the vertices

is computed based on local potentials which include the vertex potentials (reflecting,
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e.g., the a priori probability that the vertex is assigned a given label) and a clique

potential which reflects the tendency of members of a clique of size up to n to have

a particular combination of labels. (MRFs are so named because they must obey

the Markov property which states that the labeling of a vertex is independent of the

labelings of its non-neighbors given the labeling on the neighbors.) In the application

to the function prediction problem, the clique potential has been computed just over

the edges; thus, an MRF with a uniform distribution for vertex potentials and clique

potentials that are 0 for assigning different functions to the endpoints of an edge and

1 for assigning the same function is just the multicut problem [17].

Another family of methods endeavor to assign proteins to clusters and then trans-

fer the dominant (e.g., most common) annotation of the cluster members to the un-

characterized members. Proteins in experimentally and computationally determined

interaction graphs have been grouped together based on shared interactions [8,54,85,

99, 111], or the similarity between shortest path vectors to all other proteins in the

network [82]. Other methods use the interaction networks more directly and focus

on identifying densely connected components, or clusters or “communities” in the

interaction network (e.g. [50, 71, 74, 94] and others). Not all methods in this group

are designed specifically for protein interaction network and/or the protein function

prediction problem, but the clusters thus discovered tend to be functionally coher-

ent. Several of these clustering methods have the added effect of providing some

information about network structure (e.g., identifying protein complexes).

Many of the network analysis methods discussed so far, which are based exclu-

sively on physical interaction data, have counterparts in integrated networks. First,

one can extend an algorithm developed for the physical network to a hybrid network

that is constructed by combining several experimental networks. The challenge lies

in the way the networks are combined. [17] extend the MRF method to a network
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with physical and genetic interaction edges by defining the potential function on the

hybrid network as a combination of the edge potential functions on the individual

experimental networks. Similarly, in the end of this chapter, we apply the Function-

alFlow to a network constructed by combining the physical and genetic interaction

networks into a single network with a simple joint weighting scheme. Kernel-based

methods likewise have a data-integration application which combines kernel functions

for different types of data [53].

A family of data-integration methds that are related to clustering look for modules

consisting of interacting proteins that show similar behavior. Some look for groups

of interacting proteins that are differentially expressed under certain conditions, such

as [39] or [88]; the latter is another Markov Random Fields-based method, with vertex

potentials reflecting differential expression. Other methods combine multiple kinds

of genomic data in bicluster analysis [101].

An orthogonal area of research focuses on building truly integrated functional net-

works that combine diverse data [44,54,60,67,105,109]. These integrated functional

networks often do not need sophisticated graph algorithms to analyze, since the rele-

vant functional information is contained in the immediate neighborhood of the target

protein, and algorithms based on local properties suffice (although some of them [67]

have built-in clustering analysis).

2.2 Materials and methods

Physical interaction network. We construct the protein-protein physical inter-

action network using the protein interaction data set compiled by GRID [7]. The

resulting network is a simple undirected graph G = (V, E), where there is a vertex or

node v ∈ V for each protein, and an edge between nodes u and v if the corresponding
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proteins are known to interact physically (as determined by one or more experiments).

Initially, we consider a graph with unit-weighted edges, and then consider weighting

the edges by our “confidence” in the edge (see below). The weight of the edge between

u and v is denoted by wu,v. For all reported results, we consider only the proteins

making up the largest connected component of the physical interaction map (4495

proteins and 12531 physical interaction links).

Functional annotations. Several controlled vocabulary systems exist for describ-

ing biological function, including MIPS (Munich Information Center for Protein Se-

quences) [63] and the Gene Ontology project (GO) [2]. We use the MIPS functional

hierarchy, and consider the 72 MIPS biological processes that comprise the second

level of hierarchy. Of the 4495 proteins in the largest connected component of the

yeast physical interaction map, 2946 have MIPS biological process annotations. We

also experimented with GO annotations; the overall conclusions made in this paper

are not affected.

Weighting functional linkages. It is well known that the reliability of different

data sources vary, even if they are based on the same underlying technology (e.g.,

see [16, 96, 110]). In the context of network-based algorithms, it is possible to weight

edges so as to model the reliability of each interaction. For physical interactions, this

reliability is in turn based on the experimental sources that contribute to our knowl-

edge about the existence of the interaction. To determine these values, we separate

all experimental sources of physical interaction data into several groups, placing each

high-throughput data set into a separate group (five groups corresponding to each

of [41, 42]; [27]; [107]; [29]; and [36]), and allocating one group for the family of all

specific experiments. For each group of experiments, we compute what fraction of

its interactions connect proteins with a known shared function. We assume that the

reliabilities of different sources are independent, and thus conclude by estimating the
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reliability of an interaction to be the noisy-or of the unreliability of the underlying

data sources. That is, if ri is the reliability of experimental group i, we compute the

reliability of the edge by 1−Πi(1−ri), where the product is taken over all experiments

i where this interaction is found. This treats each ri as a probability and assumes

independence; this approach is very similar to the one taken by [109].

We also consider augmenting the interaction network by considering genetic in-

teractions from GRID [7]. Almost all of these interactions are synthetic lethals, and

the weighting scheme can be immediately extended to this network by treating the

new types of interactions as an additional experimental source. Thus, our weighting

scheme gives us a way of integrating data of different types in addition to integrating

different sources of data of one type.

Cross-validation testing and evaluation. We test performance using n-fold cross-

validation. That is, the yeast proteome is divided into n groups, and each group in

turn is separated from the original dataset and used for testing. The goal of each

method is to predict the annotations of the proteins in the test set using the functional

annotations of the remaining proteins. We performed experiments with 2-fold, 3-fold,

5-fold, and 10-fold cross-validation. All our cross-validation testing gives qualitatively

similar results. We report our findings using 2-fold cross-validation, as baker’s yeast

is the most extensively studied organism, and 2-fold cross-validation better represents

what one may expect to see in other organisms.

We evaluate the performance of the algorithms by considering, for each protein

in the test set, whether the top scoring prediction above some threshold is a known

functional annotation (true positive, TP) or not (false positive, FP). In the case of

multiple predictions, the TP vs. FP status is tricky. For example, we may choose to

count a prediction for a protein as a TP if at least one of the predictions made for it

is correct, and as a FP otherwise. However, a method that predicts every protein to
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participate in every function would only have TPs in this framework. Alternatively,

we could count a protein as a TP if every prediction made for it is correct. This,

however, would count as FPs those proteins that get many correct predictions and

only one incorrect one. We therefore settle for a compromise approach, in which we

count a protein’s prediction as a TP if more than half of the predictions made for it

are correct, and a FP otherwise. All results will be reported using this interpretation

of TP and FP, and we use a variant of Receiver Operating Characteristic (ROC)

curves, where we plot the number of TPs as a function of the number of FPs as we

vary the scoring threshold.

2.2.1 Algorithms

Majority. As described in [87], for each protein we consider all neighboring proteins

and sum up the number of times each annotation occurs. In the case of weighted

interaction graphs, we simply extend the method by taking a weighted sum instead.

For each protein, the score of a particular function is the corresponding sum.

Neighborhood. As described in [35], for each protein, we consider all other proteins

within a radius r, and then for each function, we use a χ2 test to determine if it is

over-represented. For each protein, the score of a particular function is given by the

value of the χ2 test. Neighborhoods of radius one, two and three are considered. This

method does not extend naturally to the case of weighted interaction graphs.

GenMultiCut. Two groups of researchers have suggested that functional annota-

tions on interaction networks should be made so as to minimize the number of times

different annotations are associated with neighboring proteins [48,108]. [108] use sim-

ulated annealing to attempt to minimize this objective function and aggregate results

from multiple runs, whereas [48] use a deterministic approximation, and consider the
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case where edges are weighted using gene expression information. As mentioned ear-

lier, the formulation in these two studies is similar to the minimum multiway k-cut

problem. In multiway k-cut, the task is to partition a graph in such a way that each

of k terminal nodes belongs to a different subset of the partition and so that the

(weighted) number of edges that are “cut” in the process is minimized. In the more

general version of the multiway k-cut problem considered here, the goal is to assign a

unique function to all the unannotated nodes so as to minimize the sum of the costs

of the edges joining nodes with no function in common.

Our implementation of GenMultiCut

Though minimum multiway k-cut is NP-hard [12], we have found that the particular

instances of minimum multiway cut arising here can in practice be solved exactly

when stated as an integer linear program (ILP). We introduce a node variable xu,a for

each protein u and function a. This variable will be set to 1 if protein u is predicted to

have function a. If a protein u has known functional annotations, variable xu,a is fixed

as 1 for its known annotations a and as 0 for all other annotations. We also introduce

an edge variable xu,v,a for each function a and each pair of adjacent proteins u and

v. This variable is set to 1 if both proteins u and v are annotated with function a.

Minimizing the weighted number of neighboring proteins with different annotations

is the same as maximizing the number with the same annotation, and so we have the
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following ILP:

maximize
∑

(u,v)∈E,a∈FUNC xu,v,awu,v

subject to
∑

a xu,a = 1 if annot(u) = ∅

xu,a = 1 if a ∈ annot(u)

xu,a = 0 if a 6∈ annot(u), annot(u) 6= ∅

xu,v,a ≤ xu,a for (u, v) ∈ E and a ∈ FUNC

xu,v,a ≤ xv,a for (u, v) ∈ E and a ∈ FUNC

xu,v,a, xu,a ∈ {0, 1} for all u, v and a.

Here, annot(u) is the set of known annotations for protein u, and FUNC = ∪uannot(u)

is the set of all functional annotations. The first constraint specifies that exactly one

functional annotation is made for any protein. The second and third constraints en-

sure that if protein u is annotated with function a, xu,a is set as a constant to 1, and

if protein u is annotated but not with function a, xu,a is set as a constant to 0. The

third and fourth constraints ensure that a particular function is picked for an edge

only if it is also chosen for the corresponding proteins.

Considering multiple GenMultiCut optimal solutions

An important consideration in this framework is the existence of multiple optimal

solutions. For example, the network in Figure 3 has seven minimum cuts of value

one, and while the GenMultiCut criterion does not favor any one cut over the other,

if we find all optimal cuts for this graph, we observe that x2 is in fact annotated with

F1 more often than with F2 in the assignments made by these cuts. Thus, a sense of

distance to annotated nodes is in fact present in the set of all optimal solutions.

The simulated annealing method of [108] implicitly utilizes this information about
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multiple solutions. [108] run simulated annealing 100 times, and predict for each

protein the function that is assigned to it most often. If each run does indeed converge

to an optimal solution, considering multiple runs amounts to sampling from the space

of optimal solutions.

We deliberately attempt to sample from the space of optimal solutions. We explore

two approaches for ensuring that multiple solutions are obtained by the solver. In

the solution-exclusion approach, we add constraints to the ILP that require that each

consecutive solution is different from any previous solution in the value it assigns to

at least 5% of the node variables xu,a. For the weighted yeast physical interaction

graph, the first 50 solutions obtained with this restriction are all optimal. Note that

in this approach, each successive solution takes longer to find. In the random weight

perturbation approach, we introduce uniform self-weights wu,a for each protein u and

function a. These self-weights are then perturbed by adding a very small offset to

each, drawn at random from the uniform distribution on (-0.00001, 0.00001). We now

modify the objective function in the ILP given above to maximize

∑

(u,v)∈E,a∈FUNC

xu,v,awu,v +
∑

u∈V,a∈FUNC

xu,awu,a.

The perturbation in weights is too small to change the solution to the underlying

problem, but it does cause the solver to choose a different optimal solution each time.

Both methods perform very similarly in the accuracy of predictions made. For the

reported results, we use the latter method for obtaining multiple solutions.

As in [108], we let the score for assigning a function to a protein be the number of

times this function is assigned to the protein among the solutions that we found. We

ran the ILP 50 times, and thus there are 51 possible scores (0-50) for any function

for any protein. One solution to the ILP problem on the yeast interaction network
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Figure 2.3: Proteins x1 and x8 are annotated with functions F1 and F2, respectively. There are
seven ways to annotate proteins so that there is only one edge that connects proteins with different
annotations. However, proteins further away from protein x1 are less likely to have function F1 than
those closer to x1. GenMultiCut does not take into account such distance effects.

with annotations for 50% of the proteins cleared can be obtained by AMPL [26] and

CPLEX [40] in approximately five minutes when running on a public UNIX machine.

FunctionalFlow. The functional flow algorithm generalizes the principle of “guilt

by association” to groups of proteins that may or may not interact with each other

physically. We achieve this by treating each protein of known functional annotation

as a “source” of “functional flow” for that function. After simulating the spread

over time of this functional flow through the neighborhoods surrounding the sources,

we obtain the “functional score” for each protein in the neighborhood; this score

corresponds to the amount of “flow” for that function that the protein has received

over the course of the simulation. The functional flow-based model allows us to

incorporate a distance effect; that is, the effect of each annotated protein on any

other protein depends on the distance separating these two proteins. Running this

process for each biological function in turn, we obtain, for each protein, the score

for each function (the score may be 0 if the “flow” for a function did not reach that

protein during the simulation). Thereupon, for any protein, we take the functions for

which the highest score was obtained as its predicted functions.

More specifically, for each function in turn, we simulate the spread of functional

flow by an iterative algorithm using discrete time steps. We associate with each node

(protein) a “reservoir” which represents the amount of flow that the node can pass

on to its neighbors at the next iteration, and with each edge, a capacity constraint

that dictates the amount of flow that can pass through the edge during one iteration.
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The capacity of an edge is taken to be its weight. Each iteration of the algorithm

updates the reservoirs using simple local rules: a node pushes the flow residing in its

reservoir to its neighbors proportionally to the capacities of the respective edges and

subject to further constraints that the amount of flow pushed through an edge during

an iteration does not exceed the capacity of the edge, and that flow only spreads

“downhill” (that is, from proteins with more filled reservoirs to nodes with less filled

reservoirs). Finally, at each iteration, an “infinite” amount of flow is pumped into

the source protein nodes; thus, the sources always have enough flow in their reservoir

to fill the capacity of their outgoing edges.

The functional score is the amount of flow that has entered a protein’s reservoir in

the course of all iterations. Because flow is “pumped” into the sources at each step,

the amount of flow a node receives from each source is greater for nodes that are

closer to that source than for nodes that are further away from it. Thus, a source’s

immediate neighbor in the graph receives d iterations worth of flow from the source,

while a node that is two links away from the source receives d − 1 iterations worth

of flow. Similarly, the number of iterations for which the algorithm is run determines

the maximum shortest-path distance that can separate a recipient node from a source

in order for the flow to propagate from the source to the recipient. For the protein

interaction context, a relatively small number is sufficient. We choose d = 6, which

is half the diameter of the yeast physical interaction network.

More formally, for each protein u in the interaction network, we define a variable

Ra
t (u) that corresponds to the amount in the reservoir for function a that node u has

at time t. For each edge (u, v) in the interaction network, we define variables ga
t (u, v)

and ga
t (v, u) that represent the flow of function a at time t from protein u to protein

v, and from protein v to protein u. We will run the algorithm for d time steps or

iterations. At time zero, we only have reservoirs of function a at annotated nodes:
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Ra
0(u) =











∞ if u is annotated with a

0 otherwise

At each subsequent time step, we recompute the reservoir of each protein by consid-

ering the amount of flow that has entered the node and the amount that has left:

Ra
t (u) = Ra

t−1(u) +
∑

v:(u,v)∈E

(ga
t (v, u) − ga

t (u, v))

Initially, at time 0, there is no flow on the edges, and ga
0(u, v) = 0. At each subsequent

time step, we have flow proceeding downhill and satisfying the capacity constraints:

ga
t (u, v) =











0, if Ra
t−1(u) < Ra

t−1(v)

min
(

wu,v, R
a
t−1(u) wu,v

P

(u,y)∈E wu,y

)

, otherwise.

Finally, the functional score for node u and function a over d iterations is calculated

as the total amount of flow that has entered the node:

fa(u) =

d
∑

t=1

∑

v:(u,v)∈E

ga
t (v, u)

2.3 Results and Discussion

2.3.1 Comparison of four basic methods on the unweighted

physical interaction map

We compare the performance of Majority, Neighborhood, GenMultiCut and Func-

tionalFlow on the unweighted yeast physical interaction map, using a 2-fold cross-

validation. Figure 2.4 plots as a function of FP the number of TPs each method

predicts (i.e., these graphs are obtained by varying the scoring threshold for each
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Figure 2.4: ROC analysis of Majority, Neighborhood, GenMultiCut and Function-
alFlow on the yeast unweighted physical interaction map.

of the methods). The FunctionalFlow algorithm identifies more TPs over the entire

range of FPs than either GenMultiCut or Neighborhood using radius 1, 2 or 3. Func-

tionalFlow performs better than Majority when proteins are not directly interacting

with at least three proteins of the same function; this is evident from Figure 2.4 since

the score for Majority counts up the the most frequent neighboring annotation (e.g.

the rightmost point for Majority corresponds to proteins whose highest functional

scores are one). Thus, FunctionalFlow is the method of choice when considering pro-

teins that do not interact with many annotated proteins. Even in well-characterized

proteomes, such as baker’s yeast, there are ∼ 1200 proteins that have fewer than

three annotated neighbors.

The Neighborhood algorithm with radius 2 performs better than radius 1 only

in the high-confidence region (i.e. corresponding to a low FP rate, given in the left-

most portion of the ROC curve). In addition, radius 1 and 2 have better overall

performance than radius 3, demonstrating that Neighborhood’s strategy of ignoring
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topology is not optimal. Moreover, comparing Majority with Neighborhood using

radius 1 demonstrates that the χ2-test is not as effective in scoring as just summing

up the number of times a particular annotation occurs in the neighboring proteins.

Since the score for GenMultiCut comes from multiple solutions to the underlying

optimization problem, each point in Figure 2.4 for GenMultiCut corresponds to the

proteins that are annotated with a particular function the same number of times.

For example, the leftmost point for GenMultiCut corresponds to proteins where the

top scoring functional prediction is found in each of the 50 solutions found. If we

were to find just one optimal GenMultiCut solution, its performance in terms of TPs

and FPs is comparable to the rightmost point for GenMultiCut (data not shown).1

Thus, multiple solutions for GenMultiCut are necessary to identify its most confident

predictions, and as pointed out earlier, these multiple solutions capture some notion

of locality in the graph.

[108] report in their paper improved performance for GenMultiCut over Majority

for proteins with degree > 1. Their measure of success is the fraction of times the top

prediction for each protein is correct. Although they do not specify how they deal with

multiple top predictions, we note that this measure corresponds to computing TPs

and FPs for the rightmost points in Figure 2.4 for each of the methods. Assuming

that the top predictions for each protein are treated separately, and that failure

to make a prediction for a protein corresponds to an incorrect prediction, the top

predictions for proteins with degree > 1 are correct 0.267 of the time for Majority.

These values are 0.246 for Neighborhood with radius 1, 0.239 for Neighborhood with

radius 2, 0.297 for GenMultiCut and 0.311 for FunctionalFlow. Although we believe

ROC curve analysis gives a more complete picture of performance, FunctionalFlow

1It is not precisely the rightmost point in Figure 2.4 since this point aggregates solutions from
multiple runs.

35



performs better than the other methods using this measure. Moreover, we tested the

performance of all methods clearing a smaller fraction of the annotated proteins. In

a 10-fold cross-validation (i.e. where only 10% of the yeast annotations are cleared),

GenMultiCut has a slight advantage (25 proteins out of ∼ 2500) over FunctionalFlow

in the very low-confidence region; all other observations are qualitatively the same as

for 2-fold cross-validation.

2.3.2 Reliability and data integration

To evaluate our approach for modeling physical interaction reliability as edge weights,

we test the performance of FunctionalFlow using three ways of assigning physical in-

teraction weights. First, we assign each edge a unit weight; this corresponds to the

unweighted physical interaction map used above. Second, we assign each experi-

mental source a reliability score of 0.5; this rewards interactions that are found by

more than one experiment. Finally, we assign each experimental source the predictive

value (estimated in cross-validation) as described in the Materials and Methods sec-

tion; here, edges obtained from multiple, more reliable experiments are given higher

weights. Figure 2.5 shows that rewarding multiple experimental evidence is beneficial,

but that the main advantage comes from taking into account the actual reliability

values for the different experiments.

Figure 2.6 shows how Majority, GenMultiCut and FunctionalFlow perform on the

yeast physical interaction map, where edges are weighted by individual experimental

reliability. The baseline performance of Majority on the unweighted physical interac-

tion graph is also shown. There is substantial improvement in predictions using all

three methods when incorporating edges weighted by reliability.

We further explored whether the network analysis algorithms would perform well

when other types of experimental information are added. As a proof of principle,
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Figure 2.5: The FunctionalFlow algorithm on (1) the unweighted physical interaction map, (2)
the physical interaction map with edges weighted using equal reliabilities for each experiment and
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Figure 2.7: Comparison of functional predictions of FunctionalFlow when considering (1) the
physical interaction map weighted by experimental source reliability and (2) the integrated physical
and genetic interaction map.

we explore the effect of adding genetic linkages to the graph. Reliabilities for ge-

netic interactions are estimated as described earlier, and incorporated into the edge

weights. Figure 2.7 shows the performance of FunctionalFlow on the weighted physi-

cal interaction network and the weighted physical and genetic interaction network. As

is evident, adding genetic interaction data significantly improves prediction quality.

Majority and GenMultiCut show similar improvements (data not shown).

2.4 Conclusions

We have shown that our network analysis algorithm FunctionalFlow provides an ef-

fective means for predicting protein function from protein interaction maps. Our

algorithm utilizes indirect network interactions, network topology, network distances,

and edges weighted by reliability estimated from multiple data sources. On the other

hand, we have also shown that the simplest methods, such as Majority, perform well

if there are enough direct neighbors with known function. In the present work, sim-

ple independence assumptions are made for estimating the reliability of interactions.
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While these work reasonably well, it may be even more beneficial to use Bayesian

techniques to model dependence between data sets, and to perform more complete

data integration (using, e.g., a portion of the Bayesian network of [105]). Finally,

while we have applied our method to baker’s yeast, FunctionalFlow is likely to be

especially useful when analyzing largely uncharacterized proteomes where computa-

tional methods are used to infer protein interaction maps.

39



Chapter 3

Analyzing protein interaction

networks via pathway schemas

3.1 Introduction

In this chapter, we address the problem of uncovering the organizational principles

of cellular interaction networks. Broadly speaking, we aim to answer the following

question: “Are there common means by which diverse biological processes are ac-

complished?” Our approach is to focus on known features of individual proteins—for

example, their molecular functions as revealed via sequence motifs—within the larger

context of physical interaction networks.

Since the first large-scale interactomes were determined, there has been consid-

erable effort in analyzing the topological properties of protein interaction networks.

Early studies of interaction network structure addressed properties like degree distri-

bution, and uncovered their scale-free and small-world properties [46]. Follow-up work

generalized this idea by considering the distribution of structures called graphlets [75],

and other statistical and theoretical properties of the topological features of these
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networks have been studied extensively studied (e.g., the under-reperesentation of

interactions between highly-connected nodes [61] and characteristic graph measure-

ments including diameter and clustering coefficient [117]). Such topological analysis

can lead to biological insights; for example, it has been shown that highly-connected

proteins more likely lead to lethality when deleted than lower-degree ones [46]. There

has also been considerable research on identifying modules or dense structures in the

interaction networks; we discussed some of this work in the previous chapter in the

context of function prediction (see section 2.1).

Recently, topological analysis of networks has been used to uncover patterns of

interconnections in networks that occur more frequently than expected by chance

[55, 65, 90, 116, 118]. These network motifs, which correspond to over-represented

topologies in primarily transcriptional networks, have been proposed to correspond

to the building blocks of cellular circuitry [90], and each motif is postulated to play

a specific information-processing role in the network. This has been an interesting

and influential line of work; however, it does not consider the specific roles of indi-

vidual proteins. Therefore, while these approaches may give a hint to the general

organizational or design principles of biological networks—the syntax, so to speak,

of biological networks—they do not capture the “semantics” of the networks, or the

tendency of certain types of proteins to act together in order to accomplish diverse

biological tasks. Network alignment approaches [24,49,52] provide an alternative way

to begin to address this issue. Network alignment identify homologous proteins and

(nearly) conserved patterns of interactions among them. These techniques, which rely

on sequence homology, can identify network components that are conserved across

species [24, 52, 76] as well as within species [49].

Complementing the work on analysis of protein interaction networks, several

groups have used individual protein-protein interactions, independent of their con-
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text within protein interaction networks, and have found protein sequence motifs and

domains that co-occur significantly more often in pairs of interacting proteins than

in non-interacting pairs [15, 31, 32, 81, 95, 113]. Yet, it may be that larger groups of

specific types of proteins work together as the basic functional unit.

Here, we introduce a paradigm for analyzing protein interaction networks that

explicitly exploits both local network topology as well as known characterizations of

individual proteins. Pathway schemas are specified via combinations of topologies

and annotations, and are used to describe recurring means with which different bio-

logical processes may be carried out. Pathway schemas associated with signaling, for

example, can range in complexity from a kinase interacting with another kinase to a

path of interacting proteins, where the first protein is a receptor and the last protein

is a transcription factor [98]. Pathway schemas need not be linear; any topology

of interactions is permitted. The instantiations of a pathway schema in an interac-

tome correspond to all known sets of proteins, as well as the specified interactions

between them, that are examples of the schema (Figure 3.1, A,B). Thus, a pathway

schema is a diagram of an underlying organizational pattern in an interactome and

its instantiations correspond to specific examples in support of that pattern.

In this chapter, we develop computational methods for automatically identifying

the pathway schemas that are the building blocks of interaction networks. We de-

fine building-block pathway schemas as pathway schemas that are both recurrent in

the interaction network and are over-represented with respect to their lower-order

constituents. A key part of this procedure is identifying higher-order schemas that

are not emergent from their constituent lower-order subschemas. We accomplish this

computationally by generalizing the stub-rewiring (i.e., degree-preserving) algorithm

of [65] to preserve, when appropriate, the distribution of specific labeled subgraphs.

Our work on uncovering pathway schemas differs from previous related work in
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Figure 3.1: A, B: An example of a 3-line schema. A. The GAP-Ras-kinase schema is
made up by a small GTPase of the Ras family (in this case, it is, more particularly, in
the Rho subfamily), which is regulated by a GTPase Activating Protein (RhoGAP)
and in turn regulates its effector kinase. B. Instantiations of the Kinase-Ras-RhoGAP
schema in yeast. Here, a portion of the yeast physical protein-protein interaction
network is shown. Ras family proteins are shown as red octagons, RhoGAP proteins
as blue diamonds, and kinases as green squares. Ras-RhoGAP interactions are marked
in blue, Ras-kinase interactions in green. Interactions that are instantiations of the
RhoGAP-Ras-kinase 3-protein triplet linear schema are marked by thick solid lines;
other RhoGAP-Ras and Ras-kinase interactions are marked by thin dashed lines.
See Methods for construction of physical interaction network and determination of
protein annotations.

C. Schema topologies that are considered in this study.

several key ways. In contrast to the work on uncovering network motifs [65], we

endeavor to incorporate known features of individual proteins. In contrast to the

work on network alignment [49], we aim to incorporate information beyond sequence

homology, and focus on patterns of interactions that are significant even when con-

sidering their lower-order constituents. Finally, in contrast to the work on uncovering

sequence motifs that co-occur in interacting proteins [95], we move beyond individual

interactions and explictly consider local network topology.

We find that building-block pathway schemas are readily identified in the existing
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protein interaction networks for yeast and human. Our approach considers four net-

work topologies (Figure 3.1, C), varying from two interacting proteins to higher-order

ones containing three edges; these include branched and cyclical topologies. While the

concept of schema permits the investigator to focus on any protein property as an an-

notation, we choose for this purpose Pfam sequence motifs [4]. Pfam sequence motifs

may correspond to specific molecular functions (e.g., kinase) or stuctural domains

(e.g., PDZ domain), or may be uncharacterized (e.g., all Pfam-B motifs and some

Pfam-A motifs). Additionally, it is estimated that nearly three-quarters of proteins

sequences have at least one match to Pfam.

We uncover almost 300 network schemas of various complexity in the yeast inter-

actome, and implicate 745 yeast proteins as members of building blocks identified

in this manner. We show that instantiations of the automatically uncovered path-

way schemas lead to subnetworks whose biological processes are functionally more

cohesive, as judged by GO biological process terms, than subnetworks with identical

topologies but no constraints on the proteins making them up. Moreover, we find

that between 40% and 60% of the uncovered yeast schemas (depending on schema

type) have instantiations in the human interactome. Together, these suggest that

the uncovered pathway schemas correspond to recurring functional units. We also

show how pathway schemas can be used to help assign function to uncharacterized

sequence motifs. Overall, our work demonstrates that pathway schemas are a novel

means for organizing interaction networks and are likely to play an important role in

future attempts to partition, interrogate and annotate protein interaction networks.
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3.2 Methods

3.2.1 Preliminaries

Interaction network. Yeast and human protein interaction data was downloaded

from the BioGRID [6], release 2.0.20. The network contained in its largest connected

component 4656 proteins and 27571 interactions among them for yeast, and 7368

proteins and 20020 interactions among them for human. These networks are filtered

to focus on direct physical interactions, as described below.

Protein annotations. Pfam download 18.0 gives 3873 yeast proteins that contain

at least one Pfam sequence motif. 1894 are annotated with a curated Pfam-A motif,

and 2301 are annotated with an uncharacterized Pfam-B motif.

Network filtering. The physical protein interaction network was considered, with

several filters imposed on the network. Attention was restricted to physical interac-

tions that are highly likely to be direct. They were identified as those determined

using the following experimental systems: Biochemical activity, Co-crystal structure,

Far western, FRET, Protein-peptide, Reconstituted complex and Two-hybrid [37].

Additionally, pairwise interactions determined using Affinity capture-Western and

Affinity capture-MS were used (these are interactions when a bait protein identifies

at most one prey in an experiment).

Futhermore, in order to limit the effect of experimental error, the per-experiment

degree of each protein (i.e., the number of interaction partners of the protein that were

found by a single experiment) was considered, and if any protein was found to have

per-experiment degree over 30, the interactions for that protein and that experiment

were removed. Then, proteins which had no annotations according to the annotation

system(s) under consideration were removed. Finally, proteins that had overall degree

greater than 50 after this procedure were excluded from further analysis.
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After this, Pfam annotation terms that describe fewer than two proteins in the

resulting graph were removed from the list of terms under consideration; vertices

which became unannotated as a result of this step were removed as well. Finally,

to prevent redundancies in the resulting schemas, annotation terms that always co-

occurred with some other annotation term were removed from the list of terms under

consideration (i.e., term a is redundant with term b if the proteins annotated with a

are always annotated with b as well).

After all filtering steps, the resulting yeast network has 2073 proteins described by

472 Pfam terms and 3871 interactions between the proteins, and the resulting human

network has 4062 proteins described by 669 terms and 7284 interactions between the

proteins.

Terminology. For completeness and (hopefully) clarity, we formally describe what

we mean by pathway schemas and their instantiations.

A protein interaction netbwork is represented as a labeled graph G = (V1, E1),

with a vertex v ∈ V1 for each protein and an edge (u, v) ∈ E1 between vertices whose

corresponding proteins interact. Each vertex v is labeled with a set of sequence

features Sv; in this work, the features are limited to be Pfam sequence motifs. In

the general case, each edge (u, v) may labeled by a set T1(u,v) containing the types

of interactions observed (e.g., genetic or co-expression); however, for the purposes of

this work, only physical interactions are considered.

A pathway schema is a graph H = (V2, E2) where each vertex v ∈ V2 is specified

by a description dv, which is a set of protein features, and each edge (u, v) is labeled

by a set T2(u,v) of allowed edge labels. Here, we only allow one description per protein

and consider only physical interactions, so |dv| = 1 and T2(u,v) = physical.

An instantiation of a pathway schema H in an interaction network G is a graph

(V, E) where V ⊂ V1 and E ⊂ E1 such that there is mapping f : V2 → V where for
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each v ∈ V2, Sf(v) satisfies the description dv, and for each (u, v) ∈ E2, (f(u), f(v)) ∈

E and T1(u,v) ∩T2(f(u),f(v)) 6= ∅. In our case, an instantiation is just a subgraph of the

physical interaction network with the same topology and protein properties as given

by the schema. Note that two instantiations of schema may share proteins and/or

interactions; however, two instantiations must differ in at least one protein.

Two instantiations (V, E) and (V ′, E ′) of the same pathway schema are indepen-

dent if V ∩V ′ = ∅ (i.e., they are made up of non-overlapping proteins); along with the

total number of instantiations, the number of independent instantiations of a schema

is used to evaluate how prevalent a particular schema is in the interaction graph.

3.2.2 Uncovering pathway schemas

We consider schemas of four topologies containing up to three edges: pairs, consisting

of annotations a and b, and denoted as p(a, b) ; triplets, denoted as t(a, b, c); triangles,

denoted as ∆(a, b, c); and Y-shaped network schemas, Y (a, b, c, d) (Figure 3.1, C). In

the case of triplets and Y’s, we allow instantiations to have additional edges (i.e., the

endpoints of the triplet or any pair of endpoints of the “spokes” of the Y may be

connected with an edge).

The overall procedure for uncovering over-represented pathway schemas is as fol-

lows; the steps are described in more detail below. First, each schema topology is

considered independently, and for each topology, the number of instantiations for each

schema s found in the interactome is tabulated. Second, for each possible schema s,

its average number of instantiations in randomized networks is computed. Third,

the schema is scored to favor frequently occuring schemas that also occur more often

than expected by chance. Fourth, significance of scores is judged via computation of

a false discovery rate (FDR). Finally, the schemas are filtered in order to focus on
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those that are most interesting.

Randomized networks for computing scores. For each schema s that recurs in

an interactome (i.e., has at least 2 instantiations), we compute how often it occurs in

randomized networks. That is, we wish to know whether the schema occurs more often

than expected. For each pairwise schema, we count how often it occurs in randomized

networks that have been generated using the stub-rewiring approach of [61, 90]. For

each triplet and triangular schema, we count how often the schema occurs in networks

randomized so as to preserve the distributions of the pairs making them up. For each

Y schema, we use the same approach, but consider random networks that preserve

the distribution of triplets making up the Ys. In this manner, we aim to identify

the schemas that are over-represented even when considering the distribution of the

lower-order schemas making them up.

More specifically, for triplet schema t(a, b, c), we generate random graphs that

attempt to maintain the original number of interactions where one protein is labelled

a and the other protein is labelled b, where one protein is labelled b and the other

is labelled c, and where one protein is labelled a and the other is labelled c. This is

accomplished by considering only proteins labelled with a, b or c. An edge is added

between two proteins labelled with (say) a and b proportional to how much closer it

brings the distribution to what is desired. As with the stub-rewiring approach, the

degrees of these proteins are maintained; thus, edges are added only if doing so would

not exceed the original degree of either protein. This process is continued until the

three pairwise distributions are satisfied or no further edges can be added.

The same process is used to generate random graphs for triangular schemas

∆(a, b, c).

For Y schemas Y (a, b, c, d) (with a at the center), edges are added in a way that

maintains the distribution of triplets b-a-c, c-a-d, and b-a-d.
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For pairwise schemas, 65 randomized stub-rewired networks are generated, and

the average number of times that each schema occurs in these networks is computed.

For each triplet, triangular and Y schema s, 65 randomized networks are generated

as described above, using the appropriate method, and the average number of times

that it occurs in these networks is computed.

Scoring schemas. For each schema s, let counts be the number of times it occurs,

and avgs be the average number of times it occured in randomized networks. The

score for schema s is given by

(counts + 1) log

(

counts + 1

avgs + 1

)

.

The addition of the pseudocount of 1 downweighs the contribution of very rare

schemas that could otherwise obtain abnormally high scores due to very small (or

0) average counts in the random graphs.

Significance model. For each putative recurring schema found in the real network,

we obtain a score reflecting its frequency and overrepresentation compared to the

random graphs. In order to evaluate the significance of the scores thus obtained, for

each topology of schema considered, we repeat this procedure with 40 iteration graphs

created by stub-rewiring algorithm of [61]. Since all associations in these randomized

networks occur by chance, we can use them to calculate the FDR for each score, or the

fraction of schemas with score ≥ x that arise from chance alone. It can be computed

as
1
40

∑

iteration graph i # putative schemas in graph i with score ≥ s

#putative schemas in the real graph with score ≥ s
.

Scores with FDR < 0.05 are considered significant.
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3.2.3 Evaluating functional coherence

In order to test the biological relevance of the schemas discovered, we look at the func-

tional coherence of groups of proteins that form instantiations of significant schemas

and compare then to background. By functional coherence we mean the tendency of

proteins to participate in the same biological process. We use the Gene Ontology Bi-

ological Process annotations [2] as the “gold standard” of fuctional annotation. One

complication that arises in this situation is the hierarchical (or, more precisely, DAG)

nature of the Gene Ontology. We address this issue by mapping the different terms

of the GO to a common scale. In our case, this scale is the probability of a randomly

chosen group of proteins of a given size having that annotation, as determined by

the hypergeometric distribution based on the number of proteins annotated with this

term.

We consider each schema topology separately. For each topology, we compile

the set of instantiations of all significant and recurrent (“building-block”) schemas

of that topology, excluding schemas consisting of the same proteins as some other

schema already in the set. For the “background” set, we enumerate all subgraphs

of a given topology that occur in the interaction network. In order to avoid any

bias that might arise from Pfam annotations, only proteins having any Pfam annota-

tion are considered when building the sets of subgraphs. Furthermore, both for the

building-block-schema instantiations and for the background sets, we require all or

most proteins in the subgraph to have non-trivial biological process annotation. In

the case of subgraphs corresponding to schemas with 3 or fewer proteins, we require

all proteins to have biological process annotations; in the case of 4-protein subgraphs,

we permit one “central” protein (i.e., a protein whose degree in the subgraph is >

1) to be unannotated (if a “peripheral” node is not annotated, then the annotated

portion of the subgraph would just be a 3-protein subgraph).
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For each schema topology, for both building-block-schema instantiations and the

background set of subgraphs, we use the following method to evaluate the functional

coherence of a set of schema instantiations of a given topology. For each subgraph

consisting of N proteins, n of which have non-trivial biological process annotation,

we determine the least common ancestor of their annotation in the GO graph; if

there are multiple LCA’s that are not comparable in the partial order imposed by

the GO structure, we select the one that annotates the smallest number of proteins

in yeast, breaking ties arbitrarily. Note that if the proteins are not known to be

functionally related, the LCA of their annotations would be the trivial annotation

of biological process. Then, the “specificity” of this LCA is calculated as the prob-

ability of n proteins having that annotation, using the hypergeometric distribution:

p =
(A

n)(
T−A
N−n)

(T
N)

, where A is the number of proteins annotated with the term or its de-

scendants in the reference genome, and T is the total number of annotated protens

in that genome. Then, for a given value of p, for both the significant-schema interac-

tions and the background set of subgraphs, we can measure the functional coherence

of each as the fraction of subgraphs whose constituent proteins have annotation LCA

with p-value at most p.

3.3 Results

3.3.1 Pathway schemas in the yeast interactome

In the filtered yeast interaction network, there are 2838 pair, 23395 triplet, 999 trian-

gular, and 101840 Y schemas consisting of proteins with Pfam annotations. Of them,

831 pairs, 8491 triplets, 283 triangles, and 52019 Ys occur at least twice. Due to the

multiplicity of annotations on many proteins, there is often overlap between schemas

of the same topology. Therefore, we remove schemas that are “subsumed” by another
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schema of the same topology; i.e., we remove schemas whose instantiations are a sub-

set of the instantiations of some other schema of the same topology. This leaves 657

pairs, 5080 triplets, 161 triangles, 7849 Ys. All numbers reported from now on will

be computed after application of this filter. Using our scoring procedure with back-

ground averages for schemas computed using the stub-rewiring randomizations of [61]

for pairs, the pair-distribution preserving randomizations for 3-protein schemas, and

triplet-distribution preserving randomizations for Y schemas, and a false discovery

rate ≤ 0.05, we get: 196 pairs, 213 triplets, 89 triangles, 242 Ys. We note that the

false discovery rate has a built-in multiple-hypothess correction.

Before we analyze these results further, we apply an additional filter to focus on

significant schemas that are truly recurrent. Rather than just looking at schemas that

have at least two instantiations, we impose a stricter requirement, namely that they

have at least two independent (i.e., non-overlapping) instantiations. We note that

there are many interesting schemas whose instantiations would not be independent;

for example, the Skp1-cullin-F-box (SCF) complexes associated with ubiquitination

only vary in the identity of the F-box protein. After applying these filters, we are left

with 156 pair, 85 triplet, 25 triangle and 31 Y building-block schemas. These results

are summarized in Table 3.3.1.

These building-block schemas in yeast are displayed in Figures 3.2 -3.5. For the

purposes of visualization, higher-order schemas are represented as graphs of lower-

order schemas: triplets as connected vertices in a graph of pairs, triangles as colored

triangles in a graph of pairs, and Ys as triangles in the graph of triplets. The uncov-

ered building-block schemas are comprised of a wide-variety of Pfam sequence motifs.

For example, the network comprised of pairwise building-block schemas (Figure 3.2)

consists of more than 140 Pfam motifs representing a wide-variety of functions in-

cluding signaling, transporter activity, intracellular trafficking, and DNA packaging.
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Building

Topology Total Recurring Non-redundant Significant Block

Pairs 2838 831 657 196 156
Triplets 23395 8491 5080 213 85
Triangles 999 283 161 89 25

Ys 101840 52019 7849 242 31

Table 3.1: Statistics for uncovering schemas in the yeast interactome. Total gives
the total number of schemas of each topology that is found in the filtered yeast
interactome; each schema is described via Pfam motifs. Recurring gives the number
of these schemas when each is required to have at least two instantiations. Non-

redundant gives the number of recurring schemas that are additionally filtered so
that each schema whose instantiations are a subset of another schema is removed.
Significant gives the number of non-redundant, recurring schemas that are also
found to be significant at an FDR level of 0.05. Building block gives the number of
significant, non-redundant, recurring schemas that occur at least twice independently
in the filtered yeast interactome.

Many of the uncovered schemas recapitulate known biology. For example, many of

the triangular schemas correspond to known complexes, such as the spliceosome (re-

flected by the LSM motifs) or the SNARE vesicle-fusion machinery, and several of

triplet schemas contain combinations of domains associated with signaling [72]. (See

Section 3.3.5 for a detailed analysis of the uncovered schemas relating to the Ras

family of signaling proteins.)

3.3.2 Pathway schemas are functionally coherent

Though a case-by-case analysis of uncovered building-block schemas is illustrative,

here we systematically evaluate the biological significance of these schemas by an-

alyzing their functional coherence. That is, given an instantiation of one of these

schemas, does it show enrichment for a particular biological process? As described

in the methods, for each schema topology, we compile the building-block schema set

and the background set, and for each instantiation determine its most descriptive

biological process annotation. We visualize the functional coherence of the schema
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Figure 3.2: Building-block pairwise schemas uncovered in the yeast interactome. Each
node is labelled with a Pfam domain and an edge between two Pfam domains corre-
sponds to a building-block pathway schema.
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Figure 3.3: Building-block triplet schemas uncovered in the yeast interactome, rep-
resented as connected vertices in a pair graph. The central domain of the triplet is
shown in pink as the label of the corresponding edge. Pairs that are “building blocks”
are represented as purple vertices, other pairs as blue vertices.
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Figure 3.4: Building-block triangular schemas uncovered in the yeast interactome.
represented as triangles in a pair graph. Edges that belong to the same triangle are
colored with the same color. Pairs that are “building blocks” are represented as
purple vertices, other pairs as blue vertices.
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Figure 3.5: Building-block Y schemas uncovered in the yeast interactome, represented
as colored triangles in a triplet graph. For ease of visualization, the central node of
each Y is given inside the triangle and connected to the vertices by pink dashed lines.
Triplets that are “building blocks” are represented as purple vertices, other triplets
as blue vertices.
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Figure 3.6: Functional coherence of uncovered pairwise yeast schemas. Proteins mak-
ing up instantiations of building-block pairwise schemas are more functionally co-
herent than the background set of all interacting annotated proteins. See text for
details.

set and the background set by plotting, as a function of the specificity of a biologi-

cal process term (measured via a p-value, with small p-values corresponding to more

specific terms), the fraction of subgraphs in each set whose most descriptive biolog-

ical process annotation has at most that p-value. Thus, a set of schemas leads to

more functionally coherent instantiations than another set if its curve is “above” the

others in these plots. The results of the comparison between the schema set and the

background are presented in Figures 3.6-3.8. One can see that for all topologies, the

instantiations of significant schemas are more functionally coherent throughout the

entire range of p-values than background subgraphs of the same topology.

3.3.3 Yeast pathway schemas conserved in human

To study the extent to which building-block yeast schemas are conserved through

evolution, we obtained their instantiations in the human interaction network. We
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Figure 3.7: Functional coherence of building-block 3-protein triplet and triangular
schemas. See text for details.
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Figure 3.8: Functional coherence of building-block Y schemas found in yeast.
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searched the full human BioGRID physical interaction network for instantiations of

the yeast network schemas (i.e., no filters were used to build the network).

The results are displayed in Table 3.3.3 and summarized below. Briefly, the frac-

tion of yeast schemas that are conserved in human is similar for pairs and triangles,

and decreases slightly for triplets and Ys, with 94/156 (60%) interesting pairs having

at least one human instantiation, compared with 45/85 (53%) triplets, 15/25 (60%)

triangles, and 13/31 (42%) Ys. For comparison, if we consider 100 randomly selected

schemas of each topology, 19% of pairs, 9% of triplets, 5% of triangles, and 4% of Ys

have at least one human instantiations.

These numbers show an increase in the “gap” between conservation of “building-

block” and random schemas with increasing schema complexity, lending further evi-

dence to the correctness of criteria for finding meaningful schemas.

Yeast

Building Block Conserved Background

Topology Schemas in Human Conservation

Pairs 156 60% 19%
Triplets 85 53% 9%
Triangles 25 60% 5%

Ys 31 42% 4%

Table 3.2: Conservation of uncovered significant yeast schemas in human. Yeast

Building Block Schemas gives the number of yeast building block schemas uncov-
ered for each topology. Conserved in Human gives the fraction of these schemas
which have at least one instantiation in the human interactome. Background con-

servation gives the fraction of background subgraphs of the same topology as the
schemas being considered that have an instantiation in the human interactome.

3.3.4 Pathway schemas in the human interactome

In order to compare building-block schemas across genomes, we repeated the pairwise

building block schema finding procedure on the human interaction network. We found
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29 building-block (i.e., significant and recurrent) pairwise schemas that are found in

both yeast and human. As expected, these schemas represent some of the basic

processes that happen within the cell: signaling, including the regulation of Ras

family GTPases, vesicle fusion, cyclin regulation of kinases, ubiquitination, and so

on.

Building-block pairs that are shared between yeast and human as well as those

that are building block in one organism but only conserved (not identified as “building

blocks”) in the other are shown in Figure 3.9. Building-block pairs that are unique

to either yeast or human and are not conserved in the other organism, are given in

Figures 3.10 and 3.11, respectively.

3.3.5 Schemas recapitulate biology: focus on the Ras family

As an example, we focus on schemas involving proteins of the Ras family (PF00071).

Ras is a family of small GTPases, which are active when bound to GTP; they in-

activate themselves by slowly converting the GTP to a GDP. The guanyl-nucleotide

exchange factor (GEF) facilitates the exchange of the GDP to a GTP (the latter

is present at higher concentration) and thus activates the Ras protein, whereas the

GTPase activating protein (GAP) increases the GTPase activity of Ras and thus

deactivates it.

The pairwise schemas involving the Ras family reflect some of the biology that

is known about the Ras family of proteins. As we expect, we see the schemas Ras-

RhoGAP and Ras-RasGEF, both of which reflect the regulatory interactions of Ras

proteins that were described in the preceeding paragraph (Rho is a subfamily of Ras).

In the same category is the pairwise schema consisting of Ras and the TBC domain

that belongs to GAPs of the Rab subfamily of Ras proteins. In addition, we have

a Ras-GDI pair, which reflects the additional regulation mechanism of the Rab sub-
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Figure 3.9: Pairwise schemas conserved in human and yeast. Schemas that are build-
ing blocks in both organisms are indicated via red edges. Schemas that are building
block in one organism and conserved in another are indicated with light blue edges.
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Figure 3.10: Building-block yeast pairwise schemas that are not conserved in the hu-
man interactome. Red vertices indicate Pfam motifs that are found in both organisms,
orange vertices indicate Pfam motifs that are found in yeast but not human.
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Figure 3.11: Building-block human pairwise schemas that are not conserved in the
yeast interactome. Red vertices indicate Pfam motifs that are found in both organ-
isms, green vertices indicate Pfam motifs found in human but not yeast.
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familiy of Ras proteins, where the guanyl dissociation inhibitor (GDI) slows the rate

of dissociation of GDP from membrane-bound Rab proteins. The Yip1 family of

proteins in turn may act as GDI displacement factors [92] for a group of Ras-like pro-

teins associated with Golgi membranes and/or act as membrane recruiters of these

proteins [115]. Other Ras pairwise schemas include schemas involving Ras-binding

domains, such as the Diaphanous GTPas-binding Domain (Drf GBD, PF06371) con-

tained by Rho effectors and the P21-Rho-binding domain (PBD, PF00786), or involv-

ing motifs that reflect the biological role of Ras families, such as the IQ calmodulin-

binding motif (PF00612) and the PB1 family of proteins associated with signaling.

The Ras triplets include those that are built from some of these pairs (because

of our methodology, they are significant even conditioned on the fact that they are

built of significant pairs), as well as those that contain pairs that were not themselves

significant. For example, in the Pkinase-Ras-RhoGAP triplet, the Ras-RhoGAP pair

is significant as a pair, but the Pkinase-Ras pair is not. Similarly, Ras Ys are made

up of a combinatin of triplets that are “building block” and those that are not (if we

consider the constituent pairs, most of them are “building blocks”).

The two “building block” triangles involving Ras in yeast are Ras-SH3 1-SH3 1

and Ras-Ras-SH3 1. Interestingly enough, in one of the instantiations of the former

triangle, Ras1-CDC25-SDC25, the two SH3 1 proteins are in fact GEFs for Ras1

that are capable of forming a dimer with each other, whereas in the second group

of instantiations, in which the Ras protein is CDC42, this is not the case. The Ras-

RasGEF-RasGEF triangle, however, occurs only once in the network, and therefore

is not recurring. Thus, here the schema-finding algorithm may in fact obscure the

“semantics” underlying the schema.

Now we briefly address Ras pairs in human. They are dominated by interactions

with Ras-associated protein domains, which, in addition to the familiar regulators
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Figure 3.12: Schemas involving Ras proteins: (A) pairs, (B) triplets, represented as
graphs (B1) and as a pair graph (B2), (C) triangles, (D) Ys, represented as graphs
(D1) and as triangles in a triplet graph (D2).

such as GAP and GEF proteins includes families like RBD (PF02195), the Raf-like

Ras binding domain, or the RA (PF00788) family of RasGTP effectors, as well as

more general signalling protein motifs such as the PBZ (PF00595).

3.3.6 Using schemas to annotate domains and proteins

We use schemas to predict the function of domains and proteins of unknown function.

Towards this goal, we focus on families of unknown function which are involved in
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Figure 3.13: Schemas involving DUP proteins: (A) pairs, (B) triplets, represented as
graphs (B1) and as a pair graph (B2), (C) triangle, (C) Y.

more than one schema in which they associtate with different domains, as well as on

associated proteins. Two families which lend themselves to this task are: DUP and

MAGE. The first is a family of yeast membrane proteins of uknown functions, and

the second is a “family of genes of unknown cellular function that are expressed in a

wide variety of tumours but not in normal cells, with the exception of the male germ

cells, placenta, and, possibly, cells of the developing embryo.” [4].
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DUP

“One of the most curious gene families in yeast” [84], the DUP family consiss of

23 members [19], 21 of which have physical interactions, as listed in the BioGRID,

although some of these members may not be true genes. These proteins are specific

to the hemaiscomycete phylum [19]. All but one of DUP proteins are localized to

different membranes in the cell and, with a few exceptions, have unknown functions.

The exceptions are the pairs Mst27/Mst28 and Prm8/Prm9 which form dimers, as

well as the Cos3 protein. The first pair of protein are involved in vescicle formation

and bind COPI and COPII vesicles [84], and the second pair are pheromone-induced

proteins. The Cos3 protein is involved in sodium resistance that interacts with the

Na+/H+ antiporter Nha1p [19], and Cos10 which is implicated in endocytosis [19].

We find that the DUP proteins are involved in multiple schemas of every topology

(Figure 3.13). These schemas are dominated by interactions with members of trans-

porter families: MFS 1, Sugar tr, AA permease. Interactions with proteins of these

families form the “core” of the DUP schemas in that these sub-schemas occur as part

of every schema involving DUP; the majority of DUP proteins’ schema interaction

partners belong to these families. We believe that this provides strong evidence that

the DUP family consists of proteins that are associated with membrane transporters.

This is in line with the suggestion, based on the information about Cos3, that Dup

proteins may activate or stabilize membrane proteins [19].

MAGE

The MAGE homology domain consists of 200 amino acids. Originally, MAGE pro-

teins were found to be expressed in tumors, although later members of the family that

are expressed in normal tissue were identified. There are 55 MAGE genes and putative

genes in human [10], 32 of which are listed as such in Pfam, of which 9 have physical
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interactions as described in the BioGRID. The MAGE family is poorly characterized

functionally; of the 9 genes that have interactions, one, NRAGE (MAGED1) was

implicated in nerve growth factor receptor (NGFR) signalling, and another, necdin

was implicated in neuronal differentiation. Some facts that might shed light on the

connection between MAGE proteins and tumors are that NRAGE contributes to

cell cycle arrest and NGF-dependent apoptosis within sympathetic neuron precursors

cells [83]; and that it has been found that NRAGE positively [112] and necdin [102]

and members of the MAGE-A subfamily [66] negatively regulate p53, a key tumor-

suppressor transcription factor, suggesting an explanation of the link between MAGE

proteins and tumors.

We found the MAGE family to participate in pairwise schemas with two protein

families: the Death domain and the RING family (zf-C3HC4) (see Figure 3.14). The

Death domain is associated with apoptosis, and the RING finger is associated with

E3 ubiquitin ligases, which perform the final step in protein ubiquitination. In many

cases, ubiquitination targets proteins for destruction by the proteasome, although in

other situations, ubiquitination plays other biological roles, for example, acts in DNA

repair; in those cases the topology of the ubiquitin chain(s) may be different from

that of proteolytic-marker ubiquitination [100]. In addition, RING E3 ligases may

attach to proteins other small molecule markers that are similar to but distinct from

ubiquitin, such as SUMO (small ubiquitin-like modifier) proteins. The cellular role

of these modifications is not always understood [62].

Of 9 MAGE proteins in the BioGRID, 7 are interacting with Death and/or RING

proteins. The MAGE-RING schema is more abundant, wtih 6/7 of the MAGE pro-

teins interacting with a RING protein, whereas only 3 of the 7 MAGE proteins interact

with Death domain proteins. These 3 proteins form an “interaction cluster”, in which

two of the three proteins are also interacting with RING finger proteins.
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The RING proteins which interact with MAGE proteins are quite diverse. Among

them are the inhibitor-of-apoptosis protein BIRC2, ligand of numb-protein X (LNX)

that is implicated in tumorogenesis, and two members of the TRIM/RBCC family

of proteins, one of which, TRIM27/RFP is implicated in apoptosis, and the other,

TRIM31 may be involved in it because it shares the apoptosis-associated RBCC

moiety [20]. Other RING members of the schema instantiations, such as ZSWIM2,

are less characterized.

We also note that in addition to these proteins, there are other proteins that should

be included in instantiations of the schema, but were not because their RING annota-

tion scores from Pfam were not high enough (they were marked as “context” annota-

tions by Pfam). These include another inhibitor of apoptosis BIRC4 (interacts with

NRAGE) and another TRIM family member TRIM37 (interacts with MAGEB18).

These data suggest a connection between MAGE proteins and apoptotis; if real,

this connection would likely shed light on the association between some of the founding

members of the MAGE family members and cancer. It is possible that ubiquitination

plays a role in this connection. The link between ubiquitination and apoptosis is

a subject of investigation; for example, inhibition of proteasome has been shown to

act as both promoter and inhibitor of apoptosis, likely by affecting the degradation

of inhibitors or promoters of apoptosis [1, 69]. MAGE proteins may provide a link

between these two processes. However, it is also possible that several mechanisms

are in fact at work, and that, for example, the MAGE-RING pairwise schema may

in reality consist of semantically different patterns of interaction between proteins of

these two families. In particular, it is possible that the nature of the various MAGE-

RING interactions may be different for different pairs. All these hypotheses require

further biological investigation.

Additionally, due to the topology of the instantiations of the MAGE schemas,
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Figure 3.14: MAGE pairs

namely, the existence of a cluster of 3 MAGE proteins that interact with Death

proteins (and, in the case of 2 of them, with RING proteins), we may hypothesize the

existence of a yet-to-be discvered interaction of the third protein, MAGEH1, with a

RING protein, possibly PJA1 (which interacts with the two other members of the

cluster). This prediction too needs experimental confirmation or refutation.

3.4 Discussion

3.4.1 Schemas as network building blocks

In this work, we introduce the notion of network schemas and suggest a procedure

for discovering schemas that are “building blocks” of the network. At first, one may

focus simply on recurrence of schemas (i.e., take as building blocks schemas that have

a least two instantiations in the network). As is seen from Table 3.3.1, this gives us

a large number of schemas of each topology. While we might try to make our focus

more specific by increasing the minimum number of schema occurrences from two
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to a higher number, any method based on counting is naive and does not take into

account the relative abundance of different types of labels. The dominant practice in

this kind of research is to look for statistically significant subgraphs; this is achieved

by comparing the actual interaction network to a collection of randomized networks,

which are usually built using the stub-rewiring algorithm of [61]. However, there is

certain asymmetry to the way the stub-rewiring method treats schemas of different

complexities. In the case of pairwise schemas, it evaluates their significance given the

lower-order properties of the network, which in the case of pairs include features of

vertices such as label and degree. For schemas that are logically built up from pairs,

such as triplets or triangles, the lower-order properties would include information

about pairs as well, and for Ys, information about triplets. Therefore, we developed

a randomization procedure for scoring these schemas that preserves these lower-order

properties in random graphs. More importantly, this procedure allows us to look for

true building blocks of the network, since a building block should not be reducible to

the lower-order building blocks, but should contain new information.

Many schemas we discover recapitulate known biology and include, for example,

well-known components of signaling pathways, such as many “star”-shaped triplet

or Y schemas that are built up of protein kinase and signaling domains, reflecting

the importance of phosphorylation; or components of known complexes, such as the

spliceosome (reflected by the LSM triangle), or the SNARE vesicle-fusion machinery.

Furthermore, a more systematic analysis of the schemas we uncovered has shown that

they are enriched for biological process.

3.4.2 Pairwise schemas across genomes

The existence of several genomes that have been covered to a large extent by high-

throughput physical interaction experiments allowed us to begin to take a cross-
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genomic approach to the study of network schemas. We focused on baker’s yeast

and human as the two orgnaisms for which a large amount of physical interaction

data exists, and which in a way represent the two ends of the eukaryotic complexity

spectrum: from a unicellular yeast to the complex multicellular human.

The nearly 30 pairwise schemas that are found to be significant and recurring in

both yeast and human may represent the “core” pairwise schemas that provide the

building blocks of core processes in the cell. Indeed, these schemas represent some of

the basic processes that happen within the cell: signaling, including the regulation of

Ras family GTPases, vesicle fusion, cyclin regulation of kinases, ubiquitination, and

so on.

The second immediately obvious feature of the human pairs is that they reflect

the much richer landscape of biological functions that the human has and the novel

molecular “tools” that human has compared to yeast. Thus, a large number of human

pairs involve elements of phosphotyrosine pathways, such as the tyrosine kinase motif

(PF07714), tyrosine phosphatase motif (PF00102) and the SH2 (PF00017) domain

that binds phosphotyrosines.

3.4.3 Schemas for domain and protein annotation

Using two poorly understood gene families, one from human, one from yeast, we show

how schema analysis can be used to annotate protein families and their individual

members. One may wonder what schema analysis gives us that we would not be able

to get from simple interaction analysis such as guilt-by-association. For example,

if we consider the 41 interaction partners of the 9 of the MAGE proteins that have

interactions, and use the GO Term Finder [5], we see that the only significant common

biological process among them is apoptosis, whereas 21 of the 41 proteins have no

biological process annotation. Using this information, we might hypothesize that
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MAGE proteins are involved in apoptosis, although the signal for this implication

may be considered fairly weak. Schema analysis, on the other hand, acts as a lens

that focuses the investigator’s attention on patterns of interaction that are statistically

significant. By “pulling out” interactions that are likely to be meaningful from the

total wealth of interaciton data, it allows him or her to concentrate on promising

directions of exploration.

3.4.4 Interpretation of schemas

Here, we discuss the schemas from the point of view of their role in network orga-

nization. Although each schema is in a way unique, due to the fact that schema

definition includes protein annotations, we can begin to group them into broader

categories that correspond to different network organizational principles. The most

basic level of schema organization is represented by the pairs. Since our approach does

not limit itself to search for domain-domain interactions, the pairs we find include

both putative domain-domain interactions and more abstract patterns of organiza-

tion. The pairwise schemas include both homotypic and heterotypic interactions. In

addition, the meaning of a pair can be of several types. The pair may either represent

two proteins working together (such as, but not necessarily, forming a dimer or part

of a complex), or one protein acting on the other, e.g., activating or deactivating it.

The Ras-RhoGAP pair is an example of the latter kind (RhoGAP regulates Ras).

Among the higher order topologies that we considered, we have triangles and

“star schemas”; the latter group includes triplets (“2-stars”) and Ys (“3-stars”). The

triangles are most intuitively associated with protein complexes, whereas the “star

topologies” can be more easily associated with “flow of information”. In this case,

the spokes of the star may represent the “flow of information” in the pathway; the

“flow of information” along each spoke may have any direction: either one or more
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Figure 3.15: Possible flow of information in “star” schemas. Any arrow may also be
replaced by an undirected edge (representing a protien dimer w/o associated flow of
information).

of the spoke acting on the central node, which in turn acts upon the remaining

spoke(s), or all of the spokes acting upon the central protein, or the central protein

acting upon all of the spokes (Figure 3.15, A). In addition, the “star” schemas may

represent “switch-like” patterns, in which some of the spokes of the “star” are active

in different contexts (Figure 3.15, B). This is especially likely to be the case if the

spokes represent the same motif.

We can see instances of these types of schemas turning to our running example

of Ras proteins. The Pkinase-Ras-RhoGAP triplet is an example of a schema that

represents linear flow of information. Here, the Ras family protein (either CDC42 or

Rho1) is regulated by a RhoGAP, and in turn regulates its effector kinase. Thus, this

schema represents linear information flow from the RhoGAP protein to the kinase.

The Ras-Yip1-Ras triplet, on the other hand, may represent a “star” schema in which

the central protein “acts upon” the spokes, since the Yip1 protein is believed to recruit

the Ras proteins to the membrane.
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This triplet probably represents “switch-like” behavior. Since the two Yip1 pro-

teins have reported interactions with 8-9 Ras proteins, it is likely that these interac-

tions take place at different times, depending on the context or simply on chance. It

is worthwhile to remember, though, that since the significance of this schemas was

established using pairwise-count-preserving randomizations, the “switch-like” nature

of the interaction between the Yip1 proteins and their Ras-like partners is itself sig-

nificant.

Our decision to stop the study at 3-edge schemas was pragmatic; schemas of

higher order may very well exist. Moreover, by looking at the schemas we find,

one can see that many of them overlap “horizontally”, that is, triplets or triangles

share common pairwise subschemas, and Ys share common triplet subschemas (see

Figures 3.3, 3.5). This may represent larger, “mezoscale” graph substructures of which

schemas are building blocks. Moreover, even a single schema may in fact be a part of a

larger structure. However, the significance of these structures can only be determined

by doing the significance analysis using randomizations conditioned on lower-order

graphs, and there may be higher-order significant schemas whose subgraphs are not

by themselves significant schemas (in the same way that significant triplet schemas

do not have to be made up of significant pairwise schemas).

3.4.5 Semantics and context of interactions

A noticeable feature of this analysis is that the underlying data treats all interactions

as being the same. In reality, the interactions have both meaning and contextual

information. As we point out in the analysis of “star schemas”, the same schema

topology may in fact represent several underlying “biological reality” schemas, some

of which have directed edges (e.g., representing (de)activation of one of the interactors

by the other), with corresponding temporal information, and some of which present
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a combination of multiple subschemas which are active at different times or in differ-

ent cellular contexts. This information becomes especially important when studying

multicellular organisms, in which different interactions may take place in different cell

types altogether. In this respect, the schema finding approach has two alternative or

complementary potential directions. As more specific interaction data is gathered,

such as that which comes from high-throughput phosphorylation experiments [43],

it will become possible to assign direction to more and more of the potentially di-

rected edges in the interaction networks. Then, when enough such data exist, we

could look for schemas that include edge direction as part of their topology. Sim-

ilarly, if contextual information for a large number of interactions becomes known

and systematized, we can look for schemas either within each context separately, or

include contextual information as part of the schema definition. Alternatively, we

could attempt to extract contextual information ourselves, focusing on the individual

undirected schemas that we presently find, and devising computational means for pre-

dicting such information based, for example, on expression information or literature

search.

Finally, the utility of schema analysis is intimatey connected to the data that is

used as source of interactions and labels. In order to get a more complete biological

picture, it is advisable to use several complementary systems of protein labels; the

schemas obtained using different classes of protein features as labels would display the

multidimemsnional problem of protein function from different angles or perspectives.
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Chapter 4

Conclusion

Protein interaction networks hold promise in shedding light on one of the most im-

portant problems in biology—understanding what proteins do and how they work

together to accomplish their tasks. At the same time, the size and complexity of

protein interaction networks, especially those that are based on high-throughput ex-

periments, challenge the computational biologist to understand the organizational

principles governing the networks. In this thesis, we addressed both of these prob-

lems. We discussed some aspects of the relationship between interaction topology

and function in physical protein-protein interaction networks. In Chapter 2, we fo-

cused on the problem of predicting biological process for unannotated proteins using

physical interaction networks. Network-based function prediction has been domi-

nated by the assumption of guilt by association, and we built upon this principle.

We began by discussing what features of the interaction network need to be taken

into account by a function prediction algorithm, using as illustration several existing

methods that address the same problem. We then introduced a novel network-based

function prediction algorithm which outperforms those methods thanks to its use of

network connectivity and distance.
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Whereas Chapter 2 used interaction networks as a tool for function prediction,

in Chapter 3, we made the object of study the interplay between the interaction

network and individual protein features. We proposed a novel framework for the

study of organizational principles of interaction networks, by introducing the concept

of pathway schemas to describe patterns of interaction between different types of

proteins. We introduced a statistical framework for finding overrepresented schemas

that act as network building blocks; this framework relies on comparing the abundance

of a schema in the real interaction network as compared to a collection of random

networks. By using a randomization procedure that preserves lower-order schema

statistics, our methodology builds a collection of schemas such that the more complex

ones contain novel information relative to the lower-order ones. Coming back to the

problem of predicting biological processes, we demonstrate the use of schema analysis

for predicting the function of uncharacterized proteins and protein families.

In this work, we were guided by the assumption that different interpretations of

protein function—the more abstract and high-level biological processes versus the

more concrete biochemical properties or molecular functions—require different ap-

proaches when studied in the context of protein interactions. When the biological

process view of protein function is taken, the basic assumption is guilt by association,

which predicts that interacting proteins tend to belong to the same process, whereas

when dealing with the molecular features of proteins, it is meaningful to ask about

patterns of integration between proteins of different types. Of course, like any sim-

plifying assumptions, the guilt by association is not without exceptions. If the guilt

by association assumption were unequivocally accurate, either the interactome would

break up into separate disconnected components—which is certainly not the case–or

the vast majority of proteins, which form the largest connected component of the

interaction network, would participate in the same biological process. The latter is in
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fact true in a certain way, since all proteins do participate in one process that is life

of the cell, but this view is obviously too trivial to be meaningful. Therefore, it may

prove useful to look beyond the “guilt by association” assumption and examine the

interplay between proteins of different biological processes. Recent work in network-

based prediction of protein function has begun to utilize inter-protein correlations

between functional terms [51]. Our schema-finding methodology is directly applica-

ble to uncovering over-represented pairs (and higher order topologies) of biological

processes that are found to annotate interacting proteins. In future work, these un-

covered inter-process schemas may prove useful in moving beyond guilt-by-association

approaches for network-based protein function annotation.

Another area in which we see further work is addressing the dynamics of protein

interactions. So far, we have taken a static view of the interactome; this is in part

due to the nature of the interaction data that is currently available. We see two

possible directions to pursue with respect to the dynamic view of the network. One is

to perform further analysis on the current results. For example, we can focus on the

schemas that we have find, and analyze them from the perspective of possible network

dynamics. This is likely to be particularly useful for understanding the meaning of

“star” (linear triplet and Y-shaped) schemas, and preliminary analysis has revealed

pairs of interactions that are unlikely to be present at the same time and place in

the cell (i.e., putative “switches” in the interactome). An alternative approach would

be first to obtain a dynamic view of the interaction network and then extend our

methods to to take this view into account by developing a dynamic-network version

of function-prediction and schema-finding algorithms. Of course, obtaining such a

dynamic view is a problem in itself; since the current state of experimental data

does not readily permit dynamic interpretation of the majority of interactions, this

problem will need to be addressed computationally.
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In this thesis, we have taken two somewhat orthogonal approaches for consider-

ing protein function in the context of protein interaction networks. However, since

biological processes are accomplished via the interplay of proteins of different molec-

ular functions, the problem of predicting the biological processes of proteins is inti-

mately linked to understanding how proteins with different biochemical roles interact

with each other. This thesis has taken a first step towards providing computational

methodology that helps unify and exploit these two differing but related views of

protein function.
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