
Do Commodity SMT Processors Need More OS Research?

Yaoping Ruan, Vivek S. Pai, Erich Nahum†, and John Tracey†

Department of Computer Science, Princeton University
{yruan,vivek}@cs.princeton.edu

† IBM T.J.Watson Research Center
{nahum,traceyj}@us.ibm.com

Abstract

The availability of Simultaneous Multithread-
ing (SMT) in commodity processors such as the
Pentium 4 (P4) has raised interest among OS re-
searchers. While earlier simulation studies of SMT
suggested exciting performance potential, observed
improvement on the P4 has been much more re-
strained, raising the hope that OS research can
help bridge the gap. We argue that OS research
for current commodity Simultaneous Multithread-
ing (SMT) processors is unlikely to yield signif-
icant benefits. In general, we find that SMT
processor simulations were extremely optimistic
about cache and memory performance characteris-
tics, while overlooking the OS overheads of SMT
kernels versus uniprocessor kernels. Using mea-
surement and analysis on actual hardware, we find
that little opportunity exists for realistic perfor-
mance gains on commodity SMT beyond what is
currently achieved.

1 Introduction

Simultaneous Multithreading (SMT), a technique
for improving processor performance, has become
widely available through its incorporation in the
Intel Pentium 4 (P4) series of processors. While
at first restricted to only the high-end Xeon se-
ries, SMT is now also available in the commodity-
oriented non-Xeon P4 processors. As a gross sim-
plification, SMT processors utilize additional hard-
ware threads to utilize otherwise idle functional
units. These additional hardware contexts are gener-
ally presented to the operating system as additional
logical processors. As a result, the P4 has made
many people first-time owners of (logically) dual-
processor systems.

Not surprisingly, the advent of real hardware has
moved research on SMT beyond the simulation-

based studies [7, 9, 14]. Much of the early work has
focused on evaluation [2, 10, 12, 15] and schedul-
ing optimization [1, 3, 8]. In general, the delivered
benefits of SMT on the P4 have not matched the
high expectations from the simulation studies, leav-
ing OS researchers with a possible opportunity to
narrow the gap in performance gains.

What is surprising is not that a gap exists between
the simulation studies and the actual processor, but
rather that the magnitude of the gap is as large as
it is. In general, the simulations used 4-8 threads,
and often had the first few threads seeing additional
performance gains of 70-100% [13]. In comparison,
the P4 has only two threads, and the observed per-
formance gain of the second thread is generally no
more than 20-30%, and often much lower.

We believe that the SMT performance of the P4
is not due to any weakness of the OS, but is instead
what can be expected from SMT on commodity pro-
cessors. Furthermore, we believe that more OS re-
search to support these processors is not necessary,
and will have marginal benefit. We do not arrive
at this conclusion arbitrarily – it is motivated by
several observations: our own work analyzing why
Web server performance on the P4 differs from sim-
ulations, P4 SMT scheduling analysis using mea-
surements from other researchers, and examination
of various scenarios to make commodity processors
more SMT-friendly. The observations that lead us
to these conclusion are discussed in the rest of this
paper, but can be summarized as follows:

Cache miss rates dominate performance– The
cache structure and timings of the P4 are sufficiently
different from the simulations so that the cache
misses are the dominant bottleneck in the workloads
we test. The extremely generous cache models used
in the simulations are the main reason for the per-
formance difference.

1

CPUs 1 2
Kernel SMP UP SMP
SMT ✗ ✗ ✓ ✗ ✓

Ap 2GHz 480 554 636 880 1016
Ap 3GHz 635 719 805 1047 1091
Ap 3G/L3 759 873 978 1297 1476

Fl 2GHz 1224 1481 1589 2082 2186
Fl 3GHz 1604 1821 1993 2352 2265
Fl 3G/L3 1796 2190 2260 2596 2685

Hb 2GHz 454 498 479 629 585
Hb 3GHz 583 609 603 745 629
Hb 3G/L3 650 624 654 797 727

Table 1:Web server throughput in Mbps of the Apache
(Ap), Flash (Fl), and Haboob (Hb) Web servers on three
Xeon models with Hyper-Threading. 3G/L3 is 3GHz
with 1MB L3 cache.

Memory bottlenecks do not improve– The CPU
is so much faster than memory that all of the
memory-related components are nearly fully uti-
lized. Adding a second thread from the same ap-
plication only stresses the same resources.

Synergy is virtually nonexistent – If parallel
threads do provide some synergy by prefetching
code or data for each other, it is dominated by cache
capacity issues. Thus performance losses due to
contention may surpass benefits from the synergy.

Simple scheduling policies suffice– When trying
to schedule two different programs to avoid having
shared bottlenecks, very simple scheduling policies
perform only moderately worse than an idealized
optimal scheduler (20% vs. 23%).

Historically, these problems have worsened– Us-
ing history as a guide, all of the issues that prevent
good SMT performance on commodity processors
are likely to get worse going forward.

2 Understanding SMT Performance

In this section, we examine the performance of the
P4 SMT on Linux. We first examine the perfor-
mance of Web workloads that have been used in
simulation studies and discuss their measured bot-
tlenecks. We also examine the scheduling pos-
sibilities for compute-intensive workloads, using
previously-published data. Finally, we compare
why the measured gains are very different from the
simulation studies.

versus 1P-SMP versus 1P-UP
2T 2P rltv 2T 2P rltv

Ap 2GHz 32 83 39 15 59 25
Ap 3GHz 27 65 41 12 46 26
Ap 3G/L3 29 71 41 12 49 25

Fl 2GHz 30 70 42 7 41 18
Fl 3GHz 24 47 52 9 29 32
Fl 3G/L3 26 44 58 3 18 17

Table 2: Relative throughput gains (in %) – columns
are percentage gains of SMT-enabled uniprocessor (2T)
and 2 processors (2P) versus uniprocessor base case with
SMP kernel (1P-SMP) and uniprocessor kernel (1P-UP).
Rltv column indicates what percentage of 2P gain was
achieved by SMT. For example, at 2GHz with an SMP
kernel, enabling SMT increases Apache’s performance
by 32%. Adding a second processor instead of using
SMT increases performance by 83%, so using SMT cap-
tures 39% of the gain of a second processor.

2.1 Web Server Performance
To compare our results with earlier simulation stud-
ies [7, 9], we run tests of the Apache Web Server
(and others) on the SPECWeb96 benchmark, with
the results shown in Table 1. Although SPECWeb99
is more recent, we use SPECWeb96 because it was
used in the simulation studies. We use three ver-
sions of the Pentium 4 Xeon: a 3GHz processor
with an 1MB L3 cache, and versions without the L3
cache running at 2 GHz and 3 GHz. All processors
are tested on the same motherboard with 4GB mem-
ory and 4 Gigabit Ethernet adapters. The data set
size of the workload is 500MB. For the non-SMT
uniprocessor case, we run both a uniprocessor ker-
nel as well as an SMP-enabled kernel. The kernel
is Linux 2.6.8.1, and the SMP kernel has SMT opti-
mizations.

Apache gains 27-32% with SMT enabled if the
SMP kernel overhead is ignored, but these gains
drop to 12-15% when comparing with a uniproces-
sor kernel, as shown in Table 2. We can also com-
pare the relative gain of SMT versus using a sec-
ond physical processor – this value is roughly 40%
in the SMP base case, and 25% in the uniproces-
sor base case. While running an SMP kernel on
a non-SMT uniprocessor is clearly a bad idea and
leads to a 15% performance loss, simulation studies
use only SMP kernels as their base case. These re-
sults suggest that multicore chips are perhaps more

2

L1-I L1-D L2 Bus CPI
(%) (%) (%) (%) All L1+2

1P 10.5 4.6 4.8 8.7 7.7 6.9
1P/SMT 17.0 5.7 3.8 13.3 10.9 9.3
2P 10.8 4.6 5.2 15.4 8.1 7.2
2P/SMT 17.6 5.7 4.0 18.7 11.0 10.0

Table 3:L1, L2 miss rate, bus utilization, and calculated
Cycles per Instruction (CPI) per thread of the Apache
server on the 3GHz Xeon without L3, using an identi-
cal SMP kernel, on uniprocessor system (1P) and dual-
processor system (2P). The other two processors show
similar miss rates but lower bus utilization.

promising than SMT on this workload. If SMT can
only deliver one-quarter the performance of a sec-
ond processor, using multiple cores may be a better
use of the ever-increasing number of transistors.

Using the CPU hardware performance counters,
we find that SMT-enabled systems present much
higher cache pressure and bus utilization than their
non-SMT counterparts on these workloads. The re-
sults for Apache are shown in Table 3, and show
that L1 Icache and Dcache miss rates jump notice-
ably when SMT is enabled. The drop in L2 cache
miss rates is misleading – the absolute number of
misses has increased, but the capacity problems in
the L1 cache cause more hits in the L2 cache.

This effect is also visible in the bus utilization
and CPI values, which all increase when SMT is
enabled. Even if we normalize bus utilization ver-
sus throughput, the effect is still evident – the uti-
lization per Gbps in % is 13.7 (1P), 16.5 (1P/SMT),
14.7 (2P), and 17.1 (2P/SMT). The fact that the 2P
bus utilization is higher than the 1P/SMT case in-
dicates that any synergistic effects are outweighed
by the capacity pressure. A more detailed analysis
of the microarchitectural events indicates that cache
reference time contributes more than 80% of the to-
tal CPI in the SMT cases.

Cache pressure bottlenecks are most noticeable in
commodity multiprocessor systems, because their
shared memory buses saturate faster. A compari-
son of Apache’s 2P/SMT with the 2P numbers in
Table 1 demonstrates this problem. The 2GHz and
3GHz/L3 cases show a 15% speedup with SMT, but
the non-L3 3GHz case only sees 5%. Not only does
the 3GHz processor have “farther” memory than the
2GHz processor as measured in CPU cycles, but it

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Pr
ob

ab
ilit

y
[S

pe
ed

up
 <

=
x]

Speedup (%)

Figure 1:Speedup CDF of SPEC CPU2000 scheduling:
Min is 12%, Max is 26%, and Mean is 20%.

also lacks the L3 cache that could reduce memory
traffic. For Flash, the performance actually drops
for the 2P/SMT 3GHz scenario.

2.2 Scheduling
One other area of interest for SMT systems is on
CPU-intensive workloads, particularly in multipro-
grammed systems. In particular, these programs
may be more cache friendly, and may have very
different resource utilization characteristics, so run-
ning two different CPU-intensive programs can po-
tentially improve processor utilization. However,
even this attempt of pairing mutually-beneficial pro-
grams has its caveats, and the associated problems
have led a number of researchers to explore opti-
mizing the scheduler for SMT [3, 11].

Rather than recreate this research, we use
previously-published results but analyze them dif-
ferently. In particular, two groups have exam-
ined the pairwise interference/benefit between the
26 programs in the SPEC CPU2000 [2, 12] bench-
mark suite. We use these as input to our analysis,
which basically asks the following question: if all
26 program pairs ran for the same time, and you had
to schedule them for the most benefit, how would
you do it? Since the possible permutations are far
too large to analyze, we use randomized schedules
to simplify the analysis.

We create schedules by randomly pairing pro-
gram and calculating the schedule’s total runtime
using the pairwise interference measurements. By
repeating this process for a large number of trials,
we can determine the range of scheduling benefit.
The CDF of 10 million trials, shown in Figure 1, in-
dicates that the range of resulting speedups is fairly
narrow, with a mean of 20% and an absolute max-

3

Workloads Speedup
Simulation Measurement

SPEC CPU ❶ 80% (2T) / ❷ 20% (2T)
150% (8T)

Apache + ❸ 400% (8T) ❹ 16 - 28% (2T)
SPEC Web ❺ 5 - 15% (2T)

L1 size 32 - 128KB 8 - 12KB
L2 size 256KB - 16MB 256 - 512KB
Mem cycles 62 - 90 225 - 344

Table 4: SMT speedups and hardware threads.❶ uses
the SPEC92 benchmark suite on a system derived from
Alpha 21164 [13].❷ is from [12] using CPU2000 on an
2.5GHz P4 system.❸ comes from [9] using a system
derived from Alpha 21264. Both❹ [6] and❺ [10] use
P4 processors.

imum of 26%. A more typical high-end schedule
achieves 23%.

So, even if we have perfect offline informa-
tion, the ideal scheduler achieves only 3%-6% more
speedup than a random scheduler. One may argue
that a random scheduler could perform as poorly
as only a 12% speedup. While true, the remedy
is also simple. The scheduler could periodically
re-randomize the pairings, bringing all schedules
closer to the median as the number of randomiza-
tions increases. This scheduling policy is extremely
simple, and performs almost as well as an ideal
scheduler. For realistic schedulers, which will need
to collect the pairwise data at runtime, the gap may
be even narrower.

While we use randomized analysis, this argument
is not about the law of large numbers – we as-
sume that the ideal scheduler can achieve the best
schedule, or something close to it. What we are
merely observing is that given enough programs and
the pairwise characteristics of the P4, the average
speedup is simply not that bad. If people run very
few simultaneous programs, then scheduling mat-
ters even less – there are very few choices for the
scheduler to make. Some degenerate cases are pos-
sible, where there may be only two programs in the
system, and they exhibit slowdown when run to-
gether. However, these cases are rare among the
SPEC CPU2000 programs, and the ability to de-
tect this scenario does not imply that a more com-
plicated scheduler is needed.

1

2

3

4

5

6

7

8

9

10

300 MHz
Pentium II

933 MHz
Pentium III

3 GHz
Pentium 4

Pe
rfo

rm
an

ce
 R

ela
tiv

e
to

 P
en

tiu
m

 II

 Memory
 Latency

 Copy
 Bandwidth

 SpecInt
 Score

 Read
 Bandwidth

 Clock
 Speed

Figure 2:Scaling trends in the Intel x86 family

3 SMT History & Future

To understand the potential for commodity SMT
processors, it is useful not only to compare measure-
ments with the simulations, but also to understand
the trends that are likely to shape future processors.
A summary of various studies and measurements is
shown in Table 4.

The hardware differences between the simulated
and measured systems are dramatic, and these
choices influence the speedups obtained. The main
memory latencies suggest that the simulated pro-
cessors have roughly a 750 MHz clock, which is
very slow for modern processors. While the sim-
ulated L1 cache size is much larger than the P4’s, it
is comparable to what AMD is currently shipping,
although the AMD processors are only available at
speeds up to 2.6 GHz. The simulated L2 cache
sizes are not available in any processor, although the
(non-commodity) POWER5 does have a 36MB L3
cache. Not only is this L3 cache much more expen-
sive to access in CPU cycles than the simulated L2,
but the POWER5 is more than twice the clock rate
of the simulated processor.

In short, the simulations use a much slower pro-
cessor coupled with an unrealistically aggressive
memory hierarchy. Given that we observed mem-
ory hierarchy pressure was causing CPU idleness
and increasing CPI, the simulated processors would
undoubtedly demonstrate much better speedup than
any processor available today. At issue is whether
the system balance of the simulated processors is
likely to occur in the future.

A brief summary of Intel processor scaling mea-
surements, shown in Figure 2, suggests that com-
modity processors are likely to move further away
from the simulated processors over time. In three

4

processor generations, clock speed has increased
10-fold, but memory copy bandwidth has only in-
creased 6.5-fold, and latency is barely improving
in absolute terms. Latency is actually getting much
worse in relative terms, because the 2-fold decrease
in latency translates to a 5-fold increase in the num-
ber of clock cycles needed to access main memory.
Even if the pace of CPU clock rate improvements
slows, the memory latencies would still have to im-
prove dramatically to match the simulations.

Other processors, not targeted at the commod-
ity market, may fare better with SMT, since they
have to target codes other than the cache-friendly
SPECInt-like programs that benefit highly from
high clock rates. In absolute terms, the IBM
POWER5 [5] (which also features SMT) has a bet-
ter cache hierarchy than the P4, and in relative
terms, its main memory will appear closer due to its
lower clock rate. The upcoming Sun “Niagara” pro-
cessors [16], which are chip multithreaded (CMT)
may also have different memory hierarchy behav-
ior than the P4. Simulations suggest that their
shared L2 caches may benefit from capacity man-
agement [4].

4 Conclusion

We have shown that the current performance of
commodity SMT is not an aberration, but rather
the result of a smaller and slower memory hierar-
chy than modeled by simulations. The server-style
applications we have tested look unlikely to ben-
efit from any SMT-specific optimizations as long
as they continue to be bottlenecked on the cache
and memory system. For compute-intensive appli-
cations, an analysis of randomized scheduling sug-
gests that it will perform within a few percent of
an ideal scheduler, without requiring anya priori
knowledge or extra mechanism.

Our conclusion from these investigations is that
commodity SMT processors do not require any sig-
nificant amount of OS research, since their bottle-
necks are mostly hardware-related. Given the trends
in hardware performance, this situation is likely to
hold true for the foreseeable future. The only sig-
nificant opportunity we uncovered was not related
directly to SMT, but rather to the overheads of SMP
kernels in general. These overheads tended to re-
duce SMT performance significantly, and may be

addressable. Their impact appears to be larger than
any gains achievable from SMT-specific scheduling.

References

[1] P. Benmowski. Hyper-Threading Linux.LinuxWorld,
Aug. 2003.

[2] J. Bulpin and I. Pratt. Multiprogramming performance
of the Pentium 4 with Hyper-Threading. InWork-
shop on Duplicating, Deconstructing, and Debunking
(WDDD04), June 2004.

[3] J. R. Bulpin and I. A. Pratt. Hyper-threading aware pro-
cess scheduling heuristics. InUSENIX 2005 Annual Tech,
To appear, Anaheim, CA, April 2005.

[4] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Performance of multithreaded chip multiprocessor and
implications for operating system design. InUSENIX
2005 Annual Tech, To appear, Anaheim, CA, April 2005.

[5] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5
chip: A dual-core multithreaded processor.IEEE Micro,
24(2):40–47, March 2004.

[6] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A.
Miller, and M. Upton. Hyper-threading technology archi-
tecture and microarchitecture.Intel Technology Journal,
6(1):4–15, Feb. 2002.

[7] L. McDowell, S. Eggers, and S. Gribble. Improving
server software support for simultaneous multithreaded
processors. InPPoPP 2003, pages 37–48, San Diego,
CA, June 2003.

[8] J. Nakajima and V. Pallipadi. Enhancements for hyper-
threading technology in the operating system: Seek-
ing the optimal scheduling. InProc. of the 2nd Work-
shop on Industrial Experiences with Systems Software
(WIESS’02), Boston, MA, Dec. 2002.

[9] J. Redstone, S. Eggers, and H. Levy. An analysis of op-
erating system behavior on a simultaneous multithreaded
architecture. InASPLOS 2000, pages 245–256, 2000.

[10] Y. Ruan, V. Pai, E. Nahum, and J. Tracey. Evaluating
the impact of simultaneous multithreading on network
servers using real hardware. InSigmetrics 2005, To ap-
pear, 2005.

[11] A. Snavely and D. Tullsen. Symbiotic job scheduling
for a simultaneous multithreaded processor. InASPLOS
2000, pages 234–244. ACM Press, 2000.

[12] N. Tuck and D. Tullsen. Initial observations of a simulta-
neous multithreading processor. InPACT 12, Sept. 2003.

[13] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting choice: Instruction fetch and issue
on an implementable simultaneous multithreading pro-
cessor. InISCA 23, pages 191–202, 1996.

[14] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. InISCA 22,
1995.

[15] D. Vianney. Hyper-Threading speeds Linux.IBM devel-
operWorks, Jan. 2003.

[16] D. Yen. Throughput computing: Driving down the cost
of network computing. http://www.sun.com/events /ana-
lyst2003/presentations/PapadopoulosYen WWAC 022503.pdf.

5

