
Finding Speed Bumps: Web Server Performance Analysis

and Anomaly Detection via Wide-Spectrum Microbenchmarking

Yaoping Ruan Michael S. Cohen† Vivek S. Pai

Department of Computer Science
† Department of Electrical Engineering

Princeton University

Abstract

We investigate the use of parameterized mi-
crobenchmarks to explore Web server perfor-
mance over a wider range of workloads than is tra-
ditionally represented in “realistic” benchmarks.
We find that these “wide-spectrum” tests not only
give insights into the strengths and weaknesses
of various server software, but also reveal long-
standing performance problems that have either
been undiscovered or improperly diagnosed. To
enable our approach, we have developed “Flexi-
client”, a componentized testing system that al-
lows the easy creation of parameterized workload
generators to test HTTP-based servers.

Even with simple static file workloads, we un-
cover a number of performance problems on both
popular and experimental systems, including the
following: severe deterioration of FreeBSD’s min-
core system call performance with growing mem-
ory size on event-driven servers, process sched-
uler overhead crippling persistent connection ben-
efits for Apache on Linux, and low multiproces-
sor performance gains on Linux. We addition-
ally discover some other interesting behaviors that
run counter to conventional wisdom: the most
popular web server benchmark software generates
surprisingly small working sets, and select-based
servers may not suffer as much from idle persis-
tent connections as previously assumed.

1 Introduction

Network servers continue to be a dominant form
of information delivery for a large and growing
worldwide population of Internet users. We be-
lieve that several factors will drive the demand
for network-based information delivery: increases
in user population, last-mile bandwidth improve-
ments, and the growing quantity of online infor-
mation. Web services are currently in their in-
fancy, and their widespread adoption may drive a

surge in automatically-generated web traffic, fur-
thering the load on network servers.

Researchers within academia and industry have
responded to this trend both by developing opti-
mizations for servers and by developing mecha-
nisms to test their performance. One of the chal-
lenges in this work is locating the performance
bottlenecks in these increasingly complicated sys-
tems. Benchmark developers have focused on
developing reality-derived macrobenchmarks that
attempt to model many different aspects of be-
havior seen in “average” systems [5, 22]. While
this approach may be useful for server sizing, it
hides many performance details resulting from
strengths and weaknesses in HTTP software, op-
erating system implementation, and hardware.

One approach to exposing these important de-
tails is using narrow, focused microbenchmark
techniques. These types of tests analyze perfor-
mance under very specific and sometimes unreal-
istic conditions to test particular features of the
server. While these tests are clearly useful for
gaining insight into specific aspects of server per-
formance, their widespread acceptance is ham-
pered both by the view that these narrowly-
focused tests may not reflect real-world perfor-
mance, and also by the lack of consensus on ex-
actly how these tests should be conducted. With-
out consensus, results from different sources are
rarely comparable.

Our goal in this research is to explore a wide
spectrum of server performance by combining el-
ements of micro- and macrobenchmarks. We are
particularly interested in characterizing overall
performance on varying web server workloads, ex-
amining the strengths and weaknesses of different
server/OS/hardware combinations, and providing
a testbed to fairly evaluate different server soft-
ware and optimizations. Using both production
and experimental server software, we run a bat-



Name Primary Axis Seconday Axis Purpose

Single File file size requests / connection maximum performance

Hot/Cold total # connections % hot connections persistent connection overhead

FileSet data set size locality parameter in-core/disk performance

Degradation data set size locality parameter disk-bound performance

Table 1: Summary of the workload generators

tery of tests on different OS/hardware combina-
tions to provide a comparative analysis of per-
formance. Within each set of tests, the individ-
ual test configurations vary only slightly from run
to run, allowing more insight into what changes
in workload are responsible for differences in per-
formance. Additionally, replacing or modifying
the server software can provide insight into the
strengths and weaknesses of other servers. Our
test framework, called Flexiclient, is designed to
be highly configurable and automatic, so we ex-
pect that as other interesting scenarios arise, we
can incorporate them into our framework.

The outline of the rest of this paper is as fol-
lows: We first discuss the general design of our
wide-spectrum tests in Section 2, followed by re-
sults in Section 3. Our test framework, Flexi-
client, is discussed in Section 4, and some avenues
for future work are covered in Section 5. We dis-
cuss related work in Section 6.

2 Design

To meet our goal of testing a wide scenario of
workloads, we design a series of workload genera-

tors that cover a broad range of the performance
spectrum. Each workload generator is a program
parameterized along two axes, allowing us to gen-
erate large numbers of test scenarios with simi-
lar characteristics. The individual workloads at-
tempt to measure different aspects of the server’s
performance: upper bounds, large filesets, idle
connection overhead, and disk behavior. While
any particular data point may not provide great
insight into server behavior, the trends in perfor-
mance across multiple tests may be more valu-
able than a single macrobenchmark. The work-
load generators are summarized in Table 1 and
are discussed individually later in this section.

The rationale for parameterized workload gen-
erators is the observation that fixing certain val-
ues, such as average transfer size or locality, is

likely to omit interesting workloads that may
be present in important real-world environments.
For example, a site serving banner ads (e.g. Dou-
bleClick) is likely to be handling a relatively
small set of large transfers, whereas a community-
building site (e.g. GeoCities) is likely to have a
very large set of files accessed with low locality.
The SpecWeb static file workload is modeled af-
ter a web hosting center, and uses a file popular-
ity model following a Zipf distribution [25] with
alpha value of 1.0. However, analysis of actual
web access logs have shown alpha values ranging
from 0.6 [7] to 1.5 [18], leaving possibly large por-
tions of the performance space underrepresented
in standard benchmarks.

Furthermore, we also believe that using a large
number of narrowly-tailored tests is more likely
to aid in performance debugging. Comparing re-
sults from tests with only a single changed vari-
able provides a simple way of determining which
aspect of a workload is causing performance prob-
lems. For example, if two tests using the same
workload only differ in the data set size used, any
performance difference is likely to result from the
parts of the server/OS that are related to data set
size. In contrast, when tests scale many factors
with throughput, developers do not have a sim-
ple way of identifying which changed factor is the
throughput limit.

Our approach to characterization via a suite
of tests has parallels in the computer architec-
ture community, where benchmarks such as Spec-
CPU [21] use a suite of 26 tests to determine
the expected performance of a processor. These
tests are split into two groups, where one is dom-
inated by integer performance and the other is
largely floating-point. The differences stem from
the source of the tests – the programs in Spec-
CPU are drawn from real programs, while our
workload generators are largely synthetic. How-
ever, early efforts at CPU benchmark often in-



class size 100 – 900 1 – 9 KB 10 – 90 KB 100 – 900 KB

class weight 35% 50% 14% 1%

file size 1 2 3 4 5 6 7 8 9

file weight 3.9% 5.9% 8.8% 17.7% 35.3% 11.8% 7.1% 5.0% 4.4%

Table 2: Class and File Weights – In our Fileset workload, we use the same request distribution
characteristics as SpecWeb. Each class consists of 9 evenly-spaced files, and the file’s probability is the
class weight times the weight within the class.

volved synthetic workloads, and we expect that
over time, our testing framework will accommo-
date workloads derived from a variety of web sites.

2.1 Single File Workload

In order to determine the maximum capacity of
the system, this test has all clients continuously
ask for the same file. These conditions are ad-
mittedly unrealistic, but we expect that after the
first response, hardware and software caches are
loaded and the file is always served in the fastest
path possible in the server. Successive runs of
the test use different files, and the set of files re-
quested during the various tests ranges from 100
bytes to one megabyte. Non-persistent connec-
tions as well as persistent connections of various
durations (number of requests served per connec-
tion) are tested. We use the term “groups” to
refer to the number of requests per connection.

The resulting graph from this test quickly
shows two aspects of a server’s performance: its
maximum performance at various file sizes, which
provides a baseline for other tests, and the differ-
ence between its per-connection and per-request
overheads. These differences are apparent as a
“spread” of values at a given file size. A large ratio
of spread size to bandwidth indicates that the per-
connection cost is significantly higher than the
per-request costs. Likewise, a narrow spread indi-
cates that the per-request processing is the dom-
inant component of processing cost. Particularly
with small files and aggressive servers, per-request
costs can be dominated by TCP setup/teardown
overheads. In these situations, using persistent
connections may significantly improve server ca-
pacity.

2.2 Hot/Cold Workload

This test measures the overhead of idle connec-
tions when using persistent connections. In wide-

area network environments, the use of persistent
connections can reduce the delays associated with
TCP connection establishment [16], but idle con-
nections can cause extra processing on the server
and reduce its performance. Idle connections
may arise from client browsers that have finished
downloading all of the objects for one page and
are waiting for the user to select the next link.
Server capacity can increase due to the elimina-
tion of TCP overhead, but it can also degrade
due to managing the idle connections. At the
same time, server administrators must consider
the benefit to users stemming from eliminating
many of the TCP round-trip delays for connec-
tion establishment.

During the test, each client opens a number of
connections to the system under test, but only a
given percentage of the connections have HTTP
requests in progress at any time. The connec-
tions which are sending requests are called “hot”
connections, while connections which do not have
any HTTP requests in progress are called “cold”
connections. Over the course of the test, all con-
nections are hot at some time to prevent the
server software from identifying hot connections
and short-circuiting the test. The test measures
performance for different numbers of total con-
nections as well as different percentages of hot
connections.

2.3 Fileset Workload

To measure the impact of data set size and doc-
ument popularity on server performance, we bor-
row the workload profile of the SpecWeb [22] tests.
The dynamic object sizes in this test attempt to
model the requests of real web sites in a web host-
ing environment. In this model, the data set size
is controlled by specifying the number of “sets.”
Each set consists of four classes of files, and each



Data Set α = 1.0 α = 0.0
Size(MB) 50% 90% 95% 99% 50% 90% 95% 99%

512 0.79 9.48 16.69 49.02 2.49 15.15 25.53 56.47

1024 1.18 17.35 30.95 93.11 4.98 30.26 51.03 112.94

2048 1.75 31.83 57.51 176.25 9.93 60.33 101.79 225.33

4096 2.57 58.47 107.27 333.37 19.82 120.52 203.32 450.12

Table 3: Working Sets for Fileset workload – For each data set size, we calculate the working set size
(in MB) for various memory hit rates. The sizes are for the Zipf parameters of one (default) and zero.

class contains nine files. The details about the file
weights and class weights are given in Table 2.

An other mechanism used to create unequal
popularity is to weight the various sets using the
Zipf distribution. In this model, the nth most
popular object is given a weight of 1/n. Vari-
ations of the Zipf distribution introduce a fac-
tor, α, which adjusts the popularity by making
the weight 1/nα. The default Zipf distribution,
which is used in SpecWeb, uses an α value of 1.0.
Larger values for α concentrate the probability,
while values near zero cause the set’s probability
to approach random.

We depart from the SpecWeb usage model by
testing throughput at various data set sizes and
by adjusting the α factor as well. The resulting
graph shows the system capacity not only as the
data set size changes, but also as document popu-
larity changes. We hope that these changes allow
sites to find a data point that is reflective of their
document popularity distribution, rather than as-
suming a distribution pattern intended to reflect
some “average” site. By testing a range of data
set sizes, we expect to see system performance on
in-memory workloads and disk-bound workloads.

2.4 Degradation Workload

To our surprise, we found that the Fileset work-
load, modeled after the SpecWeb workload, pro-
duced much higher locality than the data set sizes
might imply. The result was that while the actual
data set of this test was large, the working set of
the files being actively accessed was fairly small.
In the Fileset workload, the 36 files which com-
prise one set consume a total space of roughly
5 MB, yielding an average static file size of over
130 KB. However, with the unequal selection of
classes and files within a class, the average dy-
namic object size is roughly 15 KB.
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Figure 1: Memory size needed for various hit rates
- 2GB data set size with Fileset workload

The calculated working set sizes for the File-
set workload are shown in Figure 1 and Table 3.
Note that even the 99% in-memory hit rates re-
quires a working set only about one-tenth the size
of the entire data set. The high cost of disk ac-
cess relative to memory access will cause notice-
able performance degradation even at a 1% miss
rate. However, other aspects of the system, such
as cache locality, TLB performance, etc., may be
under-tested in this scenario.

To better understand the effects of larger work-
ing set sizes, we devised a new workload that elim-
inates the size bias and uses a large number of
fixed-size files to generate the working set. We
considered using 15KB files to have an average
transfer size that matches our previous workload.
However, it would have required roughly 68 files
to occupy 1 MB of space, or roughly 70,000 files
per GB. To reduce this number slightly, we chose a
fixed size of 50KB, similar to what an image serve
might experience. We still preserve the ability to
adjust the locality of the workload by adjusting
the Zipf value α.
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Figure 2: Flash/Linux Fileset workload
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Figure 3: Flash/Linux Degradation workload

3 Experimental Results

We run our full suite of tests to evaluate
OS/hardware combinations, and we also examine
the performance of some other web server pack-
ages. Our original goal was not to search for any
specific performance problems, but rather to con-
duct comparative performance analysis. However,
in the process of testing, we observe some interest-
ing performance anomalies, some results that run
counter to conventional wisdom, and some evi-
dence that addresses the complexity of comparing
performance of different operating systems. We
present our experimental setup and these com-
parative results in this section.

3.1 Experimental Setup

Our test server is a Pentium III Xeon running
at 933 MHz. This machine uses an Intel SBT2
motherboard with 1 GB of physical memory and
a Promise Ultra DMA 66 IDE controller for a
60GB 5400 RPM Maxtor Diamond Max Hard
Drive. This motherboard is capable of dual pro-
cessor support, but we run it as a single-processor
system unless otherwise indicated. All clients and
the server are connected to an Intel Express Gi-
gabit Ethernet switch using Intel E1000 Gigabit
Ethernet adapters. All machines are configured
to use the default (1500 byte) MTU. The clients
consist of six Pentium II machines running at 300
MHz, with 128 MB of memory per machine. The
relatively slow clients do not present any perfor-
mance bottlenecks in our tests, since our client
software uses the same event-driven design com-
mon in high-performance servers.

We test various hardware/OS/server combina-
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Figure 4: Flash/FreeBSD Degradation workload

tions and present some of the more surprising ob-
servations below. For uniprocessor testing, we
use the FreeBSD 4.5 operating system and Red-
hat 7.1 with the Linux 2.4.17 kernel. For multi-
processor testing, we use the Linux 2.4.10 kernel
with SMP support. We use the Flash [19] and
Apache 1.3.20 [1] web servers to test both experi-
mental event-driven servers as well as production
multiple-process servers.

3.2 Linux Fileset & Degradation workloads

In our initial testing of the workload generators,
we observed some surprising results when running
the SpecWeb-inspired Fileset workloads. These
results led us to the creation of the Degradation
workload. The results for Fileset workload on
Linux with the Flash Web Server are shown in
Figure 2.

The qualitative properties of the graph are not
surprising – the performance tends to drop once
the data set size exceeds the size of physical mem-
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Figure 5: Flash/Linux Fileset workload, dual pro-
cessor
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Figure 6: Flash/Linux Fileset workload, dual pro-
cessor, two processes

ory, which is 1 GB for our server. The rate of
the drop in performance, however, is surprising.
The line that models the SpecWeb workload is
the line with the α value 1. Even at a data set
size 50% larger than the machine’s physical mem-
ory, the performance drop is only on the order of
15%. Naively, we would expect that one-third of
the requests would result in cache misses, causing
a sharp drop in throughput as disk performance
becomes the limiting factor in performance. How-
ever, as the cumulative distribution plots in Fig-
ure 1 shows, one property of the SpecWeb file fre-
quency distribution is that surprisingly high hit
rates can be achieved with small amounts of mem-
ory.

The Degradation workload was designed to
place more stress on the filesystem, and the re-
sults in Figure 3 confirm its premise. While
the larger average file size causes the in-memory
bandwidths to be higher, the performance drops
sharply when the data set size exceeds the sys-
tem’s physical memory. The effect is most no-
ticeable when compared to the Fileset results
in Figure 2. The Degradation workload results
for Flash on FreeBSD are shown in Figure 4,
with a marked performance improvement over
Flash/Linux on this test. As we will see in later
tests, FreeBSD’s disk-based performance outper-
forms Linux on both web servers tested.

3.3 Linux single / dual processor

To measure opportunities for parallelism, we add
a second processor to the system and rerun the
Fileset workload tests on Linux. Surprisingly, we

find that even on a workload that one assumes is
embarrassingly parallel, the performance gains we
see are relatively modest.

The results for the Flash Web Server are shown
in Figures 5 and 6, run using both one and
two instances of Flash on two processors. Since
Flash uses an event-driven architecture, we have
the capability of running one main Flash pro-
cess on a two-processor system. In this sce-
nario, we expect that performance gains may
come from top-half/bottom-half parallelism in the
kernel. With interrupt-intensive workloads like
web servers, one processor can handle low-level
interrupts while the other processor handles sys-
tem calls.

Figures 7 and 8 show the performance of the
Apache web server using one and two proces-
sors. We see performance gains in the range of
30-50% on the in-memory portions of the work-
load even though the multiple-process model of
Apache should easily take advantage of a second
processor. However, the Apache server performs a
large number of system calls per request, and con-
tention may cause the limited performance gain.

While the absolute performance gains using
Flash are higher than that seen for Apache,
the relative gain using Flash is lower. Neither
server, however, sees linear scalability. Even top-
half/bottom-half parallelism only yields marginal
gains. We have not explored what causes the
bottleneck in these tests. One possibility is that
the two processors are inefficiently sharing inter-
rupts. In this scenario, using multiple network
cards with processor interrupt affinity is a com-
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Figure 7: Apache/Linux Fileset workload
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Figure 8: Apache/Linux Fileset workload, dual
processor
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Figure 9: Flash/FreeBSD Fileset workload
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Figure 10: Flash/FreeBSD Fileset workload with-
out mincore

mon technique for improving performance. How-
ever, if network access was the limiting factor,
we would expect larger gains for Apache, which
stresses the network less than Flash.

3.4 FreeBSD mincore performance

When we ran the Flash web server on FreeBSD,
we were quite surprised with the initial results for
the Fileset workload. These results are shown in
Figure 9, and have some surprising traits com-
pared with the results in Figure 2 for Linux: the
absolute performance numbers are much lower
than those for Linux on the same hardware, the
server performance drops even when the entire
workload should fit in physical memory, and the
performance drop seems correlated with the work-
ing set size and locality. No sharp performance
drop is visible once the data set exceeds physical
memory size, but this effect is less of a concern
than the poor in-memory performance.

We immediately suspected something related to
the virtual memory (VM) system since the Flash
web server aggressively uses memory-mapped files
with caching, avoiding filesystem/disk access for
in-memory workloads, and this problem does not
occur with the results of Apache, which is shown
in Figure 11. For in-memory workloads, once
the cache is loaded, we expect no cache misses
or memory map/unmap operations. In order to
avoid page faults when sending files, the Flash
web server heavily relies on the mincore system
call to determine the memory-residence of cached
memory mapped pages. This call is one of the few
VM-related system calls to be expected on cached
workloads, so we tested the server with this call
elided.

The performance results of a mincore-less ver-
sion of Flash on this test are shown in Figure 10,
confirming our suspicion that the performance of
the mincore system call on FreeBSD is respon-
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Figure 11: Apache/FreeBSD Fileset workload

sible for the poor performance we observed. To
the best of our knowledge, this problem has never
been documented, despite the growing popular-
ity of memory-mapped event-driven servers. Af-
ter corresponding with a FreeBSD maintainer, we
received a patch that replaced a linked list VM
map structure with a splay tree, and the perfor-
mance of the mincore-enabled Flash returned to
levels comparable to Figure 10. The acceptable
performance of mincore on Linux is likely due to
its relatively recent introduction, where tests with
or without mincore enabled show little difference.

3.5 Linux vs FreeBSD

Comparing the Fileset results for Linux and
FreeBSD (Figures 2 and 10) also reveals some
other interesting performance comparisons. Note
that the in-memory performance of the Linux
tests yields a bandwidth that hovers near 400
Mb/s. In comparison, the same portion of
the FreeBSD graph shows performance that is
roughly 5% lower, in the range of 380 Mb/s. In
this portion of the performance spectrum, Flash
running on Linux shows a slight edge. How-
ever, the performance for out-of-memory work-
loads is very different for these two operating sys-
tems. As the data set size approaches 2 GB, the
FreeBSD performance degrades to roughly 200
Mb/s. In contrast, the Linux results show much
steeper degradation, on the order of 100 Mb/s.
We have not explored the details of why this re-
versal occurs, other than noting that different as-
pects of the operating system are stressed in the
two regimes. We do note, however, that these
results demonstrate why narrow-spectrum bench-

marks may not reveal many of the interesting
facets of performance.

The results for the Apache server are shown
in Figures 7 and 11, and a similar pattern can
be observed. The in-memory Linux results are
marginally higher than those for FreeBSD, but the
out-of-memory portions of the test show greater
degradation on Linux. When compared with
Flash, Apache shows relatively smaller degrada-
tion when accessing disk, but this effect is due
to its lower in-memory performance. The disk-
bound results for Apache show lower absolute
numbers than Flash.

3.6 Persistent Connection Behaviors

Our tests also give some insight into the behav-
ior of persistent connections on different servers,
including some results that run counter to conven-
tional wisdom. The single-file tests in Flash and
Apache are shown in Figures 12 and 13. These
tests measure the bandwidth obtained by repeat-
edly requesting a file, and the various lines in the
graph show the effects of using the same connec-
tion for varying numbers of requests. While these
tests are unrealistic, they do show the maximum
bandwidth achievable by the servers, both for
non-persistent connections and for various num-
bers of requests on each persistent connections.

The “spread” of the lines in these figures shows
the maximum capacity benefit of persistent con-
nections at various file sizes. A large spread
indicates potential capacity improvement by us-
ing persistent connections. However, even us-
ing persistent connections with a small-spread
server may have latency benefits by avoiding most
round-trip delays associated with TCP connec-
tion setup/teardown.

The more surprising results are shown in Fig-
ures 14 and 15, where the Hot/Cold workload is
used to measure the impact of persistent connec-
tions. In both graphs, the performance initially
improves as the total number of connections in-
creases. We attribute this behavior to the delay
between the server finishing one response and the
client starting the next request. This effect stabi-
lizes as the number of in-progress requests over-
comes the latencies. The results for Flash then
stabilize, whereas the Apache performance drops
with increasing numbers of connections.
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Figure 12: Flash/Linux single file workload
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Figure 13: Apache/Linux single file workload
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Figure 14: Flash/Linux Hot/Cold workload
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Figure 15: Apache/Linux Hot/Cold workload

The Flash results are qualitatively intuitive
(more idle connections degrade performance) but
quantitatively surprising – having 99% of the con-
nections being idle causes less than a factor of 8
drop in performance, while 98% of the connec-
tions being idle causes only a factor of 4 drop
in performance. By the time the percentage hot
reaches 5%, less than half the capacity of the sys-
tem is being wasted on idle connections. Fur-
thermore, the performance drop is mostly stable
with the total number of connections, indicating
that busier servers may not suffer disproportion-
ately from cold connections as long as the percent-
age of cold connections is comparable to less-busy
servers.

3.7 Linux Scheduler Overhead

The surprising aspect of the Apache on Linux re-
sults is the degradation of performance with in-
creasing numbers of connections, especially when
all connections are busy. In fact, the 100% busy
line performs worse than the 1% busy line and

the degradation rate seems to be related to the
number of active connections/processes. We can
likely eliminate the filesystem and the VM sys-
tem as possible causes, since this test uses only a
single 1KB file.

What remains after eliminating these choices
is the process management overhead in Linux,
and to confirm our suspicion, we run the same
test on FreeBSD. The results, shown in Fig-
ure 16, demonstrate that this problem seems to
only occur with Apache on Linux, suggesting an
OS issue rather than an application-level prob-
lem. Further investigation suggests the reason
for Apache’s degradation appears to be Linux’s
scheduler, which scans all ready processes at every
context switch. This behavior is consistent with
the observation that having 99% of the processes
idle is yielding better performance than having all
processes busy.

Our suspicions were confirmed by testing a new
scheduler in development by the Linux kernel
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Figure 16: Apache/FreeBSD Hot/Cold workload
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Figure 17: Apache/Linux Hot/Cold workload
with O(1) scheduler

community. This scheduler, known as the O(1)
scheduler, is targeted toward large SMP machines
and does not degrade with the number of ready
processes. The results from this scheduler are
shown in Figure 17. It appears that other re-
searchers may have been unknowingly affected by
this problem. An earlier study on the perfor-
mance of persistent connections [6] found few ben-
efits using a combination of Linux and Apache.

4 Flexiclient

To facilitate the tests in the previous section, we
developed a composable testing framework called
Flexiclient, which consists of four components:
the workload generators, the testing configura-
tions, the client core, and the report generators.
The testing process is automated by scripts that
control the entire end-to-end process for our pre-
defined suite of tests. However, the individual
components can be run independently and used
in other contexts. The main difference between
Flexiclient and earlier benchmark tools is the in-
tended scope of operation – our goal is to develop
a simple framework that enables the development
of new workloads and new tests, rather than a
single monolithic testing tool.

One of the novel features of Flexiclient is the
separation of workload generation from the me-
chanics of request/response management. The
workload generators are separate programs that
communicate with the “client core” via Unix
pipes. As a result, tailoring benchmark workloads
becomes relatively simple, requiring no knowledge
of HTTP mechanics. Furthermore, workloads are

composable, so that behaviors can be changed
across a number of workloads without altering
each test. For example, developers can easily al-
ter web server workloads to customize cacheabil-
ity behavior when testing caching proxy servers.

The client core in Flexiclient performs all of
the HTTP request generation and response pro-
cessing in an efficient manner, using the same
kind of event-driven framework used by high-
performance servers. The core can currently issue
requests at predetermined rates or in an closed-
loop infinite-demand model. If client machines
are of the same caliber as the server under test,
only a small number of client machines should be
required to saturate the server. By reducing the
hardware requirements of the test infrastructure,
we expect that it will have a wider appeal than
more resource-hungry tests.

The typical usage for this tool is the follow-
ing: a configuration file specifying the server ma-
chine and the set of clients is created, and the
testing scripts are started. A controller process
launches Flexiclient processes on each of the client
machines and starts the test. The script will run
each of the workload generators in dozens of con-
figurations, yielding hundreds of individual test
results. These results are then collected by the re-
port generators, and the final output is produced.
This process is repeated for each server software
package under test.

5 Future Work

For this paper, we intentionally focused only
on the performance of static HTTP requests to



demonstrate the power of our wide-spectrum mi-
crobenchmark approach. However, our frame-
work is well-suited for other types of HTTP test-
ing, and we will pursue these in the future. Two
main avenues for future development of Flexi-
client are incorporating a wider variety of work-
loads, and handling more complicated types of
traffic.

With respect to other workloads, we currently
do not address the issue of dynamic content or
web services, and these may be interesting ar-
eas for the development of new workload gener-
ators. The issues that naturally arise would be
what kinds of dynamic content to include and
how to meaningfully test its performance. We ex-
pect to begin by incorporating some “standard”
kinds of CGI applications, such as ad rotation,
customization, and search. However, since the
Flexiclient core is largely workload-agnostic, the
mechanics of adding such generators should be
relatively simple.

We have also used only a small subset of HTTP
features, limiting ourselves current to just the
GET method and some pipelining. However, we
could easily begin using some of the features that
are heavily used by real client but neglected in
current HTTP testing, such as conditional fea-
tures (e.g., if-modified-since) or byte-range sup-
port. A more ambitious approach would be at-
tempting to use Flexiclient for other HTTP en-
vironments, such as proxy caches. While spe-
cialized tools such as Web-Polygraph [23] exist
to test proxies under realistic traffic loads, Flexi-
client’s philosophy of wide-spectrum testing may
locate performance bottlenecks in proxy servers
in much the same way that we have shown with
web servers.

6 Related Work

Several researchers have used both narrowly-
targeted benchmarks and instrumentation to ex-
amine particular areas of operating system and
web server performance. Yates et al. [24] exam-
ined operating system behavior under web work-
loads. lmbench [14] is a portable suite for OS
performance analysis. And Seltzer et al. [20] pro-
posed application-specific benchmarking. But we
differ from them by the workloads and are looking
for wider range performance characteristics.

Microbenchmarks are also used for system op-
timization. Banga et al. [4] have examined the
performance drain caused by idle connections.
Maltzahn et al. [12] have examined disk behavior
and memory page fault behaviors for web proxy
workloads. Some of these developments led to
improvement of existing server software. For ex-
ample, Hu et al. [9] optimized the behavior of
Apache. Other servers have used entirely differ-
ent software architectures to achieve performance
– some in user-space [8, 19], and others inside the
kernel [11, 10]. Some of these systems use special
instrumentation for the measurement and the mi-
crobenchmarks used in them are heavily purpose
oriented compare to those we discuss here.

We share some similarities with existing web
server benchmarks though we have different ap-
proaches and intended goals. WebStone [15] has
grown from relatively simple tools released by
SGI to a family of benchmarks. Arlitt et al. [2]
performed some of the earliest studies of traf-
fic properties, while Manley et al. [13] examined
how those properties were changing over time.
These types of studies fed back into the test-
ing arena, and WebStone’s early popularity with
hardware vendors has been largely supplanted
by the committee-governed SpecWeb [22] bench-
marks, which attempt to generate realistic traf-
fic. Study of more accurate profile modeling of
request characteristics led to the development of
the SURGE macrobenchmark [5]. This focus on
more accurate traffic generation can be incorpo-
rated into future workload generators in Flexi-
client. These benchmarks try to evaluate system’s
overall performance while our work provides in-
sights for performance debugging.

In the area of measurement tools, httperf [17]
is a benchmark tool that extends some of the
overload generation work from S-Client [3] while
adding support for a variety of workloads. While
we share the goals of flexibility as httperf, we fo-
cus on wide-spectrum testing as a component of
test infrastructure development.

7 Conclusion

This paper presents a new technique for exploring
server performance, wide-spectrum testing via pa-
rameterized microbenchmarks. We describe the
framework, known as Flexiclient, that we have



developed to automate the entire process. This
approach allows us to characterize server perfor-
mance over a wide range of workloads and to more
easily understand the effects of workload variables
on performance. We show that even with a seem-
ingly simple set of workloads, we can uncover a
range of performance problems in widely-studied
servers and operating systems and often identify
the exact source. We believe that this approach
supplements the “realism”-oriented macrobench-
marks that are becoming more popular in server
testing.
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