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Abstract

Challenged networks refer to networks with unconventioiféitdlties, such as intermit-
tent connectivity, large delay, and others. Their uniquemmnication characteristics
create new challenges for the research community and denmetisolutions to achieve
efficient routing and maintain existing network services.

In this dissertation, | explore new optimizations to conthatse challenges under the
unifying theme of achieving situation awareness. In paldiG | study four categories of
networks that contain a range of disruptions: highly vagymobility, lossy radio links,
opportunistic connectivity, and intermittent connedtivi

The first category consists of networks with a varying moppiattern found in many
challenged mobile networks. | propose a model-based apiptoaapture mobility phase
changes in order to maintain efficient routing. When evathiaging a real-world mobil-
ity trace, our approach leads to an improvement of up to 120p&cket delivery rate.

The second category consists of networks with lossy linkaceSdata collection is
frequently disrupted by the difficulty of identifying gooihks, | use supervised learning
to maintain accurate link quality information under heaxsfftic load when traditional
approaches fail. Our approach yields improvements of u®@8%3when evaluated on a
real-world sensor network testbed.

The third category consists of networks with unpredictatddility in which data can
only be forwarded in a store-and-forward fashion. Existipgroaches depend heavily on
mobility prediction, which is difficult though, if not impsgble. | use erasure coding to
forward coded data to more contacts to combat inaccuratkgians. Simulation results
show that our approach has a smaller worst case delay codpangher state-of-the-art

algorithms.



The fourth category consists of static sensor networks mtdrmittent connectivity.
In such networks, energy saving opportunities arise dunietyvork disconnection. |
propose a new transport protocol to leverage such opptigsrthat yields significant
idle energy savings compared to existing approaches.

Overall, this dissertation investigates a range of chgbeimetworks and propose a set
of techniques to enable situation-awareness in order teweehigh routing performance
and energy efficiency. The outcomes reveal high potentiaifoation-aware techniques

and provide new perspectives on optimizations in challdmgworks.
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Chapter 1

Introduction

The main themes of this dissertation are to study the pedoom problems in emerging
challenged wireless and mobile networks and to investigatevork- and upper-layer
solutions for communication optimizations.

Emerging over the last few years, challenged networks aterbimg a major part
of the communication technology landscape, due to the @wolwf wireless technolo-
gies and the increase in application demands. Althougtetiseno universal definition,
challenged networks generally refer to those charactbyechallenges such as discon-
nection and long delays. They have been used to describe sudmngreas of wireless
and mobile networks, such as wireless sensor networks 231d8lay/disruption tolerant
networks (DTNSs) [33], and opportunistic networks [89]. Aipations running on such
networks include wildlife tracking [58], IT support to ddeping regions [10, 11], and
habitat monitoring [116]. They have revolutionized the veaynmunication occurs and
they provide new opportunities to observe and interact witbxplored areas. However,
despite their promises in extending communication to beoaegions, these networks

are often performance-challenged, due to the limited stfteture support and the harsh



environment where they are usually deployed. They are deditp tolerate a wide range
of networking challenges, such as intermittent conndgtiunreliable link transmissions,
long propagation delays, and the absence of end-to-end path

First, we will motivate this dissertation with examples tfaienged networks and
their typical application scenarios. We will then highlighe difficulties faced in provid-

ing efficient communication in such networks.

1.1 Challenged Networks: Application Scenarios

One important application domain in challenged networksirgeless sensor networks,
which have witnessed tremendous growth in recent yearssdbertworks extend hu-
man vision and understanding by allowing sensing data fitoenphysical world to be
automatically and reliably collected. The growth of sensetworks research has led
to many useful real-world deployments, such as environatenonitoring [116, 131],
wildlife tracking [58] and structure monitoring [138].

Hereafter, our focus in this dissertation is on challengeuser networks. This is
because they represent a large category of challenged rkst@ad possess a variety
of challenges encountered in reality. Furthermore, waelgensor networks are often
characterized by severe energy and resource constrainish wake their networking
designs even more difficult compared to those for networkk wiore powerful nodes
and less constraints, such as cellular phones, PDAs, ataplpTherefore, the solu-
tions proposed and the insights gained in this dissertatiemelevant to other challenged
networks and would apply as well.

Usually, a sensor node comprises sensing, computing,esselommunication, and

storage components. They are used to measure the ambiertnemental conditions



and then transport collected information to an externaklstation where data can be
processed to reveal characteristics of the environmefieoobjects being sensed. How-
ever, these sensors are extremely constrained in theigenssmputing, and storage
capacities, which makes it very difficult to maintain highfpemance routing.

Wireless sensor networks can be either static or mobile. Bgibs of networks are
performance-challenged, though they possess very differearacteristics.
Static sensor networks.Static sensor networks have been successfully used in reahy r
world deployments [67,116, 119, 131, 138]. Usually, theéa&csnetworks contain hun-
dreds of sensor nodes that are stationary once deployedsefiser nodes are normally
deployed in high density and work cooperatively for a longgak of time unattended.
Multihop routing is usually adopted to reduce energy corsion since direct long-
distance communication between a sensor and the basensttmly possible using
prohibitively high transmission power. Using multihop ammmication may also help
to mitigate the interference between concurrent radiostrassions. Hence, multihop
routing is widely used in many static sensor networks.

Collection is a fundamental component of many sensor netwpgdications. As
a result, the first generation of sensor network deploymfertissed primarily on data
collection [76, 115]. Since users are usually interestedhita or events that are covered
by many sensors, most data collection mechanisms devetogay involve transmitting
data from many sensors to one or more sinks that could eithstatically deployed or
continuously moving (if the sink is a user who moves arourelahea covered by the
network). The dominant communication pattern, therefmr@, many-to-one tree-based
routing, in which multiple data collection trees rootedts tlata sinks are created, with

various forms of aggregation along the collection pathstal@allection routing is also



referred to as convergecast in the literature, which is ts@inphasize the direction of
data flows compared to broadcast.

Mobile sensor networks. Compared to static sensor networks, mobile sensor networks
have not been studied as extensively. They emerged as ficighinew research field
over the last few years as more applications in sensor nks@ve mobility as an inher-
ent component. Due to the diverse operation environmeatdware configurations, and
design goals in mobile sensor networks [7, 13, 48, 58], taezeno universally accepted
platforms and system-level solutions in these networksalricular, the diverse nature

of mobility in such networks makes it very hard to have an ifitprotocol that works
across different mobilities.

Applications of mobile sensor networks include wildlifeadking [58], Pocket
Switched Networks [47], and participatory sensing [13]tHase networks, nodes move
under the control of the environment, the object on whichrtbde is attached, or the
node itself. They can cover a larger geographic area andhgreess a larger range of
data with potentially fewer nodes than stationary networkss is particularly important
for applications with logistical concerns, including méamy cost, that make large scale
deployment infeasible.

ZebraNet is a mobile sensor network that targets wildligeking across large re-
gions with no communications infrastructure [58]. It is sence a mobile ad hoc net-
work (MANET) of resource-constrained sensor nodes andrriteent connectivity. In
ZebraNet, nodes move throughout an environment to coldatrnation about their sur-
roundings. Periodically, logged GPS data is aggregatetiddoaase station, which is
also constantly moving to increase the probability of daienimg success. The prob-
lems posed by the ZebraNet project are characteristic ofyratirer mobile challenged

networks and we classify them into three categories: (1l)sgpand intermittent con-



Table 1.1: Comparison between mobile and static sensor netwo

| | Static \ Mobile |
Mobility no yes
Density high low
Connectivity good intermittent
Routing multihop store-and-forward, multihop
Coverage small large
Link reliability low low
Cost per node low high
Energy supply battery or battery or
environmental energy  environmental energy

nectivity, (2) unpredictable and highly varying node moesaits, and (3) limited energy
budgets and link bandwidth.

The different challenges in static and mobile sensor nédsvimad to different trade-
offs and designs as to how information should be collectatldisseminated over the
network. In static sensor networks, the dynamics come fromr@nmental conditions
that affect the radio link quality. Otherwise, the netwonbecates in a relatively pre-
dictable way. With mobile nodes, however, data collectinod dissemination becomes
more complex because the dynamics of node mobility are lysuapredictable. Fur-
thermore, some mobile sensor networks are sparsely cathagth only intermittent
connectivity. Therefore, routing in such networks regsiin@vel solutions that can ef-
ficiently combat these difficulties. Table 1.1 summarizesrtiajor differences between
static sensor networks and mobile sensor networks, with #ing a unique niche that

supports different application needs in sensor networks.



1.2 Communication Challenges

Routing is one of the most fundamental problems in challemg®dorks, which involves
two general objectives:

1. Efficiency: The bandwidth and energy budget should be used efficiendgheeve
high performance without depleting network resources fieefioe targeted network life-
time.

2. High performance: Data yield, network lifetime, and latency are some of the
most important performance metrics for routing protoc@sven the stringent resource
constraints, it is very challenging to achieve these metiidche same time. Often, such
performance goals are contradictory to each other.

Achieving these objectives in challenged networks reguireto revisit many long-
standing solutions, because these networks exhibit a sehamunication problems that
are fundamentally different from those found in traditibnatworks. They have led
people to move away from traditional designs to solutioas$ ¢to not reply upon end-to-
end connectivity or reliable links. In the following, we diss some of the key challenges

with their implications to routing designs in such networks

1.2.1 Dynamic Radio Frequency (RF) Environments

One major difference between wireless networks and wirddior&s is in the physi-
cal layer technology. Radio communication performance terdaned largely by the
signal-to-noise ratio and many factors may influence thishsas environmental noise,
multipath fading, interference [111] and coexistence beonetworks. Therefore, radio
transmission exhibits very complex behavior that cann@ds#ly captured and character-

ized using simple models. Many empirical studies [21, 22,113, 145] have confirmed



that the RF environments using low-power wireless radiostaivers are highly time-
varying. These studies have guided the design decisiorchfdlenged network routing
protocols: To maintain routing efficiency, high quality pateed to be established and

new methods need to be developed to track link quality dyasmi

1.2.2 Resource Constraints

Challenged networks are extremely constrained by theiiggraapply as nodes are often
powered by battery, or by harvesting energy. Thereforerggnie one primary design
constraint in challenged networks. On the other hand, satkarks are usually expected
to run for long periods of time, from several months to everw years. These two
contradictory goals make energy-efficient routing desigery challenging task. Since
energy consumption is strongly related to node activitg, tlode hardware should be
turned off most of the time and be activated only when necgdsaaccommodate the
stringent energy budget; this is referred to as duty cycliRgr high data rate sensing
applications [138], however, simply reducing the duty egcbf sensor nodes will not
work since the nodes need to be frequently active for datgpkagnand sensing; new
solutions are called for in such scenarios.

Other than energy constraints, nodes are also constrayntbeio processing capabil-
ities, storage capacities and communication bandwidtin.ekample, the MicaZ sensor
node has only an 8MHz 8-bit micro-controller and a 4KB RAM. klgnd sensor nodes,
such as the Imote2 [137], are less constrained comparedyaeaerations of sensors: It
has a 416 MHz 32-bit processor and 256KB SRAM, 32MB FLASH andBZDRAM.
However, depending on the application requirements, socles may still face diffi-
culties meeting the performance requirement. For instaenven though high-capacity

drives may become commonplace in the near future [78], eqipdns such as camera

7



sensor networks still need to transmit and store large atradumage data, which makes
storage still a top design concern.

Another problem lies with link bandwidth, which is very litad given that most sen-
sor nodes use low-power radio transceivers for commumica®ne of the mostly widely
used radio chips — the Chipcon CC2420 [8], is a low-cost radiosteaiver designed
specifically for low-power, low-voltage RF applications let2.4 GHz unlicensed ISM
band. It implements the ZigBee/IEEE 802.15.4 standard ag@ maaximum data rate of
250Kbps. Due to the high error rates of radio transmissiomeal-world environments,
very low channel utilization can be achieved in practicq.[3his poses serious problems
and limits the achievable data delivery rate, if the periodsommunication contact are

short and opportunistic, as in many challenged networkp [89

1.2.3 Operating Environment

Network size in challenged networks is another key desigarpater. Although the
ZebraNet node [144] is a sensor node with high compute chiyadnd radio range,
only tens of nodes are deployed due to logistical concermsthfer example is sensor
networks deployed in the polar regions where large-sca®gment is impossible due to
the severe environmental conditions. In such networkgsspaonnectivity is the norm.
Since nodes can barely find neighbors to forward data, emhdoconnectivity may not
be guaranteed. As a result, networks may be partitionedktended periods of time.

On the other hand, for dense networks with thousands of ngdatability becomes
an issue. The resource-constrained nodes cannot opefiatendtfy using traditional
point-to-point routing [6, 36] with so many nodes in the netkv One particular chal-

lenge is to manage the routing table for so many nodes, gexsre memory constraints.



Additionally, challenged networks are often deployed irshaenvironments with no
infrastructure support. In many mobile applications, noasbility cannot be controlled
and network topology is constantly changing in unpredietatays. As a result, these
networks are faced with unusual situations that cannot fiy@aanaged using traditional
methods.

In summary, all these new characteristics make a compeaitsg for reconsidering
the fundamental issues in networking designs for challémg#works. We will focus on

challenged sensor networks in this dissertation.

1.3 Situation-Awareness

Most of the networking protocols widely used today make ioiphssumptions about
the network, such as fixed network topology, reliable lirdksd continuous end-to-end
connectivity. Since disruptions break these implicit asgtions, many traditional net-
working protocols are rendered impractical, and their grenfince suffers significantly
from a lack of knowledge about network conditions or othesfulkinformation related
to the disruptions. The tradeoffs in terms of performancergy usage, and response
time in a dynamic network vary greatly, depending on systequirements, available
resources, and economic motives. Exposing such situatiowledge can help protocols
make fine-tuned, informed decisions, and sustain high pegnce with low cost. It is
desirable, therefore, to make the protocols “cognitiveamenvironment with extreme
situations being the norm. By being “cognitive”, we refer e tcapability to perceive
current network conditions and make adjustment and actrased on the overarching

performance objective.
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Figure 1.1: Roadmap of the dissertation.

Unfortunately, most protocols developed today do not hawh £ognitive capabili-
ties. They are designed for the worst or average scenar@ssome pre-existing situa-
tion knowledge, or tackle such challenges without congigeronstraints such as energy
and storage. Such efforts result in protocols that work doiya pre-defined set of con-
ditions.

We propose situation-awareness as a means for achieviihgcsguitive capabili-
ties. Situation, in our definition, refers to network paréeng, performance measures,
or root causes of disruptions that are related to the clgdlenve discussed previously
in this chapter. We will demonstrate in this dissertatioat thituation-awareness can
bring significant performance benefits to challenged nétgoin particular, this disser-
tation contributes a suite of solutions for communicatiptiraizations based on situation
awareness in performance-challenged and resource-amestmetworks. Our suite con-
sists of two major parts: providing situation-awareneskrasvel energy-efficient routing
design, as illustrated in Figure 1.1.

In general, a situation-aware protocol consists of two coraponents: the network-

ing stack and the situation information. The first part oktHissertation focuses on
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providing situation information to existing protocols asokving more information can
lead to more accurate routing decisions. However, thisaggtr may not always produce
good performance. For example, a protocol assuming emgidozonnectivity cannot be
easily improved to accommodate frequent disconnectionsdeUsuch circumstances,
we cannot optimize routing performance by simply adaptiaditional routing protocols
with more information. We investigate solutions for sucke=in the second part of this

dissertation.

1.4 Dissertation and Contributions

In this dissertation, we analyze the problems imposed bsetleenerging networks and
present solutions that improve the overall routing perfamoe and maintain energy ef-
ficiency via situation awareness. Due to the diversity oflehges, there is no cure-all
that combats all the problems. Instead, we develop a sutexbhiques to address them,

under the unifying theme of achievirsgfuation awareness

1.4.1 PartI: Providing Situation-Awareness

In this part, we study two categories of challenges: higldyying mobility and lossy
radio transmissions.

Varying mobility patterns in mobile sensor networks. A varying mobility pattern
is typical in many emerging networks, an example of which ébiANet. It refers to
a type of mobility in which nodes move in phases with diffdreharacteristics. We
propose an analytical model to capture mobility phase cbsuhgsed on past mobility
traces. This model is used to drive adaptive routing deassso that the routing strategies

selected will fit the recently-observed mobility patteighen evaluated using a mobility
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trace synthesized from the ZebraNet deployment data, thetiad approach leads to an
improvement of up to 120% in packet delivery rate.

Lossy transmissions in static sensor networksHigh-density wireless sensor networks
have been used widely for collecting environmental datgpplieations such as structure
monitoring. Wireless sensor notworks are different fromedinetworks in that the link
quality fluctuates greatly as a consequence of interferandepropagation dynamics.
Therefore, developing efficient routing in wireless sensetworks requires the estab-
lishment of high quality paths, which in turn entails ac¢erenowledge of link quality.
Existing link quality estimation methods, however, faitie presence of congestion and
interferences since they rely on snooping data traffic [38].1We use supervised learn-
ing techniques to address such limitations and pinpoinbést links without depending
on data traffic. It works by selecting links based on knowkedf link quality learned
from past observations during a training phase; it adds tra @verhead to the routing
process. This approach is more adaptive than model-basegmdsebecause it requires
minimal expert knowledge and is able to respond to changesle@rning-enabled tech-
nique yields a performance improvement of up to 300% undavyhoad, compared to

the state-of-the-art approaches.

1.4.2 Part Il: Novel Routing Designs

In part Il, we focus on new routing designs for situationshwib existing solutions, as
illustrated in Figure 1.1. In contrast to examples in Parhéve the solutions to a specific
situation are knowa priori, situations discussed in this part do not have existing imgrk
solutions, which leads us to explore new networking desigiang this line of research,
we develop several novel solutions to achieve efficient camoation with low energy

usage.
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Unpredictable mobility in opportunistic networks. In opportunistic networks, end-
to-end connectivity is either not always available or doet exist at all. Therefore,
data is best transmitted by a store-and-forward approadhs i$ true for a range of
networks, such as ZebraNet, Pocket Switched Networks anidwar networks. Most
existing approaches rely on mobility prediction and messagplication to meet their
energy budgets. Their effectiveness depends heavily oadberacy of their mobility
prediction schemes. However, making high accuracy mgtpliedictions is difficult in
opportunistic networks. Incorrect predictions lead to rpperformance and a waste of
energy. To address this, we have proposed (in collaborega@arch) a method that for-
wards erasure-coded blocks, instead of replicated messBgdorwarding code blocks
to more neighbors, the chances of message delivery and tis¢ vase delivery delay are
significantly improved, with the forwarding overhead kepivl Our simulation results
show that the coding-based algorithm achieves a significantaller worst case mes-
sage delay (from 60% to 70% less), compared to four otheicetjmn-based forwarding
algorithms.
Intermittent connectivity in delay-tolerance, static sersor networks. New energy op-
timization opportunities arise in such networks due toezithrelaxed latency requirement
or the long time a node spends in idle waiting. We propose atravgport protocol that
leverages such new opportunities and the relatively low abstorage in current sen-
sor devices to improve idle energy efficiency. Experimergallts show that the new
transport protocol yields up to 50% energy savings for acgipshallenged environment,
compared to existing approaches.

Overall, this dissertation investigates a range of chgkeinnetworks and proposes

techniques to address new challenges with situation-asase It provides a roadmap to
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effective routing optimizations in challenged networks @novides new perspectives on
their system design.

The major contributions in this dissertation are summariae follows. First, we
investigate a range of challenges that cover several keg afechallenged networks, in-
cluding wireless mobile and static sensor networks, oppastic networks, and DTNSs.
The idea of providing and leveraging situation informatasa means to improve routing
efficiency and performance in challenged networks is prep@nd systematically stud-
ied in this dissertation. Second, we develop a set of tedi@sido provide and leverage
situation information for real-world applications. Thasehniques are general enough
to be applicable to other related problem domains. Third,evaluations are based on
either testbed implementations if conditions allow, ordimtions served with real traffic
and mobility. By successfully factoring real-world issuasoiour study, it has offered
a unique perspective into communication performance opaitions in challenged net-

works.

1.5 Dissertation Organization

The remaining chapters of this dissertation present th@emacomplishments of this
research work, which are organized into two main parts:essuth providing situation
awareness and issues with exploiting such exposed infamathe two parts are closely
related and are both integral to the overall theme of thisedtation, as they represent the
two core components of any situation-aware protocol. Othan this, each chapter is
relatively self-contained.

In particular, the rest of this dissertation is organizetbdews. Chapter 2 presents a

model-based routing framework that captures mobility abtaristics in a mobile sensor
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network. Chapter 3 presents a solution to use supervisaamedor link quality estima-
tion in static sensor networks with lossy RF environment. sehisvo chapters comprise
“Part I” and are examples of approaches to provide situaiwareness in challenged
networks. Chapters 4 and 5 focus on designing new protocolsefavorks in which no
established solutions exist or work well. By exploiting aiion information, we propose
totally new approaches that suit better for the targetedaseas. In particular, Chapter 4
presents a novel routing protocol that uses erasure codindata forwarding to cope
with unpredictable mobility in opportunistic networks. @er 5 presents a new trans-
port protocol for sensor networks with delay tolerance.altes significant idle energy
by removing the requirement for end-to-end connectivityeen communicating pairs.

Finally, we conclude in Chapter 6 with a discussion of dii@usifor future work.
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Chapter 2

Techniques for Coping with Varying
Mobllity

2.1 Problems and Solution Overview

The dynamics of mobile networks make efficient protocol giesixtremely challenging
as mobility causes network topology to constantly changenpredictable ways. Many
emerging applications [30] have atypical mobility pateesuch as one that alternates
between highly mobile and very static movements. Sincergus governed by complex
interactions between node mobility and protocol behasgioiall changes in either of them
may have significant impact on the overall routing perforoganTo maintain routing
performance under varying mobility, a routing protocol aeé& adjust its behavior on-
the-flyto adapt to mobility dynamics. However, previous studiesigdocus on typical
mobilities, with key routing components hand-tuned forented mobility patterns and
hard-coded ahead of time [50]. As a result, they cannot adaytobility dynamics in

order to maintain high performance.
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To address such inefficiencies, we propose a new componghefaetworking stack
that provides cognitive capabilities by notifying the mradl of mobility changes. By
decoupling routing decisions from mobility, we can achisitaation-awareness by dy-
namically enabling different routing strategies based abitity changes. In particular,
we study the Dynamic Source Routing (DSR) protocol where tfextfeness of route
caching is of critical importance [45, 77]. In this contetkte problem narrows down to
understanding how node mobility impacts route cache admsavior and how to adjust
the caching strategy to cope with mobility phase shifts.

Understanding mobility is difficult in deployed systems &nese measures of mobility
are sometimes difficult to collect at run-time. Simulaticandoe used to collect such
measures. However, simulation speed can be a significabligonovhen applied to such
scenarios. We performed simulations of a 50-node mobilaritfor 1000 seconds on
a machine with 2.2GHz Pentium 4 processor and 512MB RAM uniffiereint mobility
scenarios. They each took 15 minutes to 1 hour to completen Borse, to explore the
design space, we may need to run such simulations many times.

To overcome such shortcomings, we take an analytical appraad develop a route
cache model for DSR to capture the access behavior of ite athe. A route cache
access has three states: hit, miss, and false hit (whereirothe stored in the cache no
longer exists due to node mobility). A false hit leads to &yrocessing time, network
bandwidth waste and even packet drops. The model is a DésTmete Markov Chain
(DTMC) model. It accepts as input metrics collected duringt@col running time and
outputs various cache access rates. As node mobility artdgmiobehavior are both
incorporated into the model, the overall routing perforoeis projected as a function
of both of them. Hence, it can be used to “sense” the undeylyinbility dynamics and

help make timely decisions. The model is simple enough tosled dynamically in real-
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Figure 2.1: A model-driven adaptive routing optimizatiorfrastructure. Our approach
can be applied to different protocols with each protocotamszed on-the-fly to mobility
changes.
world settings. We also present a feedback-based optimzatfrastructure that uses
the model outputs to adjust the caching strategy of DSR effiyh

Our approach is best understood in the context of a specifimple, as shown in
Figure 2.1(b). Consider the ZebraNet mobility, in which n@d®ve throughout the en-
vironment to collect information about their surroundindg®eriodically, logged data is
aggregated to the base station. The collected mobility Idgat the base station con-
tain node movement traces of many participating nodes. dlitiad to their scientific
value, these data logs can be used to extract useful moiiétyics, such as routing life-
time [128]. By feeding such extracted mobility metrics intar anodel, one can easily
predict routing performance and dynamically adjust prokoconfigurations as necessary.
Based on model outputs, proper protocol adjustment desisiomthen disseminated to
each participating node in the network via a protocol suchresproposed in [71]. This

process continues as new mobility data is collected. By dhicong such deedback
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loop, we create a network that can optimize itself and run welbaomously over long
periods of time. Previous approaches (Figure 2.1(a)), kiewveemain fixed once de-

ployed and cannot change significantly when mobility varies

2.2 Background and Related Work

2.2.1 Background
MANET routing

A great deal of research has been conducted on multihopgputitraditional MANETS.
Direct wireless communication between a sender and a egamiay not always be desir-
able since it incurs prohibitively high transmission powrat grows exponentially with
the radio range. Since each node can be both a router and sotdat®, the use of relay
nodes can help to reduce energy consumpfidmitinop routingis therefore widely used
in MANETS in which mobile nodes cooperate to establish netveonnectivity and con-
duct routing in the absence of any infrastructure suppdnbrdvides wide coverage as
well as mobility support by hopping over multiple ad hoc Wass links.

Based on their methods of route discovery and maintenane@rtitiocols developed
in this research can be divided into three classes: regatotecols, proactive protocols
and hybrid ones. Reactive protocols are suitable for molatevorks because routing is
conducted on demand. Among reactive protocols, Dynamiccedrouting (DSR) [56]
and Ad hoc On-Demand Distance Vector routing (AODV) [91] eire most extensively
studied. These protocols have been successfully impledeand widely tested in dif-
ferent scenarios, such as mesh networks and wireless btst-§heir concepts have also

been adopted in many commercial products.
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DSR

DSR is a reactive source routing protocol, which consistéaaf major components:
route discoveryandroute maintenanceBoth components operate entirely on-demand.
During route discovery, a node scouts through the netwoflntbroutes to an intended
destination. Route maintenance is the process by which tigirggnode determines if
the route used is broken and takes recovery actions whessage

When a data packet arrives, a request is made to the route @achs intended
destination. If a route is found (a cache hit), the packebrsvérded to the next node
along the route. We call the selected route ¢hedidateroute. All other routes with
the same destination aaixiliary routes. If the request misses (a cache miss), a route
discovery is initiated, with the packet forwarded along tteavly discovered route if
found. If the request has a hit but the candidate route i ¢taffalse hit”), delays are
introduced at intermediate hops to fix the broken route. Bwverse, the packet may be
dropped if the error cannot be fixed en route.

However, due to their reactive attributes, for networkdwgparse connectivity, DSR

may perform poorly when node mobility becomes highly vagyin

2.2.2 Related Work

There is a large body of literature on combating mobilitylErayes in mobile networks

and we only discuss the most relevant work here.

Mobility Models

In terms of prior work with analytic techniques, the bulk obdeling has concentrated

on the analysis of MAC protocols, for either single-hop [@8multi-hop networks [19].
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These works provide solid understanding of behavior in t&Nayer. However, overall
routing behavior cannot be explained without referenceighdr layer protocols. A
model beyond the MAC layer is critical for understanding ¢oxnd routing behavior.
Several related analytical models in higher networkingtayhave been proposed. Zhou
et al[148] developed performance models of reactive routindgpértetwork layer for an
unreliable static sensor network. Their main analyticalles are with regard to control
overhead, while ours are with regard to overall performanetics. Viennokt al.[124]
also proposed a model for analyzing protocol control ovedhéut as the aim is to be
general, many important details are missing and it beconfigsudt to isolate the impact
of node mobility, not to mention leveraging the model fortprml optimizations.
Research by Shadt al.[107, 108] has modeled data delivery rates in a mobile sensor
network. Their model uses an asynchronous store-and-fdra@mmunication pattern
suitable for Delay Tolerant Networks [30]. Therefore, naléo-end route semantics
are considered. Samat al. [104] develop an analytical framework to investigate the
timing behavior of the communication links, while our studybased on route lifetime.
They evaluate their framework in a synthetic random envirent, while we use realistic

mobility traces.

Mobility Characterization

Recently, many mobility datasets from real-world applicasi have been collected and
archived at CRAWDAD (the Community Resource for Archiving Wiss®ata At Dart-
mouth) [65] and are publicly available to the research comitgu These data provide
opportunities for deeper understanding of real-world ritybcharacteristics. They can
also be used to derive mobility models that can be integretedvarious simulation

tools for protocol evaluation. Many of the datasets confinat & simple random mo-
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bility model is far from ideal in characterizing real-wonhdobility properties [62, 142].
Based on this observation, we use the mobility model from tieraNet project for our
evaluation, which is also archived at CRAWDAD [129].

Work by Baiet al. [5] studies various mobility statistics in a mobile netwowkile
we focus on mobility metrics that have a direct impact onirauperformance. Follow-
up work by the same authors provides a detailed study of howilityoimpacts path
duration statistics in MANETSs [101]. None of the above wotkswever, tie mobility to

protocol behavior as ours does.

2.3 Model Overview

In this section, we present an overview of the route cacheeiadhe context of DSR
routing. A more detailed mathematical construction is @nésd in Section 2.4. Fig-

ure 2.2 sketches all quantities of interest and their @tatiips.

2.3.1 Model Outputs

Our route cache model essentially outputs three steatlymtababilities, the probability
of cache hit {,), miss (r,,,), and false hit£). Since route cache access is on the critical
path of routing, its access behavior is tightly connectedrtd reflective of the overall
routing performance. This is illustrated in the upper ddsin@me in Figure 2.2. In this
study, we consider two performance metripacket delivery ratedefined as the fraction
of successfully delivered data packets @verage data latengydefined as data latency
averaged among all data packets delivered.

Intuitively, increasingr, improves both packet delivery rate and data latency. The

higher ther,,, the better the two performance metrics since packets direeci along
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Figure 2.2: Modeling framework and data flow.

good routes and do not need to wait for re-discoveries art egcoveries. Increasing
Tm, ON the contrary, has a degrading effect on data latencyuseca route discovery
has to be followed that adds to the total latency. For pac&ktety rate,r,,’s impact
depends on the current traffic conditions and the queueingvier of the protocol. If no
packets are dropped due to these factors, the packet carcdesstully delivered after a
route discovery with valid repliest;, however, always has a negative impact on routing
performance because following a stale route will alwaysiimaore processing overhead
to repair such errors. Very likely, packets will be droppsdfdiling to fix such errors
en route.7; can happen during packet forwarding, route reply, and geskeaging by

providing a stale route, causing poor packet delivery rattiacreased data latency.
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Table 2.1: Model input.

| Notation || Description |

E[R] Average route lifetime

E[T.n] | Average route discovery latengy

E[Tyata) Average data delivery latency
E[L) Average route hop length

However, collectingr; in practice is hard, if not impossible, after a protocol is de
ployed. Since our model exposes the probability of beindn@false hitstate, it can be
used as an indicator of sucion-sensicaprotocol behaviors. By factoring such knowl-
edge into a system, these otherwise unachievable metntcé€edeveraged at system

runtime.

2.3.2 Model Inputs

Table 2.1 lists the input parameters for our route cache inddes parameteF|R| de-
notes the average lifetime of routes in a network and itsrseeenotes the rate at which
valid routes become stale. The shorter the average roataerlg, the more frequently a
route breaks. Since a route breakage triggers route maimterin a reactive protocgl
E[R] is used to characterize node mobility. Previous work [1283 Bhown that route
lifetime is useful in capturing mobility properties. We ds® to use an average here for
its simplicity and amenability to analysis. The use of rolifietime distributionswill
improve model accuracy, as further discussed in Sectia8.2.4

The parameter&'[T.,] and E'[T...] are used to capture the timing behavior of two
critical protocol-related operation€/[7.,)] denotes the average latency of a broadcast-

based route discovery process andy.:.] denotes the average data packet delivery la-

There are other factors, such as having multiple paths inadiee cache, that influence the triggering
rate of route maintenance operations. They are furtheuslést in Section 2.4.
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tency. The route discovery process populates the route@uhprovides routes for data
packets. Because data packets are used implicitly for signeaduting errors in DSR, the
data delivery latency determines how quickly a stale rautsaiche is detected.

The parameteF| L] denotes the average route length in terms of hop count. #raép
on node mobility and traffic pattern and is useful in deteingrithe delay for detecting a
route error, as discussed in Section 2.4.2.

We estimate?| R] by bookkeeping route creation and dead events in the rocteeca
We only track routes that have existed at least once in theedac the following reasons:
First, only routes stored in the cache can influence the rocatbe behavior. Second,
naively bookkeeping all potential routes is computatibnakpensive. For a network
with n nodes, the number of potential routes is on the order oirhich grows exponen-
tially asn becomes larger.

E[Ty.ta) can be measured by timestamping data packet departure rral avents.
E[T.u] can be collected in a similar way &§7,.:.]. However, since it measures the la-
tency from when a route request is sent out unghbd reply is received in our model, we
need to check the validity of discovered routes. This is iptessvith off-line trace pro-
cessing where omniscient knowledge of route validity islalsée. E£[L] can be measured

by recording the number of hops traversed for each packeesstully delivered.

2.4 Route Cache Model

In this section, we describe the construction of our routdheanodel. Model parameters

are listed in Table 2.2.
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Table 2.2: Model parameters.

Notation || Description |
K Rate of a route becoming stale. Also the
transition rate out of statd.
1 Stale route detection and invalidation rate|
Also the transition rate out of stake
fho Route recovery service rate. Also the

transition rate out of statel.

The transition probability from stateto
Day statey. Both xz andy can be one of the
following: h, m, or f.

2.4.1 Assumptions

Al. (Cold start missjVe assume no cold start misses once the route cache reachag st
state.
A2. (Capacity missjVe assume no capacity misses. This is reasonable becaus®e cap
ity misses are independent of mobility-induced misses amdbe eliminated easily by
increasing cache size.
A3. (Channel model#) noisy channel may reduce the actual route lifetime dueatos
mission failures. We do not consider route breakage relatéiuis factor and leave it as
a future research direction.
A4. (Traffic pattern)We only consider saturated traffic workload with all nodes-co
tinuously pumping data to the base station. This assumptiatches a large range of
real-world traffic patterns, such as the one used in ZebraNa&at on-demand protocols
whose operations depend on traffic distribution, the cati@h between route cache be-
havior and traffic is lowered.

Al-3 allow us to assume that the average route breakage d&pends only on node
mobility, which is abstracted as route lifetime timers. W show later in this section

that even with such simplifications, our model still prodsieecurate results.
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Figure 2.3: The Discrete Time Markov Chain model for a singlden

2.4.2 Model Mechanics

Figure 2.3 illustrates our three-state Discrete Time Macbain model for a route cache.
In stateM, the node has no candidate path for an initiating packet aadl@e miss occurs.
In stateH, the node has a valid candidate path for an initiating paakdta normal hit
occurs. In stat&, the node has a candidate route that is stale due to mohilityadalse

hit occurs.

Virtual Detection State (F)

One major contribution of our model is that we add a stat¢he false hit state, which
does not exist in a realistic protocol. Thus, we name thig steevirtual detection state.
For many reactive ad hoc routing protocols, including DSRs iimpossible to detect
route failures instantaneously and they will inevitablyegrthis artificial state. Having
such a virtual detection state expose valuable informdhahis essential to routing per-

formance. Such information is not possible with traditilcayaproaches.

Rate of Cache Stalenesss{

The rate of cache staleness, or the rate transiting out t& &tais . Intuitively, for
some period proportional t&|[R], the current candidate route will break which leads the

node to staté& or M, depending on factors such as the route discovery and maimte
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mechanism used, node mobility and traffic workload. The ayeractual route lifetime
should be smaller thaR'[R] because it only represents the average lifetime in the route
cache. Therefore, we need some adjustment to calculaseng £ R]. In our model, we
estimatex asm with v a constant denoting the ratio between the actual lifetime to
E[R]. We use ay of 0.5 in our study, assuming that when a route is selecterbfding,

its residual lifetime is uniformly distributed betweét E[R]). We subtract /x; from

E[R] because during route recovery, the elapsed route lifetanaat be used for routing.

Route Discovery (i)

The average route discovery rate is denoteds,adt is also the transition rate out of state

M. We estimate, simply asﬁ.

Stale Route Detection and Recovery(;)

With the introduced virtual detection staffe we can model the rate that a node detects
an invalid route, which is also the transition rate out ofesfa. We denote this ag; .

Route error detection in a reactive routing protocol is ddddnto two phases: a
negative detection phased amctive error notification phasdn the negative detection
phase, data traffic is used implicitly to detect a link errdrew the packet reaches the
broken link. In the active error notification phase, a cdnpacket is sent to notify the
source of this error.

Therefore, the negative detection later¢f;,..q] depends on the number of hops to
traverse along the broken route until the packet reachebrtileen link. If we assume
that the probability of route breakage is distributed umifly over all hops from the
source to the destination, we can estimate the average hop ttaversed before a route

breakage a8~ ""i = 1(E[L] + 1). Therefore, the negative detection latency can be
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estimated a¥[Tyaa] % % We can calculate the active error notification latency
E[T,.] in a similar way. The only difference is th&[7.,] is a two-way delay that
span22E[L] hops in total. Therefordy|[T,.,] should be calculated %@[Tctrl] X %
These two latencies add up to the average route recovenciatndy, is estimated as

1
E[Tnegd} +E [Tactn] '

Influence of Protocol Designs

In this section, we discuss the influence of protocol desmgnstate transition probabili-
ties.

In our model a transition out of stafe only happens after a route is discovered, so
pmm Should be 0. For discussion convenience, we directly dethetgrobability from
state)M to stateH asp,, and the probability from stat&/ to statef’ as1 — p,,. Thus,
pm represents the probability that a route reply is valid andp,,, the probability that a
route reply is stale. Since we estimateusing only valid route replies (i.e., only a valid
route reply finishes a route request), is 1 in our case.

Since a route will always enter the virtual detection state tb the reactive mainte-
nance mechanismy,;, andp,,,, are 0 and we denote the probability from stetéo state
F asp,. Thus,p,, - k represents the rate of a broken route not being detecteddmatedy.

In our model,p,, is approximated as 1 because DSR mainly depends on data foaffi
route error detection.

The parameters;,,, ps, andp;; denote the three transition probabilities out of the
false hit state. They all depend on the number of backup sautailable when the can-
didate route breaks because only when there is no route testaation does the node
enter statél/. Otherwise, the breakage of the candidate route will natriacnew route

request and the state may transit to eitHeor I, depending on the validity of the new

29



candidate route selected. Therefagrg,, represents the probability of having no backup
routes when the route being used is invalidated. Hemce= 1 is the case where there is
only one route for each destination. Whenever this routedkeon, it enters statd/. On

the other handp,, = 0 is the case where there are always valid auxiliary routesawhe

the route being used is invalidated.

State Probabilities

In this section, we calculate the equilibrium state proli#s of the model, denoted as
T = [T, T, Tf).

We simplify the mathematical calculation by pre-determgnparameters that can
directly be estimated from the protocol behavior, which gyeand p,,. From earlier
discussions, both of them should be equal to 1 for DSR. Thexgfee have the following
global balancing equations for the steady state of our Mackain model, which can be

solved to produce the limiting state probabilities:

i = 71— prs)in
TiDfmili = Tompla

T + Th + T = 1
2.4.3 Route Cache Model Validation

In this section, we present model validation results agaiss? simulations using the
Random Waypoint (RWP) model. Our approach can also be usedothigr mobility
models since only high-level mobility metrics are used im model. In Section 2.5,

we will validate our model on a real-world mobility. We seekgtudy (i) how close
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Table 2.3: Route cache model validation.

Scenario Tm T Ty Running Time

Sim Model  %diff Sim Model  %diff | Sim Model  %diff Sim Model  sim/model
rwp-pt0-ms20 || 0.124  0.136 9.6%| 0.526 0.538 2.3%| 0.349 0.326 6.6%| 22:14m 49s 27
rwp-pt10-ms20|| 0.243  0.238 2.1%| 0.354 0.358 1.1%| 0.403 0.404 0.2%| 13:22m 54s 15
rwp-pt20-ms20|| 0.166  0.154 7.2%| 0.456 0.475 4.2%| 0.378 0.371 1.9%| 24:37Tm 57s 26
rwp-pt20-ms1 || 0.075 0.053 29.3% 0.884 0.906 2.5%| 0.042 0.41 2.4%| 17:47m 39s 27

our analytical model results are to simulated outcomes d® Ddider different mobility
scenarios, and (ii) how our model parameters affect itsracyu

We simulate a network of 50 nodes in a 1100100m grid. Each node has a radio
range of 250m. Initially, nodes are randomly distributedoas the defined area. We
generate 30 communication pairs randomly and use a padkdixad at 2pkt/s. We do
not adopt a higher injection rate because we need a netwfiikieutly provisioned such
that the effects of mobility are isolated from effects of gestion [46]. We use UDP
traffic in packets of 512 bytes. Traffic is injected from thed80nark to populate the
route cache and all metrics are measured starting at thesIi@€k. The first 900s is
used for the mobility model to reach its steady state, a nteginoposed in [141] to fix
the deficiency of RWP not having a steady state. Other sinonl&@tups, including the
radio propagation model, the MAC protocol used, and linkdveidth are the same as

those used in [12].

Validation Results

Table 2.3 compares the analytical results against sinomaésults for four mobility sce-
narios. Each scenario is represented as rwpApdy with x its pause time ang its

maximum speed. For a moderately- to highly-mobile netwotk, model is reasonably
accurate with error rates less than 10%. This indicatesithsteady-state, our model
successfully captures the state of the route cache in a enehilironment. For static

scenarios such as rwp-pt20-ms1, however, our model has la Inigicer error rate.
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Figure 2.4: Route lifetime distributions for different mbtyi scenarios.

This high error rate can be explained by looking at the mageliis. Figure 2.4 il-
lustrates the distribution of route lifetimes observed bgradomly selected node (14) for
both rwp-pt0-ms20 and rwp-pt20-msl. The observationstfteranodes are similar. The
samples are collected by post-processing the simulatame trFor a moderately-mobile
to highly-mobile network, route lifetimes tend to be in tteere order of magnitude, as
shown in Figure 2.4(a). For a less mobile network, howewarter lifetimes have very
high variability, as shown in Figure 2.4@)n such a network, skew will be introduced by
representing route lifetimes as an average. This problenbeaolved by using separate
estimations for short and long lifetimes. More generallye @ould include distributions
of route lifetimes in the model.

Table 2.3 also illustrates the savings in running time taveethe same quantities of
interest. Model computation time is negligible, while ingathering time dominates. It
should be noted that when the model is dynamically deploygalit gathering time is
spent on running scripts on trace files, which normally tdkes than 1 minute. There-

fore, the total elapsed time using our model is less than Lit@inOn the contrary, it

2While there appears to be a correlation between simulatioa &éind route lifetimes, this is an artifact
of our statistics gathering method: routes that last lotiggn the simulation time cannot be tracked.
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usually takes more than 15 minutes to finish one simulationusing traditional ap-

proaches.

Future Refinements of the Model

Overall, the model’'s accuracy is already quite good. Nogless, there is still room for
improvement. The modest disagreements between analgtichsimulated results can
be explained by certain simplifying assumptions regarditage transition probabilities.
We discuss these below.

The first source of error has to do with the transition prolitsthirom stateH to
M. For the implementation of DSR ins-2 this probability is greater than 0, due to
various protocol optimizations not considered in the modehe such optimization is
route error propagation, which spreads route error messaggressively to suppress
their propagation. Thus, a route recovery process can tshédiwithout incurring the
two-phase operation. Another optimization is cache pgrgivat times out a route after
some duration. This also may lead a node in dththrectly toM.

The second source of error arises in the presence of a faltenmeply. In our model,
we only account for valid route replies when calculatiiff..,;]. This approach may
under-estimate the probability entering stiteln other words, we assume there is no
state transition fronM to F. In contrast, such effects are present in our simulatiohss T
explains why for most scenarios,; calculated by our model is smaller than that from

simulation.
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2.5 Case Study

In this section, we validate our model using real-world nfigbbased on the wildlife

tracking application we mentioned previously.

2.5.1 Validation Using Real-World Mobility Data

Our mobility trace is collected from a mobile sensor netwdeployed in January 2004
by the ZebraNet group [129]. A number of collars (sensor spdee attached to ze-
bras. Each collar recorded its GPS data every 8 minutes fatahdf 32 hours. Due to
extreme weather and waterproofing issues, as well as anpeabkems, only one track-
ing collar returned uninterrupted movement data for the le/l3@-hour duration. Due
to such limitations, we extended the collected data to eraasemi-synthetic mobility
model as follows. We collect node speed and turn adgiibutionsfrom the observed
data. Then we create other node movements by uniformlytsgjeficom the node speed
and turn angle distribution collected in the first step. New cast the trace data into a
RWP model that can fit into thes-2simulator. Although this approach may miss some
temporal correlation information between zebras, it is stie@ closer to reality.
Originally, the nodes move in an area of 6kBkm. We scale the area size to
1kmx1km and randomly distribute the nodes in the defined area.rderdo calcu-
late metrics like cache false hit rate, we also incorpor#tercneeded information about
connectivity and shortest route length at any instance dé&tvall communicating pairs,
so that the trace file can be directly usedsi2simulations. The rest of the simulation

configuration is the same as that described in the previai®ae

3From extended data collection in a second, June 2005 depluyrwe found that there is little node
correlation in movements, and thus our assumption herdic va
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Table 2.4: Validation results for a real-world mobility.
| Category| Sim Model %diff]

Tm 0.130 0.133 2.3%

T 0.509 0.486 4.7%
T 0.361 0.376 4.0%

Table 2.4 shows that our three model outputs have error betiesv 5%, validated
against ns-2 simulation. This indicates that our model adneae good accuracy in

capturing route cache access behavior even for real-waotallity.

2.5.2 A Case for a Model-Driven Dynamic Protocol

In this section, we present a case study demonstrating hdevévage our model to
drive adaptive routing decisions on-the-fly. Although t&&mple is based on DSR, our
model also works for other route-cache based protocols asifirected Diffusion (DD)
because all details discussed so far are also applicablB{&1.

DSR uses route caching extensively in both route discovedyraute reply. It adopts
a passive route maintenance mechanism for fixing stalegodtee problem with such
a scheme is its slow response to mobility changes. Givenalhabuting decisions are
based on route cache state, the performance may suffer 8mm stale information. By
exposing the route cache states, our model helps to preditd caching performance in
a timely fashion and guide protocol adjustment when necgssa

Specifically, we show how route cache reply options can bé&ketl on and off dy-
namically to improve routing performance by leveraging This idea can be used for
other optimizations, such as route discovery backoff,igm@per models for those com-
ponents. The mobility used is derived from the zebra tra¢k mode speeds varied. We

divide the mobility trace into three phases. Phase 1 is fr000% to 1300s, phase 2 is
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Table 2.5: Configuration options studied.
| | 1" phase 2"’ phase 3" phase]

DSR (always-on) on on on
Strategy 1 (off-low) off on on
Strategy 2 (always-off off off off
Strategy 3 (off-high) on off off

Table 2.6: Data latency comparison.

Traffic rates DSR Strategy 3 %improvement
(Packets per second: pps)
2 6.2s 5.2s 16%
4 4.1s 3.0s 27%
8 2.7s 2.1s 22%

from 1300s to 1600s, and phase 3 is from 1600s to 1900s. Tsdiits at 900s to popu-
late the route cache. We reduce the node speed to 0.1 of tfiradrspeed for phase 1,
increase by 3x for phase 2, and increase by 6x for phase 3.ra¢e produced this way
demonstrates a significant variation from one phase to anathd is fairly realistic as

zebras normally move in walk-run-walk phases [58]. Morepwe expect such phases
of varying mobility to typify many other mobile network saaos as well.

The set of experiments we performed uses a similar configuras described in the
last section, with a total of 50 nodes and 30 constant bit(2BR) flows. We use a radio
range of 150m here because a 250m radio range for this nyolpdite results in severe
radio interference in our simulation. We study the instaatais packet delivery rate
and normalized routing overhead for three configuraticstedi in Table 2.5 and compare
their performance with the original DSR. Bystantaneouswe mean that results shown
in the y-axis are not aggregated from the start of the sinmiaf hey demonstrate instant

behavior for that period. This allows for a better obseorabf the adaptation behavior.
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The three configurations differ from DSR in their decisioasawhen to switchoute
cache replyon/off for the three phases. Intuitively, for a highly-migbscenario, route
cache replies should be disabled because the informaboadsin the cache is likely to
be invalid; using a route cache for answering route requast$ead to inaccurate routing
decisions. For a less mobile scenario, where route cachel&dge is normally accurate,
enabling route cache replies will increase locality, rediatency and save resources.
Thus, the decision is based on.

Since phase 1 is very static and phases 2 and 3 are both higliyemthe strategy
that disables route cache replies for phases 2 and 3 andesnabite cache replies for
phase 1 (Strategy 3 in Table 2.5) should have the best peafare) the highest packet
delivery rate and the lowest routing overhead and energguwaption. Strategy 1, which
has the opposite configuration options to Strategy 3, shiwané the worst performance.
Strategy 2 should stay in the middle because most of the tirhas the right option (for
phases 2 and phase 3). The original DSR just switches oncaate replies all the time.

For such an adaptive scheme to work, a node needs to be ald¢ett the mobility
phase changes. For this section, we pre-program such iafmminto the simulation
for them to make decisions in a distributed manner. We waktdss a practical phase
detection method in Section 2.5.3.

Table 2.6 compares the average data latency between DSRirane$ 3 using the
common set of packets they successfully delivered. Inglitj Strategy 3 saves route
repair time by not following stale routes. However, switahioff route cache replies
means that it needs more time to get a route because it ongptsceeplies from the
intended destination. On the contrary, DSR saves time biynge& route from other
nodes’ route cache. If the route obtained is stale, howévercurs additional delays

fixing errors at intermediate hops. Table 2.6 shows that&jya3 has a smaller average
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Figure 2.5: Performance comparison of different strategiResults are collected from
simulation and the packet injection rate is 2pps.
data latency for all traffic rates. This indicates that fa thobility trace we studied, it is
better to switch off the route cache reply option than to keep.

The latency improvement for 4pps and 8pps are both higherttiet for 2pps. When
more packets are injected into the network, the penaltiassofg stale routes become
higher because the contention for the medium is more selaredt lower packet rates.

As a result, the benefits of using dynamic configurations imecmore salient.
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Figure 2.6: Impact of traffic rate.

Figure 2.5(a) shows the instantaneous packet deliveryatada interval of 50s. Fig-
ure 2.5(b) shows the routing overhead averaged among alpdakets delivered. Routing
overhead refers to control packets sent for route discoamrdyroute maintenance. The
normalized routing overhead is used as a measure of roufio@gecy, including energy
efficiency.

For the first 300s from 1000s to 1300s, Strategies 1 and 2 Imevéoivest packet

delivery rates and the highest average overhead. This mubedn phase 1 the nodes
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move very slowly. For such an environment, stale infornmai® very rare and route
cache replies should be enabled to maximize locality. Feasph 2 and 3, as nodes move
quickly, stale information begins to flood the network. listbase, a route cache reply
should be avoided because there is a higher probabilityttieabenefits of employing
route caching can be overwhelmed by the disadvantagesgsriStrategies 2 and 3,
which switch off route cache replies for phases 2 and 3, hawglzer packet delivery
rates and lower routing overhead than Strategy 1. Becauae®jr3 adapts to varying
mobility correctly, it achieves the best of both worlds amd the best performance com-
pared to all other options, including DSR. The improvemenpacket delivery rate is
consistently higher than 40% and the maximum improvemeup i® 120%. The reduc-
tion in routing overhead is consistently higher than 40% #w@dmaximum reduction is
up to 66%.

Figure 2.6 illustrates the impact of packet arrival rate los performance of our dy-
namic optimization. As the injection rate increases, thealed for bandwidth increases
too and we believe that our approach should still outperfasoheme that is unaware of

mobility changes. Simulation results shown in Figure 2fBrafthis.

2.5.3 Detection of Mobility Changes Usingr

In this section, we propose a practical phase detectionadetsingr;. It uses a feedback
loop as introduced in Section 2.1. When enough mobility degecallected at the sink,
we extract mobility metrics as input to the route cache mo8#ice all input parameters
can be obtained by runnirepwk andpyt hon scripts on the collected mobility trace, this
process takes only tens of seconds on a modern PC. We thenusedel to outputr,

which takes only a couple of seconds at most. This obtainfednration is disseminated
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Figure 2.7:7,; changes for DSR in response to mobility changes.

to all nodes in the network through a data disseminationopdt A decision is then
made at each node regarding its caching strategy.
Figure 2.7 shows instantaneous in our simulation, with different sampling inter-

vals (epochs). Each point represents thee-evaluated at the end of each epoch. Fig-

41



Simuldtion ——
Model ----

o
s
@

o
s
15}

Route cache false hit rate

o
o
@

0.00 ‘ ‘ ‘ ‘ ‘
1300 1400 1500 1600 1700 1800 1900
Simulation time (s)

Figure 2.8: Comparison of; changes detection (simulation vs. model). The epoch
length is 300s and the packet injection rate is 2pps.

ure 2.7(a) shows; with a sampling interval of 20s. There are two jumps with thst fi
one starting at 1300s and the second starting at 1600s. Tdrégrm to the mobility
changes in 1300s and 1600s, respectively and are emphasingdwo dotted lines. Be-
cause the sampling rate is very high, the variation is ptatn compared to variations
using longer sampling intervals. Figure 2.7(b) shows tiselte for a sampling interval
of 100s. The variation is much smaller and the changes #&re consistent with changes
in mobility. Figure 2.7(c) shows the results for a samplimigival of 300s, which exactly
matches the three mobility phases. This in turn indicatasttiere is a salient change
in 7; in response to mobility changes. The results demonstraterihcan be used for
predicting changes in mobility with reasonable accuracy.

Figure 2.8 compares the estimation of instantanegussing our model to that using
simulation for a sampling interval of 300s. As the figure shpthe estimate from our
model matches that from simulation very well. This dematss that our model can
aptly capture the changes in mobility at runtime with higbuacy.

To fully take advantage of such prediction capability, tipeeh length needs to be

short enough such that the current prediction reflects thalityon the next epoch. On
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the other hand, the epoch length needs to be long enoughlsatdhé gathered inputs to
the model can guarantee accurate model outputs. This sfumjytimal epoch length is
left as future work.

Finally, we compare the running time to derive by model to that by simulation
using the semi-synthetic mobility trace as described ini@e@.5.1. The simulation
took 13:05 minuteson a machine with 2.2GHz Pentium 4 processor and 512MB RAM.
However, it took only25 secondso outputr ; using our model. Simulation time becomes
even longer when dynamically trading off between differpatameter configurations

because several simulation runs are then necessary.

2.5.4 Discussion

While our model and its use already demonstrate significafbpeance improvements,
there is still room for future refinements. We discuss sontée here.

First, our current approach requires the base station teatatiode mobility traces
for analysis. This is a challenging task for a MSN, even a rabdze one. Second, our
current model only derives steady-state probabilitiescivinequires a certain mobility
phase to be long enough to be observed. We do not view thisigaificant weakness,
since short-lived mobility changes are not likely to be \wasptimizing for. Third, our
model tries to use a single metric (the false hit) to captheeroute cache behavior for
nodes distributed across the network, which works for a lggneous network wherein
nodes experience similar mobility patterns. However, fbeorealistic mobility patterns,
a distributed algorithm may perform better.

Although our approach has such limitations, it offers newarpunities for using

analytical models in real-world setting and further worlamicipated to improve on this.
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2.6 Conclusions

In this chapter, we presented an analytical model of routhedor DSR-like reactive
protocols. We illustrated how to use the model to exposeia@rsiuation information
(mobility phase changes in this case) and drive dynamiopodto adapt to varying mo-
bility, using a real-world mobility. When validated agaiuigtailed network simulations,
our model produces fairly accurate results with typicabesxiess than 5% for a real-
world mobility and less than 10% for synthetic RWP-based iiit@s. To the best of our
knowledge, our work is the first to model the behavior of aea#che for MANETs and
mobile sensor networks. Our model-driven adaptation caomore instantaneous packet

delivery rate by up to 120% and data latency by 16-27%.
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Chapter 3

A Supervised Learning Approach to

Routing Optimizations

Routing protocols in sensor networks maintain informatiomeighbor states and poten-
tially many other factors in order to make informed decisio@hallenges arise both in
(a) performing accurate and adaptive information disopaed (b) processing/analyzing
the gathered data to extract useful features and correfatito address such challenges,
this chapter explores using supervised learning techeitpumake informed decisions in
the context of wireless sensor networks. We investigateléseggn space of both offline
learning and online learning and use link quality estintats a case study to evaluate

their effectiveness.

3.1 Problem and Solution Overview

Many critical applications in wireless sensor networksdamentally rely on fast, effi-

cient, and reliable data delivery. In order to overcome ttreient unreliability of sen-
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sor network communication links, communication protodatseasingly employ intri-
cate and situation-aware adaptations to identify goodesoand to determine resource-
efficient methods for handling data.

The difficulties in situation-aware network adaptatiorestaro-fold. First, some adap-
tation techniques are hard-wired heuristics based on wdisens of a few stylized types
of network problems and their solutions. The more problems envisions, the more
complicated the protocol becomes in trying to adapt to th&acond, environmental
factors interact in such complex ways that it can be difficulidentify correlations and
crisply define the problem scenarios to protect against. dasd¢hese observations, we
explore using machine learning techniques to improve simawareness in order to
optimize sensor network communication.

Machine learning is an effective and practical techniquelfscovering relations and
extracting knowledge in cases where the mathematical mafdéle problem may be
too expensive to derive, or not available at all. Supervisadhing is a particular case
when the inputs and outputs are both given. For exampletsnpight include node-
level and network-level metrics, such as buffer occupanabannel load assessments,
and packet received signal strength. Output may be the tegppamber of transmissions
over the link where the packet is received. Essentially, iweta use machine learning
to automaticallydiscover correlations between readily-available featarel the quantity
of interest. Supervised learning is an effective learneannhique in solving this type of
problem.

We manage the resource constraints of sensor networks dgyngpmachine learn-
ing in a two-phase method: an offline training phase follolwgan online classification.
Offloading the training task from the sensor node reducegrth@essing, communication,

and energy requirements of the node. The resulting classificoe used online are both
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strikingly lightweight and strikingly effective. For thease studies we have examined,
our supervised learning techniques result in predictiauescies of 80% or more, with
false positive rates between 4.1% and 11.3%, and with eallgmtio compute overhead
during their online phase.

We evaluate the effectiveness of our approach using linktguestimation as a case
study. For this purpose, we present MetricMap, a data daleprotocol atop MintRoute
that predicts link quality using knowledge learned from titaéning phase when the net-
work is highly congested. Evaluation of a prototype implataéon in TinyOS on a
real-world sensor network shows that MetricMap can imprpaeket delivery rate and
fairness over existing approaches by up to a factor of thneelumoderate to heavy traf-
fic load. The compactness of our classifier makes it suitallegsource-constrained
situations.

For a network with highly varying link qualities, incorpairag such new pieces of in-
formation is of critical importance to the success of therew task. For this purpose, we
investigate the possibility of using online learning to@éntly maintain a high-accuracy
classifier. The attractive property of online learners & tihey do not need to process
the entire data set at the same time, but can work increnhentiéh new data coming in.
This is more resource- and computation-efficient than ti@atal batch learners. Our re-
sults show that the online learner we used achieves an aycsirailar to traditional batch

learners for a link quality data set collected from a reatd/isensor network testbed.
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3.2 Background

3.2.1 Link Quality Estimation

Wireless sensor networks are very different from wired ek in that the link quality
fluctuates greatly as a consequence of interference andgeaibpn dynamics. Therefore,
developing efficient routing in sensor networks requiresdastablishment of high quality
paths, which in turn entails accurate knowledge of link gualn this section, we briefly
review the mechanisms behind existing link quality estioramethods, including both
software-based and hardware-based ones. We also explaitépfail to function when
the traffic rate becomes high. This motivates our work on nppr@aches based on

machine learning.

Software-based Estimation

A few software-based link metrics have been proposed indlse [Route metrics are built
atop link metrics to capture end-to-end forwardness. Fampte, ETX [27], also pro-
posed in MintRoute [136], is one such route metric. It is defias the expected number
of transmissions (including retransmissions) for a susfteéend-to-end data forwarding
and hop-by-hop acknowledgment.

We focus here on the snooping-based method adopted by MiteRdtdefines link

quality as
1

o) = =D

with p(l) the forward probability of linkl andp,({) its reverse probability.p(l) is

calculated using the ratio of the number of data packetsvetdo the total number of

1The difference between the two approaches is studied i [143
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data packets transmitted ovierp, (1) is calculated ag;(I) with [ the reverse link of.
The route metric of a-hop pathp is then calculated a87 X (p) = >, etz(l;), the
total expected number of (re)transmissions along the path.

However, in many high data rate applications [67, 88], simugppased link quality
estimation works very poorly, as we will quantify shortlyrrexample, consider the high
data rate structure monitoring application discussed i8). [Bue to structural vibration
damping effects, a very high data sampling rate is requindiich is estimated to be at
least 200Hz. Therefore, the data rate can be as high as Ssgddsmode with each node
sampling 16-bit in three spatial dimensions. Even with@twork processing techniques,
such as data aggregation [41, 74], compression [102] aneg @82, 96], the expected
data rate is still very challenging for current systems toecwith.

To demonstrate the impact of high traffic on ETX’s link quabstimator, we evaluate
the performance of MintRoute by running the Surge applicata MistLab [80], an
indoor sensor network testbed of 60 Mica2 nodes. Stuisya data collection application
in which each node generates data traffic at a constant rdtseawals to the sink via multi-
hop routing. We use MintRoute to build the multi-hop dataedtibn tree that chooses
a parent (next-hop in the collection tree) based on additikpath quality estimation.
We define orphan nodes as those that have no parent in thetmolléree. Figure 3.1
shows that packet delivery rate degrades once the offeeeti$o2 packets/second (pps)
or higher.

Figure 3.1(a) shows the network-wide fraction of orphanasodith traffic loads of
2pps and 4pps. The percentage of orphan nodes increasé&ly quith increases in of-
fered load. For a 4pps offered load, 90% of the nodes do na hgarent 50% of the

time. This dramatic increase in the percent of orphan noslesdirect cause of packet

2The reference implementation is in the TinyOS CVS repogitbi nyos- 1. x/ apps/ Sur ge/ .
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Figure 3.1:Experiment results on a testbed of 60 motes. Orphan is defined as a nblastina
parent in the collection tree. The percent of orphans is defined astibhefahe orphan period
to the whole running time. We periodically probe the routing state of a node stimdage this
fraction as the ratio of the number of times that the node is an orphan to the totdlen of
probes issued. The first two figures show the spatial and temporal digiritof orphan nodes for
different offered load. The fraction of orphan nodes is very higlenvthe offered load is above
2pps, which leads to a lack of routing information and a need for prediction.
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losses in the network, shown in Figure 3.1(c). Given a peaggnof packetg received
from a given node at the sink, the Cumulative Distribution &ion (CDF) plots the
fraction of sensors that deliver at mgspercent of their data to the sink. For the 4pps
case, about 60% of all nodes have less than 10% data delatry Figure 3.1(b) plots
the distribution of orphan nodes in the network as a funatibtime. The x-axis shows
the experiment timeline in the granularity of seconds. Texig is the node ID in the
network. Each square dot ét, y) indicates that at instant, nodey has no parent. In
a network with a partitioned collection tree, many packeg¢steansmitted from the edge
towards the sink, only to be dropped before they reach tivdir s

An examination of theitzs of all nodes shows that a large proportion of links have
guality values indicating that very few transmissions carcérried through. As a result,
routing is interrupted due to a lack of link quality infornaat. This is directly related
to how snooping-based estimation methods behave in anoad=tl network. However,
since not all links are overloaded, routing can be resumed an accurate estimation of
link quality is in place. We wish to develop link quality esttors that are more resilient

in high-traffic settings, and machine learning offers usféinient way to discover them.

Hardware-based Estimation

The link quality indication (LQI) metric is a characteriiat of the strength and/or qual-
ity of a link over which a packet is successfully received. |Was introduced in the
802.15.4 standard [2] and is provided by the CC2420, a radid uisemany mote plat-
forms, including the MicaZ and Telos motes. It is an integarging from 0x00 to Oxff,
with the minimum and maximum LQI values associated with thegst and highest qual-

ity signals detectable by the receiver (between -100dBm dBdn) . It is reported in [95]
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that the average LQI closely maps the average success ekt transmissions across

several links. In this chapter, we use LQI to label link gtyal each input/output sample.

3.2.2 Supervised Learning Overview

The goal of supervised learning is to predict the value of aic@mme metric based on
a number of input metrics [81]. The outcome metric could bmauical or categorical.

Learning is performed on a set of training samples. Each Eatp y;) consists of a

feature vector:; and a corresponding class label or numerical vgludhe feature vec-

tor contains measurable features of the system under @asich. If the outcome is
categorical, the learning becomes a classification problBmining a classifier usually
involves finding a mapping from feature vectors to outpuelalso that the overall clas-
sification error is minimized on the training samples. A géeainer should accurately
predict new samples not in the training set. Therefore,gaelassification problem,
we need to decide (a) what features to measure and (b) whairigalgorithm to use to

maximize the learning accuracy.

In this chapter, we evaluated two classification algorithrdscision tree learners
andrule learners We have also tested other classification algorithms, diotysupport
vector machines, Bayesian networks, and ensemble methadssukh learner can be
used to train a classifier in our case. However, our resutte shat decision tree learners
and rule learners produce remarkably good accuracy for ase study and they often
achieve the highest accuracy among all algorithms studiésh, due to the complexity
and resource concerns specific to sensor networks, we foctiese two learners in the

following discussion. A detailed evaluation of them is greted in Section 3.3.

52



Decision Tree Learners

Decision tree learners are widely used in solving classifingoroblems with classifiers
represented as trees. They take a “divide-and-conquerbapp and recursively divide
attributes at each internal node in the tree based on intavmthey possess. Leaf nodes
represent classification decisions. Pruning methods aé tos prevent over-fitting of
training data. Although decision tree learners are notvtae most competitive learn-
ers in terms of accuracy, they are computationally efficeamd the results produced can

be easily converted to human-readable formats.

Rule Learners

Rule learners are used for learning IF-THEN rules. Like denidree learners, rule
learners work on training samples with similar input/odtpairs. However, since the
rule-sets learned are disjoint to each other, they usuabigdyre far fewer rules than
decision tree learners on the same training set, and havenpacable accuracy. This

makes it preferable in scenarios where classifiers need tigdztat runtime.

Practical Concerns

Due to the resource constraints in wireless sensor netwargaeed to also consider
learning efficiency and overhead, in addition to learninguaacy. In particular, we con-

sider the following two factors:

1. Overhead Overhead includes the processing time, energy usagehande¢mory
footprint, etc. Since in our proposed method, training isdrected offline, usually
on a PC or server, computing, energy and memory overheae tnaiming process

should not pose a problem. The overhead of conducting onlassification and
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feature collection, however, is our major concern. Tozgilihe output of a decision
tree learner, we need to translate the decision tree infltHEN rules. However,
the number of produced rules is as many as the number of |lelfsna the tree.
For a large tree with hundreds of leaves, hundreds of ruled teebe hand-coded
into the protocol. Therefore, we prefer to use the outpumnfrwile learners in

implementing the online classifier, if they have comparaieuracy.

2. TP rateand FP rate Given a classifier and an instance, there are four possible
outcomes. If the instance is positive and it is classifiedss#tipe, it is counted as a
true positive(TP). On the other hand, if the instance is negative and ibissdied

as positive, it is counted adalse positivgFP).

positives correctly classified

total positives
negatives incorrectly classified

total negatives

TP rate=

(3.1)

FP rate= (3.2)

It is crucial for us to consider the FP rate since the oveoaiting performance will
suffer if we treat many low quality links as high quality on&%$ rate, therefore, is
used here to represent thestof learning. Usually we want a high TP rate (high

benefits) and a low FP rate (low costs).

Additionally, because we need to use the classifier to gunétesklection in collection
routings, we prefer classification algorithms that prodogman-readable outputs. The
outputs from decision tree learners and rule learners casdxedirectly for this purpose.
Other learning algorithms need extra tool-chains to tr@msftheir outputs into human-

readable formats.
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Figure 3.2: Overview of learning steps.
3.3 Learning Step-by-Step

In this section, we use link quality classification as thenegke to introduce the steps
of our proposed learning method. Figure 3.2 presents a bigt bverview of the steps

involved, with the four key steps listed as follows:

1. Feature extraction: In this step, we select the featurdmtused in training and

classification.

2. Sample collection: Then, we instrument every node in gtevork to collect these
features and their corresponding labels constantly aridgieally send them back

to the sink.
3. Training: Next, we used the labeled data to perform trgjrit the sink node.

4. Classification: Finally, we instrument MintRoute to use ¢hassifier for differen-
tiating between high quality and low quality links at systemmning time. The

algorithm is depicted in Section 3.4.

In what follows, we describe the first three steps listed aheoih specific reference

to a collection routing application. Since the last steplasely related to the applica-
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Link quality learning
RSSI received signal strength indicatign local
sendBuf | send buffer size local
f wdBuf forward buffer size local
depth node depth from the base station non-local
CLA channel load assessment local
pSend forward probability local
pRecv backward probability local

Table 3.1: Feature vector illustration.

tion, we put the discussion of application instrumentatisimg classifiers to Section 3.4.
All results and analysis in this section are based on the sittérom the case study—

MetricMap—uwhich is discussed shortly.

3.3.1 Step 1: Feature Extraction and Output Labeling

The first step in supervised learning extracts input featarel labels output. This step
requires domain knowledge to produce high-quality, wedgared data [134].

In wireless sensor networks, we favor local features (witbme-hop) that can be
collected without expensive communications. This is beeaensor networks are very
resource constrained and it is desirable and necessarypmsemas little overhead as
possible. However, if a feature is already available with éxisting routing protocol,
such as node depth from MintRoute, we also consider it. Ther@iextra overhead

required to gather this feature and it carries extra usafatination.

Feature Selection

This is the process of choosing a subset of the feature spatdeést represents the

problem at hand while introducing a minimal amount of noise.
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As pointed out in previous studies, link quality is deteredrby many factors, in-
cluding wireless channel conditions, such as internodarsgipn, fast fading and slow
fading, the traffic pattern in the network, and local trafiad of each node. However, the
extent to which these factors impact link quality is continsly varying, which makes it
impossible for any single metric to be always a good indicaftdink quality. For exam-
ple, [3] shows that SNR (Signal/Noise Ratio), though affegtink delivery probability,
cannot be expected to be a predictive indicator of link qualihus, we choose a set of
metrics correlated to link delivery probability to be indkd in the feature vector and use
machine learning tools to train and identify the most prixkcindicator, which could
be a combination of them. Some of the metrics are relateddara conditions, some
of them related to network congestion, and some of them th. b@able 3.1 lists the
features we used for link quality learning and hop-by-hoghozg learning. They are all
numerical values.

RSSI is the received signal strength indication readilylatse in many commercial
radios. It contains the average RSSI level during the reaeofti a packet by the CC2420
with its value appended to each frame. RSSI is averaged owsnBa periods (128s)
and is continuously updated for new symbols received. IlCiG2420, LQI is a function
of RSSI.

Channel load assessment is a metric used in CODA [126] to deiest network
congestion. It uses a sampling scheme to monitoring locaiél at appropriate times to
minimize the energy cost while performing accurate estaf congestion conditions.

Queue management is widely used in wired networks for cdimgedetection. In
wireless networks, it is also closely related to local clergonditions. We use both
forward buffer size and send buffer size as indications oigestion here. However, as

pointed out in [126], without link-level acknowledgmentsyffer occupancy or queue
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length cannot be used as an indication of congestion. In xpgrenent, link-level ac-
knowledgment is enabled for the CC2420 radio.

Because the network topology may strongly influence the ¢rédad in a data fun-
neling application, it could also have an impact on link kly capability. Network
topology can be characterized as node depth in a networkeondmber of children a
node has in a collection tree. We use node depth, which isetbéia the number of hops
from this node to the sink in the collection tree. Due to fumgeeffects, node depth
should be strongly correlated to link quality.

Lastly, pSend andpRecv are originally used to derive the average forward and back-
ward delivery probability. Therefore, they capture impottlink quality information. On
one hand, if their values are valid, they will contain higtorformation of link delivery.
On the other hand, if their values are invalid, they simplgwglihe fact that something
unexpected happened in the network, such as a congestiapsmlwhich could also be
used to infer link quality. Therefore, we also include theswrgout features. We will show
later in this section that these two metrics are very cruniahproving the classification

accuracy.

Output Labeling

Output labeling is the process of classifying sample ostusing domain knowledge.
Supervised learning algorithms need to use labels to deterthe class to which the
input features are assigned.

There are many ways to label link quality based on LQI. We \stwb approaches
in this chapter. The first one usedmary model that only predicts a link as “good” or
“bad”. The second one usesvaulti-classmodel and can predict a set of classes of link

quality. These link quality categories can be used to djsish link quality in a finer
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granularity than using the binary model. To one extreme ntiaéti-class approach can

predict the actual LQI numerically, which becomes a regoesgroblem.

3.3.2 Step 2: Sample Collection

To perform the offline training, we need to collect samplesrirall nodes to the sink
where learning is performed. However, transmitting sasipleradio may interfere with
the application traffic. If there is a programming board @it to each sensor node, we
can access the samples directly from the network interfatteegorogramming board, as
configured in MoteLab. If there is no programming board digal; or if the sensor nodes
are deployed in an environment where such a configurationpsssible, we can inject
extra sensor nodes or some virtual sinks [127] that are us#dsavely for siphoning the
sample collecting traffic. In our experiment, we use prograng boards to collect all
samples.

Since link quality is strongly correlated with data trafficthe network, we collect
samples from a variety of offered loads, ranging from 0.25 fip4 pps, in order not
to lose traffic-related information. However, the numbersamples collected from a
non-congested network is far more than those collected a@ongested network over
the same sample collection period. Hence, we choose to nger@ample collection
periods under high loads to guarantee that we have enougplesaifnom a range of

different loads.

3.3.3 Step 3: Offline Training

Our learning and validation experiment is performed on Wéld4], a workbench con-

taining implementations of a variety of standard machirariang algorithms. We use
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the J4.8 algorithm provided with Weka for decision tree @@y and JRip algorithm for
classification rule learning. J4.8 implements an improvedion of the C4.5 algorithm
and JRip [26] implements Repeated Incremental Pruning touesoérror Reduction
(RIPPER), a propositional rule learner. C4.5 is one of the madhy studied and used
decision tree algorithms in the literature. A thorough dgsson can be found in [97].

As with most data-intensive machine learning algorithrhgs important to avoid
having the classifier memorize, or overfit, the training d&t use cross validation and
tree pruning in Weka to reduce such effects. Cross validasi@anstandard method to
estimate classification accuracy over unseen data. We u®dLOross validation in our
experiments. The available data is divided into ten eqzaldsblocks. Nine of the blocks
are randomly chosen and used for training a classifier, amdetmaining block is used
for validation. This process is repeated 10 times. The aoyuis 82% using J4.8 and
80% using JRip for our data set from MoteLab.

Table 3.2 shows theonfusion matrix for a three-class prediction. Class a contains
links with the best quality. Class c¢ contains links with therst@uality. Class b contains
links whose qualities are in between. A confusion matrixfiero used to display the
cost and accuracy of a multi-class prediction. Each elerfrent) in the matrix shows
the number of samples for which the actual class &nd the predicted classys The
numbers down the main diagonal are those that are predioteectly. Theaccuracy of
our classifier is theii1456 + 1369 + 1586) /5461 = 80.8%.

Table 3.3 shows the TP rate and FP rate of a three-classfidagsi both JRip and
J4.8, using the same link quality estimation dataset witliold cross validation. For
both algorithms, the FP rate of class lower than 5%, meaning that the probability of

classifying a bad link as either a good or median link is low.tHe context of metric-
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Figure 3.3: A sample decision tree output from Weka usingiaryi model for labeling.
Each line represents one conditional branch in the tree p@lef numberm /n) behind
the label on each line means that there are a total @istances that reach that leaf, of
whichn are classified incorrectly.

Predicted class
a b c | Total
a(good) | 1456 257 26 | 1739
b (medium)| 403 1369 124| 1896
¢ (bad) 86 154 1586 1826
Total 1945 1780 1736 5461

Table 3.2: Confusion matrix of a three-class classifier udRgp. Class: contains links
with the best quality, and clagscontains links with the worst quality. Clagsontains
the other links whose qualities are in between.
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JRip J4.8
Class TP rate FPrate TPrate FP ratg
a (good) 0.837 0.131| 0.841 0.133
b (medium)| 0.722 0.115 | 0.712 0.103
¢ (bad) 0.869 0.041 | 0.885 0.046

Table 3.3: Detailed accuracy breakdown for all classes.

based routing, the cost of such mis-classification is higi laosth JRip and J4.8 work

well in this aspect.

3.3.4 Discussion

Selection of learning algorithms.As we discussed earlier, the main criteria for selecting
a learning algorithm are the learning accuracy, overheadicast. We have studied other
classifiers, including ensemble methods, Bayesian classiBad regression methods,
to get a feeling of the best accuracy we can achieve for thesip learning problem.
From our experiment results, decision tree learners aeliigher accuracy in most cases
than all the other methods we studied. Also, as introducefkertion 3.2, the output of
decision tree learners is easy to interpret by human beindgtee classification phase
has low resource requirements. Therefore, we focus onidedise learning for the

following discussions.

Binary or Multi-class Classifier

One key difference between a binary classifier and a mwgsctlassifier is the flexibility
in interpreting the labels. A link with median quality wilitber be classified as “good”
or “bad” with a binary classifier. If the link is actually go@hough but is classified as
bad, potential good links will go unused. If we skew the thodd to treat more samples

as good, the probability of not distinguishing betweenlyegdod and fairly good links
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JRip J4.8
Binary Multiple | Binary Multiple
Accuracy | 82.6% 80.8% | 85.2% 81.1%
Overhead | 7rules 16rules| 77 nodes 135 nodes
FP rate (bad) 5.9% 4.1% 11.3% 4.6%

Table 3.4: Comparison between a binary classifier and a mlakis classifier with three
classes. FP rate is used to measure the cost of learning.eAsrah IF-THEN rule in
JRip. The number of nodes is the total number of nodes of aidadige in J4.8.
will occur. A multi-class classifier, however, will produasore information that can be
leveraged.

The other extreme is a numerical classifier that predictsettaet LQI. However,
classifiers like decision trees are accurate enough andkeeffior our applications.

Table 3.4 compares the accuracy, memory footprint, ancaike positive (FP) rate of
class c (bad) between a binary classifier and a three-classifoér. Accuracy is defined
as the percentage of instances correctly classified fotaabes.

The accuracies of three-class classifiers for both JRip ar@lal¢ lower than the
accuracies of their correspondent binary classifiers byt 183%. For J4.8, the size of
the decision tree is relatively large. For JRip, howeversike increase is small since 16

rules usually take only several hundreds of bytes.

Feature Selection

Because irrelevant features will degrade the performandea@sion trees and classifica-
tion rules [134], it is beneficial to perform an attributeesztion that will eliminate all but
the most relevant features. We already selected a set ofésdbased on our understand-
ing of the problem domain and what each attribute actuallgmee Next, we use some
well-established methods to further sieve these featar@sprove prediction accuracy

or reduce the overhead of feature collecting.
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M1 M2
Rank | Feature | Rank | Feature
0.70812| psend || 0.3251| RSSI
0.58138| RSSI 0.1577| fwd_buf
0.34003| precv || 0.1384| psend
0.03586| depth | 0.0771| precv
0.00406| fwd_buf || 0.0628| depth
0 cla 0 sendbuf
0 sendbuf 0 cla

Table 3.5: Ranked attributes.

We use two attribute selectors provided by Weka, includirfgGainAttributeEval
(M1) andGainRatioAttributeEva(M2) and use the union of the feature® { U M?2), as
shown in Table 3.5.

M1 evaluates the worth of an attribute by measuring the médion gain with re-
spect to the class, while M2 measures the gain ratio. M2 takesconsideration the
information each attribute contains that is neglected in Eduations 3.3 and 3.4 are the

mathematical definition of the two metrics,

InfoGain(D, Attr) = 1(D) — I(D|Attr) (3.3)
GainRatio(D, Attr) = I(D)I—(jétl?;/lttr) (3.4)

whereI(D|Attr) is the entropy of training seb given attributeAttr and (D) is the
entropy of D. Entropy is widely used in machine learning to representahmunt

of disorder an attribute contains with respect to the cldsmterest. In particular,

I(D) = =" pilog,(p;) wherep; is the probability that an arbitrary sample n

belongs to clas¢’;. Suppose samples iR on attribute At¢r havingv distinct values

as{ai,as, ..., a,}, then we have (D|Attr) = S0, 2al

=113 % I(D;) where D, contains

samples inD that have outcome; of Attr.
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7-feature 5-feature 1-feature 1-feature
(RSSI) (pSend)

Accuracy 80.8% 80.8% 70.5% 69.3%

Overhead | 16 rules 17 rules 4 rules 20 rules

FP rate (bad) 4.0% 4.1% 3.9% 4.1%

Table 3.6: Impact of feature selection. The 5-feature s&tliscted using the union of the
features in M1 and M2X/1 U M?2).

The impact of feature selection on the learning accuracynomg footprint, and the
FP rate of class (bad) is demonstrated in Table 3.6. In particular, we complae ac-
curacy using all 7 features to the accuracy of using only eature. Clearly, using more
features results in a higher accuracy than using just onis. Spports our motivation to
study more features. As using 5-feature and 7-feature haeenparable classification
accuracy, memory overhead and FP rate, we use the 5-fe&tuire this case study. It
is interesting to note that the selection of features bampacts the FP rate of class c
(bad). One explanation is that boftSST andpSend are critical in differentiating bad
links from good ones. Including new features will not bringaninformation for this

purpose.

Impact of Training Corpus Size

Figure 3.4 shows the impact of training corpus size on diaasion accuracy and FP rate.
Empirically, 5000 samples are good enough for our appbcakiecause incorporating
more samples only brings marginal gains in improving leagraccuracy and reducing

FP rate.
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Figure 3.4: Accuracy (left-axis) and false positive raight-axis) as a function of the
training corpus size.

3.4 Case Study

In this section, we present a case study to illustrate howersiged learning techniques
can be leveraged to improve the performance of link-qualitiare collection routing
protocols in congested wireless sensor networks.

MintRoute is a collection routing protocol that uses ETX tasiouct routing topolo-
gies. As shown in Figure 3.1, MintRoute fails to find parentsangested networks, using
snooping-based link quality estimation. However, if a pauean be identified based on
other available information regarding link delivery cap&y routing can be resumed
and orphan nodes will be salvaged. We propose MetricMaplt@mative to MintRoute,
that establishes link quality estimations using offlinenea classifiers to address this
problem.

MetricMap consists of two components. The first componentrots the update of
all features; it is triggered either by packet arrivals ordr events. The second component
controls link classification, with input from features @ated by the other component

and output in numerical or categorical values indicatimg juality. The output of the
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/] update feature vector on denand or periodically
voi d updat eRSSI () {
foreach packet successfully received from nei ghbor i
keep the RSSI value history for i
}
voi d updat eBuf (int type) {
during each update interval
update the buf size for type (fwdBuf or SendBuf)
}
voi d updat eCLA () {
during each update interval
check the clear channel assessment and update CLA
}
voi d updat eProbSend () {
/1 this feature is updated the sane as in M ntRoute
}

voi d updat eProbRecv () {
/1 this feature is updated the sane as in M ntRoute
}

int classify (struct featureVec fv) {
/'l performclassification based on input features
/1 the output represents the class |abel
}
/'l update link quality based on classification results
/! recvEst is the in-bound link quality estimation
/1 link quality is between 0 (low) and 255 (high)
voi d updat eEst (fv) {
if (classify(fv.rssi, fv.sendBuf, fv.fwdBuf, fv.depth,

fv.CLA, fv.pSend, fv.pRecv) == "good") {
recvEst = 1 = 255
}
el se {
recveEst = 0
}

}

Figure 3.5: Pseudo-code of MetricMap.

classifier is used whenever the ETX-based method fails,iwkidetected whenever ETX
returns an invalid value indicating the current node hasarenqt in the collection tree. We
choose such a design in the consideration that if ETX isvgtitking, it should give more
accurate estimations of link quality than the offline-leatrtlassifier. The pseudo-code
of MetricMap is shown in Figure 3.5, with the functioh assi f y() implementing the

second component and the rest implementing the first cormpone
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3.5 Testbed Evaluation

To illustrate the application of supervised machine leagnn realistic sensor network
application settings, we have implemented the MetricMayqtype in TinyOS and eval-

uated its performance via a real-world testbed deploymiesgmsor nodes.

3.5.1 Evaluation Methodology

In our evaluation, we consider the following performancerios:

e Data delivery rate:The fraction of data packets that are successfully deliveve

the destination.

e Data latency: The time it takes from when a packet is sent out until the paicke

received at the sink.

e Fairness indexThis metric [52] is used to measure the variability of periance
across all source nodes. For any given set of delivery tates. ., p,,), the fairness

index definition adapted for our problem is given by:

(E?:Lpi)Q
nxr p,?

)

fprs-opn) =

with p; denoting the average packet delivery rate ofithesensor and the total number
of source nodes in the network. The fairness index alwagshetween 0 and 1. If all
nodes have the same packet delivery rate, the fairness imdex

In each experiment, we also measure the overhead requiradhieve these per-
formance metrics. In particular, we are interested in meaguhe memory foot-

print of each protocol. The testbed is comprised of MicaZ motesiwhave the AT-
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MEL 7.37MHz ATMegal28L, low-power, 8-bit micro-controtlevith 128 KB of pro-
gram memory, 512 KB measurement serial flash data memory &l EEPROM. It
uses a Chipcon CC2420, a single-chip IEEE 802.15.4 complianbRadquency (RF)
transceiver operating at 2.4 GHz and capable of transmiii250 kbps. The packet size
we used in our experiments is 29 bytes, the default valuengQ%. These motes are

connected to an Ethernet used for logging and mote-progmagim

3.5.2 MetricMap Results

We test MetricMap on the MotelLab testbed in the Harvard Coerp8tience Build-
ing [132]. It consisted of 30 motes across multiple officethattime of these experi-
ments.

Our experiment consists of two phases: the offline learnivagp, which takes multi-
ple hours for collecting training samples and processiedgeharning task using WEKA,;
and the online optimization phase that uses the rule-sgtddan the training phase to
guide situation-aware routing. Each run lasts 15 minuteghi® routing performance to
converge.

When we evaluate the performance of MintRoute and MetricMaMoteLab, the
results are different for runs at different times. This isdugse of uncontrollable factors in
the testbed, especially the variability of link qualiti€herefore, we take the following
approach to reduce the impact of uncontrollable factordhéndénvironment. We run
MintRoute followed by MetricMap or vice versa for a contingols minutes. We run
such pairs of experiment 5 times and each experiment is erdint with respect to each
other. Such a design allows us to reduce influences fromriaotber than the algorithm

itself. Also, our experiments are performed both in the magtand at night when the
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human activity interference decreases. For each offegat] the minimum, median, and

maximum values are shown.

Performance and Overhead

Figure 3.6 compares the data delivery rate between Metpcia MintRoute. Our ap-
proach consistently outperforms MintRoute. The higher th#it load, the better Met-
ricMap performs compared to MintRoute. MintRoute can rarelyrf a data collection
tree under high traffic rates. In contrast, our approach tdrfem a tree because it
leverages more information for link quality assessment.

Figure 3.7 shows the packet latency comparison. Packeisedsl by MetricMap
have a comparable average latency to those delivered byRWine. Data latency in-
cludes local processing time at the source node and alhnat@iate nodes along a mul-
tihop route, network transmission time over all links, aedaption processing time at
destination. Our classifier will be used regularly for upaigtthe data collection tree.
This may introduce some delay in the local processing tinteteansmission time if the
calculation is on the critical path of data transmission.r €@sults show that the extra
processing time in classification online does not imposega biverhead and delay on
packet transmission.

Figure 3.8 compares the fairness index of packet delivdrgemonstrates that our
approach is much better at maintaining fairness acrossrdiit offered loads. It does not
allow certain nodes to get unfair fractions of network baiutiln This is reasonable since
all nodes use similar rule-sets learned offline and there isias towards any particular
link. On the other hand, since MintRoute relies on data traffimfer link quality, the
link selected may be skewed depending on the traffic pattedritze node’s location to

the sink. If any part of the network en route to the sink is texted, the MintRoute
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Figure 3.6: Average success rate versus per-sensor laaglaiperiodic workload.

data collection process will be interrupted. MintRoute usemdcast in this case to try
to resume the communication, but this actually exacerliateproblem by adding more
useless traffic into the network. Our classifier can mitighteproblems by discerning
meaningful link information without imposing any additartraffic. Once the routing
tree is re-formed, the data collection process can be raswery quickly. So, using
MetricMap, more nodes can deliver their data to the sinkctvinesults in a higher fair-
ness index. In contrast, using MintRoute, a few nodes dethaany packets and the rest
have a very low success rate.

In summary, MetricMap addresses the high data rate chaléogn a different per-
spective compared to congestion control mechanisms [491PZ]. Namely, we use a
range of parameters to guide link selection for successamkfks in data delivery. Our
approach is expected to be orthogonal to theirs and contpihi@m could potentially
achieve further performance improvement.

Since MetricMap needs to keep local metrics that are usedpas o the classifier,
it requires some extra memory usage. We use the memory fiobtgrMetricMap to
guantify the overhead. Table 3.7 shows the actual memonypffiod of MintRoute and

MetricMap. The increase in program size is 11.5%, which sdusostly for imple-
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Figure 3.8: Fairness index of packet delivery rate versasersor load using a periodic
workload.

menting the classifier. The increase in static memory siZeli%, which is mostly data
structures used for collecting and converting low-levetrme to input of the classifier.
This is a small increase from the original code and memortpioat.

Other than memory cost, there are additional learning dndtse sample collection
and training phases. It would be interesting to determitieg$e costs can be amortized
to many weeks of protocol running without re-training; wawue this as future work.

Our results so far have shown that MetricMap produces ctamglg higher perfor-
mance than MintRoute under heavy traffic load. To understaath benefits come from

a better selection of good quality links, we further compédegricMap with another data
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Component ROM (Flash) RAM
Surge+MintRoute 16570 1971
Surge+MetricMap 18468 2110

Table 3.7: Code and memory usage comparisons of MintRoute atricMap on MicaZ.
RAM is memory usage in bytes and ROM is program size in bytes.
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Figure 3.9: Performance improvement comparison with lstiaos-based approach.

collection protocol — MetricRSSI. MetricRSSI uses the RSSugalof received pack-
ets over a link as the only indication of its quality. If theeatly received packets have
higher RSSI values compared to other links, the protocol agllign a higher quality
value to this link than other ones. Other than that, MetricRS®e same as MetricMap.
Thus, MetricRSSI does not take into account any factors dttaer packet RSSI values
and makes its estimation solely using heuristics.

Figure 3.9 shows the average improvement of MetricRSSI anttidiéap over
5 independent testbed runs, using the performance of Min&Ras the base line.
For example, the improvement of protocol X in packet deliveate is calculated as
(px — Pumintroute)/ (Paintroute)- The figure shows that MetricMap has higher packet
delivery rate and fairness index compared to MetricRSSI. BszdletricMap uses more
features to make its link quality estimates, it potentiallif find better links that have the

capability to deliver more traffic.
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There is a minor increase in data latency for both protocdlsis is because both
MetricRSSI and MetricMap deliver more packets than MintRaurtd these packets usu-
ally have more hops to traverse. Since the increases ofatatacly for both protocols are

negligible, we do not discuss them further.

3.6 Online Learning

Extensive empirical studies of real-world sensor netwdré&ge shown that high vari-
ability in the quality of radio communications exists beémdow power sensor devices.
Therefore, it is necessary to continuously take new dataantount and adjust learning
results. The offline learning approach proposed in prevéaaesions can be used periodi-
cally to adapt to such changes. However, this approach fabrtations. First, it uses
traditional decision tree learners that need to store thiecettata set (training samples)
for training. Second, it involves transferring all traigisets to the base station, which is
a huge burden to the underlying network infrastructure.

On the contrary, online learners work incrementally as nat& & received over time.
There is no need to store the entire data set for traininggs@gpsince data samples are
treated as data stream This makes distributed learning feasible in sensor nétsvsince
some aspects of the learning process such as data samplgnggation, and training can
now be placed on individual, storage-constrained sensdgsior master nodes [38], such
as Stargates. This also eliminates the problem of perithgicallecting new samples to
the base station.

In this section, we explore the possibility of using onlisarning methods to maintain

efficiency and accuracy, while being able to quickly adamttanging environments. We
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focus on online, incremental decision tree learners dueeio butput interpretability and

learning accuracy.

3.6.1 Online Learning Overview

In many problem domains, the information required for l@agnis rarely availablea
priori. With new pieces of information becoming available overdjitine decision struc-
tures should be revised as necessary. Such a learning mabigied as incremental
learning, or online learning.

The VFDT (Very Fast Decision Tree) [29] learner is an onliearhing algorithm
that manages stream data using few computational resowbde maintaining a per-
formance similar to traditional batch learners. In VFDT,exidion tree is learned by
recursively replacing leaves with decision nodes when reawpdes are available. Each
leaf node stores the statistics about attribute valuesatteatised to measure the merit
of split-tests. VFDT uses Hoeffding trees, which explog thoeffding bound (or addi-
tive Chernoff bound) to determine, with high probabilitye ttmallest number of samples
necessary at each leaf to select a splitting attribute tloaldvbe the same as one cho-
sen using the entire data set. One attractive property ditiedfding bound is that it is

independent of the probability distribution generating tibservations.

3.6.2 Evaluation
Methodology and Data Set

We use the VFDT implementation provided in the VFML (Very Bslachine Learning)
toolkit [123]. The original design of VFDT is targeted forf@&ftive learning from very

large data sets, such as web-click stream data. In our case, Isk quality data is
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continuously generated, the learning problem fits naturatb the stream data domain.
However, the number of link quality samples generated islismuch smaller than the
number generated by other data sets used in the original iRiplementation. This
is because link quality data collection depends on the ¢redtie and the topology of the
testbed. To take this factor into consideration, we endigde¢scansoption in the VFDT
reference implementation. Activating this option allowBSDVT to rescan previously-seen
samples, which helps to gather statistics of attribute esland improve classification
accuracy. Thisis important for small data sets or in situegtin which data arrives slowly.
However, this is only an artifact of our data set. Since senstworks are designed to
operate for months or even years, we anticipate that a lagene of new data samples
will be available and that makes the online incrementahliegr approach more feasible.
Rescanning allows us to compare between VFDT and C4.5 in a égir w

The data set we used for evaluating the accuracy of VFDT is#inee as we used
in Section 3.3 for traditional batch learners. In particwee compare the classification
accuracy of VFDT with C4.5 [97]. We still used 10-fold crosdidation to get the accu-
racy results. We also used shuffled data sets of the origimat@produce different data
streams so that we could test the sensitivity of VFDT to dyiedimk quality data. Since
the tree size produced is of special interest in the contegensor networks, we also
tested the difference of accuracy and tree size betweenregruee and a non-pruned

tree.

Evaluation Results

We conducted a series of experiments to evaluate the ctaggifi accuracy of VFDT
as a function of the number of rescans. With the technologycks in storage and

memory devices, we can imagine that sensor nodes in the uiese fwill be equipped
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Figure 3.10: Performance as a function of the number of rssca

with even more memory space than the Megabytes of Flash nyeimey currently have.

If we adopt a hierarchical architecture [38], the masterasagsually have more memory
space than other nodes. Therefore, it is feasible for theosarodes or master nodes to
store recently-seen data sets for rescan. In our experjmergtored about 3K samples.
Figure 3.10(a) shows that increasing the number of resecapsoves the classification
accuracy. The tradeoff here is that increasing the numbegsafans also increases the
tree size created, which is reflected in Figure 3.10(b). Adaitree leads to a more
complicated classifier and more computation processinggllink quality classification.
This could be a design option based on the available menteygésired classification
accuracy, etc. Further exploration of such a tradeoff tsdeffuture work.

Table 3.8 shows the classification error rate and tree sing shiuffled data sets of
the original link quality data collected from the MoteLab.a® samples are shuffled
in a purely random way to eliminate potential correlatiomshie original data set. The
results show that VFDT is robust to a dynamic data stream aaidteins comparable
performance across all data sets. We also see that the pin@escare more desirable in
our case because they produce a classification accuradgrsimthat of VFDT without

pruning and that of C4.5 with a much smaller tree size.
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Shuffled C4.5 VEDT (rescan:4) | VFDT w/ prune (rescan:4)
dataset | Error (%) | Tree size| Error (%) | Tree size| Error (%) Tree size

1 18.10 105 20.97 134 20.97 53

2 18.64 107 21.90 130 22.16 44

3 18.21 102 20.62 130 21.56 49

4 19.60 105 21.65 134 20.93 50

5 18.37 104 19.68 129 21.06 48

6 18.45 107 20.54 137 21.39 49

Table 3.8: Learning results with shuffled datasets.

In summary, online learning methods produce classifierl wiilar accuracy to
traditional batch learners. Since they do not need to wortherentire data set, they are
more resource- and computation-efficient. Our prelimirewgluation shows that online

learning provides a promising approach for learning tashksireless sensor networks.

3.7 Related Work

Significant work has focused on providing nodes with theitgttib rapidly observe and
react to the dynamics in wireless sensor networks, whereda veinge of network con-
ditions exist. The awareness of network situations woudtm\ah more adaptive protocol
to be deployed. Most of the previous work either uses a “réifgnemb” focusing on a
single metric that may lose useful information or even wplsad to misunderstanding
of situations, or uses sophisticated heuristics that coendilot of parameters and require
a lot of expertise and domain knowledge to derive. This sacsurveys related work
on situation-aware routing in wireless sensor networksasd reviews applications of
machine learning to problems in other domains.

Situation-awareness Debugging and diagnosis also focus on finding problems amd pr
viding information. Sympathy [98] is developed as a todlfsedetecting and debugging

failures in sensor networks. Sympathy is mainly used as tonatic debugging tool for
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root cause detection of failures in a centralized locatsoich as the sink. SNMS [118] is
another network management system for wireless sensoorietwHowever, the focus
of SNMS is to facilitate the network management for opesat@ur focus, instead, is to
provide knowledge as to which metric, or what combinatitvosd be used in adaptation
to network dynamics, using standard machine learning atedrdaing technique.
Machine learning. There has been significant prior work on applying machinmieg
techniques to different areas of research, and most rgcrsiem-related problems, such
as compiler optimization [15], system performance diagn{b], fault localization in
Internet services [24], and software bug isolation [69].

Various machine learning techniques have been used in dgranting optimiza-
tions, such as reinforcement learning [9], and Bayesiarrenfge [87]. Since our pro-
posed optimization works by identifying good links in costgl networks, we focus
on classification problems in this chapter, which is paféidy suitable for algorithms
such as decision trees and induction rules. It is intergstinnvestigate the effectiveness
of other learning methods for routing optimizations in wess sensor networks and we
leave it as future work.

Machine learning has also been used for modeling data gexdyg sensor networks.
Guestrinet al. [40] used kernel-based regression to accurately modebseiasa and re-
duce the dimensionality of data representation. This aggdresignificantly decreases
the communication requirements in the network. More rdgeltauseet al. [66] stud-
ied sensor placements using probabilistic models thatustdor both data quality and
communication costs. Our approach, however, focuses omiaptions within the net-
working protocol stack.

Link quality estimation. Link quality awareness permeates many aspects of sensor net

work design and operation [94], ranging from the design of@A#otocols to the design
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of applications. As a result, link quality estimation hasdme a significant research
focus in recent years.

One challenge with link quality estimation in sensor netgds to maintain accurate
and reliable estimations with low overhead; many improvetsi@ave been aimed at the
original ETX approach. Many of the proposed metrics [21622139], however, share
one limitation: The performance of their metrics depends/tg on their model accura-
cies, which need significant trial-and-error tuning andezgkgnowledge. Our approach,
on the other hand, passively collects features that arelyeadilable and uses standard
learning algorithms to discover the inner correlation.tkermore, their observations on
temporal and spatial variability of channel conditions barused in our work to improve
learning efficiency. For example, the temporal variabitign be used to determine the
interval for relearning. The spatial variability can be dise perform distributed learning,
instead of collecting all samples to a central location.

A similar problem to link quality estimation is lossy linkg@antification. Nguyeret
al. [86] proposed to use end-to-end data for lossy links infeee®ur technique can also
be used for this purpose. Furthermore, since our approad isnited by the end-to-end
data assumption, intermediate nodes can also infer lasisy. liThis makes it feasible for
our approach to be used for routing optimizations, whilértyeproach is focused mostly
on inferring lossy links.

Routing optimization. In terms of efficient routing design in the presence of uatsé
radio links, [17] takes a joint-optimization approach tbansiders both the recovery of
lost packets in the link layer as well as path selection irrtlting layer. The metric they
proposed considers many of the features we use in this wookvekfer, our focus is on
learning information that is otherwise unavailable withditional approaches. Therefore,

our method can be combined with theirs to further improve momication efficiency.
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3.8 Conclusions and Future Work

This chapter presents a supervised learning frameworlcémabe used to produce useful
information automatically and to help make informed dexisiin sensor networks. As a
case study, we investigated the link quality estimatiorbfmm by casting it into a clas-
sification problem. Experiments on a real-world sensor ngiwestbed show that our
technique can achieve significant performance improveroeet existing approaches.
We also explored the possibility of using online learningpaithms to efficiently adapt to
external changes and varying network conditions. Our teshlow that the online learn-
ing algorithm we used achieves similar accuracy comparédhttitional batch learners,
but is more resource- and computation-efficient.

Beyond this initial prototype, we envision future work to lunde the following. First,
one could further test the effectiveness of VFDT on realldvtestbeds by embedding
its output classifier into MetricMap. Second, there may lgmificant external changes
that will affect the correlation between link quality andhet parameters, which we term
as “concept shifting”. We are interested in studying onlg&rners that are capable of
detecting and capturing such concept-shifts. Third, wénwaesapply our learning tech-
niques to new problems that may benefit from our approacln, asicoot cause analysis
of packet loss [112].

Overall, this work offers an important first look at machiearning techniques for
the particular network problems we have evaluated. In destnating machine learning’s
considerable performance advantages, this work has mads stép towards clean im-
plementations of highly-effective, situation-aware teas for real-world sensor networks

and other similar networks.
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Chapter 4

Erasure-Coding-Based Routing for

Opportunistic Networks

In previous chapters, we discussed ways of achieving situatvareness by exposing
new knowledge to traditional protocols to improve perfonte The basic operations of
the protocols were kept untouched as much as possible, thieildecision-making com-
ponents were replaced with our situation-aware ones. Tgpsoach, however, may not
always be feasible. For example, in many sparsely-condectatermittently-connected
networks, traditional MANET protocols such as DSR and AOD\I mot work well even
equipped with the knowledge of network disconnection,ssithey seek to establish end-
to-end paths between the communicating pairs. In thesat®itis, new solutions are
required to make routing efficient and resilient to the imtmdisruptions.

In the following two chapters, we propose two such new sohgito combat disrup-
tions where few traditional approaches apply. While disar® in challenged networks
could be caused by a wide array of factors, one major type sstigtion is related to

extreme mobility, such as that found in many DTNs and opmastic networks. In this
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chapter, we investigate the performance problems facimgeurouting protocols in op-
portunistic networks and propose an erasure-coding-baméthg protocol to achieve

guaranteed low message delivery latency.

4.1 Introduction and Background

Routing in mobile sensor networks with unpredictable mopis a challenging task be-
cause disconnections are frequent and the lack of knowlabgat network dynamics
hinders accurate decision-making. Existing approachiesapity use redundant trans-
missions to achieve reliability, which have either high thead due to excessive trans-
missions or long delays due to incorrect choices during &dmg under energy budget
(only a few redundant copies are allowed). Instead of ptewjche best relays for for-
warding, we propose a novel forwarding algorithm based endéa of erasure coding to
reduce the dependency on mobility and increase the resjlimobility dynamics. The
key benefits of forwarding code blocks lie in that we use metays for data forwarding
to mitigate the impact of outlier forwarders. This schemekse@ven when only a subset
of the relays successfully deliver their data. Furthermoue approach maintains a con-
stant overhead that is limited by the energy budget and addstna data transmission
overhead compared to approaches using redundant trarsmiss

Next, we provide a general overview of the state-of-thezarhmunication methods
for challenged mobile networks, including DTNs and oppwoidtic networks. We focus

on the tradeoffs and constraints that lead to our desigrsided in this chapter.
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4.1.1 Delay/Disruption Tolerant Networks

Delay/Disruption Tolerant Networks have recently emerge@n important area of net-
work research that cover many of the performance-challg&ngavorks mentioned in this
dissertation. The DTN architecture [28] is proposed as amageh for achieving effi-
cient communication in DTNSs. It adopts the store-and-fodvauting paradigm to han-
dle disruptions, such as frequent disconnection, extrefoaly delay, and high bit-error
rate. Due to intermittent disconnection, frequent netwa@Kitions and other disruptions,
no end-to-end contemporaneous routes exist between theesand destination. Data is
buffered at intermediate nodes during periods of discamoreor long delays to achieve
resilience to disruptions. This reflects a paradigm shdtrfrdata- or communication-
centric approaches to storage-centric approaches tovacteable communication in
many challenged mobile networks.

The study of store-and-forward asynchronous communiegitio poorly connected
networks has a long history. UUCP (Unix to Unix Copy) [121] anddNet [35] are
early examples of such messaging systems based on theastbferward paradigm.
Wizzy Digital Courier [135] is a project to distribute datach as emails, to places with
no Internet connection, using UUCP as its major communiongpimtocol. However,
these earlier systems work with only a few lower level tedbgies. On the contrary, the
DTN architecture provides a general solution to accomnedety different lower level
technologies and support interoperability across raljiteterogeneous networks.

The DTN architecture is designed to allow nodes to commu@ieaen when parti-
tioned from each other for extended periods of time. It dpechow a set of DTN routers
form an overlay network to cooperatively store and forwarddles of data. DTN routers
are connected by links that can be persistent, schedulegportunistic. The DTN archi-

tecture has been widely used in performance-challengedbriet to address their routing
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difficulties. Routing algorithms for DTNs are not includedpst of the architecture it-
self. This is because routing in DTNs is concerned aboutteatdelivery by employing

long-term storage at the intermediate nodes. Therefotging algorithms are focused
on locating when and to whom to relay messages, which ardyhdgpendent on the
time-varying characteristics of the network and the awdilst of such information.

To address this open problem, a number of routing algoritetm®TNs have been
proposed [53,57,70,122]. Generally speaking, currentagmimes can be divided into
two classes: those based on epidemic message replicainthshose based on knowl-
edge of contact schedules. Epidemic routing [122] is onehefdarly proposals for
routing in partially connected networks. They introducedam pair-wise message ex-
changes among mobile nodes to achieve eventual messaggryleliheir goal is to maxi-
mize message delivery rate, minimize message delivenydgatend the aggregate system
resources. To achieve this, tradeoffs must be made. Theseho place an upper bound
on message hop counts and per-node buffer space to accoripdis Epidemic routing
is well-suited to networks that need to self-organize, sitey do not rely on pre-known
knowledge of node contacts. Unfortunately, it may suffenfrlimited buffer space and
energy budget (which determines the number of copies atlawéhe network).

The algorithms proposed in [53] assume the availability@ftact schedule knowl-
edge. In[53], the general DTN routing problem is formalizaed framed as a constrained
optimization problem in which network links may go on and foif extended periods of
time and each node has a storage constraint. Routing algarittie further divided
into three classes, depending on the availability of kndgée routing with zero knowl-
edge, with complete knowledge, and with partial knowledegpectively. They show
that global knowledge may not be necessary to achieve goddrpence and smarter

algorithms may provide a significant benefit in resourcest@med conditions in terms
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of contact opportunities, bandwidth or storage. Howeussgytdo not discuss how to
leverage partial or local knowledge effectively to achige®d performance; this merits
further investigation, since many existing challenged eabetworks only have partial

or local knowledge to make routing decisions. To addresslitmitation, [57] presents a
routing protocol that only uses observed information ofriaevork. They use metrics to
estimate the utility of next hops in terms of certain perfanoe goals, such as minimum
delay and provide information for routing decision makingghis is in essence very
similar to our approaches in Chapter 2. However, acquiring/osk knowledge intro-

duces bookkeeping overhead and extra communication, mgghinterfere with normal

message transmissions. Furthermore, no accurate knosviedy be easily obtained for

networks with high unpredictability.

4.1.2 Opportunistic Networks

Opportunistic networks [89] evolved from both MANETs and RS, In opportunis-
tic networks, nodes make no assumptions about the existdrered-to-end paths from
the source to the destination. Contacts between nodes aatlyuseither persistent nor
scheduled. This is in stark contrast to traditional MANERattassume end-to-end con-
nectivity. Routing in MANETS, therefore, is about route aigery and maintenance
when mobility causes churns (changes in membership) inabieng table. Routing in
opportunistic networks is in essence a prediction problewabse the decisions as to
when and to whom to forward data are the most critical. Thecepts of routing and
forwarding are intermixed since routes are built duringadatwarding. The nature of
opportunistic networks suggests that long latency may qeired for eventual data de-

livery. Therefore, they also fit under the category of DTNgaifples of opportunistic
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networks include ZebraNet, Pocket Switched Networks [4n[] Shared Wireless In-
forstation Model (SWIM) [110].

Other than the DTN routing algorithms discussed in the lastign, several new
routing techniques have been proposed specifically tovesuobbility problems. Mes-
sage Ferrying [146] investigates the usage of proactiveilityotb meet communication
needs. With nodes actively scheduled, contacts in suchonktvcan be treated as par-
tially scheduled and partially opportunistic. Howevereda the requirements of having
such high end proactive mobile equipments, such networkdve new energy and per-
formance tradeoffs. Data MULEs [108] are another exampley teverage the opportu-
nities from node mobility for data delivery. These are iatging directions to investigate.
However, our solutions presented in this dissertationrassuo such controllable mobil-
ity.

Recent Trends.Additionally, projects such as Urban Sensing [13], Metm®e[16], and

SensorPlanet [106] have recently explored sensor netvibatscover very large areas,
such as an entire city. These networks span the areas ofaratihoc networks and
DTNs and are confronted with a hybrid category of challerfga® both domains. As a

result, the discoveries in this dissertation can contelatthis emerging field as well.

4.2 Routing Algorithms Classification

In this section, we review the designs of forwarding aldoris that have been proposed
especially for dealing with intermittent disconnectionsDTNs and opportunistic net-
works in particular. We will use those algorithms later imstbhapter for performance
evaluation against our proposal. These algorithms diffeéheir decisions as twhofor-

wards the dataat what timeis the data forwarded, and whomis the data sent. In the
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following discussions, we define @ntactas an opportunity to communicate between

two nodes and eelay as a forwarding node.

e Flooding | ood): In flooding, each node forwards any non-duplicated messages
(including messages received on behalf of other nodes)yo#trer node that it
encounters. It delivers messages with the minimum delayerfet are no resource
constraints, such as link bandwidth or node storage. Wélused as the reference

for the best achievable performance in terms of data dglrse and data latency.

e Direct contact @i r ect ): In direct contact, the source holds the data until it comes
in contact with the destination. Therefodd,r ect uses minimal resources since

each message is transmitted at most once. However, it mayloag delays.

e Simple replicationgr ep(r)): This is a simple replication strategy in which iden-
tical copies of the message are sent oveffitlse¢  contacts. Here,r is the repli-
cation factor determined by the energy budget. Only thecgoof the message
sends multiple copies. The relay nodes are allowed to selgydathe destination;
they do not forward it to other relays. This leads to smallrbead as the message
flooding is controlled to take place only near the sourcesThass of forwarding
algorithms is also known as ttwo-hoprelay algorithm [39, 47]. There is a natural
tradeoff between overhead)(@nd data delivery latency. A higheldeads to more

storage/transmissions, but a lower delay.

e History-basedl{i st ory(r)): Herehistoryis used as an indicator of the proba-
bility of delivery. Each node keeps track of the probabititat a given node will
deliver its messages. Thehighest ranked relays (based on delivery probability)

are selected as forwarding nodes. ZebraNet uses the fregaenvhich a node
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encounters destination as an indicator of the delivery giodity. We use the im-

plementation described in [58] in this study. One thing ttengource nodes do
not store copies of messages that they generate, after leropies of the mes-
sages have been forwarded. This explains whyhihet or y protocol sometimes

performs worse thadi r ect in our simulation.

A summary of the above forwarding algorithms is listed in[€ah1.

Table 4.1: Forwarding Algorithms

Algorithm Who When To whom
f1 ood allnodes new contact all new
di rect source only destination destination only

srep(r) source only new contact r first contacts
history(r) | allnodes new contactr highest ranked

4.3 Solution Overview

In this chapter, we propose our solution to energy-effictreating in opportunistic net-
works, using the ZebraNet mobility as the evaluation mod&s we have discussed,
routing in such networks cannot rely on setting up an enerpath from the source to
the destination, because contact dynamics are not knowdvanae and such a path may
not exist at all. Most current approaches are based on nmessplication over multiple
contacts [58, 122], which is limited by the energy budget available buffer space. To
increase message delivery latency, more copies of messageto be forwarded in the
hope that some of them may deliver the data sooner, whichrmitgreases the energy
consumption. Given a specific energy budget in terms of thebeu of messages al-
lowed to forward, the delivery latency may suffer if the stdel relays do not meet the

destination soon.
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We propose an alternate method to improve message delatanycly performance,
while keeping the overhead (the number of bytes transméteshch node) fixed. The
basic idea is to erasure code a message and distribute thbloatts over a larger number
of relays than replication-based methods. Compared torsgadull copy of the message
over arelay, only a fraction of code blocks are sent over eaely. Thus, we can control
the routing overhead in terms of bytes transmitted, whilevéwding to more relays at
the same time. For scenarios like ZebraNet, where nodesargyeconstrained, limiting
such overhead is an important design goal.

The basic idea of using erasure coding is simple and has bgéored in many ar-
eas [82]. However, it is not clear if and when it will perforratter than simpler alterna-
tives based on pure replications in DTNs. In this chaptercareduct performance com-
parison between the erasure coding approach and the otthieradives using a variety of
mobility scenarios with different node densities. We usthizynthetic and real-world
DTN mobility traces as input to our simulations. We discavet the erasure coding ap-
proach can provide good delay guarantees by using a fixetieaer Fundamentally, the
benefits of erasure coding arise in eliminating cases wheg delays arise due to bad
choice of forwarding relays. Erasure coding allows thegnaission to be spread over
multiple relays while using a fixed amount of overhead. Th&uits in a protocol much
more robust to failures of a few relays or some bad choices.fiNdethat the erasure-
coding-based algorithm is the least sensitive to diffepamameters in terms of message

latency and message delivery rate.
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4.4 Erasure-Coding-Based Forwarding Algorithm

As discussed in the previous section, most current appesdoi routing in opportunistic
networks are based on sending multiple identical copies @¥ferent paths. There is a
fundamental tradeoff between overhead and delay. On orenegf flooding achieves the
best possible delay but results in very high overhead. Tiher@xtreme is protocols like
di r ect which have low overhead because they send only few copiesnar at all. The
lack of knowledge about the topology dynamics inhibitsidguishing good paths from
bad ones. Therefore, these protocols may result in longysléldad paths are selected.
In this section, we present a forwarding algorithm basedhendea of erasure coding.
Our algorithm achieves better worst case delay perform#mae existing approaches

with a fixed overhead.

4.4.1 Erasure Coding Basics

Erasure codes operate by converting a message into a latgefrcode blocks such that
any sufficiently large subset of the generated code blockdeaused to reconstruct the
original message. More precisely, an erasure encoding képut a message of size

M and a replication factar. The algorithm produce3! = r /b equally sized code blocks

of sizeb, such that any1 + ¢) - M /b erasure-coded blocks can be used to reconstruct the

original message. Herejs a small constant and varies depending on the exact digorit
used, which could be Reed-Solomon codes [100] or Tornadcsd@8¢ The selection of
algorithms has to consider the tradeoffs between codicgftiag efficiency and the size
of the code blocks generated. For example, Tornado codesdfawient encoding and
decoding steps based on simple operations such as XOR, abghefcslightly higher

e. A thorough discussion of the various tradeoffs is preskeme82]. The choice of
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which erasure coding algorithm to use is not the focus ofwiiek. The key aspect is
that when using erasure coding with a replication factor, @inly 1/r of the code blocks

are required to decode the message. Hereafter, we ignocemiséant for simplicity.

4.4.2 Erasure Coding Based Forwardingéc)

Our erasure-coding-based forwarding algorithm can benstaled as an enhancement to
the simple replication algorithns ¢ ep) described in Section 4.1.

In sr ep with a replication factor, the source sendsdentical copies over contacts
and relays are only allowed to send directly to the destinatiin the erasure-coding-
based algorithm, we first encode the message at the sourgeardhte a large number
of code blocks. The generated code blocks are then equétlgisong the firskr relays,
for some constant. In comparison withsr ep, this approach uses a factor bimore
relays and each relay carries a factorlgk less data. However, the number of bytes
generated are)M, the same as the number of bytes generatesirt®p (r).

By definition of erasure coding (with a replication factorraind a message size of
M), the message can be decoded at the destinatibfr ibf the generated code blocks
are received. Since code blocks are divided equally anionglays, the message can
be decoded as soon as anyelays forward their data, assuming no code blocks are lost
during transmissions to and from a relay. When= 1, the erasure coding approach
is reduced to the simple replication approach, which is ®the firstr relays to carry
copies of the original message.

In simple replication,r relays are used to improve the delay performance. The
erasure-coding-based approach, instead, utifize®lays for the same amount of over-
head. Therefore, one can expect that the chances of atéeastrslays having low delays

are higher, compared to using onlyrelays. At the same time, erasure coding requires
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at leastk relays to succeed (instead dfin sr ep) in order to reconstruct the original
message. Therefore, if the number of such low-delay releyy®qual to or larger than
k, the erasure-coding-based approach will successfullyatehe message with a lower
delay than using simple replication. In a sparse networkjght have to wait a long time

to get all these relays though.

4.5 Evaluation

In this section, we use simulation to compare the four fodivay algorithms described

in Section 4.1 and our erasure-coding-based approach.

45.1 Methodology

We usedt nsi m the discrete event simulator for DTN environments from][58Ve
implemented the following routing algorithms @t nsi m flooding ¢ | ood), direct
contact routingdi r ect ), history-based routindhf st or y), simple replication routing
(sr ep) and erasure-coding-based routieg). Forsr ep andec, we represent different
replication factors and number of relays used to split, gisinep-rep- and ec-rep-pn.
Here,r is the replication factor and is the number of relays among which code blocks
are divided.

We simulate using the same real-world mobility trace désctin Section 2.5.1. We
scale the grid size t6kmx6km with a radio range ofkm. Initially, the nodes are ran-
domly distributed in the grid. The base station moves alongcgangular path near the
grid boundary. All messages are of sidd. Each node generates 12 messages every day.
The total duration of simulation is 16 days.

We are interested in the following performance metrics:
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e Data success rateThe ratio of the number of messages that are delivered to the
total number of messages generated within a fingdeadline). If 7" is unspecified,

it is considered to be the whole duration of the simulatian 16 days.

e Data latency:The duration between message generation and messageae¢apt
its destination). In a DTN, latency may not be the most altissue. However,
it is always desirable to have fast data delivery whenevessipte. The latency
distribution metric measures how efficiently a protocolsutee available contact

opportunities.

e Routing overheadThe ratio of the number of bytes transmitted to the number of
bytes generated during the simulation time. This metricsuess the extra data
transmitted for each message generated, while a metricl lsadely on the num-
ber of message transmissions will overlook the fact #@ahas smaller message
sizes. The radio transmission energy is proportional totdkel number of byes
transmitted. Therefore, this metric reflects the energgieficy of the forwarding

algorithm.

4.5.2 Zebra Trace Analysis

To begin our analysis, we first characterize the contact dppiies in the ZebraNet
trace, with a focus on inter-contact time and contact donati These two metrics are
important in understanding the behavior of different forvag algorithms on the Ze-
braNet trace. Simply put, inter-contact time is the timemal for which a link is down
(no communications are possible during this time) and atmharation is the interval for

which a link is up.
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Figure 4.1: Inter-contact time distribution and contactation distribution for the Ze-
braNet trace. The distribution of these two metrics for framdomly selected pairs of
nodes are plotted. Other links show similar charactegstithe contact duration distri-
bution uses a different x-axis range to separate differentss.
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Figure 4.1 plots the distribution of these two metrics farfeandomly selected links
in the ZebraNet trace. Since we observe that almost all ks In the trace show similar
characteristics, we just use these four random links heexasiples. As shown in Fig-
ure 4.1(a), the inter-contact time distribution has quitevacases that a link is broken for
a very long time. This observation is important because guein-contact time patterns
can lead to extremely long delays when using a naive forwgrdigorithm. As expected
in such a sparse network, link up-times are relatively stagtompared to the link down
times) and therefore, it is important to efficiently utiligee available communication

opportunity.

4.5.3 Impact of Node Density
Data Latency Distribution

Figure 4.2 (a) and (b) shows the data latency distributionife ZebraNet trace with 34
nodes and 66 nodes respectively. Discounting source artishakgsn, the total number
of relays are 32 and 64 respectively. The distribution issshas a Complementary CDF
(CCDF) curve.

Table 4.2 shows various data latency percentiles for bothd@# and 66-node ex-
periments to facilitate the comparison of worse-case dp&jormance among all the
algorithms considered.

Generally,ec has a higheb0!" percentile compared to other algorithms as shown in
both Figure 4.2(a) and Figure 4.2(b) but a lowet" percentile. This is because it takes
longer to find enough relays to distribute data replicas. él@x onceec distributes
enough code blocks by forwarding along multiple relays (thenber of relays is larger

than that used bgr ep), it takes a much shorter time to deliver the messages akaest
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Figure 4.2: Latency distribution for the ZebraNet traceaffic injection rate is 12 mes-
sages per day. The distribution is shown as a Complementary(COBF) curve. A
numeric presentation of this figure is in Table 4.2 whiclslisie exac50*, 90" and99*"
percentiles.
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Table 4.2: Routing latency percentile (days)
34 nodes 66 nodes

50% 90% 99% 50% 90%  99%
ec-rep2-p8| 044 084 132 — — —
ec-rep2-plg 0.53 085 1.21 0.1 0.83 1.17
ec-rep2-p32 — — — 0.59 0.82 1.04
srep-rep2 | 0.24 0.88 1.70 0.25 0.89 1.91
direct 049 163 3.27 051 1.79 354
history 0.18 0.87 950 0.14 0.72 10.83
flood 0.013 0.044 0.12 0.00012 0.0091 0.032

Algorithm

a larger number of relays and is resilient to bad performanfceitlier relays. That is, in
the presence of failed delivery of some of the relagsstill has a good chance of message
delivery via forwarding enough code blocks through othercfional relays. Therefore,
erasure-coding-based routing is a promising candidategdportunistic networks where
(1) relay failures are prevalent and delays are unpredestahd (2) minimizing the worst
case delay is important.

This observation is further supported by the data showngnréi4.2(b) with a higher
node density. Given more contacts and relays, the CCDF cuhadkforwarding algo-
rithms become steeper. This is because there are more tovacall. Theec approach
still has the lowes$9"" percentile and the sharpest data latency curve. Therefiven
enough relay opportunitiesc delivers 99% of all messages the fastest among all algo-
rithms considered.

Simple replication, direct contact, and history-basedtigms, on the contrary, have
very long tails (messages with much longer delays). Thisisabse they use a small
number of relays and cannot guarantee if these relays wit e destination. Very
likely, some messages will encounter very long delays bgcsielg relays that fail to

deliver the message promptly. In the long run, however,gmpd with sufficient buffer
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space, all messages can eventually be delivered. The |bweaeplication factor, the
longer the tail will be. This is illustrated by comparing t6€DF ofsr ep-r ep2 and

di rect. Sincesr ep-rep?2 replicates its data to two other relays, the probability of
losing contact opportunities is lower than that érr ect . Hence,sr ep-rep2 has a
shorter tail thardi r ect .

The history protocol, though having the loweést" percentile delays, also has the
longest tail among all algorithms considered. The perforeeadthi st or y is dependent
on the accuracy of its selection of highest ranked relaythelflecision is fairly accurate,
it tends to use relays that will deliver the data to the dasiom quickly. On the contrary, if
the relays selected do not reflect future forwarding prdiiegs, very long delays may be
incurred. Using certain timeout and retransmission scisethese long-delay messages
might be masked out. This will make the history protocol matteactive.

Finally, note that thé | ood protocol curves in Figure 4.2(a) and Figure 4.2(b) have
latency distributions that are almost vertical. This shdvedf | ood has very low delays
for all messages. We use this curve as the yardstick for atrafuthe performance of the

other algorithms.

Routing Overhead

Table 4.3: Routing overhead

Algorithm | Overhead (34 nodes) Overhead (66 nodes)
ec-rep2-p8 3.96 —
ec-rep2-plq 3.96 3.98
ec-rep2-p32 — 3.98
srep-rep2 3.98 3.99

direct 1.0 1.0

history 30.28 59.61

flood 68.0 132.0
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Table 4.3 lists the routing overhead corresponding to eachafrding algorithm.
Routing overhead is measured using the ratio of the bytesrrigted to the bytes gener-
ated. Since botec andsr ep transmit a fixed amount of data with respect to the data
generated, their overhead is constant. For an algorithin aviteplication factor of 2,
the overhead should be 4, with 2 from the source to the reldyfram the relay to the
destination and the other 2 for the other relay. On the othedhin bothhi st or y and
f | ood, there are no restrictions on the replication factor anaiyemay also forward to
other relays. This results in multiple identical copiesha briginal message being trans-
mitted, depending on the selection of relays. If the reldgded has a very high history
hierarchy, the overhead should be low since this node i&elglto forward messages to
other nodes with probably lower hierarchies; otherwise aferhead may be higher than
algorithms having a constant overhead. We do not use anyre&chere to stop replica-
tion in our implementation oii st or y andf | ood, unless the node does not meet the
requirement for data forwarding in their original desigiée can reduce the overhead by
timing out old messages, setting up a global budget forcafiin factor, or use delete
list [103] to stop unnecessary replications.

As Table 4.3 shows, normallyi st or y has a higher overhead thanep andec.
This situation becomes worse when more contacts are akadabvery likely, more du-
plicate messages will be transmitted to nodes that may hetterlgelivery probabilities.
For f 1 ood, the overhead is even larger as almost all the nodes coukiveca copy
before a message delivery (in that case, the overhead i®mi@ml to2n, wheren is
the total number of nodes in the network). The factor of twmes because each relay
still transmits the message to the destination in our impletation, even if it has already
received a copy of the message. In summary, in terms of ipotrerheadec andsr ep

scale well with node density and network size, whilest or y andf | ood do not.
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Data Success Rate

Table 4.4: Data success rate with deadlines (ZebraNeftrace
Algorithm | 0.25day 1l1day 2days 4days 8days
ec-rep2-p8| 22.6% 95.9% 100% 100% 100%
ec-rep2-plg 9.2% 94.6% 100% 100% 100%
srep-rep2 | 51.8% 92.5% 99.6% 99.9% 99.9%

direct 32.0% 74.6% 94.2% 99.5% 99.9%
history 58.4% 87.9% 92.7% 94.6% 95.3%
flood 100%  100% 100% 100% 100%

Table 4.4 shows the data success rate with deadlines feretiff algorithms. Data
success rate with deadlirféis defined as the ratio of the number of messages delivered
to the total number of messages generated withinin our discussion, all deadlines
are specified in units aflays. This performance metric is used to understand delivery
performance with different delay tolerance requiremetsmaller deadline indicates
that the application is not tolerant to long delays and aksages delivered beyond the
deadline will not be useful any more. A larger deadline, andther hand, indicates that
the application can tolerate long delays. Our results shavapplications with different
requirements for message deadlines should use differemafding algorithms.

The data success rate fec is low if the deadlines are less than 6 hours long. How-
ever, for relatively long deadlines (between 1 and 2 dashas the highest data success
rate. This result can be observed directly by looking at tita thtency distribution curve.
Becauseec has a lowe®9" percentile of latency distribution, it will deliver more e
sages before that time and hence a higher data success hatefore, if achieving low
latencies for all messages or high success rate withinicegasonable deadlines are of
top priority to the applicationec should be used.

On the other handyi st or y has the highest data success rate when the deadline is

less than 6 hours. This is becausest or y can find good relays without the need to
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distribute copies of data to many relays. The performangaorement ofhi st ory
compared tadi r ect andsr ep comes directly from the efficiency of its selection of
good relays. However, sinda st ory has long tails in its data latency distribution
curve, its overall data success rate is relatively low caegbéo other approaches.

One thing to note is partial data delivery of a message. Sl original message
is a large one and thus has to be fragmented in the lower layerder to be transmitted
over the radio. If not all the fragments are successfullgiraa at the sink, which we call
partial delivery, we can often still retrieve useful infaation from the received data, us-
ing replication-based protocols. However, this may notkWfor coding-based protocols
since a partial delivery of all the code blocks cannot be useeconstruct the original
message if the required number of blocks has not yet beeiveeceOne way to work
around this is to apply erasure coding to fragmented datkepgcThe drawback of this
approach is that it adds more coding and communication eaerbecause more smaller
code blocks need to be processed and transmitted. Thisffaslelosely related to the

implementation of the erasure-coding-based protocol b@@pplication requirements.

4.6 Related Work

Erasure codes have been applied to many networking probleotsding achieving ef-
ficient distribution of bulk data in overlay networks [14]dapeer-to-peer networks [79],
coping with lossy radio transmissions in wireless senstwoiks [63], and achieving
reliability in large-scale distributed storage systen30]1 Applying erasure coding to
combat uncertainty in node mobility is the focus of this wasknce the idea of erasure-

coding-based forwarding is orthogonal to the other forwagépproaches, it can poten-
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tially be combined with them to further improve routing perhance and energy effi-
ciency.

More recently, a hybrid erasure-coding-based routingrédtya [23] is proposed that
aims to achieve the best of both coding-based techniquesegtidation-based tech-
nigues. Instead of transmitting only a fixed number of codeks over a link, their algo-
rithm allows the node pairs to transmit as much as possildietha link goes off. This
approach works well only in scenarios where the relay nodiested are good ones in
terms of message delivery. Otherwise, it potentially ngsséay opportunities that could
be used to spread the data blocks to better relays. Howawvee, 130 accurate knowledge
of relay delivery may be available, their approach may sufie same problem as that
of purely replication-based algorithms. We conjecturé gradiction-based algorithms,
such as ouhi st or y protocol, could potentially improve performance when cored
with the coding-based approach. This is because such anaghpwill forward as much
as possible only when there is a strong indication that #lesyrnode is a good one in
terms of message delivery.

Other than erasure codes, some recent efforts [60, 133]ralsstigate the usage of
other coding techniques in DTNs and opportunistic netwotkg133], a network cod-
ing based routing algorithm is proposed that forwards packentaining information
coded over the contents of several packets they receivadsthmessages can be further
coded at intermediate nodes. This approach will potegtiatther reduce the forwarding
overhead as it employs new opportunities en route messagenission. Work on net-
work coding started in [4] shows that having the routers miwimation from different
messages can achieve multicast capacity. The major differbetween using erasure
coding and network coding in challenged networks lies i tha erasure-coding-based

approach only performs coding once at the source. In [60gvacode dubbed growth
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code is presented to maximize the amount of data that carcbeard at the sink at any
point in time, even as network nodes fail. This is achieveddpjicating data compactly
at neighboring nodes whose complexity grow over time as @atamulates at the sink.
Prior work on simple replication forwarding that uses onheaelay was shown to
achieve optimal throughput in a mobile ad-hoc network [38] &as been further ana-

lyzedin [47,54].

4.7 Conclusions and Future Work

Opportunistic networks evolve from the legacy MANETS, bat@mnpass key features of
delay/disruption tolerant networks that makes their nekwg protocol designs quite dif-
ferent from legacy MANETS and static sensor networks. Feldkter, the major tasks lie
in locating the best end-to-end path between communicatiirg in a resource-efficient
way, which are discussed in Chapters 2 and 3. The challengee from existing in-
side/outside interference, lossy links, and resourcetrainss. For opportunistic net-
works, however, the major challenge lies in supporting erdhd communication with
no end-to-end connectivity or only intermittent conneggivwhich is discussed in this
and the next chapter.

Prior work on routing in opportunistic networks focuses omssage replication.
Due to constrained energy budget in challenged networkspérformance of purely
replication-based approaches are strongly dependeneorattility to select “good” re-
lays for data forwarding, which is very difficult.

We took a different approach to this problem: using erasoing to spread the
responsibility of data forwarding over more nodes while meining a fixed overhead

in terms of the amount of data bytes transmitted. The immihere is to delegate the
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forwarding task to more nodes to avoid the impaabafiier relays which refer to relays
that never deliver messages as predicted. We showed vidasiomuon a real-world
mobility trace that our coding-based approach signifigantproves the worst case delay.
At the same time, it has no “very small delay” cases, whichnsiral consequence of
the requirement to have at leastode blocks for message reconstruction.

We believe that the basic idea holds promise and an apprbatlkeambines erasure
coding with prediction-based techniques, such as a predifbr link schedules, may
give us good performance on both fronts. This again callsitoation awareness. For
example, rather than treating all nodes as equally googseaa we did in this work,
we can take advantage of any available information of thevowdt or good predication
of such information when spreading code blocks. This wilpiove the average delay
performance because replication based approaches caveadaita delivery faster if they

know which relays are better.
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Chapter 5

Techniques for Improving Idle Energy

5.1 Problem and Solution Overview

Today, the study of energy efficient networking solutionsviareless sensor networks
focuses on networks with always-on connectivity betweemroonication end-points.
However, maintaining end-to-end connectivity is not ale/gossible or necessary in
intermittently-connected static sensor networks. In soetworks, it is very common
for the network to be disconnected due to various reasows, &sl environmental con-
straints, node failure, and intentional sleep cycles.

Engineers at Intel have studied a sensor network deploysiNorth Sea aboard an
operating BP oil tanker [67]. The chosen oil tanker is one eftiarshest environments
for industrial sensor networks. The oil tanker’s aft engiiieg spaces are constructed of
steel floors and bulkheads and are divided into three majtertight compartments with
hatchways in between. Sensors are spread in the compastteepérform preventive
monitoring. The hatches may be periodically shut off and eesalt, the sensors within

that compartment will be disconnected from the base station
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Figure 5.1: lllustration of an intermittently-connectezhsor networks.

This is a typical intermittently-connected network withripeical disconnections
caused by environmental constraints. Since the discoionestay last for the whole
night, data generated during that period cannot be sent toaitle base station imme-
diately. Traditional sensor network protocols will coniencollecting data to the local
sink that will later be reconnected to the base station. Kewehere are two problems
with such an approach. First, the local sink needs to stdrdagh transmitted during
disconnection from all the sensors connected to it, whicly bea great burden to the
storage of the local sink. Also, this introduces reliapiliroblems since the local sink
becomes the single failure point: its failure during disoection will result in huge data
loss. Therefore, there is no rush in pumping the data to ed kink at real time. Many
other applications, such as NIMS from UCLA [7], also fall untt@s category.

Second, for networks with intermittent connectivity, idleergy spent on node ren-
dezvous and idle listening during multihop routing becomigsificant. Existing radios
used in wireless sensor networks consume high power initleimode. For example,
the CC2420 radio used in MicaZ and Telos motes has three mdagsansmit/receive

mode, idle mode, andsleep mode It consumes the lowest power in sleep mode and the
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most power in transmit/receive mode. When in idle mode, tderis not communicat-

ing but the radio circuitry is still turned on. This resultsa ratio of idle mode to transmit
mode power (-25dBm) of 1:20, as reported in [20]. This roudsty energy overhead
for “idle listening” becomes significant when one considarge networks where many
nodes may be listening at any time. Many other wirelessfates also show a similar
trend of idle energy profile with far-from-ideal power congution in idle mode [90].

To save energy in delay-tolerant, intermittently-conedctensor networks, data
mules [108] and message ferries [146] have been widely usexkploit opportunis-
tic or scheduled node mobility. However, in applicationsewéhno node mobility can
be exploited, such as static sensor networks, we have todbakw opportunities for
conserving energy, which motivates new data transport andcgs as described in this
chapter.

In particular, we propose a new transport protocol that séekminimize network
idle energy expenditure without compromising end-to-eathdeliability. This is dif-
ferent from traditional transport layer solutions thateoftfocus on reliable end-to-end
delivery, flow control, and congestion control [42, 125]. rOxew transport protocol —
aDapTN, works by partitioning the route into regions throwleep scheduling. There-
fore, only a subset of nodes along the route are awake at &uyfisgime. By dropping
the assumption of end-to-end connectivity between theceoamd destination, significant
idle energy can be saved by placing the remaining nodes isidle® mode.

To support such sleep scheduling, our approach requirecon® components: a
DTN-like store-and-forward data transport and an asynubue wakeup scheme for node
rendezvous. Store-and-forward uses custody transfer g8#4pp-by-hop reliable data
transfer protocol, for data forwarding. Studies [114, 1B&}e shown that hop-by-hop

transport protocols are more appropriate for sensor n&sitban end-to-end approaches,

108



due to factors such as high link error rate. This still holde tfrom the perspective of
energy efficiency in intermittently-connected sensor woeks, as we will justify later
in this chapter. We use store-and-forward transport to nerdata communication to a
subset of nodes, creating opportunities for nodes furth@rgathe route to sleep. An
asynchronous wakeup scheme that requires no global symizhtion is used for node
rendezvous, when necessary. Traditional protocols, hexveequire all nodes along
the route to be awake before multihop communication stagsisting data transport
protocols suffer from high overhead in node rendezvousg@é]can greatly benefit from
the recent advances in asynchronous wakeup mechanism4 730

The store-and-forward transport and asynchronous nodewpedre both well-known
techniques that deal with different networking problemsir €ontribution lies in merg-
ing these two techniques to solve tough problems in harshmaorcation environments.
We show that DTN can be applied as an energy saving technafogyonstrained en-
vironment. To our knowledge, no previous work has lookedeaelaging intermittent
connectivity to save energy. On the contrary, other DTNarag in sensor networks,
such as [72, 84], adopt store-and-forward as a means tovadhigh reliability.

By exploiting these two components, however, we reduce itbegy at the expense of
data latency. For different applications, users may hafferdnt requirements regarding
this tradeoff. Our approach does not enforce any specisraid exposes such controls
to the applications.

To explore the relationship between traffic patterns, liekagls and network diam-
eters, we evaluate our scheme through a combination of @s&lynodeling and sim-
ulation. We propose analytical models for various commatime models and explore
their energy possibilities under different conditions. ®Weso implement a prototype of

aDapTN in TinyOS and conduct a controlled simulation studyf©SSIM [68]. Our
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Model notation Transport Rendezvous Group size Examples

intra-group inter-group intra-group | inter-group
sf-async - store-and-forward - async 2 aDapTN
mh-sync multihop - sync - h MintRoute, AppSleep
sfk-async multihop | store-and-forward sync async k -

Table 5.1: Classification and terminology of communicatioodels. This table is in-
tended to be illustrative rather than definitivie.is the total hop count from the source
to the destinationk is the group size that is defined as the number of hops using syn
chronous rendezvous. A dash indicates that a property isilable to that communica-
tion model.

results show that aDapTN achieves much better idle enefigyesicy than conventional

approaches, without compromising data delivery rate.

5.2 Communication Models

In this section, we explore the design space of existing comoation models for
intermittently-connected static sensor networks, witlo@us on the transport paradigm
and the node rendezvous method adopted.

Transport paradigms. We classify transport paradigms into two categories: rhaiii
transmission and store-and-forward.

In multihop transmissionn(h), an end-to-end multihop path from the source to the
sink is constructed before data transmission. A messagewafded to the sink from
a source without any delay. If a transmission to the dowastr@ode en route fails,
retransmissions are scheduled immediately to achievabiky. The message will be
dropped if it cannot be delivered after a certain number warnsmissions. We define a
group as all nodes on the path from the source to the destinaticlidimg the source and
destination. The group size is defined as the total numbeydésin a group. Intra-group

communication is defined as any transmission between twesiodthe group.
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In store-and-forwardsf), a message is stored at the intermediate nodes before it is
forwarded to the next hop. If disconnection happens, thedotting node will cache the
message until a connection is restored, given that there $¢éarage overflow. For store-
and-forward, a group consists of only the communicatingriades at any instant and the
number of groups is the same as the number of hops from theestmthe destination.
Inter-group communication is defined as any transmissibmnden two nodes that belong
to two different groups. If we allow &-hop sub-network in a group, we represent it as
sfk.

Nodes rendezvous patternsLow-power radios usually have several power modes with
different power usage profile. To save energy, power managepnotocols switch radios
between different states while maintaining certain proggrsuch as the maximum data
latency. Sleep scheduling, an important power managensbehse, is often used in en-
ergy efficient MAC protocols, and sometimes in applicatif®¥] to reduce idle listening
time.

A basic problem introduced by the use of duty cycling as amggngaving technique
is the need to establish rendezvous between the transamittiereceiver. Communication
can only take place when the radios of both transmitter aceiver are active at the same
time. Therefore, coordination is required between thenhabtheir active time is over-
lapped. There are two types of rendezvous in general: sgnols and asynchronous.

In synchronous rendezvous, nodes in the network are timehsgnized so that
their active/sleep intervals happen at relatively the saime. S-MAC [140], IEEE
802.15.4 [2], and IEEE 802.11 Power Saving Mode (PSM) [1]}wypecal one-hop MAC
protocols that use synchronous rendezvous. Multihop spndtation requires at least
n — 1 pairwise synchronizations fat nodes, which is very expensive for a large

AppSleep [99] takes a coarse-grain approach that synctesiil nodes on the route pe-
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riodically using a SYNCH broadcast. This has been shown tdfeetwe for low data
rate stream-oriented applications. A guard tiriig,{.4) is provided to allow for clock
drifts in between SYNCHSs and a radio has to be awake1Qy..q in the worst case to
guarantee pair-wise rendezvous.

Asynchronous rendezvous, on the other hand, allows inglidodes to wake up and
sleep at different time without global coordination. Tinyashronization is not needed to
guarantee active time overlap between communicating.pdwa/ever, this often comes
at the cost of increased delay. Several asynchronous rematemethods [93, 120, 147]

have been proposed in the literature.

5.3 Design and Energy Possibilities

In this section, we explore the design space of a range of aorimation models for
intermittently-connected static sensor networks usiegsischeduling and present their

idle energy costs via analytical modeling.

5.3.1 Assumptions

Below are the assumptions we make regarding our energy models

e Storage energySince ultra low power storage technology is already avislpis],

we do not consider storage-related operations in our erarglysis.

o Network modelWe assume that all sensors are connected to the sink in énoulti
way. Nodes either are static or have only minor mobility. c8imDapTN makes
few assumptions about node movement and the asynchrondesigvacheme is

agnostic to node mobility, it should also be applicable whhi mobile networks.
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Figure 5.2: Illustration of self-interference in a multfhoetwork.

We consider a lossless channel with no packet drops causedriyiable links
during node rendezvous and data transmission. Howeveingaiference between
downstream and upstream traffic may result in increasedafiadkat reduces the
actual network throughput and increase node idle waitimg tin turn. Figure 5.2
shows a four-node line topology wherein nodes A, B or C catmaotsmit at the
same time due to self-interference. This reduces the atmmlghput to 1/3 of that
with no interference. In our analysis, we assume a consgédfringerference factor
r = 3 across the whole network for transmissions il Bop network withh >=
3. For single-packet messages, such as the SYNCH packetsrusgdadhronous

rendezvous; = 1.

Application. We consider a data collection application with periodicadaammu-
nication from a subset of nodes to a sink that is connectedbéxkend server. The

data rate is on the order of a few packets per minute.

5.3.2 Design Space

Table 5.1 shows three communication models based on thasdisns in Section 5.2.

The models listed here are not intended to be exhaustivehbytdo cover a range of

designs with very different energy/latency tradeoffs. leawdel is represented as T-S

with T its transport paradigm and S its rendezvous methodnibe one of the following:
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(b) Store-and-forward with asynchronous waket

QO : radio awaken —: data transmission
() : radio asleep ------ >: wakeup beacon

Figure 5.3: lllustration of different communication moslelThe message is transmitted
in three packets and the last-hop node is the data sink. Baalestored at intermediate
nodes for sf-async, but not for mh-async.

sf, mh, orsfk. S can be one of the followingyncfor synchronous wakeup amdyncfor
asynchronous wakeup. A representative protocol for eaaems presented. Figure 5.3
illustrates some of the concepts discussed here.

The first model sf-asyn¢ is based on asynchronous rendezvous between any com-
munication pair. It leverages the asynchrony inherent énstiore-and-forward transport
paradigm to work together with asynchronous wakeup schemata transmission no
longer requires all nodes to be powered on at the same time egsage is forwarded
toward the sink as far as possible and is cached at the intgaiteenodes where there is a
disconnection, waiting for the wakeup of the next-hop node.

The second modemh-sync¢is used widely in conventional sensor networks. One
example is MintRoute [136], which builds a collection treesdd on the expected num-

ber of transmissions (ETX) to the sink. Data transmissiogirizeonly after all nodes
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are synchronized to be awake and ready for communicatior effitient approach of
achieving such rendezvous is proposed in AppSleep [99fsariibed in the last section.
The third modelsfk-asyncis different from sf-async in that it allows synchronousd an
asynchronous data transfer to co-exist in the network. Bl@ade organized into groups
with intra-group rendezvous synchronous and inter-grapdezvous asynchronous.
This model can be used to take advantage of existing shdrtdiatays in a network
with varying propagation delay to achieve a low data latemtyle keeping the total idle

energy expenditure low.

5.3.3 Idle Energy and Message Latency Analysis

In our analysis, we divide idle energy into two parts: thagrgpon node rendezvous
(E9) and that spent on idle waiting during data transfg}'¢). The total idle energy
for a modeln is calculated ag'dle = gide  pidie pidle 3|sg consists of two parts, that
spent durind/,..a and that spent during SYNCH broadcast, respectively.

In what follows, we derive thevorst casdadle energy and message latency for these
three communication models, respectively. The parametersonsider include message
size, packet size, hop length, link data rate, self-interfee factor, and others, with their
notations listed in Table 5.2. Since our energy model isusietly about idle energy

usage, from now on we simply represéfif'c asE,,.

Store-and-forward with Asynchronous Rendezvous (sf-asyg)

Since each node wakes up independently using asynchroaodsavous in sf-async, its
idle waiting time is determined purely by the probabilityaohode stay awake, which is
represented as,. The derivation ofr,, will be deferred to Section 5.4 where the imple-

mentation of a grid quorum system is described. The totakauiane is then calculated

115



Parameters | Explanations Units

D message size bytes

n number of packets per message

P packet size bytes

h hop count from source to destination

b link data rate bits/second
(bps)

s self-interference factor for SYNCH packet

T4 self-interference factor for data transmission

k number of hops per group (group size)

g number of groups (for sfk-async)

Tyuard guard time for synchronous wakeup seconds

Tow (worst case) asynchronous wakeup delay seconds

Tix (worst case) per-hop packet delay seconds

T probability of staying awake in a sleep schedule

Table 5.2: Parameters and notation.

as2hr, T, since each per-hop transfer requires two nodes to be awakg 19,, in the
worst case, as shown in Figure 5.3(b). Since energy is pavegrated over time, the

total idle energy for sf-async, therefore, is estimated as:
Esffasync = (Qhﬂ'wTaw>Pidle (51)

Since node rendezvous is decoupled from data transferamtbdel, any single mes-
sage or a burst of messages will perform a rendezvous bedtadgrdnsfer, which incurs a
maximum per-hop delay df,,,. Also, packet transmissions are not pipelined and a mes-
sage is forwarded to the next hop only when all packets ofrttéssage are completely
received, which incurs another per-hop delay{gd‘rgx. Therefore, the worst case message
latency is calculated as:

D
Tsf—async - h<Taw + Eﬂx) (52)
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Multihop Transmission with Synchronous Rendezvous (mh-syr)

Node rendezvous in mh-sync requires each node to be awakHéas Ty, to tolerate
clock drift between SYNCH packets, as shown in Figure 5.3@@a multihop network,
each node also needs to stay in idle mode waiting for dategpatd arrive. The duration
depends on the hop count from the source to this node. Thaisotdl idle waiting time
spent on node rendezvous in the networE?zl(QTguard + rsTixt) with  the hop count
from the source to an intermediate node on the multihop ro8imilarly, r,7i.i is the
worst case idle waiting time for an intermediate nadsops away from the source to

receive the first data packet. Therefore, the total idleggnisrcalculated as:

h
Emh—sync = Z(QTguard + (Ts + rd)Ttxi)Pidle

=1

1
= (2hTguara + 5(rs + ra)h(h + 1)Ti) Prae (5.3)

In this model, node rendezvous is coupled with data traresidris done only once
before data transfer, which takéq:;, to complete. Packet transmissions occur in a
pipelined fashion which delivers one packet evéryonce the pipeline is full. However,
the pipeline is not full until the first packet reaches thetidesion 2 hops away, adding
a latency ofhT;,. As a result, the worst case latency of the message is 1 + h)Ti.
Since data packets are only transmitted after node rendezs@one, we do not include

the latency of node rendezvous as part of message latenagaéndate it as:

Tmh—sync = rd(n -1+ h)T‘tx (54)
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A Hybrid Model (sf k-async)

In this model, nodes are formed into groups: rendezvousdmtwgroups is asynchronous
while that inside a group is synchronous. Since inter-gnanuezvous only needs the
two edge nodes from each group to be involved, the idle wgitme spent on inter-group
rendezvous is only proportional to the number of grogpket k£ be the number of hops
per group. Then we havey + (¢ — 1) = h with kg the total number of hops within
groups and; — 1 the number of hops in between thgroups. Therefore; is calculated
as[H4].

The idle waiting time spent on inter-group communicatioas ®e calculated as
297, T Dy simply replacingh with g in Eq. (5.1). Similarly, the per-group idle wait-
ing time spent on intra-group communication can be caledlaly replacing: with £ in
Eq. (5.3) a2(k+1)Tguara + %(rs+rd)k(k+ 1)Ti«. The total idle energy is then calculated

as:

Esfk—async - (QQWMTB,W + g(Q(k + 1)Tguard +

(rat rak(k + 1)) P 55)

The latency of transmissions within a group is calculateddptacingh with £ in
Eq. (5.4) asy(n — 1 + k)Ti. The latency of inter-group communication can be treated
as a sf-async model withh— 1 virtual hops, which is calculated &g — 1)(7, + %Ttx)
by replacingh with ¢ — 1 in Eq. (5.2). Therefore, the total message latency for ttudeh

is calculated as:

D
Tsﬂ(—async - grd(n -1 + k)ﬂx + (g - 1)(Taw + E,-Ttx) (56)
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CC2420
Transmit 28.1mW (-25dBM)
Receive 62.1mwW
Idle power P.q1e) 1.41mwW

Table 5.3: Reported power numbers of CC2420.
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sf-async ——
mh-sync —%—

sf4-async —x—

200 sfg9-async —H—

active —6—
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Figure 5.4: Idle energy expenditure. There are a total obbijgs for sfk-async.

5.3.4 Analytical Results

The energy related parameters used for our analysis is lmastte CC2420 family of
low-power, 802.15.4-compatible radios from Chipcon, whigve been used in many
sensor platforms. We use the published data from [20], tegllie Table 5.3.

Figure 5.4 plots the worst case idle energy expenditurdy avitnessage size of 512
bytes and a link rate of 100Kbps. Figure 5.5 plots the worse o@essage latency. We use
a message transmission delay of 0.01s that is typical fael@ss sensor networks [93].
Since node rendezvous is conducted only once for mh-syncpwecture that aDapTN
will gain more benefits for small messages since the rendezeost is amortized across
all packets in mh-sync. Active energy refers to that spentagiio transmissions and is
plotted here to show the relative importance of idle enexgpeaditure. We assume loss-

less channels and no transmission contention. In reabtgkgts may be retransmitted,
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Figure 5.5: Data latency. We use two group sizes (4 and 9fkeasync.

which produces higher active energy expenditure. Howéherelative trends shown in
the figures will still hold as retransmissions normally widt change the order of magni-
tude of energy consumption.

Figure 5.4 shows that active energy dominates idle energyeier, as hop counts
increase, idle energy expenditure grows much faster shectal idle energy cost grows
exponentially with increased hop counts. Therefore, fawoeks with very long routes,
sfk-async will gain more benefits. Also, sf-async, sf4-asynd sf9-async all outperform
mh-sync because they do not require all nodes en route to iokeimode. Compared
to sf9-async, sf4-async has a lower idle energy expendifithis is because more nodes
are participating asynchronous communications in sff@flyan in sf9-async. The same
reasoning can be used to explain the difference betweesysizand sfk-async (k=4,9).

Figure 5.5 shows that mh-sync has the lowest data latencypgadbmodels consid-
ered. Comparing sf-async and sfk-async (k=4,9), we see fikaisgnc achieves signif-
icant improvement in data latency and a slightly higher eivergy usage. This comes
as no surprise since sfk-async has a group size anhd thus fewer number of inter-

group hops, which is proportional to the worse case datadgte~urther, since the idle
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energy expenditure for mh-sync grows exponentially with siumber of hops, the idle
energy increases only slightly for small group sizes. Hesfteasync [ > 2) achieves a
good balance between idle energy expenditure and datzatéf@ can, therefore, adjust
the group sizek) to meet different application preferences regarding tiexgy/latency

tradeoff.

5.4 Design and Implementation

In this section, we describe the architecture of aDapTN aodige details about our

prototype implementation.

5.4.1 Core Algorithms

As a concrete implementation of the generic communicatiodehdescribed in previous
sections, aDapTN consists of core algorithms related t@ meddezvous, transport, etc.,

which are explained in this section.

Quorum-based Wakeup

We use a quorum-based wakeup scheme, as proposed in [12@kéoup the next-hop
node in a multi-hop network. The quorum system we used ischggrorum system with
applications in many other areas, such as distributed rhexgusion [75]. In brief, if we
divide one round of schedule intd time slots, the radio only needs to be powered on for
2q — 1 of the schedule duration to guarantee rendezvous with anotide to ensure one
communication. The selection gfis a design parameter. A highewill result in very
efficient power usage. However, it will lead to longer del&yn example grid quorum

system withg = 4 is illustrated in Figure 5.6. Each grid represents the goosystem
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Figure 5.6: An example of a grid quorum system with= 4. The two quorum groups
overlap at time slots 1 and 10.

used by one node. We call the time slots that a node needs tedie aquorum group
and the length of each such time slaj@orum interval The radio should be either on or
off during each slot and it only needs to wake up in the quoruoug. The two nodes
use different quorum groups shown as the shaded region im#tex. The highlighted
regions are those in which the two nodes overlap.

In each quorum interval, the node needs to send out a beacssagesfirst for syn-
chronizing with other potential neighbors, as illustratedrigure 5.7. Once two nodes
are synchronized with each other, they can keep on comnturgaantil all buffered mes-
sages are transmitted. Then, they can resume their norhedsles independently again
and wait for the next rendezvous.

If we assume the clocks of the two nodes are synchronizesieasy to see that such
a quorum system will overlap twice for one round of schedtdewever, we can prove
that even if their clocks are not synchronized, they are ajniaed to hear each other’s
beacon message at least once for each round using our walethpdn

Our transport protocol can be used with any MAC layer protdicat handles the
micro-level issues such as channel contention, hiddenit@imroblems, etc. The data
collection schedule is controlled by aDapTN separatelyrabaro-level. This approach

keeps the MAC layer simple and allows for reuse of well-ustieyxd MAC protocols.
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Figure 5.7: An example of the quorum-based asynchronouswyak

Tree Construction

For each rendezvous, aDapTN exchanges route update infomaand link quality es-
timation information as in MintRoute. Though the dissemmabf routing information
may be slow compared to MintRoute, our protocol can still firgbad end-to-end path

if adjacent node pairs can talk to each other within eachdairschedule.

Rendezvous Contention

Since the quorum group selected by each node is randonibfiiétd, two or more nodes
could be competing to be synchronized with a node that is awdhkis introduces con-
tentions during rendezvous. Even worse, beacon messaggfonsode rendezvous may
interfere with normal traffic transmissions. To address gioblem, we assign different
priorities to different traffic. For those that require imange response, we assign a high
priority by setting their expiration timers to the small@storder for them to grab the
channel first. In aDapTN, priority is assigned in decreasirdgr to the following types
of traffic: data transmission traffic, routing update tra#fitd other control message ex-
changes. This simple scheme works very well for reducindestgion and interference

among different traffic.
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Figure 5.8: Component block diagram of aDapTN.

5.4.2 System Architecture

This section describes our prototype implementation off@Dain TinyOS, with its sys-
tem structure shown in Figure 5.8. The shaded blocks comphescontrol plane, which
includes the routing stack and the rendezvous manager dmatots the synchroniza-
tion between communicating nodes. In our current designclve@se a tree-based data
collection routing protocol similar to MintRoute. Other wetrking protocols, such as
geographic routing, can also be used here. The rest of thpawents work together to

forward data messages. Currently, our implementation opaDesupports sf-async.

5.5 Evaluation

To better understand aDapTN's behavior and design traslee#f evaluate it using sim-

ulation in this section. The simulator models the wirelelsammel behavior based on
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packet loss distribution data collected from a real-woektlhed. Although not perfect, it

allows us to quickly examine the performance of aDapTN.

5.5.1 Experiment Setups

We use the TOSSIM-CC2420 simulatqrovided in the TinyOS distribution [117]. It
models the CC2420 radio with a data rate close to 100kbps. Taish®s the environ-
ment of the BP application described in Section 5.1. TOSSIM4202ncorporates Pow-
erTOSSIM [109], a power modeling extension to TOSSIM. PAW@38SIM can model
power consumed by TinyOS applications on Mica2, MicaZ, agldd motes.

We compare the performance of aDapTN with MintRoute, whickdsdo first wake
up all nodes involved in the communication and then pumpa tiatards the sink in
a multihop fashion. Since the original design of MintRout@eslmot specify ways to
achieve node rendezvous, we use the scheme proposed ine&paSI this purpose and
use MintRoute as the multihop transmission scheme.

We use a low-rate data collection application for our eviadms. The message size
is 30 bytes that can easily fit into one packet in TinyOS. Thegsage arrival rate is set at
4 pkts/min. The quorum size is set at 16 and the quorum inteset at 1200ms. We
use two topologies, a 3x3 grid topology and a 1x12 line togglto create networks with
different hop counts. For the 3x3 topology, node 9 is setkatethe source and node 1 as
the sink; for the 1x12 topology, node 12 is selected as theceand node 1 as the sink.

Each experiment lasts 600s. We run each experiment 5 tintetharaverage is shown.

5.5.2 Performance Metrics

We consider the following performance metrics in our eviaua

tinyos- 1. x/ bet a/ TOSSI M CC2420/
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e Success rateThe fraction of messages that are delivered to the sink.eSlata re-
liability is of high priority in many applications, our proped scheme should have
at least a success rate as high as other conventional appsodo our experiments,
since both MintRoute and aDapTN achieve the same succedsréte scenarios

we simulated, we omit the success rate comparison.

e Average idle energy per nodéihe idle energy expenditure averaged among all

nodes.

e Average data latencyThe average message latency among all successfully deliv-

ered messages.

5.5.3 Results

Table 5.4 shows the idle energy results for both MintRouteaDdpTN. They demon-
strate that for both the 3x3 and 1x12 topologies, aDapTNd&pemuch less time in idle
mode to deliver the same amount of data. It achieves idleggreavings at the cost of
increased latency. For the 3x3 topology, the average latsnéss. For the 1x12 line
topology, the average latency is 228s due to increased hagsérom the source to the
sink. However, the delays are still within several minutEsr a typical data collection
application, this is acceptable, given that almost halfhaf idle energy can be saved
compared to conventional approaches.

For networks with very low-rate links and long propagati@fays, we postulate that
aDapTN can gain even more benefit in terms of idle energy gavbecause idle waiting
time saved is proportional to link delays and inversely prtipnal to data rates.

Furthermore, if a node and its neighbors can only discoveh @ther in an asyn-

chronous way, the relay nodes selected may not be the optinesl Given that (1) we
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3x3 grid 1x12 line
Communication model Energy per node (mJ) | Average latency (s) | Energy per node (mJ) | Average latency (s)
mh-sync (MintRoute, AppSleep 6616 7 6683 16
sf-async (aDapTN) 3264 75 3358 228

Table 5.4: Experimental performance using two differepbtogies.

Quorum size | Energy per node (mJ) | Average latency (s)
16 3264 75
36 2481 774

Table 5.5: Performance of aDapTN with different quorum gizevs. 36).

can control the delay of control information exchangesgisisynchronous wakeup, and
(2) link quality usually will not fluctuate sharply during shtime intervals, we can still

have a routing structure that is close to the optimal one.

Impact of Quorum Size

As we introduced in Section 5.4, a grid-quorum system caa tisnparametey to trade
in energy with data latency or vice versa. For the above @xgsts, we use a quorum
group of 16 { = 4) time slots. Therefore, during each round of schedule,al®meeds
to be on for 7 time slots. For this experiment, we change tleuqu group size to 36
(¢ = 6). Hence, each node needs to be on 11 of the 36 time slots. #aadly, this will
produce idle energy savings 6f/16 — 11/36)/(7/16) = 30.2%.

Table 5.5 shows the tradeoffs using different quorum siz@. tike same amount of
running time, using a quorum size of 36 will produce energyirggs of 24.0%. This
is close to the analytically estimated number. Many factans contribute to the slight
difference, such as packet retransmissions, which are ortidered in the analytical

model.
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5.6 Related Work

Our work is related to delay/disruption tolerant networksynchronous wakeup in mo-
bile ad hoc networks, and power management in sensor neswtvk discuss the most
relevant work in each category as follows.

Delay/Disruption Tolerant Networks (DTNs). The DTN architecture presented in [33]
provides a generic network architecture for various chgkel networks. The au-
thors in [43] discuss various ways to apply the DTN architeetto sensor networks.
DTNIlite [84] presents a real implementation of a stripp@svd version of the DTN ar-
chitecture in TinyOS on resource-constrained motes. Hewekeir approach assumes
an always-on network that is not suitable for more challengensor networks. The
only work we are aware of on DTN power management is [59]. Tapproach targets
mobile networks and their goal is on maximizing contact opputies between nodes
when such power management is used. Furthermore, theinagdpassumes that nodes
are time-synchronized which is a strong assumption in ehgid sensor networks. Our
approach, however, can work even if node clocks are not sgncted.

Asynchronous wakeup.Tsenget al.[120] propose three asynchronous power manage-
ment protocols for mobile ad hoc networks where synchrahz@ver management is
difficult, such as networks with unpredictable node mopgihd networks with no clock
synchronization mechanism. Later on, they identify in [&85jotation closure property
that allows for a more flexible quorum system design. Zhengl. [147] propose an
asynchronous wakeup scheme based on block combinatosgmdend an on-demand
power management protocol based on it.

Power management. A stream-oriented power management protocol is proposed

in [99] to support a class of sensor network applicationsaittarized by delay toler-
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ant, asynchronous data traffic, and scheduled data trasismisAn application-layer
wakeup/sleep scheme is proposed to enable energy-effi@émnbrk operations by only
keeping the active route between a source and receiver awhlescheme relies on the
existence of a stable and fixed end-to-end route during ttie@lata stream transmission

and does not apply to many challenged networks.

5.7 Conclusions and Future Work

In this chapter, we have presented aDapTN, a new transpdqmi that saves significant
idle energy in delay-tolerant, static sensor networks. @®cinnique consists of two core
components: a store-and-forward transport and an asymehisonode rendezvous. It
saves idle energy by relaxing the requirement for end-tb-@mnnectivity during data
transmission and allowing the network to be disconnecteztnmttently via scheduled
sleeping. To our knowledge, no previous work has leveragesmittent connectivity
to save energy in such environments. Beyond the applicatiendiscussed, we expect
our approach to be useful to other challenged networks widére=nergy efficiency is
crucial.

Due to the limitations of our experiment environments, weehaot evaluated the
feasibility of aDapTN in settings with disconnections aadi®y other reasons, such as
high packet loss rates and node failures. We expect thatE@Dapll perform well in
such environments due to its robustness to any type of dismion and we leave it
as future work. Another avenue for future work is an adaptie@sport protocol that
can dynamically switch between different communicatiordeis when the environment
changes. The group-oriented model is one such protocolciéifi design of such a

protocol is an area of future work.
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Overall, this work offers significant opportunities for gay idle energy, and further

work has high potential for improving it.
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Chapter 6

Conclusions and Future Work

Communications in emerging challenged networks presentammplexities, such as
intermittent connectivity, and extremely unreliable mttansmissions. The work in this
dissertation explores techniques to provide and leveraggion information as a means
to improve routing efficiency and performance. It has brdwgbnique approach to data
communication performance optimizations in such networks

To elaborate the main ideas of this research, this disgertatvestigates a range
of challenges that cover several key areas of challengegoniet, including wireless
mobile and static sensor networks, opportunistic netwaxksl DTNs. The first part of
this dissertation focuses on understanding and exposiciy alonormal situations, such
as the varying link quality observed in many low-power ramlansceivers. The second
part focuses on novel routing design in networks confromtighl challenging disruptions
with no well-established solutions, such as those foungpoaunistic networks.

This dissertation demonstrates that many lower-layeregysdand network metrics
that are readily available can effectively help improvetimy performance in challenged

networks. One important thing to note is that such metricaikhbe easy to collect with

131



no or low overhead, due to cost and other practical concdimsccommodate extreme
conditions in challenged networks, it is important for thietpcols to make no explicit
assumptions of the network and to treat disruptions asdnd+ design parameters.

By designing, building and evaluating our solutions on ngatld sensor network
testbeds serving real traffic, or using real-world mobitityces, we successfully factor
real-world issues into our evaluations. Our model-basetoppl can capture mobility
phase changes with high accuracy and achieves an improvemgmto 120% in packet
delivery rate (Chapter 2). Our supervised-learning basgthique can maintain accurate
link quality information even under heavy traffic load wheaditional approaches fail.
Used with link-quality aware routing protocols, it can yigderformance improvements
of up to 300% in packet delivery rate (Chapter 3). Our erasoding based forwarding
protocol has a consistently smaller worst case messagg thela four other state-of-
the-art forwarding algorithms, when evaluated in an oppustic network with intermit-
tent connectivity and unpredictable mobility (Chapter 4)ur@ew transport protocol,
aDapTN, when used in networks with intermittent connetstidan yield significant idle
energy savings compared to existing approaches (Chapter 5).

We believe that our findings are general enough to be usefothter systems and
networks. In essence, techniques proposed for one typeatienge can often apply to
other challenges. However, sometimes we need more carelyiragp such techniques
to different environments. For example, in an opportuaisgtwork with unpredictable
node mobility, it becomes difficult to apply the centralizegervised-learning technique
since important samples of interest may not be available.

In the long term, researchers are envisioning a global métwidth devices of all
types and capabilities being connected and integratedlsssi;n To accomplish such a

goal, future networking solutions are anticipated to hatelligence embedded to under-
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stand their operating environment and make informed datssiSuch a communication
paradigm shift from networks nowadays to large-scale bgtareous networks renders
our research even more relevant and the focal points of ibsedation will play an im-

portant role in networked applications of tomorrow.

6.1 Future Research

Challenged wireless and mobile networks, in particular g® sensor networks, have
evolved a long way in the last few years. Other than environtalesensing scientific
applications, new sensing applications are on the riseehabmpass human involve-
ment and mobility and open a new range of problems to be exglokVe have made
significant progress in understanding and developing isaisiffor efficient communica-
tion in challenged networks, including wireless sensowneéts, mobile networks, and
their hybrids. We find that the cross-fertilization of theotfields poses new challenges
as well as opportunities, as human mobility plays an inenghsimportant role. Such
networks are referred to gerticipatory networks where participants are central to the
network functioning, compared to the first generation senstworks whose major goal
is confined to data collection. Yet, substantial work reradm achieve a comprehen-
sive solution to communication problems in such networkswihat follows, we discuss

several directions for future work that merit further intrgation.

6.1.1 Hybrid Sensing Applications

The existence of mobility introduces a new set of tradeddsvieen energy and response
time, and opens possibilities of new optimizations in cdsttake advantage of mobility,

a store-carry-and-forward routing paradigm is usuallylexed. This requires the nodes
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to be able to efficiently manage a large amount of data lac@iympared to the evolu-
tion of processors, radios, and batteries, non-volatilmorg based storage is improving
greatly in cost and energy efficiency over the years andhiggiions in hardware should
not be a concern. Rather, what remains a concern is that suohage-centric commu-

nication pattern may lead to reliability, energy and pearfance problems.

6.1.2 Heterogeneity

Heterogeneity is another distinct characteristic of pgréitory sensor networks. A het-
erogeneous network encompasses a diverse set of wireleseslwith different compu-
tation, communication, storage, and mobility capabsitiEor example, embedded sens-
ing devices in the near future can have multiple radios [88jnitive radios [85, 105], or
renewable energy supply [44, 61]. Efficiently leveraging plower of such heterogeneous
devices requires the networking protocol to identify tre&offs with new hardware in

order to fully take advantage of their new capabilities.

6.1.3 Data Quality

Previous energy-efficient designs are focused on maxigniaioertain pre-defined goal,
such as the system lifetime or data yield. Therefore, thegat@accommodate different
requirements for the collected data. In the real world, h@reausers have very different
requirements regarding data output, such as sensor reaglingcation-related informa-
tion. For such networks, a knob to control the tradeoff betwedata yield and energy is
attractive, compared to a static system that only suppoggaality goal or another. Such
a quality-control property is particularly useful in parfiatory sensing networks because

dynamic human engagement will definitely lead to differamdldy requirements.
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In conclusion, this dissertation has shown that exposimhleveraging situation in-
formation can yield significant performance gains and lesia set of such techniques.
The outcomes reveal the potential of situation-aware tecies and provide new per-

spectives on performance optimizations in challenged owisv
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