
Rethinking Virtual Network Embedding:
Substrate Support for Path Splitting and Migration

Minlan Yu1, Yung Yi2, Jennifer Rexford1, Mung Chiang2
1 Computer Science, Princeton University, Email: {minlanyu,jrex}@cs.princeton.edu
2 Electrical Engineering, Princeton University, Email: {yyi,chiangm}@princeton.edu

Abstract—Network virtualization is a powerful way to run
multiple architectures or experiments simultaneously on a shared
infrastructure. However, making efficient use of the underlying
resources requires effective techniques for virtual network embed-
ding—mapping each virtual network to specific nodes and links
in the substrate network. Since the general embedding problem
is computationally intractable, past research has focused on two
main approaches: (i) significantly restricting the problem space
to allow efficient solutions or (ii) proposing heuristic algorithms
that do not use the substrate resources efficiently. In this paper,
we advocate a different approach: rethinking the design of the
substrate network to enable simpler embedding algorithms and
more efficient use of resources, without restricting the problem
space. First, we allow the substrate network to split a virtual link
over multiple substrate paths. Second, we employ path migration
to periodically re-optimize the utilization of the substrate network
to help accommodate new requests. In addition, we run node-
mapping algorithms that are customized to common classes of
virtual-network topologies. Our simulation experiments show
that path splitting, path migration, and customized embedding
algorithms enable a substrate network to satisfy a much larger
mix of virtual-network requests in practice.

I. I
Network virtualization has emerged as a powerful way

to diversify the future Internet by running multiple network
services and experiments simultaneously on a shared substrate
network [1], [2], [3]. Network virtualization may play an im-
portant role in supporting multiple architectures as a long-term
solution for the future Internet [4]. Making efficient use of the
underlying substrate network requires effective techniques for
virtual network (VN) embedding—mapping a virtual network
to specific links and nodes in the substrate network. However,
the embedding problem is extremely difficult in theory and in
practice, due to the following four properties:

1) Diverse topologies. The virtual networks have diverse
topologies. Still, certain topological structures—such as
a tree or hub-and-spoke—may be common in practice,
depending on the service the virtual networks provide.

2) Resource constraints. Each VN request has resource
constraints that the embedding must satisfy. Many VNs
have both node (e.g., CPU) and link (e.g., bandwidth)
constraints, making the embedding problem hard to solve.

3) Online requests. The VN requests arrive dynamically,
and stay in the network for some period of time before
departing. To be practical, the embedding algorithm must
handle VN requests as they arrive.

4) Admission control. Since the substrate resources are
limited, some VN requests must be rejected or postponed.

That is, the embedding algorithm must perform admission
control to reserve resources for accepted VNs and block
requests when insufficient resources are available.

Several of these properties make the VN embedding prob-
lem different, and more difficult, than the Virtual Private
Network (VPN) design problem [5], [6]. In particular, the
VN embedding problem must deal with both node and link
constraints for arbitrary topologies. In contrast, VPNs usually
have a standard topology, such as full mesh and hub-and-
spoke [7]. Moreover, the resource constraints in a VPN are
typically just bandwidth requirements, specified by a traffic
matrix (i.e., the traffic volume for each pair of nodes).

In fact, the VN embedding problem is computationally in-
tractable, even if some of the four above-mentioned properties
are ignored. The computational challenges of VN embedding
have led researchers to focus on heuristic solutions [8], [9],
[10]. In particular, the past work has typically restricted the
problem space in one or more dimensions to enable efficient
heuristics, at the expense of limiting the practical applicabil-
ity of the solutions. In this paper, we advocate a different
approach. Instead of restricting the problem space, we make
the substrate network more supportive of the VN embedding
problem. This allows us to create simpler embedding algo-
rithms that make more efficient use of the substrate resources.
We argue that our proposed enhancements to the substrate
network are realizable in practice. The key contributions in
this paper are summarized in the following:

1) Path splitting. We propose that the substrate network
allow a virtual link to map to multiple underlying paths,
with a flexible path-splitting ratio. Path splitting enables
a polynomial-time algorithm for virtual-link embedding,
makes more efficient use of the substrate bandwidth, and
enhances robustness to link failures.

2) Path migration. For more efficient handling of online
requests, we periodically re-optimize the embedding of
existing virtual networks. We realize this by adapting
the path-splitting percentages or selecting alternate sub-
strate paths for a virtual link. More practical than node
migration, path migration provides an efficient way of
tackling online embedding problems, because we can find
the optimal path migration solution in polynomial time.

3) Modularized algorithm. In addition to a general node-
mapping algorithm, we also run customized algorithms
for specific common topologies, like tree and hub-and-
spoke. The modularized algorithm reduces computation

TABLE I
N V N E P

Gs Substrate network
N s Nodes of substrate network
Ls Links of substrate network
As

N Node attribute of substrate network
As

L Link attribute of substrate network
Ps Paths on substrate network
Gv Virtual network
Nv Nodes of virtual network
Lv Links of virtual network
Cv

N Node constraint of substrate network
Cv

L Link constraint of substrate network
RN Resources allocated for virtual network nodes
RL Resource allocated for virtual network links

time and uses substrate resources efficiently by capitaliz-
ing on the unique properties of the VN topology.

The remainder of this paper is organized as follows: In
section II, we define the general VN embedding problem and
discuss previous work. Section III describes our modularized
VN embedding algorithm. Sections IV and V discuss the use
of path splitting and path migration to make the substrate net-
work flexible and supportive of the VN embedding problem.
Section VI shows simulation results to validate our algorithm,
and we conclude the paper in Section VII.

II. V N E P

In this section, we first describe the general VN embedding
problem with its various objectives, and explain why the VN
embedding problem is very hard to solve. Then, we discuss
how past work has focused primarily on restricting the problem
space for efficient solutions.

A. General Virtual Network Embedding Problem
Substrate network. We denote the substrate network by an

undirected graph Gs = (N s, Ls, As
N , As

L), where N s and Ls refer
to the set of nodes and links, respectively 1. Substrate nodes
and links are associated with their attributes, denoted by As

N
and As

L, respectively. In this paper, we consider CPU capacity
and location for node attributes, and bandwidth capacity for
link attribute. We also denote by Ps the set of all the paths in
the substrate network.

Virtual network request. We denote by an undirected graph
Gv = (Nv, Lv,Cv

N ,Cv
L) a virtual network request. The network

topology (Nv, Lv) is a logical network in a sense it should be
configured as a sub-network of the substrate network. A VN
request typically has link/node constraints that are specified
in terms of attributes of the substrate network. We denote by
Cv

N and Cv
L such constraints for virtual nodes and links. An

example virtual network request is: “connect two nodes A, B ∈
NV with constraints that node A and B should be in California
and New Jersey, respectively, and we need 5 Mbps bandwidth
on the virtual link between A and B.”

1We use superscript to refer to substrate or virtual network, and use
subscript to refer to nodes or links, unless otherwise specified.

VN embedding problem. A virtual network embedding
problem is defined as a mapping M from Gv to a subset of
Gs, such that the constraints in Gv are satisfied, i.e.,

M : Gv 7→ (N′,P′,RN ,RL),

where N′ ⊂ N s and P′ ⊂ Ps, and RN and RL are the node and
link resources allocated for the VN requests. The VN network
embedding can be naturally decomposed into node and link
mapping:

Node Mapping: MN : (Nv,Cv
N) 7→ (N′,RN),

Link Mapping: ML : (Lv,Cv
L) 7→ (P′,RL).

Objectives. In addition to multiple constraints, the VN em-
bedding problem may have multiple objectives. In this paper,
our objective is to jointly maximize the revenue and minimize
the cost from the perspective of the substrate network provider.
Revenue and cost can be defined in various ways, depending
on the substrate network provider’s service strategy and the
virtual networks’ interests. A vector of two objectives can be
scalarized into one objective by weighing revenue with cost.
However, finding the right weight depends on the economic
model of the corresponding virtual network service. Thus, we
maintain a two-dimensional vector objective function.

Due to multiple objectives and multiple constraints, finding
the optimal solution turns out to be a very difficult problem,
i.e., NP-hard for node and/or link constraints of VN requests,
even in the offline case. For example, assigning nodes to
substrate network without violating bandwidth constraints can
be reduced to the multiway separator problem, which is NP-
hard [11]. Provided that the nodes are pre-selected, the link
mapping problem for the requests with link constraints is still
NP-hard (as discussed in more detail in section IV).

The online problem is even more difficult to solve than the
offline one. Mathematically, the online embedding problem
can be formulated and solved by dynamic programming.
However, dynamic programming techniques are impractical
here, mainly because (i) statistics of incoming VN requests
are generally unpredictable, and (ii) the search space is
prohibitively large with respect to the size of the substrate
network.
B. Virtual Network Embedding Algorithms

Related work mainly addresses the hardness of the problem
by relaxing one or more of the key properties of the problem
(see table II). These key properties include (i) whether requests
are processed online or not, (ii) whether the requests may
have link constraints, node constraints, or both, (iii) whether
admission control (AC) is performed to reject requests when
insufficient resources are available, and (iv) what virtual
topologies are supported.

Several of the previous studies focus on the offline problem,
where all VN requests are known in advance. Zhu and Ammar
[8] assume that the substrate network resources are unlimited,
and aim at achieving load balancing in the substrate network,
obviating the need for admission control. The VN-embedding
problem for the requests with general topology is solved by
subdividing the requests into multiple star topologies to allo-
cate more substrate resource to the center of each decomposed

TABLE II
V N E A

on/offline CPU/BW AC topology objective
NetFinder[8] offline both no general load balancing

[10] offline
(one req.)

both no backbone-star cost

[9] online BW no traffic matrix cost
Emulab [12] online BW primitive general cost
This paper online both yes general revenue & cost

star topology. Lu and Turner [10] also consider an offline
problem for only a single virtual network with a backbone-
star topology, where their goal is to minimize the cost. They
assume that only bandwidth constraints are imposed, and the
substrate network resources are unlimited with no admission
control needed.

In regard to the online problem, Fan and Ammar [9]
consider dynamic topology reconfiguration policies for virtual
networks with dynamic communication requirements, but no
consideration of the node constraints such as CPU. They
also assume that substrate network resources are unlimited to
accept all requests (i.e., no admission control) and try to find a
strategy to minimize cost. Zhu and Ammar [8] also solve the
online problem by recalculating the whole embedding solution
periodically, which is computationally complex. The Emulab
testbed [12] considers the online embedding problem with
the bandwidth constraint. The node constraint in Emulab is
provided as the exclusive use of nodes, i.e., different virtual
networks cannot share a substrate node. Admission control
is not explicitly addressed in [12], but we can conjecture an
admission control that rejects request if the bandwidth/node
resources are insufficient.

As we have described so far, past research on VN embed-
ding algorithms tries to come up with an efficient solution
by looking at only partial aspects of the problem addressed
in Section I. This clearly limits the applicability of the al-
gorithms. We highlight that we deal with the most general
cases by considering all aspects of the four properties in the
embedding algorithm design. In terms of the objective, our
work is also more general, i.e., consideration of revenue and
cost simultaneously. Rather than avoiding certain properties
of the problem, we rethink the VN embedding problem by
making the substrate network more flexible and supportive
to this problem, in conjunction with customization of the
algorithms for different types of requests. It turns out the
flexibility of path splitting and migration is indeed very useful.

III. M A
In this section, we first give an overview of our algorithm,

which consists of (i) node mapping, (ii) link mapping, and (iii)
migration. In the node mapping, we modularize the algorithm
for the requests with different topological structures. In the
link mapping, we treat the requests with/without path splitting
separately. We devote the rest of this section to elaborate on
the modularized node mapping and link mapping only for
the requests without path splitting. We discuss the details
on the link mapping for the request with path splitting and
migration, which are our key contributions, in sections IV
and V, respectively.

Req comes Req leaves

Module 1 Module 2 Module 3 Node
mapping

Link
mappingSplittable

Unsplittable

Cost computation/Migration

fixed nodes

Embedding output for this time window

Req. Queue new Reqs. time window

Reqs postponed

Fig. 1. Algorithm overview

A. Algorithm Overview
Our algorithm collects a group of incoming requests during

a time window and then tries to allocate substrate resources
to satisfy the constraints imposed by each request. Figure 1
depicts the overview of the algorithm for one time window.

Node and link mapping correspond to the initial resource-
mapping. Our mapping algorithm is designed to accept as
many requests as possible, resulting in revenue maximization.
Some requests may not be accepted immediately, in which
case they are stored in the request queue. The requests in the
request queue are dropped if they do not have a chance to
be served within some delay. This delay corresponds to the
time that a request is willing to wait (see Section V for more
discussions on the engineering issues on delay). The requests
in the request queue are processed at the next time-window.

In both node and link mapping, we process the requests
in the order of decreasing revenue. The revenue is defined
based on the “agreement” between the virtual networks and
the substrate providers. Thus, from the substrate providers’
perspective, they can gain more revenue, if they serve the
requests with large revenue first. This may lead to “starvation”
of the requests with small revenue. The starved request should
pay more to be in the system by increasing its revenue obtained
by the substrate network provider.

Given the mapped nodes and links in the substrate network,
migration plays a role in efficient resource usage with existing
accepted requests by re-optimizing the substrate network re-
source utilization. Thus, this step can be interpreted as one that
minimizes the cost, which is one of the objectives we discussed
in II. Details on migration will be presented in Section V.

B. Customized Node Mapping
The first step is to find specific substrate nodes that the

virtual nodes will be mapped to. We describe the node
mapping algorithm for general requests and then discuss the
customized versions for common kinds of VN topologies.

1) Node Mapping Algorithm for General Requests: For the
general requests, we employ a “greedy” algorithm. This is
because it is computationally hard to employ other strategies,

such as iterative methods [10] and simulated annealing [9],
[13]. The motivation of the greedy algorithm is to map the
virtual nodes to the substrate nodes with maximum substrate
resources so as to minimize the use of the resource at the
bottleneck nodes/links. This is beneficial to future requests
which should be mapped to nodes with scarce resources.
Similar greedy algorithms are introduced in other related [8],
[12] with difference objectives.

Greedy Node Mapping Algorithm for General Requests
1. Sort the requests according to their revenues.
2. Take one request with the largest revenue.
3. Find the subset S of substrate nodes that satisfy

restrictions and available CPU capacity (larger than that
specified by the request.)

4. For each virtual node, find the substrate node with the
“maximum available resource” in S .

5. If fail in 3. or 4., store this request at the request queue,
and GOTO 2.

In our algorithm, we collect all the requests in one time-
window and those from the request queue, and then map all
the virtual nodes in these requests to the substrate nodes.
VN requests sometimes impose some restrictions on their
nodes or links. The examples of node restrictions include
geographical location and special functionality at the substrate
node. These node restrictions are quite common in practice,
e.g., servers near their customers in content-delivery service,
programmable routers, and a node with Internet-2 network
connectivity. Requests with restrictions give us some hints
on how to map the virtual nodes. For example, location-
specific requests usually tell us a geographical area that the
substrate node should locate. This reduces the search space in
the mapping process (Step 3).

Then, we keep track of the available node/link resources
of the substrate network over time windows. The amount of
available resource for a substrate node ns is defined by:

CPU(ns)
∑

ls∈L(ns)
bw(ls), (1)

where L(ns) is the set of all adjacent substrate links of ns,
CPU(ns) is the remaining CPU resource of ns, and bw(ls) is
the unoccupied bandwidth resource for the substrate link ls.
With this definition, for a virtual node, we find the substrate
node with the maximum available resource (Step 4). Note that
we do not use CPU(ns) alone as the definition of available
resource, since we have to ensure that the substrate node has
enough adjacent bandwidth for the virtual network.

2) Customized Node Mapping Algorithm: In addition to the
general node mapping algorithm, we provide a customized
node mapping algorithm for requests with special topology. In
many cases, the (logical) topologies of VN requests typically
conform to some typical patterns. This is due to the fact
that one of the popular applications of network virtualization
is an overlay network that provides typical services, e.g.,
gaming and CDNs (Content Distribution Network). Popular
topologies include tree, hub-and-spoke, and dual-hub-and-
spoke. A tree topology is quite common in e.g., multicast

distribution of IPTV, VoD, and video-casting, whereas hub-
and-spoke topology is popular in enterprise networks and
centralized databases/servers.

As a representative example, the following is the customized
node mapping algorithm for requests with hub-and-spoke
topology:

Customized Node Mapping Algorithm for Requests with
Hub-and-spoke
Steps 1, 2, and 3: Same as in Greedy Node Mapping.
4. if the request has hub-and-spoke topology:
4.1 For each hub node, find the substrate node with the

maximum available resource in S .
4.2 For each spoke node, find the shortest path between a

substrate node in S and the substrate node mapped to the
corresponding hub node.

else, apply Step 4. in Greedy Node Mapping Algo.
5. Same as in Greedy Node Mapping.

The main difference of the customized node mapping from
the greedy node mapping is that the maximum available
resource is allocated only for the hub nodes (Step 4.1). For the
spoke nodes, we choose the substrate node that has the shortest
path to the substrate node mapped to the hub node (Step
4.2). The motivation is due to the traffic volume difference
between the hub and the spokes. By Step 4.2 we can also
significantly reduce the cost for the embedding, since cost is
generally proportional to the distance (i.e., number of hops),
whereas the greedy algorithm allocates large substrate resource
to “unimportant nodes”, i.e., the spokes. This waste of resource
will have the negative effect that the future requests may not
find available resources for the greedy algorithm. We also
note that the greedy algorithm does not allow us to perform
a similar task, i.e., prioritization in node mapping depending
on “importance” of the virtual node. This is because it is hard
to know to which virtual node requires more resources for
a general topology and to find the special pattern of link
connectivity. The algorithm for hub-and-spoke topology is
representative, so that similar techniques can be readily applied
to popular, standard topologies such as tree, double hub-and-
spoke, and backbone-star [10].

C. Link Mapping for Requests without Path Splitting
When the substrate nodes are selected for mapping, we map

the virtual links to specific substrate links by customizing the
algorithms for the request with or without path splitting. The
algorithm for the request without path splitting is given by:

Link Mapping Algorithm for Requests without Path-
splitting

1. Sort the requests by their revenues.
2. Take one request with the largest revenue.
3. For each virtual link of the request, we search the

K-shortest paths for increasing K, and stop the search if
we can find one.

4. If fail in 3. for some virtual link, then reject this request,
and store it in the request queue. GOTO 2.

To find the optimal solution for requests with unsplttability
is known to be NP-hard (see more discussions on computa-
tional complexity on link mapping in later section). Therefore,
we use the k-shortest path algorithm to find link mapping
for unsplittable flow(s) as an approximation approach. This
algorithm can be solved in O(N log N + kN) time in a graph
with N nodes [14]. We search K-shortest paths for increasing
values of K, until we find a path which has enough bandwidth
to map the corresponding virtual link.

IV. LM P S
In this section, we present our link-mapping algorithm for

the virtual network requests that allow path splitting. First, we
explain how path splitting simplifies the embedding problem
and enables more efficient use of the substrate resources.
Next, we describe how the substrate network can perform path
splitting without disrupting the characteristics of the virtual
link, and then finally, present our algorithm.

A. Path Splitting for Fast Computation and Greater Efficiency
The conventional approach to link mapping is to assign

each virtual link to a single path in the substrate network.
However, finding an optimal mapping from a virtual link to a
single substrate path reduces to the Unsplittable Flow Problem
(UFP), which is NP-hard [15], [16]. In addition, even the best
single-path embedding of a virtual link may not make efficient
use of substrate resources. To illustrate this, see Figure 2, after
VN req. 1 has been accepted, a new VN req. 2 (with just a
single link with a bandwidth requirement of 30) arrives. Since
no path in the substrate has 30 units of available bandwidth,
the request must be rejected, even though, collectively, the
substrate has sufficient resources. In particular, the paths (D,E)
and (D,G,H,I,E) have enough bandwidth, together, to support
the new VN request.

If we make the substrate network more supportive by
allowing path splitting, the link mapping problem becomes
computationally tractable, and better resource utilization can
be achieved. Splitting a virtual link l with capacity constraint
Cl means that we map a virtual link into multiple paths in the
substrate network, such that the sum of reserved end-to-end
bandwidth along the multiple paths is equal to Cl. We refer to
the percentage of traffic on each path as the splitting ratio.
The link mapping problem with path splitting and flexible
splitting ratio relaxes the constraints, and can be reduced
to the multicommodity flow problem (MFP) [17], which is
polynomial-time solvable. Moreover, path splitting enables
better resource utilization by harnessing the small pieces of
available bandwidths, allowing the substrate to accept more
VN requests. For example, in Figure 2, we can accept the VN
req. 2 by splitting virtual link (d, e) with the splitting ratios
2/3 and 1/3 on (D,E) and (D,G,H,I,E), respectively.

The benefits of having multiple paths have been established
in other contexts, e.g., reliability and load balancing. In fact,
even having just two paths, load balancing can significantly
reduce the maximum load, compared to that with only a single
path [18], [19]. Path splitting also helps to overcome failure. In
case of node or link failures, we can quickly switch the traffic
to the other paths simply by changing the splitting ratios. In

A

B C

D E

F G

15

15

15

40 40

20

a

b

c
d e

Existing
VN Req 1

New arriving
VN Req 220

20
30

a

b

c H I

10

10 10

20

20

Reject

Without
path splitting

Path splittingAccept

10

A

B C

D E

F G

15

15

15

40 40

20
a

b

c H I

10

10 10

20

20
10

20
10

Substrate network at time t-1 Substrate network at time t

55

Fig. 2. Example of benefits of path splitting

contrast, in a single-path setting, a failure would require the
substrate network to establish a completely new path for the
virtual network, resulting in severe service disruption.

B. Realizing Path Splitting in the Substrate Network
Path splitting can be easily implemented in the substrate

network without significant overhead. When the virtual node
directs a packet over the virtual link, the substrate sends the
packet over one of the paths based on the target splitting ratio.
The virtual network is largely oblivious to the splitting of the
traffic, as long as care is taken to prevent out-of-order packet
delivery. The substrate can employ a variety of techniques to
prevent performance disruptions:

1) Hash-based splitting. Out-of-order delivery is primarily a
concern for packets in the same flow—a group of packets
between the same end hosts. Hash-based splitting pre-
vents out-of-order delivery by directing all packets from
the same flow to the same path. In its implementation,
we first divide the hash space into weighted partitions
that each correspond to one substrate path. Then, we
apply hashing to the packets based on their header bits
and forward the packets to the corresponding substrate
path. We can also use consistent hashing to minimize
disruptions when adapting the splitting ratios [20]. This
hash-based scheme is efficient and, in fact, is widely used
in IP networks to split traffic evenly over equal-cost multi-
path [21], [22].

2) Adding artificial delay. Another solution is to equalize the
delays along the multiple paths. This is possible because
all substrate nodes and links belong to a single party—the
substrate provider. The substrate provider can add small
artificial delay to overcome variable propagation delay,
e.g., by using Dummynet [23]. Moreover, we do not need
to be concerned about congestion-related delay, since
unlike in a conventional best-effort network (e.g., the
Internet), these virtual networks are allocated bandwidth
resources in advance.

3) Tagging the packets. Since the substrate network is under
the control of a single party, each packet can be tagged
with a sequence number or timestamp. Then the remote
end-point of the virtual link can reorder the packets based

on the tags before delivering the packets to the receiving
virtual node.

Next, we will describe our algorithm that maps the virtual
links with splittability into the substrate network.

C. Link Mapping Algorithm with Path Splitting
Link Mapping Algorithm for Requests with Path-splitting
MFP Calculation:

1. For all requests with splittability, construct linear con-
straints on the commodities for each virtual link.

2. Solve MFP (Multicommodity Flow problem).
Node Movement:

3. If infeasible, find the bottleneck link.
4. Map the virtual node at one end of the bottleneck link to

another randomly-chosen substrate node, then GOTO 2.
with new linear constraints.

5. If infeasible for T times, eliminate the request making
MPF infeasible, then construct linear constraints with the
remaining requests, and GOTO 2.

For simplicity, consider a request with only one link lv with
the capacity constraint C, where two end nodes of lv are de-
noted by nv

1 and nv
2. Denote byMN(nv

1) = ns
1 andMN(nv

2) = ns
2

the substrate nodes mapped to nv
1 and nv

2, respectively, which
are determined by the node mapping algorithm in section III.
Finding multiple substrate paths is equivalent to finding a
flow from the source ns

1 to the destination ns
2 in the substrate

network with available capacity resource on the substrate links.
At the link mapping stage, all the virtual nodes have already

been mapped to the substrate nodes. Therefore, we select those
requests that allow path splitting and solve the MFP problem
(Steps 1 and 2). Two end-nodes of a virtual link are mapped
to two substrate nodes, which form a single commodity. Then,
a group of requests considered in this time-window generates
a group of, say r, commodities. The algorithm tries to find all
the paths for r commodities based on the linear constraints:

∀ls ∈ Ls
∑

i=1..r
f (ci, ls) ≤ bw(ls) (2)

where f (ci, ls) is the bandwidth on the substrate link ls that we
allocate to commodity ci (or its corresponding virtual link).

Steps 3, 4, and 5 correspond to the node movement stage.
Note that we cannot guarantee that a feasible solution is
always found in MFP calculation stage, since there might
be some “congestion” by a large number of virtual links
on some substrate links with scarce bandwidth resources. To
overcome such congestion, we pick one bottleneck link and
try to get some virtual requests away from it by changing
their node mapping. We are able to find the bottleneck link by
investigating which linear constraints (for the commodities)
are violated. Then, we randomly choose one end node of
this bottleneck link, and map it to the substrate node with
maximum remaining resources (defined in (1)). If such a
dynamic node movement is not beneficial to solve the MFP
for a pre-defined number of time windows, we reject and store
the corresponding requests, and then try to solve the MFP with
the remaining requests.

A

B C

D E

F

15

15

15

40 40

20

a

b

c

Existing
VN Req 1

20

20

a

b

c

20

20
A

B C

D E

F

15

15

15

40 40

20
a

b

c

d
e

20

10
10

30

5 5

Substrate network at time t-1 Substrate network at time t

d e

New arriving
VN Req 2

30 Reject

Without
migraion

With
migraionAccept

Fig. 3. Example of Benefits of Migration

Some virtual network might be sensitive even to the minor
disruptions of flow splitting and thus do not allow path
splitting. They have to use the link mapping algorithm for
requests without path splitting in section III-C, resulting in
inefficient substrate resource utilization.

V. S O P: M
In this section, to deal with the online VN embedding prob-

lem, we introduce the idea of path migration, i.e., changing
the route or splitting ratio of a virtual link.

A. Benefits and Realization of Path Migration
Since VN requests dynamically arrive and depart over time,

the “optimal” online embedding algorithm should be able to
predict the future. One may want to use dynamic program-
ming to solve this mathematically. However, developing an
algorithm relying on dynamic programming is not practical
in VN embedding, as we have discussed in Section II. Then,
sub-optimal, heuristic algorithms are possible to let the system
drifts into inefficient resource usage. This motivates us to find
ways to “re-balance” the mapping of virtual networks to make
more efficient use of the substrate resources to maximize the
chance of accepting future requests. We also need a way to
handle link or node failures in the substrate network, as well
as dynamic changes of link capacity constraints.

We discuss the technical issues on migration by categorizing
it into path migration and node migration.

Path migration. Path migration is composed of two kinds
of methods: (i) tuning the splitting ratio (which is applied only
for requests that allow path splitting), and (ii) migrating paths
entirely or partially. By this path migration, we leave more
bandwidth to accept new more requests. Path migration will
not cause significant service disruptions for two reasons: In
(i) we need just a slight change of flow splitting ratio for
the already-existing paths; in (ii) migrating paths is similar to
changing routes in the Internet. We can create the new path in
advance before moving the traffic to avoid service disruption.
Therefore, path splitting will not influence the application
significantly.

Note that path migration is closely coupled with path split-
ting, especially in its method (i). Path splitting is an important
component not only to reduce complexity for offline requests,

but also to give more flexibility to the substrate network,
leading to more efficient online embedding in migration. For
example, in Figure 3, the new VN req. 2 comes with bandwidth
requirement 30. Without migration, the VN req. 2 should be
rejected due to scarcity of the network resource. However, with
migration and if the VN req. 1 being served on the substrate
allows path splitting, we can split the virtual link (a, b), and
migrate its partial traffic to another path (A,B,C,E) to make
enough bandwidth on (A,D,E) for the VN req. 2.

Node migration. In general, we avoid node migration since
it may cause significant service disruption of ongoing virtual
networks. However, node migration is also feasible as long
as we plan it well, for the following reasons: First, long-
running services usually have their own maintenance windows,
where they drain traffic off a server to upgrade the software.
These windows can be used for migration. Second, with ample
warning and prior planning, we can minimize the negative
effect of migration on ongoing service. Node migration can be
done quite quickly in practice, e.g. within a few seconds [24].

B. Migration Algorithm
We mainly focus on VN requests with long duration in

our migration algorithm. This duration can be specified by
the requests when they arrive at the system, or inferred if
a request has already been served for some time. Migrating
short-duration requests is intuitively not cost effective, because
it takes more migration efforts than the resource utilization
benefits we gain. However, for the long-duration requests,
during the time they are running, other requests arrive and
depart. Therefore resource utilization can be inefficient. The
strategy of giving priority to long requests in the embedding
problem can supported by the research on job scheduling, e.g.,
[25], where migrating a long job away from a busy host helps
not only the long job, but also the many short jobs that are
expected to arrive at the host in the future.

In practice, VN requests are possibly quite diverse in their
durations, ranging from a few months to several hours. As an
example, content distribution networks such as Akamai [26]
keep providing service once it starts, whereas the impromptu
conference and gaming stay in the system for relatively short
time.

In the migration algorithm, we fix the node mapping of both
the requests in the current time window and those in previous
time windows, which have been mapped to the substrate
network. We perform path migration by rerunning the link
mapping step in Section IV. For a pre-defined threshold time
T , we only consider the requests which allow path splitting
and whose duration is longer than T. Then we recalculate the
MFP (Multicommodity Flow Problem) as described in our link
mapping algorithm. If we have benefits for cost reduction by
migration, then path migration is performed.

C. Time Window and Delay
As we have mentioned in Section III, we collect our requests

within a time window, and then find the embedding solution
for them. The size of this time window is not necessarily fixed,
but can be flexible. It is determined by the number of waiting
requests and the amount of available substrate resources. If

time window is large, we can handle more requests together,
leading to a better efficient solution. However, significantly
long time window may cause the incoming requests to wait.
For this reason, we allow delay, the time that each request
is willing to wait. In our paper, we mainly focus on the
time window with fixed length. Developing an algorithm
which dynamically determines time window length together
with investigating the relationships between migration, time
window and delay is left as a future work.

VI. P E
A. Evaluation Environment and Performance Metric

We implemented a VN embedding simulator (publicly
available at [27]) to evaluate our algorithm in terms of path
splitting, migration, and customized node mapping.

Substrate network. We use GT-ITM tool [28] to generate
the substrate network topology. The GT-ITM tool has been
popularly used in the research which requires the practical net-
work topology generation. The substrate network is configured
to have 100 nodes, whose scale corresponds to a medium-scale
ISP. From this setting, at every experiment, about 500 links
are generated on average. The CPU resources at nodes and the
link bandwidths at links follow a uniform distribution ranging
from 0 to 100.

Virtual network request. In one VN request, the number
of VN nodes is randomly determined following a uniform
distribution between 2 and 10. We comment that the similar
simulation environment is also adopted in the related work
considering online problem [9]. Each pair of virtual nodes are
randomly connected with probability 0.5. This means that for
a n-node virtual network, we have n(n−1)/4 links. The arrivals
of VN requests are modeled by a Poisson process with mean
5 reqs. per time window. The duration of the request follows
an exponential distribution with 10 time windows on average.
We run all of our simulations for 500 time windows, which
corresponds to about 2500 requests on average in one instance
of simulation. This is sufficient to believe our data is from the
steady-state regime, since as presented in the next subsection,
within 10 time windows, the system enters the steady state.

The parameters and their symbols that we vary in all our
simulations are:
• E[cpu]: average CPU requirement on a virtual node,
• E[bw]: average bandwidth requirement on a virtual link,
• RPS-%: percentage of the requests with path splitting.
• DELAY: delay of a request.
Performance metric. As we have mentioned, our algorithm

is designed to jointly minimize cost and maximize revenue.
Thus we plot both measures together in all our simulations.
We use the following definition of cost (C) and revenue (R):
for a VN request Gv = (Nv, Lv),

R =
∑

l∈Lv

bwv(l), C =
∑

p∈P(Gv)
hops(p) × bws(p,Gv), (3)

where bwv(l) is the bandwidth requirement of the virtual link
l, P(Gv) is the entire set of paths allocated for virtual links
in Gv, hops(p) is the number of hops in a path p, and finally
bws(p,Gv) is the reserved bandwidth over a path p w.r.t the

0 20 40 60 80 100
Time Window

1

1.5

2

2.5

3
N

or
m

al
iz

ed
 C

os
t a

nd
 R

ev
en

ue
Cost with Path Spliting
Revenue with Path Splitting
Cost with Migraion
Revenue with Migration

Benefits of
Path Splitting

Benefits of
Path Splitting
with Migration

0 20 40 60 80 100
Splitting Ratio (%)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

N
or

m
al

iz
ed

 C
os

t a
nd

 R
ev

en
ue

Cost without migration
Revenue without migration
Cost with migration
Revenue with migration Benefits

of PS
Benefits
of PSM

0 20 40 60 80 100
Splitting Ratio (%)

0.6

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 C
os

t a
nd

 R
ev

en
ue

Cost without migration
Revenue without migration
Cost with migration
Revenue with migration

(a) Normalized cost/revenue changes with time.
RPS-%:100, E[bw]:50, E[cpu]:0, DELAY:3

(b) Normalized cost/revenue changes with RPS-
%. E[bw]:50, E[cpu]:0, DELAY:3

(c) Normalized cost/revenue changes with RPS-
%. E[bw]:25, E[cpu]:0, DELAY:3

0 20 40 60 80 100
Splitting Ratio (%)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Co
st

an
d

Re
ve

nu
e

Cost without migration
Revenue without migration
Cost with migration
Revenue with migration

0 20 40 60 80 100
Splitting Ratio (%)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Co
st

an
d

Re
ve

nu
e

Cost without migration
Revenue without migration
Cost with migration
Revenue with migration

0 20 40 60 80 100
Ratio of Hub-and-Spoke

0

0.05

0.1

0.15

0.2

D
iff

. o
f N

or
m

al
iz

ed
 C

os
t a

nd
 R

ev
en

ue

Cost
Revenue

Benefits of Customized Alg.
over General Alg.

(d) Normalized cost/revenue changes with RPS-
%. E[bw]:50, E[cpu]:25, DELAY:3

(e) Normalized cost/revenue changes with RPS-
%. E[bw]:50, E[cpu]:0, DELAY:6

(f) Effect of modularized algorithm for hup-
and-spoke topology, RPS-%:50, E[bw]:50,
E[cpu]:0, DELAY:3

Fig. 4. Simulation results to show the benefits of Path-splitting, Migration, and Customization

request Gv. Note that the cardinality of P(Gv) may be larger
than that of Lv due to path splitting.

Several remarks are in order: (i) Our definitions of cost
and revenue do not reflect CPU resources, since bandwidth
resources are in general more scarce than CPU resources; (ii)
We do not consider the number of hops in the revenue defini-
tion, since it is not clear how this virtual network is mapped
in the substrate network; (iii) In the cost definition, hops can
be substituted by other metrics, e.g., physical distance.

In most of our plots, we compare costs and revenues of the
substrate network with (i) No Path Splitting (NPS), (ii) only
Path Splitting (PS), and (iii) both Path Splitting and Migration
(PS M). In order to validate benefits of (ii) and (iii), we plot
the normalized costs and revenues of PS and PS M by those
of NPS , i.e.,

Rnorm(PS) = R(PS)
R(NPS) , Cnorm(PS) = C(PS)

C(NPS) , (4)

where the same normalization is applied to PS M. This nor-
malization allows us to equalize the dimensions of cost and
revenue with respect to those of NPS . Thus, as a benefit-
measure, we define the normalized pay-off to be the gap
between Rnorm(PS) and Cnorm(PS) (resp. Rnorm(PS M) and
Cnorm(PS M)) (see Figure 4 for the pictorial interpretation of
these gaps). Then, the increasing normalized pay-off of either
PS or PS M means the increasing benefits of PS or PS M over
NPS .

B. Evaluation of Path-splitting and Migration
Figure 4 shows the entire set of simulation results, which

show the benefits of path splitting, migration, and customized

node mapping for the requests with hub-and-spoke topology.
We interpret the simulation results by providing the following
main observations:

(1) The benefits of path splitting increase with more requests
allowing path-splitting, and the “benefit pattern” depends
on the bandwidth requirement. All of the Figures 4(a), (b),
(c), (d), and (e) uniformly show the increasing benefits of
path splitting as the percentage of the requests allowing path
splitting increases. Figure 4(a) shows the traces of normalized
cost and revenue changes over time for a particular set of pa-
rameters: E[cpu]= 0, E[bw]= 50, RPS-%= 100, and DELAY=
3. Figures 4(b), (c), (d), and (e) shows the normalized cost
and revenue (which is time-averaged) with increasing values
of the percentage of the requests with path splitting.

One interesting fact that we note here is that the pattern of
getting benefits depends on the stringency of link bandwidth
requirement. Consider the experiments in Figures 4(b) and (c)
with the different link bandwidth requirements. In Figure 4(c)
with lower bandwidth requirements, most of the requests are
accepted, therefore the revenues do not change significantly
with RPS-%, and cost difference mainly contributes to the
normalized pay-offs. Note that the normalized costs for PS
and PSM are smaller than 1, which is in contrast to those
in (b). This is because there are enough available bandwidth
resources due to low aggregate bandwidth requirements. This
leads to the fact that path splitting enables a virtual link to be
mapped to multiple shorter paths, which is the main source of
cost reduction.

(2) The benefits of migration also increase for more requests
with path splitting, but, for stringent CPU requirements, mi-

gration does not have significant extra benefits compared with
PS. Figures 4(a), (b), (c) and (e) show that the significant
benefits of migration as RPS −% increases. However, in
Figure 4(d) with stringent CPU requirements, the benefits
of migration over those of path splitting is modest. This is
because we only employ path migration, which does not take
effect when the node CPU resource is the bottleneck.

(3) Benefits of path splitting and migration are not signifi-
cantly affected by delay. Figures 4(b) and (e) shows that our
benefits of path splitting and migration are not influenced by
delays, since when in the steady-state, the average number of
requests that are served and depart is “stable.”
C. Evaluation of Customized Node Mapping

To evaluate the performance of modularization, we compare
greedy node mapping and our customized node mapping with
the requests of hub-and-spoke topologies in Figure 4(f). In
the plot, we first compute the revenues and the costs of both
greedy and customized node mapping for different percent-
ages of the requests with hub-and-spoke topology. Then, we
normalize each result by that of the case of only general
topology (This is similar to normalization by the case with no
path-splitting in earlier figures). Through this procedure, we
obtain the normalized revenues and costs for both algorithm,
say, Rgreedy

norm ,Cgreedy
norm , and Rcustom

norm ,Ccustom
norm , and plots the data of

Rgreedy
norm −Rcustom

norm and Cgreedy
norm −Ccustom

norm in the graph. The vertical
gap between two points at each x-axis represents the extra
normalized pay-offs of the customized node mapping over the
general mapping. Therefore, in Figure 4(f), the increasing gap
between the revenue and the cost tell us the increasing benefits
of our customized algorithm as we have more requests with
hub-and-spoke topology.

VII. C
A key problem in the current study of network virtualiza-

tion, the VN embedding problem, has various constraints and
objectives that make it computationally intractable. In this
paper, rather than significantly restrict the problem space to
make the problem tractable, or propose heuristic algorithms,
we rethink the VN embedding problem by proposing a more
flexible substrate network to better support virtual network
embedding. This flexibility includes path splitting and migra-
tion. From both the theoretical and engineering perspective,
we show that allowing substrate path splitting and migration
would help us to attain better resource utilization. We also
propose a modularized algorithm framework with customized
node mapping algorithms dealing with common classes of
virtual-network topologies. Through our publicly available
simulator, we demonstrate the benefits of these approaches
in making the embedding problem computationally easier,
and the resulting embeddings more efficient. We are currently
investigating how to combine the strategies of migration, time
window and delay to further improve the handling of online
requests.

R
[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming

the Internet impasse through virtualization,” IEEE Computer Magazine,
vol. 38, no. 4, pp. 34–41, 2005.

[2] “GENI,” http://www.geni.net/.
[3] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI

veritas: Realistic and controlled network experimentation,” in Proc. ACM
SIGCOMM, Pisa, Italy, September 2006.

[4] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in
your spare time,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 1,
pp. 61–64, 2007.

[5] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merwe, “Resource management with hoses: Point-to-
cloud services for virtual private networks,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 679–692, 2002.

[6] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, “Provi-
sioning a virtual private network: A network design problem for multi-
commodity flow,” in Proc. ACM Symposium on Theory of Computing.
New York, NY, USA: ACM Press, 2001, pp. 389–398.

[7] S. Raghunath, K. K. Ramakrishnan, S. Kalyanaraman, and C. Chase,
“Measurement based characterization and provisioning of IP VPNs,” in
Proc. Internet Measurement Conference. New York, NY, USA: ACM
Press, 2004, pp. 342–355.

[8] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proc. IEEE INFOCOM,
2006.

[9] J. Fan and M. Ammar, “Dynamic topology configuration in service
overlay networks: A study of reconfiguration policies,” in Proc. IEEE
INFOCOM, 2006.

[10] J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared
substrate,” Washington University, Technical Report WUCSE-2006-35,
2006.

[11] D. G. Andersen, “Theoretical approaches to node assignment,” Unpub-
lished Manuscript, 2002.

[12] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” ACM Computer Communication Review, vol. 33,
no. 2, pp. 65–81, 2003.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, Number 4598, 13 May 1983, vol. 220,
4598, pp. 671–680, 1983.

[14] D. Eppstein, “Finding the k shortest paths,” in Proc. IEEE Symposium
on Foundations of Computer Science, 1994, pp. 154–165.

[15] J. Kleinberg, “Approximation algorithms for disjoint paths problems,”
Ph.D. dissertation, MIT, 1996.

[16] S. G. Kolliopoulos and C. Stein, “Improved approximation algorithms
for unsplittable flow problems,” in IEEE Symposium on Foundations of
Computer Science, 1997, pp. 426–435.

[17] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[18] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[19] P. Key, L. Massoulie, and D. Towsley, “Path selection and multipath
congestion control,” in Proc. IEEE INFOCOM, 2007.

[20] I. Avramopoulos, D. Syrivelis, J. Rexford, and S. Lalis, “Secure avail-
ability monitoring using stealth probes,” Princeton University, Technical
Report TR-769-06, October 2006.

[21] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,
“Netscope: traffic engineering for IP networks,” IEEE Network Maga-
zine, vol. 14, no. 2, pp. 11–19, March 2000.

[22] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies with
paris traceroute,” in Proc. Internet Measurement Conference. New York,
NY, USA: ACM Press, 2006, pp. 153–158.

[23] L. Rizzo, “Dummynet: a simple approach to the evaluation of network
protocols,” ACM Computer Communication Review, vol. 27, no. 1, pp.
31–41, 1997.

[24] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
gray-box strategies for virtual machine migration,” in Proc. Networked
Systems Design and Implementation, Cambridge, MA, April 2007.

[25] M. Harchol-Balter and A. B. Downey, “Exploiting process lifetime dis-
tributions for dynamic load balancing,” ACM Transactions on Computer
Systems, vol. 15, no. 3, pp. 253–285, 1997.

[26] “Akamai content distribution network,” http://www.akamai.com/.
[27] “Virtual Network Embedding Simulator,” http://www.cs.princeton.edu/

∼minlanyu/embed.tar.gz.
[28] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an

internetwork,” in Proc. IEEE INFOCOM, 1996.

