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Abstract

As computational systems scale to arbitrarily large sizes, and as they are ex-
pected to function reliably for arbitrary lengths of time, there are certain realities
of the physical world that can not be ignored in the design and modeling of com-
putational systems. For example, considerations for the delivery of power and
removal of heat seem to limit the system to a two-dimensional surface. Addi-
tionally, it can be argued that all of the following restrictions are desirable and
reasonable: there is a finite variety of components, no components (or external
agents) are immune to failure, and components can communicate only with a
bounded number of other components over a bounded distance. A very general
model, with a reasonable ability to capture many of these features, is that of a
cellular automaton.

We extend the widely studied model of transient faults (which occur indepen-
dently at different places and different times) in cellular automata to consider
manufacturing faults (which occur independently at different places, but affect
cells for all time). Although a well known monotone binary transition rule (known
as Toom’s Rule) in two dimensions can remember a bit (that is, the system can
be used to preserve a single Boolean value for all time with probability one) in the
presence of transient faults, we show that no monotone binary transition rule in
two dimensions can remember a bit when both manufacturing faults and transient
faults are present. On the other hand, we give a monotone binary transition rule
in three dimensions that can remember a bit in the presence of both manufac-
turing faults and transient faults. (By adding one or two further dimensions, one
can reduce the problem of performing an arbitrary computation reliably to the
problem of remembering a single bit.) We also study cellular automata that are
based on hyperbolic (rather than Euclidean) tessellations (including infinite reg-
ular trees), and we completely classify the cases in which majority voting among
all nearest neighbors can tolerate manufacturing faults and/or transient faults.

iii



Acknowledgments

First and foremost, I would like to thank my advisor, Nicholas Pippenger. I
especially thank him for his patience, guidance, advice, and his constant encour-
agement (especially when I really needed encouragement!). It has been a great
privilege and joy to work with Nick and to learn from him.

Just as importantly, I want to thank my wonderful family. My wife, Karen, has
steadfastly supported me in all aspects of day-to-day life, from things mundane to
life’s biggest challenges. I have particularly appreciated her presence as a calming
and organizing force during my time at Princeton. She is truly my best friend.
My parents have been there for me from the beginning. I have always had their
support, their encouragement, and their love throughout my many years in school.
My sister, Erin, has been a wonderful listener and counselor, and I greatly value
our friendship. I would not be where I am without them.

Mark A. McCann
Princeton University
June 2007

I gratefully acknowledge funding through Nicholas Pippenger’s National Science Foun-
dation grant CCF 0430656.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1
1.1 Automaton Model . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Combined Faults on Z2 11
2.1 Memory on Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Additional Dimensions Are Useful . . . . . . . . . . . . . . . . . . 14

3 Memory on Hyperbolic Tessellations 16
3.1 Definitions and Some Graph Theory . . . . . . . . . . . . . . . . 17
3.2 Combined Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Transient Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Quantitative Considerations 50
4.1 Fault Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Automata on Expanders . . . . . . . . . . . . . . . . . . . . . . . 55

5 Other Fault Models 58

6 Conclusion 61

A Addressing Schemes 63

v



Chapter 1

Introduction

It was in 1952 that von Neumann [32] first broached the problem of performing
arbitrarily large computations reliably when the basic computational operations
are unreliable. He considered circuits in which each gate failed independently
with probability ε > 0. He showed that for every δ > 0 there exists an ε > 0
such that, for every circuit C built from perfectly reliable gates, there exists
a circuit C ′ built from ε-failing gates that computes the same function as C
except for a probability of error at most δ. One problem with von Neumann’s
construction (and all subsequent circuit-based work) is that it calls for arbitrarily
long wires, and it requires the assumption that the failure probability for these
wires is independent of their length.

One model that resolves this objection is that of cellular automata, as de-
scribed by Ulam [31] and von Neumann [33]. Cellular automata naturally model
the assumptions we would like to make about arbitrarily large computational sys-
tems in the physical world: each cell has finitely many states and communicates
with finitely many neighbors at a bounded1 distance from it. Furthermore, the
system is completely homogeneous: the behavior of a cell does not depend on
its location or on time. These assumptions give a scale-independent computa-
tional model in which the assumptions that individual components must satisfy
are independent of the size of the computation. (A quite different notion of fault-
tolerant computation is exemplified by the work of Kaklamanis et al. [18], who
consider arrays of general-purpose processors which communicate by message-
passing, which fail only by stopping, and which are reconfigured externally to
route messages around externally diagnosed faults.)

There are many ways to define a cellular automaton, but all descriptions differ
essentially only in detail or in the degree of generality. We give a more general
definition of cellular automata in Section 1.1, but for now we give the following
definition. There is an infinite collection of cells called the cellular space which
are located at the points of a simple lattice Zd for some d ≥ 1. At every point of

1When we write “bounded,” we generally mean that the same bound holds for all objects in
question.

1



discrete time t ∈ {0, 1, . . . , }, each cell is in a state taken from B = {0, 1}. There
is a common transition rule denoted φ = (x1, . . . , xn, f), where f is a Boolean
function of n arguments and x1, . . . , xn is a list of n offset vectors from Zd. The
state of any cell v ∈ Zd at time t+1 is determined by Boolean function f evaluated
on the states of the cell’s n neighbor cells at time t: v + x1, v + x2, . . . , v + xn.
Thus, if the state of the automaton is specified at time t = 0, then the state of
the automaton is fully determined at all subsequent steps of time and we call this
sequence of states a trajectory. All updates to cells occur simultaneously.

The model of incorrectness for cellular automata most frequently considered by
researchers up until now is as follows. Given a deterministic cellular automaton
(as described above) in a known state at time t = 0, independently at each
successive timestep and independently for each cell, with probability α > 0, an
all-knowing adversary (who knows everything about the past and future) is given
the opportunity to set the current state of the cell. We call this the transient fault
model because the behavior of a cell is only violated during the timestep when a
fault occurs. On the next timestep, the cell follows its deterministic rule unless
another failure occurs. We say that a (deterministic) automaton can tolerate
transient faults for a particular trajectory if given any δ > 0, there exists α > 0
such that at any given time the probability of a given cell being in error (that is,
being in a state differing from that of the deterministic trajectory) is at most δ.

The first published work on faults in cellular automata appears to be that of
Stavskaya and Piatetski-Shapiro [27] in 1968. There is an important distinction
between the fault model in [27] and the one we just described. In [27], faults occur
“reliably” with probability α. There is no adversary choosing the states of at-fault
cells, and the model is best viewed as an infinite Markov process. An objection
to this model is that “reliable” faults provide a source of random coin-flips and
it is quite possible that such an automaton might cease to work correctly in the
absence of faults. This is one reason why we choose to let an adversary pick the
outcome of random faults. Even when the Markov-process fault model is chosen,
positive results are usually proven using the adversarial model. Of course, the
Markov-process fault model yields stronger negative results, but very few such
negative results are known even with fairly strong restrictions on the transition
rules (see however [23] and our Theorem 30). For most of this thesis, we assume
the use of fault models with an adversary.

An important advance in the study of automata with transient faults was the
description of a simple rule by Toom [28], which we call “Toom’s Rule,” that
is able to remember the “all zeros” and “all ones” trajectories in the presence
of transient faults. The cellular space for Toom’s Rule is the grid Z2. At each
timestep, each cell takes a majority vote of itself and the immediate northern and
eastern cells. The leftmost diagram in Figure 1.1 on page 10 illustrates Toom’s
Rule. It is easy to see that such a rule can dissolve any finite island of errors
in a finite amount of time in the absence of further faults. If one draws an n
by n square about the entire region of error, then at each subsequent timestep a
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new diagonal line of corrected cells advances starting from the northeast corner
and sweeping towards the southwest corner. After 2n timesteps, the entire island
disappears. In [28], Toom proved that this simple rule is tolerant of transient
faults.

In [14], Gács and Reif described how to perform a transient-fault-tolerant
computation in three dimensions using a version of Toom’s Rule. Roughly, the
idea is to simulate a fault-free one-dimensional automaton2 using a stack of two-
dimensional slices3 to remember the state of a single cell of the one-dimensional
automaton. The third dimension is then used to perform computation. A ver-
sion of Toom’s Rule able to remember a finite number of states is used for each
slice. However, even if each slice is able to remember only a single bit, we can
implement Conway’s “Game of Life” [2] (which is Turing complete) where each
two-dimensional slice is used to remember a single bit and two additional dimen-
sions implement the game itself. Thus, the problem of remembering a single bit
can be seen as fundamental to computation. The majority of the results in this
thesis focus on the problem of remembering a single bit.

A major assumption in the transient fault model is that faults for each cell only
last for one moment of time. However, it seems implausible that an arbitrarily
large cellular automaton could be totally free from permanent defects. We term
such defects as “permanent faults” because an affected cell malfunctions (at the
whim of the adversary) at every future point in time. If permanent faults are
permitted to accumulate then they will eventually overwhelm any system. Thus,
some external agent is needed to repair such faults as they occur. This would seem
to require a significantly different type of model than simple cellular automata
provide and we do not consider such a model in this thesis. Instead, we introduce
a limited type of permanent fault that we call a manufacturing fault.

In the manufacturing fault model, we assume that independently, with prob-
ability β, a manufacturing fault occurs at each cell. If a manufacturing fault
occurs, then the adversary is in control of the state of that cell at all times. We
will generally consider transient faults in combination with manufacturing faults
in what we call the combined fault model. We say that a cellular automaton is
tolerant of combined faults with respect to a particular trajectory if for every
δ > 0, there exists α > 0 and β > 0 such that the probability at every subsequent
timestep that a given cell is in error is at most δ.

Immediately, we see that combined faults are fatal to Toom’s Rule. Consider
any cell and call it the origin. There is certainly a cell with a manufacturing fault
somewhere directly to the east. Assume that all cells are initialized to a common
state, say zero, and that the adversary leaves any cell with manufacturing fault
permanently in the opposite state, say one. After sufficiently many timesteps, the
cell immediately to the west will experience a transient fault and the adversary

2A one dimensional cellular automaton can easily implement a Turing machine as an iterative
array.

3Each “slice” is a grid of cells on the Z2 lattice.
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will set the state of that cell to one. Due to the manufacturing fault in its eastern
neighbor, the cell now remains in error forever. Thus, eventually a stable chain of
errors will reach back to the origin cell, all supported by a single manufacturing
fault.

Given the failure of Toom’s Rule to cope with manufacturing faults, a first
question might be to ask if there are any cellular automata able to remember a bit
on Z2 with manufacturing faults. For a fairly large and natural class of cellular
automata, we show that the answer is negative. This negative result, along with
the desire to study cellular spaces embedded in two-dimensional surfaces, inspires
us to investigate the problem of memory on automata on non-Euclidean two-
dimensional surfaces. The following is a brief overview of each chapter in this
thesis.

The remainder of Chapter 1 presents formal definitions for cellular automata,
and the combined, transient and manufacturing fault models. The chapter ends
with Theorem 1 which shows that the (pure) manufacturing and (pure) transient
fault models are not directly comparable.

Chapter 2 presents the result, as mentioned above, that monotone4 binary
cellular automata (with some natural restrictions) are unable to remember a bit
in the presence of combined-faults on the two-dimensional grid Z2. Following this
negative result, we show how to use an additional dimension of space to enable
any automaton to tolerate combined faults, given that it tolerates transient faults
without the additional dimension. The construction applies to our most general
definition of cellular automata and to any stable trajectory, not just the “all
zeros” and “all ones” trajectories.

With a desire to find cellular automata on two-dimensional surfaces, and in
light of the negative result in Chapter 2, in Chapter 3 we study cellular automata
embedded in the hyperbolic plane. Section 3.1 gives a number of simple graph-
theoretical definitions and proves some simple results that will be useful for the
major results later in the chapter. In Sections 3.2 and 3.3, for both the combined
and transient fault models, we give the complete classification of majority-rule
automata5 able to remember a bit, and whose cellular spaces are the regular
hyperbolic tessellations. Our results are presented for a class of tessellations
much more general than just the regular tessellations.

Chapter 4 gathers together some results that are more quantitative in nature.
In Section 4.1, we examine the interplay of fault-rates and cell-neighborhood
size. For any given bound on cell-neighborhood size, we establish asymptotically
closely agreeing (to within a logarithmic factor) lower and upper bounds on the
distance of the fault-rate from 1/2 that ensures no automata (binary, but not
restricted to monotone) can remember a bit. As a corollary, we give the first

4A function f on n arguments is monotone if f(x1, . . . , xn) ≤ f(y1, . . . , yn) whenever x1 ≤
y1, . . . , xn ≤ yn.

5Majority-rule automata correct errors by majority-voting on their neighbor cells. See Defi-
nition 6 at the beginning of Section 3.2.
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result that shows automata with sufficiently large cell-neighborhood sizes can
tolerate transient (and combined) fault rates arbitrarily close to 1/2. Section 4.2
gives a construction of an infinite family of finite-sized cellular automata using
expander graphs. The constructed automata have an ability to remember a bit for
an (asymptotically) optimal length of time—in the presence of combined faults,
with high probability, they remember a bit for a time that grows exponentially
in the number of cells.

Chapter 5 describes two additional fault models: the delayed-repair fault
model, and the periodic fault model. Although seemingly different, we show
that these variant fault models are actually equivalent (in a precise sense defined
in the chapter) to the transient fault model.

The “Addressing Schemes” appendix is concerned with the existence (and
construction) of particular finite edge-colorings for the tessellations described in
Chapter 3. These graph edge-colorings are needed in the proof of transient fault
tolerance for a subset of the hyperbolic tessellations. They provide a way to assign
addresses that have especially useful properties to cells. Although the results in
this part are interesting in their own right, they are somewhat tangential to the
rest of the thesis, and so we have put them in the appendix.

1.1 Automaton Model

Our definition of automata and their associated notation is similar to those given
by Toom in [30], although we have chosen to be slightly less general than Toom.

Traditionally the cells in a cellular automaton are located on the d-dimensional
grid lattice Zd. We will often deal with more general arrangements and so we
simply refer to the set of cells as the medium. The set of locations of cells are
denoted by M which is assumed to be countable. We follow the convention that
Z+ = {0, 1, . . .}. We define L = M × Z+ to be the space-time version of the
medium and we refer to this as the space-time lattice or simply lattice. To help
avoid confusion, we will usually refer to elements of M as cells and to elements
of L as points. A point is a cell at a particular time. For a ∈ L, let a denote
the projection of a onto M, and let t(a) denote the projection of a onto Z+. For
A ⊆ L, let A =

⋃
a∈A{a}, and let f(·) denote f(·) where f is any function which

maps to subsets of L. Let Ln = {a ∈ L | t(a) = n} be the subset of lattice points
with common time n. We call L0 the boundary and L \ L0 the interior.

Associated with each point a ∈ L is a finite set Xa. Elements of Xa are called
states and we require that Xa = Xb for all a, b where a = b. As a convenience,
for a ∈ M, define Xa = X(a,1). Usually Xa = {0, 1}. For A ⊆ L we define
XA =

∏
a∈A Xa and call elements of XA configurations. Without mention of

a specific subset, a configuration is assumed to be over the entire lattice. We
sometimes denote XL as simply X.

Associated with each cell a ∈ M is a finite set of cells UM(a) called a’s
input-cells. With UM(a) fixed, for each point a ∈ L \ L0 we define a set UL(a) =
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{(b, t(a)−1) : b ∈ UM(a)} called a’s input-points. For a ∈ L0, UL(a) = ∅. When it
is clear from the context, we will sometimes drop the qualifying subscript from U .
We sometimes refer to U(a) simply as a set of inputs or an input-set. For U = UM

and A ⊆M, or U = UL and A ⊆ L, we define U0(A) = A, Uk(A) = U(Uk−1(A))
for k > 0, and U∞(A) =

⋃
k≥0 Uk(A). Note that for every a ∈ L, there is a

minimum k such that Uk
L(a) = ∅ which we call the depth of a point. We generally

assume that UL(a) 6= ∅ for all a ∈ L \ L0. With this assumption, the depth of
a point is equivalent to its time-projected value (i.e. for all a ∈ L, we assume

U
t(a)−1
L (a) 6= ∅, and U

t(a)
L (a) = ∅).

For each a ∈ M there is a transition function φa : XU(a) → Xa. For con-
venience, we define φa = φa for all a ∈ L. A configuration x ∈ XL is called a
trajectory if xa = φa(xU(a)) for all a ∈ L \ L0. A configuration of the boundary
x ∈ XL0 determines a trajectory, and we denote it tr(x).

Note that the functions UM and UL can be used to define directed multi-
graphs on vertex sets M and L respectively. For example, we can say there is an
edge directed from cell a to cell b if b ∈ UM(a). Thus, we think of edges from
a pointing to the cells on which a’s transition function φa depends. Note that
this convention is the opposite of the convention used in circuits where edges are
thought to point in the direction of electrical current or information flow.

1.2 Fault Models

A major objective of this thesis is to explore new models of incorrectness for
cellular automata. We begin with some formal definitions for these models.

Every finite A ⊂ M corresponds to a cylinder set cylM(A) on the product
space 2M where cylM(A) is defined by

cylM(A) = {M ∈ 2M : A ⊆M}.

We denote by FM ⊆ M the set of manufacturing faults. Let α be a parameter
0 ≤ α ≤ 1 called the manufacturing fault rate. Let ΣM denote the σ-algebra
generated by all cylinder sets. For every value α, the distribution of manufacturing
faults is defined by the probability measure µα on measurable space (2M, ΣM).
The measure µα is uniquely defined (see Ch. 3, Sec. 4 of Kolmogorov’s book [19])
by requiring that for every finite A ⊂M,

µα(cylM(A)) = α|A|.

This is just a formal way of saying that manufacturing faults occur independently
with probability α at each cell of the medium.

Similarly, by substituting L for M we get the measurable space (2L, ΣL) along
with cylinder sets cylL(A) where A is a finite subset of L. We call FT ⊆ L the
set of transient faults and the transient fault rate is described by the parameter
0 ≤ β ≤ 1. The distribution of transient faults is described by the probability
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measure νβ on (2L, ΣL). The measure νβ is uniquely defined by requiring that for
every finite A ⊂ L,

νβ(cylL(A)) = β|A|.

Again, this formal definition simply says that transient faults occur independently
at every point in the lattice with probability β.

Let (µα × νβ) be the product measure of µα and νβ. Let Cy be the set of
configurations on L with initial conditions identical to trajectory y. When both
fault rates α and β are non-zero, we say that the automaton is operating under
the combined fault model. In order to unify our sets of faults FM and FT , we
define a combined fault set FC = {(a, t) ∈ L : a ∈ FM , t ∈ Z+} ∪FT . For brevity,
we will sometimes slightly abuse notation by referring to FM as though it were
{(a, t) ∈ L : a ∈ FM , t ∈ Z+}; however, the intended meaning will always be
clear from context. For any configuration x, we define the set of failures (with
respect to x) as Dx = {a ∈ L : xa 6= φa(xU(a))}. There are many possible notions
of “error,” but we choose to define an error as an event that occurs with respect
to a desired trajectory. Let y be a trajectory and x a configuration. The set of
errors is Ex,y = {a ∈ L : xa 6= ya}. Notice that the set of errors is defined with
respect to a fixed trajectory, but the set of failures is independent of a trajectory.
A failure at a point implies a fault, but a fault does not necessarily imply a failure.

Definition 1. A trajectory y is stable for combined faults if

lim
α→0
β→0

sup
a∈L

(µα × νβ)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}) = 0.

For the combined fault model we let ε = α+β−αβ (it follows that 0 ≤ ε ≤ 1,
and that ε → 0 if and only if α → 0 and β → 0) and call ε the combined fault
rate. The advantage of ε is that it bounds the probability of a fault occurring at
any point in the lattice with a single parameter. We will often refer to ε when
speaking of the combined fault model. (The limit as α and β tend to zero always
exists by the monotonicity and non-negativity of the supremum that follows.)

Definition 2. A trajectory y is stable for manufacturing faults if

lim
α→0

sup
a∈L

(µα × ν0)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}) = 0.

Definition 3. A trajectory y is stable for transient faults if

lim
β→0

sup
a∈L

(µ0 × νβ)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}) = 0.
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When the fault model and fault-rate are understood, we will often write Pr
in place of (µα × νβ). For example, to represent the probability that point a is
in error, given an initial configuration y, and under the combined fault model
with faults rates α and β, we will generally write simply Pr[a ∈ Ex,y] rather than
(µα × νβ)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}).

The traditional incorrectness models, as described in [30, 11], correspond to
our transient fault model, and we have many results which use this model for
incorrectness. Our manufacturing faults are a source of incorrectness not previ-
ously studied. These types of faults describe a new fault model on their own (the
manufacturing fault model), but we mainly consider them in combination with
transient faults—the combined fault model.

The “∃x ∈ Cy” in the above definitions represents our choice of using an
adversarial model—the adversary is all-knowing and can choose not to violate a
cell’s deterministic transition function when given the opportunity to do so. If
the adversary is removed, then we have a probabilistic automaton where the sets
of faults and failures correspond exactly. For example, we can make probabilistic
versions of Definitions 1 through 3 by changing Dx ⊆ FC to DX = FC . This
gives the automaton a source of random coin flips and it is quite possible that the
automaton relies on this randomness to function correctly. With an adversary,
failures are always harmful since the adversary is all-knowing and only uses faults
as opportunities to cause harm. For proving positive results, the adversarial model
is therefore stronger than the probabilistic model in the sense that stability with
an adversary implies stability without an adversary. For negative results, the
opposite is true. Historically, it has proven to be very difficult to prove negative
results without an adversary (see however [23] and our Theorem 30). The majority
of our results are for fault models with an adversary. (In Toom’s definition for
transient-fault-model stability [30], the power of the adversary is represented by
taking a supremum over a set of measures which represent all possible strategies
for the adversary. In our Definition 1, the adversary’s choice is represented by the
“there exists” clause within the set of events statement. It is not hard to show
that the two definitions are equivalent.)

We will often be concerned with the special case of monotone binary automata.
The natural trajectories to consider for such automata are the “all zeros” and
“all ones” trajectories which we denote 0 and 1 respectively. We say that any
automaton which has both 0 and 1 as stable trajectories is able to remember a bit
under the particular fault model for which both trajectories are stable. We say
that an automaton is tolerant of combined faults if it is able to remember a bit
under the combined fault model. Similarly, we say that an automaton is tolerant
of manufacturing faults or is tolerant of transient faults if it can remember a bit
with manufacturing faults or transient faults respectively. If an automaton cannot
remember a bit under a particular fault model, then we say that it is intolerant
of faults under that fault model.

We have defined the stability of a trajectory by considering the limiting be-
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havior of the worst possible point as the fault-rate approaches zero. It will some-
times be useful to say that an automaton can or cannot remember a bit for a
given fault-rate under some particular fault model.

Definition 4. Assuming a particular fault-model and a particular trajectory, we
say that an automaton is tolerant of fault-rate ε if the probability that any point
is in error is bounded below 1/2 by some fixed δ > 0.

As an example, consider the combined fault model. The trajectory 0 is stable
for fault-rate ε if there exists δ > 0 such that

sup
a∈L

(µα × νβ)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}) ≤ 1/2− δ.

Given a formal definition of stability (as in Definitions 1, 2 and 3), it should
be clear how to make Definition 4 mathematically precise as we did in the above
for combined fault-tolerance.

The following result shows that manufacturing faults are not either strictly
worse (with respect to the stability of an automaton), or better than transient
faults. This disproves the notion that the transient, manufacturing, and combined
fault models are in a strict hierarchy with manufacturing faults either in the
middle, or equivalent to, combined faults. It is also part of the reason that we
focus on combined faults, rather than pure manufacturing faults.

Theorem 1. Even restricted to monotone binary automata, the pure manufac-
turing and transient fault models are not comparable in the following sense: there
exist monotone binary automata which are tolerant under manufacturing faults
but not transient faults and there exist monotone binary automata which are tol-
erant under transient faults but not manufacturing faults.

Proof. We give examples of each situation. Consider any finite or infinite col-
lection of cells whose transition function is just the identity function of the cell
itself. For manufacturing faults, as long as the fault-rate is less than 1/2, then
each cell has a probability of being in error of less than 1/2 at every timestep.
But for the transient fault model, with probability one, any chosen cell will be
permanently in error after a finite number of transition steps. Even under the
weaker assumption of having no adversary, the probability of being in one state
or the other approaches 1/2.

In [28], Toom describes a very simple automaton able to remember a bit
under the transient fault model. The monotone binary automaton has Z2 as the
medium. The transition rule at each cell is a majority vote of itself and the cells
immediately to the north and east. We refer to this rule as Toom’s Rule. Now
consider a modified version of Toom’s Rule. At each timestep, every cell takes a
majority vote on cells two steps north and one step east, one step north and one
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Figure 1.1: Toom’s Rule and a variation of Toom’s Rule.

step east, and two steps east and one step north. This is essentially the same as
Toom’s Rule except that the state of the entire system is shifted one place to the
south and west at each timestep. Figure 1.1 illustrates the three cells that a single
cell depends upon for both Toom’s Rule and the variation. It should be clear that
this system is still tolerant of transient errors, however one can verify this using a
simple criterion of Toom as described in [29]. Now consider the behavior of this
modified Toom’s Rule in the case of pure manufacturing faults. With probability
one, there is a square island of four cells with manufacturing faults n steps to the
north and n steps to the east. The adversary sets these four cells into a state of
perpetual error. After n timesteps, this island of error will have spread to the
origin, which will remain permanently in error.
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Chapter 2

Combined Faults on Z2

2.1 Memory on Z2

All of the automata we consider in this section are monotone and binary. We say
that an automaton can remember a bit under the given fault model if both the
trajectories y = 0 and y = 1 are stable. The monotone and binary restrictions
combined with the problem of remembering an unencoded1 bit are useful because
they give the adversary an optimal strategy when faults occur: the adversary
always sets the state of an at-fault cell to the opposite of the initial common
state.

We begin with definitions of implicants and co-implicants that are slightly
non-standard in form, but not in spirit. Let a1, . . . , an be the variables of a
Boolean function f and suppose that f(a1, . . . , an) = 1 whenever ai = 1 ∀i ∈ A ⊆
{1, . . . , n}. Then A is called an implicant of f . Similarly, if f(a1, . . . , an) = 0
whenever ai = 0 ∀i ∈ A ⊆ {1, . . . , n}, then A is called a co-implicant of f .

Lemma 2. Let f(a1, . . . , an) be a monotone Boolean function and let A, B ⊆
{1, . . . , n} such that A ∪ B = {1, . . . , n}. Then at least one of A or B is an
implicant or a co-implicant for f .

Proof. Set ai = 1 for all i ∈ A and set aj = 0 for all j ∈ {1, . . . , n} − A.
If f(a1, . . . , an) = 1, then A is an implicant (since f is monotone). Otherwise
f(a1, . . . , an) = 0 which implies {1, . . . , n}−A is a co-implicant (again, since f is
monotone). But since {1, . . . , n} − A ⊆ B, by the definition of co-implicants, B
is also co-implicant. By duality, we also conclude that either A is a co-implicant
or B is an implicant.

1The only “encoding” going on here is that of replication. It is possible that other trajectories
other than “all zeros” and “all ones” might be stable, even when restricted to monotone binary
cellular automata, but then determining the state of the automaton at any given time could
not by done by simply looking at the state of an arbitrary single cell at an arbitrary timestep.
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Let C ⊆ R2 be such that αx + βy ∈ C for every x, y ∈ C and positive scalars
α and β. Then C a called a cone.

Lemma 3. For every monotone transition rule φ = (x1, . . . , xn, f) on lattice
medium Z2, there exist two cones C1, C2 ⊆ R2 which satisfy the following:

1. Each cone contains no complete line in its interior.

2. The interiors of C1 and C2 are disjoint.

3. {i ∈ {1, . . . , n} : xi ∈ C1} and {j ∈ {1, . . . , n} : xj ∈ C2} are either both
implicants, or both co-implicants for f .

Proof. The key to our proof is the construction of a cyclic sequence of pairs
of sets of neighbor vector indices. Consider the set of all normalized, non-zero
displacement vectors in x1, . . . , xn unioned with their negatives, and let z1, . . . , zm

be an ordered version of this set, sorted in increasing, counterclockwise order, from
some arbitrarily chosen vector in the set.

By our construction, m is even and at most 2n, but it could be as small as 2
if all of the input vectors point in the same direction. Let C(a, b) be the set of
indices of neighbors in x1, . . . , xn belonging to the closed and convex cone defined
by vectors a, and b where the boundary of the cone is from vector a to vector b
in counterclockwise order. For example, C((−1, 0)t, (1, 0)t) is the set of all points
{(x, y)t ∈ R2 : y ≤ 0}. We define an initial finite sequence S0 = {si}0≤i<m/2 as
follows:

s4i+0 = (C(zi, zi+m/2), C(zi+m/2, zi))
s4i+1 = (C(zi+1, zi+m/2), C(zi+m/2, zi))
s4i+2 = (C(zi+1, zi+m/2), C(zi+m/2+1, zi))
s4i+3 = (C(zi+1, zi+m/2+1), C(zi+m/2+1, zi)).

We now extend S0 into an infinite sequence S by starting with S0 and then
repeating S0, but with its pairs reversed from left to right. The sequence defined
now has length 4m. We then repeat this whole sequence indefinitely. (The sim-
plicity of the construction is well illustrated by the example in Figure 2.1. In this
example, the vectors have been scaled to unit length and drawn on the unit circle
for clarity and because the construction of S depends only on angles between
x1, . . . , x4.)

The sequence S has a number of useful properties which follow easily from its
construction. For si, si+1 ∈ S where si = (Ai, Bi) and si+1 = (Ai+1, Bi+1), the
following are facts:

(1) Ai ∪Bi = {1, . . . , n}.

(2) The interiors of the cones which span Ai and Bi are non-overlapping.

(3) The cones which include Ai and Bi each do not contain a complete line in
their respective interiors.
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Figure 2.1: An example of how the sequence S is created for a transition rule with
displacement vectors x1, . . . , x4. In this example, the sequence repeats every 24 entries.

(4) S is periodic with period 4m.

(5) Either Ai = Ai+1 or Bi = Bi+1.

(6) A subset relation holds between Ai and Ai+1 (that is, either Ai ⊆ Ai+1, or
Ai+1 ⊆ Ai), and a subset relations holds between Bi and Bi+1.

For the sake of a contradiction, assume that S contains no entry (A, B) for
which A and B are either both implicants or both co-implicants. By fact (1) and
Lemma 2, Ai or Bi is an implicant or a co-implicant. Now consider any consecutive
pair si and si+1. Then it is not possible that Ai and Bi+1 are either both implicants
or co-implicants and similarly for Ai+1 and Bi+1. This follows easily from facts
(5) and (6), and from our current working assumption. The implication is that
between any two consecutive pairs of entries (Ai, Bi) and (Ai+1, Bi+1), it is not
possible that one of Ai or Ai+1, and Bi or Bi+1 are implicants or co-implicants.
Therefore, if Ai is an implicant, then all other Aj (j ≥ i) are not co-implicants,
and all other Bj are not implicants. But, by fact (4) this is impossible since S is
periodic. Therefore, there exists a pair si = (Ai, Bi) where either both Ai and Bi

are both implicants or both co-implicants. The rest of the Lemma follows from
facts (2) and (3).

In [30], Toom gave a complete criterion for determining if a monotone binary
cellular automaton in Zd is able to remember a bit with transient faults present.
The existence of an optimal strategy for the adversary is key to his proof. In
contrast to Toom’s criterion, which shows that many monotone binary transition
rules can remember a bit in Z2, we have:

Theorem 4. No cellular automaton on the simple two-dimensional lattice Z2

with a monotone binary transition rule can remember both the “all zeros” and
“all ones” initial state when combined faults are present.
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Proof. Let φ = (x1, . . . , xn, f) be the transition rule and let C1 and C2 be the two
cones with the properties specified in Lemma 3 and let A = C1∩{x1, . . . , xn} and
B = C2 ∩ {x1, . . . , xn}. By conclusions 1 and 2 of Lemma 3, there exists a line
l passing through the origin that does not intersect the interiors of either C1 or
C2. By conclusion 3 of Lemma 3, C1 and C2 are either both implicants or both
co-implicants. Let e = 1 if both are implicants, and e = 0 otherwise. Assume the
initial state of each cell is the complement e of e.

Let r = maxi∈{1,...,n} ‖xi‖ be the radius of the transition rule. Let . . . , q−1, q0 =
(0, 0), q1, . . . be points equally spaced at distance 7r along l. For i ∈ Z, let Qi be
the set of all points of Z2 within distance 3r of qi. Then (1) the sets Ri = Q−i∪Qi

are disjoint for distinct values of i ≥ 1, and (2) for any i ≥ 1, if all points in the
convex hull of Ri are set to e, they will form a self-sustaining island of errors.

Let Ei be the event that all points of Ri have manufacturing faults. Since
the Ri are disjoint, the Ei are independent, and they all have the same strictly
positive probability (depending on α and r, but independent of i). Thus with
probability 1, at least one of the events Ei occurs.

Let i be such that Ei occurs. Let Si be the set of points in the convex hull
of Ri but not in Ri itself. For t ≥ 1, let Fi,t be the event that all points of Si

have transient faults simultaneously at time t. The Fi,t are independent, and
they all have the same strictly positive probability (depending on β, r and i, but
independent of t). Thus with probability 1, Fi,t occurs for some t ≥ 1, and the
origin will be in error at all later times.

2.2 Additional Dimensions Are Useful

Theorem 5. Any cellular automaton which is transient-fault tolerant can be made
combined-fault tolerant by adding a dimension.

The truth of this theorem is easy to see from a simple construction. Take any
cellular automaton and “stack” a countably infinite number of copies of it, one
“on top” of another. Now, modify the transition rule so that every cell gets its
inputs from its neighbors in the plane copy above it. Figure 2.2 illustrates this
construction for Toom’s rule starting with a two-dimensional cellular automaton.

As mentioned in the Introduction, we can use this three-dimensional ver-
sion of Toom’s rule to perform reliable computation with combined faults in
five dimensions. Of course, the construction is not limited to automata in any
particular cellular space having any particular limitations on its transition rule
(e.g. monotone) or set of states (e.g. binary). In [13]2, Gács was able to construct
a one-dimensional cellular automaton able to perform arbitrary computation with

2See Gács website http://www.cs.bu.edu/fac/gacs/recent-publ.html for the most up-to-date
version of this paper.
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Figure 2.2: The construction of a combined-fault tolerant cellular automaton in three
dimensions from a transient-fault tolerant cellular automaton in two dimensions.

transient faults present. This amazing feat, which disproved the discrete time ver-
sion of the “positive rates conjecture” (a folk-conjecture of the condensed-matter
physics community) requires a very complex “transition rule.”3 Of course, with
combined faults, any one-dimensional automaton will forget its initial state be-
cause every cell is trapped in an isolated island between two islands of manufac-
turing faults. Using Gács’ one-dimensional cellular automaton and Theorem 5,
it is therefore possible to construct a combined-fault tolerant automaton on the
two-dimensional grid.

3This automaton required over 120 pages of journal space to describe and prove.
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Chapter 3

Memory on Hyperbolic
Tessellations

The negative result for automata in two dimensions, as presented in Section
2.1, can be viewed as a serious problem because there are compelling reasons to
remain in two-dimensional space (see [12] for example). The strongest argument
might be that for an arbitrarily large computer, power consumption and heat
dissipation is a major concern. In two dimensions, the third dimension of space
can be used for power delivery and heat removal. In our physical world, a three-
dimensional automaton of arbitrary size can therefore not be built. Furthermore,
[26] Pippenger has shown that no rule on a finite dimensional hypercubic lattice,
whose transition rule is monotone and self-dual1 (majority is an example of such
a rule), and is invariant under inversion, can remember a bit in the presence
of transient faults. In light of Pippenger’s result, and by our desire to study
automata on two-dimensional surfaces, we study automata on the hyperbolic
plane.

This chapter presents a number of results for automata where the medium
requires the hyperbolic plane for its embedding. Section 3.1 presents a number of
simple graph theoretic definitions and simple results that will be used frequently
in Sections 3.2 and 3.3, and elsewhere in the thesis. A good way to view the
types of graphs we are interested in is as infinite-sided polyhedra. Many of our
results are for graphs that are trees, and these can also be viewed as polyhedra by
allowing faces to be infinite2. See Figure 3.1 (page 21) and Figure 3.2 (page 21) for
examples of some regular tessellations. Definition 5 defines the set of graphs that
we are most interested in, while Theorems 10 and 12 show some useful properties
of these graphs that will be used as a basic tool in many other results. The planar
graphs to which the results of this chapter apply were motivated by the regular

1A Boolean function is self-dual if, for all input-value combinations, the value of the com-
plement of the function equals the value of the function with its inputs complemented.

2In the Appendix, we define polyhedra as a subset of graphs described in this section, and
the Appendix is the only section where we use the term “polyhedra” in a technical way.
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tessellations of the hyperbolic plane, but in fact our results do not depend on the
symmetry inherent to regular tessellations. It is possible to skim over Section 3.1
at first, and then refer to it as needed later.

3.1 Definitions and Some Graph Theory

In graph theory, there is sometimes disagreement in terminology of even the most
basic notions and therefore, to avoid confusion, we begin with some simple defi-
nitions. Many of our definitions follow those given in [7]. Although we normally
assume that graphs are undirected, we will occasionally find it convenient to use
directed graphs and therefore we define them as well. We denote both undirected
and directed graphs by the ordered pair (V, E) where V is the set of vertices and
E is the set of edges. In an undirected graph, edges are sets of two vertices. We
will often denote edge {u, v} ∈ E as uv, or equivalently vu. In a directed graph,
edges are ordered pairs of vertices. We will often denote a directed edge (u, v) ∈ E
as uv. In both cases, we assume graphs are simple, meaning that self-edges (or
loops) and multiedges are not allowed. For a graph G, we let V (G) and E(G)
denote the set of vertices and edges respectively. In an undirected graph, an edge
e = {u, v} is said to have u and v as its endvertices and e is said to be incident
on u and v. If {u, v} ∈ E, then u is said to be adjacent to v and u and v are said
to be neighbors. The neighborhood of v ∈ V (G) is the set of neighbors of v and
is denoted N(v). For a directed graph G, we say that u is adjacent to v if and
only if (u, v) ∈ E. For vertex u, we define the out-neighborhood N+(u) to be the
set of vertices adjacent to u. Similarly, we define the in-neighborhood N−(u) to
be all the vertices that u is adjacent to. For a directed graph, the neighborhood
of a vertex u is N(u) = N+(u) ∪N−(u). For a directed or an undirected graph,
the degree of a vertex u is defined d(u) = |N(u)|. For a directed graph, we also
define the out-degree and in-degree of vertices defined by d+(u) = |N+(u)| and
d−(u) = |N−(u)| respectively. In all our graphs, we assume that the set of vertices
and edges are countable. A locally finite graph is a graph where the degree of
each vertex is finite. In general, our graphs are assumed to be locally finite.

A ray P is an undirected graph whose vertex set can be put into a sequence
{vi} indexed by Z+ = {0, 1, . . .} such that for all i, (vi, vi+1) ∈ E(P ) and vi 6= vj

when i 6= j. A double-ray is similar to a ray except that its vertices can be put
into a sequence {vi} indexed by Z. A finite path of length n has n + 1 vertices
with the property that its vertices can be put into a sequence {vi} indexed by
{0, . . . , n}. The sequence of vertices has the property that (vi, vi+1) ∈ E(P ) for
0 ≤ i < n and vi 6= vj when i 6= j. Rays, double-rays and finite paths are all
considered to be types of paths. The length of a path, denoted |P |, is the number
of edges in P .

A walk is a sequence of vertices W = . . . , vk, vk+1, vk+2, . . . on either a directed
or an undirected graph G, with the following property: for every pair of successive
vertices vi, vi+1 on the walk, vi+1 is adjacent to vi in graph G. Similar to paths,
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walks can be finite, singly infinite, or doubly infinite. However, unlike paths,
walks can self-intersect.

The distance between two vertices a, b ∈ V (G) is defined by the length of a
shortest path connecting those vertices and is denoted dist(a, b). If there is no
path between a and b, then we define dist(a, b) = ∞. The distance between a
vertex a ∈ V (G) and a subset B ⊆ V (G) is defined as

dist(a, B) = dist(B, a) = min
b∈B

dist(a, b).

Similarly, if A is also a subset of vertices, then

dist(A, B) = dist(B, A) = min
a∈A, b∈B

dist(a, b).

There will often be a distinguished vertex a∗ ∈ V (G) called the origin of the
graph. When an origin a∗ is understood, we might use the shorthand notation

dist(a) = dist(a∗, a).

Let Γ be a plane graph representation of the abstract graph G. A vertex
accumulation point (VAP) is a point x in the plane for which every neighborhood
of x contains infinitely many vertices of Γ. In the following, we assume a fixed
embedding in the plane for G and do not generally distinguish between G and
its planar embedding. We say that G has no vertex accumulation points or is
VAP-free if it has an embedding Γ that contains no vertex accumulation points.
For our purposes, an important property of a planar embedding is that it fixes an
ordering of edges around every vertex and partitions the space occupied by the
the graph into a set of faces. We will not often refer to the VAP-free property
directly, but it will be assumed in all of our graphs to ensure that finite regions
of an embedding in the plane contain a finite number of graph components.

When a vertex has been identified as the origin in a connected graph, we can
refer to parent and child relationships between vertices. The origin is viewed as
root ancestor of all vertices and all other vertices are descendants of the origin.
The set of all vertices at a fixed distance from the origin is called a shell or
equivalently a generation of cousins. We denote by Sn the shell with vertices
distance n from the origin. Thus, shells partition the set of vertices. If vertices
a and b share an edge, then |dist(a)− dist(b)| is either zero or one. If it is one,
then the vertex closer to the origin is called the parent while the more distant
vertex is called the child. An edge between a parent on shell n and child is
called a descendant-edge on shell n (or of order n). If the vertices are the same
distance, say n, from the origin, then a and b share a cousin-edge on shell n or of
order n. Therefore, the set of edges is partitioned into the descendant-edges and
cousin-edges.

We will frequently encounter sets of objects in the plane which have a natural
cyclic order. For example, a planar embedding of a graph fixes a cyclic order
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for the set of neighbor vertices about each vertex in the graph. For an object
(typically a vertex) appearing along a non-self-intersecting closed loop (or curve)
in the plane, we define the successor or object to the right, to be the next ob-
ject encountered along the curve moving in a clockwise direction. Similarly, the
predecessor or object to the left, is the next object encountered along the curve
moving in a counterclockwise direction. A pair of objects for which the successor
or predecessor relation holds are called successive objects. When it is understood
that a set of objects has a cyclic order, we might use a phrase such as “the second
successor” or “the object two to the right” which should be understood to mean
the successor of the current object’s successor. When a proper (finite) subset of
successive objects is given, then there is a unique object whose successor is not in
the subset, and we call this the rightmost object. Similarly, the leftmost object
is the object having no predecessor in the current subset.

A face of a planar graph is a connected, open region of the plane whose
boundary is a simple-cycle3 of edges and vertices. The degree of a face is the
number of edges (equivalently vertices) that bound the face. We will sometimes
use the phrase “the edges (or vertices) in a face,” instead of “the edges (or vertices)
that bound a face” even though technically the edges (vertices) are only in the
closure of the face. Any point in the open region of the face (and not on the
boundary) is in the interior, and any point not on the boundary and not in the
interior in the exterior.

Let G be a plane-embedded, VAP-free graph. We call a vertex a of G trapped
if a is in the interior of a face P such that maxb∈P dist(b) ≤ dist(a). We say
that a graph G possesses the strong descendant property if, with respect to any
origin, every vertex has a child. Obviously, any graph with the strong descendant
property has an infinite number of vertices and edges.

Lemma 6. Let G be a plane-embedded, VAP-free graph with the strong descendant
property. Then G has no trapped vertices.

Proof. For the sake of a contradiction, suppose there exists a vertex v trapped
within face P . Now v’s child must also be in the interior of P since v’s child is on
shell dist(v) + 1 while every vertex in P is at most on shell dist(v). Therefore, all
of v’s descendants will be trapped within P and since v has an infinite number
of vertices, P contains an infinite number of vertices in its interior. This implies
the existence of a VAP which is a contradiction.

Definition 5 (G, 〈p, q〉, [p, q]). Let G be the set of plane-embedded graphs which
are connected, undirected, locally finite, simple (no self- or multi-edges), and
vertex accumulation point free (VAP-free). We frequently refer to certain subsets
of graphs in G and so we define the following notation. Let 〈p, q〉 denote the
subset of graphs G ∈ G such that:

3A simple-cycle is formed from a finite-path with an additional edge connecting the end-
vertices of the path.
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• the degree of every face in G is at least p.

• the degree of every vertex in G is at least q.

• G possesses the strong descendant property.

To denote a tree-graph conveniently, we write 〈∞, q〉, which indicates that all
faces in the graph are infinite. Additionally, we define the following companion
classes of graphs. Let [p, q] denote the subset of graphs in G ∈ G such that:

• the degree of every face in G is at most p.

• the degree of every vertex in G is at most q.

We write [∞, q] to denote the class of graphs where faces are permitted to be
infinite. Anytime we consider graph classes [p, q], we do not require the strong
descendant property and therefore we have dropped it from the list of require-
ments. Dropping the strong descendant property means that finite graphs can
also be included in [p, q] classes.

Related to graph classes 〈p, q〉 and [p, q], we define constants pmin, pmax, qmin

and qmax to refer to global degree minimum and maximums for faces and vertices
respectively. This gives us a convenient way to refer to additional constraints on
face and vertex degrees. For example, for the set of graphs A ⊆ 〈4, 6〉, we could
additionally restrict A by saying that pmax = 10 to indicate that all face degrees
are bounded by ten.4 When there is no global maximum, we define pmin or qmin

to be ∞.
Let Pres be a subset of graphs in G where the degree of every face satisfies a

restriction “res” where “res” is one of “evn” (even number), “odd” (odd number),
“par” (all face degrees have the same parity), “bdd” (all face degrees are bounded
by some finite pmax), or “fnt” (all face degrees are finite). Similarly, we define
Qres ⊂ G to denote sets of graphs where the vertex degrees are restricted by res.
Note that 〈p, q〉 ∩ Qfnt = 〈p, q〉 since 〈p, q〉 are assumed to be locally finite. For
short, we write Pres1,res2 to denote Pres1∩Pres2. For example, 〈4, 5〉∩Ppar,bdd∩Qodd

denotes the set of all hyperbolic tessellations with faces of degree at least four
and of the same parity but bounded, and vertex degrees all finite but of odd
degree at least five. Note that when 〈p, q〉 has the restriction that pmax = p and
qmax = q, then 〈p, q〉 contains just a single regular tessellation which we denote
{p, q}. Figures 3.1 and 3.2 illustrate some examples of regular tessellations. When
(p−2)(q−2) < 4, = 4, or > 4, the tessellation {p, q} is a tessellation of the sphere,
Euclidean plane, or hyperbolic plane respectively. See [1], [3, Sec. 4.4], and [6]
for a good introduction to the fascinating world of hyperbolic tessellations (their
geometry and the groups that generate them).

4In general, when we speak of the the vertex (or face) degrees or in a plane-embedded graph
being bounded, we mean that a common bound holds for all vertices (or faces).
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Figure 3.1: From left to right: the regular spherical tessellation {4, 3}, a portion of the
regular Euclidean tessellation {6, 3}, a portion of the regular tree tessellation {∞, 3}.

Figure 3.2: On the left: a portion of the regular hyperbolic tessellation {4, 6}. On the
right: the regular hyperbolic tessellation {4, 6} projected onto the Poincaré Disk. The
projection on the right preserves angles.

We conjecture that for graph G which is simple, undirected, planar, and has
an embedding in the plane such that pmin = 3, qmin = 6 or pmin = 4, qmin = 4, then
G has the strong descendant property and there exists a VAP-free embedding of
G. If this conjecture were true, then we could remove the strong descendant and
VAP-free property from the definition of G.

The above pairs of values for pmin and qmin above are lower bounds since any of
the five convex regular Platonic solids {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3} provides
a counter-example. But trivially, all graphs with the strong descendant property
are infinite, so any finite graph has at least one vertex with no descendants.

Consider the nth shell in a locally finite plane-embedded graph. We define an
order n shell boundary to be a set of disjoint, non-self-intersecting closed curves
called shell boundary curves with the following properties:

• Every order n descendant edge intersects the shell boundary exactly once
and this is a transversal intersection. Furthermore, only one descendant
edge intersects the shell boundary at this point.

• An order n shell boundary curve must be intersected by at least one order
n descendant edge.
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• An order n shell boundary curve is only intersected by order n descendant
edges.

When speaking of a set of shell boundaries for different shells, we assume that
all shell boundaries are disjoint5. Whenever a shell boundary consists of a single
curve, we call it a simple shell boundary.

Lemma 7. Suppose that G ∈ G has the strong descendant property. Then all shell
boundaries are simple and each shell boundary curve confines all lower order shell
boundary curves in its interior. Furthermore, each non-origin vertex v is such
that its set of parents occur successively and its set of children occur successively.

Proof. We prove the lemma by induction on shells. Clearly the only valid shell
boundary for the origin is a single closed loop about the origin. The origin has
only children, so these are trivially successive. Suppose that the lemma holds
for all vertices at or below shell n, and all shell boundaries up to order n. If
we can show that shell boundary n + 1 is simple and that the lemma holds for
all vertices on shell n + 1, then the inductive argument is complete. For the
sake of a contradiction, suppose that shell boundary n + 1 is not simple. Since
shell boundary n is simple, all of the vertices at level n + 1 are connected to the
single finite region defined by shell boundary n. This means that any n + 1 shell
boundary curve containing one of vertices n + 1 must contain them all. Since
we assume that more than one n + 1 shell boundary curve exists, there is at
least one curve κ which does not contain shell curve n. By the definition of a
shell boundary curve, at least one descendant edge of an order n + 1 vertex must
pass into the interior of κ. By the strong descendant property, there must be an
infinite graph within this finite region. This violates the assumption that G is
VAP-free, so therefore we must conclude that the n + 1 shell boundary is simple
and contains all objects of lower order.

Consider an order n+1 vertex x. For the sake of a contradiction, suppose that
two of its parents a and b are not successive. Observe that there is a path leading
back to the origin from x through a and another from x through b. So, x is the
apex of a face P with the origin which contains both a and b as vertices on either
side of x. Since a and b are not successors, there must be a neighbor vertex y to x
in the interior of P . But then y is trapped since dist(y) ≥ dist(x) ≥ maxv∈P dist(v).
By Lemma 6, no vertex in G is trapped and so a and b not being successive is a
contradiction.

Consider an order n+1 vertex a. For the sake of a contradiction, suppose that
two of its children vertices x and y are not successive. We have shown that shell
boundary n + 2 is simple. Therefore, shell boundary n + 2 and edges ax and ay
form a triangle. Since x and y are not successive, there must be a vertex b within
the interior of this triangle with dist(b) ≤ dist(a). However, this is impossible
since this would leave b with no parent.

5It can be shown that a non-disjoint set of shell boundaries can be made to be disjoint.
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For a graph G satisfying Lemma 7, there exists a simple cyclic ordering of
cousin vertices on each shell defined by the shell boundaries. For each shell,
we simply follow the single shell boundary curve in a clockwise direction listing
off the parents of the descendant edges in the order the edges are encountered.
Vertices with multiple children will be listed multiple times, but since children
occur successively, the final sequence will have all repeated vertices in succession.
We therefore discard any sequence of the same vertex with a single vertex to obtain
the final unique cyclic order. For a graph satisfying Lemma 7, we assume this
cyclic order for the vertices on each shell and freely refer to successive cousins
on a given shell. We will typically refer to vertices in a shell Sn with labels
xn

0 , x
n
1 , x

n
2 , . . . and, if there are q vertices in Sn, it is understood that xn

i ≡ xn
j

when i ≡ j (mod q). The successor of xn
i is xn

i+1 and the predecessor of xn
i is xn

i−1.

Lemma 8. Suppose that G ∈ G has the strong descendant property. Then cousin-
edges occur only between successive cousins. A vertex has at most two cousin-edges
and these edges are not successive.

Proof. Given the properties of the embedding of G implied by Lemma 7, it is
apparent that if two non-successive cousins share an edge, then at least one cousin
is blocked from having any children. Therefore, only successive cousins can share
an edge. Since cousin-edges exist only between successive cousins, and given the
restriction of every vertex having a child and a parent, it is clear that if there are
two cousin-edges, they do not appear successively. Rather, each is sandwiched
directly between the set of children and the set of parent edges.

Lemmas 6, 7, and 8 allow us to view a plane-embedded, VAP-free graph G
with the strong descendant property in a convenient way. The simple boundary
shells appear one inside the other. Between two shell boundaries n and n + 1 lie
the set of vertices in Sn. These vertices appear in a cyclic order6 with each set of
parent edges crossing directly through shell boundary n and each set of children
edges crossing directly through shell boundary n+1. Cousin-edges appear directly
between successive cousins. See Figure 3.3 for an example of our notation applied
to the portion of a graph in G. This picture is of great use when visualizing
various cases in the following theorems. When it is obvious from the theorem
statement that the above lemmas hold, we might not refer to them explicitly.

Lemma 9. Let G ∈ 〈3, 6〉 ∪ 〈4, 4〉. Then with respect to any fixed origin, all
vertices have at most two parents and these parents must be successive on their
shell. Furthermore, if a vertex x has two parents a, b such that a is the predecessor
of b, then x is the rightmost child of a and the leftmost child of b.

6Even if the original embedding makes it difficult to see their cyclic arrangement, they can
be moved into a more visually cyclic pattern without changing the topology of the embedding.
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Figure 3.3: A portion of a plane-embedded, VAP-free graph with the strong descendant
property. The origin vertex is labeled a and forms shell zero, denoted by S0. The dashed
lines denote the boundary curves, labeled ∂0, ∂1, and ∂2. The first shell, S1, consists
of vertices b through f . Vertices c and d share a cousin edge. The rightmost child of c
is h and the leftmost child of c is g. g and h are successors.

Proof. We use an inductive argument over shells of vertices and handle the cases
of 〈3, 6〉 and 〈4, 4〉 simultaneously. In both cases, the origin has no parents, and
the first level vertices only have the origin as their single parent. Therefore, the
theorem is true for S0 and S1. We assume that the theorem is true for all shells
up to and including Sn, and will to show that this implies it is true for Sn+1.

Let x ∈ Sn+1 and, for the sake of a contradiction, assume that x has three
or more parents in Sn. By Lemma 7, the parents x occur successively and this
means that there are three parents a, b, c of x such that a precedes b and b precedes
c. If G ∈ 〈4, 4〉, then b shares no cousin-edges since that would form a triangle.
By the inductive hypothesis, b has at most two parents since b ∈ Sn. But, then
the degree of b is at most three which contradicts G ∈ 〈4, 4〉. Therefore, assume
G ∈ 〈3, 6〉. Now b can be incident on both a and c. Again, by the inductive
hypothesis, b has at most two parents which implies that the total degree of b
is at most five, a contradiction. The induction therefore goes through and we
conclude that all vertices in G have at most two parents.

The final two claims do not require induction. For the penultimate claim, let
x ∈ Sn+1 and suppose, for the sake of a contradiction, that x has non-successive
parents a, c ∈ Sn. By the argument just given, these are the only parents of x.
Therefore, for a and c to be non-successive, there must be at least two vertices
b, d ∈ Sn such that starting from a and traveling clockwise along boundary n−1,
the order in which the four mentioned vertices are encountered is either a, b, c, d
or a, d, c, b. It is then true that either the child of b or the child of d is trapped
and this is impossible by Lemma 6.

For the final claim of the theorem, observe that if a shared child were not the
rightmost child of the left parent, then the child of the left parent which succeeds
the shared child would be trapped. By Lemma 6, no vertices are trapped. The
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same holds true for the right parent.

Theorem 10. If G ∈ 〈4, 4〉, then every vertex has at least two children, and
the relationship between every non-origin vertex x and its non-children neighbors
satisfies one of the following mutually exclusive cases:

1. x is incident on exactly one cousin-edge and x has exactly one parent.

2. x is not incident on any cousin-edge and x has exactly two parents.

3. x is not incident on any cousin-edge and x has exactly one parent.

Finally, every non-origin shell has at least as many vertices as its predecessor
shell.

Proof. By the definition of what it means to be on a particular shell (all vertices
on a particular shell have the same shortest-path distance to the origin), it is
trivially true that all non-origin vertices have at least one parent on a previous
shell, and all its parents are on the previous shell.

We can proceed to prove the claim of lemma by induction on shell levels.
The inductive hypothesis is that all of the claims of the lemma hold for the first
through n-th shells.

The origin has at least four children and, these children comprise the set of
vertices on the first shell. Since there are no triangles in the tessellation, there
can be no cousin-edges on the first level. Therefore, all vertices on the first shell
satisfy case 3, and each vertex has at least three children.

Now consider any vertex y on shell n + 1. Since there are at least four unique
vertices on the first shell, by the inductive hypothesis, we can conclude that there
are at least four on the nth shell. For the sake of a contradiction, consider the
situation where y has three parents. Call these parents a, b, c in clockwise order.
By the inductive hypothesis, vertex b has at least two children. One of these
children is y and now the other must be either a or c which is impossible since
a and c are on the same level as b (furthermore, this would create a triangle).
Therefore, all vertices on the n + 1 shell level have at most two parents each. By
the inductive hypothesis, all vertices on the nth shell have at least two children
and therefore the level n + 1 has at least as many vertices as level n.

According to the previous paragraph, there at least four vertices on level
n + 1. Let x and z be the distinct left and right shell-neighbors of vertex y.
Furthermore, note that x and z are not shell-neighbors either since there is at
least one additional vertex in between them.

For the sake of a contradiction, suppose y is incident on both x and z and let
b be a parent of y. By the inductive hypotheses, b has an additional child. This
child must be either x or z for if it were neither of them, then one of them would
have no parents in the n-th shell. However, if x or z is also a child of b, then
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this creates a triangle which is forbidden. Therefore, at most one of x and z is
incident on y.

Suppose that y shares an edge with x and b is a parent of y. For the sake
of a contradiction, suppose that y has an additional parent. It is easy to argue
that this parent must be a or c. Suppose a is y’s parent. Then x cannot be a
child of a since this would form a triangle. The vertex immediately to the left of
a must be x’s parent, but this also leads to a contradiction since a would have
only one child. Therefore only c can be the second parent of y. This too leads
to a contradiction since b is blocked from having a second child. Therefore, if y
shares an edge with a vertex on the same level, then it had exactly one parent.

Since we have shown that every vertex at level n+1 has at most two non-child
neighbors, it follows that every vertex has at least two children.

Corollary 11. If G ∈ 〈4, 4 + k〉 where k ≥ 0, then each vertex has at least 2 + k
children and there are at least a factor of k more vertices on each subsequent
vertex shell.

Proof. Since it remains true that every vertex on the (n + 1)-st shell has at most
2 parents and since every vertex on the nth shell has at least 2+k children, there
must be at least k distinct vertices on level n + 1 for every vertex on level n.

Theorem 12. If G ∈ 〈3, 6〉, then every vertex has at least two children, at most
two parents, and every non-origin shell has at least as many vertices as its pre-
decessor shell.

Proof. Observe that the origin has at least qmin children vertices which comprise
the first shell. The vertices on the first shell each have only the origin as their
parent. We can easily demonstrate that each vertex on the first shell can share an
edge only with their immediate left and right shell-neighbors. For the sake of a
contradiction, suppose that vertex x on the first shell shares an edge with vertex
z two positions to the right of x. Let vertex y be the middle vertex. Vertex y can
only connect to vertex x and vertex z which would give it a degree of at most
three in violation of qmin ≥ 6. If each vertex on the first shell can share edges with
at most their left and right shell-neighbors, then they each have at least three
children, since pmin ≥ 3 and they have exactly one parent and are incident on at
most two cousin-edges. Therefore, the lemma holds for the first shell.

Now assume that the lemma holds for the first through nth shells. Then shell
n has at least qmin vertices and each of these has at least two children each. We
first show that vertices on shell n+1 have at most two parents each. Let x, y, z be
three consecutive neighbors on shell n+1 and a, b, c be three consecutive neighbors
on shell n all occurring in clockwise order. For the sake of a contradiction, suppose
that y has three parents on shell n, and suppose that these parents are vertices
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a, b, and c. By the inductive hypothesis, b can have at most two neighbors and
these neighbors must be a and c. But then b is forced to have at most one child
and this is a contradiction. Therefore, each vertex on level n + 1 has at most two
parents. Just as in the base case of the induction we can now easily argue that
each vertex on shell n+1 shares an edge with at most both of its shell-neighbors.
Since every vertex has degree at least 6, each vertex on n + 1 has at least two
children.

Corollary 13. If G ∈ 〈3, 6 + k〉 where k ≥ 0, then each vertex has at least 2 + k
children and there are at least a factor of k more vertices on each subsequent
vertex shell.

The proof follows easily, in a similar way to the proof of Corollary 11.

3.2 Combined Faults

We begin with some negative results which are easily obtained by constructive
arguments.

Definition 6 (majority rule automaton). The majority-rule automaton on a
graph G is defined as follows. The medium M = V (G). For each a in M, the
inputs

U(a) =

{
N(a) : |N(a)| odd

N(a) ∪ {a} : |N(a)| even

and the transition rule
φa = maj|U(a)|

where majn denotes the majority function on n Boolean arguments.

Theorem 14. Every majority-rule automaton on a graph in [3, 8]∪ [4, 6]∪ [∞, 4]
is intolerant of combined faults.

Proof. Figures 3.5, 3.6, and 3.4 illustrate the truth of each of the respective cases
in this theorem.

Figure 3.4: The circled black dots are manufacturing faults. The black dots constitute
a self-sustaining island of error between the manufacturing fault dots.
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Figure 3.5: The circled black dots are manufacturing faults. The black dots constitute
a self-sustaining island of error between the manufacturing fault dots.

Figure 3.6: The circled black dots are manufacturing faults. The black dots constitute
a self-sustaining island of error between the manufacturing fault dots.

For the remainder of this section, assume that all automata are monotone and
binary, and are both zero- and one-preserving. This implies that every φa depends
essentially7 on at least one input. We are only interested in the stability of trajec-
tories 0 and 1. We claim that for monotone automata, there is a simple optimal
strategy for the adversary that maximizes the probability of every point being in
error. The strategy is the obvious greedy strategy where the adversary uses every
fault to set the state of a point into error. Notice that this adversary requires
no past, present or future knowledge of state of the cells in the automata or the
allotment of faults. Therefore, when talking about monotone automata, the ad-
versary needs much less power than the general omniscient adversary represented
in Definition 1. The notion of the greedy adversary being optimal is encapsulated
in the next Lemma. We will generally assume the use of this Lemma when talking
about monotone binary automata and the 0 and 1 trajectories.

Lemma 15. Let A be a monotone binary automaton and suppose that we are
interested in the stability of the trajectories 0 and 1. In this case, the greedy
strategy is optimal.

Proof. Let y be either the 0 or 1 trajectory. From Definition 1, the probability
that a point a is in error is

(µα × νβ)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}).

In a sense, the every possible “strategy” is represented in this definition. A
strategy for the adversary is optimal if for every point a ∈ L, every pair of fault

7An input x to a Boolean function is depended upon “essentially” if there is a setting of the
other inputs such that the output of the function changes as the value of input x changes.
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sets (FM , FT ) included in the set in the above definition will also result in a being
in error if the given strategy for the adversary is followed. Let (FM , FT ) be a
fault pair for which there exists a consistent8 configuration x such that a ∈ Ex,y.
Let B ⊆ L ∩ FC be the set of points where the greedy strategy was not followed.
This means that all points in B 6∈ Ex,y. By definition, the greedy strategy would
put all points B ∈ Ex,y. Since all functions are monotone, adding any points in
B to Ex,y cannot result in a not being in error. Clearly adding all points in B
to Ex,y results in a consistent configuration and furthermore, this configuration
is exactly the greedy strategy.

When dealing with monotone binary automata, it will often be easier to prove
a result for a slightly weaker automaton. We mean “weaker” in the sense that it
is strictly more likely to fail to remember a bit than the original. We formalize
this notion in the following definition.

Definition 7 (weaker). Let A and B be automata with a common medium and
suppose that y is a trajectory in both automata. B is said to be weaker than A
(with respect to trajectory y) if for every a ∈ L, every fault set FC that allows
a to be in error in A, also allows a to be in error in B. By “allows a to be in
error in A (or B),” we mean there exists a configuration x that is consistent with
FC and the transition rules of A (or B) that results in a being in error. If B is
weaker then A, then we say that B is a weakened version of A.

In general it would be very difficult to prove that two automata satisfy this
definition, but for monotone binary automata, there is one particular type of
modification we can do for which it is obvious that the modified automaton is
weaker than the original.

Definition 8 (pessimistic assumption). Let A and B be monotone binary au-
tomata with identical media. For each a ∈M, let φa and ρa denote the transition
functions associated with a and automata A and B respectively. Define ρa to
be the same as φa except that we set some arbitrary subset of ρa’s arguments
to constant 1 if the desired trajectory y = 0, and 0 if y = 1. We call any such
automaton B derived from A in this way a pessimistic version of A.

The idea of a pessimistic version is that cells are made to “pessimistically”
believe that certain of their input cells are always in error even though these cells
might not always be in error.

Lemma 16. If A and B are monotone binary automata such that B is a pes-
simistic version of A. Then it follows that (1) B is weaker than A and (2) if
B can remember a bit under the combined fault model (or variations such as the
manufacturing or transient fault models), then A can also remember a bit under
the same fault model.

8We call a configuration x consistent if it satisfies x ∈ Cy and Dx ⊆ FC .
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Proof. By the monotonicity of the transition functions, it trivially follows that a
pessimistic version of an automaton is weaker. From the definition for stability
under the combined fault model (Definition 1), and the special cases of stability
under manufacturing and transient faults (Definitions 2 and 3), it is a weaker
version of an automaton.

In proving stability, we will routinely construct a pessimistic version of an
automaton and prove stability on this “weaker” version of the automaton. For
example, Theorem 17 is for automata that are weaker than the automata for
which we are actually interested in proving properties. After this, we show how
to weaken the automata in which we are actually interested by using a pessimistic
construction. The conclusions for the weaker automata will then hold for the
original automata using Lemma 16.

Definition 9 (dependency graphs). The medium dependency-graph for an au-
tomaton A is denoted DM(A). It has vertex set V (DM(A)) = M, and edge
set E(DM(A)) = {(a, b) : b ∈ UM(a)}. The lattice dependency-graph for an au-
tomaton A is denoted DL(A). It has vertex set V (DL(A)) = L, and edge set
E(DL(A)) = {(a, b) : b ∈ UL(a)}.

A lattice dependency-graph is a directed, acyclic graph by definition. In gen-
eral, a medium dependency-graph can be a directed multi-graph with cycles. Our
strategy will be to modify (minimally) an automaton so as to avoid the existence
of multiple paths between vertices in its dependency-graph—that is, we turn the
graph into a forest.

Theorem 17. Let A be a non-constant monotone binary automaton and let either
y = 0 or y = 1 be the desired stable trajectory. For each a ∈ M, let h(a)
represent the minimal number of inputs in error necessary to force φa into error.
For all a ∈ M, suppose h(a) ≥ 2, and suppose there exists a real λ such that
|U(a)| ≤ λh(a). If the medium dependency-graph is a forest, then y is stable
under the combined fault model.

Proof. The significance of the medium dependency-graph being a forest is that for
any finite set A ⊂ Ln of points at timestep n, Pr[a ∈ Ex,y, ∀a ∈ A] =

∏
a∈A Pr[a ∈

Ex,y]. Now for any a, Pr[a ∈ Ex,y] is equal to the probability of the event that
either a ∈ FC (a fault occurred at point a) or a sufficient number of a’s inputs
are in error to force a into error. Let Pn = supa∈Ln

Pr[a ∈ Ex,y]. Suppose that
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t(a) = n + 1. Then

Pr[a ∈ Ex,y] ≤ ε +
∑

A⊆U(a),
|A|≥h(a)

Pr[b ∈ Ex,y, ∀b ∈ A]

≤ ε +
∑

A⊆U(a),
|A|≥h(a)

Pn
|A| = ε +

|U(a)|∑
k=h(a)

(
|U(a)|

k

)
Pn

k

≤ ε + Pn
h(a)

λh(a)∑
k=1

(
λh(a)

k

)
≤ ε + Pn

h(a)2λh(a).

Let 0 < ε ≤ 1/22λ+1. By Definition 1, P0 = ε. Now suppose that Pn ≤ 2ε.
Noting that h(a) ≥ 2 and λ ≥ 1, we find

Pr[a ∈ Ex,y] ≤
1

22λ+1
+

(
2

22λ+1

)h(a)

2λh(a) ≤ 2ε.

Therefore supa∈Ln+1
Pr[a ∈ Ex,y] = Pn+1 ≤ 2ε whenever Pn ≤ 2ε. For all a ∈

L, if the fault-rate is not greater than 1/22λ+1, then Pr[a ∈ Ex,y] ≤ 2ε, and
consequently limε→0 supa∈L Pr[a ∈ Ex,y] = 0. By definition, y is stable.

Lemma 18. Let G ∈ 〈5, 5〉 and suppose that x is a vertex in G that has either
a cousin-neighbor or two parents. Then x does not share its children with any
cousin.

Proof. The truth of this lemma is readily seen from the representative sections of
a 〈5, 5〉 graph shown in Figure 3.7. Note that the lemma fails if pmin is lowered
to 4.

Figure 3.7: Two possible sections of a 〈5, 5〉 graph. Vertices w, x, and y are on shell
Sn. The dashed lines denote the n- through (n − 2)-th boundary curves denoted ∂n,
∂n−1, and ∂n−2.

Theorem 19. Every majority-rule automaton on a graph in 〈3, 13〉∪〈4, 9〉∪〈5, 7〉
can remember a bit with combined faults.
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Proof. Let B and A be automata with transition functions denoted by ρ and φ
respectively. We define B to be a pessimistic version of A where A is a majority-
rule automaton on a graph in 〈3, 13〉∪〈4, 9〉∪〈5, 7〉. The transition functions in A
are majority functions which are just cases of threshold functions. The thresholds
for φa and ρa denote the minimum numbers of inputs sufficient to force a into
error. For φa, this is always b(d(a) + 1)/2c. If we assume that k of φa’s inputs are
in error, then this has the effect of lowering the threshold by k. In the remainder
of the proof and the next, we will describe ρa by describing which inputs “we
assume to be in error” or equivalently, which inputs “we ignore.”

For each a ∈M, we ignore the inputs from its cousins, parents, leftmost child,
and if d(a) is even, a itself. By Lemma 9, each vertex has a unique leftmost child
and the leftmost child and the rightmost child are the only children vertices a
might share with a cousin. By Lemma 8, if a does share a child, it is only with a
successive cousin.

We claim that B’s medium dependency-graph DM(B) is a forest. Clearly,
all paths in DM(B) are strictly increasing in shell level as the path is traversed.
Furthermore, consider distinct vertices a and b on shell n. By Lemma 9, the
only child a and b can share is a child which is a leftmost child for one vertex
and a rightmost child for the other vertex, but all leftmost child edges have been
deleted; therefore, a and b have no common child on the next child. By induction
on shell levels, no paths starting from a and b can ever merge. Thus, DM(B) is
a forest.

In what follows, let us define c(a) to be the number of input-cells on which a
cell a essentially depends. We define h(a) to be the minimum number of input-
cells necessary to ensure a is in error.

If A ∈ 〈3, 13〉, by Lemma 8 and Theorem 12 we might ignore up to 5 neighbors
for odd degree vertices and 6 neighbors for even degree vertices. By the strong
descendant property, every vertex has at least one parent and one child, so we
ignore at least 2 neighbors. Suppose d(a) is odd, then

dA(a) + 1

2
−5 ≤ h(a) ≤ dA(a) + 1

2
−2, dA(a)−5 ≤ c(a) ≤ dA(a)−2, 13 ≤ dA(a),

from which we conclude

c(a) ≤ 2h(a) + 7, 2 ≤ h(a), 8 ≤ c(a), h(a) ≤ c(a).

If dA(a) is even, then

dA(a) + 2

2
−6 ≤ h(a) ≤ dA(a) + 2

2
−2, dA(a)−6 ≤ c(a) ≤ dA(a)−2, 14 ≤ dA(a),

from which we conclude

c(a) ≤ 2h(a) + 8, 2 ≤ h(a), 9 ≤ c(a), h(a) ≤ c(a).
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If A ∈ 〈4, 9〉, by Theorem 10 we might ignore up to 3 neighbors for odd
degree vertices and 4 neighbors for even degree vertices. By the strong descendant
property, every vertex has at least one parent and one child, so we ignore at least
2 neighbors. Suppose d(a) is odd, then

dA(a) + 1

2
−3 ≤ h(a) ≤ dA(a) + 1

2
−2, dA(a)−3 ≤ c(a) ≤ dA(a)−2, 9 ≤ dA(a),

from which we conclude

c(a) ≤ 2h(a) + 3, 2 ≤ h(a), 6 ≤ c(a), h(a) ≤ c(a).

If dA(a) is even, then

dA(a) + 2

2
−4 ≤ h(a) ≤ dA(a) + 2

2
−2, dA(a)−4 ≤ c(a) ≤ dA(a)−2, 10 ≤ dA(a),

from which we conclude

c(a) ≤ 2h(a) + 4, 2 ≤ h(a), 7 ≤ c(a), h(a) ≤ c(a).

To handle the case of A ∈ 〈5, 7〉, we will need to take a slightly more delicate
approach. As before, we ignore all cousin-neighbors, parents, and a itself if d(a)
is even. By Theorem 10, we can classify vertices into three types: (1) a is incident
on exactly one cousin-edge and a has exactly one parent, (2) a is not incident
on any cousin-edge and a has exactly two parents, (3) a is not incident on any
cousin-edge and a has exactly one parent. For type (1) and (2) vertices, we do
not ignore any children. For type (3) vertices, we ignore just the leftmost child
as before.

By Lemma 18, a type (1) or (2) vertex does not share its children with any
cousins. Therefore, the only type of vertices that can share their children are type
(3) and this sharing is eliminated as before by ignoring their leftmost children.
The medium dependency-graph for B is therefore a directed tree and we might
ignore up to 2 neighbors for odd degree vertices and 3 neighbors for even degree
vertices. By the strong descendant property, every vertex has at least one parent
and one child, so we ignore at least 2 neighbors. Suppose d(a) is odd, then

h(a) =
dA(a) + 1

2
− 2, c(a) = dA(a)− 2, 7 ≤ dA(a),

from which we conclude

c(a) = 2h(a) + 1, 2 ≤ h(a), 5 ≤ c(a), h(a) ≤ c(a).

If dA(a) is even, then

h(a) =
dA(a) + 2

2
− 3, c(a) = dA(a)− 2, 8 ≤ dA(a),
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from which we conclude

c(a) ≤ 2h(a) + 2, 2 ≤ h(a), 6 ≤ c(a), h(a) ≤ c(a).

Therefore, for B derived from A ∈ 〈3, 13〉 ∪ 〈4, 9〉 ∪ 〈5, 7〉, it is true that
|U(a)| ≤ λh(a) where λ = 6. Therefore B satisfies all the conditions of Theorem
17 and can therefore tolerate combined failures. Since B is a pessimistic version
of A, by Lemma 16, A is also tolerant of combined faults.

Theorems 19 and 14 together provide a natural set of bounds for positive and
negative results concerning the combined fault model. The following theorem
almost entirely fills in the gap between Theorems 19 and 14 except for the addi-
tional restriction of bounded cell input degrees. We conjecture that the bounded
input degree restriction is unnecessary. The intuition for this conjecture is that
for positive results, larger cell-input neighborhoods only seem to help. We only
require the restriction due to our use of Lemma 22 which uses the restriction to
enumerate the number of excuse graphs of a certain size.

Theorem 20. Every majority-rule automaton on a graph in (〈3, 9〉 ∪ 〈4, 7〉 ∪
〈5, 5〉) ∩Qbdd is tolerant of combined faults.9

We delay the proof of Theorem 20 until after some lemmas and definitions
have been given. At a high level, our proof strategy roughly follows that of [20]
(Appendix A). Given a point r ∈ L, which we refer to as “the origin,” we want to
bound the probability that r is in the error set. To do this, we associate with each
configuration x, trajectory y, and combined fault set FC , a graph G̃(r, FC , x, y).

We call G̃(r, FC , x, y) a flat excuse graph. As usual, we assume that y is either
0 or 1 and that the adversary employs the optimal strategy, the greedy strategy,
that maximizes the probability of r (and all other points) being in error. Strictly
speaking, it is redundant to give both the fault set FC and the configuration x
since x is determined from FC and y when the greedy strategy is assumed. For a
given r and y, we denote the set of all possible G̃(r, FC , x, y) as G̃(r, y). We show

that each graph G ∈ G̃(r, y) has a probability of occurrence at most ε|E(G)|/27.
We also show that the number of such graphs with k edges is at most (2qmax)

2k

where qmax is the upper-bound on cell input degrees for the automaton. Using
the union bound, we get an upper-bound on Pr[r ∈ Ex,y] in terms of ε.

As was the case previously, it is simpler to work with automata that have
acyclic medium dependency-graphs. In Theorem 19, we were able to reduce the
automata so that their medium dependency-graphs were forests, but here we have
to settle for acyclic. To achieve acyclic dependency graphs, we construct weakened
versions of the automata. The construction is centered around an arbitrarily
chosen cell, a∗ ∈ M, that we call the center-cell. For a majority automaton A
on a graph in 〈3, 9〉 ∪ 〈4, 7〉 ∪ 〈5, 5〉 with center-cell a∗, we denote the weakened
version of the automata W (A, a∗) according to the construction described below.

9See page 20 for definition of Qbdd.

34



Begin by assuming that W (A, a∗) is a copy of A. As was done in the proof
of Theorem 19, we describe which inputs each cell “ignores” (or equivalently,
“assumes to be in error”). With a∗ as the the “root,” terms such as “parent,”
“child,” and “cousin-neighbor” are well-defined and we continue to use these terms
as they were used previously. In all cases, if a cell depends on itself in automaton
A, then assume that the cell ignores itself in W (A, a∗)

When A is a majority automaton on a graph in 〈3, 9〉, automaton W (A, a∗)
has the following modifications for each cell: (1) all parent inputs are ignored,
(2) if the cell does not have two parents and two cousin inputs, then all cousin
inputs are ignored.

Figure 3.8: A section of an automaton A on 〈3, 9〉 modified to W (A, a∗).

When A is a majority automaton on a graph in 〈4, 7〉, automaton W (A, a∗)
has the following modifications for each cell: all parent and cousin inputs are
ignored. Note that by ignoring all cousin inputs, the resulting graph is a ranked
graph. A ranked (acyclic) graph has the property that all walks between a given
pair of vertices are of the same length. Although we could use the ranked-graph
property to simplify the proofs for cases based on 〈4, 7〉, we choose not to use this
property and let 〈4, 7〉 be handled within a more general framework.

When A is a majority automaton on a graph in 〈5, 5〉, we describe automaton
W (A, a∗) by modifying vertices shell-by-shell, starting from the center-cell a∗.
The modifications to any shell n depend on the modifications to the previous
shell n − 1. The center-cell (shell zero) is left unchanged. Assuming shell n − 1
has already been modified, shell n receives the following modifications. For each
cell on shell n: (1) all parent inputs are ignored, (2) cousin inputs are ignored
except for when the threshold of its parent (on modified shell n− 1) is less than
two.

Figure 3.9: A section of an automaton A on 〈5, 5〉 modified to W (A, a∗).
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Automaton W (A, a∗) and its medium dependency-graph DM(W (A, a∗)) have
several properties that we summarize in the following Lemma.

Lemma 21. Let W (A, a∗) be a modified automaton for some majority-rule au-
tomaton A on a graph in 〈3, 9〉∪ 〈4, 7〉∪ 〈5, 5〉 with center-cell a∗. Then W (A, a∗)
has the following properties:

1. All walks on DM(W (A, a∗)) increase by one shell level at least every second
step of the walk (and are therefore acyclic).

2. Every cell has a threshold of at least one.

3. No two consecutive cells along a walk have thresholds less than two.

Proof. With the construction of W (A, a∗) described above, and with the prop-
erties previously shown for graphs in 〈3, 9〉 ∪ 〈4, 7〉 ∪ 〈5, 5〉, proving the above
properties is largely routine. The proof of each property when A is a graph on
〈5, 5〉 is the most difficult and so we sketch these proofs in some detail. We do
not provide the proofs for A on 〈3, 9〉 ∪ 〈4, 7〉 since their proofs are similar, but
easier. Therefore, assume below that A is an automaton on a graph in 〈5, 5〉.

Theorem 10 classifies cells in 〈5, 5〉 into three types: (type I) the cell has
exactly one cousin-neighbor and exactly one parent, (type II) the cell has no
cousin-neighbors and exactly two parents, and (type III) the cell has no cousin-
neighbors and exactly one parent.

We begin by proving property (1). Eliminating child-to-parent edges (parent
inputs) ensures that all walks are strictly non-decreasing in shell levels. By The-
orem 10, all vertices have at most one cousin-neighbor. There are a number of
other useful properties that hold for graphs in 〈5, 5〉:

• A type III vertex always occurs successively with another type III vertex
(on the same shell).

• A pair of successive type I vertices are always succeeded and preceded by a
type III vertex.

• A type II vertex is always succeeded and preceded by a type III vertex.

• There is no edge between type II vertices.

• If there is a cousin-edge between vertices a and b, then at most one of the
parents of a and b can be of type I or II.

Each of the above properties can be shown to hold with some case analysis similar
to that used in the proof of Lemma 18. Taken together, the above properties allow
us to prove the remainder of property (1).

Property (2) follows trivially from the fact that every cell can ignore at most
two input-cells, and the threshold to begin with is at least three.
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To prove property (3), assume, with an eye to obtaining a contradiction, that
there exists a cell a having threshold one whose input-cell b also has threshold
one. All type III cells have thresholds greater than one which implies a and b are
each of type I or II. We also note that a and b are all either rightmost children,
leftmost children, or cousin-neighbors of their parents. This is true because all
other input-cells of parents are of type II. Suppose that a is of type II. It can
be easily shown that no type II cell can have a type II as an input (this does
not hold for graphs in 〈4, 7〉 in general). This implies that b is of type I. By our
modification, b does not ignore its cousin-neighbor since b’s parent has threshold
one. Therefore, b has threshold greater than one, and this leads to a contradiction.
Consequently, vertex a must be of type I and the parent of a must be of type III.
But then b must be of type I as well since the parents of any type II cell must
both be of type I. By our modification, b does not ignore its cousin-neighbor since
its parent a did ignore its cousin-neighbor. Therefore, the threshold of b is greater
than one, and this is also a contradiction.

The choice of center-cell a∗ in the definition of W (A, a∗) is arbitrary because all
properties we are interested in hold equally well for all choices of center-cell. For a
given automaton W (A, a∗) with desired trajectory y ∈ {0,1}, we can now define

the flat excuse graph G̃(r, FC , x, y) mentioned earlier. We describe G̃(r, FC , x, y)
constructively with a pseudo-code algorithm that is a modified version of breadth-
first-search (the pseudo-code style is borrowed from [5]). The algorithm produces
the flat excuse graph (N∪T, E) where sets N and T are a partition of the vertices
(which are points) called non-terminals and terminals, respectively.

Create-G̃(r, FC , x, y)

N ← ∅, T ← ∅, E ← ∅, Q← nil � Initialization
if r ∈ Ex,y ∧ r ∈ FC

then T ← T ∪ {r}
if r ∈ Ex,y ∧ r /∈ FC

then N ← N ∪ {r}
Enqueue(Q, r)

while Q 6= nil
do a← Dequeue(Q)

for each b ∈ U(a) ∩ Ex,y

do if ∃c ∈ N ∪ T s.t. c = b � check if b visited already
then E ← E ∪ {(a, c)}
else E ← E ∪ {(a, b)}

if b ∈ FC

then T ← T ∪ {b}
else N ← N ∪ {b}

Enqueue(Q, b)
return (N ∪ T, E)
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The flat excuse graph (N ∪ T, E) is a directed graph. Excluding edges added
with the line “then E ← E ∪ {(a, c)},” the flat excuse graph is a finite sub-
graph of the lattice dependency-graph for W (A, a∗). The edges added with line
“then E ← E∪{(a, c)}” are useful for accounting purposes and we will use them
when estimating the number of possible flat excuse graphs, and when estimating
the ratio of terminal to non-terminal vertices. From the algorithm, it is clear
that every vertex in the graph corresponds to a distinct cell in the medium: all
vertices in N ∪ T come from the queue, and there is a check to ensure that only
vertices corresponding to a cell not already in the N ∪ T are added to the queue.
The algorithm eventually terminates, and hence produces a finite graph, because
there are only a finite number of points reachable from any point in the automa-
ton’s lattice dependency-graph. The decision not to enqueue points corresponding
to cells previously enqueued represents the (conservative) decision to lower the
threshold of a cell’s transition function for a point whose corresponding cell has
an input neighbor cell with a corresponding point already in the flat excuse graph.
An important property of a flat excuse graph is that its probability of existence
is bounded above by the fault-rate ε raised to a power equal to the number of
terminals T . The probability of the event where the origin is in error is bounded
by the probability of the event that the algorithm produces a non-empty excuse
graph.

The following two figures provide an example of the construction of a flat
excuse graph. The left-hand diagram in Figure 3.10 shows a finite section of the
medium dependency graph for an automaton while the right-hand diagram in the
same figure shows a finite section of the corresponding lattice dependency graph.
Assume that the error-threshold for each cell is two. The leftmost diagram in
Figure 3.11 shows an example fault set for the lattice as well as the resulting
error set. In the middle and rightmost diagrams, we illustrate the resulting flat
excuse graph. Notice that edge (b−1, c−1) is added while edge (b−1, c−2) is ignored
(as illustrated with a dashed edge). The edge (b−1, c−1) is a pseudo-edge because
b−1 does not actually depend on c−1. We include the pseudo-edge in the final
flat excuse graph to indicate that the threshold for the originating point (b−1

in this case) is lowered by one. The resulting flat excuse graph is shown in the
rightmost diagram with the relative timestep indicators removed. The timesteps
can be reconstructed by finding the length of a shortest path from a (the origin)
to the point in question. Because of this, we can actually ignore time and view
flat excuse graphs as being a graph on the medium rather than the lattice.

Lemma 22. Let W (A, a∗) be a weakened automaton for some majority automaton
A on a graph in (〈3, 9〉 ∪ 〈4, 7〉 ∪ 〈5, 5〉) ∩ Qbdd. Let qmax be the upper-bound on
cell input degrees (according to restriction Qbdd). Then for every k ≥ 0, a ∈M,
r ∈ L, and trajectory y ∈ {0,1},

|{G ∈ G̃(r, y) : |E(G)| = k}| ≤ (2qmax)
2k .
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Figure 3.10: The left diagram is a section of a medium dependency graph for an example
automaton, and the right diagram is the corresponding section of its lattice dependency
graph. The origin is a0, and the subscripts on points indicate their timestep difference
relative to the origin (which we have given timestep zero).

Legend:

Figure 3.11: This series of diagrams illustrates the creation of a flat excuse graph for
the example automaton in the previous figure. See the preceding text for a detailed
discussion of the meaning of the diagram sequence.

Proof. We bound the number of flat excuse graphs having k edges by estimating
the number of Euler circuits of length 2k consistent with our construction of the
flat excuse graph. Every undirected graph has an Euler circuit that traverses
each edge precisely twice (just double each edge and then every vertex has even
degree). We are given that the degree of every vertex is at most qmax. Consider
the construction of an Euler circuit starting from the origin r. At each vertex
along the circuit, there are at most qmax edges to choose from with at most
two orientations each. The inequality in the theorem statement immediately
follows.

Lemma 23. Let W (A, a∗) be a weakened automaton for some majority automaton
A on a graph in 〈3, 9〉∪〈4, 7〉∪〈5, 5〉. Then for every a ∈M, r ∈ L, and trajectory

y ∈ {0,1}, if G ∈ G̃(r, y) then

27 |V (G) ∩ FC | ≥ |E(G)| .

Proof. Suppose that A is an automaton on a graph from 〈5, 5〉, and let G be a flat
excuse graph as stated in the lemma. By the definition of a flat excuse graph, the
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vertex set is partitioned into a set of non-terminals N , and a set of terminals T .
By definition, G is a directed, acyclic, and connected graph rooted at point r (not
to be confused with the center-cell a∗). The non-terminal vertices have non-zero
out-degree and terminal vertices have zero out-degree. Only r has in-degree zero.
Our strategy is to show a fixed-fraction gap between the average out-degree of
non-terminals and the overall average in-degree. Such a gap proves that there is
a fixed fraction of terminal vertices (since the overall average out-degree is equal
to the overall average in-degree in any graph).

(Proof that average out-degree of non-terminals is ≥ 3/2.) The following
properties hold for all a ∈ N :

• If a = r, then a has out-degree two or greater.

• Vertex a has at most one child with out-degree one.

• If a has out-degree one, then all of its children have out-degree two or
greater.

• Any two vertices a and b with out-degree one do not share a neighbor c with
out-degree two. Proof: we can quickly conclude that a must be of type I
(that is, c has two parents, not a cousin-neighbor and a parent) since if b
shared a cousin-edge with c, b would only have a directed edge to c because
it needed out-degree two, a contradiction. As a general property of 〈5, 5〉
graphs, both of the parents of a type I vertex are type III vertices, and type
III vertices have out-degree two by the construction of W (A, a∗).

Therefore, simple accounting says that there are at least as many vertices with
out-degree two or more as there are vertices with out-degree one. Thus, the
average out-degree of non-terminal vertices is at least 3/2.

(Proof that average in-degree of all vertices is ≤ 4/3.) Except for r, all vertices
have in-degree at least one but not more than two. Any type-II vertex has in-
degree two and has no input-cells with in-degree two (by Theorem 10 and our
modification). The remaining vertices are of types I or III and have in-degree one
(by Theorem 10) and at most one of their children is of type II. We can easily
show that all children of a vertex with in-degree two have in-degree one, and
any vertex with in-degree one has at most one child with in-degree two. This,
combined with the fact that every second non-terminal vertex has at least two
input-cells (because their threshold is at least two), lets us conclude that the
average in-degree is at most 4/3.

In any graph the total in-degree equals the total out-degree (which is also the
number of edges in the graph). We therefore have the inequality

4

3
(|N |+ |T |) ≥ 3

2
|N | ⇐⇒ 8 |T | ≥ |N | .
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The set of terminals T is equivalent to V (G)∩FC . Graph G is planar, and this lets
us use Euler’s Formula (see [7, Corollary 4.2.10]) to conclude |V (G)| ≥ |E(G)| /3.
Since |N |+ |T | = |V (G)|, we have

27 |V (G) ∩ FC | ≥ |E(G)|.

The analysis for 〈3, 9〉∪〈4, 7〉 is similar to the analysis for 〈5, 5〉, but is simpler.
We therefore omit the details of the proof and just give the bounds.

For the case when A is on a graph in 〈4, 7〉, by the construction of W (A, a∗), it
is immediately true that the out-degree of every non-terminal is at least 2. With
some simple case analysis, the average in-degree of all vertices can be shown to be
at most 3/2. By the same argument as above for 〈5, 5〉, this gives the inequality

12 |V (G) ∩ FC | ≥ |E(G)|.

For the case when A is on a graph in 〈3, 9〉, by the construction of W (A, a∗),
it is immediately true that the out-degree of every non-terminal is at least 2.
With some simple case analysis (but slightly more complicated than is required
for 〈4, 7〉), the average in-degree of all vertices can be shown to be at most 7/4.
This gives the inequality

24 |V (G) ∩ FC | ≥ |E(G)|.

Therefore, the inequality 27 |V (G) ∩ FC | ≥ |E(G)| holds for all cases.

From Lemmas 22 and 23, the proof for Theorem 20 easily follows.

Proof (of Theorem 20). Let A be an automaton on a graph in (〈3, 9〉 ∪ 〈4, 7〉 ∪
〈5, 5〉)∩Qbdd. Let qmax be the maximum cell input degree according to restriction
Qbdd. Arbitrarily choose a center-cell a∗ ∈M. Now let B = W (A, a∗) be a weaker
version of A according to the description for W (A, a∗) given above. By Lemma
16, if both trajectories y = 0 and y = 1 are stable for B, then both trajectories
are also stable for A—in other words, if B can remember a bit, then so can A.
Therefore assume B is the automaton with y as the desired stable trajectory. Let
r be an arbitrary point. Then by Lemmas 22 and 23:

Pr[r ∈ Ex,y] ≤
∑
k≥0

∑
G∈eG(r,y),
|E(G)|=k

Pr[G]

≤
∑
k≥0

2qmax
2kεk/27

Therefore, limε→0 supr∈L Pr[r ∈ Ex,y] = 0 and y is stable for B by definition.
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3.3 Transient Faults

In the this section, we fill in some of the gap that remains in the classification of
majority-rule automata on various tessellations under the transient fault model.
Our next result (Theorem 24) shows that any majority-rule automaton on graphs
in [3, 6] ∪ ([∞, 4] ∩ Pfnt) ∪ [∞, 2] are intolerant of transient faults. Theorem 20
says that all automata on graphs in (〈3, 9〉 ∪ 〈4, 7〉 ∪ 〈5, 5〉) ∩ Qbdd are tolerant
of combined faults, while Theorem 14 says that automata on graphs in [3, 8] ∪
[4, 6] ∪ [∞, 4] are intolerant of combined faults. Ignoring the restriction of Qbdd

(which can be dropped for automata on graphs in 〈3, 13〉∪〈4, 9〉∪〈5, 7〉 according
to Theorem 19), this leaves open the question of transient-fault tolerance for
automata on graphs in 〈3, 7〉 ∪ 〈4, 5〉 ∪ 〈∞, 3〉. With some natural restrictions
(which are mostly technical and which we conjecture to be unnecessary), we
show that automata in this class are tolerant of transient faults.

Theorem 24. Every majority-rule automaton on a graph in [3, 6] ∪ ([∞, 4] ∩
Pfnt) ∪ [∞, 2] is intolerant of transient faults.

Proof. In all cases, we demonstrate the existence of a finite self-sustaining island
of errors that includes an arbitrary cell a. Let 0 or 1 be the desired stable
trajectory. We ignore the trivial case where a is in a finite component of the
graph.

Suppose that A is an automaton on a graph in ∈ [3, 6]. Consider the set of
cells UM(a). By the restrictions on cells in UM(a), every cell in UM(a) receives
a majority of its inputs from other cells in UM(a). Therefore, UM(a) forms a
self-sustaining island of error when a cell in UM(a) is simultaneously in error.

Suppose that A is an automaton on a graph in ∈ [∞, 4] ∩ Pfnt. Then a is a
vertex on finite cycle C in the graph. Suppose that the cells at every vertex on
C are simultaneously in error. By the degree restrictions on cells in C, every cell
on C receives a majority of its inputs from other cells on C. Therefore, cycle C
forms a self-sustaining island of error when every cell in C is simultaneously in
error.

Finally, suppose that A is an automaton on a graph in [∞, 2] and let b be a
neighbor of a. If a and b are ever both simultaneously in error, then they remain
in error on all subsequent steps regardless of whether a and b also have neighbor
cells. Therefore a and b in error form a self-sustaining finite island of error.

The next theorem (Theorem 25) shows that there exist automata on graphs in
〈∞, 3〉 that are tolerant of transient errors, and therefore the restriction of [∞, 4]
to Pfnt is necessary. With the proof of Theorem 25 (and all other results in this
chapter), as a corollary, we will have given the complete classification of majority-
rule automata on the regular tessellation graphs {p, q} for both the transient and
the combined fault models. These results for the regular tessellations, which fall
out as special cases from our more general tessellations, are summarized in Figure
3.12
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Figure 3.12: A summary of results for majority-rule automata on the regular tessella-
tions {p, q}.

Theorem 25. Every majority-rule automaton on a graph in ((〈3, 7〉 ∩Pbdd,par)∪
(〈4, 5〉 ∩ Pfnt,par) ∪ 〈∞, 3〉) ∩ Qbdd can remember a bit under the transient fault
model.

Before presenting the proof of Theorem 25, we present some supporting defi-
nitions and results. The key result on which Theorem 25 relies is the theorem of
Toom [30] to which we referred in the Introduction as “Toom’s Theorem.” We
state the theorem almost exactly as it appears in [30], and we indicate where our
terminology differs in the footnotes.

Theorem 26 (Theorem 1 of Toom in [30]). An automaton10 and trajectory11 y
are given. Let there be n real functions L1(·), . . . , Ln(·) on L and two numbers
r > 0, R > 0, so that the following four conditions hold for all points a, b, all k
from 1 to n, and all xU(a) ∈ XU(a):

1. |U(a)| ≤ R; |{c : a ∈ U(c)}| ≤ R.

2. b ∈ U(a) =⇒ |Lk(b)− Lk(a)| ≤ 1.

3.
∑n

k=1 Lk(a) = 0.

4. φa(xU(a)) 6= ya =⇒ ∃c ∈ U(a) such that xc 6= yc and Lk(c)− Lk(a) ≥ r.

Then y is a stable12 trajectory of the automaton.

10Toom calls an automaton a “combine.”
11Toom lets y be an arbitrary configuration, but then points out that only trajectories can

satisfy the theorem.
12Toom defines stability by taking a supremum over a set of measures. Our definition of

stability can be shown to be equivalent to Toom’s.
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Toom’s Theorem is a generalization of the technique first used by Toom to
show that “Toom’s Rule” is tolerant of transient faults. The proof involves a fairly
technical construction, and we refer the interested reader to the paper where it
appears for details. Although it is a very general theorem, it seems to have only
been used (by Toom and others) to prove results for automata with media that
are in finite-dimensional Euclidean spaces. The proof of Theorem 25 is likely
its first application to automata on graphs that require hyperbolic space to be
embedded with bounded distortion.

Toom’s Theorem requires a way of assigning addresses to cells. For cells on
a medium indexed by Zd, the addressing scheme is natural and trivial. For a
regular hyperbolic tessellation, there are likely natural addressing schemes based
on their finite group presentation, but even then, it is not obvious that such ad-
dressing schemes are well suited to the needs of Toom’s Theorem. Furthermore,
we require addressing schemes for relatively unstructured hyperbolic tessellations
that satisfy certain global properties. Our strategy is specialized to the require-
ment of easily determining (close-to) shortest-path distances between vertices.
The shortest-path-distance requirement arises naturally from the strategy of re-
membering a bit using majority functions. We now present a particular definition
for an “addressing scheme” along with some supporting definitions.

An edge-coloring of a graph G is a map c : E(G) → S where S is a set of
colors such that c(e1) 6= c(e2) when e1 and e2 are adjacent edges. With an edge-
coloring, a path between two vertices can be described by giving the sequence
of edge colors encountered along the path. We can directly use an edge-coloring
to make an addressing scheme. With an origin vertex specified, the address of
another vertex is given by a list of colors. The inverse of any path is simply the
sequence of colors in reverse order.

Definition 10 (addressing scheme). An addressing scheme for a graph is an
edge-coloring and a specified vertex from the graph called the origin. We call an
addressing scheme either finite or infinite according to the number of colors used
by the edge-coloring.

Our results require finite addressing schemes with the following property:

Definition 11 (shortest-path-invariant). We call an addressing scheme shortest-
path-invariant with respect to a fixed origin if, for every color k and for every
vertex a, the number of edges of color k is the same for all shortest paths from
the origin to a. In other words, the number of edges of any particular edge color
is invariant for any pair of shortest paths from the origin to a vertex.

Notice that it is not true in general that if a shortest-path-invariant addressing
scheme exits, then any two valid addresses with the same color counts correspond
to the same cell.13 Figure 3.13 gives an example of an addressing scheme for the
regular tessellations {4, 5} along with an idea of how its construction is achieved.

13Infinite cubic lattices in Rd do have addressing schemes with this property.
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Figure 3.13: The edge coloring of the {4, 5} graph is obtained from colors of intersecting
geodesics in its dual graph ({5, 4}). If x is taken as the origin, then the address of y is
either cab, cba, or bca. These are also the three shortest paths to y, the only difference
being a permutation of the edges.

Theorem 27. Every graph in (((〈3, 7〉 ∪ 〈4, 5〉) ∩ Pfnt,par) ∪ 〈∞, 3〉) ∩Qbdd has a
finite shortest-path-invariant addressing scheme with respect to any cell chosen as
the origin. The addressing scheme requires at most 5qmax − 6 colors where qmax

is the maximum vertex degree in the graph.

The proof of Theorem 27 requires a fair number of supporting lemmas and
definitions. So as not to interrupt the flow of results in this section, we leave its
proof and supporting results to the appendix.

Let A be an automaton and let H be the graph obtained from the medium-
dependency-graph DM(A), but with all edges made into undirected edges and all
self-loops and multi-edges ignored. Suppose that G is a simple undirected graph.
We say that A is an automaton on a graph G if H is a subgraph of G. We always
assume that V (H) = V (G) and that both H and G are connected graphs.

Given a desired trajectory y, a point a ∈ L, and a configuration xU(a) ∈ XU(a)

of a’s input-points, we say that “a will be forced into error” or “xU(a) forces a
into error” if φa(xU(a)) 6= ya. Equivalently, we could say a was forced into error if
a ∈ Ex,y and a /∈ Dx. Recall that Ex,y is the set of points in error (with respect to
trajectory y) and Dx is the set of failures (or points where the transition function
was not followed).

The following Theorem shows how a finite shortest-path-invariant address-
ing scheme can be used in combination with Toom’s Theorem to show that a
trajectory is stable.

Theorem 28. Let A be an automaton on a graph G ∈ G. Suppose that there
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exists a finite shortest-path-invariant addressing scheme for G with a∗ as the
origin. Further, we suppose that there is no dependence between cousin cells (with
respect to a∗ as origin). A trajectory y is stable if it is true that for any a ∈ L and
configuration xU(a) ∈ XU(a) that forces a into error, there exists distinct points
b, c ∈ U(a)∩Ex,y such that at least one of cells b or c is a child of a. Note that b
and c need not be distinct from a.

Proof. Let R be the number of colors used by the addressing scheme. Therefore,
for every point a ∈ L the following bounds hold: |U(a)| ≤ R, and |{b : a ∈ U(a)}| ≤
R. Let n = R+1 and let r = 1/(2n−1). For any point a ∈ L, and k ∈ 1, . . . , n− 1,
let ck(a) be the number of edges of color k on any shortest path from the origin
a∗ to a in G. Any shortest path will do since the addressing scheme is shortest-
path-invariant. For k ∈ 1, . . . , n− 1 define

Lk(a) =
−nck(a)− t(a)

2n− 1

and define

Ln(a) =
n

∑(n−1)
k=1 ck(a) + (n− 1)t(a)

2n− 1
.

Since there are no cousin-edges in the dependency graph, it follows that ck(b) −
ck(a) ∈ {−1, 0, 1} for any a, b ∈ L such that b ∈ UL(a). Since t(b) = t(a)− 1, we
have that |Lk(b)− Lk(a)| ≤ 1 (the scaling factor 1/(2n − 1) is designed to keep
this distance scaled to at most 1). The L-functions have been defined so that∑n

k=1 Lk(a) = 0 for all a ∈ L. We have now shown that the first three conditions
of Theorem 26 (Toom’s Theorem) hold for automaton A independent of the choice
of trajectory y. The final condition in Toom’s Theorem depends on y and must
be verified for all L-functions. Let a ∈ L be a point that will be forced into error.
The theorem statement provides at least one point b ∈ UL(a) with xb 6= yb and

such that b is a child of a. This implies that
∑(n−1)

k=1 ck(b) =
∑(n−1)

k=1 ck(a) + 1
and therefore Ln(b) − Ln(a) ≥ r. For k ∈ {1, . . . , n − 1}, function Lk is always
satisfied since the theorem statement provides distinct points b, c ∈ UL(a) with
xb 6= yb and xc 6= yc. Since b and c are distinct, one of them, say d, is such that
ck(d) ≤ ck(a). Since t(d) = t(a) + 1, the difference Lk(d)− Lk(a) ≥ r. Therefore
y is stable by Toom’s Theorem.

Note that Theorem 28 works for general automata and general trajectories,
although it is best suited for automata with monotone transition rules. Theorem
28 provides an easy way to apply Toom’s Theorem by looking for simple properties
in the medium-dependency-graph and by considering the transition rule. One
difficulty can be in finding a finite shortest-path-invariant addressing scheme, but
many graphs are covered already by Theorem 27 as well as automata with media
equivalent to Zd. We provide an example of the application of Theorem 28 in the
following poof of Theorem 25.
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Proof (of Theorem 25). Let A be a majority-rule automaton on G ∈ ((〈3, 7〉 ∩
Pbdd,par)∪ (〈4, 5〉∩Pfnt,par)∪〈∞, 3〉)∩Qbdd and let a∗ ∈M be an arbitrary origin
cell. By Theorem 27, G has finite shortest-path-invariant addressing scheme with
respect to a∗. We assume that the desired trajectory y is either 0 or 1 since
“remembering a bit” only requires showing that these two trajectories are stable.

Suppose that G ∈ 〈∞, 3〉. Since G is a tree (with any origin a∗ as the root),
there are only parent and children relationships between cells. By the lower-
bound on the degrees of vertices and by the definition of a majority-rule automata
(Definition 6), it true that if any point a ∈ L will be forced into error, then there
exists at least two distinct points b, c ∈ U(a) ∩ Ex,y such that one of b or c is a
child of a. By Theorem 28, trajectory y is stable.

Suppose that G ∈ 〈4, 5〉. In general, there can be cousin-edges between ver-
tices, and therefore there can be dependence between cousin cells in the graph.
Let B be a pessimistic version of A (see Definition 8) defined as follows. Let
B be identical to A except for the following modification: all cells assume that
their cousins (assuming they depend on them) are constantly in error (with re-
spect to y). By Lemma 16, if trajectory y is stable for B, then it is also stable
for A. Therefore, we focus just on automaton B. By definition, B satisfies the
requirement of Theorem 28 in that cells do not depend on their cousins. By
Theorem 10, every vertex v ∈ V (G) is one of three types: (type I) the vertex
has exactly one cousin-neighbor and exactly one parent, (type II) the vertex has
no cousin-neighbors and exactly two parents, and (type III) the vertex has no
cousin-neighbors and exactly one parent. Assume that point a ∈ L will be forced
into error. If a is a type III cell, then it is trivial to apply Theorem 28. Suppose
that a is a type I cell. The error-threshold for a has been lowered by one (com-
pared to A) by the construction of B. If dG(a) is even, then the error-threshold
for a is at least three. Even assuming that both the point ∈ U(a) corresponding
to the parent-cell of a, and the point (a, t(a) + 1) are in error, there must still be
an additional point ∈ U(a) that corresponds to a child-cell of a and is in error.
If dG(a) is odd, then the error-threshold is one less (than the case where dG(a)
even), but a no longer depends on itself. In both cases, Theorem 28 applies. The
final case is when a is a type II cell. Since a had no cousin-edges to begin with,
the error-threshold for a is always one higher than when a is a type I cell. This
increased threshold compensates for a’s additional parent, and the analysis goes
through almost identically as when a is of type I. Therefore, by Theorem 28,
trajectory y is stable.

Finally, suppose that G ∈ 〈3, 7〉. The 〈3, 7〉 case requires some special handling
since we cannot apply Theorem 28 directly. We still apply Toom’s Theorem, and
will follow the strategy used in the proof of Theorem 28. By Theorem 38, the
periodic fault model is equivalent to the transient fault model14. Automaton A,
under the periodic fault model with fault-period two, is equivalent to the transient

14The proof of Theorem 25 is the only result in the thesis that references a result from a later
chapter. The results of Chapter 5 do not rely on any results from elsewhere in the thesis.
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model operating on a modified automaton B which “advances” A two timesteps at
a time for each timestep in B. Therefore, each cell a in B has U2(a) (w.r.t. A) as
its input-set. Therefore, it is sufficient to apply Toom’s Theorem to automaton B
under the transient fault model. Except for when noted, assume we are reasoning
about automaton B in the following.

The restriction Qbdd in the theorem statement implies that there exists a
constant qmax that bounds the degree of all vertices in G. Therefore, each cell
in B depends upon, and is depended upon by, at most R = (qmax + 1)2 vertices.
Thus, condition (1.) of Toom’s Theorem is satisfied.

For any point a ∈M, and k ∈ 1, . . . , n− 1, let ck(a) be the number of edges
of color k on any shortest path from the origin a∗ to a in G. Any shortest path
will do since the addressing scheme is shortest-path-invariant. Unlike the case
G ∈ 〈4, 5〉, for the case G ∈ 〈3, 7〉, we cannot assume that cells ignore their
cousins. Therefore, we must use the restriction on face15 degrees in G provided
by restriction Pbdd,par on 〈3, 7〉. Let pmax be the maximum face degree. Restriction
Ppar implies that all faces are of either odd- or even-degree parity. Observe that
〈3, 7〉 ∩ Pbdd,evn ∩ Qbdd ⊂ 〈4, 7〉 ∩ Qbdd, and recall that majority-rule automata
on graphs in 〈4, 7〉 ∩ Qbdd were shown to be able to remember a bit under the
(stronger) combined fault model by Theorem 20. Therefore, we assume that the
parity of all faces is odd. It can be shown that any two vertices a, b ∈ V (G) which
are at most shortest-path distance γ apart have a common ancestor at a distance
that is bounded as a function of γ and pmax. The distance between any cells a
and b (in automaton B) such that b ∈ UM(a) is at most γ = 2. Therefore, let the
bound on the distance to a nearest common ancestor be σ (the actual value of σ
is not important). Then |ck(a)− ck(b)| ≤ σ for all a, b ∈ M where b ∈ UM(a).
For all a, b ∈ L, if b ∈ UL(a) then t(b) = t(a) + 1. Let r = 1/((σ + 1)n− 1). For
k ∈ 1, . . . , n− 1, and a ∈ L, define

Lk(a) =
−nck(a)− t(a)

(σ + 1)n− 1

and define

Ln(a) =
n

∑(n−1)
k=1 ck(a) + (n− 1)t(a)

(σ + 1)n− 1
.

For all 1 ≤ k ≤ n, if b ∈ UL(a), then |Lk(b)− Lk(a)| ≤ 1 (note that 1/((σ +
1)n− 1) was chosen to keep this difference scaled to at most 1). Thus, condition
(2.) of Toom’s Theorem is satisfied. Since the L-functions are defined such that∑n

k=1 Lk(a) = 0 for all a ∈ L, condition (3.) of Toom’s Theorem is satisfied.
We now show that condition (4.) of Toom’s Theorem is satisfied. Let a ∈ L

be a point that is about to be forced into error by the points S = UL(a) ∩ Ex,y.

15Recall that we assume there is a particular plane-embedding for G which makes the notion
of “face” well-defined. We can view the embedding of G in the plane as defining the faces of an
infinite polyhedron.
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The functions L1, . . . , Ln−1 have been designed so that if we can show that for
every k ∈ {1, . . . , n−1}, there exists b ∈ S such that ck(b) ≤ ck(b), then condition
(4.) is satisfied for these L-functions. This is easily verified, but we first need to
get a handle on the cases we need to consider. Lemmas 8 and 9, and Theorem 12
show that all vertices have either one or two parents, at most two cousins, and at
least two children. For a moment, it will be better to think about automaton A
under the periodic fault model. Observe that every cell a depends (w.r.t. A) on at
least two non-cousin vertices c and d since the threshold for every cell (w.r.t. A)
is at least four. Therefore, with respect to any color k, only one of c or d can
have a higher color count in that color. This property also applies to c and d.
Therefore, if a will be forced into error (w.r.t. A under the periodic fault model
with fault-period two), then it depends on at least one cell in U2(a) that is not
larger in the kth color count. Returning to automaton B, there must exist b ∈ S
such that ck(b) ≤ ck(a). Thus, condition (4.) is satisfied for L1, . . . , Ln−1. The
final L-function, Ln has been designed so that if we can show that there exists
b ∈ S such that

∑n−1
k=1 ck(b) >

∑n−1
k=1 ck(a) (i.e. b is further from a∗ than is a), then

condition (4.) is satisfied for Ln. In this case, cousin neighbors (when they exist)
work to our advantage. Again, it will, momentarily, be better to think about
automaton A under the periodic fault model with fault-period two. Suppose, as
is the worst case, that a has two parents and two cousin-inputs and an error-
threshold of four. By properties of 〈3, 7〉 summarized in Lemmas 8 and 9, and
Theorem 12, it can be shown that the cousin-inputs of a both have at most one
parent. It can easily be verified with a few cases that b ∈ S exists such that∑n−1

k=1 ck(b) >
∑n−1

k=1 ck(a). Thus condition (4.) is satisfied, and the entire proof is
finished.
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Chapter 4

Quantitative Considerations

This chapter is devoted to more quantitative, rather than qualitative results.
The following section presents two results that establish asymptotically near-
matching upper and lower bounds on tolerable fault-rates in terms of bounds
on the number of neighbor cells in an automaton. The first result is a negative
result that gives a lower bound on the distance that the fault rate must be from
1/2 and still be fault tolerant (either transient or combined faults). The second
result is a positive result that gives an upper bound by showing the existence
of automata (with various number-of-neighbor-cell bounds) that can remember a
bit with combined fault-rates that approach 1/2. The final section presents an
infinite family of finite-sized, number-of-cell-neighbors-bounded automata that
can remember a bit for the theoretically longest possible time (asymptotically
speaking). These automata are based on expander graphs and provide a good
finite analogue to our results on hyperbolic tessellations.

4.1 Fault Rates

The combined fault model with an adversary is computationally weaker than the
transient or manufacturing fault models with adversaries. The transient fault
model with adversary is computationally weaker than the probabilistic transient
fault model. However, it is not true in general that the manufacturing fault model
with adversary is computationally less powerful than the probabilistic transient
fault model (consider these two fault models for an automaton consisting of a sin-
gle cell for example). We are most interested in the combined and transient fault
models and these are both covered by the probabilistic transient fault model.1 As
such, for the negative results in this section, we assume the use of the probabilistic
transient fault model.

1When the medium-dependency-graph for an automaton has the property that any pair of
paths between two cells have the same length, then the negative results found under the prob-
abilistic transient fault model also hold for the manufacturing fault model on this automaton.
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In this section, we seek conditions under which an automaton cannot remem-
ber a bit. Let Ak be the set of all binary automata in which every cellular
transition function depends on at most k inputs. For A ∈ Ak, let γ(A) be the
distance of the threshold from 1/2, such that if the fault-rate ε > 1/2 − γ(A),
then the automaton cannot remember a bit. Let γ(Ak) = infA∈Ak

γ(A). We will
show that γ(Ak) = Ω(1/

√
k) and γ(Ak) = O(1/

√
k/ log k).

We begin with the negative result. Our proof that γ(Ak) = Ω(1/
√

k) follows
from a negative result for noisy circuits of Evans and Schulman in [9] (which is
based on Evans’ Ph.D. thesis [8]). In [9], a noisy circuit is a circuit composed of
gates that fail with probability (exactly) ε (where ε ∈ (0, 1/2)).2 They prove the
following

Lemma 29 (Lemma 2, Section 1 of Evans and Shulman in [9]). Let G be a
circuit composed of ε-noisy gates. Suppose each input to G is X (a binary random
variable) or a constant. Let W be the vector of random values carried by a set of
wires in G. Then

I(X; W ) ≤
∑

P from X to W

(1− 2ε)2|P |

where the sum is over paths P in G from input X to wires in W , and |P | is the
number of gates on the path P .

The quantity which the sum bounds is the mutual information between ran-
dom variables X and W . For our purposes, W is just a single binary random
variable, say Y , representing a single output wire. The mutual information be-
tween X and Y is defined as

I(X; Y ) = H(X)−H(X|Y )

where H(X) is the entropy or self-information of X (as first defined by Shannon)
and H(X|Y ) is the conditional entropy of X given Y .3 It is not difficult to see
that I(X; Y ) = I(Y ; X). Intuitively, I(X; Y ) measures the difference between
our uncertainty about X and our uncertainty about X given that we know Y . If
X and Y are independent, then Y tells us nothing about X and H(X|Y ) = H(X)
and I(X; Y ) = 0. At the other extreme, if X determines Y , then H(X|Y ) = 0
and I(X; Y ) = H(X). In general, if Y is not independent of X and if X does not
determine Y , then 0 < I(X; Y ) < H(X).

Theorem 30. Let A be a binary automaton where the transition function of
each cell depends on at most k inputs. Then A cannot remember a bit when the
probabilistic transient model fault-rate ε exceeds 1/2− 1/(2

√
k).

2In [9] the term “err” is used rather than “fail,” but we will stick with our definitions for
failure and error to avoid confusion. They also write (1− ξ)/2 for the failure rate, but we will
stick with our convention of using ε to avoid confusion.

3Recall that H(X) = −
∑

x Pr[X = x] log2 Pr[X = x] and H(X|Y ) = −
∑

x,y Pr[X = x, Y =
y] log2 Pr[X = x|Y = y].
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Proof. For any binary cellular automaton, we can view the state of a cell a at time
n as a binary random variable ξn. We are interested in the ability of the automaton
to remember the 0 and 1 trajectories. Therefore, let ζ be a binary random
variable that indicates the bit to be remembered. To initialize the automaton,
all boundary points are set to ζ. We can view ξn as the output of a circuit of
depth n (give or take a constant, but this is unimportant here) which has ζ as
input. If the automaton is able to remember a bit, then I(ζ; ξn) remains bounded
away from 0. In other words if limn→∞ I(ζ; ξn) = 0, then the automaton cannot
remember a bit4. When we view ξn as the output of a circuit based on input ζ,
we find that the probabilistic transient fault model is equivalent to the ε-noisy
circuit model. The circuit G connecting input ζ to output ξn has the property
that any path from ζ to ξn contains exactly n gates (these n “gates” correspond
to the transition functions of n points). Furthermore, each gate has at most k
inputs by the assumption that A ∈ Ak. There are at most kn different paths from
ζ to ξn, and therefore, by Lemma 29

I(ζ; ξn) ≤ kn(1− 2ε)2n.

This implies that automata cannot remember a bit when

ε >
1

2
− 1

2
√

k
.

The argument in [9] and [8], follows the development of a similar type of nega-
tive result by Pippenger in [25]. Pippenger uses information theoretic techniques
to obtain a lower bound on formula depth (a formula being a circuit without
fanout one at gates). In [10], Feder generalizes Pippenger’s result to circuits us-
ing a probabilistic technique. Evans and Schulman’s argument provides sharper
lower bounds than Pippenger and Feder. Using Feder’s results, we would only
be able to only conclude that automata in Ak cannot remember a bit when their
fault-rate is > 1/2− 1/(2k).

To obtain an upper-bound on γ(Ak), we describe a family of automata B =⋃
k Bk where for every k (sufficiently large), Bk ⊂ Ak and B ∈ Bk can remember

a bit when the fault-rate is ≤ 1/2− 1/
√

k/ ln k.
The following result is the first result (of which we are aware) that gives

a construction for an automaton that can remember a bit for any given fault-
rate that is arbitrarily close to 1/2. Our automata work equally well under the
transient or combined fault models. The proof of Toom’s Theorem [30, Sec. 1,
Theorem 1], although showing stability for some of our automata (his theorem
does not cover automata with unbounded in-degrees), actually requires increas-
ingly smaller fault-rates as the medium dependency-graph vertex degrees increase.

4Fano’s inequality makes this precise. Gallager’s text [15] provides good background on
information theory.
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This is likely because Toom’s Theorem was formulated with finite-dimensional
Euclidean spaces in mind, and the theorem is only concerned with the stability
as the fault-rate approaches zero.

Theorem 31. Suppose that we are given 0 < δ < 1/2. Let A be a binary
automaton for which both 0 and 1 are trajectories and let either y = 0 or y = 1
be the desired stable trajectory. Suppose that the medium dependency-graph of A
is a forest. For each a ∈M, let h(a) represent the minimal number of inputs in
error necessary to force φa into error (h(a) must be a lower bound for both y = 0
and y = 1). Let d = mina∈M |U(a)| and suppose that there exists a constant m
such that |U(a)| ≤ 2h(a) + m for all a ∈M. If

d ≥ m + 2(ln 2)(m + 1− log2 δ)/δ2,

then A can tolerate a fault-rate of 1/2− δ under the combined fault model.

Proof. Let the fault rate ε be at most 1/2− δ, and let Pn = supa∈Ln
Pr[a ∈ Ex,y]

for n ≥ 0. We shall prove by induction on n that Pn is at most 1/2−δ/2. For the
base case, note that P0 = ε ≤ 1/2− δ < 1/2− δ/2. For the inductive step, note
that since Pn < 1/2, we have Pn < 1− Pn, 2(1− Pn) > 1, and 4Pn(1− Pn) < 1.

Then, for any a ∈ Ln+1 with n ≥ 0,

Pr[a ∈ Ex,y] ≤

ε + (1− ε)
∑

A⊆U(a),
|A|≥h(a)

Pr[(b ∈ Ex,y, ∀b ∈ A) ∧ (b /∈ Ex,y, ∀b ∈ U(a)− A)] = (∗)

The event represented by [(b ∈ Ex,y, ∀b ∈ A) ∧ (b /∈ Ex,y, ∀b ∈ U(a) \ A)] is
stochastically dominated by an event where each of a’s neighbors is independently
in error with probability exactly Pn (rather than at most Pn). We therefore get
the following expressions as upper-bounds on (∗):

(∗) ≤ ε +
∑

A⊆U(a),
|A|≥h(a)

Pn
|A|(1− Pn)|U(a)|−|A|

= ε +

|U(a)|∑
k=h(a)

(
|U(a)|

k

)
Pn

k(1− Pn)|U(a)|−k

≤ ε + Pn
h(a)(1− Pn)|U(a)|−h(a)

|U(a)|∑
k=h(a)

(
|U(a)|

k

)
≤ ε + Pn

h(a)(1− Pn)|U(a)|−h(a)2|U(a)|

= ε + Pn
h(a)(1− Pn)−h(a)(2(1− Pn))|U(a)|

≤ ε + Pn
h(a)(1− Pn)−h(a)(2(1− Pn))2h(a)+m

= ε + 2m(1− Pn)m(4Pn(1− Pn))h(a)

≤ ε + 2m(4Pn(1− Pn))(d−m)/2.
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To clarify the algebra, let c = (d − m)/2. Since the right side of the above
inequality does not depend on a but only on n, we have

Pn+1 = sup
a∈Ln

Pr[a ∈ Ex,y] ≤ ε + 2m(4Pn(1− Pn))c.

To finish the proof by induction, we need to find a lower bound on c such that

Pn+1 ≤ ε + 2m(4Pn(1− Pn))c ≤ 1/2− δ/2.

Given that Pn ≤ 1/2− δ/2 and ε ≤ 1/2− δ, it is sufficient to find c such that

(1− δ2)c ≤ δ/2m.

By taking logarithms and using the bound log2(1− δ2) ≤ −δ2/ ln 2, we find that
the induction holds when

c ≥ (ln 2)(m + 1− log2 δ)/δ2.

Substituting c = (d−m)/2 gives

d ≥ m + 2(ln 2)(m + 1− log2 δ)/δ2.

Therefore, supa∈L Pr[a ∈ Ex,y] ≤ 1/2− δ/2 when ε ≤ 1/2− δ and, by definition,
y is a stable trajectory for automaton A with fault rate ε ≤ 1/2− δ.

In Theorem 31, we require that |U(a)| ≤ s h(a) + m where s = 2. If we know
s < 2, then we can derive a better bound on d, but such bounds on s < 2 do not
correspond to any transition functions in which we are interested, and so we do
not bother to carry s through the calculations. If s > 2, then the technique used
above cannot work since we would get (2sPn(1 − Pn))c, but as Pn → 1/2, this
requires that s be arbitrarily close to 2 so that 2sPn(1− Pn) < 1.

Corollary 32. Let A be a binary automaton for which both 0 and 1 are trajec-
tories and let either y = 0 or y = 1 be the desired stable trajectory. Suppose
that the medium dependency-graph of A is a forest. For each a ∈ M, let h(a)
represent the minimal number of inputs in error necessary to force φa into error
(h(a) must be a lower bound for both y = 0 and y = 1). Suppose there exists
constants m and d such that d ≤ |U(a)| and |U(a)| ≤ 2h(a) + m for all a ∈M.
Let

δ =

√
2(ln 2)(m + 1) + ln(d−m)

d−m
.

If 0 < δ < 1/2, then y is stable under the combined fault model with fault rate
ε = 1/2− δ.
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Proof. To prove this corollary, we need to invert the inequality of Theorem 31.
Doing this we get

δ ≥

√
Wp(22(m+1)(d−m))

d−m
.

where W0 is defined (as in [4]) as follows. Let W be the Lambert W function
(or product log) which is the multivalued inverse of function w 7→ wew. When
the argument to W is a real ≥ −1/e, and if we require w > −1, then W is a
single-valued function ranging over the reals called the principal branch of the W
function and is denoted W0. Noting that W0(x) ≤ ln x when x ≥ e, we get the
expression for δ given in the theorem statement.

Corollary 33. For every q ≥ 81, if δ =
√

18 ln 2 + ln(q − 8)/
√

q − 8 then all
majority-rule automata on graphs in 〈3, q〉 can tolerate combined faults with fault
rate 0 < ε = 1/2− δ.

Proof. By the proof of Theorem 19, for q ≥ 14, we can construct a pessimistic
version B of any automaton A on a graph in 〈3, q〉 with the properties: (1) B’s
medium dependency graph is a tree, and (2) d = q−6 ≤ |U(a)| ≤ 2h(a)+8 for all
cells a in automaton B. By Lemma 16, A is tolerant of combined faults at a partic-
ular fault rate whenever B is. By Corollary 32, if δ =

√
18 ln 2 + ln(d− 8)/

√
d− 8

then B can tolerate combined faults with fault rate ε = 1/2 − δ. If q ≥ 80, the
δ > 0, and automaton A can tolerate combined faults with fault-rate 0 < ε =
1/2− δ.

At the beginning of this section, we defined the set of automata Ak and
function γ. It follows immediately from Theorem 30 that γ(Ak) = Ω(1/

√
k), and

from Corollary 33 that γ(Ak) = O(1/
√

k/ log k).

4.2 Automata on Expanders

An argument for studying automata with infinite cells is that it gives an indication
of the type of behavior to expect in finite automata with similar characteristics.
We have many many results for automata whose dependency graphs are trees or
are tree-like. For many such automata, we find that they can remember a bit for
an infinite amount of time with combined faults. Additionally, we have shown
that a large, and natural, class of automata with medium dependency graphs on
two-dimensional Euclidean lattices are unable to remember a bit. Restricted to a
finite medium, we wish to find automata that can remember a bit under combined
faults with an expected-value time exponential in the number of cells.

In [24, p. 33], Pippenger describes a gadget called a “compressor.” A (m, k, α,
β)-compressor is a bipartite multigraph with m inputs, m outputs, and k edges
incident with each input and output. Additionally, it has the following property:
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for every set A containing at most αm inputs, at most βm outputs are connected
to at least k/2 inputs in A. Using bipartite multigraph expanders of Jimbo
and Maruoka[17], Pippenger proves the following lemma (Lemma 3.2 in [24])
concerning the existence of an infinite family of compressors.

Lemma 34. For every m = p2 (p integral), there is a (m, 817, 1/64, 1/512)-
compressor. Furthermore, its incidence matrix can be computed in space O(log m).

The compressor property follows from the spectral properties of the graph.
Lemma 34 is used in [24] in a theorem about reliably computing Boolean functions
with noisy circuits. Following a similar approach, we use the lemma to suppress
errors in automata with finite number of cells.

Theorem 35. Let c = (e6/77)1/512 ≈ 0.985, and let the fault rate of automata
under the combined fault model be at most 1/512. For every m = p2 (p integral),
there exists an automaton with m cells and with constant degree inputs and outputs
that can remember the “all zeros” and “all ones” initial state for at least 1/cm/2

timesteps (except for with probability cm/2).

Proof. By Lemma 34, there is a (m, 817, 1/64, 1/512)-compressor with an explicit
construction. Let M = {a1, . . . , am} be the cells of the automaton. Each cell ai

has a transition function φai
which is an 817-input majority gate5. The medium

M acts as both the input and output sets of vertices in the bipartite graph defined
by the compressor. The input cells to each φai

is defined according to the input-
set-to-output-set edges defined by the compressor.

Initially, the cells are set to either the “all zeros” or “all ones” initial state.
We say that automaton has “not yet failed” so long as not more than m/64
cells have been in error at any given timestep from initialization to the present
timestep. When the first time that > m/64 cells are in error occurs, we say
that the automaton has “failed.” We wish to estimate the first time to failure.
Suppose that at most m/64 cells at timestep n are in error (after the faults for
that timestep have taken effect). Then at the start timestep n + 1, there are at
most m/512 cells in error. This is true by the property of the compressor that
there are at most m/512 outputs that receive at least half of their inputs from the
m/64 inputs in error. At each timestep, faults occur at each cell independently6

with probability at most 1/512. So long as no more than (7m)/512 faults occur
at a given timestep, then at most m/64 cells are in error at that timestep. Using
the Chernoff bound [22, Ch. 4], at most 7m/512 faults occur at each timestep

5The output from the majority function when the number of zero inputs equals the number
of one inputs can be chosen arbitrarily.

6Since there are manufacturing faults present, the probability of a fault at a cell from one
timestep to the next is not independent. However, amongst cells at the same timestep, the
probability of there being faults (transient or manufacturing) at every cell in a subset A of cells
is ≤ ε|A| where ε is the combined fault rate.
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except with probability at most (e6/77)m/512 = cm. By the union bound, the
first-time-to-failure is after at least 1/cm/2 timesteps, except for with probability
cm/2. Therefore, with high probability, the automaton remembers its initial state
for a time exponential in its size.

Since [24], the state of the art in expander graphs has improved considerably.
Different expanders could be used to construct more realistic automata with bet-
ter bounds, but we are mainly interested in the existence of a class of automata
like the family described in Theorem 35. See the recent paper [16] of Hoory,
Linial, and Wigderson for a good survey on expander graphs.

57



Chapter 5

Other Fault Models

There are a number of interesting variant fault models to consider. Notice that
manufacturing faults are a type of permanent fault; when a manufacturing fault
occurs at a cell, that cell is forever under the control of the adversary. Therefore, it
is important that the probability of a permanent fault at any given cell is bounded
for all time. If permanent faults are allowed to accumulate, then the probability
of any given cell being under the control of the adversary is arbitrarily close to
one after a sufficient number of timesteps. In this case, there clearly needs to be
some mechanism to fix permanently broken cells. Such a permanent-fault repair
mechanism would seem to require a significantly different type of fault model and
we consider it beyond the scope of this thesis. The initial-round manufacturing
fault model is the strongest type of permanent fault mechanism we consider.

Between the extremes of permanent and transient faults, we can describe a
class of faults called persistent faults. Persistent faults are like transient faults in
that they can occur at a cell at any timestep, but they are also like permanent
faults because their duration is longer than one timestep. The critical attribute
of persistent faults is that their expected duration (the interval of time during
which the adversary has control over the cell) is finite.

One persistent fault model we consider we call the delayed-repair fault model.
In this model, transient faults occur independently at each point in the lattice
with a bounded probability, but their effect is for a fixed number of timesteps
which we call the fault duration parameter.

It is obvious that the delayed-repair fault model “dominate” the transient fault
model in the following sense: if a trajectory is stable under the delayed-repair fault
model, then the trajectory is stable under the transient fault model. We make
this notion formal by saying that one fault model dominates1 the other fault
model if stability under the one implies stability under the other. Domination
is a transitive relation, and therefore, if two fault models dominate each other,

1Our definition of “domination” differs from the usual definition for “stochastic domination.”
However, we do use implicitly stochastic domination in the proofs of domination between fault
models.
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then we call them equivalent fault models. Note that stability is defined as the
probability of error going to zero as the fault-rate goes to zero. For a given fault-
rate, cells in an automaton may be more likely to be in error under fault model A
than under fault model B, but it is entirely possible that fault model B dominates
fault model A in our technical sense.

Theorem 36. The transient fault model is equivalent to the delayed-repair fault
model.

Proof. Let m be the fault duration for the delayed-repair model. Let β1 be the
fault rate for the delayed-repair fault model, and let β2 be the fault rate for the
transient fault model. Suppose that β1 < β2

m. For any (a, n) ∈ L, it is more
probable that {(a, n), (a, n+1), . . . , (a, n+m−1)} ⊂ FT under the transient fault
model than (a, n) ∈ FT under the delayed-repair fault model. By this reasoning,
the transient fault model dominates the delayed-repair fault model. Domination
in the other direction is trivial and therefore the fault models are equivalent.

Whereas it is obvious that persistent faults only have the potential to help the
adversary, we can describe a fault model that appears to be less advantageous
for the adversary. In the periodic fault model, faults only occur at fixed multiples
of timesteps rather than on every timestep. We call the timesteps where faults
occur fault-timesteps, and we call the timesteps when they do not occur faultless-
timesteps. The period for fault timesteps is called the fault-period. Clearly, the
transient fault model is dominated by the periodic fault model. Showing that
the converse holds is somewhat more difficult. To do this, we need to qualify the
result with a slight restriction on the class of automata considered: we require
that the in-degree and out-degree of each cell is bounded. We first present a
supporting lemma.

Lemma 37. Let A be an automaton where every cell has a cell-input set of
bounded size. Let m be a positive integer and let y be a trajectory. If

lim
β→0

sup
a∈L s.t.

t(a)≡0 (mod m)

(µ0 × νβ)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}) = 0,

(5.1)
then

lim
β→0

sup
a∈L

(µ0 × νβ)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}) = 0.

Proof. Let q be the bound on cell-input sets (the number of cells on which the
transition function depends). For a particular fault-rate β, suppose that Pr[a ∈
Ex,y] ≤ Pn for all a ∈ Ln. Then Pr[a ∈ Ex,y] ≤ qPn + β for all a ∈ Ln+1. After
m timesteps, we get the bound Pr[a ∈ Ex,y] ≤ qmPn + β(qm − 1)/(q − 1) for all

59



a ∈ Ln+m. Therefore, as the bound on errors over all points at multiple-of-m
timesteps and the fault-rate β both tend to zero, the bound on errors over all
points at all timesteps tend to zero.

Theorem 38. The periodic fault model is equivalent to the transient fault model
when restricted to automata where every cell has bounded cell-input and cell-output
sets.

Proof. Let m be the fault-period for the periodic fault model and let q − 1 be
the in- and out-degree bound on cells in the automaton. Let β1 be the fault
rate for the transient fault model and β2 be the fault rate for the periodic fault
model. Suppose that β1 < β2

qm

. Consider any finite subset of points A on
Ln+1 ∪ Ln+2 ∪ · · · ∪ Ln+m where n is a timestep that is a multiple of m. Under
the transient fault model, the probability that A ⊂ FT is β1

|A| < β2
qm|A|. Since

each cell is depended upon by at most q cells from timestep to timestep, at most
qm |A| points in Ln+m are influenced by the points in A. The probability that any
set of qm |A| points is in the fault set under the periodic fault model is β2

qm|A|.
Therefore, Pr[a ∈ Ex,y] for timestep n ≡ 0 (mod m) under the transient fault
model (with fault rate β1 less than β2

qm

) is bounded by Pr[a ∈ Ex,y] for timestep
n ≡ 0 (mod m) under the periodic fault model (with fault rate β2). Since y is a
stable trajectory under the periodic fault model, for the transient fault model we
can conclude that:

lim
β1→0

sup
a∈L s.t.

t(a)≡0 (mod m)

(µ0 × νβ1)({(FM , FT ) : ∃x ∈ Cy s.t. a ∈ Ex,y ∧Dx ⊆ FC}) = 0.

Since every cell has a bounded sized cell-input set, we conclude by Lemma 37 that
y is a stable trajectory under the transient fault model. Therefore, the periodic
fault model is equivalent to the transient fault model.

Theorem 38 is particularly useful because it is sometimes easier to demonstrate
stability using a seemingly weaker fault model. For example, in the proof of
Theorem 25, we use this theorem2 to enable the use of Toom’s Theorem to show
transient fault tolerance for majority-rule automata on graphs in 〈3, 7〉.

2Note that the results in this chapter did not use any results from elsewhere in the thesis.
Theorem 25 is the only result that uses a result from a later chapter.
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Chapter 6

Conclusion

We mention a few open problems and some conjectures.
As a general open problem, we note that many of our results are restricted to

monotone binary cellular automata, and to the problem of stability for the 0 and 1
trajectories (remembering a bit). It is likely that some of these restrictions can be
dropped for certain results. However, we often introduced such restrictions so that
we could rely on the adversary having an optimal (greedy) strategy. Therefore,
dropping the monotone and binary transition-rule restriction will likely require
significantly different types of arguments.

In section 2.1, we proved a negative result for remembering a bit with combined
faults by binary monotone automata on the lattice Z2. We conjecture that this
results holds if the transition rule is specified for any finite combination of two-
dimensional (Euclidean) lattices (for example, the honeycomb lattice).

In Chapter 3, we gave the complete classification of transient and combined
fault tolerant majority-rule automata when the cellular-medium is a regular hy-
perbolic tessellation {p, q}. All of the results related to this classification were
given for the (very general) classes of hyperbolic tessellations 〈p, q〉. For a few
values of p and q (always “edge cases”), we found it necessary to restrict the class
〈p, q〉 in various ways. We believe that almost all such restrictions are merely
technical requirements in our proofs. Chapter 3 introduced the idea of a finite
shortest-path-invariant addressing scheme as a way to provide addresses to cells
on a (general) tessellation. These addressing schemes were obtained by show-
ing the existence of graph edge-colorings that satisfy special properties. Besides
the two conjectures concerning addressing schemes (mentioned at the end of the
appendix), it would be interesting to explore the usefulness of these addressing
schemes for other problems. In [21], Margenstern describes a different sort of
addressing scheme for the {5, 4} tessellation which he calls the “pentagrid.” His
addressing scheme is tailored to the more general task of performing general com-
putation on the pentagrid (in the absence of faults). Our addressing schemes
are tailored for the specific task of capturing shortest paths between cells, but
our schemes are very general, even applying to the general classes of hyperbolic
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tessellations 〈p, q〉1.
In Chapter 4, we gave lower and upper bounds for the threshold distance (in

terms of a bound on cell-neighborhood size) of the fault rate2 from 1/2, for which
all binary automata cannot remember a bit. The upper and lower bounds agree
to within a logarithmic factor, and it is unclear to us what the correct order of
magnitude is.

1We conjecture that the restriction of bounded-degree faces on 〈p, q〉 (as required by Theorem
27 in the appendix) can be removed.

2The transient fault rate, but the combined fault rate is implied since this is a negative-type
result.
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Appendix A

Addressing Schemes

The purpose of the Appendix is to prove Theorem 27 (proof on page 81) which
is a theorem concerning the existence of finite graph edge-colorings (see page
44) with particular properties on certain subsets of graphs in G (Definition 5,
page 19). An edge-coloring for a graph can be used to define an addressing-
scheme (Definition 10, page 44). We are interested in finding finite shortest-path-
invariant (Definition 11, page 44) addressing-schemes in particular. All of the
results in the Appendix are graph theoretic, with little mention of automata, and
no mention of fault models. The only references out of this section (excluding
the aforementioned definitions) are to the graph theoretic results in Section 3.1,
with which we assume familiarly.

The remainder of the results in this section are for graphs embedded in the
plane. Following Coxeter and Moser in [6], we view simple, infinite, connected,
undirected, plane-embedded graphs as a type of generalized polyhedra. Our def-
inition of the set of graphs G provides the basis of our definition.

Definition 12 (polyhedron). A graph G ∈ G is called a polyhedron if its planar
dual1 is also in G.

A polyhedron will often be denoted by H and we may write V (H) and E(H)
to denote the set of vertices and edges respectively in the polyhedron.

Definition 13 (even-face-degree polyhedron). A polyhedron is called an even-
face-degree polyhedron if all faces have either even or infinite degree.

Definition 14 (edgeset). Let H be an even-face-degree polyhedron. Since faces
are finite, and every face has an even number of edges, the notion of “opposing-
edges” is well defined. The relation “opposing-edge” naturally defines an equiv-
alence relation on the set of edges. An edgeset is a set of all edges that are
equivalent under the opposing-edges relation.

1see Section 4.5 in [7] for a construction of the planar dual
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Let A and B be edgesets of H. We say that A intersects B at a face if there
exists non-opposing-edges a ∈ A and b ∈ B that bound a common face. If A
intersects itself at a face, then A is said to be self-intersecting at that face. It
is readily apparent that a finite edgeset must form a closed circuit of edges. We
therefore call a finite edgeset a loop.

We will often refer to the planar dual of a polyhedron and, in the remainder
of this section, if H is a polyhedron, we denote its planar dual by H∗ and we
might simply refer to it as the dual. Since we will often refer to a polyhedron
and its dual simultaneously, it will be convenient to use the terms node, arc, and
cell to refer to the dual versions of vertices, edges, and faces. Let H denote a
polyhedron. A node in H∗ corresponds to a face in H, an arc in H∗ joins nodes
and occurs whenever two faces in H are adjacent. Although we already use the
term “cell” when referring to the cells of a cellular automaton, this should not
be a cause for confusion; a cell in H∗ corresponds to a vertex in H and a vertex
represents the location of a cell in a cellular automaton. Furthermore, we do
not mention cellular automata anywhere else in this section. In the context of
the dual of a polyhedron, a cell is a region bounded by a set of arcs just as a
face is bounded by a set of edges in the original polyhedron. Just as V (H) and
E(H) refer to the set of vertices and edges in a polyhedron, we write nodes(H∗)
and arcs(H∗) to refer to the set of nodes and arcs in the dual. When H∗ is the
dual of an even-face-degree polyhedron H, we have the following definition which
corresponds to an edgeset in H.

Definition 15 (e-curve). Let H be an even-face-degree polyhedron, and H∗ be
its dual. For every edgeset in H, there is an associated set of edges in H∗ called
an e-curve. According to the construction of the dual (see [7], Section 4.5), every
edge in H is intersected by exactly one arc in H∗ and all such intersections are
transversal. An e-curve in H∗ is a union of the set of edges that intersect edges
in an edgeset in H and these arcs (or their nodes taken in sequence) naturally
define a path.

Since e-curves are fully defined once a polyhedron is defined, and since e-curves
are defined in the same plane as the polyhedron, we will often refer to the e-curves
of a polyhedron without explicitly mentioning the dual of the polyhedron. Figures
A.1 and A.2 illustrate e-curves in various polyhedra.

As a consequence of the way e-curves are derived from their edgeset coun-
terparts, it is apparent that e-curves intersect themselves and each other only
transversally. We can directly translate, to e-curves, the definitions given previ-
ously for edgesets that either intersect, self-intersect, or loop. In addition, it will
be convenient to speak of a path crossing an e-curve. Let H be an even-face-
degree polyhedron and H∗ be its dual. A path P in H crosses e-curve C in H∗

if an edge of P intersects an edge in C. If a and b are vertices in H, then C
is a separator of a and b if every path from a to b crosses C. Otherwise C is a
non-separator of a and b.
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Figure A.1: Three even-face-degree polyhedra. The solid lines define polyhedral edges
while the dashed lines indicate e-curves associated with edgesets. From left to right,
the polyhedra have three, two and one edgesets respectively. Since the polyhedra are
finite, all edgesets form loops.

Definition 16 (edgeset-coloring). An edgeset-coloring is an assignment of colors
to each edgeset subject to the restriction that any two edgesets that share a
common vertex in H have different colors. If the number of colors required is
finite, then H is said to have a finite edgeset-coloring.

Notice that an edgeset-coloring is an addressing-scheme. When we assign each
e-curve the same color as its associated edgeset, we have a definition for coloring
e-curves:

Definition 17 (e-curve-coloring). An e-curve-coloring is an assignment of colors
to e-curves such that by coloring each e-curve’s associated edgeset, an edgeset-
coloring is obtained.

Any e-curve-coloring results in a dual polyhedron with the property that for
every cell, the set of e-curves bounding the cell all have different colors. Con-
versely, if the set of e-curves in the dual of a polyhedron can be colored such that
this property is satisfied, then the polyhedron has an edgeset-coloring with the
same colors.

Definition 18 (kink-free polyhedron). A kink-free polyhedron is an even-face-
degree polyhedron in which every pair of e-curves intersect at most once, and
every e-curve does not self-intersect.

We would like to characterize the distance between two vertices by the e-
curves which separate them. Figure A.2 shows an example of a non-kink-free
polyhedron on the left and a kink-free polyhedron on the right. Notice that the
shortest path between α and β in the non-kink-free polyhedron involves a non-
separating e-curve, while for the kink-free polyhedron, only separating e-curves
cross. We show that distances in kink-free polyhedra are characterized by the
number of separating e-curves in the following theorem.

Lemma 39. All e-curves in a kink-free polyhedron are infinite.
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Figure A.2: These two figures show portions of infinite polyhedra (solid lines) and their
e-curves (broken lines labeled Ci). The left polyhedron is not kink-free, and the shortest
path from α to β crosses C4 twice. The right polyhedron is kink-free, and all shortest
paths from α to β cross the same set of e-curves exactly once. The three shortest-path
e-curve sequences are (C2, C8, C7, C1, C4), (C2, C8, C7, C4, C1), and (C4, C7, C8, C2, C1).

Proof. An immediate consequence of the definitions for e-curves and kink-free
polyhedron is that any e-curve that is not infinite is formed from a simple closed-
loop of arcs such that no two arcs intersect one another. Assume for the sake of
a contradiction that C0 is a finite e-curve, and thus we can speak of the interior
and exterior of C0 (recall that polyhedra have no vertex accumulation points).
Now C0 contains at least one arc, and every arc is intersected by an edge (its
unique dual edge), call it e0 (as illustrated in Figure A.3). One vertex, v0 of e0

must be in the interior C0. By the definition of an even-face-degree polyhedron,
every vertex is the corner of an even-degree face of degree ≥ 4. Call this face
F0. The e-curve C0 bisects F0, and since F0 has at least 4 sides, there is an edge,
call it e1, on F0 adjacent to e0 and in the exterior of C0. Through this edge
there must be an e-curve C1 and this e-curve must enter the interior of C0, since
all e-curves intersecting a face meet at a common node and intersect each other
transversally. By the definition of kink-free, self-intersection is forbidden, so C0

and C1 are distinct e-curves. But C1 must again exit the interior of C0 since the
interior of C0 is finite. Thus, C1 intersects C0 twice, a contradiction.

Recall that our goal in this is to show that a particular class of polyhedra have
finite shortest-path-invariant addressing-schemes. Our strategy is to show that a
subset of kink-free polyhedra have finite e-curve-colorings, and to then use this
property to prove the existence of our desired addressing-schemes.

Suppose we demonstrate that a particular kink-free polyhedron has a finite
e-curve-coloring. The finite e-curve-coloring provides a finite addressing-scheme,
but we cannot yet make the claim that it is also shortest-path-invariant. We must
first show that: (1) every shortest path between two vertices crosses all separating
e-curves exactly once (fairly obvious), and (2) all shortest paths between two
vertices that cross non-separating e-curves cross the same number e-curves of
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Figure A.3: Finite e-curves are forbidden in kink-free polyhedra. E-curves are repre-
sented in dashed lines, edges are solid lines, vertices are black dots, nodes are white
dots, and face F0, which is of degree ≥ 4, is shaded.

each color (not so obvious). We address these concerns in Lemma 41 by proving
that for kink-free polyhedra, no non-separating e-curves are ever crossed on a
shortest path between vertices.

In our upcoming discussion, it will be convenient to view the plane as mapped
to the unit disc where the origin (chosen arbitrarily) is at the center and the unit
circle is the boundary at infinity. Note that this boundary is not a point, and
therefore two infinite lines may, or may not, intersect at infinity 2. By Definition
15 and Lemma 39, every e-curve in a kink-free polyhedron is a doubly infinite
sequence of distinct arcs and therefore all e-curves intersect the circle at infinity
in two places. Every e-curve therefore bisects the unit disc.

We will at times find it useful to introduce the interior of a cell as a hole at the
origin of the unit disc, thereby transforming the disc into an annulus. Anything
exterior to the hole is defined to be “below” the hole. Think of the annulus as a
cylinder with a hole at the top, and the circle at infinity at the bottom. Since all
e-curves bisect the plane, and since we always chose the hole so that it does not
intersect an e-curve, phrases such as “the half of the plane containing the hole”
are well defined when it is understood that the two “halves” of the plane are with
respect to a bisecting e-curve.

Let A be an e-curve. A point not on A is above A if it is in the half of the
plane containing the hole, and it is below C if it is in the other half. Let B
be an e-curve distinct from A. If A does not intersect B, then there are three
topological possibilities: (1) If B cannot be continuously transformed so as to be
arbitrarily close to the hole without any part of B passing through A, then B is
said to be below A and we write B � A. (2) If the previous statement is true
when the labels A and B are reversed, then B is said to be above A and we write
B ≺ A. (3) If neither of the previous two statements hold, then A and B are said
to be peers.

When speaking of a kink-free polyhedron, we assume that the underlying

2This phenomenon corresponds to the distinction between parallel and ultra-parallel lines in
hyperbolic geometry.
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polyhedron and its dual are defined. We also assume that a cell is chosen (called
the origin cell) and we let the interior of this cell be the hole of the annulus.

Lemma 40. Let H be a kink-free polyhedron embedded in an annulus with origin
cell F0 serving as the hole. Then every point in the annulus is below at least one
of the e-curves bounding F0.

Proof. Assuming that we label e-curves in a counter-clockwise order, let C0, . . . ,
Cm−1 be e-curves bounding origin cell F0 as shown in Figure A.4. For 0 ≤
k ≤ m − 1, e-curve Ck (mod m) intersects Ck−1 (mod m) and Ck+1 (mod m) (assume
“i (mod m)” means the least non-negative integer k s.t. i − k ≡ 0 (mod m)).
Since kink-free e-curves are forbidden from intersecting each other twice, we see
that the union of all the regions below e-curves that bound the origin face cover
the entire annulus—each e-curve has two arms extending away from F0 and one
arm from each pair of intersecting e-curves interlock.

C1

Cm-2F0

Cm-1C0

Figure A.4: An annulus with cell F0 for the hole formed from e-curves C0, . . . , Cm−1.

Lemma 41. Let H be a kink-free polyhedron and let α and β be any vertices in
H. Any shortest path from α to β crosses only separating e-curves, and every
separating e-curve is crossed exactly once.

Proof. Let α and β be two vertices of H. By the definitions of separating and
non-separating e-curves, and by a simple parity argument, any path from α to β
must cross all separating e-curves an odd number of times and all non-separating
e-curves an even number of times. Since all separating e-curves are crossed at
least once, any shortest path from α to β: (1) crosses every separating e-curve,
(2) never crosses any non-separating e-curve, and (3) never crosses a separating
e-curve more than once. Consider the following algorithm for finding a path
between α and β. We described a path from α to β by a list of e-curves that
the path crosses starting from α. Assume that the list is initially empty and the
current cell is the cell containing α.

Repeat the following procedure “Path-Find”:

1. If the current cell contains β, then return the list and exit the algorithm.
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2. Choose any separating e-curve bounding the current cell that has not al-
ready been crossed. Add this e-curve to the list and cross into the opposite
cell.

We show that at every repetition, the following invariant is maintained: If the
current cell does not contain the destination, then the current cell is bounded by
at least one separating e-curve that has not already been crossed.

The invariant is proved by induction: we assume the invariant has held for all
previous steps, and show this implies that it holds at the current step. The “cur-
rent cell” contains the vertex where the end of the current path from a is located.
It will be useful to view H embedded in an annulus (as described previously). We
call the origin cell F0, and define it to be the current cell. At initialization, the
invariant is trivially true. If the current cell contains the destination cell, then
the invariant also holds. Therefore, assume that the current cell contains neither
α nor β.

For the sake of a contradiction, suppose that the invariant is false for the
current cell. This implies that every e-curve bounding F0 is either a separating e-
curve the algorithm previously crossed, or a non-separating e-curve. Consider any
e-curve C bounding F0. If C is a separator, then a is below C, since C must pass
between F0 and α exactly once. This implies that β is above C since C separates
α and β. If C is a non-separator, then α is above C since the current path has not
crossed C. In this case, β is also above C since C is a non-separator. Since C was
chosen arbitrarily from among e-curves bounding F0, there no e-curve bounding
F0 for which β is below. The two cases for C are illustrated in Figure A.5. By

α βF0

C

α βF0

C

Figure A.5: From left to right, these diagrams illustrate the configuration a separating
and a non-separating for an e-curve C which bounds the origin cell F0, according to
the construction in Lemma 41.

Lemma 40, every vertex outside of F0 is below at least one e-curve bounding F0.
This is a contradiction, and therefore it must be the case that the invariant also
holds for the current step.

With Lemmas 39 and 41 proved, it only remains to show that kink-free poly-
hedra (with minimal vertex degree 4) have finite e-curve-colorings. Unfortunately,
Theorem 53 and Conjecture 2 suggest that these restrictions are not sufficient cri-
teria for the set of e-curves to have a finite coloring. However, we can add further
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restrictions to the set of kink-free polyhedra without eliminating any polyhedra
in which we are ultimately interested.

Definition 19 (nice-e-curve-set). Let H be a kink-free polyhedron and let S be
its set of e-curves. S is called a nice-e-curve-set if the maximum degree of any
cell is p, and if one of the following two statements is true:

1. All cells have degree at least 5, and at least 2 e-curves intersect at every
node.

2. All cells have degree at least 4, and at least 3 e-curves intersect at every
node.

Definition 20 (level of a node and e-curve). Let H be a polyhedron with a
nice-e-curve-set S and origin cell F0. The level l(a) of a node a ∈ V (H∗), is
defined

l(a) = dist(nodes(F0), a).

The level l(C), of an e-curve C ∈ S is defined

l(C) = min
a∈nodes(C)

l(a).

By this definition, any e-curve with a node on the boundary of F0 is at level 0.

Lemma 42. Let G be a graph with S ⊆ V (G), vertices a, b ∈ V (G), and path P
from a to b. Then

|dist(S, a)− dist(S, b)| ≤ |P | .

Proof. Since function dist is a metric on the set of vertices, by the triangle in-
equality and by the definition of dist between a set and a vertex, we have:

dist(S, a) ≤ dist(S, b) + dist(a, b), and

dist(S, b) ≤ dist(S, a) + dist(a, b).

Since dist(a, b) ≤ |P |, the theorem follows.

Paths (which include finite paths, rays and double-rays) were previously de-
fined in Section 3.1, but we describe a few additional notational conventions
that we use in the remainder of the Appendix. For convenience, we will some-
times denote a path by an ordered list of its vertices such as v0v1 . . . vk, v0v1 . . .,
or . . . v−1v0v1 . . . if the path is either finite, a ray or a double-ray respectively.
If P = v0v1 . . . vk is a finite path then Pw denotes the path v0v1 . . . vkw or if
P = v0v1 . . . is a ray then wP denotes the ray wv0v1 . . .. Let P = v0v1v2 . . . be a
ray. By removing some finite number of vertices from the beginning of a P , we
get various subrays such as P1 = v1v2 . . . or Pk = vkvk+1 . . ..
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Lemma 43. Let G be a graph with S ⊆ V (G) and P = x0, x1, . . . , xn any shortest
path from S to xn. Then for each 0 ≤ k ≤ n, the subpath Pxk is a shortest path
from S to xk and |Pxk| = k.

Proof. By definition, |Pxk| = k for all 0 ≤ k ≤ n, and in particular, |P | = |Pxn| =
n. For the sake of a contradiction, suppose that Pxn−1 is not a shortest path from
S to xn−1. Then a path Q from S to xn−1 exists such that |Q| ≤ n − 2. But
then path Q augmented with edge xn−1xn is also a path from S to xn, and it has
length at most |Q|+1 ≤ n−1 < n, a contradiction. Therefore Pxn−1 is a shortest
path from S to xn. By induction, the argument extends to k ∈ {0, . . . , n− 2} as
well.

Lemma 44. Let S be a nice-e-curve-set with origin cell F0, and let A, B ∈ S. If
B � A, then l(B) > l(A).

Proof. Any shortest path from F0 to a node in B, first passes through a node in
A. By Lemma 43, there is always a node in A with a smaller level than any node
in B.

We do not use the term “polygon” in the main body of the thesis, and so we
use it here with the following meaning. All sets of e-curves under consideration
are assumed to be kink-free so that any two e-curves intersect at most once.

Definition 21 (polygon). Any set P of mutually intersecting e-curves that en-
close a finite connected region of the plane are said to form a polygon. We require
that a polygon has the following property. If a and b are two points within the
enclosed-region, and not on an e-curve in P , then a and b can be connected by
a curve that does not intersect e-curves in P . Finally, every e-curve in P con-
tributes more than one point to the boundary of the region (our polygon roughly
corresponds to the usual meaning of a “simple polygon”).

We call an intersection node between two e-curves in a polygon a polygon-
corner if this node is on the boundary of the finite region defined by the polygon.
The segment of an e-curve between two corner-nodes is called a polygon-segment.
It can be reasoned that there is a one-to-one correspondence between polygon-
segments, polygon-corners, and e-curves in a polygon. The degree of the polygon
is the cardinality of the set of its set of e-curves. Therefore, every set of e-curves
defining a cell forms a polygon, and any two cells that share a common arc can be
combined to create a larger polygon (the e-curve corresponding to the common
arc is not part of the new polygon).

Note that if an e-curve C bisects a polygon P1, then two new polygons P2 and
P3 are formed by two different subsets of P1 and the e-curve C. The degree of P2

(or P3) no more than that of P1. If C intersects a polygon-corner of P1, then at
least one of P2 and P3 is of degree strictly less than P1.
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Definition 22 (triangle). In an even-face-degree polyhedron, a set of three pair-
wise intersecting e-curves are said to form a triangle. An even-degree polyhedron
with no triangles is called triangle-free.

Lemma 45. Let H be an even-face-degree polyhedron where all vertices have
degree at least four. Then P is triangle-free.

Proof. For the sake of a contradiction, suppose there exists a set of three e-curves
P that form a triangle. P cannot define a cell, because the dual of a degree-three
cell is a degree-three vertex. Therefore, some other e-curve bisects P and forms
two new degree-three polygons P1 and P2. By Definitions 5 and 12, polyhedra
are vertex-accumulation-point-free, and therefore the process of bisecting triangles
ends after a finite number of bisections, since a eventually a polygon that is also
a cell is reached. This final polygon corresponds to a degree-three cell, which is
a contradiction.

Definition 23 (square-and-square). Let S be nice-curve-set. A square-and-square
structure S = P1∪P2 is a set of e-curves in S for which P1 and P2 are both degree-
four (“square”) polygons. Furthermore P1 and P2 share a common polygon-
segment corresponding to e-curve C such that (P1 ∪ P2) \ {C} is a polygon of
degree either four or five. See the first two diagrams in Figure A.6 for examples.

Definition 24 (square-and-pentagon). Let S be a nice-curve-set. A square-and-
pentagon structure S = P1 ∪ P2 is a set of e-curves in S for which P1 is a degree-
four polygon, and P2 is a degree-five (“pentagon”) polygon. Furthermore P1

and P2 share a common polygon-segment corresponding to e-curve C such that
(P1∪P2)\{C} is a polygon of degree either five or six. See the last two diagrams
in Figure A.6 for examples.

Lemma 46. A nice-e-curve-set contains neither square-and-pentagon nor square-
and-square structures.

Proof. Let S = P1 ∪ P2 ∪C be either a square-and-square structure, or a square-
and-pentagon structure with P1, P2 and C as described in Definitions 23 and
24 respectively. For the sake of a contradiction, suppose that a nice-e-curve-
set S contains such a S. The existence of a degree-four polygon in S implies the
existence of a degree-four cell in S and so, by Definition 19, at least three e-curves
intersect at every node in S. It can be shown with a few cases, that e-curve C
passes through at most one the corner-nodes in polygon (P1∪P2) \C. Therefore,
at least one of the two nodes that C passes through in S has only two e-curves
passing through it (when just the e-curves in S are considered). Call this node c.
But each node has at least three e-curves passing through it and so, there exists
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Figure A.6: The solid lines in each of the four figures represent sets of e-curves that
form either the square-and-square, or the square-and-pentagon structures. In an nice-
e-curve-set, these structures are forbidden since the their existence implies the e-curve
shown as a dashed line, and this e-curve implies (eventually) the existence of triangle
polygons. But by Lemma 45, nice-e-curve-sets are triangle-free. Lemma 46 provides
the proof in full.

an e-curve D ∈ S \ S that also passes through c. In Figure A.6, D is represented
by the dashed line.

Suppose that S is a square-and-square structure. Then e-curve D bisects one
of the two degree-four polygons, say polygon P1, at a corner-node of P1. But then
a subset of P1 ∪D forms a triangle. By Lemma 45, nice-e-curve-sets are triangle-
free, and we have a contradiction. Therefore square-and-square structures are
forbidden in S.

Suppose that S is a square-and-pentagon structure. Then e-curve D must bi-
sect P2 (the pentagon) to avoid triangles. Assuming that D is also avoids creating
a triangle with a subset of P2, then P2 ∪D creates a square-and-square structure
where D plays the role that C took previously. By the previous paragraph, this
leads to a contradiction. Therefore square-and-pentagon structures are forbidden
in S.

Lemma 47. Let A, B, and C be e-curves in a nice-e-curve-set such that B � A.
If C intersects B at node β, and C intersects A at node α, then l(β) > l(α).

Proof. Let F0 be the origin face. For the sake of a contradiction, assume that
l(β) ≤ l(α). Let Pβ be a shortest path from F0 to β. Let γ be the node on Pβ
that is the final node on curve A (as the path is traversed from F0 towards β).
Observe that γ 6= α, for otherwise l(β) > l(α) (by Lemma 43) which contradicts
the assumption l(β) ≤ l(α). Let γAα be the path from γ to α along curve A. By
Lemma 42, and by the fact that l(α) ≤ l(γ), we have l(α)− l(γ) ≤ |γAα|. Let ϕ
be the set of nodes along A, between γ and α. Then |ϕ| ≥ (l(α)− l(γ) + 1)− 2.
Let γ′ be the first node after γ on path γPβ. Node γ′ is distinct from β (since
triangles are forbidden by Lemma 45 and e-curves C and A already form two sides
of a triangle), and furthermore, no e-curve intersects both γ′ and any node of ϕ
(again because triangles are forbidden). Let ρ be the set of nodes along path γPβ,
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between nodes γ′ and β. Then |ρ| = (l(β)− l(γ) + 1)− 3 ≤ (l(α)− l(γ) + 1)− 3.
Figure A.7 illustrates the sets of nodes ϕ and ρ. Every e-curve through a node

ABC

α

β

γ

ρ

φ

γ'

...

...

Figure A.7: Diagram illustrating sets of nodes ϕ and ρ.

in ϕ, must pass through a distinct node in ρ, since otherwise a forbidden triangle
would be formed either between that e-curve and A and C, or between A and
two e-curves passing through nodes in ϕ that pass through a common node in ρ.
But |ϕ| − |ρ| ≥ ((l(α) − l(γ) + 1) − 2) − ((l(α) − l(γ) + 1) − 3) = 1. Therefore,
the assumption that l(β) ≤ l(α) leads to a contradiction.

Theorem 48. Let S be a nice-e-curve-set with faces of maximum degree p. Then
the e-curves in S can be colored with at most 5p− 6 colors such that the e-curves
bounding any cell are all of different colors.

Proof. Our strategy is to provide an algorithm for coloring all e-curves in a par-
ticular order with the property that whenever an e-curve is to be colored, there
are at most 5p− 7 already-colored e-curves constraining the choice of color.

As we have done previously, we map the set of e-curves (along with all com-
ponents of the defining polyhedron) onto the annulus. The algorithm begins by
choosing any cell to be the origin cell. We denote this cell F0 and recall that
the interior of this cell serves as the hole of the annulus. The set of m e-curves
bounding F0 are denoted C0, . . . , Cm−1. Since every cell has degree at most p, the
bounding e-curves can be colored with at most p colors.

For illustrative purposes, it will at times be convenient to display the annulus
as a flattened cylinder as shown in Figure A.8.

The algorithm colors e-curves in S one level at a time, and one node at a time,
starting with level zero and increasing. The e-curves C0, . . . , Cm−1 are colored
with ≤ p colors. Figure A.9 illustrates the constraints on a set of e-curves at a
node at level zero. Consider any two neighboring e-curves Cj and Ck that bound
F0 and meet at node a. By the definition of a polyhedron, a finite number of
e-curves can intersect at every node. The uncolored e-curves at a can be colored
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C1

Cm-2F0

Cm-1C0 F0

C0 C1 Cm-2 Cm-1

Figure A.8: The left-hand figure shows a set of m e-curves C0, . . . , Cm−1 displayed
on the annulus. The hole is the cell F0 is bounded by the m e-curves, and the circle
represents the circle at infinity. The right-hand figure shows the e-curves and hole
mapped onto a cylinder. The hole F0 from the annulus is at the top of the cylinder,
and the circle at infinity is the bottom of the cylinder. The left and right edges are
connected.

Ck

level 0

uncolored
curves

Ck+1

Figure A.9: Coloring a bundle of e-curves at level 0.

with two new colors by alternation. By Lemma 45, three pairwise intersecting
e-curves are forbidden, and each bundle of uncolored e-curves can see at most
two neighboring bundles. Therefore, the pairs of new colors used for each bundle
can be alternated for bundles intersecting node around F0. This requires at most
three pairs of additional colors. Therefore, the level zero e-curves require at most
p + 6 colors. Since p ≥ 4, p + 6 < 5p− 6.

With all e-curves at level 0 colored, the algorithm chooses any level-one node,
and colors all uncolored e-curves around that node. Then, a new level-one node
is then chosen and the process repeated until all e-curves at level one are colored.
The algorithms then proceeds to level two, and repeats. Since the degree of every
node is finite, there are only a finite number of e-curves to be colored at each
level. Therefore, every e-curve will eventually be colored. Figure A.10 illustrates
some of this process for a subset of e-curves up to level two.

We now show that when an e-curve is currently being colored by the algorithm,
it is not constrained by more than 5p− 7 colors. To show this, our we first show
that the e-curve currently being colored intersects at most four already-colored
e-curves. So, for the sake of a contradiction, suppose that e-curve C currently
being colored intersects five or more other e-curves. Since triangles are forbidden,
all e-curves that C intersects are pairwise disjoint. An e-curve C is a double-ray
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level 0
level 1
level 2

Figure A.10: A subset of e-curves in S where cell-degree ≥ 5. Each node and e-curve
has a well-defined level.

and therefore intersects the circle- at-infinity in two places, call them tail-1 and
tail-2. Any e-curve intersecting C separates either tail-1 or tail-2 from F0, the
hole of the annulus. When a set of pairwise non-intersecting e-curves separate
a common tail (or any common point on the annulus) from the hole, then the
relation � is a total order on the set. Therefore, if a set of five pairwise disjoint
e-curves intersect C, then at least three of these e-curves A1, A2, and A3 separate
a common tail of C. Let the labels on the Ai be such that A3 � A2 � A1. By
Lemma 44, l(A3) > l(A2) > l(A1), and by the order in which e-curves are colored,
l(C) ≥ l(A3). Let a1, a2 and a3 be the nodes along curve C that also belong to
A1, A2 and A3 respectively. By the fact that triangles are forbidden (Lemma 45),
we may suppose that A1, A2 and A3 are such that a1a2 and a2a3 are arc segments
along curve C, and therefore, by Lemma 47, l(a3) = l(a2)+1 and l(a2) = l(a1)+1.
For example, if there were a node a′ between a1 and a2 along C, then we could
choose the curve that intersects a′ rather than A1.

Let A = A1, B = A2, c = a1, and c′ = a2. Let b ∈ nodes(B) be such
that l(B) = l(b) and let Pb be a shortest path from F0 to b. Let a be the last
node (starting from F0) along path Pb to also be on curve A. If a = c, then
l(c) < l(b) (by Lemma 43), and so l(C) ≤ l(c) < l(b) ≤ l(B), which is impossible
since B is colored before C. Therefore a 6= c. If b = c′ then l(c) < l(c′), and
l(C) = l(c′) < l(c) ≤ l(C) which is a contradiction. Therefore b 6= c′. Let ϕ be the
set of nodes between c and a on curve A. By Lemma 42, |ϕ| ≥ (l(c)− l(a)+1)−2.
We wish to prove that either ab is an arc, or some e-curve passing through a node
in ϕ also passes through a node on B between c′ and b. If this happens, there
would exist a curve C ′ that intersect B and A and is distinct from C. For the
sake of a contradiction, suppose that ab is not an arc and that no e-curve passes
through a node in ϕ and a node on B between c′ and b. Then there exists node
a′ on path aPb, distinct from a and b such that aa′ is an arc. Since triangles are
forbidden, an e-curve passing through a node in ϕ cannot also pass through a′

from ϕ. Let ρ be the set of nodes on the path aPb between a′ and b. The current
setup is illustrated in Figure A.11. Since e-curve C is colored after e-curves A and
B, and since l(b) = l(B), it must be true that l(b) ≤ l(c). By this inequality and
by Lemma 43, |ρ| ≤ (l(b)− l(a)+1)−3 ≤ (l(c)− l(a)+1)−3. Since triangles are
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Figure A.11: The e-curves passing through nodes in ϕ must also pass through nodes in
ρ.

forbidden, every e-curve passing through a node in ϕ must also pass through a
node in ρ. However, |ϕ|−|ρ| ≥ ((l(c)−l(a)+1)−2)−(3 ≤ (l(c)−l(a)+1)−3) ≥ 1,
and there must exist an e-curve C ′ 6= C passing through e-curves A1 and A2.

We can repeat the same argument as above if we let A = A1, B = A2, a1 = c,
and a2 = c′. Therefore there exists C ′′ 6= C which also intersects e-curves A2 and
A3. Figure A.12 illustrates the one of a set of a potential relative-positions for e-
curves A1, A2, A3, C, C ′, and C ′′. If C ′ = C ′′ then this e-curve intersects A1, A2,

A1 A2 A3C

C''
C'

Figure A.12: The middle e-curve must create a forbidden structure.

and A3, and one of the two square-and-square structures is created. If C ′ 6= C ′′,
either at least one of C ′ and C ′′ intersects A1, A2 and A3 (creating one square-
and-square structure), or C ′ and C ′′ intersect at e-curve A2 (creating a different
square-and-square structure), or C ′ and C ′′ intersect at a common node between
A1 and A2 or between A2 and A3 (creating a square-and-pentagon structure). By
Lemma 46, square-and-square and square-and-pentagon structures are forbidden
for nice-e-curve-sets. Therefore an e-curve, currently being colored, intersects at
most four previously-colored e-curves.

By the order in which e-curves are colored, there cannot exist an already col-
ored e-curve D below C. Let a1, . . . , a4 be the (at most) four nodes (in order)
where C intersects already colored e-curves. We must argue that there can be
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no not-already-colored e-curves intersecting C between each of the e-curve seg-
ments {a1, a2}, {a2, a3}, and {a3, a4}. Each of the four already-colored e-curves
intersecting C have levels ≤ l(C) since they were colored before C. However,
if an e-curve D intersects C at one of the aforementioned segments, then it is
below at least one already colored e-curve, say E. By Lemma 47, this implies
that l(E) < l(D). But since E is not yet colored, l(E) ≥ l(C) ≥ l(E). This is
a contradiction. Therefore, the arcs a1a2, a2a3, and a3a4 exist. These three arcs
are part of three different cells with degree at most p. Therefore, C might be
constrained by p − 1 already-colored faces in each of these. Below a1 and a4, C
can be constrained to most p − 2 already-colored e-curves each. This brings the
total to 3(p− 1) + 2(p− 2) = 5p− 7 constraints at each step. Therefore, at most
5p− 6 colors are needed.

Theorem 49. Every polyhedron G in 〈4, 4〉 ∩ Pevn,fnt is kink-free.

Proof. The restriction Pevn,fnt implies that G is an even-face-degree polyhedron.
Therefore, edgesets (and their associated e-curves) are well defined. By Definition
18, it only remains to show that no edgeset intersects itself, and no pair of edgesets
intersect each other at two distinct faces. For the sake of a contradiction, suppose
that either a single e-curve bounds a finite region by intersecting itself at a single
face, or that two e-curves bound a finite region by intersecting each other at two
distinct faces. Let C be a set of one or two faces where the e-curve(s) intersect(s)
to bound a finite region of faces. Let B be the set of faces that the e-curve(s)
pass(es) through to form the boundary, excluding the intersection face(s). Let A
be the set of faces bounded by, but not including the sets B and C. Let P be the
polyhedron defined by faces A. Figure A.13 illustrates P , A, B, and C. For the

Figure A.13: Two bounding e-curves are shown as dashed lines. The faces in set C are
darkly shaded, while the faces in set B are lightly shaded. Set A consists of the faces
bounded by sets B and C. Polyhedron P is defined by the faces of A.

remainder of this proof, we imagine that P is in isolation from B and C. We still
reference B and C, but when speaking of vertices and edges in P , we only count
edges and vertices that make of faces of A. The boundary of P consists of the
set of vertices and edges that are common to A and to B ∪ C. Therefore, some
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of the vertices on the boundary of P have degree one or two less then they have
when considered the graph G. For example, in Figure A.13, the vertex labeled a
had degree two in P and degree four in G. We call the large face formed by the
boundary of P the exterior face ∂. In the calculations for the proof, we use the
following conventions. If F is a face, then V (F ) is its set of vertices and E(F )
is its set of edges. The degree of a face F is denoted d(F ), and the degree of a
vertex v ∈ V (F ) is denoted d(v). For any set of faces A, we let V (A) and E(A)
denote the set of all vertices and edges (respectively) that form the faces of A.

Let e = |E(P )|, v = |V (P )|, and f = |A| + 1 where the “+1” is to account
for external face of P . According to Euler’s formula

f + v − e = 2. (A.1)

Let b be the number edges (equivalently vertices) on the boundary. Since the
degree of every face in A is least four, and since every edge is shared by two
faces (when we include the external face), we have the inequality 2e ≥ 4 |A| + b.
Therefore

f ≤ 2e− b

4
+ 1. (A.2)

Let d be the sum of the degrees of all vertices on the boundary. Since each edge
has two end-vertices, we have the inequality 2e ≥ 4 |V (A) \ V (∂)|+ d. The total
number of vertices is |V (A) \ V (∂)|+ b, and therefore

v ≤ 2e− d

4
+ b. (A.3)

Combining inequalities (A.2) and (A.3) with equation (A.1) gives the inequal-
ity

2e− b

4
+ 1 +

2e− d

4
+ b− e ≥ 2 ⇐⇒ 3b− 4 ≥ d. (A.4)

Now the degree of every vertex in V (∂) \ V (C) is at least three. Only vertices
in V (∂) ∩ V (C) can have degree two or less. This can only occur when face in
C has degree four, and there is at most one such vertex per degree-four face in
C. An example is shown (notice vertex a) in Figure A.13 . Therefore |C| is
an upper-bound on the number of vertices with degree two or less. Therefore
d ≥ 3(b− |C|) + 2 |C| = 3b− |C|. Substituting this lower bound on on d into A.4
gives

|C| ≥ 4.

This contradicts the assumption that 1 ≤ |C| ≤ 2 (and also proves the stronger
result that 〈4, 4〉 ∩ Pevn,fnt is triangle-free). Therefore all G in 〈4, 4〉 ∩ Pevn,fnt are
kink-free polyhedra.

Lemma 50. Let G be a graph in G ∩ Ppar with the strong descendant property.
If G ∈ Pevn then there are no cousin-edges, and if G ∈ Podd then every face has
exactly one cousin-edge.
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Proof. By Lemmas 7 and 8, it is clear that for any G ∈ G ∩ Ppar, every face has
at most two cousin-edges. There is at most one edge whose end-vertices have
the maximum shell distance for the face, and we call this the “top” cousin-edge.
There is at most one edge whose end-vertices have the minimum shell distance for
the face, and we call this the “bottom” cousin-edge. Furthermore, it is clear that
every even-degree face has either exactly two cousin-edges or no cousin-edges, and
every odd degree face has exactly one cousin-edge. Therefore, the theorem holds
for every G ∈ Podd.

Suppose G ∈ Pevn and let F1 be a face. Suppose that F1 has a bottom cousin-
edge. Then the bottom cousin-edge of F1 is the top cousin-edge of another face F2.
Since F2 has a top cousin-edge, it must also have a bottom cousin-edge. Notice
that this creates an endless chain of faces. However, the level of each successive
cousin-edge in this sequence is strictly decreasing, and will therefore eventually
arrive at a face incident on the origin. But no face on the origin has a bottom
cousin-edge, and therefore F1 must have had no cousin-edges. Therefore there
can be no cousin-edges in G ∈ Pevn.

Although we have restricted most of the discussion so far to polyhedra with
even-degree faces, we can extend the definition and results concerning addressing-
schemes to certain polyhedra having one or more odd-degree faces. We give the
following definition which is designed to remove all cousin-edges from the a graph.

Definition 25 (shortest-path subgraph). Let G be a simple connected graph and
let a∗ ∈ V (G) be a fixed vertex called the origin. For b ∈ V (G), let dist(b) denote
the shortest-path distance to the origin. For all b, c such that {b, c} ∈ E(G),
either dist(b) = dist(c), or |dist(b)− dist(c)| = 1. We define a subgraph sp(G, a∗)
of G by removing every edge {b, c} ∈ E(G) for which dist(b) = dist(c). Graph
sp(G, a∗) is called the shortest-path subgraph of G (centered at origin a∗).

Lemma 51. For every simple connected graph G with a∗ ∈ V (G) the shortest-
path subgraph sp(G, a∗) is connected with V (G) = V (sp(G, a∗)), and has no odd
cycles.

Proof. Since the graph G is connected, there is a shortest path from the origin
to every vertex. By Lemma 43, the distance between neighbor vertices along any
shortest path is one. Therefore, every vertex in G, along with any shortest path
subgraph of G, is also in the shortest-path subgraph.

The vertices of the shortest-path subgraph are partitioned into two sets accord-
ing to the parity of their distance from the origin. Therefore, the shortest-path
subgraph is bipartite, and thus contains no odd cycles.

Proof. Let sp(G, a∗) = (V, E ′) be the shortest-path subgraph of graph G = (V, E).
Let a∗Pb be a shortest path from vertex a∗ to b in G. Let {u, v} ∈ Ea∗Pb.
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By definition |dist(u)− dist(v)| = 1 and therefore {u, v} ∈ E ′. It follows that
sp(G, a∗) is connected.

Let Vevn be the set of vertices with even shortest-path distance and Vodd be
the set of vertices with odd shortest-path distance. By definition, {b, c} ∈ E ′ =⇒
|dist(b)− dist(c)| = 1 =⇒ b ∈ Vevn and c ∈ Vodd or =⇒ c ∈ Vevn and b ∈ Vodd.
Therefore sp(G, a∗) is bipartite and thus contains no odd cycles.

Lemma 52. Let P be a kink-free polyhedron with an e-curve-set whose e-curves
can be colored with at most n colors such that e-curves bounding any cell (a face
in the dual) of P receive different colors. Then P has a shortest-path-invariant
addressing-scheme with n colors.

Proof. Let a be the origin of P and let b be some other vertex. By Lemma 41,
any shortest path from a to b crosses the same set of separating e-curves. A
separating e-curve corresponds to an edgeset, so let every edge in the edgeset
receive the same color as the separating e-curve. Since every edge corresponds to
a separating e-curve, every edge in the graph receives one of n colors. Each of
the edges around a face receive a distinct color because a cell formed by a set of
separating e-curves in the dual graph P ∗ corresponds to a vertex with its set of
incident edges P .

The following is a restatement of Theorem 27, provided for convenience before
we give its proof.

Theorem 27. Every graph in (((〈3, 7〉 ∪ 〈4, 5〉) ∩ Pfnt,par) ∪ 〈∞, 3〉) ∩ Qbdd has
a finite shortest-path-invariant addressing-scheme with respect to any cell chosen
as the origin. The addressing-scheme requires at most 5qmax−6 colors where qmax

is the maximum vertex degree in the graph.

Proof. If G ∈ 〈∞, 3〉 then G is a tree and trivially only qmax colors are needed for
the edge-coloring.

For the cases of G ∈ 〈3, 7〉∪〈4, 5〉, we note that cousin-edges are never included
on a shortest path from the origin to a vertex, and therefore never contribute to
the shortest-path-invariant address of a vertex.

Let G ∈ 〈3, 7〉 ∩ Pfnt,par. Arbitrarily choose a∗ ∈ V (G), and let G′ = sp(G, a∗)
be the shortest-path subgraph of G centered at origin a∗. By Lemma 50, the
parity condition on face degrees ensure that each face has at most one bounding
cousin-edge. By Lemma 8, G ∈ G implies that each vertex is incident on at most
two cousin-edges. Therefore G′ ∈ 〈4, 5〉 ∩ Pfnt,evn with maximum vertex degree
q′max = qmax if the parity was even, and q′max ≤ qmax− 1 if the parity was odd. By
Theorem 49, G′ is kink-free and has the property that its e-curves intersect at least
three to a node (in the dual), and all of its cells (in the dual) have degree at least
four. Therefore G′ is a nice-e-curve-set according to Definition 19. By Lemma 52,
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G′ has a shortest-path-invariant addressing-scheme with at most 5q′max−6 colors.
Now color the non-cousin-edges of G according to their colors in G′. If the face
parity of G is even, then G = G′ and we are done. If the face parity of G is odd,
then q′max ≥ qmax − 1 and G′ is colored with at most 5qmax − 11 colors. At most
three extra colors are needed to color the cousin-edges of G, and therefore at most
5qmax − 8 colors are needed for the shortest-path-invariant addressing-scheme of
G in this case.

Let G ∈ 〈4, 5〉 ∩ Pfnt,par. Arbitrarily choose a∗ ∈ V (G), and let G′ = sp(G, a∗)
be the shortest-path subgraph of G centered at origin a∗. If the faces of G are
of even degree, then G′ = G and by Theorem 49, Definition 19, Theorem 48,
and Lemma 52, G has a shortest-path-invariant addressing-scheme with at most
5qmax − 6 colors. If the faces of G′ are odd, then G ∈ 〈5, 5〉, and by Theorem
10 we see that G′ ∈ 〈8, 4〉 ∩ Pfnt,evn (we know that the degree of every face went
up by at least three because every face in G is incident on one cousin-edge).
Again, by Theorem 49, Definition 19, Theorem 48, and Lemma 52 we find that
G′ has a shortest-path-invariant addressing scheme with at most 5(qmax − 1)− 6
colors. Now color the non-cousin-edges of G according to their colors in G′. The
cousin-edges can be colored with a single additional color since by Theorem 10,
no vertex is incident on more than one cousin-edge. Therefore G can be colored
with 5qmax − 10 colors.

We conclude the Appendix with a couple of conjectures and a theorem related
to addressing-schemes.

Conjecture 1. Consider a regular tessellation {p, q} ∈ 〈3, 6〉∪〈4, 4〉. Then {p, q}
has a shortest path addressing-scheme with q colors for even p, and at most q + 1
colors otherwise.

Theorem 53. There exists an even-face-degree polyhedron that does not have a
finite e-curve-coloring.

Proof. Begin by drawing an infinite set of pairwise intersecting e-curves such there
is one infinite-sided face bounded by an triangles and all other faces are squares.
Now eliminate the infinite-sided face by adding and infinite set of e-curves that
intersect every node of every triangle on the infinite-sided face boundary and
continue to intersect the squares above the infinite face on the diagonals. Finally,
draw an infinite set of parallel e-curves on the infinite face that run perpendicular
to the other set of parallel e-curves just drawn. The induced tessellations is a half-
plane square lattice adjoined to an infinite honeycomb lattice. The boundary
between the two lattices is an alternating sequence of hexagons and squares.
The polyhedron is an opposing edge polyhedron, but by our construction, the
initial set of e-curves require an infinite set of colors. See Figure A.14 for the
construction.
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Figure A.14: A partially-drawn polyhedron and e-curves. The thinner lines represent
the polyhedron and the thicker solid and dashed lines are the edgeset e-curves. The
solid e-curve lines require an infinite number of colors to obtain an e-curve-coloring.

Conjecture 2. There exists an even-face-degree polyhedron that does not have a
finite shortest-path-invariant addressing-scheme and the polyhedron described in
the preceding proof is an example of this.
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[11] Peter Gács. Reliable computation with cellular automata. Journal of Com-
puter and System Sciences, 32(1):15–78, 1986.
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