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Abstract

Large numbers of overlapping classes are found
to be organized in hierarchies in many domains.
In multi-label classification over such a hierar-
chy, members of a class must also belong to all of
its parents. Training an independent classifier for
each class is a common approach, but this may
yield labels for a given example that collectively
violate this constraint. We propose a principled
method of resolving such inconsistencies to in-
crease accuracy over all classes. Our approach is
to view the hierarchy as a graphical model, and
then to employ Bayesian inference to infer the
most likely set of hierarchically consistent class
labels from independent base classifier predic-
tions. This method of Hierarchical Bayesian Ag-
gregation (HBA) can work with any type of base
classification algorithm. Experiments on syn-
thetic data, as well as real data sets from bioinfor-
matics, graphics, and music domains, illustrate
the behavior of HBA under a range of conditions,
and reliably demonstrates improvements in accu-
racy over all levels of a hierarchy.

1 INTRODUCTION

Large collections of classes are often organized into hier-
archies in many domains, such as the Gene Ontology in
bioinformatics, 3D object taxonomies in computer graph-
ics, genres in music classification, and web directory cate-
gorizations. In the general multi-label classification setup,
an example is allowed to belong to multiple classes, but a
hierarchical organization implies that members of a class
must also be members of all of its super-classes.

The popular conventional approach in multi-label classi-
fication scenarios is to decompose the problem into inde-
pendent one-class tasks. This allows the flexibility of us-
ing any available well-understood binary classification al-
gorithm as best suited for the data at hand, at the expense of
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ignoring correlations among classes. However, in the pres-
ence of a hierarchy, these correlations become hard con-
straints that are likely to be violated by independent pre-
dictors. Namely, an example may be predicted as positive
for one class and negative for its parent class, so obviously
at least one of them must be making a mistake. Not only
does this pair of predictions require modification to be se-
mantically valid with respect to the hierarchy, but also by
making the right modification, overall accuracy may be im-
proved.

In this paper, we propose constructing a Bayesian network
from the hierarchy to infer the most likely set of hierar-
chically consistent class labels from the (possibly inconsis-
tent) predictions of a set of independent base classifiers for
a given example. This framework of Hierarchical Bayesian
Aggregation (HBA) can accommodate any choice of base
classifier, as long as estimates of their prediction accuracies
are available on held-out validation data. The hierarchy it-
self can be any directed acyclic graph, not just a tree.

Other approaches to hierarchical classification include
training the classifiers in a top-down manner, where the
children are trained only on their parents’ members, and
are not consulted at all during evaluation if their parent
predicts negative [Cesa-Bianchi et al. 2004]. This results
in simpler classification tasks in the more specific classes,
but the higher-level classes derive no benefit from the hi-
erarchy despite the disproportionately large responsibility
of their errors affecting all descendants. In contrast, our
method allows classes at every level to be influenced by
parents and children alike.

Another category of algorithms train all base classifiers
in a correlated manner using the hierarchy, making the
hierarchical information available during training as well
as evaluation [Cai and Hofmann 2004, Dekel et al. 2004,
Dumais and Chen 2000]. However, these algorithms are
currently available as extensions to specific classification
models such as perceptrons or SVMs, while our method
transparently allows any choice of base classifier, and even
different models in the same hierarchy.

In Section 2 we describe how to construct the Bayesian net-
work, estimate its parameters, and perform inference. We
also give extensions of the method to handle more con-
strained hierarchical scenarios, such as disallowing posi-



tive non-leaf predictions without a positive child predic-
tion, or only allowing positive predictions in one class and
its ancestors, as well as an adaptation for ordinal classi-
fication. In Section 3 we present experimental results on
both synthetic data, and on three actual applications (from
the Gene Ontology, the Princeton Shape Benchmark, and
the MIREX 2005 Symbolic Music dataset) that empirically
illustrate the behavior of our method, and show that it im-
proves accuracy over all levels of a hierarchy.

2 METHOD

In this section we first formalize hierarchical consistency,
and then describe how to construct a graphical model to
infer the most likely hierarchically consistent labels for an
example, given possibly inconsistent prior predictions.

For a set of classes C4,...,C,, organized in a directed
acyclic graph (DAG) representing a general-to-specific hi-
erarchy, let pa(i) denote the indices of the parents of class
C;. Given an example z, for each class C; let the true la-
bel y; € {0,1} denote its membership in that class. The
hierarchical consistency constraint dictates all members of
a child class also belong to all of its parent classes; i.e., if
y; = 1, then y; = 1 for all j € pa(i). We are also given an
independent base classifier for each class C; which outputs
a prediction g; € {0, 1} for the example x, with no regard
to being hierarchically consistent among themselves. For a
given test example =, we want to determine the most likely
set of (consistent) true labels y1, . . . , y,, given the (possibly
inconsistent) base classifier predictions g1, ..., gn.

2.1 THE BAYESIAN NETWORK

Our goal is to model the joint probability distribu-
tion P(y1,...,Yn,91,.--,9n) in a compactly param-
eterizable way that allows efficient maximization of

Py, -y Ynlgis---s9n)-

Let us construct a Bayesian network from the hierarchy,
with edges to each y; from all y; : j € pa(i), and edges to
each g; from the corresponding y; (Figure 1). The network
will have a particular configuration of value assignments
for an example x (so technically all variables are also con-
ditioned on z, which is omitted for clarity since it is given).

This structure assumes conditional independence of the
prediction g; from any other prediction g; or true label
y; (j # 1) given its true label y;. The hierarchical edges
among the y nodes correspond to conditional class priors,
and effectively encode hierarchical consistency, while the
edges from y; to g; represent the predictive accuracy of the
base classifier. A set of predictions for an example x corre-
sponds to the g node values being observed, and any stan-
dard method of Bayesian network inference can be used
to obtain the maximum-likelihood assignment to the unob-
served y nodes (or the marginal probability of particular
classes, if desired).

(a) Hierarchy of classes

(b) Bayesian network

Figure 1: The class hierarchy (a) is transformed into a
Bayesian network (b). The y nodes are the binary-valued
hidden nodes representing actual membership to the class,
and the corresponding g nodes are the observed classifier
outputs.

2.2 PARAMETER ESTIMATION

Before inference can be performed, the parameters of this
model need to be estimated from data, which are the con-
ditional probability distributions for each variable given its
parents in the network.

Specifically, these parameters are the hierarchical class pri-
ors P(yi|¥pa(s)) Where ypq(i) denotes all parent y nodes
of y;, and the base classifier output distributions P(g;|y;)-
Although possible, it is not necessary to use the costly EM
algorithm to estimate these. P(y;|ypq(i)) can be straight-
forwardly estimated by frequency from training set labels.
Indeed, only P(y;|ypa(;) = 1) needs to be estimated (sim-
ply the ratio of parent positives that are also positive in the
child y;). Since training set labels must be hierarchically
consistent by definition, the probability that y; is positive
when any of the parents is negative, P(y; = 1|ypa(:) # 1).
will be zero, which is also what ensures hierarchical con-
sistency of labels during inference. If Laplace smoothing is
to be added, care must be taken to keep these probabilities
Zero.

The parameters P(g;|y;) represent the base classifier out-
put distributions to be expected on previously unseen ex-
amples, so estimating them over examples that have been
used in training is likely to be severely biased. Assuming
that the training data distribution reflects the test data dis-
tribution, part of the available data should be held out from
training, so the base classifiers can be evaluated on this
held-out validation set to provide a better estimate of their
performance on new examples. If training data is too scarce
to hold out completely, resampling methods such as k-fold
cross-validation or bootstrapping can be used instead.

In the case of discrete base classifier outputs, P(g;|y;)
can be estimated using the confusion matrices over held-
out data, where P(g; = 0O|y; = 0) will be the ratio
of negative examples classified correctly (TN/(TN+FP)),
P(g; = 1ly; = 1) will be the ratio of positive examples
classified correctly (TP/(TP+FN)), and so on.

If the base classifiers are able to output real-valued predic-
tions such as probabilities or confidence ratings, the contin-
uous distributions P(g; € R|y; = 0) and P(g; € Rly; =
1) can be modeled parametrically, for example as Gaus-



sians. If P(g; € R|y; = 0) is taken to be the Gaussian
N (o, 03), its parameters jo and of can be estimated as
the mean and variance of the base classifier outputs for
the held-out negative examples of that class. Similarly,
P(g; € Rly; = 1) = (u1,02) can be estimated over the
held-out positive examples of the class. Instead of explic-
itly converting them into binary outputs by manual thresh-
olding, providing real-valued base classifier outputs like
this allows the system greater freedom during inference,
as it will essentially be implicitly performing thresholding
for all classes to maximize overall accuracy.

See Figure 2 for an example using Gaussians to model
P(g; € Rly; = 0) and P(g; € R|y; = 1) where the base
classifier output is the median of 10 unthresholded support
vector machines for the “chromosome segregation” class in
the Gene Ontology. The histograms depict the output dis-
tributions on positive and negative held-out examples, from
which the mean and variance parameters are estimated for
inference.
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Figure 2: Modeling continuous classifier outputs using
Gaussians (“chromosome segregation” class of the Gene
Ontology). The histograms indicate the distribution of the
median outputs of 10 unthresholded SVMs over positive
and negative validation examples. (The y-axes have differ-
ent scales.)

2.3 INFERENCE

Once the Bayesian network is constructed, any Bayesian
inference algorithm can be used to compute the most likely
label configuration or marginal probabilities. Depending
on the hierarchy, an exact (e.g. junction trees), or approxi-
mate (e.g. Monte Carlo methods) inference algorithm may
be preferable. In the case of tree hierarchies, an extension
of the Viterbi algorithm to trees is available for efficient
linear-time inference [Durand er al. 2004].

Instead of the hierarchy-wide most likely binary label con-
figuration, it may also be desirable to compute an exam-
ple’s real-valued marginal membership probability for each
class. These values can then be thresholded at different lev-
els depending on the application, or can be used to rank all

examples for a class by membership probability.

2.4 VARIATIONS AND EXTENSIONS

We next discuss some of the many possible variations on
the basic technique outlined above.

24.1 Upward Edges

The hierarchical edges from each y node downward to
its children encode the assumption of conditional inde-
pendence of the children given the (positive) parent label.
Reversing these edges to point upwards in the hierarchy
(leaving the edges from y; to g; unaffected) still results
in an acyclic graph, and allows sibling nodes to be cor-
related, which may make more causal sense in practical
applications. This time the Bayesian network is param-
eterized over children, so P(y;|y.n(;)) Will be estimated
(where ch(i) denotes the child class indices of C;), and
P(y; = Olycni) # 0) will be kept zero to ensure hierar-
chical consistency. However, most hierarchies have many
more children than parents, so the increase in the number
of conditional probability entries (exponential in the num-
ber of children) will also result in fewer data available to
estimate each value, and the degradation in parameter ac-
curacy may offset the benefits of better causal modeling,
yielding worse inference results. In practice, both configu-
rations should be compared on the data at hand.

2.4.2 Forcing Leaf Predictions

Some applications may dictate that positive labels for each
example must propagate down to leaf nodes; that is, a non-
leaf node cannot be positive when none of its children are
positive. Here the children of a positive node obviously
must be correlated, and using upward edges as described
above with the additional setting of P(y; = llycnu) =
0) = 0 extends our method to this case. Inference under
these settings cannot result in label configurations with ter-
minal positive predictions at non-leaf nodes.

2.4.3 One-Class Predictions

Another possible variation on hierarchical predictions is to
require each example to belong to exactly one class, to-
gether with all of its ancestors (in the case of a tree, this is
a single branch from the root, but not necessarily reaching
a leaf). To accommodate this constraint, the binary y nodes
in our Bayesian network can be converted to be multino-
mial, with y; having |ch(7)| + 2 possible values, one for
“negative”, one for “terminal positive” (none of the chil-
dren are positive), and one for each child being positive.
The conditional probabilities will then be set to ensure that
when y; is “negative” or “terminal positive” all of its chil-
dren are “negative”, and when y; is “child y; is positive™ its
child y; is not “negative” and all other children are “nega-
tive”.

This constraint may also be combined with forcing leaf pre-
dictions, which will be akin to making a multi-class single-
label prediction over the leaf classes. While it is possible



to enforce the multinomial constraints using the upwards
arrows in the above case instead of downwards, this is not
necessary, as removing the “terminal positive” value from
the multinomial variables is sufficient.

2.4.4 Ordinal Classification

An interesting special case to consider is a single-branch
hierarchy, that is, a chain of classes, which may represent
an array of predictors for binary “greater-than” decisions
on an ordinal value range. For example, predicting user rat-
ings for movies over the ordered label set of one to five, we
may have the first classifier predicting whether the label is
greater than one, the second classifier predicting whether it
is greater than two, and so on. Ordinal consistency of these
predictions is equivalent to hierarchical consistency down
a single branch. Constructing our Bayesian network for
this chain hierarchy yields a hidden Markov model, which
makes the standard Viterbi algorithm directly applicable for
inference.

3 EXPERIMENTAL RESULTS

In this section we present results from experiments on syn-
thetic data to analyze the behavior of our method under
a range of conditions, and we present three real data sets
where we successfully applied it to improve accuracy and
ranking performance.

3.1 EVALUATIONS USING SYNTHETIC DATA

To illustrate its behavior over different hierarchies, data dis-
tributions, and base classifier accuracies, we evaluated Hi-
erarchical Bayesian Aggregation on a variety of synthetic
data.

To provide different data distributions, we generated two
types of synthetic data. In bottom-up data generation, ev-
ery class initially contains a fraction p of the examples as
positives, sampled independently. Then, given the hierar-
chy, each class also inherits all positives of its descendants.
This results in the number of positive examples growing
very quickly when going up in the hierarchy, especially for
large numbers of children. In top-down generation, top-
level classes contain a fraction ¢ of the examples as posi-
tives, and every child class has the fraction q of its parents’
positives, yielding ¢/t positives at a depth-j class in a tree
hierarchy. This yields a relatively more gradual change of
positive/negative ratio from one level to another, indepen-
dent of the number of children.

A base classifier for each class is assumed to be available,
yielding binary predictions on these examples, known to
have a fixed accuracy a, the probability of predicting the
correct label. We then construct our Bayesian network, and
infer the corrected predictions for each example as the most
likely true labels given the classifier predictions. The hier-
archical edges in the Bayesian network are downward for
the (uncorrelated) top-down data, and upward for the (cor-
related) bottom-up data.

Note that since our Bayesian network does not need to see
the input features, and the labels and base classifier outputs
are already available, it is not necessary to actually generate
the input features and train real base classifiers on them.
All we are concerned with is that these base classifiers have
made their predictions with a known accuracy.

We generated bottom-up data with p = 0.01 and top-down
data with ¢ = 0.75, over a € {0.70,0.80,0.90} on four
tree hierarchies: T2D4 and T2D6 are binary trees of depth
four and six, and T5D2 and T5D3 are 5-ary trees of depth
two and three, respectively. Accuracies before and after
Bayesian correction, averaged per node depth, are reported
in Table 1. Note that in terms of the fraction of positive
examples, T2D4 is identical to the top depth-4 subtree of
T2D6 for top-down data, to the bottom depth-4 subtrees of
T2D6 for bottom-up data, and a similar relationship holds
for T5D2 and T5D3; hence the depth columns are aligned
accordingly in the table.

3.1.1 Observations

Hierarchical Bayesian Aggregation clearly does improve
average accuracy in almost all cases. Large accuracy im-
provements can be found at every level.

Comparing T2D4 to T2D6 and T5D2 to T5D3 on top-
down and bottom-up data shows that the benefits from the
addition of new nodes at the top or the bottom of the hier-
archy gradually propagate to all other levels.

Closer inspection of the predictions T5D3 with a = 70%
on top-down data, as well as the local deteriorations in
some levels of the other cases, reveals that starting out
with relatively inaccurate classifiers hinders the improve-
ment from the aggregation. Note that the term “inaccurate”
is relative to the node. For example, the 70% accurate base
classifier at the root of T5D3 is worse than a constant pos-
itive prediction, as the root data is 75% positive.

To illustrate, in the absence of all hierarchical edges, in-
ference on the isolated two-node subnetwork y; — g; will
have one of four effects; y; will always be equal to g;, or al-
ways its reverse, or constant-positive, or constant-negative,
whichever maximizes accuracy. If g; has accuracy a and
the percentage of positives in the data is p, y; will effec-
tively disregard the information from the base classifier un-
less a > p and a > 1 — p. This condition is violated at the
italicized levels in Table 1, and although less unforgiving in
the presence of an actual hierarchy, improvement generally
suffers with such inaccurate classifiers. With base classi-
fiers that are generally better than constant predictions, ac-
curacy improvements are substantial.

The difference between having a broad and shallow hier-
archy versus a narrow and deep one can be observed by
comparing T2D4 to T5D2 (both have 31 nodes in total) and
T2D6 (127 nodes) to T5D3 (156 nodes). Except for the de-
generate 70% accurate case, T5D2 and T5D3 have larger
improvement at the root than their narrower, deeper binary
tree counterparts. However, the binary trees have larger im-
provements towards the lower levels, and therefore better
accuracy on average, as the (unweighted) average is dom-



Table 1: Synthetic Data Results. A is the base classifier accuracy, A; is the accuracy of the most likely labels after
inference, averaged over all classes, and AA=A;—A(, broken down by nodes at different depths in the tree, as percentages.
Italicized levels indicate base classifiers that are less accurate than a constant negative or positive prediction.

[NAME [A, | A, [ BA |

AA BY DEPTH (ROOT — LEAF) ‘

Top-down, 75% positive at root || ROOT
T2D4 | 70 | 78.6 8.5 -8.8 3.6 | 32 9.2 | 12.1
T2D6 | 70 | 84.8 14.8 -189 | -10.6 | -1.7 | 53 | 11.6 | 158 | 187
TSD2 | 70 | 66.9 -3.2 -14.2 | -8.6 | -1.7
TSD3 | 70 | 70.3 0.3 2226 | -16.1 | -56 | 2.3
T2D4 | 80 | 89.4 9.4 5.8 7.2 8.6 9.4 | 10.1
T2D6 | 80 | 93.7 13.7 7.4 9.7 | 109 | 122 | 133 | I13.8 | 14.3
TSD2 | 80 | 86.1 6.2 12.1 9.7 53
TSD3 | 80 | 89.4 9.4 18.7 13.5 | 12.0 | 8.7
T2D4 | 90 | 959 6.1 6.5 6.8 6.6 6.4 5.6
T2D6 | 90 | 97.8 7.8 6.7 6.9 7.9 8.2 82 | 8.1 7.6
TSD2 | 90 | 94.4 4.3 9.4 7.1 3.6
TSD3 | 90 | 959 5.8 10.0 9.6 8.0 5.2

Bottom-up, 1% positive at leaf LEAF
T2D4 | 70 | 96.1 26.1 39 | 16.0 | 23.3 | 26.9 | 29.1
T2D6 | 70 | 95.3 25.2 243 | 76 | 7.0 | 17.1 | 234 | 27.1 | 287
TSD2 | 70 | 97.4 27.4 3.7 | 24.3 | 29.0
TSD3 | 70 | 96.9 26.9 485 | 3.1 | 240 | 29.0
T2D4 | 80 | 97.1 17.1 39 | 106 | 153 | 176 | 19.0
T2D6 | 80 | 97.1 17.1 3.1 4.9 7.6 | 12,6 | 155 | 17.6 | 19.0
TSD2 | 80 | 97.3 17.3 -6.2 | 14.0 | 18.9
TSD3 | 80 | 97.3 17.3 -6.0 | -0.6 | 143 | 188
T2D4 | 90 | 98.9 9.0 5.1 6.5 84 | 9.0 9.7
T2D6 | 90 | 99.0 9.0 7.1 6.4 7.0 7.6 85 | 9.0 9.5
TSD2 | 90 | 98.6 8.6 14 | 6.7 9.2
TSD3 | 90 | 98.5 8.5 0.2 1.7 | 6.8 9.2

inated by the large number of leaves. In other words, to
reap the maximum benefit from Hierarchical Bayesian Ag-
gregation, it is better for a node to have immediate chil-
dren than to have them arranged in deeper levels, but deep
cascading benefits more nodes, and yields larger average
improvement in accuracy.

The distribution of improvement across the hierarchy varies
with the label distribution and base accuracy. Although
deeper nodes seem to get the largest improvement in gen-
eral, the 90% accurate top-down data (the only case with no
worse-than-constant classifiers) seems to favor mid-level
classes in T2D4 and T2D6, and higher-level classes in
T5D2 and T5D3.

3.1.2 ROC Analysis

Although we start out with base classifiers of equal accu-
racy on positives and negatives, their corresponding post-
inference most-likely labels are affected by the skew of the
data, specifically because Bayesian inference is improving
accuracy. To observe this effect, it is useful to visualize
classifiers on the ROC (receiver operating characteristics)
axes, namely the true-positive ratio (accuracy on positives)
against the false-positive ratio (error on negatives). Fig-
ure 3 shows an example, where each base classifier is a dot
in the center cluster of 90% TP and FP ratios (variation

is due to sampling), and each post-inference maximum-
likelihood label, viewed as a predictor, is an asterisk.

The clustered spread of the post-inference predictors along
an arc around the base classifiers can be explained by the
property that points of equal accuracy (TP+TN) lie on par-
allel lines (isoaccuracy lines) on the ROC axes. While
ROC coordinates have the property of being insensitive to
the positive/negative skew of the data, skew changes the
slope of the isoaccuracy lines, flatter than diagonal for pos-
itive majority, and steeper for negative majority. The effect
of the Hierarchical Bayesian Aggregation is to make each
classifier more accurate, moving it on the ROC axes per-
pendicularly to isoaccuracy lines, but since each level of
the hierarchy has a different ratio of positives, these move-
ments are in different directions, fanning out from the orig-
inal common location. The post-inference asterisks in Fig-
ure 3 are visibly clustered by level, with the root at the
top (flattest isoaccuracy line, most upward deflection) and
the leaves in the bottom cluster (steepest isoaccuracy, most
leftward deflection).

3.2 EVALUATIONS USING ACTUAL DATA

We next present experimental results on three real data sets.
Because of different application goals, the three scenarios
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Figure 3: ROC plot detail of classes before and after HBA.
Dots indicate base classifiers (variation due to sampling),
and asterisks indicate post-inference predictions for each
class (T2D4 top-down data, a = 90%). Post-inference co-
ordinates are clustered along an arc because the increase in
accuracy after inference moves each class in a direction de-
termined by its positive/negative ratio, which depends on
its depth in the hierarchy in our data.

are different in many ways, including the choice of base
classifier, binary-vs-real valued outputs, parameter estima-
tion strategy, and evaluation criteria. In all cases, Hierar-
chical Bayesian Aggregation provides significant improve-
ment over independent base classifiers.

3.2.1 The Gene Ontology

The Gene Ontology project is a collaborative effort for
annotating the genes of various model species over three
structured controlled vocabularies (ontologies) correspond-
ing to their biological processes, cellular components, and
molecular function, where each ontology is described as
a general-to-specific hierarchy of terms. The hierarchies
are directed acyclic graphs, containing multiple parents and
multiple top-level nodes. Each gene may be annotated to
multiple classes in the hierarchy, as gene products can serve
more than one purpose in the cell, and a gene may be anno-
tated terminally to non-leaf nodes if no further information
is available.

The common budding yeast, Saccharomyces cerevisiae, is
a well-studied organism with plenty of information avail-
able on its gene products, and there has been increasing in-
terest in predicting new Gene Ontology biological process
annotations using various gene features from laboratory
experiments [Chen and Yu 2004, Clare and King 2003,
Karaoz et al. 2004, Lanckriet et al. 2004,
Pavlidis et al. 2002, Troyanskaya et al. 2003], though

these efforts typically focus on particular classes and
ignore the hierarchical structure.

We used a 105-class subset of the biological process on-
tology, selected in consultation with a yeast geneticist for
their practical value of new predictions and availability
of data (at least one direct annotation and 15 total posi-
tives for yeast) in an April 2004 snapshot. The selected
hierarchy has a maximum depth of seven, and includes
multiple parents for many nodes. Using 3465 annotated
yeast genes as positives (propagated up the hierarchy), and
5930 binary and real-valued input features for each gene
from sources such as protein-protein interaction, colocal-
ization, transcription factor binding sites, and coexpression
microarray data, we trained 10 linear support vector ma-
chines for each class on bootstrap samples.

We used the median (bagging output [Breiman 1996]) of
the 10 unthresholded SVM outputs as the g; variables, and
modeled P(g; € Rly; = 0) and P(g; € R|y; = 1) as
Gaussians (see Figure 2) with parameters estimated using
the “held-out” median output for each training example, i.e.
the median of the outputs from classifiers whose training
bootstrap sample did not include the example.

We chose this bagging approach for its use of all avail-
able data and reliability of performance. The alternatives
included holding out some data for estimation and never
using it for training, or first cross-validating to estimate pa-
rameters and then retraining a new classifier on all available
data from scratch, for which no actual performance statis-
tics would exist. Using the median over cross-validation
folds instead of bootstrap samples does not provide enough
diversity. For this real application where misclassification
could waste costly laboratory trials, we found bagging to
be a safe choice.

We used hierarchy edges in the upward direction which
yielded slightly better results than downward. Since the
Gene Ontology records very few actual negative annota-
tions, we used every non-positive example as a negative in
a class if it was not directly annotated to an ancestor of that
class. This left open the possibility of further specializing
known annotations while providing sufficiently many neg-
atives to work with.

The application objective was to obtain a ranking of most
probable gene annotations for particular classes to guide
laboratory experimentation. Instead of the most likely
hierarchy-wide binary label configuration for each exam-
ple, we used inference to obtain the marginal membership
probabilities for each class P(y;|g1,...,9n), and com-
pared these to the ranking accuracy of the corresponding
base classifier output over all examples in terms of the AUC
score (area under the ROC curve), which can be interpreted
as the probability of ranking a random positive example
higher than a random negative example. Figure 4 shows
the scatterplot of AUC scores of post-inference marginal
probabilities versus the AUC scores of bagged base classi-
fier outputs for each class. 93 of 105 nodes improved, with
an average AUC increase of 0.033 (4% relative improve-
ment over the old AUC). Improvements were at all levels,
though somewhat larger at the deeper nodes.
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Figure 4: Scatterplot of AUCs for the 105 Gene Ontology
classes, after vs. before HBA. Points above the diagonal
correspond to improvements by our method.

Comparing Bayesian inference predictions to the median-
bagged SVMs outputs on the 88 previously unannotated
genes for which new Gene Ontology annotations that be-
came available in July 2005 showed that, with the de-
fault threshold of zero, SVMs had 32% average precision
(TP/(TP+FP)) and 7% recall (TP/(TP+FN)) over the 346
new gene-to-node pairs, whereas thresholding Bayesian
marginals for comparable precision (31%) yielded 21% re-
call, and thresholding for the same 7% recall yielded 51%
precision.

We examined in detail five unannotated genes for which
Bayesian inference predicted functions related to mito-
sis, and laboratory testing found strong evidence for
mitosis-related function for three genes in particular
[Barutcuoglu et al. 2006]. All of these predictions were in-
troduced by our hierarchical system, i.e. they were not pre-
dicted as positive by the individual base classifiers prior to
inference.

3.2.2 Princeton Shape Benchmark

The Princeton Shape Benchmark [Shilane ez al. 2004] is
a computer graphics collection of 1814 three-dimensional
object models arranged in a tree hierarchy of 170 classes.
Several input feature representations are available in the
benchmark, and we used the Spherical Harmonic descriptor
(SHD) [Kazhdan er al. 2003] which has been shown to per-
form well for shape matching. SHD represents each object
as a 544-dimensional vector, and is designed to encode the
rotation-invariant similarity of two objects as the Euclidean
distance of their feature vectors. This Euclidean distance
property of the descriptor lends itself to using the k-nearest
neighbors (kNN) algorithm without worrying about the rel-
ative importance of different features, where a test example
is assigned the majority label among its k nearest neighbors

from the training set.

To obtain held-out statistics without wasting training data,
we used two-fold cross-validation (the scarcity of positives
in many classes prevented using more folds). Namely, we
split the examples of each class into two halves, built a
binary-output kNN classifier for each half, and evaluated
its performance on the other half. The two confusion ma-
trices from the two halves were added up to yield one con-
fusion matrix for that class to be used as the P(g;|y;) esti-
mate. The value of k for each class was chosen as the best
k € {1,3,5,7,9} by leave-one-out cross-validation accu-
racy (134 of 170 classes chose k = 1, none chose k = 9).

We then built our Bayesian network and inferred each ex-
ample’s most likely set of binary labels, as well as its
marginal probability for each class. Comparing the binary
most-likely labels to the base classifiers, 132 of 170 classes
improved in accuracy. Figure 5 shows a scatterplot of accu-
racies for each class before and after Hierarchical Bayesian
Aggregation. 38 remained the same, probably due to the
base classifiers being already over 99% accurate.

A more dramatic comparison was between the ranking per-
formances of the binary base classifiers and the real-valued
marginal probabilities from Hierarchical Bayesian Aggre-
gation. Since a kNN has binary outputs, it corresponds to
a single point on the ROC axes. However, for any two
points (classifiers), one can interpolate a classifier any-
where on the line connecting them by choosing between
their predictions with a Bernoulli distribution, so for each
class, we defined the KNN’s ROC curve as its single point
connected to (0,0) and (1,1), and compared the area un-
der it to the AUC of the marginal probabilities from in-
ference. All classes except one improved, with the av-
erage AUC over all classes increasing from 0.70 to 0.84
[Barutcuoglu and DeCoro 2006].
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Figure 5: Scatterplot of accuracies on the Princeton Shape
Benchmark classes, after vs. before HBA.



3.2.3 MIREX Symbolic Music Dataset

The annual MIREX competition is an event sponsored by
the International Symposium on Music Information Re-
trieval to evaluate the state-of-the-art in methods for ex-
tracting high-level information from musical examples. In
2005, the contest featured both audio and symbolic (MIDI)
genre classification tasks, in which 950 individual songs
were to be classified into a given hierarchy of musical gen-
res, with 38 leaf classes [McKay and Fujinaga 2005]. The
winning participants of the symbolic classification task em-
ployed the Bodhidharma MIDI classification system (ini-
tially presented in [McKay and Fujinaga 2004], and de-
scribed in depth in [McKay 2004]), which extracts 111
high-level features related to instrumentation, rhythm, dy-
namics and chords.

In our subsequent application of HBA to this classifica-
tion task [DeCoro et al. 2007], we used the Bodhidharma
features as inputs to SVM base classifiers (as the features
are not Euclidean, kNN classification was less applicable).
Probabilities were computed using 3-fold cross-validation,
obtaining 3 SVMs for each class. Each example is used as
training for two, and class prediction is given for that exam-
ple by the third. Because of the large number of negative
examples per class relative to positive examples (a charac-
teristic known as skew, especially significant in the MIREX
dataset), error is computed as skew-insensitive accuracy,
which penalizes errors on the few positive examples pro-
portionally higher than errors on the ample negatives. This
measure is the average of sensitivity (accuracy on positive
examples) and specificity (accuracy on negative examples):

true positives true negatives

" true pos. + false neg. " true neg. + false pos.”

Average skew-insensitive accuracy over all 55 classes was
76.8% for independent SVMs, and improved to 85.1% af-
ter Bayesian Aggregation thresholded at p > 0.5. Figure 6
shows a scatterplot of each class before and after aggrega-
tion.

The MIREX 2005 contest reported a “raw accuracy,” which
relies on the one-leaf-only nature of song labels in this
dataset and picks as the genre prediction the leaf node with
the highest output. Under this multi-class single-label cri-
terion, the winning Bodhidharma system scored 46.1; the
median raw accuracy was 41.0. Using the same feature set,
our SVM base classifiers achieved 56.0 raw accuracy (their
system used a more complicated heuristic classifier). While
SVMs already improved significantly relative to previous
state-of-the-art, HBA accuracy further improved to 60.1.

In a related application, also pertinent in music informa-
tion retrieval, is to search for songs “similar” in genre to
a query song, or equivalently, rank all songs in a database
by similarity to the query song using genre classification
as a measure. For our experiments, we defined the similar-
ity of two songs as the number of their equal binary labels
in the hierarchy, which decreases as the path distance of
their classes in the hierarchy increases. We computed the
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Figure 6: Scatterplot of MIREX skew-insensitive accuracies be-
fore vs. after HBA.

“true similarity” of every pair of songs using the actual la-
bels, and the predicted similarities from both independent
SVMs and subsequently the Bayes-aggregated predictions.
To avoid selecting an arbitrary threshold, classes along the
branch of the maximum-confidence leaf were selected as
the positive labels for each example. Using each song as
the query, all other songs were sorted by similarity, and
the top predicted results were compared to the top results
as given by true similarity. Across all examples, of the 100
most-similar songs an average of 52% were retrieved by in-
dependent SVMs, improved to 62% with aggregation. Sim-
ilarly, of the top 50, an initial 46% retrieval rate improved
to 52% after aggregation.

4 CONCLUSION

We outlined a general and principled method for resolv-
ing hierarchical inconsistencies among a set of independent
classifiers, thus increasing accuracy over all classes. Its
usefulness was demonstrated in experiments on synthetic
and real data. We also described various extensions of the
method to handle other constraints, as well as a special case
for ordinal classification.

Future work on Hierarchical Bayesian Aggregation might
provide extensions where the inference algorithm opti-
mizes other performance criteria than overall accuracy,
such as explicitly maximizing AUC scores. The sensitiv-
ity of the method to parameter estimation errors may also
be explored.
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