
EXPLORING SOCIAL NETWORKS

IN COMPUTER SYSTEMS

YILEI SHAO

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

June 2007

 ii

© Copyright by Yilei Shao, 2007. All rights reserved.

 iii

Abstract

Since the first appearance of computers half a century ago, computing technology has

evolved rapidly, and it continues to do so. Having the most powerful and fastest com-

puters is no longer the only goal for a successful computer system. A common charac-

teristic of successful computer systems in the modern era is the ability to utilize vast

amounts of information efficiently.

 We introduce two important concepts from sociology into computer science: human

capital and social capital. In a society, people who possess high human capital are indi-

viduals with more ability. They are more intelligent, more attractive, more articulate, and

more skilled. In the human capital metaphor, these people are more likely to do better

than others. Social capital is the contextual complement to human capital. In the social

capital metaphor, people who do better are somehow better connected. The asset they

possess is an advantageous location in the society. Today’s computer systems exhibit a

strong resemblance to human society. The linkage relationships among nodes in a sys-

tem affect the performance of the system to a large extent. A well-connected system can

outperform a collection of powerful nodes.

 In this dissertation, we present results of applying the social capital metaphor to two

kinds of computer systems: focused web crawling and peer-to-peer systems. We have

designed and implemented a novel focused crawler that captures the topical linkage in

 iv

the web. We have introduced the notion of “topical link”. Topical links connect pages

with similar content. By combining topical links with hyperlinks, the connectivity of the

web graph is greatly enhanced. In our study of peer-to-peer systems, we have intro-

duced the concept of “buddy net”. Buddy net connects peers with similar interests in a

peer-to-peer system. It is an interest-based overlay on top of the physical overlay of a

peer-to-peer system. With the help of buddy net, the efficiency and robustness of a peer-

to-peer system is greatly improved.

 v

Acknowledgement

Six years in my life were spent in Princeton. There were good times and bad times. I

loved spring on campus. When driving down Washington road, trees turned into the

freshest green and formed a natural arc. I wished the road never ended. Seeing the un-

dergraduates wearing shorts and skirts in the spring zephyr, I felt the heartbeat of the

school. All in a sudden, sunshine was everywhere, white tents were scattered on the

greens. Summer came. Stepping into the summer heat after spending an hour in the

pool was the most enjoyable moment. Fall was the shortest season on campus. It seems

only last for two weeks. It flew away as more and more bright yellow and red maple

leaves covered the ground. Then it came the long winter. In those gloomy winter days I

questioned what the hack was I doing here.

I was fortunate enough to end up in Princeton. Princeton has changed me in many

aspects. I have enjoyed classes from English department, History department, Eastern

Asia department, Economics department, Philosophy department and Comparative Lit-

erature department. I felt like a sponge absorbing as much as I can in this amazing

knowledge sea. Professors from all the classes I have attended offered top-notch lec-

tures. They did not brain wash me; they encouraged individual thinking at every possibil-

ity. It was a perfect balance between Science and Humanities. Being a graduate student

in Princeton has opened my eyes and my mind. It gave me the opportunity to meet

 vi

friends from all over the world, listen to opinions from different viewpoints. It changed me

to a more open-minded person.

I thank my friends the most. I had a gang just as tight as “Friends”. I can count on

them in every situation. They will always be there for me. No need to say more. Here is

my gang: Xiaomin Chen, Ruoming Pang, Lexing Ying, Guoping Huang, Yi Gu and Jiwei

Lu.

I thank my colleagues in Princeton to brainstorm with me about new research ideas, to

debate about the design choices and to survive sleepless nights before paper deadline.

They are: Fengzhou Zheng, Chi Zhang, Ming Zhang, Junwen Lai and Nitin Garg.

I thank Professor Andrea LaPaugh for being my advisor. She has given me a lot of

guidance and help in my work. I thank Professor Jaswinder P. Singh and Moses Chari-

kar for being my thesis reader. They gave many valuable suggestions and comments on

my work. I thank Professor Kai Li and Jennifer Rexford for serving as non-readers on my

committee. My work was support by NSF grant CNS-0313089.

This thesis is dedicated to my parents. It was extremely hard for them to send me

away to a country on the opposite side of the sphere. I wish my PhD thesis made it up a

little bit.

 vii

Contents

Abstract……………………………………………………………………………………….iii

1 Introduction

1.1 Socialized computer systems…………………………………………………1

1.2 Human capital and social capital in computer systems …………………2

1.3 Improving human capital or social capital……………………………………4

1.4 Overview of the dissertation…………………………………………………..5

2 Motivations and Goals

2.1 Motivation in focused web crawling ………………………………………….8

2.2 Motivation in Peer-to-peer search systems ……………………………….10

3 Related Work

3.1 State-of-the-art in web crawling …………………………………………… 15

3.2 State-of-the-art in P2P search systems …………………………………19

4 TopicalCrawler: Focused Web Crawling through Topical Linkage

 viii

4.1 Introduction………………………………………………………………….…24

4.1.1 Problem overview…………………………………………………….24

4.1.2 Baseline focused crawler……………………………………………25

4.2 Central questions……………………………………………………………..28

4.3 Design……………………………………………………………………….…29

4.3.1 Enhanced focused crawler………………………………………….29

4.3.2 Topical crawl map generation………………………………………33

4.3.3 Priority of topical links………………………………………………..35

4.3.4 Comparison among content caching, URL caching and topical

crawler………………………………………………………………………….37

4.4 Experiments and results……………………………………………………..39

4.4.1 Evaluation framework………………………………………………..39

4.4.2 Design of topic taxonomy…………………………………………40

4.4.3 Crawling the same topic………………………………………….….41

4.4.4 URL overlap…………………………………………………………..44

4.4.5 Finding new pages…………………………………………………...47

4.4.6 Crawling related topics………………………………………………50

4.5 Discussion……………………………………………………………………..53

4.5.1 The evolving web…………………………………………………….54

4.5.2 Dependency on accurate classification……………………………57

4.5.3 Reliance on categorization………………………………………….59

4.5.4 Combination of navigation links and redirection links……………60

4.6 Conclusion……………………………………………………………………..61

5 BuddyNet: History-based P2P Search

5.1 Introduction…………………………………………………………………….63

 ix

5.2 Does interest based locality really exist? ………………………………. 66

5.3 System design………………………………………………………………72

5.3.1 BuddyNet architecture……………………………………………….73

5.3.2 Buddy list……………………………………………………………74

5.3.3 Buddy index…………………………………………………………..76

5.3.4 Dynamic adaptation………………………………………………..77

5.3.5 Improved search algorithm………………………………………….77

5.4 Simulation model…………………………………………………………….. 78

5.5 Performance evaluations…………………………………………………… 80

5.5.1 Performance comparisons………………………………………….80

5.5.1.1 Baseline performance comparisons……………………….81

5.5.1.2 Performance under dynamic situation……………………82

5.5.1.3 Performance under different replication facts and system

sizes……………………………………………………………………84

5.5.2 Analysis of history-based algorithm……………………………...88

5.5.2.1 Effect of keeping history records…………………………..88

5.5.2.2 Hit rate………………………………………………………..89

5.5.2.3 Effect of clustering by interest group……………………...90

5.5.3 Factor analysis……………………………………………………….91

5.6 Conclusion……………………………………………………………………….94

6 Conclusion and Future Work

6.1 Summary of the dissertation………………………………………………...96

6.2 Future work…………………………………………………………………..98

6.2.1 Incorporating Topic Citation Matrix……………………………….98

 x

6.2.2 Using textual features and distance measures in generating topical

map………………………………………………………………………99

 xi

List of Figures

4.1 Baseline focused-crawler………………………………………………………….. 26

4.2 Crawl path for baseline crawler…………………………………………………… 27

4.3 Enhanced focused-crawler…………………………………………………………30

4.4 Crawl path for enhanced crawler…………………………………………………..32

4.5 Topical crawl-map structure………………………………………………………..35

4.6 Bi-model distribution of relevance probability…………………………………….37

4.7 Crawling same topic………………………………………...………………………44

4.8 URL overlaps……………………………………………………………………… 46

4.9 Finding new pages…………………………………………………………………..49

4.10 Crawling related topic……………………………………………………………….52

4.11 Enhanced web page source………………………………………………………..54

4.12 Effects of the evolving web ……………………………………………………… 56

5.1 User activity distribution…………………………………………………………….68

5.2 User interaction distribution……………………………………………………… 68

5.3 Probability of satisfying query again………………………………………………70

5.4 Hit rate using different buddy list size...………………………………………… 72

5.5 BuddyNet architecture…………………………………………………………… 74

 xii

5.6 Insertion/Deletion for buddy list, size=4………………………………………….75

5.7 Distribution of node degrees………………………………………………………79

5.8 Distribution of files………………………………………………………………….80

5.9 Performance under different replication factors and system sizes …………..87

5.10 Number of index vs. number of queries………………………………………….89

5.11 Hit rate…………………………………………………………………………….…90

5.12 Clustering effects…………………………………………………………………...91

6.1 Contour plot of the 191-topic citation matrix……………………………………..98

 xiii

List of Table

4.1 Database representation of topical crawl map…………………………………..32

4.2 Topic taxonomy……………………………………………………………………..40

5.1 Characteristics of the collected Kazaa trace……………………………………. 67

5.2 Baseline performance comparison………………………………………………. 81

5.3 Performance comparison under dynamic situation……………………………..83

5.4 Factor analysis………………………………………………………………………92

 1

Chapter 1

Introduction

Since the first appearance of computers half a century ago, computing technology has

evolved rapidly, and it continues to do so. The invention of the Internet has altered the

landscape of computer science in recent years. Information has become widely available

via the Internet. Having the most powerful and fastest computers is no longer the only

goal for a successful computer system. A common characteristic of successful computer

systems in the modern era is the ability to utilize vast information efficiently. The best

systems in the peer-to-peer world and the World Wide Web all have the same merit.

First, let us take a close look at how today’s computer systems are evolving to a different

breed.

 2

1.1 Socialized Computer Systems

Through technology advancement, computer systems have changed more and more:

Computer systems used to be relatively smaller scaled and centralized. They wereusu-

ally built and maintained by a sole administrator. The structure of the system was well

defined and seldom changes. Data placement was strictly controlled. There are clear

goals and usage scenarios. However, these characteristics do not hold in today’s com-

puter systems. The rapid growth of the Internet provides easy access to massive infor-

mation and strong connectivity in cyberspace. New kinds of computer systems have

emerged, such as peer-to-peer systems and the World Wide Web. They are no longer

built and maintained by a single administrator. Instead, they are built by the collective

efforts of a large group of individuals. They are usually self-maintained without the need

of dedicated administrators. The scale of such systems is several orders of magnitude

bigger than traditional computer systems. Typical peer-to-peer systems involve hundred

of thousands of users, and the World Wide Web connects millions of people. These

computer systems are decentralized. They do not have a central point of control. In-

stead, each participating node shoulders the burden of maintenance and enjoys the

benefit. The structure and data placement in such systems are flexible. The usage sce-

narios become the collective behaviors from a large number of users. Each user has the

freedom to decide how to participate and how active to be. It is not hard to see that a

computer system is not only a computing framework to accomplish a pre-defined goal; it

becomes more and more socialized. We call these modern computer systems “Social-

ized Computer Systems”.

 3

1.2 Human Capital and Social Capital in Computer Systems

In sociology, researchers view society as a market in which people exchange all variety

of goods and ideas in pursuit of their interests. Certain people, or certain groups of peo-

ple, do better in the sense of receiving higher returns for their efforts. Some enjoy higher

incomes. Some more quickly become prominent. Some lead more important projects.

The interests of some are better served than the interests of others. The human capital

explanation of the inequality is that the people who do better are more able individuals;

they are more intelligent, more attractive, more articulate, and more skilled.

Social capital is the contextual complement to human capital. The social capital meta-

phor is that the people who do better are somehow better connected. Certain people or

certain groups are connected to certain others, trusting certain others, obligated to sup-

port certain others, dependent on exchange with certain others. Holding a certain posi-

tion in the structure of these exchanges can be an asset in its own right. That asset is

social capital, in essence, a concept of location effects in differentiated markets. [42, 43,

44, 45]

There are two network mechanisms typically discussed as social capital: closure and

brokerage. In these mechanisms, the network affects the flow of information and what

people do with it. They begin with the assumption that communication takes time, so

prior relationships affect who knows what early. Information can be expected to spread

across the people in a market, but it will circulate within groups before it circulates be-

tween groups. A generic research finding in sociology is that information circulates more

within than between groups. Examples are that information circulates more within a work

group than between groups, more within a division than cross divisions, more within an

industry than cross industries [58, 59]. The result is that people are not simultaneously

aware of opportunities in all groups. Even if information is of high quality, and eventually

 4

reaches everyone, that fact that diffusion requires an interval of time means that indi-

viduals informed early or more broadly have an advantage [42, 46, 47, 50].

Today’s computer systems exhibit strong resemblances to the human society. Com-

puter systems are built and maintained by a large number of participating peers. The

structure of the systems is decentralized. Peers independently decide how they want to

participate and behave in selfish ways. We could easily draw an analogy between indi-

viduals in the society with peers in these computer systems. The concept of human capi-

tal is applicable in such systems. Some peers have more content to offer. Some enjoy

high communication bandwidth. Some possess strong computation power. The concept

of social capital is also applicable to such systems. Some peers are better connected

throughout the system and their needs are better served. Some peers possess strategic

positions in the system and see information flows from different groups.

In human society, improving human capital and improving social capital for individuals

are the main approaches to increase the efficiency of the whole system and the happi-

ness of every individual. From our analogy between human society and computer sys-

tems, we can see that improving human capital and social capital for peers in computer

systems are the ways to improve the performance for the whole system.

1.3 Improving Human Capital or Social Capital?

For a long time, researchers and computer scientists have tried very hard to improve the

performance of computer systems. Whenever a new computer system was built, let it be

a large-scale program to solve complex calculation or distributed systems to conquer a

distributed task, they looked into their tool bag and picked the most familiar tools. These

tools include using new hardware, improving the communication latency, caching, pre-

 5

fetching, etc. Computer scientists have successfully utilized these tools on traditional

computer systems. However, scalability has come into play. The scale of today’s com-

puter system becomes much larger, easily reaching a million nodes. Capturing the

hardware advantage is not only expensive but also inefficient. Applying old tricks such

as caching and pre-fetching does not always yield favorable results.

Classic methods of improving performance concentrate on improving the human capi-

tal of the nodes. The goal is to make every node a better node. It was easy to see sig-

nificant improvement when most of the nodes were simple and inferior. However, after

applying these methods over and over again, the room for improvement has become

very limited. After most nodes are equipped with these tools, even a very complex and

fine-tuned method cannot achieve significant advancement any more.

As we have discussed in previous sections, the value of the individual comes not only

in the form of human capital, but also in social capital. The combination of human capital

and social capital accurately describe the value of the individual in the society. We be-

lieve that improving social capital is as important as improving human capital. Instead of

trying to make every peer a better node, new approaches should be devised to make the

system better connected. Better connected could mean having a dense connection

graph or a meaningful organization of the peers throughout the system. Since there is

very limited room for improvement by concentrating on human capital, improving the

social capital becomes a very promising road to take.

1.4 Overview of the Dissertation

In this dissertation, we illustrate the idea of improving performance in socialized com-

puter systems by improving the social capital for peers in these systems. We first intro-

 6

duce two socialized computer systems of interest, peer-to-peer systems and the World

Wide Web. We investigate their organization, graph structure and usage patterns. In

chapter 2, we discuss the motivation for our work and lay out the goals we would like to

achieve. In chapter 3, we explain recent research advancements in these two areas. We

describe the advantage and disadvantage of related work. We identify the emerging

trends in both areas. In chapter 4, we present the first part of the thesis: “Topical

Crawler: Focused web crawling through topical linkage”. We focus our research on an-

swering the following three questions: 1) Are there useful structures in the web besides

hyperlinks? 2) Can we capture the structural information and use it to benefit the infor-

mation-hunger users? 3) Can such captured structural information have a lasting effect

over the web’s evolution? We designed and implemented a novel focused crawler that

captured the topical linkage on the web. We introduce the notion of “topical link”. Topical

links connect pages with similar content. Combining topical links with hyperlinks, the

connectivity of the web graph is greatly enhanced. We show results from different ex-

periments. In chapter 5, we present the second part of the thesis: “BuddyNet: History-

based Peer-to-peer Search”. In this part, we draw a clear analogy between individuals in

a human society and peers in a p2p system. We apply the social capital concept to

peers in the system. We introduce the concept of “buddy net”. Buddy net connects peers

with similar interests in a peer-to-peer system. It is an interest overlay on top of the

physical overlay in peer-to-peer systems. With the help of buddy net, the efficiency and

robustness of the system is great improved. Finally, we summarize the finding from

these two systems and discuss future works in chapter 6.

 7

Chapter 2

Motivations and Goals

The thriving of the Internet changes the landscape of the technology world. Two types of

computer systems caught our attention: the web crawler and the peer-to-peer system.

Web crawling is a technique widely used by Internet search engines. In order to per-

form keyword search, a search engine needs to build its repository of web pages first.

Web crawling is the process of going out to the web and collecting web pages. The cov-

erage and the quality of the web pages collected by the web crawler directly affect the

results of searches using the search engine. We are interested in the web crawler be-

cause of the important role it plays in the web search arena and the way it interacts with

the web. The web is a free place for any individual to present information. There is al-

most no restriction on how web pages should be presented and how pages are linked

together. The lack of authority and the way the web is maintained by the collective effort

of a large number of users match the definition of a socialized computer system very

well. We can easily draw an analogy between web pages on the web and individuals in

society. The web crawler is not only a very useful tool to study the relationship among

web pages but also a useful application to utilize the discovered relationships.

 8

The class of peer-to-peer systems is one of the fastest growing applications on the

Internet. A peer-to-peer system is a decentralized file sharing system: every peer partici-

pates in the system by sharing some content on its hard disk. By participating in the sys-

tem, it can ask for contents from other peers. Peers communicate either directly or by

relaying messages through other peers. Systems like Gnutella, Kazza and Edonkey are

typical examples of peer-to-peer systems. The distributed form and anonymity of peer-

to-peer systems attract the mass public. The lack of central control and the freedom to

join or quit at will add even more appeal. From a research point of view, the peer-to-peer

system is a mirror image of the human society in cyber space. Every peer in the system

resembles an individual in the society. However, the anonymous feature makes peer-to-

peer systems even more interesting to study. Unlike human society, peers in peer-to-

peer systems join or quit the system with high frequency because there is almost no

penalty for such behavior. Studying the relationship between peers in such dynamic sys-

tems is an interesting topic by itself. Being able to find stable links in the system and

utilize such links to achieve efficiency is very desirable.

In this chapter, we explain the motivations of our work in focused web crawlers and

peer-to-peer search systems and the goals we would like to achieve.

2.1 Motivation in Focused Web Crawling

The relationship between the web pages in the World Wide Web is a very interesting

topic to study by itself. How are the pages linked on the web when there is no restriction

imposed? How does a person decide what pages to link to when she first creates a web

page? How do the links change over time? How do other pages find this page and link to

it? Does the relationship between the pages change over time?

 9

One way to investigate the above questions is to take a look at the web. Today, the

web has grown to an enormous size containing billions of web pages. Taking a complete

snapshot of the web and analyzing its pattern are almost impossible because of the time

and storage requirements. However, if we concentrated on a particular part of the web,

such analysis can be performed. Focused web crawling serves the purpose. A focused

web crawler is a robot that goes to the web and collects only the web pages related to a

certain topic. Since the web consists of web pages covering thousands of topics, a fo-

cused crawler needs to collect a much smaller sample of the web. It can return a rea-

sonable result set in hours instead of days or weeks. Focused web crawlers have not

only research use but also practical applications. One of the most popular uses of fo-

cused web crawlers is to find resumes online for recruiters. Being able to find just the

resumes that fit the job description is invaluable to recruiters. Being able to find the most

up-to-date resumes in several hours is another huge plus. A general keyword-based

search by a web search engine does not always give the best result set. For search cri-

teria that are hard to describe in keywords, the result set might contain very little useful

information. For example, what would be the right keyword combination to find candi-

dates for McKinsey. & Co? In other cases, the result set could miss a huge set of poten-

tial candidates. For example, when trying to find candidates with the ability to solve dif-

ferential equations and with interest in finance, the keywords search of “differential equa-

tion, finance, and resume” returns resumes from candidates with financial engineering

degrees. A lot of candidates who have a degree in physics and mathematics can do the

job just as well as those from financial engineering. Since very few of them put financial

terms in their resume, keyword-based search engines would most likely exclude their

resumes from the search results. Focused crawling can help in this case. By analyzing

the relationship and similarity between pages, a focused crawler can concentrate in a

 10

small portion of the web and return targeted pages with higher precision. For example,

when a focused crawler finds a matching resume page in the physics department of one

university, it would utilize links around this page to find other potentially matching pages.

Ideally, when it finds a rich region on the web, it could spend more time in following the

link structure to explore more extensively in this region. In contrast, when it reaches a

region with limited content, it would quickly redirect itself towards other areas and spend

little time in such area.

By analyzing the relationship between pages, we would like to achieve several goals.

First, we would like to train the crawler to recognize patterns and identify different re-

gions on the web. By doing this, the focused crawler will return a result set containing

few false positives and containing valuable content that cannot be found by simple key-

word-based search. Second, we would like to add missing links between pages to make

related pages closer to each other. Just like introducing people to each other, we could

introduce pages to each other. Improving the linkage between web pages will enhance

the performance of later focused crawls, thus creating a positive feedback loop.

2.2 Motivation in Peer-to-peer Search System

Our primary research interest is to explore the relationships of participants in modern

computer systems and study the life cycle of such relationships. We view a peer-to-peer

system as an extension of human society to cyber space. Every peer in the system re-

sembles an individual in the society. How do peers interact with others? How do rela-

tionships develop among peers? Do peers form groups and clusters over the time? What

is the rational behind these clusters? These questions spur great interest.

A peer-to-peer system is a distributed content sharing system. Every peer in the sys-

tem provides shared content to others. As the reward, it gets access to the shared con-

 11

tent offered by other peers. Peers form point-to-point connections to each other on top of

their physical Internet connections. Management of the system is decentralized. There

usually are no controlling nodes or administrators. Peers can join or leave the system at

will. Peers in the system are heterogeneous. Size of shared contents, communication

bandwidth and connectivity in the overlay network can be vastly different. Ipeer-to-peer

systems differ from traditional computer systems in two aspects. First, the heterogeneity

of the peer-to-peer system highlights the importance of the location in the system. In

other words, a perfectly located peer might have its needs served better even with lower

bandwidth and weaker connectivity. Second, the ad-hoc nature of the system with peers

joining and leaving all the time underscores the importance of finding stable relation-

ships and being able to adapt dynamically. In a system with high network instability,

peers that utilize stable links in the system will be less affected. Peers that adapt their

connections to absorb the network change enjoy the most benefit of the system.

Our study in peer-to-peer networks involves the following goals. First, we want to ana-

lyze existing peer-to-peer systems to better understand the organization of such distrib-

uted and self-organizing systems. We are interested in three aspects of such systems:

connectivity, content distribution, and dynamic adaptation.

o Connectivity: What percentage of peers are well connected; what percentage of

peers are poorly connected? Is there a pattern to fit the distribution of connectivity?

How does a peer position itself when first joining the network; how does it change its

connections to other peers after participating actively in the network? How do peers

discover and rebuild their connections when other peers leave the network? Are the

connections in the system rather stable or short-lived?

o Content distribution: How are contents distributed among peers? Can we categorize

peers into groups by the contents they host? After exchanging contents with other

 12

peers, how does the composition of contents change on a peer? Is the peer hosting

most of the contents for its own interest or for the well functioning of the entire net-

work? How do rare items get discovered in the system? Once discovered, are the

rare items distributed widely across the network?

o Dynamic adaptation: How does the system evolve through time? If we compare the

system at the beginning with the system after a couple months, what difference can

we find? How do we measure the efficiency of the peer-to-peer system? Is the result-

ing system a better system in terms of its connectivity and content distribution? Do

peers get their requests served in an efficient way if they stay with the system for a

long time?

Secondly, with the results from the above analysis, we would like to explore ways to

further enhance the efficiency of peer-to-peer systems. The ultimate goal for an efficient

peer-to-peer system is to serve every peer’s request with the lowest latency and minimal

load on the system. Such a system needs to behave well in dynamic situations when

peers join and leave freely. To achieve this goal, we experiment with an approach that

adapts the peers’ connectivity through their message exchanges. After participating in

the system for a while, every peer should naturally find the right position for itself and

connect to peers with high probability to serve its requests. Adapting the content distri-

bution in the network provides another way to enhance the system performance. During

the lifetime of the system, every peer exchanges messages with other peers either by

requesting the content directly or by serving as an intermediate node for other peers. By

controlling what content to retain during the exchange, we can alter the content distribu-

tion in the network. Rare items will be retained by intermediate nodes and become more

available to most of the nodes in the network. By distributing the content smartly, the

system will become more resilient to peers joining and quitting the network. Our design

 13

does not require peers to keep information that is not directly self-beneficial. We try to

achieve better performance for the whole system through each peer's self-benefiting

behavior.

Lastly, if achieving efficiency requires the system designer to impose hierarchy and

order in peer-to-peer systems, what is the balance between keeping the distributed and

self-organizing features of the original system and reaching for better efficiency?

 14

Chapter 3

Related Work

In this chapter, we discuss the related works in web crawling and peer-to-peer systems

and compare our approach with prior work.

The World Wide Web is one of the most important information sources in today’s

world. Improving the performance and accuracy of web search has attracted the bright-

est minds all over the world. Nevertheless, the grand scale of the Web and its intrinsic

chaotic nature make it very hard to design and implement the best algorithms. We intro-

duce recent works in the web crawling and discuss the pros and cons of each of them.

We show that earlier methods paid attention to improving the efficiency of the crawling

process. They tried hard to validate that every page the crawler found is indeed a good

page. Recently proposed methods aim more on augmenting the web graph to influence

the crawling path in order to achieve higher precision and recall. We believe that improv-

ing the web graph connectivity is the future direction in this area. We introduce the no-

tion of “topical link”. Topical links connect pages with similar content. Combining topical

links with hyperlinks, the connectivity of the web graph is greatly enhanced. Tasks on the

web, such as crawling and searching can be performed much more efficiently.

 15

Peer-to-peer system has become “the fastest growing Internet application” [34],

there has been numerous research groups working in this area in the past several years.

We highlight the most recent works and compare the advantages and disadvantages

among them. At the end of our comparisons, we conclude that methods targeting at im-

proving the ability of each node in the system are less successful, methods aiming at

improving the connectivity of the system are more popular and they achieve better re-

sults.

3.1 State-of-the-Art in Focused Web Crawling

A typical focused crawler consists of a topic classifier controlling the priority of unvis-

ited pages in the task queue and a page fetcher actively fetching pages ordered by

their priorities. A focused crawler starts from a set of seed URLs and selectively ex-

pands the crawl map based on the result of the topic classification. The goal is to har-

vest most pages related to a specific topic while avoid downloading irrelevant pages.

How to expand the crawl map is the central question determining the performance

of the focused crawler. Choosing wisely about which directions to pursue and which to

avoid is very important in focused crawling. Traditionally, researchers expand the crawl

map by following the outward hyperlinks of visited pages. (An outward link is a hyper-

link going out from the page.)

A great deal of effort has been invested in refining the priority of unvisited pages. In

an early paper by Cho et al. [3], the author experimented with various strategies of

URL ordering in web crawling. Although their study was not focused on crawling for a

specific topic, their results cast light on the importance of the ordering of unvisited

pages in web crawling. In a later survey conducted by Menczer et al. [7], they showed

that BestFirst algorithm outperformed PageRank based algorithm in topic-driven web

 16

crawling. BestFirst algorithm performs a depth-first traversal during web crawling. On

the contrary, PageRank algorithm performs a breadth-first traversal and evaluates the

results afterwards. Their results underscored the importance of choosing the right path

during the crawling process.

Rennie et al. [1] and Diligenti et al. [2] each proposed an algorithm to utilize the

context information around target web pages. Rennie and McCallum integrated rein-

forcement learning in the crawling process. Before the crawling, the crawler was

trained to learn a mapping from the text in the neighborhood of a hyperlink to the ex-

pected number of relevant pages that can be found as a result of following that link.

During the crawling, the focused crawler directs itself to links that are more likely to

point to a target page using its knowledge learned from the training process. Diligenti

et al. analyzed the surroundings for on-target pages and built a context graph that cap-

tured the typical hyperlink hierarchies within which valuable pages occur. They then

used this context model as classifier to identify pages that could lead to potential on-

target documents. Both algorithms showed the importance of the context information

around the target pages in focused crawling. Such context information includes the

hierarchy of the web site, the linkage information between sibling pages, the text and

order of sibling page on the parent page. In their paper, they showed good improve-

ment for the harvest rate of their crawlers. (Harvest rate is a ratio between the number

of on target page found by the crawler and the number of total crawled pages) Building

a rather complete context graph for a local web site tends to be easy. The difficulty for

both algorithms lies in building an accurate context mapping or context graph for a

large collection of unrelated web pages.

As another attempt to better prioritize unvisited pages, Chakrabarti et al. [5] used

two classifiers to assign priorities to unvisited frontier pages. Their basic classifier col-

 17

lected information from crawled pages. Their apprentice classifier utilized the informa-

tion in the Document Object Model (DOM) tag-tree structure from the HTML pages and

its text to assure more accurate classification. Their approach treats the entire DOM

tag-tree structure as the context information valuable to the focused crawler. Since the

HTML DOM tree is not always organized in a structural way that matches the relation-

ship of the contents on the page, it is harder to extract meaningful information from it.

Chakrabarti et al. combined the structural information from the DOM tree and the con-

tent information from the text on the page to train their classifier.

Aggarwal et al. [6] proposed the intelligent crawler using the inward linking web

page content, candidate URL structure or other behaviors of the inward linking web

pages or siblings to estimate the probability that a candidate is useful for a given crawl.

(An inward link is a hyperlink pointing to the page of interest.)

Our work differs from previous works [61]. Previous works concentrate on improv-

ing the success rate of finding the right crawl path. They tried their best to make sure

that the focused crawler follows the paths that would most likely lead to on-target

pages and prunes other paths that do not appear as promising. We take a different

step. We believe that making sure the focused crawler jump towards the correct direc-

tion is important; we also think that providing more information at the time for the

crawler to decide where to go next is another important point. We introduce the con-

cept of topical links. Topical links are similar to hyper links in terms that they link web

pages together. Hyper links are put up by arbitrary webpage creators to point to other

pages. Topical links are links found by our crawler and added to pages with strong

topical similarities. Besides pruning the crawl path, we expand the crawl path to in-

clude not only hyperlinks but also topical links. After the topical crawler collects all the

pages, they are sent to an analyzing engine to extract the topical linkage among these

 18

pages. Topical links are added to pages with similar topical interest considering also

the path length among them.

Utilizing topical link structure leads to fast navigation among relevant pages. On

one hand, when the focused crawler finds a rich area with a lot of on-target pages, the

topical links from these on-target pages will lead the crawler to explore the area in

depth. Since topical links are shortcuts among pages with similar contents, the crawler

can retrieve on-target pages faster without fetching other pages in the webpage hier-

archy. On the other hand, when the focused crawler reaches an area with few on-

target pages, the topical links will direct the crawler to leave the area and point it to an

on-target page in another area. Using that on-target page as the starting point, the

focused crawler can start exploring the newly encountered area more efficiently. The

success of our approach largely depends on the existence of topical locality in the web

and our ability to extract it.

Various researchers have studied topical locality in the web. Davidson [4] con-

ducted an empirical study on DiscoWeb dataset. He found that there was topical local-

ity in the hyperlink structure of the web. For example, linked pages tend to have similar

textual content comparing to unrelated pages; when the hyperlinks from the parent

page are close together, the sibling pages pointed by these links tend to be similar to

each other.

Study on the broad topics of the web by Chakrabarti et al. [11] has explored the

background distribution of broad topics on the Web. In reality, different topics are not

represented the same on the web. From their experiment, they found that there are

deviations between the topic representation from popular online directories (such as

Dmoz or Yahoo directory) and topics gathered from random walking the web. Com-

mercial interest clearly boosted some of the topic, while other topics appeared to be

 19

under-represented. We are mostly interested in the finding of how pages relevant to

different topics cite each other. After analyzing the NEC web crawling data set, they

built a topic citation matrix to represent the relevance of topics on the web. It is exciting

to see that in this matrix, there are topics with clearly higher relevance to each other.

Such as from /Art/Music to /Shopping/Music and /Shopping/Entertainment/Recordings,

or /Art/Literatures and /Art/Movies. Such finding has great implication in the focused

crawler arena.

Our work is especially useful in connection with the topic citation matrix: for every

topic, we can build redirection portal for several highly relevant topics. If

/Sports/Basketball shows higher topical relevance to /Sports/Football in the topic cita-

tion matrix, we could instruct our focused crawler to redirect to a “Football” page when

a “Basketball” page is encountered. There is no need to build redirection portal for

“Sciences” pages if the topical proximity between “Basketball” and “Science” is low. By

identifying the topical relevance among topics, we give the focused crawler extra guid-

ance under situation where no explicit topical relationship can be found.

3.2 State-of-the-Art in Peer-to-peer Search Systems

Improving Gnutella-like system’s scalability has become a hot research topic because

the popularity of the peer-to-peer systems. The simplest approach of communication in

such system is to flood every peer with every request. Flooding worked in the initial

stage of peer-to-peer system. When the system grows dramatically in size, flooding ap-

proach doesn’t scale as well. The number of messages grows so fast that the system

will be quickly filled and become unresponsive. Various groups have tried to find new

solutions to solve the scalability issue of Gnutella-like system. Approaches based on

expanding ring and random walk [1], where queries are forwarded to a randomly chosen

 20

neighbor, are designed to limit the scope of the queries and avoid the message explo-

sion caused by the simple flooding mechanism. Such approaches are effective when

the replication factor in the system is high. (Replication factor indicates for a single file

on average how many peers possess it.) In other words, such approaches are good at

finding popular content. However, it does not outperform flooding scheme in finding rare

items.

Kazaa [36] and Gia [22] both adopt super-node based architecture. A super-node

takes the responsibility of indexing content located at other peers. When locating con-

tent, a peer contacts its super-node first. A super-node may subsequently contact other

super-nodes. Super-nodes are nodes with higher computation power and communica-

tion bandwidth. The super-node approach needs accurate accounting of peers’ capaci-

ties and distributes contents accordingly. In Kazaa’s case, super-node may be manually

specified. In Gia’s case, the overlay network adapts its topology based on each node’s

capacity. A study [27] shows that peers tend to deliberately misreport information if there

is an incentive to do so. We think that a mechanism to ensure accurate accounting of

peers’ capacities is the key to success in these systems. The super-node approach sac-

rifices the heterogeneity of the peer-to-peer system; it requires the super-node to be

more powerful and more capable. Implicitly, it requires the super-node to be stable in the

network since reorganization from losing a super-node is expensive. However, from be-

havior analysis of peer-to-peer network, above assumption is usually not true. Peers

tend to leave and join the network frequently.

pSearch [8] and SETS [38] utilize techniques from information retrieval systems.

SETS organizes peers into a topic-segmented topology, and data placement is strictly

controlled. Queries are then matched and routed to the topically closest regions.

pSearch distributes document indexes through the P2P network based on document

 21

semantics generated by Latent Semantic Indexing (LSI). Because of the controlled data

placement and underlying topology, both systems can achieve low search cost. Both

systems work well when the content of the system stays the same, such as a system for

publication retrieval. Nevertheless, when large portion of data has changed, LSI needs

to be recomputed and data needs to be redistributed. This may cause a high mainte-

nance cost. The most active peer-to-peer network contains video and audio contents to

share among peers. Because of the size of the content and the short livelihood, such

contents change very frequently in the system. PSearch and SETS may apply well under

certain situations, but they are not suitable for todays widely used peer-to-peer system.

Freenet [40] is a P2P system built on top of Distributed Hash Table (DHT). It utilizes

query responses to dynamically adapt nodes’ routing tables. Its goal is to make a node

specialize in locating sets of similar keys. A node gradually accumulates more and more

information about how to route the queries that it is asked for. One thing worth pointing

out is: this information may not be directly self-beneficial. A node may have collected

the most knowledge about how to find contents related to film star Tom Cruise by par-

ticipating in the routing for a while. It may not be interested in this information at all. The

philosophy of Freenet is to benefit each individual node by benefiting the system as a

whole. However, a study [27] has shown that the participants in peer-to-peer systems

tend to be selfish. The peers try to maximize their own benefit without considering the

system as a whole. Peers try to find as much content as they need from the system and

quit the system after their needs are fulfilled. The Freenet paradigm regards peers as

responsible and assumes the network is rather stable. In reality, stability cannot be

guaranteed in peer-to-peer system. Our approach considered the frequent changes from

the participants of the network. We assume peers are selfish and they join and quit the

network at their will. Our design does not require peers to keep information that is not

 22

directly self-beneficial. We try to achieve better performance for the whole system

through each peer’s self-benefiting behavior.

More recently, associative overlays [21], and interest-based shortcuts [24] proposed

different techniques to improve Gnutella’s performance based on interest-based locality.

An associative overlay forms a guide-rules based overlay on top of Gnutella’s network.

The vast interest space is partitioned into a set of guide-rules. Every peer participates in

some guide-rules based on its interest when the peer first joins the network. Search is

carried out within the scope of a guide-rule group and propagates to bigger groups if the

content cannot be found in the smaller group. Associative overlay is effective, especially

in finding rare items. By narrowing the search scope, it decreased the search cost. How-

ever, it needs a human to identify in which guide rule to participate. The partition of the

guide-rule groups directly affects the performance and the accuracy of the search. There

is similarity between associative overlay and our system. We also want to narrow the

scope for every search to improve the performance of the system based on peers’ inter-

est. Instead of partitioning the interest group statically at the beginning, we let the peers

adapt the interest partition during the lifetime of the system. The longer a peer partici-

pates in the system, the more information it will gather on other peers that share similar

interest.

The interest-based shortcuts technique keeps shortcuts to nodes that satisfied previ-

ous queries. It is similar to our buddy list. We have shown that with only this simple

technique, the system does not perform well in real-world situations. Our system com-

bines the buddy list, one hop indexing and dynamic adaptation techniques to utilize the

interest-based locality and cluster peers by their mutual interests [60]. We have shown

that it is the combination of these techniques that achieves the biggest performance ad-

vantage.

 23

Chapter 4

TopicalCrawler: Focused Web Crawling through Topical Linkage

4.1 Introduction

4.1.1 Problem overview

Since the introduction of the World Wide Web in 1990, the number of web pages has

grown dramatically. Google currently indexes about 4 billion web pages that account

for a fraction of the total web pages. New information in every topic is getting published

everyday. Finding the right information a user asks for becomes more and more chal-

lenging in the enormous information sea.

Keywords-search has been the dominant mode of information discovery in the web.

Nevertheless, given the massive information available online, surfers’ expectation ex-

pands from looking for specific document or finding answers to specific question to

finding a set of documents relevant to the topic of interest. For example, recruiters

want to find resumes for software engineers with more than 3 years of C++ experi-

ence. Researchers want to find papers published in the past two years about bio-

 24

informatics. Venture capitalists want to find homepages for all Internet service startup.

To meet users’ topic specific information needs, a set of large scale and topic-driven

focused crawlers have been proposed ([1, 2, 12, 16]).

A typical focused crawler consists of a topic classifier controlling the priority of unvis-

ited pages in the task queue and a page fetcher actively fetching pages ordered by

their priorities. A focused crawler usually starts from a set of seed URLs and selec-

tively expands the crawl map based on the result of the topic classification. The goal is

to harvest most pages related to a specific topic while avoid downloading irrelevant

pages.

How to expand the crawl map is the central question determining the performance of

the focused crawler. Choosing wisely about which directions to pursue and which to

avoid is very important in focused crawling. Traditionally, researchers expand the crawl

map by following the outward hyperlinks of visited pages. We believe that hyperlink

relationship is not the only useful structure in focused crawling. Pages should be linked

by their topical relevance as well. An enhanced focused crawler should follow topical

links as well as hyperlinks at crawling time in order navigate through highly relevant

pages efficiently.

4.1.2 Baseline focused-crawler

In this section, we introduce the baseline focused-crawler. The baseline crawler is a

straightforward focused crawler. We later compare our enhanced focused-crawler

against it. Figure 4.1 shows the structure of a baseline crawler.

 25

Fetched page u

Fetcher Database

Classifier

Parser

Priority
queue

If P(c|u)>s,
enqueue v

Out-link v

URL to fetch

Figure 4.1. Baseline focused-crawler

Prior to performing a focused-crawl, a classifier needs to be created. Sample URLs

from online directories such as Dmoz [18] and Yahoo directories are fetched and a topic-

taxonomy is built on the sample pages. The Dmoz directory contains about 600,000 dis-

tinct topics. We select its first or second level topics based on the topics of interest. For

each topic, we randomly select couple hundred of pages from the links provided by

Dmoz under this topic and fetch these pages from the web. We store fetched pages in a

repository. The classifier is trained on the pages in the repository. For each newly

fetched web page, the classifier evaluates the probabilities that this page belongs to

each of the topics and gives the category with the highest probability.

The crawling process starts from a set of seed URLs for a target topic c. The fetcher

pulls URLs from the priority queue and fetches the corresponding pages from the web. A

newly fetched page u is sent to the classifier and the parser. The parser parses page u

and extracts all the hyperlinks going out of u. The classifier calculates the probability that

page u belongs to the target topic c, P(c|u). The outward hyperlinks from u are put into

the priority queue with P(c|u). When URL v comes to the head of the queue and is actu-

 26

ally fetched, we will evaluate P(c|v) and verify whether our guess from u to v has paid

off. The fraction of relevant pages collected is called harvest rate. Suppose V is the set

of pages crawled, harvest rate H(c,V) equals to the average value of P(c|v). Alterna-

tively, we can also measure the efficiency of the crawl using loss rate. L(c,V) equals to

the fraction of irrelevant pages collected.

The baseline crawler develops its crawl path as it selectively follows hyperlinks going

out of visited pages. We illustrate the process in figure 4.2. The tree structure shown in

the graph represents the hyperlink structure. When the crawler fetches a page u, it first

evaluates P(c|u). If it is a good page, all out-links from this page are followed. In the

graph, solid nodes are good pages with P(c|u) greater than 0.5 (0.5 is the threshold we

use in our focused crawler). Shaded nodes are pages with probability P(c|u) smaller

than the threshold. Out-links from shaded nodes are not followed. Blank nodes are

pages the baseline crawler did not visit.

n1 n2 n3

Figure 4.2. Crawl path for baseline crawler

From the crawl map, we can see two areas of potential improvement. First, nodes

such as n1 may be good pages but the baseline crawler cannot reach them. This is

because pages on the path to n1 are not related to the target topic. The concept of

using the relevance of parent page to indicate the relevance of children pages makes

 27

pages like n1 hard to reach. Second, pages such as n2 and n3 require a long latency

to locate. N2 and n3 are good entry points for a rich area. Not only is the route from

starting pages to n2 or n3 long, lack of direct hyperlinks between the n2 cloud and the

n3 cloud makes it hard to navigate from one to the other.

4.2 Central Questions

In this section, we address the following questions:

• Is hyperlink relationship the only structure we should follow in a focused crawl?

• Can we extract a useful topical crawl map from pages we have already seen?

• Can the topical crawl map extracted benefit future crawls of arbitrary topic?

Following hyperlink structure is the most natural way to proceed in focused crawling,

but it is not always efficient. Web pages are usually created and maintained by numer-

ous individuals. It is common that we do not see related pages pointing to each other. In

some cases, web masters are reluctant to put explicit links to competitor’s pages. In

other cases, they simply do not realize the existence of related pages in the vast web.

Therefore, traversing from an on-topic page to another may require a large number of

hyperlink hops. Faith in the next visited page decreases significantly. The focused

crawler is likely to stop exploring in the direction without reaching the other on-target

page. Even if the remote on-target page is reached, there may be a large number of

irrelevant pages downloaded already. We believe the situation can be greatly improved if

topical links are incorporated in focused crawling. If a page has not only hyperlinks but

also topical links that point directly to pages with similar topical interest, an enhanced

focused crawler can quickly navigate through the topical link structure and dive into a

pool of relevant pages.

 28

Is it possible to build an explicit topical link structure? Studies have shown that topical

locality exists in the web [8, 9, 10, 11]. We extract a topical crawl map from pages col-

lected in past crawls, combine the topical crawl map with hyperlink structure to acceler-

ate the crawling process and improve the harvest rate.

The topical crawl map benefits a focused crawl of the same topic by letting the crawler

navigate through a network of highly relevant pages efficiently. The topical crawl map

also benefits future crawls of related topics. When the enhanced crawler finds out that a

fetched page is deviating from the target topic, it consults the topical crawl map for a

redirection. For example, when the enhanced crawler encounters a “Football” page dur-

ing a focused crawl for “Basketball”, it will be given a “Basketball” link extracted from the

topical crawl map to redirect the crawl path.

We test our idea by performing focused crawls for a range of topics. We show that the

topical crawl map not only speeds up the crawling process for the same topic, but also

help future crawls of related topics.

4.3 Design

In this section, we describe the design of our enhanced focused crawler.

4.3.1 Enhanced focused crawler

Although hyperlinks show the linkage relationship among web pages, they do not cap-

ture the topical relationship in the web sufficiently.

 29

Crawl-map
extractor

Fetcher Database

Classifier

Parser

Priority
queue

If P(c|u)>s,
enqueue v

Out hyperlink v

URL to fetch

Fetched page u

Topical link w

Figure 4.3. Enhanced focused-crawler

We extract topical relationship from the pool of pages we have crawled and utilize it in

focused crawling. Figure 4.3 shows the components of our enhanced crawler. We add a

crawl map extractor in addition to the baseline crawler. The crawl map extractor is re-

sponsible for gathering all pages from past crawls and performing topical relationship

analysis on them. It generates a topical crawl map as output. The topical crawl map con-

sists of topical links connecting pages with similar topical interest together. We store the

topical crawl map in a MYSQL database on the same machine as the enhanced crawler.

At crawl time, the enhanced crawler follows both hyperlinks parsed from the page and

topical links selected from the topical crawl map.

There are two kinds of topical crawl maps. A same-topic crawl map is a <URL_A,

URL_B> mapping. The mapping links URLs selected from previous crawls together by

their topical relevance. All pages with similar topical interest are linked together. How to

generate these links is discussed in the next section. We call these links “topical links”.

When URL_A is fetched in a future crawl, not only its hyperlinks but also its virtual links

(such as URL_B) will be put on to the task queue. The addition of the same-topic crawl

map achieves potential improvement in one of the problem areas we point out in last

 30

section. We illustrate it in Figure 4.4. For nodes like n2 and n3, because they reside in

highly valuable areas, there will be topical links pointing to them from the root and topical

links connecting these two areas directly. Whenever a future crawl of the same topic

occurs, the crawler can reach n2 or n3 much faster via the topical links and navigate

from each other efficiently. We call this kind of links “navigation links”. They serve the

purpose of fast navigation among pages with similar topical interest.

Another kind of topical crawl map is related-topic crawl map. It is a two level structure.

Table 1 on the next page shows an example. The first level is a <Topic_A, Topic_B, Por-

tal_URL> triplet. The second level is the <URL_A, URL_B> mapping. Topic_A is the

topic of a past crawl. Topic_B is the topic of future interest. Portal_URL records a URL

as an entry point to the topical link structure. An entry of <Football, Basketball, Basket-

bal_URL> means Basketball_URL is a portal “Basketball” page found in a previous

crawls for “Football”. After performing topical relationship analysis on pages collected in

previous “Football” crawls, the crawl map extractor builds topical link structure among all

“Basketball” pages and makes Basketball_URL an entry point to access this group of

pages. In a future crawl for “Basketball”, when the enhanced crawler meets a “Football”

page, it will consult the topical crawl map for a “Basketball” portal page. Instead of stop-

ping at this “Football” page, the enhanced crawler will put the portal page on the task

queue for exploration. And the topical links pointing from Basketball_URL will be added

to the queue accordingly. The addition of the related-topic crawl map helps the crawler in

the other problem area with a baseline crawler. In figure 4.4, for nodes like n1, it is likely

that a crawl for a different topic c’ encounters this page and finds that n1 belong to topic

c. After performing the topical relationship analysis for that crawl, a record of < topic c’,

topic c, n1> will be added to the crawl map. When a future crawl of topic c happens, the

 31

enhanced crawler will redirect to n1 if it sees its ancestor. We call this kind of topical

links “redirection links”. They redirect the crawler back to the right course.

n1 n2n3

redirection

navigation

navigation

Figure 4.4. Crawl path for enhanced crawler

Table 4.1. Topical crawl-map structure

URL Virtual Link

http://www.sandbox.com/ http://www.dukeupdate.com/

http://www.sandbox.com/ http://www.cnnsi.com/basketball/college/men/teams/abf/

http://www.dukeupdate.com/ http://www.miac-online.org/wombb.html

…

Furthermore, we need to highlight the different usage scenarios for these two kinds of

topical crawl maps. In a future crawl for the same topic, we only put topical links on the

task queue when the crawler encounters the exact page that has been visited before. In

a future crawl for a related topic, we loosen the requirement.

Whenever the enhanced crawler encounters a page belongs to the related topic we

have crawled before, the process to add topical links is triggered. We do not require the

crawler to meet the exact page that was crawled before. In other words, in a future crawl

 32

for “Basketball”, whenever a “Football” page is met, the portal URLs will be added onto

the task queue. We do not require that the “Football” page has been seen in previous

analysis. The crawl map may be entered at any point for the same-topic map, while it

can only be entered via the portal URLs for a related-topic crawl map.

4.3.2 Topical crawl map generation

In this section we discuss how the topical crawl map is generated. We identify the hub

pages in crawled pages. The detailed algorithm is as follows. Suppose U is the set of

crawled pages for topic c, c’ is the topic of future interest.

Function GenerateTopicalCrawlMap {

1. Select subset U’ such that: for each u∈U’, P(c’|u)> 0.8

2. Extract a sub-graph G’ on U’, considering only hyperlinks among pages in U’

3. Calculate out-link counts OC(u) for each u∈U’

4. Select top N nodes with the highest OC, we call them portal nodes. Make a

complete graph among them. N=max(2% * total node, 10)

5. Connect each unselected node to one of the portal nodes uniformly yet satisfy-

ing two requirements:

6. Number of topical links for each portal node is smaller than its OC

7. Each unselected node is linked to a portal node other than its direct parent

8. If N cannot satisfy above requirements, increase N to 2*N.

}

Figure 4.5 shows the structure of a topical crawl map. All the topical links in the graph

are bi-directional. The solid nodes in the graph are portal nodes. Each of them has topi-

cal links to several pages of the same interest. During the crawling process, we want the

 33

topical links to participate side by side with hyper links. However, we do not want either

of these two types of links to dominate. If hyperlinks dominate the crawling process, the

focused crawler will degrade to a base-line crawler. If topical links dominate, the crawl-

ing process will follow mostly the topical links without exploring new areas pointed by the

hyperlinks. Our design of the crawl map tries to maintain the balance between topical

links and hyperlinks. Our algorithm ensures that the number of topical links for any of the

portal node will not exceed the number of its hyper links. We also make sure that portal

nodes point to pages distant from themselves. Therefore the crawler could be redirected

to the remote and new areas of the web besides re-crawling the adjacent areas. We

rank the pages by the number of topical links going out from them. Since we have com-

plete information about the sub-graph, the rank calculation is straightforward without

multiple iterations. A simple program can perform the calculation for a sub graph with

tens of thousands of nodes in seconds.

After a new crawl is performed, newly found good pages can be merged into the exist-

ing topical crawl map right away. The crawl map extractor augments the sub-graph and

performs the rank calculation once more. After each crawl, several sub-graphs in regard

to different future topics are built or updated. By utilizing the topic matrix studied by

Chakrabarti et al. [11], we only need to extract sub-graphs for topics closely related to

the crawled topic and perform analysis accordingly. For example, after a “Football”

crawl, we only need to perform topical analysis for topic “Football” and several closely

related topics such as “Basketball” and “Baseball”. We can safely overlook non-related

topics such as “/Science/Astronomy”.

 34

Figure 4.5. Topical crawl-map structure

4.3.3 Priority of topical links

The priority of topical links directly affects the order of unvisited URL frontier, thus con-

trols the expansion of the crawl path. For hyperlinks, we set their priorities as 0.6*

P(c|parent). For topical links, we set their priorities as 0.6. This definition shows that we

view the topical links as having a perfect parent with P(c|parent) equal to 1. Setting the

upper bound of hyperlinks’ priorities to be 0.6 gives flexibility to adjust the relative impor-

tance between topical links and hyper links.

Such a definition reflects our design choices. How privileged do we think topical links

are? They can be viewed superior to hyperlinks and should be visited before any hyper-

links are visited. If this is the case, we need to assign the highest priority to topical links.

They can also be viewed inferior to hyperlinks, thus should be visited only after all the

hyperlinks are visited. In this case, their priorities should be assigned to a lower value

comparing with hyperlinks. Both views have some undesirable effects. By giving topical

links absolute advantage, the crawler will always re-visit the pages in the topical crawl

map first. Therefore it is more likely to explore paths that have been visited in past

 35

crawls. Exploration of unvisited paths will happen in very late stage of the crawl. This

approach is effective at re-crawling highly relevant pages. Re-crawling is very important

in focused crawling because the content and link structure on the web change fre-

quently. However, it sacrifices the chance to find fresh, unseen pages early on. The

latter approach gives topical links lower priority. It will greatly forfeit the power of previ-

ous knowledge and potentially degrade the enhanced crawler to a baseline crawler.

We view topical links as having equal importance compared to hyperlinks. We want

the crawler to visit topical links along with hyperlinks. We want to see paths from hyper-

links and topical links exist simultaneously in the crawling process. We show in 4.6 that

pages crawled by a baseline crawler exhibit bi-model distribution. We crawled 15,000

pages for both Basketball and Economics. In the set of pages our crawler visited, we

observed the following pattern. If a page turns out to be a good page, its relevance

probability is very likely to be close to 1.0. By assigning priority 0.6 to topical links, topi-

cal links are viewed equally with hyperlinks from a good parent page. This way, topical

links and hyperlinks are naturally mixed in the crawl process. The goals of utilization of

previous knowledge and freshness of newly crawled pages are satisfied at the same

time. The priority of the topical links can be changed dynamically. We can increase the

priority to 0.8 in order to favor re-crawling pages from the topical crawl map. We can also

lower the priority to 0.4 in order to favor crawling fresh data.

 36

Figure 4.6. Bi-model distribution of relevance probability
(15,000 crawled pages for each crawl)

4.3.4 Comparison among content caching, URL caching and topical crawl map

In this section, we compare our design with two alternatives: content caching and URL

caching.

Content caching means after each crawl, the crawler stores all the pages crawled into

their appropriate categories. In a future crawl, when a URL needs to be visited, the

crawler will use its locally cached copy instead of fetching the page from the web. We

believe such a simple caching solution is not suitable in focused web crawling for two

reasons: First, web content changes constantly, the study conducted by [13] shows that

on average a web page changes in several minutes. In such a highly dynamic environ-

 37

ment, the performance gain from caching is not going to offset the loss of data fresh-

ness. Second, web pages change not only their textual content, but also their hyperlinks.

For example, the CNN cover story pointing to a sports page about Red Sox’s victory in

one day may point to a political page covering the Presidential Election a week later.

Because of the hyperlink change, a real crawl preformed in a future time may cover very

different areas of the web. Content caching cannot capture dynamic changes in the web;

therefore its effectiveness is limited.

URL caching means after each crawl, the crawler extracts the good pages from the

result set and builds a giant start page containing all the good URLs. The crawler is as-

sured of many good pages at the beginning of a future crawl for the same topic. This is

useful when the main goal is to check the new content of the pages seen before. How-

ever, by giving previously seen pages top priorities, the crawler is not able to find fresh,

unseen pages early on. The crawler needs to fetch tens of thousands of pages originat-

ing from the giant start page and links from the seed pages before it can freely explore

other areas of the web. Treating the good pages found in previous crawls as an insepa-

rable piece overwhelms the crawler and hinders its ability to explore unseen areas of the

web.

We believe that utilizing history information and finding fresh data are both important

in focused crawling. We do not push all the topical links onto the task queue at the very

beginning. We mix topical links with hyperlinks gradually in the process of focused crawl-

ing by controlling the priorities. We can also dynamically adjust their priorities to favor

the needs of re-crawling seen pages or exploring unseen areas. Mixing topical links and

hyperlinks successfully is one of the central issues in our research. Our method is more

dynamic comparing to content caching and URL caching in future crawl for the same

topic. Besides benefiting future crawls for the same topic, topical crawl map also benefits

 38

future crawls for related topics. This idea is not seen in any caching method. In the case

of future crawls for related topics, it is especially important to control the priorities. Sup-

pose we have extracted 100 “Basketball” pages from a past crawl for “Football”. When

we perform a future crawl for “Basketball”, we do not put these 100 pages extracted on

the task queue at the beginning. We only put such topical links when it is necessary. We

conjecture that “Basketball” pages extracted from previous “Football” crawl may not be

as valuable as hub “Basketball” pages in the seed set. Only when the crawler hit a

“Football” page and cannot explore any further in this path, we redirect the crawler to

one of the “Basketball” pages extracted earlier. In this way, we ensure that the topical

links are not competing with links from highly relevant page, thus cannibalizing the accu-

racy of the crawl.

4.4 Experiments and Results

4.4.1 Evaluation framework

For our experiment study, we used following modules:

• Crawler: We modify the w3c-libwww crawling library available at

http://www.w3c.org/Library to include topical crawl-map extractor.

• Classifier: We use the public domain BOW toolkit and the Rainbow naive Bayes

classifier created by McCallum and others [15]. Rainbow is fast enough to classify

newly crawled pages right after they are fetched.

• Crawl-map generator: We write our own topical crawl-map generator in C, which

takes responsibility of extracting sub graphs from crawled pages, updating topical

crawl map and storing it in a MYSQL database.

 39

4.4.2 Design of topic taxonomy

We download from Open Directory (http://www.dmoz.org) an RDF file consisting of

634,201 distinct topics. We parse the content RDF from the same site containing

4,130,596 sample URLs. We select “/Sports” and “/Science/Social _Sciences” as the

top-level categories of our interest. We selected sub topics with at least 1,000 sample

URLs. Table 4.2 shows the sub topics we select from “/Sports” and

“/Science/Social_Sciences”.

In each sub category, we select as many as 1,000 sample URLs and fetch these

pages from the web. We also randomly select 5000 URLs from categories other than

“/Sports” and “/Science/Socail_Sciences” and put them under directory “/Others”. We

use Rainbow classifier to build class taxonomies for “/Sports” and

“/Science/Social_Sciences”.

Table 4.2. Topic taxonomy

/Sports /Science/Social_Sciences

/Baseball /Anthropology

/Basketball /Archaeology

/Cricket /Economics

/Cycling /Geography

/Equestrian /Linguistics

/Football/American /Political_Science

/Golf /Psychology

/Hockey/Ice_hockey /Sociology

/Martial_Arts /Urban_and_Regional_Planning

 40

/Motorsports

/Paintball

/Running

/Skating

/Soccer

/Softball

/Tennis

/Track_and_Field

/Volleyball

/Water_Sports

/Winter_Sports/Skiing

/Wrestling

4.4.3 Crawling the same topic

In this section we evaluate how much benefit we can harvest when the topic of interest

does not change.

In figure 4.7(a), we show the result of crawling topic “/Sports/ Basketball”. We let the

baseline crawler crawl about 15,000 pages starting from 200 sample URLs randomly

selected from the 1000 sample pages we fetched. Then we use our crawl-map generator

to generate the topical crawl map from the result pages. There are 7,841 good Basket-

ball pages extracted and linked in the topical crawl map. After that, we use our enhanced

crawler to crawl again for the same topic, starting from the same seed set.

 41

We plot the results for both the baseline crawler and the enhanced crawler in figure

4.7(a). X-axis shows the number of pages crawled. Y-axis shows the number of good

pages, which are pages with relevance probability higher than 0.5. The first curve from

the bottom in figure 4.7(a) is the result from the baseline crawler; the second curve is the

result from enhanced crawler. We also show the optimal curve (the diagonal curve in the

graph) for comparison. The optimal curve represents the ideal situation when every

crawled page is a good page. We observe that after starting off, the enhanced crawler

quickly dives into a pool of relevant pages. In fact, at the beginning stage, the result from

the enhanced crawler is very close to the result of an optimal crawler. This suggests

almost all the pages that the enhanced crawler fetched are good pages. This behavior

shows the benefit of the topical crawl-map. After the first crawl, we have built the topical

crawl-map for the 15,000 pages fetched, linking good pages together via topical links.

When the enhanced crawler starts from the same set of the seed pages, the topical links

going out from these seed pages are be quickly put on the task queue of the crawler. In

this way the enhanced crawler is supplied with a richer unvisited-URL frontier. Thus the

enhanced crawler cuts out the intermediate steps and quickly visited a large collection of

on-target pages. After fetching about 9,000 pages, the superior performance from the

beginning started to downgrade towards a baseline crawler. This is because the initial

benefit from the topical crawl map from the last crawl has been exhausted. The en-

hanced crawler starts to encounter unknown region of the web and it gets harder and

harder to find on-target pages. One thing worth noticing is when the enhanced crawler

crawled 9,000 pages, it is actually further away from the seed set comparing to the base-

line crawler because it uses the topical crawl map to skip a lot of intermediate pages and

reach further areas in the web. As we have discussed before, every jump in the crawler

 42

is a guess, the enhanced crawler is crawling a harder area comparing to the baseline

crawler.

After crawling 15,000 pages, we see that the baseline crawler finds 7,841 good pages

and the enhanced crawler finds 10,170 good pages. The enhanced crawler finds 2,329

more relevant pages. It translates to 30% improvement.

We perform the same experiment for “/Science/Social_Sciences/ Economics”. The

charts show similar trends with the Basketball crawl. We observe a big benefit at the

beginning of the enhanced crawl. The benefit faded after reaching about 7,500 good

pages. For this topic, the enhanced crawler outperforms the baseline crawler too. The

baseline crawler finds 7,956 good pages and the enhanced crawler finds 9,360 good

pages. The enhanced crawler improved the harvest rate by 18%.

As we have discussed earlier, the performance gain originates from the effectiveness

of the “navigation links”. By linking highly relevant pages together via topical links, the

enhanced crawler is able to quickly navigate through the network of good pages and

explore a better frontier. This directly shows in the high harvest rate at the beginning of

the enhanced crawler. Since the number of pages in our collection is limited to 15,000

pages, the benefit of the topical crawl-map would be limited too. With a much bigger

collection of pages, we hope to see the benefit of the topical crawl map not only exhibit it

at the beginning of the enhanced crawling process, but also in later stage of the crawling

process too. We imagine some of the topical links will lead the crawler to some rich area

further away from the seed pages and provide guidance on navigating those areas.

 43

(a) Baseball

 (b) Economics

Figure 4.7. Same topic re-crawls

4.4.4 URL overlaps

A general question one would ask is how does the enhanced crawler achieve its good

performance? Is it merely benefiting from visiting pages it fetched before? What is the

composition of the pages collected by the enhanced crawler?

 44

In this section, we evaluate how well the topical crawl map guides the crawler by mix-

ing hyperlinks and topical links in the crawling process. On one hand, if the crawler fol-

lows the hyperlinks in the frontier, it will crawl some of the pages visited by the baseline

crawler. But in most of the cases, it will be led to different areas of the web. On the other

hand, when following the topical links, the crawler will be led to on-topic pages early on

and re-crawl the good pages seen by the baseline crawler first. The harvest rate would

be high at the beginning since the crawler would meet more on-target pages by following

the topical links. At the same time the crawler will be led to new areas not seen before,

the harvest rate of these new areas are unknown. How to organize the priorities of hy-

perlinks and topical links will affect the collection of pages the crawler visits. We are par-

ticularly curious about what kind of effect the topical crawl map has on the ordering of

the unvisited links in the URL frontier. From the pages fetched by the enhanced crawler,

we look into the percentage of previous seen pages verses fresh data.

We plot the URL overlap for the experiments discussed in the last section. X-axis is

the number of pages crawled. Y-axis is the number of pages that are seen in the base-

line crawl. In figure 4.8(a), we show the URL overlap for the two “Basketball” crawls

starting from the same seed set. We observe that the enhanced crawler is able to mix

topical links and hyperlinks in the crawling process and balance the goals of re-crawling

old pages and exploring new areas. We see that in the second crawl the enhanced

crawler visits about 4,700 pages seen in the baseline crawl. 70% of the time, the crawler

is visiting unseen pages.

In figure 4.8(b), we show the URL overlap for the two “Economics” crawls. We ob-

serve that the URL overlap is higher than it is in the “Basketball” figure. Out of the

15,000 pages crawled, 9,000 are pages seen in the baseline crawl. In the “Economics”

 45

crawl, 60% of the time, the crawler is re-crawling pages seen before and 40% of the time

it is visiting unvisited frontier.

We believe this is because “Basketball” pages tend to have a large number of hyper-

links pointing to relevant Basketball pages. Therefore, in the task queue, the percentage

of hyperlinks is much bigger than topical links. It causes the crawler to explore more hy-

perlinks than topical links and visit more new areas on the web. On the contrary, in

crawls for “Economics”, “Economics” pages do not have a large number of hyperlinks.

Thus topical links have a strong presence in the task queue at the beginning. The en-

hanced crawler crawls more pages through topical links initially, resulting in higher URL

overlap.

(a) Basketball

 46

(b) Economics

Figure 4.8. URL overlaps

4.4.5 Finding new pages

We have shown in previous sections that the enhanced focused crawler is able to find

on-target pages quickly from its knowledge of topical linkage among crawled pages.

Nevertheless, maintaining a good balance between finding on-target pages quickly and

exploring new areas in the web is an important metric we would like to evaluate.

 Being able to reach a lot of good pages consistently is very important in some of the

usage scenarios. The ability to explore unknown areas on the web is crucial in other

cases. A focused crawler that can extract the most recent changes on the web for spe-

cific topics would have wide applications. For example, a focused crawler that is able to

find newly added resumes on the web with a computer science degree and interest in

finance could be a useful application for recruiters. A focused crawler that is able to find

the newly published papers on quantum computing around the world would be very

valuable to researchers. These goals are not easy to achieve with a Google-like search

engine. Since most search engines crawl the web without a particular topic, they will

 47

need to crawl a much bigger universe of the pages. This means the freshness of the

search result cannot be guaranteed. It is different in the case of a focused crawler. A

smart focused-crawler crawls the web on demand and returns fresh results in merely

hours.

 In this section, we evaluate our enhanced crawler on its ability to explore new areas in

the web. Using the same experiment set-up, we made the enhanced crawler re-crawl

15000 pages for topics “Basketball” and “Economics”. Figure 4.9 shows how well the

crawler performs in exploring new areas on the web.

 In the chart, X- axis represents the number of page crawled. Y-axis shows the number

of pages that have not been seen before. The curve in the middle tells how many pages

that have been reached in the re-crawl are new pages. For topic “Basketball”, we see

that out of the 15000 pages crawled; about 10,000 pages are new pages. The lower

curve tells how many newly crawled pages are in fact on-target pages. In the case for

“Basketball”, about 7000 newly crawled pages are good pages. This represents a 70%

on-target rate. From the results of previous experiments, the baseline crawler finds

7,841 on-target pages out of the 15,000 crawled pages. The on-target rate for the base-

line crawler is 52%. We can see that the enhanced crawler is more successful in crawl-

ing unknown areas on the web. Such advantage is the result of the topical crawl map.

The new areas pointed by the topical crawl map tend to be more resourceful than the

areas pointed by the hyperlinks on the pages.

 In the case for the “Economics” crawl, out of the 6000 new pages that crawler has

found, about 51% of them are on-target pages. Comparing to the 52% on-target rate of

the baseline crawler, the enhanced crawler shows comparable results without a big ad-

vantage. By analysing the topical map of the “Economics”, we saw the Economics pages

are rather clustered together. Thus, there are few topical links pointing to outside areas.

 48

Since very little knowledge is passed to the enhanced crawler, the crawler behaves simi-

lar to a base line crawler in exploring the new areas on the web.

 The enhanced crawler extracts topical information from pages it has seen before. It is

intuitive that such information will be beneficial for future crawls of the same areas on the

web. Our result shows that such information has benefit for the crawler to explore un-

known areas on the web as well. We believe it is not the simple collection of the informa-

tion but the interconnections among them that produce the advantage for the enhanced

crawler

(a) Basketball

(b) Economics

Figure 4.9. Finding new pages

 49

4.4.6 Crawling related topics

In this section, we evaluate how much benefit we can harvest by using the topical crawl

map in crawls for related topics. An example of crawling related topic is described as

follows: we first perform a crawl for topic “/Sports/Football/American” and extract topical

crawl-map from the result pages. Then we perform another crawl on a related topic such

as “/Sports/Basketball” utilizing the topical crawl map extracted earlier form the “Football”

crawl. We show that topical crawl map extracted from the “Football” crawl can improve

the performance of the second crawl on “Basketball”.

We conduct two sets of experiment. One is in the “/Sports” category, the other is in the

“/Science/Social_Sciences” category. We first crawl 15,000 pages in a focused crawl for

“/Sports/Football/American”. From the pages crawled, we are able to extract 132 pages

that are good “Basketball” page (with P (Basketball | u)>0.5). It is less than 1% of the

total pages crawled. We build a topical crawl map on these 132 pages. Next, we perform

a focused crawl for “/Sports/Basketball” with the help of the topical crawl-map we just

built. We start the crawl using the same seed pages. Whenever a page within these 132

pages is reached, the corresponding topical links will be added to the task queue of the

enhanced crawler and the crawler will be redirected to the areas pointed by the topical

links.

We compare the result of this crawl with the result for baseline crawler. We show the

result in figure 4.10(a). The first curve from the bottom is for the baseline crawler. The

upper curve is the result curve for the enhanced crawler. We also include the same topic

re-crawl results from last section for comparison. We see from figure 4.10(a) that the

enhanced crawler finds more relevant pages very early on. During the whole crawling

process, it consistently outperforms the baseline crawler. After crawling 15,000 pages,

the enhanced crawler is able to find about 9,169 good pages. It is about 17% improve-

 50

ment comparing to the 7,841 pages found by the baseline crawler. It is to our surprise

that with less than 1% redirection, the enhanced crawler improves the accuracy of the

crawl by as much as 17%. It convinces us that monitoring the relevance probability

closely in the crawling process is a decisive factor for the focused crawler. A smart

crawler should not blindly explore as many pages as it can handle. It should closely look

at every path it is exploring, prune the unpromising paths and redirect to the right course

as soon as possible. We also observe that by using redirection links, the enhanced

crawler has chances to explore areas that it would not normally reach in a baseline

crawl. In the experiments, we see the enhanced crawler found good pages that are not

seen by the baseline crawler. If we look at the 132 “Basketball” pages found in the

“Football” crawl, we find that most of them are very good portal pages containing a large

collection of Basketball links. Once a page in this collection is reached, it will lead the

crawler to some rich area in the web. This further explains the seemingly large benefit

from such a small topical crawl map.

In figure 4.10(b), we show the result of an enhanced crawl for “/Science/So-

cial_Sciences/ Economics” with the help of the topical crawl map extracted from a previ-

ous crawl for “/Science/ Social_Sciences/Psychology”. The crawl map consists of 124

pages from the “Psychology” crawl that belong to “Economics” category. We see that the

effect of redirection links is prominent throughout the crawling process.

 51

(a) Basketball

(b) Economics

Figure 4.10. Crawling related topics

4.5 Discussion

In this chapter we introduced the concept of topical links. We created two kinds of topical

links, navigation links and redirection links. We have conducted experiments exhibiting

the effectiveness of the navigation links and redirection links separately in previous sec-

tion. In production systems, the two kinds of topical links should be used together. Since

navigation links and redirection links are used at disjoint situations in the crawling proc-

 52

ess, the combination of them could contribute even greater performance improvement

for the enhanced crawler.

Topical links are as important as hyperlinks in the web. We suggest that the html

source of the web page should include a section for topical links. An enhanced web

page with topical links would look similar to the example we show in figure 4.11. Topical

information can be maintained either by crawlers or by web-masters. An enhanced

crawler can extract topical relationship from the pages it has crawled and push this topi-

cal similarity information to web masters. Web masters can thus keep explicit links

pointing to each other and strengthen the structure of web community with similar topical

interest. A previous study [14] shows that large percentages of emerging web communi-

ties are not aware of the existence of other members and are under-represented in web

directories such as Dmoz. Pushing topical relationship to individual content-issuers

would be especially useful in this sense. In the case that web masters are not willing to

keep topical links for competition reasons, crawlers can take the responsibility of keep-

ing these topical links. Such topical information will be valuable for customers looking for

different options.

 53

Figure 4.11. Enhanced web page source

4.5.1 The evolving Web

In November 2005, the Internet fathers were awarded the Presidential Medal of Free-

dom in United States. Robert Kahn and Vint Cerf invented and implemented the first

version of TCP/IP protocol in 1973 and gave birth to the Internet. Continuous develop-

ments of the Internet among the research community made it one of the most significant

inventions in the history of technology advancement. Millions of people embark on the

Information Highway via the Internet and make information available to the most remote

area on earth. The World Wide Web has become the most important means of access-

ing information online. In the early days of the Web, the number of total web page was in

the hundreds. Today, this number is in the billions. Google current indexes about 5 bil-

lion web pages and researchers believe it only accounts for less than 10% of the entire

web.

<HMTL>
<BODY>
<ORIGINAL SOURCE>
…
</ORIGINAL SOURCE>
<TOPICAL LINKS>
<TOPIC A>
<LINK> URL_A1 </LINK>
<LINK> URL_A2 </LINK>
</TOPIC A>
<TOPIC B>
<LINK> URL_B1 </LINK>
</TOPIC B>
…
</TOPICAL LINKS>
</BODY>
</HTML>

 54

If we look at the web through a magnifier and trace its change, we would find some

pattern from the web evolvement. A research group in IBM Almaden research center

conducted a series of experiment to trace the changes on the web. [14] They focused at

finding the communities (group of individuals who share a common interest, together

with the web pages most popular among them) on the web and track the pattern of their

changes. They categorized web pages in such communities into core pages and fan

pages. Core pages are strongly connected parts in such communities. Their results sug-

gested that due to the distributed and chaotic nature of the web, there are many more

implicitly defined communities than those explicitly defined by online directory such as

Google, Yahoo and Goecities. They estimated that there were about 130,000 communi-

ties on the web. Over a period of eighteen months, they found that only 30% of the

communities that were found at the beginning of the period were fossilized. This sug-

gests the majority of the web communities maintained a strong presence on the web.

The core pages in these communities were long-lived. They were able to recover the

communities in an evolved web through the core pages they collected at the beginning

of the experiment period.

Their notion of web community largely reflects the social relationship of the web

pages. The core web pages with higher number of fans correspond to the web pages

with higher social capital. From their result, we hypothesize that web pages with higher

social capital are rather stable during the web evolution and we should be able to find

high quality topical pages in the web by simply using these pages as hubs to start. If this

is true, the topical linkage information should survive the web evolvement and continue

to contribute to the performance of the enhanced crawler.

 We conducted the same experiment six months later using the topical linkage infor-

mation we found in earlier experiment. We show our result below.

 55

 (a) Basketball: Six months later Original plot

 (b) Economics: Six months later Original plot

Figure 4.12. Effects of the evolving web

 Figure 4.12 shows four plots. The two plots on the left were results of the focused

crawls we conducted six month later. We include the two plots from the original experi-

ments for comparison. In the focused crawl for “Basketball”, we see that with the help of

topical map gathered six months ago, the enhanced crawler is able to find more on-

target pages compared to the baseline crawler. This suggested that the crawl map we

generated earlier still provided useful information today. A large number of web pages

 56

we collected from the crawls six months ago are not only still valid itself but also provide

links to good pages.

 The result from a re-crawl of “Economics” shows a different story. From the plot, we

see that the topical crawl map provides guidance to the crawler initially. The focused

crawler was able to find more good pages compared to the baseline crawler. However,

after crawling 12,000 pages, the performance of the focused crawler degraded. It was an

interesting behavior. It suggested that the first level of the topical crawl map is useful,

but following the links of these old pages does not yield good results. This could be re-

sulted from the structural change of the web. The links from the old pages might not be

valid anymore, causing the crawler to visit invalid pages.

4.5.2 Dependence on accurate classification

Classifiers play a crucial rule in focused crawling. Prior to the crawling process, a collec-

tion of seed pages is used to train the classifier. We expect the classifier to distinguish

pages belong to the target topic from other pages. The common practice is to use manu-

ally built topic taxonomy such as dmoz.org or yahoo directories as the training set.

Therefore, the classifier is fine tuned to provide the correct classification for such topic

taxonomy. It is sensitive to not only the structure of the taxonomy, but also the seed

pages within the directories.

During the crawling process, classifier gives the probability that a newly fetched page

belongs to the target topic and decides about how to redirect the crawl path based on

the classification results. A slight difference in the classification result could induce a

major difference in the crawling path. The focused crawler would direct to different areas

of the web if the results from the classifier were different.

 57

Naturally we would like to choose the best classifier for our focused crawler. However,

the definition of the best classifier is not crystal clear. We have studied several widely

used methods in classification, including Naïve-Bayes, FIDF/Rocchio, Probabilistic In-

dexing and K-nearest neighbor. There are no proper measures to compare the classifi-

cation results among them. As we have said earlier, the classification results depend

keenly on the topic taxonomy and the training set. One classifier could be fine turned to

achieve high accuracy for a particular training set. However, there is no guarantee that

this classifier will work equally well for other kinds of test data. Because of the dynamic

nature of the web, the composition of the web pages a crawler encounter differs largely

from session to session. Although we can fine-tune the classifier for the collection of

seed pages, there is no possible way to prepare the classifier for the collection of web

pages it will encounter in the crawling process.

It is very hard to compare classifiers beyond the obvious measures using the same

training data. We choose to make our implementation modular so that we can plug in

different classifiers and compare the result. Upon evaluating several classifiers in our

crawler, we found that there is no visible difference in the quality of web pages crawled.

Therefore, we choose Naïve-Bayes method in our enhanced crawler since it is the fast-

est. We have tested the Naïve-Bayes classifier on a range of topic taxonomies from

Open Directory Project. For a large portion of the topics in the taxonomies, the Naïve-

Bayes classifier can provide higher than 50% accuracy in classification. (Our test data

are fetched web pages from Dmoz directory. We assume 2:1 split for training and testing

data.) We hope more sensible measures and detailed analysis for evaluating different

classifiers will be developed among the research community in the near future. We will

revisit this topic then.

 58

4.5.3 Reliance on categorization

Everyone in the web crawling community knows the importance of start pages. Web

contains massive amount of information, no single crawler is able to traverse the whole

web within the time and space constraints. How to reach most valuable pages in the

shortest amount of time is the central theme for web crawling. Past research has indi-

cated that a smart crawler should not only selectively follow hyperlinks that would lead to

diamond pages, it should also choose its start point very carefully. A lot of research ef-

forts have been spent on fine-tuning the set of start pages for a web crawler. They follow

forward links and backward links to extend the crawling frontier and calculate values for

each of the pages in the frontier to choose the best seed pages to start. They have

shown that a good set of start pages contributes significantly towards the quality of later

crawled pages. Since start pages are the only definitive information that is fed into the

crawler, fine-tuning is well worth the effort.

In the context of a topical crawler, we not only depend on the quality of start pages but

also the quality of the categorization. The taxonomy of the topics is the input fed to the

classifier. The accuracy of the taxonomy directly translates into the ability of the classifier

to correctly classify newly fetched pages into different categories. It is fortunate that

there are human built web directories such as Yahoo and Dmoz. These online directo-

ries give a first order of taxonomy for the classifier. Nevertheless, such online directories

have their own limitations. First, the categories in their taxonomy are somewhat too

broad to catch the fine difference for some of the topical groups. The hierarchy of such

taxonomy does not represent the topical communities on the web accurately. They often

underrepresented web communities that cannot be entirely categorized into their hierar-

chy. Second, since humans build the online directories, a substantial number of pages

are not content pages to the crawler. They are portal pages with “obvious” links to con-

 59

tent pages. It is natural for human to figure out the “obvious” link to follow in these portal

pages, it poses extra complexity for crawlers and sometime confuses them.

Ideally, we would like to conduct an extensive general web crawl and capture a sub-

stantial portion of the web. Then, we can try to construct a categorization on this collec-

tion. If it was done successfully, we believe the quality and efficiency of our crawler will

be largely improved. However, constructing such a categorization is not an easy task

itself. In order to do the categorization right, we need great classifier again. However,

great classifier relies on extensive amount of training data to initiate, which requires hu-

mans to manually classify an enormous amount of web pages in the end.

We believe a better categorization built by humans will be beneficial to the entire web

community. More and more companies are entering the web crawling and searching

territory, some company may be willing to spend a fortune to build such a categorization

for competitive reason. It is realistic to think that more benefit can be harvested in the

near future in the presence of better online categorization.

4.5.4 The combination of navigation links and redirection links

In previous sections, we have reasoned that both navigation links and redirection links

are useful in topical crawler. We have evaluated these two types of links in our experi-

ment sections. We learned from the study that navigation links are effective in re-

crawling the same topic and redirection links are effective in quickly switching from topic

to topic. However, we have not tested the behavior of the focused crawler if we combine

navigation links and redirection links in the same experiment setting. This would be an

interesting test to conduct. Intuitively one would think navigation links and redirection

links serve different purpose and their usages are disjoint. Therefore the combination of

these two types of links would generate even better results. We have not seen proof of

 60

such a claim. In the process of web crawling, the sequence of web pages visited is the

most important factor of the success of the crawler. How navigation links and redirection

links interact with each other affects the results of the crawler. Are they really disjointed?

Is one kind of links dominating in the crawling process? These are the questions we can

explore further.

4.6 Conclusion

In this chapter, we answered the question whether there are topical linkages in the web.

We showed our approach to find such topical linkages. We developed an enhanced fo-

cused crawler to harvest the additional topical information in the web. We designed a set

of experiments to evaluate the effectiveness of the focused crawler from different per-

spectives. We discussed the dependence on the classifier and initial categorization. We

conclude our finding in following statements:

• Following topical link structure is very useful in focused crawling. We have shown

that by following topical link structure, the enhanced crawler is able to find a richer

set of relevant pages and achieve higher harvest rate.

• Topical crawl map can be extracted from pages we have crawled before. We have

devised a method to create two kinds of topical links serving both fast navigation and

topical redirection purposes. We have shown an efficient storage scheme for storing

the topical crawl map.

• Future crawls for the same topic and related topics can both benefit from the topical

crawl map extracted from past knowledge. In the case of future crawls for the same

topic, the topical crawl map guides the crawler to fast navigate through the network

of highly relevant pages. In the case of future crawls for related topics, the topical

 61

crawl map closely monitors the deviation from target topic and provides redirection

when necessary.

We consider building a more comprehensive topical crawl map covering a wide range of

topics as a future direction. We would like to incorporate the topic citation matrix [11] in

the creation of topical crawl map for related topics. Topical citation matrix is a matrix

recording the pair-wise relevance among topics. We are also considering using textual

features and distance measures in generating the graph structure for topical links. We

will discuss the future works in details in chapter 6.

 62

Chapter 5

BuddyNet: History-based P2P Search

5.1 Introduction

A decade after its birth, the Internet continues to deliver rapid growth and evolution in

surprising ways. Peer-to-Peer (P2P) networks have become one of the fastest growing

Internet applications [34] from the first introduction of Napster in 1999. Recent studies

have shown a dramatic shift of the Internet traffic away from HTML pages to multimedia

files shared in a P2P fashion. A March 2000 study at the University of Wisconsin found

that the bandwidth consumed by Napster had surpassed the HTTP bandwidth [40]. Two

years later, a University of Washington study showed that P2P file sharing dominates

the campus network, consuming 43% of all bandwidth compared to only 14% for WWW

traffic [41]. Without any doubt, P2P file sharing has already represented large portion of

the Internet information needs and will continue to increase its dominance.

Today’s P2P systems can be characterized into two classes. An unstructured P2P

overlay network, such as Gnutella or Kazaa, builds an unstructured overlay network over

the peers. A Gnutella-like system is simple and easy to adapt to dynamic situations

when peers join and leave the system. Nevertheless, it is not scalable. When the num-

ber of peers increases, the number of messages propagated in this system increases

 63

dramatically and the latency to locate the content increases accordingly. Another class is

structured P2P overlay networks. Most of them are based on the Distributed Hash Table

(DHT) abstraction [25, 30, 31, 32, 33] . A DHT system organizes peers into a well-

defined structure and controls the data placement and overlay topology. DHT’s determi-

nistic content locating and routing solve the scalability problem. However, DHTs require

great effort to incorporate query models for keyword search [35].

The simplicity and adaptive features of unstructured overlay systems are very appeal-

ing for real-world P2P applications. The only obstacle is its scalability. Freely evolved

P2P systems have shown tremendous similarity with social networks. User interactions

and activities in P2P systems exhibit “small world” phenomena. [26, 27, 29] We believe

that there is a way we can utilize these characteristics to make unstructured overlay sys-

tems scalable. Our design philosophy originates from a simple observation: If a peer has

satisfied a large percentage of queries originating from another peer, this peer is more

likely to satisfy future queries from the same peer. Looking at real-life experiences, we

can see this simple observation being exemplified in various social contexts: people con-

tinue buying goodies from their favourite stores, people rent movies following the same

reviewer’s recommendation and on Ebay [39], people bookmark their favourite sellers,

etc. We also see that such interest-based localities are being harvested for all purposes:

Retailers are diligent at sending catalogue to their past customers, book clubs periodi-

cally select new books for their customers based on their pervious purchases, web

pages become more and more personalized. If P2P systems have so much resem-

blance with social networks, it may also be true that interest-based locality exists in P2P

systems. We see an analogy between the human society and P2P systems. Peers in a

P2P system very much resemble individuals in a society. They possess not only physical

capital but also social capital. In other words, besides of possessing a collection of files

 64

as its physical capital, a peer in a P2P system also possesses social capital in the form

of its location in the network and its connectivity with other peers. It is natural to think

that by recognizing and utilizing the social capital in P2P system, we would improve the

efficiency of the entire system and serve the needs of individual peers better.

This simple observation sounds compelling, but to the best of our knowledge, there is

no study that has proved its validity. Conducting an analysis on the behavior of existing

P2P system seems to be the first step towards this goal. Links between peers exists for

different reasons. Some links provide the basic connectivity of the system. Other links

exist because of physical vicinity. We focus on links that exist among peers with similar

interests. In other words, we are interested in the interest-based locality of P2P systems.

We believe these links best captures the social relationship between peers and they are

the key to improve the efficiency of the entire system. We conduct a novel evaluation

study on Kazaa traffic focusing on the interest-based locality property. Our analysis vali-

dates our observation and shows us how to harvest the interest-based locality to im-

prove performance.

Based on our findings, we propose a history-based search algorithm and a self-

organizing topology adaptation mechanism, called BuddyNet. The proposed system has

two desirable features. First, BuddyNet is a loose structure on top of the underlying over-

lay; it does not impose any constraints on data placement and topology. As a result, it

does not affect the correctness of the underlying system; it only tries to improve the per-

formance of the system. Second, the information kept at each peer directly benefits that

peer. Peers do not need to keep arbitrary information or perform extra operations for the

common good. This conforms to each peer’s selfish behavior [27].

 65

We discuss our evaluation study in section 5.2, system design in section 5.3, simula-

tion model in section 5.4 and its performance in section 5.5. We conclude our work in

section 5.6 and compare it with some related work in section 5.7.

5.2 Does Interest-based Locality Really Exist?

It has long been speculated that interest-based locality existed in P2P systems. Dif-

ferent schemes were proposed to harvest this kind of locality. [21, 24] However, to the

best of our knowledge, there is no study performed on real world trace to validate this

speculation. In this section we describe an evaluation study performed on a recently

collected Kazaa trace and focus on the interest-based locality exhibited in this dataset.

We display several facts about the interest-based locality in P2P system and give hints

in designing a system using these findings.

We use data collected in a previous work [23]. The data collection process is as fol-

lows: A caching server is installed at the border between the local Kazaa user base of a

large ISP and the Internet cloud. For each TCP connection, for both directions (in and

out), a Layer 4 switch inspects the first few packets to detect Kazaa download traffics. If

download traffic is detected then the switch redirects it through the caching server. Thus

the caching server is able to log all downloads performed by local Kazaa users. The data

collection period lasts for a year. There are no significant changes in traffic characteris-

tics during this period. Therefore we use a part of the dataset for our analyses below.

Table 4.1 summarizes the main characteristics of the collected data. Consumer de-

scribes a node that initiates download sessions. Provider describes a node that satisfies

the query and provides the file for downloading. We use peer, node and user inter-

changeably in following sections.

 66

Table 5.1. Characteristics of the collected Kazaa trace

Data collection period 2/5/03—2/11/03

Number of downloaded files 1.2 * 106

Number of unique files ~130,000

Number of consumers >90,000

Number of providers >190,000

Bytes transferred ~6TB

Figure 5.1 shows the activity distribution of the peers. Y-axis shows the number of

downloads for each user. On X axis, users are ordered in decreasing order of the num-

ber of downloads they initiate. Logarithmic scale is used on Y-axis.

The activity levels for different users are widely varied. A few users issue as many as

10,000 requests; about 90% of the users issue less than 10 requests. Who answers

these queries? Does a user get data from a large group of random users or does it al-

ways get data from a small group of focused users?

Fig. 5.1. User activity distribution

 67

Fig. 5.2. User interaction distribution

We further look into how many different users a user actually gets data from. We plot

the number of users from whom a user has downloaded data over the user name space

in figure 5.2. Logarithmic scale is used on the Y-axis. From the graph, we see that more

than 75% of the users have their queries satisfied by a single user. Over 85% of the us-

ers only need to keep two other users in their address book. About 95% of the users can

satisfy their queries by asking less than 10 other peers. On the other hand, there are few

users that get data from more than 100 other users.

From figure 5.2, we conclude that users can be classified into two categories. Users in

the first category have focused interests and get data from a small group of other users.

Recognizing other peers that supply content to them and establishing direct links to

these buddy peers will most likely satisfy their future needs. Users in the second cate-

gory have general interests and get data from a wide range of other users. It is not wise

to keep direct links to all the peers that have answered its past queries. It is space ineffi-

cient to keep all of them in the address book and bandwidth consuming to ask all of

 68

them when future queries come. For users with general interests, we need to distinguish

those buddies that have the highest probabilities to satisfy their future queries.

For each node, the probability that it will download from a node again if this node has

satisfied N queries in the past is calculated as follows:

∑
∑

∈

∈
+

=
)(

)(

),,(

)1,,(
),(

jGi

jGi

NijV

NijV
NjP (1)

⎩
⎨
⎧

<
≥

=
NijT
NijT

NijV
),(0
),(1

),,(

P(j,N) denotes the probability that peer j will download from another peer if peer j has

downloaded N times from the same peer in the past.

T(j,i) denotes the number of times that peer i has satisfied queries issued by peer j.

G(j) represents the group of peers from whom peer j has downloaded.

Fig. 5.3. Probability of satisfying query again

We plot the probability of satisfying a query again in Figure 5.3. X-axis extends over

the user name space. Y-axis shows the probability of satisfying a query again. From the

curve representing 1 past download (right most curve), when Y equals to 0.5, X is ap-

proximately 70%. It means that 30% of the users (from 70% to 100% on X-axis) will

 69

download from the same peer again with probability higher than 0.5. When there are 2

past downloads, about 50% of the users will download again with probability higher than

0.5. With more and more downloads in the past, such as 5 to 10 downloads, the prob-

ability to download again increases accordingly. With 10 downloads in the past, about

65% of the user will download from the same user again with probability 1. This result

indicates that history information can help us identify those users that have the highest

probability to satisfy future queries.

We happily see that our analysis result supports our observation that interest-based

locality does exist in P2P system. We demonstrate that higher number of past

downloads is a good indication for peers that have high probability to download from in

the future. Building on our findings, we propose a history-based search algorithm and

topology adaptation scheme. We let every peer keep direct contacts to peers that have

highest probabilities to answer future queries. We call these peers its buddies. Peers

consult their buddies first before asking the general public when they issue queries.

From the above analysis, we realize that peers in the P2P system can be classified into

two categories. On one hand, most of the peers get their queries satisfied with help of

less than 10 other peers. On the other hand, a small percentage of peers do have wide

interests and gets data from more than 100 other peers. We realize it is not the best

strategy to make every node keep contacts to all of its buddies. How many direct links to

its buddies should a peer maintains? If the number is too small, frequent insertion and

deletion may occur when the actually number of buddies exceed the size of the list. If it

is too big, it not only takes space at user side, but also consumes a lot of bandwidth

when using these direct links to locate content. We need to find a suitable size that

maintains the balance between these two ends. We perform following experiment on the

trace. We first selected from the trace those nodes that issued at least 10 queries in the

 70

whole period. We make every node keep a buddy list with maximum size N. The least

recently used (LRU) entry is replaced when the list is full. We test value 2, 5, 10 and 20

for N. We also test a special case where N equals to infinite, which means a node can

keep as many buddies as needed. If a node in the buddy list satisfies a new query, we

call it a “hit”. We plot the hit rate for different buddy list size in figure 5.4.

Fig. 5.4. Hit rate using different buddy list size

From figure 5.4, we see that with as few as two buddies in the list, nodes start to get

benefit. Median hit rate is over 0.3, which means 30% of all the requests are satisfied by

asking the two buddies. For the rightmost 10% of the nodes, the hit rates are over 0.8.

The bigger the list size, the higher the hit rate. With list size equal to 20, the curve is very

close to the optimal curve. We choose list size of 10 for our system. It not only provides

decent hit rate, but also is small enough to add negligible overhead.

 71

5.3 System Design

From our analyses in section 4.2, we show that interest-based locality exists in Kazaa

traffic. Queries should be directed to a focused set of nodes instead of flooding to all the

nodes. We propose a history-based scheme to meet this goal. With very little bookkeep-

ing of the past query statistics, each node is able to identify a subset of nodes that can

satisfy its future queries with high probability. Furthermore, peers cluster together by

their mutual interests as more and more queries are issued in the system. The entire

system evolves to a better-connected shape when time goes on. In following sections,

we describe the design of system architecture and choice of algorithm.

5.3.1 BuddyNet Architecture

We add an additional layer on top of the peer-to-peer system’s overlay. We call it Bud-

dyNet. Besides keeping the links to their neighbors in the original overlay, peers also

keep links to their buddies. Buddies are selected based on past query statistics. Bud-

dyNet forms a loose overlay on top of the original unstructured overlay. The goal of the

BuddyNet architecture is to let each peer contact those peers that have the highest

probability of answering its future queries via these links, therefore decrease the system

load and shorten the hop-by-hop delay. Furthermore, we adopt the one-hop replication

technique into the BuddyNet architecture. The one-hop replication scheme used by

Chawathe et al. [22] lets each node actively maintain an index of the content for each of

its neighbors. We believe that instead of maintaining indexes for its neighbors, it is more

appropriate for a peer to maintain indexes for its buddies. Storing indexes of neighbors’

content requires a peer to maintain arbitrary data for the common good, while storing

indexes of its buddies’ content is directly self-beneficial.

 72

Figure 5.5(a) shows the original unstructured overlay network. Peers communicate

with each other via their overlay links. Figure 5.5(b) depicts two BuddyNet links for the

top-left node. When this node issues a query, it tries to locate the content via BuddyNet

links first. If the content is not found, the query is propagated in the system through the

underlying overlay links. Figure 5.5(c) shows that of the two BuddyNet links, one link is

in fact an index link (shown in bold), which means the top-left node keeps the index of

the bottom-right node.

(a) O rigina l overla y ne tw ork (b) A dded budd y list links

(c) A dded budd y in dex links

Fig. 5.5. BuddyNet architecture

5.3.2 Buddy List

Every node in the system keeps track of past query statistics by keeping a buddy list.

The buddy list is a linked list. Every entry in the list is a tuple of (nodeID, response-

Count). Response count records how many times a buddy has satisfied a query. The

buddy list is sorted based on reponseCount and the age of the entry.

Whenever a node receives a response for its query, it checks its buddy list to see

whether that responding node is in the list. If it is in the list, it increases the response

 73

count of that node and re-inserts it into the list. If it is not in the list, a new entry is cre-

ated as (nodeID, 1) and inserted into the list. If buddy list reaches its capacity, the oldest

tuple with the lowest response count is removed. Figure 5.6 illustrates the insertion and

deletion process of buddy list with an example.

(4 , 1) (3 , 5) (7 , 6)

(4 , 1) (7 , 6) (3 , 6)

(2 , 1) (7 , 6) (3 , 6)(4 , 1)

(5 , 1) (7 , 6) (3 , 6)(2 , 1)

(a)

(b)

(c)

(d)

Fig. 5.6. Insertion/deletion for buddy list, size=4: a) Before b) After receiving a re-

sponse from node 3 c) After receiving a response from node 2 d) After receiving

a response from node 5

For different search methods, the buddy selection process may be slightly different.

For a random walk scheme, we could insert the first response that comes back. For a

flooding method, we could choose a response to insert randomly from all the responses

received. We can also insert all the responses into the list. Currently, we insert the first

response into the buddy list. We explain how the buddy list adapts to load imbalance in a

later section.

For any replacement algorithm, the main concern is whether the workload shows

characteristics of sequential access. In our case, if a node continues receiving re-

sponses from a large number of peers randomly, its buddy list will constantly add new

entries and expire old entries. We show in our simulation that after a short warm-up pe-

riod, the buddy list becomes stable. Newly created entries only affect the head of the

list. The tail of the list is relatively stable with buddies having high response count.

 74

5.3.3 Buddy Index

Besides the buddy list, every node also keeps indexes for a subset of nodes. In order for

node A to keep node B’s index, node B must satisfy two requirements. First, node B

must be in node A’s buddy list at present. Second, node B must be in node A’s buddy list

for long enough time.

We checkpoint the buddy list at fixed interval. At every checkpoint, a special proce-

dure is invoked to check and update the status of the buddy list and request the index

from its buddies if needed. For every node in the buddy list, it checks whether it was also

in the buddy list at the last checkpoint. If it was and we do not already have its index, an

INDEX_REQUEST message is sent to the node. Upon receiving the INDEX_REQUEST

message, the node sends its local index. We log the status of the buddy list to be used

at the next checkpoint. When a node is removed from the buddy list, its index is also

purged.

After the first transfer of the index, nodes periodically exchange indexes in an incre-

mental fashion. An incremental index transfer can also be triggered when a peer finds

out that its copy of a buddy’s index is out-of-date by an incorrect response to its query or

failed downloads. The communication of an index transfer is a point-to-point message

with tens or hundreds bytes message body. While the communication cost of a query is

tens or hundreds of message with a several byte message body.

Transferring indexes among peers can be an expensive operation. If it happens of-

ten, it will increase system load and cause the system to perform badly. We believe that

since a peer only shares its index with peers that have similar interests, its buddy list will

become stable after a short warm-up period. Transfers of indexes among peers will be

 75

very infrequent and utilize only a small fraction of available system resource. Our simula-

tion result supports this hypothesis.

5.3.4 Dynamic Adaptation

BuddyNet dynamically adapts its structure based on successful or failed query response.

When a response is received via buddy index or buddy list, the peer will subsequently

attempt to download the file from this buddy. At this time, if it finds out that this buddy is

down, it decreases the response count for this buddy in its buddy list and re-inserts it at

the correct position. In this way, buddy list monitors the stability of the buddies. Under

dynamic situations when nodes join and leave frequently, using the buddy list can shield

peers from the instability of the network. It also prevents popular nodes from being over-

loaded. If a lot of nodes contact the popular node via their buddy links, the popular node

can choose not to respond to some of the queries. The requesting nodes will treat this

node as down and move it to a lower priority position in its buddy list and send queries to

other buddies in its buddy list. Load balance is thus achieved.

5.3.5 Search Algorithm

A query is propagated in our system as follows:

When a node issues a query, it first checks its buddies’ indexes kept locally. If the

content is not found, it asks all the nodes in its buddy list by sending out a QUERY mes-

sage with Time-to-live (TTL) equal to 1 to each of them. If no node in its buddy list re-

sponds to the query, it performs a random walk on its neighbors to locate the content.

Upon receiving a query, each peer checks its local storage to see whether it can sat-

isfy the query. If it has the content, a RESPONSE message is sent back. If the content is

 76

not found in its local storage, it checks its buddy index. If one buddy’s index satisfies the

query, a RESPONSE message is sent back on behalf of that buddy. If it fails, the node

uses a random walk to forward the query as long as the TTL of the message is greater

than zero. After sending out a request, a node may receive multiple responses. It

chooses which node to download from and sends out a FETCH message to that node

directly.

Sending extra messages to peers in the buddy list is only used at the query-originating

node, not at intermediate nodes. In this way, even in the worst case, a single query will

only generate as many extra messages as the size of the buddy list (we choose it to be

10) compared to the random walk scheme. We do not require any node in the system to

take extra responsibility to delegate queries for others.

5.4 Simulation Model

In this paper, we use a trace-driven simulator on a subset of the dataset described in

pervious sections. We randomly select 2,000 users who issue more than 10 queries in

the trace. We filter out the sub-trace that contains only queries initiated by these users.

There are 23,262 queries issued in total. There are 7,091 providers that supply the data.

Filtering out providers that do not supply data decreases the network size. A smaller size

network can make the simulation run faster. However, filtering out non-participating

nodes does not bias the experiment results. This is because the alternative systems

(FLOOD and RANDOM_WORK) we are comparing to degrade their performance quickly

when the size of the network increases. By reducing the simulation size, we were actu-

ally favoring our comparison systems. In the sub-trace, consumers only request content;

they don’t supply contents to other nodes. Providers only supply contents; they don’t

 77

originating queries. This separation does not affect our results since the querying behav-

ior and the responding behavior are orthogonal. We can easily merge a consumer and a

provider to make a full functioning node. We think the separation makes the simulation

results easier to interpret.

Our simulator proceeds by having peers issue queries sequentially. At any time, a

peer i in the network may be actively issuing queries, responding to queries or down.

Upon issuing a query, a peer waits for incoming responses. Since we are interested in

relative system load and average path length to locate the content, not absolute time,

having queries executed in sequential order does not affect the correctness of our per-

formance evaluation.

Freely evolving P2P networks have been shown to exhibit power-law network charac-

teristics [37]. Hence, peer degrees in the simulation are governed by a power-law distri-

bution. Upon joining the network, a peer connects to a node i with probability i

j
j N

d
d

∈∑
,

where N is the set of nodes currently in the network and di is the node degree of peer i.

Every peer in the system maintains a minimal degree. Figure 5.7 shows the distribution

of node degree for the simulated overlay network of 9,091 nodes with minimal degree

equal to 4. Both X and Y-axes are log scaled.

 78

Fig. 5.7. Distribution of node degrees

Figure 5.8 shows the content distribution of the simulated system. For each individual

file in the system, we count how many peers possess a copy of the file. We plot the

number of copies for each file. We see that in the simulation, file distribution is governed

by a Zipf distribution. We assume a pool of N peers, and each peer has a certain prob-

ability of being online, assigned based on the statistics collected in [27].

Fig. 5.8. Distribution of files

 79

5.5 Performance Evaluations

5.5.1 Performance comparisons

In order to compare the performance of our algorithm with other search algorithms, we

look at the following metrics:

1) Msg/query (M/Q): The average number of messages propagated throughout the

system for each query, which represents the system load. Whenever a node re-

ceives a message, we increase the total number of messages in the system by one.

If seven nodes see a message, they will each count the message once using our

metric.

2) Path length (PL): The average hop counts to reach the first response for a query.

If multiple queries are issued to different peers before the first response comes

back, all these queries will be counted.

3) Success rate (SR): The percentage of queries that have gotten responses.

We compare the performance of following three search algorithms.

1) RANDOM_WALK: Query is forwarded to a randomly chosen neighbor until the first

response is received. Originating peer sends out 16 walkers at a time with the TTL (time-

to-live) equal to 1024.

2) INTEREST_SHORTCUT: Nodes use the interest-based shortcuts scheme described

in [24]. Peers keep shortcuts to other nodes that have similar interest and follow these

shortcuts in query propagation. It is similar to our buddy list design without the buddy

index and the dynamic adaptation feature.

3) BUDDY_NET: Peers keep track of past query history, including the buddy list and

the buddy index, and perform history-based search during query propagation.

 80

5.5.1.1 Baseline performance comparison

In the base line case, we assume all the nodes are always active and respond to all the

queries they receive. We discuss performance comparison under dynamic situations

later. We run the simulator for the first 10,000 queries to warm up and record the result

for queries 10,001 to 20,000.

Table 5.2. Baseline performance comparison

 RANDOM WALK INTEREST SHORTCUT BUDDY NET

M/Q 3,842 1,370 1,122

PL 88 31 28

SR 0.97 0.98 0.98

From Table 5.2, we see that BUDDY_NET outperforms both RANDOM_WALK and

INTEREST_SHORTCUT.

Using the BUDDY_NET algorithm, the system load is reduced by 70% compared to

RANDM_WALK and by 20% compared to INTEREST_SHORTCUT. We believe the

benefit coming from the use of the Buddy List. By asking buddies in the buddy list first

before propagate the query to all the neighbors, the originating node is likely to get to a

responder within a much smaller group. Thus, the number of messages generated in the

system is largely reduced. At the same time, BUDDY_NET also achieves a lower aver-

age path length.

5.5.1.2 Performance under dynamic situations

In this section, we discuss the effects of participation dynamics.

 81

In the real world, peer-to-peer systems are highly dynamic, with nodes joining and

leaving constantly. Participation dynamics can affect both the system load and the la-

tency to locate the content. Nevertheless, BuddyNet is designed to adapt to the partici-

pation dynamics in peer-to-peer networks. Short-living nodes are more likely to age out,

and stable nodes are more likely to accumulate higher response counts and stay in the

buddy list. In this way, the buddy list is also an indicator of node stability. When a peer

asks its buddies about a query, it is more likely to reach a responsive node. The Bud-

dyNet algorithm greatly reduces the scope of query propagation. This is particularly use-

ful in dynamic situations. A query is more likely to be resolved within a small group of

nodes; therefore, the dynamic behaviour at other nodes has small probability to affect

the performance of the query.

In Table 5.3, we show the simulation result under dynamic situations. In this simula-

tion, we do not assume all the nodes are always up and respond to queries. Instead, we

allow nodes to join and leave the network frequently. We use the same setting as in last

section, but assign each peer’s uptime based on the uptime distribution in [7].

Table 5.3. Performance under dynamic situations

 RANDOM WALK INTEREST SHORTCUT BUDDY NET

M/Q 6,607 4,419 2,299

PL 139 78 26

SR 0.88 0.87 0.92

We see that in dynamic situations where nodes join and leave frequently, both

RANDOM_WALK and INTEREST_SHORTCUT schemes degrade significantly. Both

 82

schemes generate significantly more messages; have longer path length and their suc-

cess rates are dropped.

In the case of RANDOM_WALK, having peers behave dynamically in the system

means the success rate of the walkers are greatly decreased. If any peer on the chain

from the originating node to the responding node leaves the network, the response

would not be found and returned to the originating node. Thus, new walkers need to be

sent out and more messages needs to be propagated in the system. As the result, the

path length of the query increased a lot.

In the case of INTEREST_SHORTCUT: although peers keep shortcuts to other

peers with similar interest, they do not adjust these shortcuts dynamically based on the

behavior of the peers in the list. When the peer-to-peer network experience a lot of in-

stability, the shortcuts cannot shield peers from it. Queries are sent to inactive peers and

need to be redirected later. This explains the large increase of the system load and the

path length.

On the contrary, BUDDY_NET still provides reasonable performance. We believe

this is the contribution of the dynamic adaptation mechanism in BuddyNet system. By

adjusting the buddy list dynamically based on the behavior of the peers, we tend to keep

the active nodes in the list and age out the inactive nodes. It successfully shields nodes

from the instability in the network and achieves robustness against participation dynam-

ics.

5.5.1.3 Performance under different replication factors and system sizes

Replication factor and system size are two important characteristics affecting the per-

formance of a P2P system. Generally speaking, when the replication factor is high,

meaning there are more copies of the same file in the system, the performance of the

system will improve. We would like to verify how much benefit we can get from the Bud-

 83

dyNet system under different replication factors. It is easy to imagine that BuddyNet can

perform well under decent replication factor since it is relatively easy to locate content.

Does it perform well under low replication factor?

The most important problem of P2P system is scalability. No matter how well an algo-

rithm works in a small setting, extending it into a large-scale system is the real test. In a

confined setting with a small number of nodes, it is possible to sacrifice system band-

width to achieve desired result. However, such an algorithm will not be successful in a

large-scale system since the number of the nodes will magnify the expense of handling

extra messages. We look at how BuddyNet performs under different replication factors

and system sizes. Since FLOOD is 4 orders of magnitude worse in terms of system load

than RANDOM_WALK and BUDDY_NET, in this section, we mainly compare the per-

formance of RANDOM_WALK and BUDDY_NET under different system sizes and repli-

cation factors.

Figure 5.9 shows the system load and average path length for different algorithms at

replication factor 0.01, 0.1, 0.5, 0.75 and 1 with system size of 1000 and 5000 nodes.

Replication factor is the number of nodes that possess a file divided by the number of all

nodes averages across the collection of files in the system. For example, replication fac-

tor 0.5 means on average for every file in the system, half of the nodes have this file

locally. We also show the hit rate for BUDDY_NET algorithm under different settings.

The simulation setting for the network with 1000 nodes is the same as in section 5.2.1.1.

For the network with 5000 nodes, there are 262,404 files in total, distributed into 300

categories. Every peer maintains at least 3 neighbors and is interested in at least 5

categories. We run the simulator for 1000 cycles to warm up, and record the result for

cycle 1001 to cycle 1100. There are 219,493 queries issued during these 100 cycles.

 84

From Figure 5.9, for the simulation with 1000 nodes, we see that at replication factor

0.01, the system load for RANDOM_WALK is 2,015 M/Q. It needs 172 hops on average

to locate the content. For BUDDY_NET, the system load is 130 M/Q and the average

path length is 8.02 hops. 50% of the queries hit in the buddy list or the buddy index.

BUDDY_NET achieves 15.5 times reduction in terms of system load and 21.5 times im-

provement in search efficiency.

The system load and average path length decrease when replication factor increases.

At replication factor 1, the system load for RANDOM_WALK is 428 M/Q; the average

path length is shortened to 31 hops. Again, path length is the number of messages is-

sued before the first response comes back. In the case of RANDOM_WALK, the origi-

nating peer always issues 32 queries in parallel. For BUDDY_NET, the system load fur-

ther decreases to 2.47 M/Q, and the average path length is shortened to 0.4 hops. The

hit rate achieves 99.8%. BUDDY_NET again outperforms RANDOM_WALK by 173

times reduction in system load and 77.5 times improvement in search efficiency.

For the simulation with network of 5000 nodes, at replication factor 0.01, the system

load for RANDOM_WALK is 7,628 M/Q; the average path length is 366 hops. The sys-

tem load for BUDDY_NET is 1,070 M/Q and the average path length is 75 hops. The hit

rate is 31%. At replication factor 0.1, 0.5 and 0.75, the system load and the average path

length keep decreasing for both algorithms. At replication factor 1, the system load for

RANDOM_WALK is 1,222 M/Q; the average path length is 88 hops. The system load for

BUDDY_NET is 3.8 M/Q and the average path length is 0.34 hops. In this simulation, we

only run the simulator for 1000 cycles to warm up because it takes a long time, usually

several hours. We believe that if we warm up the simulator for a longer period, the hit

rate of the BUDDY_NET algorithm will further increase to about 50%. Therefore, the

system load and the average path length will be further improved.

 85

From these figures, we can see that under higher replication factors, both algorithms

achieve low system load and short average path length. However, at larger system

scale, RANDOM_WALK needs to propagate more messages throughout the system in

order to find an answer. On the contrary, BUDDY_NET generates considerably less

messages to locate the content. BUDDY_NET method is more likely to scale.

Fig. 5.9(a): System load

Fig. 5.9(b): Average path length

 86

Fig. 5.9(c): Hit rate

Figure 5.9. Performance under different replication factors and system sizes

5.5.2 Analysis of History-based Algorithm

Our proposed system achieves its effectiveness by keeping track of past query history.

However, keeping states in each node and exchanging information among nodes may

be expensive. In the following section, we show that in our system we achieve good per-

formance with every node keeping a very small amount of history information. In addi-

tion, the information exchange among nodes happens infrequently and uses a very small

fraction of the available system bandwidth. In this session, we refer to the simulation

setting in section 5.5.1.1.

5.5.2.1 Effect of Keeping History Record

Every node in the system keeps two kinds of history information. First is the buddy list,

which is a linked list that keeps track of its buddies. In our simulation, we choose the

maximum size of the list to be 10, which yields very good performance. The second part

is the buddy index. If peer A has stayed long enough in peer B’s buddy list, peer B will

request peer A to send its index to B. Since every node can only hold indexes for nodes

 87

in its buddy list, at any time, every node will hold indexes for at most 10 peers. However,

if the buddy list is not stable, nodes might end up requesting index from other nodes and

aging it out quickly. We show that in our simulation, the buddy list reaches a stable state

quickly and transfers of indexes are kept to minimum.

Fig. 5.10. Number of Index transfers vs. number of queries

Figure 5.10 plots the number of cumulative index transfers against the number of

queries issued in the simulation. We can see that at the beginning of the simulation,

nodes quickly accumulate buddy indexes and gather information for their buddy list. For

the first 2000 queries, there are about 100 index transfers in the system. Which accounts

for 5% of the total queries. For the 10,000 warm up queries, 408 index transfers incurs.

The percentage of queries used for index transfer is about 4%. For query 10,001 to

20,000, there are 332 index transfers in total. Index transfer accounts for 3.3% during

this period. We can see that after more and more queries are propagated in the system,

most of the nodes built up a stable buddy list and require less and less index transfer.

Since the peers dynamically adapt their buddy list, some aged buddies will be dropped

 88

from their buddy list and new buddies added. Index transfers will continue to happen, but

accounts for a very small percentage of the total queries.

5.5.2.2 Hit Rate

Now we look at how effective a buddy list is. In our simulation, we count how many

queries are satisfied by either checking the buddy indexes kept locally at the originating

node or by directly asking its buddies. Figure 5.11 presents the hit rate curve for the

20,000 simulated queries. Within the first 2,000 queries, peers quickly gather information

about its buddies and the hit rate continues to increase. At the end of query 2,000, the

hit rate has exceeded 80%. For query 2,000 to 20,000, the hit rate remains at around

80%. It is larger than the hit rate we observed from the evaluation study in section II.

This is because peers not only benefit from the indexes it kept locally and its buddy list,

they also benefit from the indexes kept at its buddies. From this figure, we can see that

with only 10 entries in the buddy list, the system achieves very high hit rate. 80% of the

queries can be satisfied within one hop. And the high hit rate stays stable, which also

indicates that there are few replacements for the buddy list, thus few index transfers are

needed.

 89

Fig. 5.11. Hit rate

5.5.2.3 Effect of clustering by interest group

The adaptation process of the buddy list provides a natural way to cluster nodes into

different interest groups. We show the result of running a SVD Centroids plot over the

BuddyNet links for a system of 1000 nodes using CVIZ software [25]. Every node has

1000 attributes recording whether there is a buddy list link between this node and other

nodes in the system. We run SVD Centroids plot over these 1000 attributes for all the

nodes in the system. In Figure 5.12, every dot in the plot represents a node in the sys-

tem. We can see that nodes form several clusters. All the nodes within a cluster are

tightly connected to each other. By spot-checking some nodes, we see that nodes in the

same cluster share similar interests and are within short distance to each other.

 90

Fig. 5.12: Clustering effect

5.5.3 Factor Analysis

Our results in section 5.5.2 indicate that BUDDY_NET outperforms RANDOM_WALK

and INTEREST SHORTCUTS in terms of system load and path length to locate the con-

tent. In this section, we pay special attention to how much each individual component of

our algorithm contributes to the performance advantage. We show that simple addition

of the one-hop indexing or the buddy list is not able to achieve the best performance. It

is the combination of the buddy list, the buddy index and its dynamic adaptation mecha-

nism that utilizes the distinct characteristics of P2P systems’ workload and achieves

large performance advantage.

 We compare our system with the following two algorithms. First, we add buddy list on

top of RANDOM WALK and we call it RANDOM_WALK_LIST. This is similar to

INTEREST SHORTCUTS [24]. Second, we add one-hop indexing into RANDOM WALK,

in this case each node keeps indexes for 10 of its neighbors. We name this method

RANDOM_WALK_INDEX.

 91

 Table 5.4 shows the result of these three algorithms under the same simulation set-

ting as in section 5.5.1.1, with 9,091 nodes running for 20,000 queries. We also list the

result for RANDOM_WALK from section 5.5.1.1 for comparison.

Table 5.4. Factor analysis

RANDOM

WALK

RANDOM
WALK
LIST

RANDOM
WALK
INDEX

BUDDY NET

Msg/query 3,842 1,370 3,459 1122

Path length 88 31 67 28

Success rate 0.97 0.98 0.99 0.98

Hit rate N/A 0.85 N/A 0.86

Here, we see that adding the buddy list technique to random walk improves the perform-

ance. The system load is reduced from 3,842 M/Q to 1,370 M/Q. The average path

length is shortened from 88 hops to 31 hops. This simple technique contributes to about

60% of the performance improvement. But as shown in section 5.5.2.2, this simple

scheme does not perform as well in dynamic situations. Adding one-hop indexing to

random walk, the system load is reduced to 3,459 M/Q and the average path length is

shortened to 67 hops. This represents 10% performance improvement. This is because

neighbors of a peer might not share similar interests as the peer; therefore indexing its

neighbors content is not very effective. As we have said, queries should be directed to a

focused set of peers who share similar interests, such as its buddies. BUDDY NET out-

performs both RANDOM WALK LIST and RANDOM WALK INDEX.

 92

5.6 Conclusion

Our research originated from a simple observation: P2P systems resemble human soci-

ety; therefore social capital exists in P2P systems. We start with an analysis of the inter-

est-based relationship among peers in a P2P system. We have conducted the first

evaluation study of the interest-based locality on a collected Kazaa trace. Our analysis

shows that there is strong interest-based locality in Kazaa and peers can be classified

into interest-based groups. Our analysis suggests that interest-based locality can be

exploited by utilizing the history information of peer behaviors.

 We propose a history-based peer-to-peer search algorithm and self-organizing

mechanism. We designed a unique architecture for P2P systems called BuddyNet. Bud-

dyNet integrates the buddy list, one hop indexing and dynamic adaptation techniques

and utilized an improved search algorithm.

We have evaluated the BuddyNet system through simulation. We not only tested

BuddyNet under ideal cases where the P2P system remains stable. We also tested it

under dynamic situations where peers join and leave the network frequently. Our simula-

tion results show that BuddyNet performs well in both situations. Under the dynamic set-

ting where network instability is high, BuddyNet shows its superiority by utilizing the

buddy list to shield peers from it. We also evaluate BuddyNet under different replication

factors and system sizes. Our results suggest that BuddyNet beats RANDOM_WALK by

more than 20 times in terms of reduction of system load and latency to locate content.

BuddyNet give decent performance when the P2P system scales. We conduct factor

analysis trying to find out how each technique and algorithm in BuddyNet affects its be-

havior. We found that every technique contributes to the success. The seamless integra-

 93

tion of buddy list, one hop indexing and dynamic adaptation achieves more benefit than

the simple addition of these techniques.

We have demonstrated that with simple modifications to the Gnutella protocol, the

scalability problem can be overcome. Careful analysis of the behavior of peers in these

P2P systems provides hints as where to find such simple modifications.

 94

Chapter 6

Conclusion and Future Work

6.1 Summary of Dissertation

In this dissertation, we try to explore the social networks in computer systems and look

for opportunities to improve the performance and efficiency for different computer sys-

tems by utilizing such social relationship. We designed and implemented computer sys-

tems in two popular domains: Topical Crawler in web crawling and BuddyNet in peer-to-

peer systems. We have adopted the social capital concept from sociology and drawn

analogy between large scaled computer systems and human society. We think that large

scaled computer systems should have the ability to dynamically alter their structures

based on the usage pattern. Nodes in such system should be assigned weights not only

based on their content but also on their locations in the system and connectivity to other

nodes.

Topical Crawler is an attempt to build such a system in the web crawling domain. We

extracted topical information from the web and used it to build a topical map on top of

 95

the existing hyperlink structure. We built an enhanced crawler by making it aware of the

topical linkage among pages. This topical crawler follows topical links side by side with

hyperlinks. The pages reached by the topical crawler are integrated to generate a bigger

and more accurate topical map. Results from our experiments show that the topical

crawler is able to reach more on-target pages comparing to a basic topical crawler. Our

enhanced crawler achieves a balance between re-crawling on-target pages and explor-

ing new areas on the web. It shows higher efficiency even when crawling fresh areas

that have never been seen before.

In peer-to-peer systems, the social relationships among nodes are more visible. We

draw the analogy from peer-to-peer system to human society. Nodes in peer-to-peer

systems are very similar to individuals in society. Similar to human beings, nodes in p2p

system possess not only human capital but also social capital. The location of a node

and its relationship with its neighbors are equally important compared to the content it

owns. Our BuddyNet system is built on the belief that social linkage among nodes

should be taken into account when building a successful p2p system. We collect behav-

ior data at each node and establish direct links among nodes that interact with each

other frequently. BuddyNet is an extra structure built on top of the overlay network of the

system. Nodes use BuddyNet links to contact buddies and retrieve the data in a shorter

delay. Our experiment results showed that from analysis of nodes’ behavior data, it is

fairly easy to extract and build a relational network among the nodes. Nevertheless, util-

izing this social network generates superb system advantage. In our study, it not only

reduced the load in the system, but also shortened the average response time for que-

ries. The peer-to-peer system is allowed to alter its structure dynamically during the life-

time of the system based on its usage. The addition of BuddyNet allows the underlying

peer-to-peer system to scale.

 96

6.2 Future Work

Several interesting issues emerged from the study of Topical Crawler. We would like to

consider them as future work.

6.2.1 Incorporating Topical Citation Matrix

Topical Citation Matrix [11] shows the affinity between different topics. A topical citation

matrix records the pair-wise relevance among topics. E.g. how does the affinity between

“Basketball” and “Football” comparing to the affinity between “Basketball” and “Run-

ning”? Figure 6.1 shows a 3d contour-plot of the 191×191 citation matrix displayed in

their paper.

 The topics are level 3 topics from Dmoz directory. The diagonal remains dominant

since self-reference within a topic is strong. Finer horizontal lines emerge, showing us

the most popular subtopics under the popular broad topics. Zooming down into /Arts, we

see the most prominent bands are at /Arts/Music, /Arts/Literature and /Arts/Movies.

Other, more meaningful target bands are found at /Computers/Security,

/Recreation/Outdoors, and /Society/Issues. The plot also shows us many meaningful

isolated hot spots, such as from /Arts/Music to /Shopping/Music and

/Shopping/Entertainment/Recordings.

 97

Figure 6.1: Contour plot of the 191-topic citation matrix.

 We have shown that the Topical Crawler is able to achieve a better crawl result for a

related topic using a previously collected topical map. The topical citation matrix gives a

clear map indicating the relevance among different topics. By incorporating topical cita-

tion matrix in the topical crawler, it can behave smartly by correctly evaluating the close-

ness between topics.

6.2.2 Using textual features and distance measures in generating topical map

When constructing a topical map, we consider simply the topical score in our current

implementation. In fact, a topical jump from one page to another by a user surfing the

web may not be uniquely decided by its topical importance. Sometime, the textual fea-

tures around it decide the possibility of leaping from one to another. Such textual fea-

 98

tures may contain information about the sibling nodes around it, its position among the

sibling nodes and the html page structure of its ancestor. In [5], Chakrabarti et al. pro-

posed to use the textual features around the crawled page as online feedback to train

their apprentice crawler. They used two classifiers. The first classifier gathered broad

training data for the second classifier. The second classifier, the apprentice acted as a

reinforcement learner. It improved the harvest rate on the data collected by the first clas-

sifier. The classifiers derived features from the DOM tree and the text tokens on the

HTML page, and used these features in deciding the priority of visit for pages in the

crawler’s frontier. Their initial results showed that by incorporating the features extracted

from the HTML pages, the crawler is able to benefit. We believe such approach would

also benefit the generation of our topical crawl map and increase the accuracy of the

enhanced focused crawler. Nevertheless, extracting structural and textual features

online is expensive.

Similarly, distances between on-topic pages are also important when creating the

topical crawl map. Should a page link to on-topic pages with shorter hyperlink distance

to it? Or should it link to pages farther away from it? We can imagine that different an-

swers to above question would result in very different sets of crawled pages. By densely

linking on-topic pages in proximity, we added extra connectivity in the local area. An en-

hanced crawler using this topical map would explore in more depth in the local area be-

fore deviate to some other areas. On the contrary, we could also link pages farthest

away from each other. Such choice will lead the crawler to constantly crawl different

neighborhoods on web. The universe of seen pages would potentially enlarge by a large

amount. However, having the crawler jumping from area to area might have undesirable

results. The enhanced crawler might miss pages that are easy catches otherwise. How

 99

would such choices affect the balance of re-crawling seen pages and exploring unknown

areas in future crawls?

We have not evaluated these design choices in the creation of topical maps in our cur-

rent implementation. We believe that interesting observations and test results will

emerge from playing with these design choices. Our knowledge of the vast World Wide

Web is still limited. We are just starting to look at the Web through a magnifying glass.

We have designed tools to sample the web, poke at its structure in order to understand it

better and utilize it more efficiently.

 100

Bibliography

[1] Rennie, J. and McCallum, A.K.: Using Reinforcement Learning to Spider the Web

Efficiently. In Proceedings of ICML99 Workshop, 1999.

[2] Diligenti, M., Coetzee, F.M., Lawrence, S., Giles, C.L. and Gori, M.: Focused Crawl-

ing Using Context Graphs. In Proceedings of the 26th International Conference on

Very Large Databases, 2000.

[3] Cho, J., Garcia-Molina, J., Page, L.: Efficient Crawling through URL Ordering. In

Proceedings of 7th World Wide Web Conference, 1998.

[4] Davison, B.D.: Topical Locality in the Web. In Proceedings of the 23rd Annual Inter-

national Conference on Research and Development in Information Retrieval, July

2000.

[5] Chakrabarti, S., Punera, K. and Subramanyam, M.: Accelerated Focused Crawling

through Online Relevance Feedback. In Proceedings of the 11th International World

Wide Web Conference, 2002.

 101

[6] Aggarwal, C., Al-Garawi, F., and Yu P. :Intelligent Crawling on the World Wide Web

with Arbitrary Predicates. In Proceedings of the 10th International World Wide Web

Conference, Hong Kong, May 2001.

[7] Menczer, F., Pant, P., Ruiz, F. and Srinivasan, P.: Evaluating Topic-driven Web

Crawlers. In Proceedings of the 24th Annual International ACM SIGIR Conference,

New Orleans, September 2001.

[8] Fetterly, D. Manasse, M. Najork, M. and Wiener, J.: A Large-Scale Study of the Evo-

lution of Web Pages. In Proceedings of the 12th International World Wide Web Con-

ference, May 2003.

[9] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R, Tom-

kins, A. and Wiener, J.: Graph structure in the Web. In Proceedings of the 9th Inter-

national World Wide Web Conference, 2000

[10] Cho, J. and Garcia-Molina, H.: The Evolution of the Web and Implication for an In-

cremental Crawler. Stanford University Technical Report, 1999

[11] Chakrabarti, S., Joshi, M.M., Punera, K. and Pennock, D.M.: The Structure of Broad

Topics on the Web. In Proceedings of the 11th International World Wide Web Con-

ference, May 2002.

[12] Chakrabarti, S., van den Berg, M. and Dom, B.: Focused Crawling: A New Approach

to Topic-Specific Web Resource Discovery. In Proceedings of the 8th International

World Wide Web Conference, May 1999.

[13] Cho, J. and Garcia-Molina, H.: Estimating Frequency of Change. Stanford University

Technical Report, 2000

 102

[14] Kumar, R., Raghavan, P., Rajogopalan, S. and Tomkins, A.: Trawling the Web for

Emerging Cyber-communities. In Proceedings of 8th International World Wide Web

Conference, May 1999.

[15] McCallum, A.: Bow: A Toolkit for Statistical Language Modeling, Text Retrieval,

Classification and Clustering. http://www.cs.cmu.edu/~mccallum/bow/, 1998.

[16] Mukherjea, S.: WTMS: A System for Collecting and Analyzing Topic-specific Web

Information. WWW9/ Computer Networks, 33(1-6): 457-471, 2000.

[17] H. Leiberman, C. Fry, and L. Weitzman. Exploring the Web with Reconnaissance

Agents. CACM, 44(8): 69-75, August 2001

[18] Open Directory Project. http://www.dmoz.org

[19] Kleinberg, J.: Authoritative Sources in A Hyperlinked Environment. In Proceedings

of the 9th ACM-SIAM Symposium on Discrete Algorithms. January 1998

[20] Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. Search and Replication in Un-

structured Peer-to-Peer Networks. In Proceedings of ICS 2002, June 2002.

[21] Cohen, E., Fiat, A., and Kaplan, H. Associative Search in Peer-to-Peer Networks:

Harnessing Latent Semantics. In Proceedings of INFOCOM 2003, March 2003.

[22] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenker, S. Making

Gnutella-like P2P Systems Scalable. In Proceedings of ACM SIGCOMM 2003, Au-

gust 2003.

[23] Leibowitz, N., Pipeanu, M., and Wierzbicki, A. Deconstructiing the Kazaa Network.

In Proceedings of The Third IEEE Workshop on Internet Application, June 2003.

 103

[24] Sripanidkulchai, K., Maggs, B., and Zhang, H. Efficient Content Location Using In-

terest-Based Locality in Peer-to-Peer Systems. In Proceedings INFOCOM 2003,

March 2003.

[25] The Free Network Project. In http://freenet.sourceforge.net, 2001

[26] Krishnamurthy, B., Wang, J., and Xie, Y. Early Measurements of a Cluster-based

Architecture for P2P Systems. In Proceedings of ACM SIGCOMM Internet Meas-

urement Workshop 2001, November 2001.

[27] Sariou, S., Gummadi, P., and Gribble, S. A Measurement Study of Peer-to-Peer File

Sharing Systems. In Proceedings of MMCN 2002, January 2002.

[28] Tang, C., Xu, Z., and Dwarkadas, S. Peer-to-Peer Information Retrieval Using Self-

Organizing Semantic Overlay Networks. In Proceedings of SIGCOMM 2003, August

2003.

[29] Gummadi, K., Dunn, R., Saroiu, S., Gribble, S., Levy, H., and Zahorjan, J. Meas-

urement, Modeling, and Analysis of a Peer-to-Peer File-Sharing Workload. Ap-

peared in Proceedings of SOSP-19, October 2003.

[30] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. A Scalable Con-

tent-addressable Network. In Proceedings of SIGCOMM 2001, August 2001.

[31] Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H. Chord: A Scal-

able Peer-to-peer Lookup Service for Internet Applications. In Proceedings of

SIGCOMM 2001, August 2001.

[32] Zhao, B. Kubiatowicz, J., and Joseph, A. Tapestry: An Infrastructure for Fault-

tolerant Wide-area Location and Routing. Tech. Report, University of California,

Berkeley, 2001.

 104

[33] Rowstron, A., and Druschel, P. Pastry: Scalable, Distributed Object Location and

Routing for Large-scale Peer-to-peer Systems. In Proceedings of MIDDLEWARE

2001, November 2001.

[34] Konrad, R. Napster Among Fastest-growing Net Technologies, CNET news.com.

In http:// news.cnet.com/2100-1023-246648.html, October 2000.

[35] Ratnasamy, S., Hellerstein, J., Shenker, S. Range Queries over DHTs. In Intel Re-

search Technical Report, IRB-TR-03-011, June 2003.

[36] KaZaA File Sharing Network. KaZaA. In http://www.kazaa.com/, 2002.

[37] Ripeanu, M., and Foster, I. Mapping the Gnutella Network – Macroscopic Properties

of Large-scale P2P Networks. IEEE Internet Computing Journal, 6(1), 2002.

[38] Bawa, M., Manku, G., and Raghavan, P. SETS: Search Enhanced by Topic Seg-

mentation. In Proceedings of SIGIR 2003, July 2003

[39] Ebay Online Marketplace. Ebay. In http://www.ebay.com, 2003

[40] Plonka, D. Napster Traffic Measurement. Available at

http://net.doit.wisc.edu/data/Napster, March 2000

[41] Saroiu, S., Gummadi, K.P., Dunn, R.J., Gribble, S.D. and Levy, H.M. An Analysis of

Internet Content Delivery Systems. In Proceedings of OSDI 2002, Dec 2002

[42] Burt, R. S. The Network Structure of Social Capital. Research in Organization Be-

haviour, 2000

[43] Adler, P and Kwon, S. Social Capital: the Good, the Bad, the Ugly. Pp. 89-115 in

Knowledge and Social Capital. 2000.

 105

[44] Baker, W. Achieving Success through Social Capital. San Francisco, CA, Jossey-

Bass. 2000

[45] Burt, R. Bandwidth and Echo: Trust, Information, and Gossip in Social Networks. In

Integrating the Study of Networks and Markets. New York: Russell Sage Founda-

tion, 2001

[46] Contractor, N, Whitbred, R., Fonti, F., Hyatt A., O’Keefe, B. and Jones, P. Structura-

tion Theory and Self-organizing Communication Networks. In Organization Science

Winter Conference, 2000.

[47] Erickson, B. Good Networks and Good Jobs: The Value of Social Capital to Em-

ployers and Employees. In Social Capital, edited by Nan Lin, Karen S. Cook and

Ronand S. Burt. New York, 2001.

[48] Han, S. Churning Firms in Stable Markets. In Social Science Research, 21: 406-

418, 1993.

[49] Labianca, G. and Brass, D. Negative Relationships in Organizations: The Case for

Negative Asymmetry in Social Networks:, 2000.

[50] Lin, N. Social Networks and Status Attainment. In Annual Review of Sociology: 25:

467-487, 1999.

[51] Lin, N. The Position Generator: A Measurement for Social Capital. In Social Capital,

edited by Nan Lin, Karen S. Cook, and Ronald S. Burt, New York: Aldine de

Gruyter. 2001.

[52] McEvilly, B and Zaheer, A. Bridging Ties: A Source of Firm Heterogeneity in Com-

petitive Capabilities. In Strategic Management Journal 20: 1133-1156, 1999.

 106

[53] Meyerson, E. Human Capital, Social Capital and Compensation: The Relative Con-

tribution of Social Contacts to Managers’ Incomes. In Acta Sociologica 37: 383-399,

1994.

[54] Pennings, J. Lee, K. and Witteloostuijn, A. Human Capital, Social Capital and Firm

Dissolution. In Academy of Management Journal 41: 425-440, 1998.

[55] Portes, A. Social Capital: Its Origins and Applications in Modern Sociology. In An-

nual REview of Sociology 24: 1-24, 1998.

[56] Sandefur, R. and Laumann, E. A Paradigm for Social Capital. In Rationality and

Society 10: 481-501, 1998.

[57] Seidel, M. Polzer, J., and Stewart, K. Friends in High Places: The Effects of Social

Networks on Discrimination in Salary Negotiations. In Administrative Science Quar-

terly 45: 1-24, 2000.

[58] Stuart, T. and Robinson, D. Network Effects in the Governance of Strategic Alli-

ances in Biotechnology. In Organization Science Winter Conference, 2000.

[59] Swedberg, R. Markets as Networks. In The Handbook of Economic Sociology, ed-

ited by Neil J. Smelser and Richard Swedberg. Princeton, NJ: Princeton University

Press, 1994.

[60] Shao, Y and Wang, R. BuddyNet: History-based P2P Search. In 27th European

Conference on Information Retrieval. Spain, 2005

[61] Shao. Y and Wang. R. Enhanced Focused-crawling through Topical Linkage. Un-

published manuscript.

