
Automatic Configuration Vulnerability Analysis

Sudhakar Govindavajhala Andrew W. Appel
Princeton University

{sudhakar,appel}@cs.princeton.edu

February 5, 2007

Abstract

We have constructed a logical model of Windows XP access control, in a declarative but executable
(Datalog) format. We have built a scanner that reads access-control configuration information from the
Windows registry, file system, and service control manager database, and feeds raw configuration data
to the model. We found a surprising result: commercial software from major vendors routinely has user-
to-administrator privilege-escalation vulnerabilitiesthat result not from buffer overruns (or other bugs
inside the software) but just from misconfigurations of permissions and registry entries. Our scanner and
analyzer run efficiently, and quickly detect these configuration bugs. Furthermore, our new Windows
model can be combined with previous models of Unix, firewalls, and CERT advisories to give a more
accurate global picture of the vulnerabilities in a heterogenous enterprise network. Our tool could be
used by software vendors (and system integrators) to improve their installation configurations and by
sysadmins for day-to-day vulnerability analysis.

1 Introduction

Unix has a simple access control model with three privileges: read, write and execute (plus the sometimes
mysterious setuid [5]) given to users, groups, and others for operations on just a few kinds of objects (files,
directories, etc.). In contrast, Windows access-control is rather more complex, with access-control lists
(prioritized “allow” and “deny” by groups) comprising up to30 different privileges for operations on about
15 different kinds of objects [7]. For example, on a “service” object one can have the privilege “change what
program.exe is run to effectuate the service.”

In this paper we will show that a formal model of Windows access control can be applied to analyze the
configurations of real machines. What we have learned from running our model is that ordinary professional
software developers at commercial software vendors (including Adobe, AOL, Macromedia, Microsoft, IBM,
Trend Micro, Symantec, and Cisco) have difficulty in evaluating the consequences of the access-control con-
figurations that they choose for their software and services. The consequence is that commercial software
can and does have exploitable privilege-escalation vulnerabilities (user-to-administrator, guest-to-any-user)
caused by access-control misconfiguration. In addition, individual application developers design configura-
tion of their programs independent of each other. The security of a host is dependent on the configuration of
each of these programs; ours is the first tool a system integrator can use to find configuration vulnerabilities
in the totality of a software installation.

1

Our logical model of Windows access-control is expressed asinference rules in Datalog which are directly
executable in a Prolog system. We have a scanner that reads relevant parts of the Windows registry, file
system, and service control manager database on a given hostto provide input to our logical model. The
model runs, and prints out a list of privilege-escalation vulnerabilities, each one with a trace of how each
vulnerability might be exploited.

2 Datalog overview

Our system adopts Datalog as the modeling language for elements in the analysis. Previous work has shown
that Datalog’s declarative semantics is sufficient for encoding access control policies [11] and for describing
the interactions of operating systems, network firewalls, and file systems [21]. The declarative nature of a
Datalog model allows us to cleanly specify the semantics of something even as complex as Windows XP
security configurations. Datalog is efficient to evaluate: in theory, bounded by polynomal time; in practice
in our application, less than a second to analyze real installations.

Syntactically, Datalog is a subset of Prolog with limited forms of clauses. The reasoning rules in our system
are declared as Datalog clauses. Aliteral, p(t1, . . . , tk) is a predicate applied to its arguments, each of which
is either a constant or a variable. In the formalism of Prolog, a variable is an identifier that starts with an
upper-case letter. A constant is one that starts with a lower-case letter, or that is’quoted’. Let L0, . . . ,Ln

be literals. A reasoning rule in Datalog is represented as a Horn clause: L0 :- L1, . . . , Ln. Semantically,
it means ifL1, . . . ,Ln are true thenL0 is also true. The left-hand side is called theheadand the right-hand
side is called thebody. A clause with an empty body is called afact. A clause with a nonempty body is
called arule. A Datalog program is a set of facts and reasoning rules to infer from these facts. The execution
of a Datalog program infers from these facts using the reasoning rules.

Prolog permits data-structure trees in places where Datalog allows only constants; and Prolog has control-
flow features (such ascut). Prolog is Turing-complete (it is not polynomial-time like Datalog), and is less
declarative in nature (order of rules matters). We actuallyuse a slight superset of Datalog (we permit lists
and other data structures, not just constants, in the input—though no new lists are constructed at run time);
this increases its expressiveness without sacrificing its declarative or polynomial-time properties.

3 Objects in the Windows XP model

In Unix, one has to deal with various operating system objects like files, directories, threads and processes.
One uses primitives like locks, message queues and semaphores for interprocess communication. One uses
sockets for network programming. Standard textbooks provide excellent introduction to Unix and how to
use these objects [2, 28]. In addition to these mechanisms, Windows provides other primitives, the most
important of which are theregistryandservices. We will summarize these; see Russinovichet al. [25] for a
detailed treatment.

Registry. The Windows registry is a centralized hierarchical database to store configuration information
for the operating system and for applications and services running under Windows. The registry stores a
wide range of configuration settings, from boot parameters to user desktop settings to program settings. If

2

an adversary can overwrite the contents of a sensitive key with the path of his library or executable, he could
cause his code to be executed [30, 17]. Because of the registry, each individual application does not have to
maintain its configuration in application specific configuration files.

Each entry in the registry is indexed by a key. The keys are hierarchical in structure, just like files and
directories.A\B refers to the keyB that is a subkey of the keyA. Programs often store application-specific
information under the root keyHKEY LOCAL MACHINE (HKLM). We do not find it necessary to model the
hierarchical structure; for usA\B is simply an atomic literal.

Each registry key entry in the registry has a security descriptor that determines who can perform what access
to the registry entry. The operations that can be controlledby access-control on registry keys are: reading a
key, writing a key, deleting a key, enumerating subkeys, adding a subkey, requesting notification for changes
to this key or its subkeys.

We consider a registry key to besensitivein an installation if its contents is a name ending .exe, .dll, .bat,
and so on. We ignore nonsensitive keys, and we model each sensitive key as a Datalogfact such as,

resource(registry,
registryKey(’hklm\SOFTWARE\Microsoft\Windows\CurrentVersion\Telephony’),
acl(...)).

Here we have elided the security descriptor (acl); we describe access-control-lists below.

Services. Every operating system has a mechanism to start processes atsystem startup, providing func-
tionality not tied to any particular user. For example, whenthe operating system boots up, one would want
the network programs and the web server program to to start automatically, even if no user has logged on.
Windows services are similar to Unix daemon processes, but more general: services are first class objects,
which allows general and flexible access control. The configuration on each service comprises two compo-
nents: properties of the service and access control on the service. The properties of a service include the
user account to instantiate the service, whether the service is started by the operating system during boot
or manually by the user, the binary path to the executable, and the dependencies on other services. The
operations that can be controlled by access-control on services are: starting a service, stopping a service,
reading the configuration of a service, modifying the configuration of a service, querying the status of a
service, enumerating other services that are dependent on this service, pausing or continuing a service.

resource(service, ’DHCP’, acl(...)).

It turns out that thecurrent properties of a service are almost irrelevant to our analysis, so we omit them
from our model; what matters are thepermissionsto modify the properties. If an untrusted user is granted
“permission to configure the service” (which would be manifest in the contents of theacl for that service,
elided above), he could take over the administrative account of the host. This is done by configuring the
service to run an attack program under an administrative account and restarting the service. The following
commands typed in a Windows Command Shell achieve this:

$ sc config weakService binPath=c:\attack.exe obj=".\LocalSystem" password=""
$ sc stop weakService
$ sc start weakService

3

Security Identifiers. Windows usessecurity identifiers (SIDs)to identify various entities such as users
and groups that perform actions in a system. When a SID is displayed in clear text, each SID carries an
Sprefix, and its various components are separated with hyphens: S-1-5-21-346327843-89743984-384343-
1128. Some standard SIDs are:S-1-1-0 (the groupEveryone), S-1-5-11 (the groupAuthenticated Users),
S-1-5-18 (the accountLocal System), S-1-5-19 (the Local Serviceaccount),S-1-5-20 (the Network
Serviceaccount),S-1-5-32-544 (theAdministratorsgroup).

Accounts. Users belong to groups, and have privileges. The registry contains information about each user
(i.e., account) which we model as Datalog facts such as,

user(’Administrator’,
’S-1-5-21-3034706114-1836988657-2654252735-500’).

userInfo(’S-1-5-21-3034706114-1836988657-2654252735-500’,
groups([
sidAndAttributes(’S-1-1-0’,
[’SE_GROUP_ENABLED’, ’SE_GROUP_ENABLED_BY_DEFAULT’, ’SE_GROUP_MANDATORY’]),
...]),

privileges([’SeAuditPrivilege’, ’SeBackupPrivilege’, ...])
).

Where we use ellipses (...), the actual data has much longer lists of groups and privileges.

System Accounts. The user mode components of the kernel of the Windows operating system (e.g.,
csrss.exeand lsass.exe) run under theLocal Systemaccount. This account has complete access to all the
resources of the machine and most of the daemon programs run under this account. In Windows XP, Mi-
crosoft introduced the accountsLocal ServiceandNetwork Serviceto run parts of the operating system that
do not need complete access to the machine’s resources. For example, Windows exports its registry over
the network. The operating system service responsible for responding to remote registry requests runs as
Local Service. (Even thoughLocal Servicedoes not have complete access to the registry, it can use Win-
dows’s delegation facility to access the registry on behalfof the client.) One cannot log in to the accounts
Local System, Local ServiceandNetwork Service, but can control these accounts from any account in the
Administratorsgroup.

User Accounts. TheAdministratoraccount is the account one uses upon first setting up a workstation or
a server, before creating any other account. It is a member ofthe Administratorsgroup. Any member
of the Administratorsgroup has complete control of the machine. Windows has various other groups,
such asAuthenticated Users, Everyone, Server Operators, Power Users, Network Configuration Operators.
Members of thePower Usersgroup can create user accounts, can modify and delete accounts they create,
stop and start system services which are not started by default. Any principal who supplied a credential to
logon belongs toAuthenticated Usersgroup. Every machine comes with a built-in accountGuestwhich
is disabled by default. Once enabled, the userGuestdoes not have to supply a credential. Every principal
including theGuestuser is a part of the groupEveryone. A principal in theNetwork Configuration Operators
group can modify the network configuration. The Microsoft documentation forServer Operatorsgroup

4

reads: Server Operators can perform most common server administration tasks[27]. There is also the
notion ofLimited Users, which determines the set of mandatory groups and privileges given to a new user
account by the “User Accounts” dialog box when the “Limited”radio-button is selected. In this article we
explore privilege escalations between the different user accounts, system accounts, and groups.

4 Windows Security Overview

We now show how to model the algorithm used by the Windows kernel to determine whether an access
should be allowed. In making this decision, the kernel considers the following inputs:Who is the principal
requesting the access?, What are the intentions of the principal (specified in the request)?andWhat is the
protection on the object to be accessed?

4.1 User attributes

Account privileges Windows provides a flexible access-control model where an owner of a resource can
specify the level of access each user has. This model is useful in protecting access to a single object.
However, sometimes users perform operations that have a system-wide impact. For example, the ability to
shut down a system or change the time of a system has system-wide impact. The capability to perform these
actions must be controlled carefully. Windows uses the notion of privilegesto achieve this purpose. When
a user logs onto a host, after authentication, the system identifies the privileges associated with the user and
stores this information in the kernel as a part of the the process control block for the user’s shell.

There are about thirty different privileges in Windows controlling various capabilities such as: replace a
process-level token, generate security audits, load/unload drivers, skip access checks, lock pages in memory,
force local/remote shutdown of a host, control and view audit messages, change the system time, create a
new process token on behalf of any user, act as a part of operating system. Some of these privileges (such
as load-driver privilege) allow a principal to directly or indirectly get complete control of the host. In our
model, we refer to these privileges as super privileges.

Token A token is a per-process (per thread in some cases) data structure, maintained in the kernel as a
part of the process control block, that contains the security information. It stores information regarding the
user account, a list of account privileges for the user account, a list of SIDs representing the user, groups the
user belongs to, the session identifier, and other security related information associated with the process or
thread. A token is created when a user logs on to a system and isattached to the initial process (typically
userinit.exe) that is started on behalf of the user. A child process inherits its parent’s token. When
a process makes a certain request (like opening a file in writemode or opening a service to configure its
properties), the kernel consults the token of the calling process to determine the privileges of the process.

The Datalog predicateuserToken(Principal, Token) identifies that the principalPrincipal
gets the tokenToken when he logs in. The configuration scanner supplies information (from the registry)
regarding the list of users on a host and their credentials.

When a principal accesses an object, the kernel looks up the process token of the process making the re-
quest to determine its credentials: the user, the privileges, and the groups the user belongs to. The pred-

5

icateprocessToken(UserSid, Privileges, Groups) encodes the credentials of the process
requesting the access.UserSid is the user identity on behalf of whom the process runs,Privileges is
the set of privileges (likeSeTakeOwnershipPrivilege, SeSystemtimePrivilege) the process
holds, andGroups is the set of groups the user belongs to. A sample process token looks like:

processToken(’S-1-5-21-1214440339-507921405-1060284298-500’,
privileges([’SeBackupPrivilege’, ’SeChangeNotifyPrivilege’,

’SeSystemtimePrivilege’]),
groups([’S-1-1-0’, ’S-1-2-0’,

’S-1-5-11’, ’S-1-5-32-544’])
)

4.2 Modeling requested access

The Windows XP access control algorithm is modeled by the predicateswindowsAccessCheck,
checkAccessList andcheckACE. These predicates take as an argument the access requested.In our
model, the RequestedAccess argument is an atomic permission likeFILE READ DATA and
FILE READ ATTRIBUTES. In practice, one requests more than one permission, likeFILE READ DATA
andFILE WRITE DATA—to read and write a file. To check for such nonatomic permissions, we will
have to call the corresponding access check function on eachatomic permission requested. This is a de-
viation from the way the kernel implements the algorithm. However, this deviation is functionally equiv-
alent when used with atomic predicates. The kernel implementation avoids calling the function more than
once for nonatomic permission by doing clever bit manipulation. Since it is not straightforward to do bit
manipulation in Datalog, in our model access check can only be called on an elementary permission like
FILE READ DATA. This makes our reasoning rules easier to write and debug andthus increases the assur-
ance of our system. However, Windows allows a principal to request more than one permission—like all of
FILE READ DATA, FILE WRITE DATA, DELETE, READ CONTROL, WRITE DAC—simultaneously.
To model this behavior of Windows, when a principal requestsbothFILE WRITE DATA andWRITE DAC,
we invoke the predicatewindowsAccessCheck twice—the first time withFILE WRITE DATA and the
second time withWRITE DAC.

4.3 Security Descriptor

A security descriptoris a per-object data structure identifying who can perform what action of the object.
A security descriptor can be set on objects like processes, threads, semaphores, sections, waitable timers,
registry keys, files and services. A security descriptor consists of the following attributes: a revision number
(version of the security model), flags (controlling inheritance characteristics), owner SID, group SID, a
discretionary access-control list (specifying who has what access to the object) and a system access-control
list (specifying which attempted operations by which usersshould be logged). For our discussion only the
owner SID and discretionary access-control list (DACL) arerelevant.

An access-control list(ACL) is a list of zero or moreaccess control entries(ACEs) which say who is allowed
what access to an object. Each positive (negative) ACE grants (denies) specified access to the principal or
group referred by the SID listed in this ACE. Each Access Control Entry has a 32-bit mask specifying (bit-
wise) a set of “standard” and “object-specific” permissions. Standard permissions are common to all ojects:
DELETE, READ CONROL, WRITE DAC, andWRITE OWNER for deleting, reading the security descriptor,

6

writing the security descriptor and writing the owner of an object respectively. Examples of object-specific
permissions includeFILE WRITE DATA (for file objects),SERVICE CHANGE CONFIG (service objects),
andKEY WRITE (registry objects).

An access control entry is encoded as the primitive predicateace(aceType(Type),
aceRights(RightsList), Sid) that specifies that an access control entry of typeType (one of
’ACCESS ALLOWED ACE TYPE’ or ’ACCESS DENIED ACE TYPE’) grants or denies to the entities
represented by the identifierSid the rights specified in the listRightsList. The predicatedacl(AclList)
encodes adiscretionary access control list (DACL), whereAclList is a list of access control entry pred-
icates, storing the entries in the same order as they appear in the security descriptor. We show an example
ACE predicate and a DACL with a single ACE:

ace(aceType(’ACCESS_ALLOWED_ACE_TYPE’),
aceRights([’FILE_WRITE_DATA’]),
sid(’S-1-5-21-854245398-1637723038-725345543-1003’)).

dacl([ace(aceType(’ACCESS_ALLOWED_ACE_TYPE’),
aceRights([’FILE_WRITE_DATA’]),
sid(’S-1-5-21-854245398-1637723038-725345543-1003’))])

A security descriptor is encoded as the predicatesecurityDescriptor(Owner, Dacl) where
Owner represents the security identifier of the owner andDacl is a predicate that encodes the discretionary
access control list.

4.4 Determining access

The predicatewindowsAccessCheck(Result, ObjectProtection, RequestedAccess,
RequestingToken) models the algorithm the kernel uses in determining whetherto permit an
RequestedAccess access to an object with protectionObjectProtection by a process with to-
kenRequestingToken. The variableResult is instantiated toallowed or denied accordingly. In
section 4.4, we described the algorithm the kernel uses to make an access control decision. We now formally
describe the algorithm.

Rule 1: No ACL implies no protection. If a file does not have an Access Control List (“Null DACL”), then
any access is permitted on the file. The formal rule is:

windowsAccessCheck(allowed,
securityDescriptor(Owner, dacl(null)),
RequestedAccess,
RequestingProcessToken).

SeTakeOwnershipPrivilege privilege gives write-owner access The privilege SeTakeOwnershipPrivi-
lege in the caller’s token gives WRITEOWNER access to any resource. With WRITEOWNER permission,
one can change the owner SID of a resource to one of the SIDs in the caller’s process token. (Technically,

7

the SID in the process token will have to be marked as having the potential for being an owner.) After ob-
taining the ownership of a resource, the adversary will be able to get full control of the resource by launching
further attacks, as described below. Similarly, as we discussed in section 4.1, any super privilege will give
the adversary complete control over all the resources of thehost. To summarize, the SeTakeOwnershipPriv-
ilege and other super privileges will give the adversary complete control over all resources on a host, thus
resulting in system-wide compromise. In our model, we encode these multi-step attacks as a single step:

windowsAccessCheck(allowed, SecDescriptor, RequestedAccess,
processToken(Owner, PrivList, GroupSids,

TokenRestrictedSids)) :-
hasSuperPrivilege(true, PrivList).

%Check if token has a ‘‘ super’’ privileges

Rule 3: Owner always gets access.The owner of a resource always gets “change the ACL” permission and
hence can give arbitrary entity arbitrary access. Thus the owner of a resource always get full access to the
resource. This is expressed as:

windowsAccessCheck(allowed,
securityDescriptor(Owner, Dacl),
RequestedAccess,
processToken(Owner, PrivList, GroupSids,

TokenRestrictedSids).

Rule 4: Consult the Access Control List If none of the previous rules apply, then the kernel consultsthe
access control list. Each Access Control Entry (ACE) in the access-control list is examined from first to last
looking for an entry that denies or allows the action. An ACE is processed if the ACE is an access-deny or
access-allowed ACE and the SID in the ACE matches a SID in the caller’s access token. If it is an access-
denied ACE, then the access is denied. If the ACE is an access-allowed ACE, then the access is allowed. If
the end of the list is reached without a matching ACE, the request is denied. Formally, we write this as:

windowsAccessCheck(Result,
securityDescriptor(ObjectOwner, dacl(Acl)),
RequestedAccess,
processToken(ProcessOwner, PrivList, Groups,

TokenRestrictedSids)) :-
checkAccessList(Result, RequestedAccess, Acl, Groups).

The predicatecheckAccessList(Result, RequestedAccess, Acl, SidsList)models the
algorithm the kernel uses to decide whether an access control list Acl allows or deniesRequestedAccess
to a principal withSidsList as the list of security identifiers of the groups in the process token. This
predicate examines theAcl from first to last and unifies theResult variable toallowed or denied
accordingly. If there is no access control on the object, then the request is granted. If the end of the list is
reached, then access is denied.

The predicatecheckACE(Result, AceEntry, Access, SidsList) means that an elementary
access control decision, using the access control entryAceEntry, for a requestAccess by a principal

8

whose list of security identifiers of the groups in the process token isSidsList, is Result (one of
allowed, denied). Formally, we write this as:

checkAccessList(allowed, Access, dacl(null), SidsList).
checkAccessList(Result, Access,

dacl(acl([AclHeadEntry| AclTail])), SidsList) :-
(

checkACE(Result, AclHeadEntry, Access, SidsList);
% ; is Prolog OR operator
checkAccessList(Result, Access,

dacl(acl(AclTail)), SidsList)
).

% An empty access control list denies access
checkAccessList(denied, Access,

dacl(acl([])), SidsList)

checkACE(allowed,
ace(aceType(’ACCESS_ALLOWED_ACE’), AceRights, Sid),
Access, SidsList) :-
accessInAceMask(Access, AceRights),
sidInGroup(Sid, SidsList).

checkACE(denied,
ace(aceType(’ACCESS_DENIED_ACE), AceRights, Sid),
Access, SidsList) :-
accessInAceMask(Access, AceRights),
sidInGroup(Sid, SidsList).

5 Modeling privilege escalation

We use the predicateresource(Type, Name, Dacl) to identify various resources on a host.Type
indicates the type of the resource—it is one ofservice, registry andfile. Name identifies the
resource andDacl is the protection on the resource. By scanning the host, one could generate the list of
all the resources on a machine. The predicateuserToken(Principal, Token) identifies that the
principalPrincipal gets the tokenToken when he logs in. We generate this predicate for each user on
the machine.canWrite(Principal, resource(Type, Name, Dacl)) is a derived predicate
that specifies that principalPrincipal can write the resource of typeType (service, registry,
file) identified byName and with a security descriptorDacl.

It is well known that the ability to overwrite a file will allowan adversary to launch Trojan-horse attacks.
Similarily, if the adversary can overwrite the registry keys that store program paths to be executed during log
on process and boot process, the adversary can launch Trojan-horse attacks. If the adversary is allowed the
permission to configure a service, then he can configure a malicious program to run under an administrative
account and get complete control of the host. If the adversary hasFILE WRITE DATA permission on a
file, he could overwrite the file. If the adversary hasKEY SET VALUE permission on a registry key, he
could overwrite the contents of the key. If the adversary hasSERVICE CHANGE CONFIG permission on a
service, he could reconfigure the service. We encode these as:

9

canWrite(Principal, resource(file, Name, Dacl)) :-
userToken(Principal, ProcessToken),
windowsAccessCheck(allowed, Dacl,

’FILE_WRITE_DATA’, ProcessToken).

canWrite(Principal, resource(registry, Name, Dacl)) :-
userToken(Principal, ProcessToken),
windowsAccessCheck(allowed, Dacl,

’KEY_SET_VALUE’, ProcessToken).

canWrite(Principal, resource(service, Name, Dacl)) :-
userToken(Principal, Token),
windowsAccessCheck(allowed, Dacl,

’SERVICE_CHANGE_CONFIG’, Token);

canWrite(Principal, resource(Type, Name, Dacl)) :-
userToken(Principal, Token),
windowsAccessCheck(allowed, Dacl,

’WRITE_DAC’, Token);

TheWRITE DAC rule above is interesting. If an adversary is exploiting aWRITE DAC misconfiguration,
then the adversary will have to first modify the access control on the object to give him access and then
overwrite the resource. For the sake of simplicity, we modelthis multi-step attack as a single step.

trusts(Principal, Resource) is a predicate that specifies thatPrincipal trustsResource.

If a principal executes code in a file, he trusts the file. It is impossible to statically identify which files a
user trusts. We make the conservative assumption that any file in system directories such asC:\Program
Files andC:\Windows is executed by all users of the host and in particular by the administrator. For
all other executable files, we assume that these files are at least executed by the owner of file. Similarly,
we assume that sensitive registry keys are trusted by at least the owner of the registry key. If a principal
is granted the permission to configure a service, the principal can choose the program to be instantiated
when the service is run and the account the service under. In particular, principal can instantiate a malicious
program to run under an administrative account. Thus, any principal who can configure a service can
get administrative access to a machine; an administrator should trust any service resource. If a principal
Target trusts aresource(Type, Name, Dacl) and if a principalAttacker can write to this
resource, then the adversaryAttacker can launch a privilege escalation toTarget. This is formally
encoded as:

trusts(Administrator, resource(service, Name, Dacl)).

execCode(Attacker, Target) :-
canWrite(Attacker, Resource),
trusts(Target, Resource).

10

6 Security bugs found

We used our tool to see how software from various vendors was configured in the default installation. In all
the cases we describe, we discovered the error and reported it to the vendor, who had not previously received
reports of it; except that one of Macromedia’s and all of Microsoft’s configuration errors were corrected by
their vendors in security patches before we reported them.

Figure 2 shows how unprivileged users on actual Windows XP hosts could obtain administrator privileges
through several paths. We found three classes of bugs: file system misconfigurations, registry misconfigu-
rations and service misconfigurations. In general, these misconfigurations are traceable directly to standard
installations of commercial software.

Service misconfigurations. Several vendors poorly applied the Windows access control model to their
services; a common mistake is to assign theSERVICE CHANGE CONFIG permission indiscriminately to
services. The Windows XP documentation states, “. . . because this grants the caller the right to change the
executable file that the system runs, it should be granted only to administrators” [9]. But that warning fails
to explain clearly that permission to configure a service allows both setting the executableandselecting the
account under which the service runs, e.g., change the “run-as” account toLocal System[8, 17]. FromLocal
System, all things are possible (including installing password sniffers to launch further attacks in the guise
of any ordinary user).

We found that in the default configurations of Windows XP (until patched in August 2004), theSSDP
Discovery Service(marked asSSDP in Figure 2) and theUniversal Plug and Play Device Host service
(UPNP in Figure 2) granted “permission to configure the service” tothe Authenticated Usersgroup. A
normal unprivileged user is a part of theAuthenticated Usersgroup and hence a normal user can configure
the executable and the account under which these services run. Then, the adversary needs to make the service
reload the new configuration. He needs to wait for the serviceto be restarted (he could, for example, force
the system administrator to reboot the machine by consumingtoo many resources so that the system is too
slow to respond). We also noticed that usually when a principal is granted theSERVICE CHANGE CONFIG

permission, he is also grantedSERVICE STOPandSERVICE START permissions. One could use the Service
Controller (sc.exe) to trivially reload the service in the new configuration as follows:

$sc config weakService binPath=c:\attack.exe obj=".\LocalSystem" password=""
$sc stop weakService
$sc start weakService

Via the sameSERVICE CHANGE CONFIG mechanism, the following (Windows XP Professional) access-
control decisions gave paths fromLocal Service, Network Service, Network Configuration Operators, and
Server Operatorsto Local System: The Local Serviceaccount had permission to configure theUniver-
sal Plug and Playservice (labeledUPNP in Figure 2),Smart Card Services(SCardSvr) and theSmart
Card Helper Service(SCardDrv). TheNetwork Serviceaccount had permission to configure theMicrosoft
Distributed Transaction Coordinatorservice (MSDTC). The Server Operatorsgroup had permission to
configureuPnP, Simple Service Discovery Protocol(SSDP), NetBios over TCP/IP(NetBT), andSmart
Card Services(SCardSvr). TheNetwork Configuration Operatorsgroup had permission to configure the
Dynamic Host Configuration Protocol(DHCP), NetBT, andDnscacheservices. This defeats the principle
of least privilege that was the motivation for creatingLocal ServiceandServer Operators. If the adversary

11

Program Name Vendor Mechanism #instances
Lotus Notes IBM File 354
VPN Client Cisco File 18

PC-cillin Anti-virus2006 Trend Micro File 103
PC-cillin Anti-virus2006 Trend Micro Service 6

Illustrator Adobe File 170
Anti-virus Symantec File 6

AOL Messenger AOL Registry 2
Dreamweaver Macromedia Service 1

Flash Macromedia File 1
Windows XP Microsoft Service 7
Windows XP Microsoft Registry 40

Figure 1: A summary of vulnerabilities discovered by our tool. The column “mechanism” reflects which
operating system object the software misconfigured. The column “instances” reflects the number of objects
that lead to a privilege-escalation vulnerability. For example, Lotus Notes had 354 executable files that are
writable by any untrusted user on the host. Further details are available in Govindavajhala’s PhD thesis [14].

were to find a buffer overflow bug in a program running asLocal Service, this escalation path enabled the
adversary to take complete control of the host.

Finally, although Microsoft describesPower Usersas “includes many, but not all, privileges of the Admin-
istrators group,” [4, page 31] it is well known that there aremany privilege-escalation paths fromPower
Users to Local System; we have found more than 20 with our tool.

Other vendors’ software also had access-control configuration bugs in their services: TheEveryonegroup
was granted the permission to configure theMacromedia Licensing Service, installed byMacromedia’s
Dreamweaver program.

Registry misconfigurations. The standard configuration ofAOL included a registry entry binding the
name of a DLL file to be loaded and executed (in some circumstances) by the AOL software. The access
permissions permitted any user to write this entry; the attacker could substitute the name of his own DLL
and wait for some other AOL user to execute it, thereby accomplishing a user-to-user privilege escalation.
We found similar weaknesses in the registry configurations of several other vendors.

File misconfigurations. In addition to Trojan horses via service configuration, somevendors’ software is
vulnerable to a more traditional kind of file-system-based Trojan horse: TheEveryonegroup was granted
the permission to write to 170 executable (.EXE and .DLL) files from Adobe. The adversary can write
to these files and wait for a system administrator or other user to execute the files.Everyonewas granted
permission to write to 103 files of the Internet Security 2006virus scanner fromTrend Micro . Everyone
was granted permission to write 354 files of Lotus Notes fromIBM .

12

Figure 2: Privilege escalations in a single host of a large, professionally managed network (above) and
in a default configuration of Windows XP prior to Service Pack2 with AOL installed (below). These
vulnerabilities originated from the installation of commercial software. LimitedUser is an unprivileged user,
NetworkService and LocalService are low-privileged accounts used to run some operating system programs.
Everyone, SrvOp (Server Operator), NetCfgOp (Network Configuration Operator), AuthUser (Authorized
User) and PowerUsers are groups. The arcs labeled grpMbr show that the user is a member of the group. All
other arcs show privilege escalations. There are about thirty escalation paths from PowerUsers to System.

7 Implementation and performance measurements

Our tool to analyze a Windows host comprises two phases: configuration collection and analysis. Our
configuration collector (“scanner”) is a C++ program that uses several Windows APIs to read the file system
(directories and their access control lists) and registry (services, users, and sensitive keys). The scanner
produces Datalog facts such as theresource(...) facts shown in the previous section.

Our scanner takes about 5 minutes to run on a typical host (2.2GHz Pentium IV with 512MB RAM), of
which 6 seconds is the scan of the Service Control Manager, about 2 minutes is the registry scan, and
about 2 minutes is the file-system scan. These scans are I/O-bound and it is unlikely that they can be made
substantially faster.

The scanner produces output in the form of an ASCII file of Datalog facts. To keep this file small, there are
many facts about the registry and file system that our scannerneed not report. For example, many objects
owned by the Administrator’s account have security descriptor configurations that prevents anyone other
than an Administrator from modifying it. Such objects wouldnot aid the adversary in a privilege escalation
attack and can be safely ignored so that our analysis phase isefficient. In addition, as we have explained, the
scanner reports only “sensitive” registry keys (those whose contents appear to be the names of executable
files). With these optimizations, the typical scanner output is about 92 kilobytes (registry) + 10 kilobytes
(services) + 6 megabytes (file system).

Our scanner can run with almost no privileges (i.e., as a Limited user) and still gather sufficient data to

13

Figure 3: Privilege escalations between various users and groups in a single Windows host running just
Lotus Notes, PC-Cillin antivirus, and VMware. The vulnerable software is Lotus Notes and PC-Cillin
antivirus. Installing a trusted anti-virus program actually made the machine more insecure!This graph was
automatically generated by our tool.The ovals in the extreme left column represent various usersinstalled
by the operating system or other software. The circular nodes represent the various groups on the host.
The diamond nodes represent the administrative accounts onthe machine. Each arc represents a privilege
escalation path. As one can see the privilege-escalation graph is dense. In the limited space available on this
page, it is a significant challenge to make the figure show complete details and yet be readable. This host is
a machine managed by professional system administrators asa part of a large enterprise network.

14

perform a useful analysis. This is desirable, because a system administrator might legitimately worry about
running yet another high-privilege software tool that might harm his system. It also means, of course, that all
that raw information was already available to sophisticated attackers. We discovered only one weakness—in
the System Restore program—that requires administrative access to be discovered.

One might think that a Limited user would be unable to scan certain (protected) subdirectories looking for
writable executable files that could be used as Trojan horses. But these protected subdirectories are also
difficult for the hypothetical attacker to exploit, for the very same reason that Limited users cannot traverse
them. This does not coverall cases—a more accurate scan can always be made by running the scanner with
Administrator privileges—but it illustrates why a Limited-user scan is still useful.

The data from the configuration phase is fed to the analysis engine, which could potentially run on a different
host. We use the XSB Prolog engine, in part because it has efficient tabling. That is, it memoizes all com-
puted facts so that they need not be recomputed, and this givethe polynomial-time bound for Datalog. We
compute all possible instances ofexecCode(Attacker,Target) for all possible Attackers and Tar-
gets. Each (Attacker,Target) pair is a privilege-escalation path, shown as an edge in the graphs of Figures 2
and results:windows-summary. Running the Datalog model inXSB to compute all privilege escalations
takes less than one second.

8 Limitations of the model

Our model is, necessarily, an abstraction of what really happens in a Windows XP system. It may over- or
underestimate the possible privilege escalations for several reasons.

Less-fruitful object classes. After some preliminary study, we concluded that the majority of configura-
tion vulnerabilities arise from just three classes of objects: files, registry keys, and services. In principle, we
could extend our model to cover objects such as processes, semaphores, mail slots, sockets, and so on, and
this might uncover more privilege escalations.

Undocumented and ill-documented features. We built our model based on documentation, discussion
with Windows experts, and behavioral analysis of the operating system. Almost assuredly Windows can
exhibit obscure behavior that we have not understood and modeled.

Obscure service-specific permissions.Our system correctly identifies as security bugs misconfigura-
tions inFILE WRITE DATA, SERVICE CHANGE CONFIG, DELETE, WRITE DAC, WRITE OWNER, and
KEY WRITE; the consequences of misconfigurations in these permissions are uniform across all entities of
the specific object type and are very well understood. However, in some cases, the consequences of some
permissions are not very well defined. For example, the meaning ofSERVICE USER DEFINED CONTROL
is service-specific and is usually not well documented. Our system does not model them.

Static estimation of user capabilities. Similarly, because of the complex access control semanticsof
Windows, it is very hard to correctly determine all the capabilities of a user statically. We could not find

15

documentation that describes how the kernel computes the dynamic capabilities when a user logs on to a
host. Our static tool makes a best effort to guess these dynamic properties. Thus it is possible that our tool
has missed some security attacks either because the dynamicprocess token is not correctly modelled in our
system or because the meaning of a particular access permission is not well documented. With the lack of
documentation, we find it very hard to perform a rigorous evaluation of these false negatives. In this tool,
we have covered all the mechanisms that are discussed in vulnerability disclosure mailing lists.

Unrealizable attacks. In some cases our model will report privilege escalations that cannot be effectively
realized. For example, a permission weakness in System Restore can be attacked if the adversary can guess
a file nameand the system then needs to be restored from backup; but perhapsthe file name is too difficult
for the adversary to guess, or the system is never restored. Our model will report the attack path all the same.

Bugs within executable software. Applications and the operating system itself can contain bugs such as
buffer overruns. This is not a limitation of our model; in fact, in previous work [21] we have shown how
to integrate CERT advisories (in OVAL format) into a Datalogmodel of an operating system (in that case a
much simpler model, for Unix).

9 Related work

Datalog has been used as a security language for expressing access control policies [11]. The efficiency of
Datalog and existing off-the-shelf Datalog evaluation engines [23] makes it readily usable in practice.

In this paper we have analyzed applications that (inadvertantly) grant too many privileges. But on the other
hand, many application programs demand too many privileges, more than strictly necessary to access the
data on which they operate. Chenet al. [6] explain why this is harmful (users demand and receive the
privileges necessary to run the applications, which then gives them privileges to do harm) and have built an
analysis tool for finding such situations. We believe our detailed model of Windows access-control could
also be used in the context of “least-privilege-incompatibility” analysis.

Modeling vulnerabilities and their interactions can be dated back to the Kuang and COPS security analyzers
for Unix [3, 12]. Recent works in this area include the one by Ramakrishnan and Sekar [22], and the one
by Fithen et al [13]. A major difference between our work and these works is the application to Windows
platform. There is a long line of work on network vulnerability analysis [31, 29, 24, 26, 1, 20].

Ritchey and Amman proposed using model checking for networkvulnerability analysis [24]. Sheyneret al.
extensively studied attack-graph generation based on model-checking techniques [26]. These approaches
suffer from problems of state space explosion. While it is foreseeable that these approaches can be made
to work, it has not been demonstrated that the approach scales for large networks. Ammanet al. proposed
graph-based search algorithms to conduct network vulnerability analysis [1]. This algorithm is adopted in
Topological Vulnerability Analysis (TVA) [15], a framework that combines an exploit knowledge base with
a remote network vulnerability scanner to analyze exploit sequences leading to attack goals. However, it
seems building the exploit model involves manual construction, limiting the tool’s use in practice.

Intrusion detection systems have been widely deployed in networks and extensively studied in the litera-

16

ture [10, 19, 16].

The MulVAL system [21] used Datalog to express a simple operating-system model (Unix) combined with
models of firewalls and bug advisories (in the OVAL and National Vulnerability Database formats) to reason
about host-to-host propagation of attacks. The work we report in this paper can be used to extend MulVAL
to heterogeneous networks of Windows and Linux machines. Weare not aware of prior work that can
understand the semantics of disparate operating systems.

Microsoft’s Trustworthy Computing Security Development Lifecycleproject [18] addresses many of the is-
sues discussed in this paper, which explains why the vulnerabilities we describe in Microsoft’s own software
were closed in mid-2004.

10 Conclusion

Windows XP is a complex beast; to understand its configuration vulnerabilities we had to draw upon many
sources. Representing this understanding as a formal modelin a declarative language (Datalog) was worth-
while for several reasons. First, the rigor and concisenessof a formal specification language allows a basis
on which to discuss and debate the accuracy of our understanding. The model allows us to make predictions
that can be tested against the real system.

Second, running the model on real data from actual installations produced unexpected results: the pervasive-
ness of configuration bugs in default installations of commercial software from many vendors. It is obvious
in hindsight that Windows access-control is so complex thatprogrammers and administrators have difficulty
understanding and debugging their access-control decisions without tools.

Third, by using the a Datalog framework consistent with thatof the MulVAL system [21], heterogeneous
multihost networks can be analyzed for problems not limitedto single-host configuration vulnerabilities.

Acknowledgments.Discussions with Varugis Kurien, Adrian Oney, Brandon Baker, and Scott Field helped
clarify our understanding of the Windows security model. Wethank Wayne Boyer, Ed Felten, Xiaolan
Zhang, Alex Halderman, John Lambert, Miles McQueen, Michael Steiner, Ruoming Pang, Daniel Dantas,
Xinming Ou, and Matt Thomlinson for helpful comments on earlier drafts of this paper. An internship at
Microsoft by the first author in the summer of 2005 was a valuable opportunity to gain experience with the
APIs used in access control and in querying the Windows registry.

References

[1] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based network vulnera-
bility analysis. InProceedings of 9th ACM Conference on Computer and Communications Security,
Washington, DC, November 2002.

[2] Maurice J. Bach.The Design of the UNIX Operating System. Prentice Hall, 1986.

[3] R. Baldwin. Rule based analysis of computer security. Technical Report TR-401, MIT LCS Lab, 1988.

[4] Ed Bott and Carl Siechert.Microsoft Windows Security Inside Out: for Windows XP and Windows
2000. Microsoft Press, 2003.

17

[5] Hao Chen, David Wagner, and Drew Dean. Setuid demystified. In Proceedings of the 11th USENIX
Security Symposium, pages 171–190, Berkeley, CA, USA, 2002. USENIX Association.

[6] Shuo Chen, John Dunagan, Chad Verbowski, and Yi-Min Wang. A black-box tracing technique to
identify causes of least-privilege incompatibilities. InProceedings of Network and Distributed System
Security Symposium, 2005, February 2005.

[7] Microsoft Corporation. Access rights and access masks.http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/secauthz/security/accessrights and accessmasks.asp, October 2005.
web page fetched October 9, 2005.

[8] Microsoft Corporation. ChangeServiceConfig. http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dllproc/base/changeserviceconfig.asp, 2005.

[9] Microsoft Corporation. Service security and access rights. http://windowssdk.msdn.microsoft.com/
library/default.asp?url=/library/en-us/dllproc/base/servicesecurityand accessrights.asp, October
2005. web page fetched October 9, 2005.

[10] Frdric Cuppens and Alexandre Mige. Alert correlation in a cooperative intrusion detection framework.
In Proceedings of the 2002 IEEE Symposium on Security and Privacy, page 202. IEEE Computer
Society, 2002.

[11] John DeTreville. Binder, a logic-based security language. InProceedings of the 2002 IEEE Symposium
on Security and Privacy, page 105. IEEE Computer Society, 2002.

[12] Daniel Farmer and Eugene H. Spafford. The cops securitychecker system. Technical Report CSD-
TR-993, Purdue University, September 1991.

[13] William L. Fithen, Shawn V. Hernan, Paul F. O’Rourke, and David A. Shinberg. Formal modeling of
vulnerabilities.Bell Labs technical journal, 8(4):173–186, 2004.

[14] Sudhakar Govindavajhala.A Formal Approach to Network Security Management. PhD thesis, Prince-
ton University, 2006 (in preparation).

[15] Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological analysis of network attack vulnerabity.
In V. Kumar, J. Srivastava, and A. Lazarevic, editors,Managing Cyber Threats: Issues, Approaches
and Challanges, chapter 5. Kluwer Academic Publisher, 2003.

[16] Samuel T. King, Z. Morley Mao, Dominic G. Lucchetti, andPeter M. Chen. Enriching intrusion alerts
through multi-host causality. InThe 12th Annual Network and Distributed System Security Symposium
(NDSS 05), Feb. 2005.

[17] John Lambert, Matt Thomlinson, and Vishal Kumar. Microsoft Corporation, personal communication,
July 2005.

[18] Steven B. Lipner. The trustworthy computing security development lifecycle. In20th Annual
Computer Security Applications Conference (ACSAC 2004), pages 2–13, December 2004. See also
msdn.microsoft.com/security/sdl.

[19] Peng Ning, Yun Cui, and Douglas S. Reeves. Constructingattack scenarios through correlation of in-
trusion alerts. InCCS ’02: Proceedings of the 9th ACM conference on Computer and communications
security, pages 245–254. ACM Press, 2002.

18

[20] Steven Noel, Sushil Jajodia, Brian O’Berry, and Michael Jacobs. Efficient minimum-cost network
hardening via exploit dependency graphs. In19th Annual Computer Security Applications Conference
(ACSAC), December 2003.

[21] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. Mulval: A logic-based network secu-
rity analyzer. In14th USENIX Security Symposium, 2005.

[22] C. R. Ramakrishnan and R. Sekar. Model-based analysis of configuration vulnerabilities.Journal of
Computer Security, 10(1-2):189–209, 2002.

[23] Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, David S. Warren, and Juliana Freire. XSB: A
system for efficiently computing well-founded semantics. In Proceedings of the 4th International Con-
ference on Logic Programming and Non-Monotonic Reasoning (LPNMR’97), pages 2–17, Dagstuhl,
Germany, July 1997. Springer Verlag.

[24] Ronald W. Ritchey and Paul Ammann. Using model checkingto analyze network vulnerabilities. In
2000 IEEE Symposium on Security and Privacy, pages 156–165, 2000.

[25] Mark E. Russinovich and David A. Splomon.Microsoft Windows Internals. Microsoft Press, 2003.

[26] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M. Wing. Automated
generation and analysis of attack graphs. InProceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 254–265, 2002.

[27] William R. Stanek. Windows 2000 server: Using default group accounts.
http://www.microsoft.com/technet/prodtechnol/windows2000serv/evaluate/featfunc/07w2kadc.mspx.
web page fetched January 28, 2006.

[28] W. Richard Stevens.UNIX Network Programming. Prentice Hall, 1990.

[29] Steven J. Templeton and Karl Levitt. A requires/provides model for computer attacks. InProceedings
of the 2000 workshop on New security paradigms, pages 31–38. ACM Press, 2000.

[30] Yi-Min Wang, Roussi Roussev, Chad Verbowski, Aaron Johnson, Ming-Wei Wu, Yennun Huang, and
Sy-Yen Kuo. Gatekeeper: Monitoring auto-start extensibility points (ASEPs) for spyware manage-
ment. InUsenix LISA: 18th Large Installation System Administration Conference, November 2004.

[31] Dan Zerkle and Karl Levitt. NetKuang–A multi-host configuration vulnerability checker. InProc. of
the 6th USENIX Security Symposium, pages 195–201, San Jose, California, 1996.

19

