Automatic Configuration Vulnerability Analysis

Sudhakar Govindavajhala Andrew W. Appel
Princeton University
{sudhakar,appél@cs.princeton.edu

February 5, 2007

Abstract

We have constructed a logical model of Windows XP accesgaloirt a declarative but executable
(Datalog) format. We have built a scanner that reads aco&sisel configuration information from the
Windows registry, file system, and service control managealohse, and feeds raw configuration data
to the model. We found a surprising result: commercial safexfrom major vendors routinely has user-
to-administrator privilege-escalation vulnerabilitigst result not from buffer overruns (or other bugs
inside the software) but just from misconfigurations of pissions and registry entries. Our scanner and
analyzer run efficiently, and quickly detect these configarabugs. Furthermore, our new Windows
model can be combined with previous models of Unix, firewallsd CERT advisories to give a more
accurate global picture of the vulnerabilities in a heterogus enterprise network. Our tool could be
used by software vendors (and system integrators) to ingptioeir installation configurations and by
sysadmins for day-to-day vulnerability analysis.

1 Introduction

Unix has a simple access control model with three privilegead, write and execute (plus the sometimes
mysterious setuid [5]) given to users, groups, and othersgerations on just a few kinds of objects (files,
directories, etc.). In contrast, Windows access-consalather more complex, with access-control lists
(prioritized “allow” and “deny” by groups) comprising up &80 different privileges for operations on about
15 different kinds of objects [7]. For example, on a “serviobject one can have the privilege “change what
program.exe is run to effectuate the service.”

In this paper we will show that a formal model of Windows ascesntrol can be applied to analyze the
configurations of real machines. What we have learned framing our model is that ordinary professional
software developers at commercial software vendors (thotpAdobe, AOL, Macromedia, Microsoft, IBM,
Trend Micro, Symantec, and Cisco) have difficulty in evalugithe consequences of the access-control con-
figurations that they choose for their software and serviddse consequence is that commercial software
can and does have exploitable privilege-escalation vabikties (user-to-administrator, guest-to-any-user)
caused by access-control misconfiguration. In additiatiyidual application developers design configura-
tion of their programs independent of each other. The sirofia host is dependent on the configuration of
each of these programs; ours is the first tool a system irttgran use to find configuration vulnerabilities
in the totality of a software installation.

Our logical model of Windows access-control is expresseidfasence rules in Datalog which are directly
executable in a Prolog system. We have a scanner that reladareparts of the Windows registry, file

system, and service control manager database on a givenohpivide input to our logical model. The

model runs, and prints out a list of privilege-escalatiotnesabilities, each one with a trace of how each
vulnerability might be exploited.

2 Datalog overview

Our system adopts Datalog as the modeling language for alsritethe analysis. Previous work has shown
that Datalog’s declarative semantics is sufficient for @irag access control policies [11] and for describing
the interactions of operating systems, network firewaltg] file systems [21]. The declarative nature of a
Datalog model allows us to cleanly specify the semanticsoofething even as complex as Windows XP
security configurations. Datalog is efficient to evaluatethieory, bounded by polynomal time; in practice
in our application, less than a second to analyze real lastais.

Syntactically, Datalog is a subset of Prolog with limitedis of clauses. The reasoning rules in our system
are declared as Datalog clauseditéral, p(ts,...,t) is a predicate applied to its arguments, each of which
is either a constant or a variable. In the formalism of Prpolmgariable is an identifier that starts with an
upper-case letter. A constant is one that starts with a lmase letter, or that isquot ed’ . LetLy,...,L,

be literals. A reasoning rule in Datalog is represented asmadlause: Lg : - Li, ..., L. Semantically,

it means ifLy,...,Ly are true therlg is also true. The left-hand side is called theadand the right-hand
side is called thdody A clause with an empty body is calledfact A clause with a nonempty body is
called arule. A Datalog program is a set of facts and reasoning rules & inbm these facts. The execution
of a Datalog program infers from these facts using the reéagaunles.

Prolog permits data-structure trees in places where Dai@lows only constants; and Prolog has control-
flow features (such asut). Prolog is Turing-complete (it is not polynomial-time dikDatalog), and is less
declarative in nature (order of rules matters). We actuadlg a slight superset of Datalog (we permit lists
and other data structures, not just constants, in the influttgh no new lists are constructed at run time);
this increases its expressiveness without sacrificingeitdaglative or polynomial-time properties.

3 Objects in the Windows XP model

In Unix, one has to deal with various operating system objéke files, directories, threads and processes.
One uses primitives like locks, message queues and senegplioointerprocess communication. One uses
sockets for network programming. Standard textbooks plexcellent introduction to Unix and how to
use these objects [2, 28]. In addition to these mechanisnislal¥s provides other primitives, the most
important of which are theegistry andservices We will summarize these; see Russinovathal. [25] for a
detailed treatment.

Registry. The Windows registry is a centralized hierarchical dataliasstore configuration information
for the operating system and for applications and servinaging under Windows. The registry stores a
wide range of configuration settings, from boot parametensser desktop settings to program settings. If

an adversary can overwrite the contents of a sensitive kitytheé path of his library or executable, he could
cause his code to be executed [30, 17]. Because of the segiath individual application does not have to
maintain its configuration in application specific configioa files.

Each entry in the registry is indexed by a key. The keys areatghical in structure, just like files and
directories.A\B refers to the ke that is a subkey of the kef. Programs often store application-specific
information under the root keKEY_L OCAL _MACHI NE (HKLM. We do not find it necessary to model the
hierarchical structure; for u&\B is simply an atomic literal.

Each registry key entry in the registry has a security dpsarithat determines who can perform what access
to the registry entry. The operations that can be contrdiedccess-control on registry keys are: reading a
key, writing a key, deleting a key, enumerating subkeysijragd subkey, requesting notification for changes
to this key or its subkeys.

We consider a registry key to ksensitivein an installation if its contents is a name ending .exe, .HHt,
and so on. We ignore nonsensitive keys, and we model eactigeikey as a Datalofact such as,

resource(registry,
regi stryKey(’ hkl m SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Tel ephony’),

acl(...)).

Here we have elided the security descriptack); we describe access-control-lists below.

Services. Every operating system has a mechanism to start processgstam startup, providing func-
tionality not tied to any particular user. For example, wiies operating system boots up, one would want
the network programs and the web server program to to st&sthatically, even if no user has logged on.
Windows services are similar to Unix daemon processes, g meneral: services are first class objects,
which allows general and flexible access control. The cordiipn on each service comprises two compo-
nents: properties of the service and access control on thieese The properties of a service include the
user account to instantiate the service, whether the seisistarted by the operating system during boot
or manually by the user, the binary path to the executabld,t@ dependencies on other services. The
operations that can be controlled by access-control oricesnare: starting a service, stopping a setrvice,
reading the configuration of a service, modifying the configion of a service, querying the status of a
service, enumerating other services that are dependehisdrvice, pausing or continuing a service.

resource(service, 'DHCP', acl(...)).

It turns out that thecurrent properties of a service are almost irrelevant to our ang)ysd we omit them
from our model; what matters are tipermissiongo modify the properties. If an untrusted user is granted
“permission to configure the service” (which would be masiifie the contents of thacl for that service,
elided above), he could take over the administrative adcofithe host. This is done by configuring the
service to run an attack program under an administrativewatdcand restarting the service. The following
commands typed in a Windows Command Shell achieve this:

$ sc config weakService binPath=c:\attack. exe obj=".\Local Systenl' password=""
$ sc stop weakService
$ sc start weakService

Security Identifiers. Windows usessecurity identifiers (SIDsjo identify various entities such as users
and groups that perform actions in a system. When a SID idayie@ in clear text, each SID carries an
Sprefix, and its various components are separated with hyplt®i-5-21-346327843-89743984-384343-
1128 Some standard SIDs arg: 1- 1- 0 (the groupEveryong, S- 1- 5- 11 (the groupAuthenticated Usejs

S- 1- 5- 18 (the accountocal Systefy S- 1- 5- 19 (the Local Serviceaccount),S- 1- 5- 20 (the Network
Serviceaccount) S- 1- 5- 32- 544 (the Administratorsgroup).

Accounts. Users belong to groups, and have privileges. The registmjaios information about each user
(i.e., account) which we model as Datalog facts such as,

user (' Adm ni strator’,
'S-1-5-21-3034706114-1836988657- 2654252735-500") .

userInfo(’ S-1-5-21-3034706114-1836988657-2654252735- 500’ ,
groups(|[
si dAndAttri butes(’ S 1-1-0’
[SE_GROUP_ENABLED , ' SE_GROUP_ENABLED BY DEFAULT’, ' SE_GROUP_MANDATCRY']),

.. 1),
privileges([’ SeAuditPrivilege, 'SeBackupPrivilege , ...])

)

Where we use ellipses (...), the actual data has much loisgef groups and privileges.

System Accounts. The user mode components of the kernel of the Windows operaystem (e.g.,
csrss.exandlsass.exgrun under theLocal Systemaccount. This account has complete access to all the
resources of the machine and most of the daemon programsnder this account. In Windows XP, Mi-
crosoft introduced the accountecal ServiceandNetwork Servicéo run parts of the operating system that
do not need complete access to the machine’s resources.x&opke, Windows exports its registry over
the network. The operating system service responsibleggpanding to remote registry requests runs as
Local Service (Even though_ocal Servicedoes not have complete access to the registry, it can use Win-
dows’s delegation facility to access the registry on bebthe client.) One cannot log in to the accounts
Local SystemLocal ServiceandNetwork Servicebut can control these accounts from any account in the
Administratorsgroup.

User Accounts. The Administratoraccount is the account one uses upon first setting up a wodtstar

a server, before creating any other account. It is a membéneoAdministratorsgroup. Any member
of the Administratorsgroup has complete control of the machine. Windows has warmther groups,
such adAuthenticated User&veryone Server OperatordPower Users Network Configuration Operators
Members of théPower Usersgroup can create user accounts, can modify and delete dscinay create,
stop and start system services which are not started by ltefeny principal who supplied a credential to
logon belongs tAuthenticated Usergroup. Every machine comes with a built-in acco®uestwhich

is disabled by default. Once enabled, the USaestdoes not have to supply a credential. Every principal
including theGuestuser is a part of the groupveryone A principal in theNetwork Configuration Operators
group can modify the network configuration. The Microsofcdmentation forServer Operatorgroup

reads: Server Operators can perform most common server admitistraasks[27]. There is also the
notion of Limited Userswhich determines the set of mandatory groups and privilegeen to a new user
account by the “User Accounts” dialog box when the “Limiteddio-button is selected. In this article we
explore privilege escalations between the different useoants, system accounts, and groups.

4 Windows Security Overview

We now show how to model the algorithm used by the Windows édeim determine whether an access
should be allowed. In making this decision, the kernel atersi the following inputsWho is the principal
requesting the accessWhat are the intentions of the principal (specified in theuest)?andWhat is the
protection on the object to be accessed?

4.1 User attributes

Account privileges Windows provides a flexible access-control model where amepwf a resource can
specify the level of access each user has. This model is lusefirotecting access to a single object.
However, sometimes users perform operations that havetensyside impact. For example, the ability to
shut down a system or change the time of a system has systeimpact. The capability to perform these
actions must be controlled carefully. Windows uses theomotif privilegesto achieve this purpose. When
a user logs onto a host, after authentication, the systentifigs the privileges associated with the user and
stores this information in the kernel as a part of the the ggeccontrol block for the user’s shell.

There are about thirty different privileges in Windows awotithg various capabilities such as: replace a
process-level token, generate security audits, loadaahdivivers, skip access checks, lock pages in memory,
force local/remote shutdown of a host, control and view adissages, change the system time, create a
new process token on behalf of any user, act as a part of apgtstem. Some of these privileges (such
as load-driver privilege) allow a principal to directly ardirectly get complete control of the host. In our
model, we refer to these privileges as super privileges.

Token A tokenis a per-process (per thread in some cases) data structaretamed in the kernel as a
part of the process control block, that contains the secinformation. It stores information regarding the
user account, a list of account privileges for the user act@ulist of SIDs representing the user, groups the
user belongs to, the session identifier, and other secwligyed information associated with the process or
thread. A token is created when a user logs on to a system aithehed to the initial process (typically
userinit. exe)that is started on behalf of the user. A child process inbéts parent’'s token. When
a process makes a certain request (like opening a file in wriide or opening a service to configure its
properties), the kernel consults the token of the calliracpss to determine the privileges of the process.

The Datalog predicateser Token(Pri nci pal, Token) identifies that the principaPri nci pal
gets the tokerfoken when he logs in. The configuration scanner supplies infdomdtrom the registry)
regarding the list of users on a host and their credentials.

When a principal accesses an object, the kernel looks uprtieegs token of the process making the re-
guest to determine its credentials: the user, the prividegad the groups the user belongs to. The pred-

5

icatepr ocessToken(UserSid, Privil eges, G oups) encodes the credentials of the process
requesting the accesSser Si d is the user identity on behalf of whom the process rins,vi | eges is

the set of privileges (lik&seTakeOaner shi pPri vi |l ege, SeSyst enti mePri vi | ege) the process
holds, anda oups is the set of groups the user belongs to. A sample process tokks like:

processToken(' S-1-5-21-1214440339-507921405-1060284298- 500,
privileges([’' SeBackupPrivilege’', 'SeChangeNotifyPrivilege’,
" SeSystentinmePrivilege']),
groups([’S$1-1-0", 'S-1-2-0',
'S-1-5-11", 'S-1-5-32-544'])

4.2 Modeling requested access

The Windows XP access control algorithm is modeled by thelipateswi ndows AccessCheck,
checkAccessLi st andcheckACE. These predicates take as an argument the access requesbed.
model, the Request edAccess argument is an atomic permission likeél LE. READ DATA and

FI LE_READATTRI BUTES. In practice, one requests more than one permissionHikeE_READ_DATA
and FI LEVWWRI TE_.DATA—to read and write a file. To check for such nonatomic permissi we will
have to call the corresponding access check function on aachic permission requested. This is a de-
viation from the way the kernel implements the algorithm.weéwger, this deviation is functionally equiv-
alent when used with atomic predicates. The kernel impléatiem avoids calling the function more than
once for nonatomic permission by doing clever bit manipatat Since it is not straightforward to do bit
manipulation in Datalog, in our model access check can oalgdiled on an elementary permission like
FI LE_READ_DATA. This makes our reasoning rules easier to write and debugharsdncreases the assur-
ance of our system. However, Windows allows a principal tuest more than one permission—like all of
FI LE.READ.DATA, FILEWRI TE.DATA, DELETE, READ.CONTROL, WRI TE_DAC—simultaneously.
To model this behavior of Windows, when a principal requésith FI LE_WRI TE_DATA andWRI TE_DAC,

we invoke the predicatei ndows AccessCheck twice—the first time withFl LE_ZWRI TE_LDATA and the
second time withARI TE_DAC.

4.3 Security Descriptor

A security descriptoiis a per-object data structure identifying who can perforhratvaction of the object.

A security descriptor can be set on objects like procestesads, semaphores, sections, waitable timers,
registry keys, files and services. A security descriptorsesin of the following attributes: a revision number
(version of the security model), flags (controlling inharite characteristics), owner SID, group SID, a
discretionary access-control list (specifying who haswataess to the object) and a system access-control
list (specifying which attempted operations by which usdrsuld be logged). For our discussion only the
owner SID and discretionary access-control list (DACL) iezlevant.

An access-control listACL) is a list of zero or moreccess control entrigACESs) which say who is allowed
what access to an object. Each positive (negative) ACE gji@enies) specified access to the principal or
group referred by the SID listed in this ACE. Each Access @iriEntry has a 32-bit mask specifying (bit-
wise) a set of “standard” and “object-specific” permissioBtandard permissions are common to all ojects:
DELETE, READ_.CONROL, V\RI TE_DAC, andWRI TE_OWNER for deleting, reading the security descriptor,

6

writing the security descriptor and writing the owner of drjext respectively. Examples of object-specific
permissions includél LE.WRI TE_DATA (for file objects),SERVI CE_CHANGE_CONFI G(service objects),
andKEY_V\RI TE (registry objects).

An access control entry is encoded as the primitive predicatace(aceType(Type),
aceRi ght s(Ri ghtsLi st), Sid) that specifies that an access control entry of tyg@e (one of

" ACCESS_ALLOVED ACE_TYPE or’ ACCESS_.DENI EDACE_TYPE') grants or denies to the entities
represented by the identifiér d the rights specified inthe li& ght sLi st . The predicatelacl (Acl Li st)
encodes discretionary access control list (DACL) whereAcl Li st is a list of access control entry pred-
icates, storing the entries in the same order as they appédhe isecurity descriptor. We show an example
ACE predicate and a DACL with a single ACE:

ace(aceType(’ ACCESS ALLOVWED ACE TYPE'),
aceRi ghts([’' FILE_WRI TE_DATA']),
sid(’ S-1-5-21-854245398-1637723038- 725345543-1003")) .

dacl ([ace(aceType(’ ACCESS ALLONED ACE TYPE'),
aceRi ghts([' FILE_WRI TE_DATA']),
sid(’S-1-5-21-854245398-1637723038- 725345543-1003")) 1)

A security descriptor is encoded as the predicasecurit yDescri pt or (Oamner, Dacl) where
Ownner represents the security identifier of the owner 8ad| is a predicate that encodes the discretionary
access control list.

4.4 Determining access

The predicatewi ndowsAccessCheck(Result, ObjectProtecti on, RequestedAccess,
Requesti ngToken) models the algorithm the kernel uses in determining whetbepermit an
Request edAccess access to an object with protecti@pj ect Pr ot ect i on by a process with to-
kenRequest i ngToken. The variableResul t is instantiated t@l | owed or deni ed accordingly. In
section 4.4, we described the algorithm the kernel uses ke miaaccess control decision. We now formally
describe the algorithm.

Rule 1: No ACL implies no protection. If a file does not have an Access Control List (“Null DACL”) gih
any access is permitted on the file. The formal rule is:

wi ndowsAccessCheck(al | owed,
securityDescriptor(Omer, dacl(null)),
Request edAccess,
Request i ngProcessToken).

SeTakeOwnershipPrivilege privilege gives write-owner amess The privilege SeTakeOwnershipPrivi-
lege in the caller’s token gives WRITEBWNER access to any resource. With WRITRVNER permission,
one can change the owner SID of a resource to one of the Sibeg icaller’'s process token. (Technically,

the SID in the process token will have to be marked as haviagptitential for being an owner.) After ob-
taining the ownership of a resource, the adversary will Be tabget full control of the resource by launching
further attacks, as described below. Similarly, as we dised in section 4.1, any super privilege will give
the adversary complete control over all the resources ofitise To summarize, the SeTakeOwnershipPriv-
ilege and other super privileges will give the adversary plate control over all resources on a host, thus
resulting in system-wide compromise. In our model, we erdbése multi-step attacks as a single step:

wi ndowsAccessCheck(al | owed, SecDescriptor, RequestedAccess,
processToken(Oaner, PrivList, G oupSids,
TokenRestrictedSids)) :-
hasSuperPrivil ege(true, PrivList).
%Check if token has a '‘ super’’ privileges

Rule 3: Owner always gets acces3.he owner of a resource always gets “change the ACL” peromnsand
hence can give arbitrary entity arbitrary access. Thus ttneeo of a resource always get full access to the
resource. This is expressed as:

wi ndowsAccessCheck(al | owed,
securityDescriptor(Omer, Dacl),
Request edAccess,
processToken(Omer, PrivList, G oupSids,
TokenRestri ct edSi ds) .

Rule 4: Consult the Access Control List If none of the previous rules apply, then the kernel conghks
access control list. Each Access Control Entry (ACE) in theeas-control list is examined from first to last
looking for an entry that denies or allows the action. An AGEiocessed if the ACE is an access-deny or
access-allowed ACE and the SID in the ACE matches a SID indher's access token. If it is an access-
denied ACE, then the access is denied. If the ACE is an aadlessed ACE, then the access is allowed. If
the end of the list is reached without a matching ACE, the estis denied. Formally, we write this as:

wi ndowsAccessCheck(Resul t,
securityDescri ptor(Qbject Omer, dacl (Acl)),
Request edAccess,
processToken(ProcessOmer, PrivList, G oups,
TokenRestri ct edSi ds)) -
checkAccesslLi st (Result, RequestedAccess, Acl, G oups).

The predicateheckAccessLi st (Resul t, RequestedAccess, Acl, SidsList) modelsthe
algorithm the kernel uses to decide whether an access tbstc| allows or denieRequest edAccess

to a principal withSi dsLi st as the list of security identifiers of the groups in the praceken. This
predicate examines th&cl from first to last and unifies thResul t variable toal | owed or deni ed
accordingly. If there is no access control on the object tie request is granted. If the end of the list is
reached, then access is denied.

The predicateheck ACE(Resul t, AceEntry, Access, SidsList) means that an elementary
access control decision, using the access control éwgEnt r y, for a requesiAccess by a principal

8

whose list of security identifiers of the groups in the pracesken isSi dsLi st, is Resul t (one of
al | owed, deni ed). Formally, we write this as:

checkAccessLi st (al | owed, Access, dacl (null), SidsList).
checkAccesslLi st (Result, Access,
dacl (acl ([Acl HeadEntry| AclTail])), SidsList) :-

(
checkACE(Resul t, Acl HeadEntry, Access, SidsList);

% ; is Prolog OR operator
checkAccessLi st (Result, Access,
dacl (acl (Acl Tail)), SidsList)

).
% An enpty access control |ist denies access
checkAccessLi st (deni ed, Access,
dacl (acl ([])), SidsList)

checkACE(al | owed,
ace(aceType(’ ACCESS ALLOWED ACE'), AceRights, Sid),
Access, SidsList) :-
accessl nAceMask(Access, AceRights),
sidlnGoup(Sid, SidsList).

checkACE(deni ed,
ace(aceType(’ ACCESS DEN ED ACE), AceRights, Sid),
Access, SidsList) :-
accessl nAceMask(Access, AceRights),
sidl nGroup(Sid, SidsList).

5 Modeling privilege escalation

We use the predicateesour ce(Type, Name, Dacl) to identify various resources on a ho3iype
indicates the type of the resource—it is ones@r vi ce, regi stry andfi | e. Nane identifies the
resource andacl is the protection on the resource. By scanning the host, onkl generate the list of

all the resources on a machine. The prediagger Token(Pri nci pal , Token) identifies that the
principal Pri nci pal gets the toked@oken when he logs in. We generate this predicate for each user on
the machine.canWite(Princi pal, resource(Type, Nane, Dacl)) is a derived predicate
that specifies that principdr i nci pal can write the resource of typBype (servi ce, regi stry,

fi | e)identified byNanme and with a security descriptdac| .

It is well known that the ability to overwrite a file will allown adversary to launch Trojan-horse attacks.
Similarily, if the adversary can overwrite the registry kdiat store program paths to be executed during log
on process and boot process, the adversary can launch Frojaa attacks. If the adversary is allowed the
permission to configure a service, then he can configure aimadi program to run under an administrative
account and get complete control of the host. If the adversasFI LE_WRI TE_DATA permission on a
file, he could overwrite the file. If the adversary h&BY_SET_VALUE permission on a registry key, he
could overwrite the contents of the key. If the adversary$aRVI CE_CHANGE_CONFI Gpermission on a
service, he could reconfigure the service. We encode these as

canWite(Principal, resource(file, Name, Dacl)) :-
user Token(Pri nci pal, ProcessToken),
wi ndowsAccessCheck(al | owed, Dacl,
"FI LE_WRI TE_DATA', ProcessToken).

canWite(Principal, resource(registry, Name, Dacl)) :-
user Token(Princi pal, ProcessToken),
wi ndowsAccessCheck(al | owed, Dacl,
"KEY_SET_VALUE , ProcessToken).

canWite(Principal, resource(service, Nanme, Dacl)) :-
user Token(Pri nci pal, Token),
wi ndowsAccessCheck(al | owed, Dacl,
" SERVI CE_CHANGE_CONFI G, Token);

canWite(Principal, resource(Type, Nane, Dacl)) :-
user Token(Pri nci pal , Token),
wi ndowsAccessCheck(al | owed, Dacl,
"VWRI TE_DAC , Token);

The WRI TE_DAC rule above is interesting. If an adversary is exploitingf@ TE_DAC misconfiguration,
then the adversary will have to first modify the access cémnothe object to give him access and then
overwrite the resource. For the sake of simplicity, we mahdisl multi-step attack as a single step.

trusts(Principal, Resource) isapredicate that specifies thHti nci pal trustsResour ce.

If a principal executes code in a file, he trusts the file. linpossible to statically identify which files a
user trusts. We make the conservative assumption that &y flystem directories such &s\Pr ogr am

Fi | es andC: \W ndows is executed by all users of the host and in particular by theiaidtrator. For
all other executable files, we assume that these files arastt édeecuted by the owner of file. Similarly,
we assume that sensitive registry keys are trusted by &t tleawner of the registry key. If a principal
is granted the permission to configure a service, the praha@pn choose the program to be instantiated
when the service is run and the account the service undearticplar, principal can instantiate a malicious
program to run under an administrative account. Thus, amcipal who can configure a service can
get administrative access to a machine; an administratmuldrirust any service resource. If a principal
Tar get trusts aresour ce(Type, Name, Dacl) and if a principalAtt acker can write to this
resource, then the adversatyt acker can launch a privilege escalation T@r get . This is formally
encoded as:

trusts(Adm ni strator, resource(service, Name, Dacl)).
execCode(Att acker, Target) :-

canWite(Attacker, Resource),
trusts(Target, Resource).

10

6 Security bugs found

We used our tool to see how software from various vendors waBgured in the default installation. In all
the cases we describe, we discovered the error and repotteithé vendor, who had not previously received
reports of it; except that one of Macromedia’s and all of Mgwft's configuration errors were corrected by
their vendors in security patches before we reported them.

Figure 2 shows how unprivileged users on actual Windows X$tshcould obtain administrator privileges
through several paths. We found three classes of bugs: 8lersymisconfigurations, registry misconfigu-
rations and service misconfigurations. In general, theseanfigurations are traceable directly to standard
installations of commercial software.

Service misconfigurations. Several vendors poorly applied the Windows access contamemto their
services; a common mistake is to assign #®ERVICE.CHANGE_CONFIG permission indiscriminately to
services. The Windows XP documentation states, “. .. becthis grants the caller the right to change the
executable file that the system runs, it should be grantedtorddministrators” [9]. But that warning fails
to explain clearly that permission to configure a serviceved both setting the executaldad selecting the
account under which the service runs, e.g., change thedstimccount td.ocal Systeni8, 17]. FromLocal
Systemall things are possible (including installing passwordfers to launch further attacks in the guise
of any ordinary user).

We found that in the default configurations of Windows XP {lupatched in August 2004), th8SDP
Discovery Servicédmarked asSSDPin Figure 2) and theJniversal Plug and Play Device Host service
(UPNP in Figure 2) granted “permission to configure the service'thte Authenticated Usergroup. A
normal unprivileged user is a part of tAeithenticated Usergroup and hence a normal user can configure
the executable and the account under which these service$hen, the adversary needs to make the service
reload the new configuration. He needs to wait for the senadee restarted (he could, for example, force
the system administrator to reboot the machine by consutoimgnany resources so that the system is too
slow to respond). We also noticed that usually when a praidgpgranted theSERVICE. CHANGE_CONFIG
permission, he is also grants&RVICE. STOPandSERVICE_START permissions. One could use the Service
Controller c. exe) to trivially reload the service in the new configuration adws:

$sc config weakService binPat h=c:\attack. exe obj =".\Local Systeni password=""
$sc stop weakService
$sc start weakService

Via the samesERVICE. CHANGE CONFIG mechanism, the following (Windows XP Professional) acecess
control decisions gave paths frobhocal Service Network ServiceNetwork Configuration Operatoraind
Server Operatorgo Local System The Local Serviceaccount had permission to configure tbaiver-

sal Plug and Playservice (labeledJPNP in Figure 2),Smart Card ServicefSCardSvr) and theSmart
Card Helper Servic€SCardDrv). TheNetwork Servicaccount had permission to configure terosoft
Distributed Transaction Coordinatoservice MSDTC). The Server Operatorgroup had permission to
configureuPnP, Simple Service Discovery Protoc(®SDP, NetBios over TCP/IRNetBT), and Smart
Card ServicegSCardSvr). TheNetwork Configuration Operatorgroup had permission to configure the
Dynamic Host Configuration ProtocDHCP), NetBT, andDnscacheservices. This defeats the principle
of least privilege that was the motivation for creatibgcal Serviceand Server Operatorslf the adversary

11

Program Name Vendor Mechanism| #instanceg
Lotus Notes IBM File 354
VPN Client Cisco File 18
PC-cillin Anti-virus2006 | Trend Micro File 103
PC-cillin Anti-virus2006| Trend Micro | Service 6
Illustrator Adobe File 170
Anti-virus Symantec File 6
AOL Messenger AOL Registry 2
Dreamweaver Macromedia| Service 1
Flash Macromedia File 1
Windows XP Microsoft Service 7
Windows XP Microsoft Registry 40

Figure 1: A summary of vulnerabilities discovered by ourltobhe column “mechanism” reflects which
operating system object the software misconfigured. Theneol“instances” reflects the number of objects
that lead to a privilege-escalation vulnerability. Forexde, Lotus Notes had 354 executable files that are
writable by any untrusted user on the host. Further detegls@ailable in Govindavajhala’s PhD thesis [14].

were to find a buffer overflow bug in a program runninglLagal Servicethis escalation path enabled the
adversary to take complete control of the host.

Finally, although Microsoft describd2ower Usersas “includes many, but not all, privileges of the Admin-
istrators group,” [4, page 31] it is well known that there amany privilege-escalation paths froRower
Users to Local Systernwe have found more than 20 with our tool.

Other vendors’ software also had access-control configurditugs in their services: THeveryonegroup
was granted the permission to configure Macromedia Licensing Servicenstalled byMacromedia’s
Dreamweaver program.

Registry misconfigurations. The standard configuration &OL included a registry entry binding the

name of a DLL file to be loaded and executed (in some circurne&®rby the AOL software. The access
permissions permitted any user to write this entry; thec&#acould substitute the name of his own DLL
and wait for some other AOL user to execute it, thereby acdisinipg a user-to-user privilege escalation.
We found similar weaknesses in the registry configuratidreeweral other vendors.

File misconfigurations. In addition to Trojan horses via service configuration, sm@edors’ software is
vulnerable to a more traditional kind of file-system-basedjdn horse: Thdzveryonegroup was granted
the permission to write to 170 executable (.EXE and .DLL)sfifteom Adobe. The adversary can write
to these files and wait for a system administrator or other tzsexecute the filesEveryonewas granted

permission to write to 103 files of the Internet Security 20@6s scanner fronTrend Micro. Everyone

was granted permission to write 354 files of Lotus Notes fiBiM .

12

Any Adobe User

X

\\ ~ \
N Micmsomm.\uy))
\ 7

S A
ipnphost @

Any AOL AIM User

AIM(registry)

ipnphost

NetworkService

Figure 2: Privilege escalations in a single host of a largefgssionally managed network (above) and
in a default configuration of Windows XP prior to Service P&kvith AOL installed (below). These
vulnerabilities originated from the installation of comroial software. LimitedUser is an unprivileged user,
NetworkService and LocalService are low-privileged actswsed to run some operating system programs.
Everyone, SrvOp (Server Operator), NetCfgOp (Network Gumition Operator), AuthUser (Authorized
User) and PowerUsers are groups. The arcs labeled grpMbr thiad the user is a member of the group. All
other arcs show privilege escalations. There are abouy thécalation paths from PowerUsers to System.

7 Implementation and performance measurements

Our tool to analyze a Windows host comprises two phases: gimation collection and analysis. Our
configuration collector (“scanner”) is a C++ program thagsiseveral Windows APIs to read the file system
(directories and their access control lists) and registgnfices, users, and sensitive keys). The scanner
produces Datalog facts such as tresour ce(. . .) facts shown in the previous section.

Our scanner takes about 5 minutes to run on a typical hosG2z22Pentium IV with 512MB RAM), of
which 6 seconds is the scan of the Service Control Manageuytab minutes is the registry scan, and
about 2 minutes is the file-system scan. These scans areoli@dand it is unlikely that they can be made
substantially faster.

The scanner produces output in the form of an ASCII file of afdacts. To keep this file small, there are
many facts about the registry and file system that our scamged not report. For example, many objects
owned by the Administrator's account have security desariponfigurations that prevents anyone other
than an Administrator from modifying it. Such objects woulok aid the adversary in a privilege escalation
attack and can be safely ignored so that our analysis phaffecient. In addition, as we have explained, the
scanner reports only “sensitive” registry keys (those vehosntents appear to be the names of executable
files). With these optimizations, the typical scanner otiipiabout 92 kilobytes (registry) + 10 kilobytes
(services) + 6 megabytes (file system).

Our scanner can run with almost no privileges (i.e., as a fedhuser) and still gather sufficient data to

13

~30 exploits

service(TmPfw)

member

ice(PcCtlCom)

__vmware_user__

service(tmproxy)

service(Tmfilter)

System

service(tmtdi)

service(tmproxy)

service(tm_cfw)

service(Vsapint)

service(NICCONFIGSVC

Executive

registryBundle(1)

\ bundle(C:WLotus\Notes)
bundle(C:\WINDOWS\system32)

| bundle(C:\WINDOWS\system32)
Anonymous Login

bundle(C:WWIND OWS\system32)

Figure 3: Privilege escalations between various users amgpg in a single Windows host running just
Lotus Notes, PC-Cillin antivirus, and VMware. The vulndeBoftware is Lotus Notes and PC-Cillin
antivirus. Installing a trusted anti-virus program aclyahade the machine more insecuihis graph was
automatically generated by our toolhe ovals in the extreme left column represent various usstalled

by the operating system or other software. The circular sagpresent the various groups on the host.
The diamond nodes represent the administrative accountiseomachine. Each arc represents a privilege
escalation path. As one can see the privilege-escalatephgs dense. In the limited space available on this
page, it is a significant challenge to make the figure show tetepletails and yet be readable. This host is
a machine managed by professional system administrat@pas of a large enterprise network.

14

perform a useful analysis. This is desirable, because arsyatiministrator might legitimately worry about
running yet another high-privilege software tool that ntigarm his system. It also means, of course, that all
that raw information was already available to sophistidatackers. We discovered only one weakness—in
the System Restore program—that requires administratieess to be discovered.

One might think that a Limited user would be unable to scatage(protected) subdirectories looking for
writable executable files that could be used as Trojan horBe these protected subdirectories are also
difficult for the hypothetical attacker to exploit, for thery same reason that Limited users cannot traverse
them. This does not covell cases—a more accurate scan can always be made by runnirgatirees with
Administrator privileges—nbut it illustrates why a Limitedser scan is still useful.

The data from the configuration phase is fed to the analygjgienwhich could potentially run on a different
host. We use the XSB Prolog engine, in part because it haseeffi@bling. That is, it memoizes all com-
puted facts so that they need not be recomputed, and thighgvgolynomial-time bound for Datalog. We
compute all possible instancesefecCode(At t acker, Tar get) for all possible Attackers and Tar-
gets. Each (Attacker, Target) pair is a privilege-escatapath, shown as an edge in the graphs of Figures 2
and results:windows-summary. Running the Datalog mod& 3B to compute all privilege escalations
takes less than one second.

8 Limitations of the model

Our model is, necessarily, an abstraction of what reallypleap in a Windows XP system. It may over- or
underestimate the possible privilege escalations forratueasons.

Less-fruitful object classes. After some preliminary study, we concluded that the majooit configura-
tion vulnerabilities arise from just three classes of otgetiles, registry keys, and services. In principle, we
could extend our model to cover objects such as processespdores, mail slots, sockets, and so on, and
this might uncover more privilege escalations.

Undocumented and ill-documented features. We built our model based on documentation, discussion
with Windows experts, and behavioral analysis of the opggasystem. Almost assuredly Windows can
exhibit obscure behavior that we have not understood anctredd

Obscure service-specific permissions. Our system correctly identifies as security bugs miscondigur
tions inFI LEVWRI TE_DATA, SERVI CE_CHANGE_CONFI G DELETE, WRI TE_DAC, WRI TE_. OANER, and
KEY_VRI TE; the consequences of misconfigurations in these permgsai@uniform across all entities of
the specific object type and are very well understood. Howéwesome cases, the consequences of some
permissions are not very well defined. For example, the nigeofiSERVI CE_USER DEFI NED_CONTRCL

is service-specific and is usually not well documented. @stesn does not model them.

Static estimation of user capabilities. Similarly, because of the complex access control semanfics
Windows, it is very hard to correctly determine all the capties of a user statically. We could not find

15

documentation that describes how the kernel computes thantig capabilities when a user logs on to a
host. Our static tool makes a best effort to guess these dgnawperties. Thus it is possible that our tool
has missed some security attacks either because the dypesn&ss token is not correctly modelled in our
system or because the meaning of a particular access pemmissiot well documented. With the lack of

documentation, we find it very hard to perform a rigorous eatibn of these false negatives. In this tool,
we have covered all the mechanisms that are discussed iarabiliity disclosure mailing lists.

Unrealizable attacks. In some cases our model will report privilege escalatioas tannot be effectively
realized. For example, a permission weakness in SystenoiReasdin be attacked if the adversary can guess
a file nameandthe system then needs to be restored from backup; but pettmafite name is too difficult

for the adversary to guess, or the system is never restoredm@del will report the attack path all the same.

Bugs within executable software. Applications and the operating system itself can contagstsuch as
buffer overruns. This is not a limitation of our model; in fam previous work [21] we have shown how
to integrate CERT advisories (in OVAL format) into a Datalogdel of an operating system (in that case a
much simpler model, for Unix).

9 Related work

Datalog has been used as a security language for expressiagsacontrol policies [11]. The efficiency of
Datalog and existing off-the-shelf Datalog evaluationieaeg [23] makes it readily usable in practice.

In this paper we have analyzed applications that (inadwtiylagrant too many privileges. But on the other
hand, many application programs demand too many privilegese than strictly necessary to access the
data on which they operate. Chehal. [6] explain why this is harmful (users demand and receive the
privileges necessary to run the applications, which thgagihem privileges to do harm) and have built an
analysis tool for finding such situations. We believe ouadetl model of Windows access-control could
also be used in the context of “least-privilege-incompkiy) analysis.

Modeling vulnerabilities and their interactions can beeddback to the Kuang and COPS security analyzers
for Unix [3, 12]. Recent works in this area include the one tanfakrishnan and Sekar [22], and the one
by Fithen et al [13]. A major difference between our work ahdse works is the application to Windows
platform. There is a long line of work on network vulneratyilanalysis [31, 29, 24, 26, 1, 20].

Ritchey and Amman proposed using model checking for netwohkerability analysis [24]. Sheynet al.
extensively studied attack-graph generation based on lacbéeking techniques [26]. These approaches
suffer from problems of state space explosion. While it ie$eeable that these approaches can be made
to work, it has not been demonstrated that the approachsstaléarge networks. Ammaet al. proposed
graph-based search algorithms to conduct network vulilgyadnalysis [1]. This algorithm is adopted in
Topological Vulnerability Analysis (TVA) [15], a framewkithat combines an exploit knowledge base with

a remote network vulnerability scanner to analyze explegugences leading to attack goals. However, it
seems building the exploit model involves manual constraciimiting the tool’s use in practice.

Intrusion detection systems have been widely deployed twarks and extensively studied in the litera-

16

ture [10, 19, 16].

The MuIVAL system [21] used Datalog to express a simple dpegesystem model (Unix) combined with
models of firewalls and bug advisories (in the OVAL and Nagiovulnerability Database formats) to reason
about host-to-host propagation of attacks. The work wertépdhis paper can be used to extend MulVAL
to heterogeneous networks of Windows and Linux machines. ak¥enot aware of prior work that can
understand the semantics of disparate operating systems.

Microsoft’s Trustworthy Computing Security Development Lifecyetgect [18] addresses many of the is-
sues discussed in this paper, which explains why the vubilgies we describe in Microsoft’s own software
were closed in mid-2004.

10 Conclusion

Windows XP is a complex beast; to understand its configuratidnerabilities we had to draw upon many
sources. Representing this understanding as a formal nodeleclarative language (Datalog) was worth-
while for several reasons. First, the rigor and concisenéssformal specification language allows a basis
on which to discuss and debate the accuracy of our undemstarithe model allows us to make predictions
that can be tested against the real system.

Second, running the model on real data from actual insi@atiatproduced unexpected results: the pervasive-
ness of configuration bugs in default installations of comuia¢ software from many vendors. It is obvious
in hindsight that Windows access-control is so complex pihagrammers and administrators have difficulty
understanding and debugging their access-control desisigthout tools.

Third, by using the a Datalog framework consistent with thiathe MulVAL system [21], heterogeneous
multihost networks can be analyzed for problems not limitedingle-host configuration vulnerabilities.

Acknowledgments.Discussions with Varugis Kurien, Adrian Oney, Brandon Baked Scott Field helped
clarify our understanding of the Windows security model. Wank Wayne Boyer, Ed Felten, Xiaolan
Zhang, Alex Halderman, John Lambert, Miles McQueen, Mitlseiner, Ruoming Pang, Daniel Dantas,
Xinming Ou, and Matt Thomlinson for helpful comments on ieartirafts of this paper. An internship at
Microsoft by the first author in the summer of 2005 was a vaeiapportunity to gain experience with the
APIs used in access control and in querying the Windows tmygis

References

[1] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. |labts graph-based network vulnera-
bility analysis. InProceedings of 9th ACM Conference on Computer and ComntionisaSecurity
Washington, DC, November 2002.

[2] Maurice J. BachThe Design of the UNIX Operating Systelfrentice Hall, 1986.

[3] R.Baldwin. Rule based analysis of computer securitghfgcal Report TR-401, MIT LCS Lab, 1988.

[4] Ed Bott and Carl SiechertMicrosoft Windows Security Inside Out: for Windows XP anddbivs
2000 Microsoft Press, 2003.

17

[5] Hao Chen, David Wagner, and Drew Dean. Setuid demystifiedProceedings of the 11th USENIX
Security Symposiympages 171-190, Berkeley, CA, USA, 2002. USENIX Assoamtio

[6] Shuo Chen, John Dunagan, Chad Verbowski, and Yi-Min WaAgblack-box tracing technique to
identify causes of least-privilege incompatibilities. Rroceedings of Network and Distributed System
Security Symposium, 200Bebruary 2005.

[7] Microsoft Corporation. Access rights and access masksitp://msdn.microsoft.com/library/
default.asp?url=/library/en-us/secauthz/securitgasrights and accessmasks.asp, October 2005.
web page fetched October 9, 2005.

[8] Microsoft Corporation. ChangeServiceConfig. httpgfn.microsoft.com/library/default.asp?url=/
library/en-us/dllproc/base/changeserviceconfig.a8pb2

[9] Microsoft Corporation. Service security and accessitsg http://windowssdk.msdn.microsoft.com/
library/default.asp?url=/library/en-us/dllproc/béservice securityand accessights.asp, October
2005. web page fetched October 9, 2005.

[10] Frdric Cuppens and Alexandre Mige. Alert correlationai cooperative intrusion detection framework.
In Proceedings of the 2002 IEEE Symposium on Security and @&riyeage 202. IEEE Computer
Society, 2002.

[11] John DeTreville. Binder, a logic-based security laage. InProceedings of the 2002 IEEE Symposium
on Security and Privagypage 105. IEEE Computer Society, 2002.

[12] Daniel Farmer and Eugene H. Spafford. The cops secahigcker system. Technical Report CSD-
TR-993, Purdue University, September 1991.

[13] William L. Fithen, Shawn V. Hernan, Paul F. O’'RourkedaDavid A. Shinberg. Formal modeling of
vulnerabilities. Bell Labs technical journal8(4):173-186, 2004.

[14] Sudhakar Govindavajhal#® Formal Approach to Network Security Managemd?hD thesis, Prince-
ton University, 2006 (in preparation).

[15] Sushil Jajodia, Steven Noel, and Brian O’'Berry. Togidal analysis of network attack vulnerabity.
In V. Kumar, J. Srivastava, and A. Lazarevic, editdvianaging Cyber Threats: Issues, Approaches
and Challangeschapter 5. Kluwer Academic Publisher, 2003.

[16] Samuel T. King, Z. Morley Mao, Dominic G. Lucchetti, aRéter M. Chen. Enriching intrusion alerts
through multi-host causality. Ifihe 12th Annual Network and Distributed System Securityp8gitm
(NDSS 05)Feb. 2005.

[17] John Lambert, Matt Thomlinson, and Vishal Kumar. M&oé Corporation, personal communication,
July 2005.

[18] Steven B. Lipner. The trustworthy computing securitgvelopment lifecycle. In20th Annual
Computer Security Applications Conference (ACSAC 200dgyes 2—13, December 2004. See also
msdn.microsoft.com/security/sdl.

[19] Peng Ning, Yun Cui, and Douglas S. Reeves. Construcitagk scenarios through correlation of in-
trusion alerts. ICCS '02: Proceedings of the 9th ACM conference on Computécammunications
security pages 245-254. ACM Press, 2002.

18

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]
[29]

[30]

[31]

Steven Noel, Sushil Jajodia, Brian O'Berry, and Michaacobs. Efficient minimum-cost network
hardening via exploit dependency graphs1@th Annual Computer Security Applications Conference
(ACSAC)December 2003.

Xinming Ou, Sudhakar Govindavajhala, and Andrew W. apfMulval: A logic-based network secu-
rity analyzer. In14th USENIX Security Symposiug905.

C. R. Ramakrishnan and R. Sekar. Model-based analysisndiguration vulnerabilities.Journal of
Computer Securityl0(1-2):189-209, 2002.

Prasad Rao, Konstantinos F. Sagonas, Terrance SvattidCs. Warren, and Juliana Freire. XSB: A
system for efficiently computing well-founded semantiecsPtoceedings of the 4th International Con-
ference on Logic Programming and Non-Monotonic Reasoni®N(MR'97) pages 2—-17, Dagstuhl,
Germany, July 1997. Springer Verlag.

Ronald W. Ritchey and Paul Ammann. Using model checkingnalyze network vulnerabilities. In
2000 IEEE Symposium on Security and Privgm@ges 156-165, 2000.

Mark E. Russinovich and David A. Splomohlicrosoft Windows InternalsMicrosoft Press, 2003.

Oleg Sheyner, Joshua Haines, Somesh Jha, Richard kippnand Jeannette M. Wing. Automated
generation and analysis of attack graphsPfaceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 254-265, 2002.

William R. Stanek. Windows 2000 server: Using defaultrogp accounts.
http://ww.microsoft.com/technet/prodtechnol/windk2000serv/evaluate/featfunc/07w2kadc.mspx.
web page fetched January 28, 2006.

W. Richard StevendJNIX Network ProgrammingPrentice Hall, 1990.

Steven J. Templeton and Karl Levitt. A requires/pr@gdnodel for computer attacks. Broceedings
of the 2000 workshop on New security paradigpegges 31-38. ACM Press, 2000.

Yi-Min Wang, Roussi Roussev, Chad Verbowski, Aaronran, Ming-Wei Wu, Yennun Huang, and
Sy-Yen Kuo. Gatekeeper: Monitoring auto-start extengjbppoints (ASEPS) for spyware manage-
ment. InUsenix LISA: 18th Large Installation System Administrati@onferenceNovember 2004.

Dan Zerkle and Karl Levitt. NetKuang—A multi-host capdration vulnerability checker. IRroc. of
the 6th USENIX Security Symposiymages 195-201, San Jose, California, 1996.

19

