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Abstract

We show how an eavesdropper with some specific knowledge of the traffic sent
over a spectral-phase encoded optical CDMA system with phase-scrambling can
break the confidentially of certain systems within a few bit intervals.
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1 Introduction

Optical CDMA (OCDMA) [1] is a particularly attractive alternative to traditional digital

encryption because it has the potential to perform encryption at ultra-high data rates

by initializing passive optical components (e.g. phase masks, delay lines) according to

a secret key that needs only occasional updates. To be a viable alternative to digital

encryption, OCDMA systems should maintain data confidentiality even when these op-

tical components are reconfigured (i. e. the key is refreshed) at rates much slower than

aggregate system data rates. We focus on spectral-phase-encoded OCDMA systems using

phase-scrambling [2, 3], which have emerged as the leading proposal for providing data

confidentiality at the physical layer. Typical OCDMA schemes require some orthogonality

between codewords and are therefore restricted to use codes with low cardinality [4, 5].

These schemes are therefore vulnerable to brute force searches by an eavesdropper who

cycles through all possible codewords in an effort to find one that results an ungarbled

datastream. On the other hand, a spectral-phase scrambling scheme offers a keyspace that

grows exponentially with the number of frequency bins used, so that brute-force searches

can be made infeasible. We assume that the secret key used in the system is the setting of

the phase-scrambler, and analyze this system using the assumptions of cryptanalysis [6].

In particular, we explore known plaintexts attacks in which an eavesdropper obtains the

encryption of some set of known messages, and uses this information to learn the secret

key. Our first contribution is to show circumstances in which confidentiality is determined

by the parallelism (i. e. the number of users) in the system, rather than by the number

of frequency bins used for encoding. Our next contribution is to show that even when

some systems are highly parallelized (i. e. have a large number of users), an eavesdropper

can still learn the key with high probability after only two bit intervals. Our results thus

far suggest that to maintain confidentiality when the secret key is the phase-scrambler

setting, components should be tuned at rates comparable to the system data rates.

1.1 System Overview

In spectral-phase-encoded OCDMA, pulse streams are encoded by adjusting the phase of

their frequency components using all-optical pulse shaping techniques. For each optical

pulse, the encoding process consists of dividing the pulse spectrum into W frequency

bins, applying one of C possible discrete phase shifts at each frequency (as prescribed

by the choice of codeword), and recombining the frequency bins to produce the coded

pulse. Decoding is achieved in a similar manner, by applying inverse phase-shifts at
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each frequency bin [1]. We envision a scheme where a group of N time-synchronized

OCDMA users (i. e. transmitter-receiver pairs) simultaneously share a waveband of a

single optical fiber (that may then be overlayed onto a WDM network, or shared by

another group OCDMA of users). Each user’s encoded pulse train is passively coupled

onto the waveband, transmitted along the fiber, and then the superposed encoded pulse

trains are passively split and individual pulse streams are recovered at each decoder. To

prevent energy detection attacks on on/off keyed OCDMA [5], we consider 2-code keyed

(2CK) systems where each user uses a ‘bright’ codeword to send a ’1’ bit, and a different

‘dark’ codeword to send a ’0’ bit. (Other constant-energy modulation formats such as

phase-shift keying are also possible.) The field of the optical signal sent by user j is

represented as the signal

αj(t) =
W∑
i=1

cos(fit + θi,j(t)) (1)

where fi the the frequency of the ith wavelength in the OCDMA waveband (i.e. fi = c
λi

where c is the speed of light), and θi,j(t) is the phase shift applied on the ith wavelength

according to the particular codeword sent by user j during the bit interval containing

time t. The n different codestreams aggregated onto a single fiber using passive coupling.

Because the different lengths of the fibers between each user j’s transmitter and the

passive coupler, a relative phase shift φj(t) that depends of laser intensity fluctuations

and temperature fluctuations will be introduced into user j’s codestream. We will model

this phase shift as a random variable on [0, 2π]. Then, aggregation of the N codestreams

is equivalent to summation of each codestream. We can express the field of optical signal

composed of the N aggregated codestreams as

ρ(t) =
N∑

j=1

W∑
i=1

cos(fit + θi,j(t) + φj(t)) (2)

Spectral phase OCDMA systems use orthogonal code families to reduce MAI [1],

so that number of available codewords is typically limited to W , making the system

vulnerable to brute force attacks. To eliminate this vulnerability, an additional scrambling

(descrambling) encoder that can take on any of CW possible spectral-phase settings, is

placed immediately after the coupler (before the splitter) as in Fig. ??. We assume that

the setting of the shared scrambler is the secret key that is used to prevent an eavesdropper

from understanding the messages sent along the OCDMA waveband [2, 3]. Since there

are now CW (as opposed to just W ) possible keys, when W is large (say W ≈ 70) a simple
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brute force search through the keyspace is no longer possible. Finally, to avoid attacks

on a link carrying only a single user’s encoded pulse stream [5, 7], links between each

transmitter and the passive coupler are physically secured so that an eavesdropper can

only tap the line between the scrambler and descrambler. We can expresses the field of

the scrambled superposition of N encoded codestreams at the eavesdropper’s tap as

χ(t) =
N∑

j=1

W∑
i=1

cos(fit + θi,j(t) + φj(t) + ki) (3)

where fi is the the frequency of the ith frequency bin, and θi,j(t) is the phase shift applied

on the ith frequency bin according to the particular codeword sent by user j during the bit

interval containing time t, ki is the phase setting of the ith frequency bin in the scrambler

(which we assume remains the same for the duration of the eavesdropper’s attack), and

φj is the randomly time-varying phase shift of user j’s encoded pulse stream relative to

all other other users’ encoded pulse streams caused by variations in the lengths of the

fibers between user j’s transmitter and the passive coupler, and time-varying fluctuations

in laser intensity or temperature.

1.2 Background: Encryption Schemes

An encryption scheme uses a secret key k to encrypt a plaintext message to a ciphertext.

When analyzing an encryption scheme, it is standard practice to apply Kerckhoffs’ Prin-

ciple [6], which states that that a cryptosystem should be secure even if everything about

the system, except from the secret key, is public knowledge. In a well-designed system,

only the key needs to be secret; in fact, when cryptanalyzing the system, everything apart

from the secret key should be assumed to be public.

We now enumerate some standard cryptanalytic attacks on encryption schemes, ranked

in order of increasing difficulty for the eavesdropper:

1. Ciphertext Only Attacks (COA): The eavesdropper obtains a set of ciphertexts, and

uses these to learn the secret key.

2. Known Plaintext Attacks (KPA): The eavesdropper knows some set of plaintexts

and obtains the corresponding ciphertexts, and uses these to learn the secret key.

3. Chosen Plaintext Attacks (CPA): The eavesdropper has the capability to choose

plaintexts to be encrypted and obtains the corresponding ciphertexts, and uses these

to learn the secret key.
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(Note that once the eavesdropper learns the key, she has completely broken the system

since she is able to decrypt all ciphertexts.) Since the COA-attack is the easiest attack

for the eavesdropper to perform, a scheme that is secure against COA-attacks (i. e. COA-

secure) is less secure than a scheme that is KPA-secure. Thus, while COA-security is the

weakest form of security, to date it is the only form of security considered in the literature

on OCDMA [3, 4, 5, 7]. (Note the minimal threshold for security of standard digital

encryption schemes is the ability to withstand CPA-attacks [8] §3.2.1.) In this paper, we

focus on KPA-attacks. The KPA-attack is a realistic threat, since data traffic is never

completely random; it contains packet headers, ‘hello’ packets, or framing elements (e.g.

SONET framing) that are publicly known and may be used to launch a KPA-attack.

1.3 Security Parameters of the System

We now clearly define the plaintext, secret key, and ciphertext in our system:

• Plaintext: In this paper, we assume that for the system in Fig. ??, the set

of ‘bright’ and ‘dark’ codewords assigned to each OCDMA user is not part of the

secret key. (Note that schemes in which codewords assigned to each user are kept

secret are also possible [2].) Therefore, by Kerckhoffs’ principle, we assume that

this information is known to the eavesdropper. Then, for each bit-interval, instead

of defining the plaintext as the bits transmitted by each of the N users during that

bit-interval, we define the plaintext as the set of codewords transmitted by each

of the N users during that bit-interval. (Recall that encoders and scramblers are

restricted to use phase shifts of 0, 2π
C

, ..., 2π(C−1)
C

.) We represent the plaintext as an

N ×W {0, 2π
C

, ..., 2π(C−1)
C

}-matrix Θ, where entry θi,j gives the phase shift applied

to frequency bin i corresponding to the codeword send by user j.

• Secret Key: The key is the set of W phase shifts ki ∈ {0, 2π
C

, ..., 2π(C−1)
C

}
applied by the scrambler at frequency bin i. That is, the secret key is a vector

k ∈ {0, 2π
C

, ..., 2π(C−1)
C

}W .

• Ciphertext: The ciphertext is χ(t) in (3), the optical signal seen at the eaves-

dropper’s tap. We assume that the eavesdropper detects the ciphertext χ(t) using

optical beat detection [5, 9] by passing χ(t) through a WDM demultiplexer to obtain

χi(t) for i = 1, ..., W (where χi(t) is χ(t) filtered at ith frequency bin). By interfer-

ing χi(t) with a local oscillator signal cos(fit), then detecting χi(t) + cos(fit), with
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a photodetector (which operates a square law device with an envelope detector or

lowpass filter) to produce a signal

yi(t) = LPF ((χi(t) + cos(fit))
2)

= LPF ((
∑N

j=1 cos(fit + θi,j(t) + φj(t) + ki) + cos(fit))
2)

= LPF (2
∑N

j=1 cos(fit + θi,j(t) + φj(t) + ki) cos(fit))

= LPF (
∑N

j=1(cos(2fit + θi,j(t) + φj(t) + ki) + cos(θi,j(t) + φj(t) + ki)))

=
∑N

j=1 cos(θi,j(t) + φj(t) + ki)

(4)

The eavesdropper can obtain signals yi(t) for each wavelength i = 1, 2, ..., W . We

will call the vector y(t0) = [y1(t0) y2(t0) ...yW (t0)]
T the adversary’s measurement at

time t0 or more concisely, the measurement.

2 Size of Search Space in a KPA attack

We begin by determining the size of the keyspace of the system. Recall that the key

k ∈R {0, 2π
C

, ..., 2π(C−1)
C

}W . Therefore the number of possible keys is CW 1. The our first

new contribution is to show the size of the keyspace is actually much smaller than CW .

Recall that for a coherent, orthogonal spreading code such as the Hadamard code, the

number of codes available is equal to the number of code elements. Therefore, we know

that N ≤ W . Furthermore, if 2-code-keying is used, it follows than N ≤ W
2

.

Claim 2.1 In the KPA-setting, the size of the space in an exhaustive search for all W

elements of the key is CN .

Proof: Consider an eavesdropper that a obtains a measurement y of all W wavelengths

of the ciphertext (simultaneously) at some time t0 using beat detection as in (4). Fixing

time at t0, and therefore dropping the time index from (4), we can write the measurements

y as W beat detection equations:

y1 =
∑n

j=0 cos(φj + θ1j + k1)

y2 =
∑n

j=0 cos(φj + θ2j + k2)

... = ...

yw =
∑n

j=0 cos(φj + θwj + kw)

(5)

1[2, 3] have shown that the strongest known attack on a system with N > 1 users is to have the
eavesdropper do a brute force search through a space of size CW .
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The system of W equations (5) has N unknowns on [0, 2π], and W unknowns on {0, 2π
c
, ..., (c−

1)2π
c
}. Thus, since the eavesdropper knows the θij in a known plaintext attack, if the eaves-

dropper guesses the first N elements of k (that is, if he guesses (k1, k2, ..., kN)), he can use

solve the first N beat detection equations to obtain a guess for φ = [φ1 φ2 ... φN ]T . He can

then use his guess of φ to solve the last W −N beat detection equations for (kN+1, ..., kW ).

Because there are CN possible values for the first n elements of k, the true size of the

keyspace in a known-plaintext-attack is CN .

Claim 2.1 shows that confidentiality is determined by the the amount of parallelism

in the system, (the number of parallel OCDMA users n), rather than by the number of

frequency bins W used for in encoding. This can be significant reduction in the key search

space, since systems are typically designed so that N < W (e.g. in 2-code-keying systems

using orthogonal codes N ≤ W
2

). As an example, in the KPA-setting, a system using a

large number of frequency bins W = 70 but only a small number of users N = 4 has a

key search space of size only 24 = 16 rather than 270, as originally mentioned in [2, 3].

3 KPA Attack with 2 Known Plaintexts

Even when the system is highly parallelized so that N is large enough to prevent brute force

attacks (say N ≈ 70 users), we now present another KPA-attack that eavesdropper can

use reduce the size of the key search space from CN to an even smaller set of possibilities.

Claim 3.1 Suppose the eavesdropper in a 2-code-keying system obtains two known plain-

texts and corresponding measurements (Θ1, y1), (Θ2, y2). Then the eavesdropper has 2W

equations and W +2N unknowns, that can be solved for the W elements of the key (when

N ≤ W
2
). We shall show that the eavesdropper’s key search space is reduced from CN

to the set of solutions to this system of 2W equations. Furthermore, if there is a unique

solution to these 2W equations then the eavesdropper immediately learns the key.

In this section, we first provide a mathematical framework for the problem. We then

show how the eavesdropper reduce his key search space in the KPA from CN to the

smaller set of solutions. Finally, we present case study of the success of this attack on a

2-code-keying OCDMA system using binary phase shifts and the Hadamard codes.
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3.1 A Mathematical Framework

We now express (5) in matrix format. Start by defining a vector x of the cosine of the

inter-user phases φj as

x =




cos φ1

cos φ2

...

cos φN




Next, we map the key elements and θij from radians to complex numbers using the

mapping γ → eiγ where i is the imaginary number. (For example, for binary phase shifts

θij ∈ {0, π} the mapping from radians to integers is 0 → 1, π → −1, so that we can write

θij ∈ {1,−1}.) We can now write (5) as

y1 = k1

∑N
j=0 θ1j · cos φj

y2 = k2

∑N
j=0 θ2j · cos φj

... = ...

y2n = kW

∑N
j=0 θWj · cos φj

(6)

and in matrix form this can be written as

y = KΘT x (7)

where y = [y1y2...yW ]T is a vector of measurements, and K = diag([k1k2...kW ]) is a W×W

diagonal matrix of the key elements where entry ki is a complex number representing the

phase shift applied by the scrambler at frequency bin i, and Θ is a N ×W matrix, where

entry θi,j is a complex number representing the phase shift applied to frequency bin i

corresponding to the codeword send by user j.

3.2 Details of the Attack

Consider an eavesdropper with a two measurements of the ciphertext y1, y2 obtained using

beat detection corresponding to two known plaintexts Θ1 and Θ2. We now show how this

eavesdropper in the KPA setting can cut down the size of the key search space from CN

to a very small set of possibilities for the key. For the purpose of this analysis, we will

assume that the eavesdropper makes perfect measurements of y1, y2, free from noise. In

future papers we will extend this analysis to noisy measurements.

Note that we will use the notation K = diag(k), and Ya = diag(y) in the rest of this
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report to switch between representations of diagonal matrices (e.g. K) and vectors (e.g.

k). Now, since Y and K are diagonal matrices, for each measurement we can rewrite (7)

as

Y k = ΘT x (8)

Since the codewords sent by different users are orthogonal, it follows that ΘT has a least N

linearly independent columns, so the columns of ΘT can be partitioned into an invertible

N×N matrix AT , and an (W−N)×N matrix BT . We use the same partition to partition

Y into Ya, Yb and K into Ka, Kb. We can now write (8) into a set of equations

Yaka = AT x

Ybkb = BT x
(9)

Now, using the fact the the fact that A is invertible, we can solve these two matrix

equations for x to find that

Y −1
b BT AT−1

Yaka = kb (10)

Now suppose the two plaintext-measurement pairs (Θ1, y1), (Θ2, y2) are such that Θ1 and

Θ2 can be divided along the same partition to form two invertible matrices A1 and A2.

(We show in §3.3.1 that this is always be the case in a 2-code-keyed OCDMA system using

the Hadamard codes with W = 2N). Then since y, x and possibly Θ do change between

measurements, but k does not, it follows that the eavesdropper has two matrix relations

of the form (10) that can be equated to find obtain the simple relation

Qka = 0

where

Q = Y −1
b1 BT

1 AT
1

−1
Ya1 − Y −1

b2 BT
2 AT

2

−1
Ya2 (11)

Therefore the problem of learning k reduces to the problem of finding all valid k̂a that

satisfy Qk̂a = 0, and then using (10) to obtain k̂b. It follows that the true key k is

contained this set of (k̂a, k̂b).

For ease of exposition, we will now assume that the scrambler is restricted to use

only binary phase shifts k ∈ {1,−1}W , (so that for a guess k̂a to be valid it must be in

{1,−1}N). However, our discussion applies to schemes with an arbitrary discrete phase

shifts of size C. Suppose that there are exactly m linearly independent {1,−1}N -vectors

satisfying Qk̂a = 0. Recall that given Q, it is trivial to find these m vectors using
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Gaussian elimination. By taking linear combinations of these m vectors using coefficients

in {0, 1,−1}, it follows that the eavesdropper has less than 3m possible valid guesses for

the true key ka. (More generally, with an arbitrary discrete phase shifts of size C, the

eavesdropper has less than (C + 1)M possible valid guesses for the true key ka.)

Now, observe that if m = 1, then this is only one valid key guess k̂a solving the

equation Qk̂a = 0 so that eavesdropper has immediately learned the key. One the other

hand, the skeptical reader might claim that if m ≈ n the eavesdropper gains nothing by

solving Qk̂a = 0. However, the following case study shows that there is a high probability

that M will be very small.

3.3 Success of the Attack: A Case Study

To quantify the size of the key search space after the attack with 2 known plaintexts, we

have done a detailed analysis in of a N -user system using 2-code-keying with W = 2N

frequency bins and the standard 2N -Hadamard codes, where key and codewords elements

can take on binary phases (C = 2).

In order to make our analysis more concrete, we will assume that the system uses the

standard 2N -Hadamard code, obtained from the standard 2N -Hadamard matrix derived

recursively from

H2N =

[
HN HN

HN −HN

]
H2 =

[
1 1

1 −1

]
(12)

Each codeword is a row of the H2N matrix. Note also that HN is a symmetric matrix.

For ease of exposition, we assume that codewords are assigned as follows: for j = 1...N ,

user j sends a ’0’ using codeword j in the H2N matrix, and sends a ’1’ using codeword

j + N in the H2N matrix.2

3.3.1 Some Mathematical Preliminaries

We now discuss the structure of the N × 2N plaintext matrix Θ. Construct the plaintext

matrix Θ so that the jth row of Θ is the codeword sent by user j. Then, Claim 3.2 shows

how any plaintext Θ may be partitioned into an invertible matrix A and another matrix

2Note that if codewords are assigned from the H2N matrix according to a different scheme OR if
a different instantiation of the H2N matrix was used (e.g. H ′ = QH2NP where Q,P are {0,±1}-
permutation matrices) our analysis would be identical apart from the fact that a different partition of
Θ into A,B would be required (instead of Θ = [A,B] with A = Hn, B = LHn as described in §3.3.1).
Futhermore, as long as W = 2N , this partition could apply to all plaintexts Θ, since all plaintexts Θ
would have the same set of N linearly independent columns.
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B (as prescribed in §3.2).

Claim 3.2 If user j sends a ’0’ bit using codeword j in the standard H2N matrix, and

sends a ’1’ bit using codeword j + N in the standard H2N matrix, then we can write any

plaintext matrix Θ in block matrix form as

Θ = [HN LHN ]

where HN is the standard Hadamard matrix and L is a diagonal matrix with ±1 entries

and Ljj = +1 when user j sent a ‘0’ bit, and Ljj = −1 when user j sent a ‘1’ bit.

Therefore, the L matrix completely specifies the Θ matrix.

Proof: Observe that the jth row of Θ is either two copies of jth a row of HN , or one copy

of the jth row of HN followed by one copy of the jth row of −HN . Therefore we can write

Θ = [AB] where A = HN and is invertible. Furthermore, we have that every row of B

is equal to ± a row of HN . Thus, B = LHN for L a diagonal matrix with ±1 entries.

Furthermore, when Ljj = 1, the jth row of the Θ matrix is two copies of jth a row of HN .

Equivalently, the jth row of Θ is equal to the jth row of the H2N matrix, which, by to our

assignment of codewords to users, implies that user j sent a 0 bit. Similar logic shows

that Ljj = −1 when user j sent a ‘1’ bit.

Note that Claim 3.2 shows that all plaintexts can be partitioned along the same

partition, namely Θ = [A B], as is required by §3.2. Now, consider an eavesdropper

with two known plaintexts Θ1 = [HN L1HN ], Θ2 = [HN L2HN ] and two corresponding

measurements y1 = [ya1 yb1]
T , y2 = [ya2 yb2]

T . Following the argument in §3.2, the

eavesdropper obtains a set of key guesses k̂ = [k̂a k̂b]
T ∈ {1,−1}2N , by solving for k̂a in

Qk̂a = 0, and using (10) to obtain k̂b. Observe that we can rewrite (11) using Claim 3.2

as

Q = Y −1
b1 HNL1HNYa1 − Y −1

b2 HNL2HNYa2 (13)

3.3.2 Characterizing the eavesdropper’s search space

Recall that m is the number linearly independent {1,−1}N -vectors satisfying Qk̂a = 0

with Q as in (13). Equivalently, m is the rank of the nullspace of Q, m = N − rank(Q).

Recall that m quantifies the size of the eavesdroppers key search space after this KPA

attack, since the true key ka is some function of these m vectors. In the balance of this

section, we will characterize the size of the eavesdroppers key space after this KPA-attack

by using m as our metric.
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Claim 3.3 Suppose the eavesdropper obtains any two arbitrary known plaintexts Θ1, Θ1

and corresponding noise-free measurements y1, y2. Then as the number of users N becomes

large, the probability that m = 1 (so that the eavesdropper immediately learns the key k

by solving Qk̂a = 0) approaches 1.

Proof: We have not proved this theorem analytically. (We present an analytic proof

of a slightly weaker version of this theorem in Claim 3.4). However, using simulation

in MATLAB we found the relationship between number of users N and probability,

over all possible known plaintexts pairs, of eavesdropper learning key (because of ex-

istence of unique solution to Qk̂a = 0, i. e. because m = 1). The probabilities for

N = 4, 8 are exact. For large N > 8, exact enumeration became infeasible, so the prob-

abilities were obtained from 10000 randomly sampled combinations of (k, Θ1, Θ2, x1, x2).
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We now show the distribution of the size of the key search space after this KPA-attack,

over all possible plaintext pairs, when N is small (i.e. N = 4, N = 8). Since Lemma A.3

shows that m and the size of the key search space is completely determined by Θ1, Θ2
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These distributions clearly indicate that m = 1 with high probability, and further
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that as N increase, it is more probable that a randomly chosen pair (Θ1, Θ2) will result

in a Q matrix such that m = 1. That is, as the security parameter N gets larger, an

eavesdropper is more likely to break the security of the scheme if he obtains two arbitrary

known plaintexts and corresponding measurement pairs.

Since we have not been able to prove Claim 3.3 analytically, we prove analytically a

claim that shows that for 75% of all possible known plaintext pairs, the adversary can

learn the key.

Claim 3.4 Suppose the eavesdropper obtains any two arbitrary known plaintexts Θ1, Θ1

and corresponding noise-free measurements y1, y2. Let Θ1, Θ2 be specified by diagonal ±1

matrices L1, L2 as in Claim 3.2. Then if any of the following three matrices, L1, L2 and

L1L2, contain an odd number of ‘-1’s then the eavesdropper immediately learns the key k

by solving Qk̂a = 0 (i. e. m = 1).

Proof: We prove this in the Appendix. Note that the number of known plaintexts pairs

that do break the system is 1− (1
2
)2 = 75%.

Taken together, our results indicate that for this 2N -Walsh-Hadamard 2-code-keyed

system, an eavesdropper with an arbitrary pair of known plaintexts has a very high

probability of learning the key.

4 Future Work

In future papers we will study how noise in measurements y1, y2 affects our KPA-attacks.

Other interesting directions include analyzing systems using other modulation schemes (in-

stead of 2-code keying), or OCDMA spreading codes (instead of the standard Hadamard

codes), or when both the scrambler setting and the codewords assigned to users are kept

secret and refreshed periodically (e.g. codewords could be assigned from one of W ! in-

stantiations of the Hadamard codes (see [2] §VII), where the instantiation chosen would

be kept secret).

5 Conclusions

When analyzing the confidentiality provided by OCDMA systems, we have demonstrated

the importance of formulating security analyzes using standard cryptanalytic notions (e.g.
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Kerckhoffs’ Principle, KPA-attacks), particularly if these systems are to present a viable

alternative to standard digital encryption schemes. Moreover, the existence of the attacks

we describe here suggest that spectral-phase encoded OCDMA systems that use only the

phase scrambler setting as a secret key are unlikely to guarantee confidentiality, unless the

key is refreshed at rates comparable to the system data rates. Other variants of OCDMA

(e.g. when user codewords and scrambler settings are both secret) may or may not be

secure. Determining the confidentiality of these variants is left for future work.
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A Proof of Claim 3.4

We restate Claim 3.4 for convenience.

Suppose the eavesdropper obtains any two arbitrary known plaintexts Θ1, Θ1 and corre-

sponding noise-free measurements y1, y2. Let Θ1, Θ2 be specified by diagonal ±1 matrices

L1, L2 as in Claim 3.2. Then if any of the following three matrices, L1, L2 and L1L2,

contain an odd number of ‘-1’s then the eavesdropper immediately learns the key k by

solving Qk̂a = 0 (i. e. since m = 1).

We will prove this claim by showing that if any of the following three matrices: L1, L2 or

L1L2 have an odd number of −1’s along their diagonals then rank(Q) = N − 1. Recall

that if rank(Q) = N−1 then m = 1 and there is only a single linearly independent vector

k̂a = ka satisfying Qk̂a = 0, so that the eavesdropper immediately learns the key.

We prove this claim in two steps. In Claims A.1-A.2 we show that rank(Q) < N − 1

(i.e. m > 1 and the eavesdropper “does not immediately learn the key”) iff for L = L1,

L = L2 and L = L1L2 the matrix M = HnLHn satisfies an equation of the form

MZa = ZbM (14)

for Za, Zb diagonal matrices with diagonal entries from {−1, 1} where Za, Zb 6= ±I. Then

in Claims A.4-A.5 we show that equation (14) cannot be satisfied for Za, Zb 6= ±I if L

contains an odd number of -1 entries along its diagonal. Combining these claims, it follows

that a necessary (but not sufficient) condition for the adversary to fail to learn the key

(i.e. rank(Q) < N − 1) is that all three of L1, L2 and L1L2 have an even number of -1

entries along their diagonals. Claim 3.4 follows from the contrapositive of this statement.

Claim A.1 Given two plaintexts Θ1 = [HN L1HN ], Θ2 = [HN L2HN ] such that L1 6= L2

and two corresponding measurements y1 = [ya1 yb1]
T , y2 = [ya2 yb2]

T . Then, form the

matrix Q as in (13). If Z is a diagonal matrix with diagonal entries from {−1, 1}, then

rank(Q) < N − 1 iff the matrices (HNL1L2HN), Z commute, i.e.

(HNL1L2HN)Z = Z(HNL1L2HN)

for some Z 6= ±I.
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Proof: First, we’ll show why we are interested in commuting matrices. Recall that with

two known plaintexts - measurement pairs, the eavesdropper has system of two matrix

equations of the form in (10), namely

Y −1
b1 BT

1 AT
1
−1

Ya1k̂a = k̂b

Y −1
b2 BT

2 AT
2
−1

Ya2k̂a = k̂b

(15)

Recall the k̂a, k̂b are the eavesdroppers key guesses. Putting A = HN and B = LHN and

rearranging the system of equation we obtain

HNYa1k̂a = L1HNYb1k̂b

HNYa2k̂a = L2HNYb2k̂b

(16)

Now since the Y matrices are diagonal, we can swap the order of the Y s and the k̂s to

obtain
HNK̂aya1 = L1HNK̂byb1

HNK̂aya2 = L2HNK̂byb2

(17)

where in our notation the K̂ matrices are also diagonal matrices. Now recall that

ya = KaA
T x = KaHNx and yb = KbB

T x = KbHNLx, where Ka = diag(ka) and ka, kb is

the true secret key used by the system (and unknown to the eavesdropper). Substitution

for ya1, yb1, ya2, yb2 into (17) gives

HNK̂aKaHNx1 = L1HNK̂bKbHNL1x1

HNK̂aKaHNx2 = L2HNK̂bKbHNL2x2

(18)

which implies that

HNK̂aKaHN = L1HNK̂bKbHNL1

HNK̂aKaHN = L2HNK̂bKbHNL2

(19)

now equating the right sides of the equations above, and premultiplying by HnL1 and

postmultiplying by L1Hn gives

HNL1L2HNK̂bKb = K̂bKbHNL1L2HN

and if we let Z = K̂bKb we have that

(HNL1L2HN)Z = Z(HNL1L2HN) (20)
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We switch gears to understand to implications of (20). Consider an eavesdropper

that obtains two plaintexts such that L1 6= L2, and two corresponding measurements

ya1, yb1, ya2, yb2.

First, we observe that since Q was formed using two measurements y1, y2 that corre-

spond correctly to two plaintexts L1, L2, it follows that the system of equations (16) must

have a solution - namely that [k̂a, k̂b] = [ka, kb]. Equivalently, the equation Qk̂a = 0 must

have a solution k̂a = ka. It follows that rank(Q) < N , since if Qk̂a = 0 has a solution in

{1,−1}N then the nullspace of Q has dimension at least unity.

Now when rank(Q) = N −1 then the only solutions to Qk̂a = 0 for k̂a ∈ {−1, 1}n are

k̂a = ±ka. Then it follows that when rank(Q) = n− 1, then K̂a = ±Ka so that Z = ±I.

Now we are particularly interested in cases when the adversary learns many possi-

bilities for the key ka (i.e. “does not immediately learn the key”) by solving Qk̂a = 0.

Equivalently, we are interested in cases where rank(Q) < N − 1. In such cases, it fol-

lows that there exists k̂a ∈ {−1, 1}n such that k̂a 6= ±ka. Equivalently, there must exist

Z = K̂aKa 6= ±I satisfying (20), which is exactly the statement of this claim.

Finally, we mention why we restricted the claim to cases when L1 6= L2. Suppose

instead that L1 = L2. Then, HNL1L2HN = HNIHN = NI (since HN is a symmetric

Hadamard matrix) that commutes with any arbitrary diagonal matrix with diagonals from

{−1, 1}, even if rank(Q) ≥ N − 1, contradicting our claim.

Claim A.2 Given two known plaintexts (L1, L2) and two corresponding measurements

y1 = [ya1 yb1]
T , y2 = [ya2 yb2]

T . Then, form the matrix Q as in (13). If Za, Zb are

two diagonal matrices with diagonal entries from {−1, 1}, then rank(Q) < N − 1 iff for

L = L1 and L = L2 then

(HNLHN)Za = Zb(HNLHN) (21)

such that Za 6= ±I.

Proof: As in Claim A.1, we rewrite the system of equations in (15) as (19), and rear-

ranging we obtain

HNL1HNK̂aKa = K̂bKbHNL1HN

HNL2HNK̂aKa = K̂bKbHNL2HN

(22)

Therefore, letting Za = K̂aKa and Zb = K̂bKb we arrive at the condition in (21)

We a similar argument to the one in the proof of Claim A.1 to explain the significance

of (21). First, if Q was formed using two measurements y1, y2 that correspond correctly
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to two plaintexts L1, L2, it follows that rank(Q) < N , since Qk̂a = 0 has solution k̂a = ka.

Now when rank(Q) = N − 1 then the only solutions to Qk̂a = 0 for k̂a ∈ {−1, 1}N are

k̂a = ±ka. Equivalently, when rank(Q) = N − 1, then K̂a = ±Ka so that Za = ±I.

Furthermore, substitution of K̂a = ±Ka into (22) gives K̂b = ±Kb so that Zb = ±I. Now

when rank(Q) < N − 1 it follows that there exists k̂a ∈ {−1, 1}N such Qk̂a = 0 and

k̂a 6= ±ka. Equivalently, K̂a 6= ±Ka so that there must be Zb 6= ±I satisfying (21) which

is exactly the statement of this claim.

Before we go on, we note that Claims A.1-A.2 give rise to following Lemma, since

they show the equivalence between the condition rank(Q) < N − 1 and a condition

that depends only on (L1, L2). Equivalently the Lemma shows that rank(Q) and the

eavesdroppers search space is completely independent of the choice of key ka, kb and the

inter-user phases x1, x2.

Lemma A.3 Given two known plaintexts (L1, L2) and two corresponding measurements

y1 = [ya1 yb1]
T , y2 = [ya2 yb2]

T . Then, form the matrix Q as in (13). Then whether or

not rank(Q) < N − 1 is completely determined by (L1, L2).

We now return to our main proof:

Claim A.4 Let M be any matrix and Za, Zb be diagonal matrices with diagonal entries

on {−1, 1}. Then if

MZa = ZbM (23)

then Mij = 0 for i, j such that aii = −bjj.

Proof: Writing MZa = ZbM in matrix form as




M11 ... M1n

...
...

Mn1 ... Mnn







a11

. . .

ann


 =




b11

. . .

bnn







M11 ... M1n

...
...

Mn1 ... Mnn


 (24)

and comparing element by element, we can see that for all i, j we must have

Mijbii = Mijajj

and when aii 6= bjj (i.e. aii = −bjj) we must have that Mij = 0.
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Claim A.5 Let L,Za, Zb be a diagonal matrices with diagonal entries from {−1, 1}. Then

if L has an odd number of −1 entries along its diagonal, the the only solution to

(HNLHN)Za = Zb(HNLHN) (25)

is Za = Zb = ±I.

Proof: First, since L is a diagonal matrix with diagonal entries from {−1, 1}, we can

rewrite L as

L = I − 2
∑

`i

diag(e`i
)

where `i are the location of the −1 entries along the diagonal of L, and e` is a the `th

standard basis vector. Then, it follows that

M = HNLHN

= HN(I − 2
∑

`i
diag(e`i

))HN

= HNHN − 2
n

∑
`i

HNdiag(e`i
)HN

= NI − 2
∑

`i
h`i

hT
`i

(26)

where h` is the `th column of the Hadamard matrix HN . Since h` is a {+1,−1} vector for

all `, it is easy to see that the dyad matrix hT
`i
h`i

will also be an N ×N matrix of ±1s.

Now from Claim A.4, we know that if M commutes with a diagonal matrices Za, Zb

with diagonal entries from {−1, 1} where Za, Zb 6= ±I, it follows that M must have at

least two off-diagonal entries that are equal to zero. However from (26), we have that any

off-diagonal entry of M has the form

Mij = 0−
∑

`i

αij (27)

where αij = ±1. Now where there are an odd number of negative −1’s in the L1L2 matrix,

it follows that there are an odd number of terms in the sum in (27) , and it follows that

Mij 6= 0 for all (i, j). Thus we have arrived at a contradiction, and M cannot satisfy (25)

with diagonal matrices with entries from {−1, 1} other than Za = Zb = ±I.
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