
Secure Availability Monitoring Using Stealth Probes

Ioannis Avramopoulos∗, Dimitris Syrivelis†, Jennifer Rexford∗, and Spyros Lalis†

Princeton University∗and University of Thessaly†

Abstract

IP routing protocols naively assume that routers are
trusted, egregiously failing when routers become adver-
sarial. Because of the significant power they give to
adversaries, routers are an increasingly attractive target
for subversion attacks. In this paper, we present the de-
sign, implementation, and evaluation of stealth probing,
a secure path-availability monitor that prevents on-path
adversaries from degrading user performance. Stealth
probing selects data packets to serve as implicit probes
that should be explicitly acknowledged. The probes
are concealed, preventing adversaries from treating them
preferentially. Secure monitoring enables failure recov-
ery by signaling when networks should reroute traffic to
alternate paths. Testbed measurements of our software
prototype demonstrate that stealth probing has practical
overhead comparable to destination-based forwarding.

1 Introduction

Anecdotal evidence suggests that router compromises,
either from remote attackers or disgruntled network op-
erators, have become an operational reality [23]. Secure
routing protocols do not solve the problem as they do
not prevent on-path attackers from manipulating the data
traffic and off-path colluding attackers from faking direct
connectivity to attract data traffic. Upon reaching a com-
promised router, data packets can be discarded by config-
uring packet filters on the router or tunneled to a remote
location for eavesdropping, modification, and imperson-
ation attacks. End-to-end encryption can thwart the lat-
ter two attacks but falls short on the first. A data-plane
adversary that can arbitrarily drop packets is especially
troublesome because these attacks are so difficult to diag-
nose and can be used to block communication at critical
times (such as natural disasters or physical attacks).

In this paper, we devise mechanisms that prevent dis-
ruptions in end-to-end availability. We presentstealth

probing, a secure path-availability monitor that mea-
sures the performance of paths in a fashion that pre-
vents even an on-path attacker from evading detection.
Such monitoring enables failure recovery by triggering
the network to reroute traffic to alternate paths. Alternate
paths can be selected using an Intelligent Route Control
system [1, 12] or multipath interdomain protocols such
as MIRO [33] and ACR [32]. In fact, recent research
(e.g., [32]) has advanced availability as theonlyproperty
that an interdomain routing system needs to provide; se-
cure monitoring is vital to such systems.

1.1 Threat Model

Networks can be attacked from either hosts or routers.
Although routers are presumably harder to compromise,
the possible damage of attacks from within the infras-
tructure goes far beyond the impact of remote attacks
from the edge. We consider attacks from hosts but focus
on control-plane and data-plane attacks launched from
compromised routers. In a control-plane attack, the ad-
versary falsifies routing information aiming, for exam-
ple, to deflect traffic onto his routers. Data-plane at-
tacks manipulate the received traffic. The goal in a data-
plane attack can be to eavesdrop, impersonate destina-
tions, or disrupt communication. Although we consider
all of these attacks, we focus primarily on the latter.

Disrupting end-to-end communication can be as sim-
ple as installing an access-control list on the router to se-
lectively discard the victim traffic, while allowing probe
traffic through. The effectiveness of the attack derives
from the difficulty in diagnosing it using standard moni-
toring tools. In addition to discarding the traffic, the ad-
versary can disconnect the destination by delaying, mod-
ifying, and reordering the traffic, by injecting forged traf-
fic, and by replaying old traffic. Although most routers
cannot directly perform these attacks at line rate, the vic-
tim traffic can be deflected to remote hosts (such as a
botnet), forming adata wormhole. The adversary could

1

use data wormholes to evade detection from naive moni-
toring techniques. In addition, rather than discard all data
packets, the adversary may degrade performance to ren-
der the path effectively unusable. A secure monitoring
system should be robust to all of these attacks. Section 2
discusses these requirements in more detail and points
out the limitations of existing solutions.

1.2 Stealth Probing

Stealth probing is a secure availability monitor based
on a measurement methodology that we call “passive
probing.” In passive probing, data packets between the
ingress and egress routers of a path are passively selected
(or sampled) by both routers to serve as implicit probes.
Probes should be acknowledged by the egress router. Us-
ing the acknowledgments, the ingress router can measure
losses and round-trip delays. Stealth probing is a secure
passive-probing protocol that prevents an on-path adver-
sary from determining which data packets are probes
and, therefore, prevents the adversary from treating the
probe traffic preferentially. Sampling ensures that per-
formance measurements are accurate and that probing is
unobtrusive. The sampling rate can be chosen to balance
accuracy and overhead according to the monitoring re-
quirements of individual networks.

In designing, implementing, and evaluating stealth
probing, we make the following contributions:

Lightweight passive probing between edge routers:
Stealth probing strikes a careful balance between tech-
niques for passive and active monitoring to provide prov-
ably accurate estimates of path performance, even in the
presence of on-path adversaries. Placing key functions,
such as hash-based packet sampling and packet encryp-
tion, at the edge routers leads to accurate measurements
of path performance in an efficient manner even if on-
path adversaries control the data packets.

Deployment incentives through additional benefits:
Stealth probing is designed as an extension of IPsec to
offer benefits beyond secure monitoring. Secure tun-
nels between edge routers can also protect host-to-host
communication, prevent traffic analysis attacks, and pre-
vent spam and denial-of-service attacks. The tunnels
also simplify interdomain traffic engineering and net-
work troubleshooting.

Prototype implementation in Click modular router:
Our prototype of stealth probing in Click [19] includes
several optimizations for high performance. For exam-
ple, the sampling process leverages the output of the
keyed hash used to authenticate the packets, and the se-
curity association for each destination prefix is stored di-
rectly in the forwarding table. Consistent hashing is used
to split traffic over multiple paths to prevent packet re-
ordering in TCP flows. Performance data are collected

through a combination of per-probe logging in the kernel
and aggregation of traffic statistics in user space.

Performance evaluation in a small-scale testbed:The
evaluation of our prototype in a four-node testbed illus-
trates that stealth probing can run at high speeds, even
on a software router. Stealth probing adds just a few tens
of microseconds of processing delay to the data pack-
ets. The overhead of the acknowledgment packets has
only a slight effect on TCP throughput, due to the small
amount of extra bandwidth consumed. Overall, stealth
probing introduces only a small overhead beyond basic
packet encapsulation and decapsulation.

These contributions are discussed in Sections 3
through 6, respectively. Then, we discuss related work
in Section 7 and conclude the paper in Section 8.

2 Secure Availability Monitoring

This section articulates the requirements for secure avail-
ability monitoring and explains why existing methods
cannot adequately solve this problem.

2.1 Definitions and Requirements

We start by definingavailability. We say that a path is
availableif end hosts can make use of this path to com-
municate. According to this definition, the availability
of a path can be determined by the performance require-
ments of the end hosts and the performance character-
istics of the path. Common performance characteristics
are the loss rate, delay, jitter, and available bandwidth.
Availability monitoring is a procedure that determines
the availability of a path by measuring the performance
characteristics of the path. We say that an availability
monitoring procedure issecureif an adversary cannot
“significantly” affect theaccuracyof the measurements.

The essential requirement for secure availability mon-
itoring is that an adversary cannot render the measure-
ments inaccurate. For example, if the monitoring proce-
dure measures a loss rate of1% whereas the actual loss
rate is100%, then security has been breached. The mon-
itoring procedure should be able to set limits on a per-
missible violation of the measurement accuracy (there-
fore, bounding the “significance” of the impact of an
attack). An ideal monitoring procedure would measure
performance exactly; however, this is typically impos-
sible in practice, even in the absence of an adversary.
Network measurements typically employ sampling (us-
ing, for example, probes) and an associated statistical in-
ference methodology. Statistical errors are unavoidable
in this setting, making exact measurements impossible.
Hence, the goal of secure availability monitoring is to
have a tight bound on the estimation error, even if an ad-
versary lies along the monitored path.

2

2.2 Limitations of Existing Solutions

In the rest of the paper, we focus on the measurement
of loss and delay. Methodologies for measuring these
quantities can be classified aspassiveandactive. Pas-
sive measurements involve the direct observation of cross
traffic at the routers whereas active measurements in-
volve sending probe packets and observing the probe
replies. We analyze below the limitations of existing
such techniques for secure monitoring, starting with ac-
tive measurements because of their widespread adoption.

Active measurementsinvolve probes sent from one
host to another using ICMP packets (e.g., echo requests
and replies), UDP packets (e.g., DNS queries and re-
sponses), or TCP packets (e.g.,http downloads). Ac-
tive probing has been extensively used in Intelligent
Route Control (IRC) systems [1, 12] to avoid failures
and balance traffic to improve performance and reduce
cost. However, an adversary on the data path can eas-
ily distinguish the probe packets from the normal traf-
fic and treat the probes preferentially (e.g., by delivering
the probe traffic while discarding the non-probe pack-
ets). The probes may be identified based on the proto-
col number (e.g., ICMP) or the source IP address of a
dedicated probe machines, as well as other information
such as the size or timing of probes. We do not expect
that the probes can be made indistinguishable while still
retaining their capability to measure the performance of
IP paths of the data traffic (which precludes employing
overlay-based anonymizing techniques) without the di-
rect involvement of the routers.

Passive measurementsinside a routing domain
are routinely performed using SNMP. However, using
SNMP for monitoring interdomain paths would require
coordination between ISPs, which would impose a sig-
nificant administrative burden. In an interdomain setting,
passive measurements involve monitoring TCP and UDP
flows. Monitoring is best performed at edge routers that
can observe both directions of the traffic, though certain
measurements can be peformed by observing only one
direction. Listen [29] is an example of a protocol that
uses passive observations of TCP traffic to determine
reachability, which is the simplest form of availability
monitoring. Passive observations of TCP traffic have
several limitations for monitoring availability. First, they
require the monitor to maintain per-flow state. Second,
if TCP traffic is not protected end-to-end, then an adver-
sary can disrupt connectivity and evade detection by im-
personating the destination. Furthermore, end-to-end en-
cryption would prevent per-flow monitoring altogether.
Finally, passive monitoring of individual flows cannot
easily distinguish between server and network failures.

ingress router egress router

Figure 1: End-routers of a network path, hosts served by
those routers, and IP paths connecting the routers.

3 Stealth Probing

Stealth probing is a secure availability-monitoring pro-
tocol operating betweenedge routersthat combines as-
pects of both passive and active measurement. Consider-
ing the paths from an ingress router to an egress router
(see Figure 1), stealth probing relies on the following
three processes:

A sampling processthat selects a subset of the pack-
ets crossing the path to serve as implicit probes. The out-
put of this process becomes available to both the ingress
router, which expects an ACK for each probe, and the
egress router, which replies with an ACK. By keeping a
timestamp for each probe, the ingress router can measure
both packet loss and round-trip delays.

A concealment processthat prevents an on-path ad-
versary from distinguishing between probe and non-
probe packets. This process precludes the preferential
treatment of probe packets by the adversary. ACK pack-
ets need not be concealed, since maliciously dropping
or delaying an ACK would only enhance the ingress
router’s ability to identify the path as faulty.

An integrity assurance processthat prevents an ad-
versary from inducing inaccurate measurements by mod-
ifying traffic, injecting forged traffic, or replaying old
traffic (either data packets or ACKs).

In this section, we explain and justify our design deci-
sions for realizing these three processes. In our design,
the edge routers perform sampling by applying a hash
function to certain fields of each packet; if the image of
the hash is less than a threshold, the packet is treated
as a probe. Concealment is achieved by encrypting all
packets, to prevent selective attacks against a small sub-
set of the traffic (e.g., a particular pair of communicating
hosts). Ingregrity assurance is achieved through authen-
tication. We achieve both concealment and integrity as-
surance by using IPsec tunnels between the edge routers
for backward compatibility with existing IPsec imple-
mentations; using IPsec offers additional deployment in-
centives for stealth probing, as discussed in Section 4.

3.1 Monitoring from Edge Routers

Our design of stealth probing places the key monitor-
ing functions at the edge routers that connect a stub net-
work to the rest of the Internet. An interesting alternative

3

would be to have end hosts perform their own monitor-
ing, to enable greater customization of the measurements
to specific applications. However, the majority of IP traf-
fic is generated by a narrow set of applications, such as
Web, e-mail, and VoIP. Therefore, we argue that mon-
itoring does not need to be highly customizable to be
effective. Furthermore, router-based monitoring has the
following advantages over host-based probing:

• The edge router sees a much higher volume of traf-
fic, enabling fast, accurate detection of performance
problems; in contrast, each host sees only a small
subset of the traffic, making detection slower.

• The edge router can react to the measurement re-
sults by shifting traffic away from a faulty path; in
contrast, each end host would need to perform fail-
ure recovery on its own, leading to extra overhead.

• In shifting traffic to new paths, the edge router can
manage the aggregate traffic demands with the or-
ganizations load-balancing policies in mind; in con-
trast, end hosts typically do not have sufficient visi-
bility or control to take corrective action.

• The ingress router can identify reachability prob-
lems along the network path to the egress router; in
contrast, a pair of communicating hosts cannot eas-
ily distinguish between network and host failures.

• Monitoring between edge routers requires only one
security association for each pair of stub networks;
in contrast, managing security associations for all
end hosts would be complicated, and make the mon-
itoring system vulnerable to compromised hosts.

As such, we focus our attention on extensions to edge
routers to perform secure availability monitoring.

3.2 Hash-based Passive Probing

Stealth probing employs a hybrid of active and passive
measurement to reduce overhead and compute accurate
inferences of path performance. Rather than sending ex-
plicit probe packets, the edge routers sample a subset of
the data traffic already traversing the path. To ensure
both routers sample the same packets, the sampling is
pseduorandom, using a hash function. The ingress and
egress routers apply the same hash function to a subset of
bytes in the data packet, ignoring the bytes that change
as the traffic traverses the network (e.g., the IP check-
sum and TTL fields) or have very low entropy (e.g., the
IP version number), as in earlier work on trajectory sam-
pling [9]. If the image of the hash falls below a prede-
termined threshold, the packet is treated as an implicit
probe; otherwise, the packet is a not a probe. The hash
function must be chosen in a way that prevents the ad-
versary from learning the hash. For example, the edge

routers could sample using a keyed hash function or en-
crypt all of the data packets to ensure the adversary can-
not distinguish between probe and non-probe traffic.

Having the ingress routers send active probes would
have been interesting, but less attractive, alternative, for
several reasons:

• Active probes introduce extra traffic that consumes
resources along the path; at high probing rates, the
active probes may, in fact, interfere with the very
properties they are designed to measure.

• Concealing the active probes is more difficult. The
ingress router could conceivably conceal the probe
traffic by encrypting all of the packets, both probes
and non-probes. However, the adversary may be
able to distinguish the probe packets by their size,
or the inter-arrival times, forcing the ingress router
to pad the packets and randomize the timing.

• Determining the appropriate probe rate is hard. To
ensure the probes stay below some fraction of the
total traffic, the ingress router would need to adjust
the rate of active probes to the fluctuations in the
volume of data traffic. In passive sampling, treating
a fixed percentage of the packets as probes is trivial.

The one advantage of active probing is the ability to mea-
sure alternate paths that are not currently in use, albeit
with the risk that the adversary can readily identify these
probe packets. Instead, we envision that, in stealth prob-
ing, the edge routers would split the data traffic over
multiple paths, enabling passive sampling of each path.
Splitting the traffic over multiple paths is attractive for
a variety of other reasons, including more flexible load-
balancing policies and limiting the ability of a single ad-
versary to see all of the traffic.

For each passively-sampled data packet, the egress
router sends an acknowledgment packet back to the
ingress router. In theory, we could reduce the overhead
of stealth probing by instead having the egress router
send periodic reports about awindowof probe packets.
However, periodic snapshots would lead to slower de-
tection of packet losses and would not enable accurate
estimates of round-trip times, making it difficult for the
ingress router to react to attacks (such as data worm-
holes) that introduce delay. Although the explicit ac-
knowledgment packets introduce overhead, these packets
are much smaller than the average data packet, limiting
the overhead. In addition, the egress router doesnotneed
to conceal the acknowledgment packets. The adversary
has no incentive to drop or delay the acknowledgment
packets, since these actions would only make the ingress
router more likely to detect that the path has a perfor-
mance or reachability problem.

4

3.3 Performance Inference from Samples

Sampling at low enough rates makes the network over-
head of stealth probing practical. In this section, we an-
swer the question of how low to choose the sampling rate
so as to achieve a target accuracy. Rather than present a
definitive sampling rate, we present a method for mak-
ing informed decisions about it according to the individ-
ual requirements of networks. The answer is based on a
method for infering performance.

Stealth probing performs secure measurements by
choosing data packets to serve as implicit probes and pre-
venting an adversary from distinguishing the probes; if
the adversary discards or delays data packets, the implicit
probes will be inevitably discarded or delayed as well.
Therefore, assuming that an adversary is on the moni-
tored path, the measurements from the probes represent
an accuratestatistical sampleof the behavior of the ad-
versary. This enables us to infer performance by using
statistical sampling theory [30]. Vis-a-vis active prob-
ing that infers performance using indirect measurements
and theorems on how those measurements correlate with
the statistical behavior of the system (such as PASTA),
passive probing is more accurate because measurements
are directly performed on the population of packets. In
fact, probing based on PASTA was recently shown to be
suboptimal and, in several cases, inaccurate [7].

We will illustrate the statistical sampling method for
inferring performance in passive probing with a specific
example: Consider a network deploying stealth probing
in an outbound path and suppose that the objective is to
decide whether the loss rate of this path is above or be-
low a loss-rate-threshold (raising an alarm if it is above).
A packet is considered lost if an ACK is not received or
if the round-trip delay exceeds a delay-threshold. One
method for making the decision is to consider a window
of packets, divide the number of losses in the window
with the window size, and compare the result to the loss-
rate-threshold. Although simple, this test provides lit-
tle control over the false alarm rate and, in fact, one can
show that this test produces a high rate of false alarms.

In an alternative approach, the network operator can
set an upper bound on the false alarm rate and maximize
the probability of correctly detecting failures. Fig. 2
shows the accuracy of such tests (called Uniformly Most
Powerful tests of a Neyman-Pearson hypothesis testing
problem [21]) as the sampling rate varies. The proba-
bility of a false alarm is5%, the observation window is
10, 000 packets and the threshold is1, 000 packets (i.e.,
threshold for loss rate is10%). We observe that there are
diminishing returns by increasing the sampling rate and
that there is little value in increasing the sampling rate
above2%.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Drops

P
ro

ba
bi

lit
y

of
 R

ai
si

ng
 a

n
A

la
rm

 (
P

ow
er

 F
un

ct
io

n)

n = 50 (0.5%)
n = 100 (1%)
n = 150 (1.5%)
n = 200 (2%)
n = 10000 (100%)

Figure 2: Detection accuracy as the sampling rate varies.

3.4 Data-Packet Encryption

The primary reason for encrypting data packets is not to
conceal the probes (note that there are other techniques
for implementing concealment) but to protect against at-
tacks that target the performance inference method. Con-
sider, for example, an unencrypted stealth probing ses-
sion to prefix10.92.0.0/16 . If the session traffic
destined to subprefix10.92.74.0/24 carries1% of
the total traffic of the session, then the adversary will be
able to disrupt connectivity to the subprefix by invoking
a loss of1% and likely evading detection. Encryption
significantly mitigates this risk by hiding the destination
IP address, therefore, making it harder for the adversary
to distinguish the victim traffic. Encryption also makes
the TCP mechanismopaquefor the adversary, thus, pre-
venting attacks targetting the TCP mechanism.

3.5 Automated Tunnel Establishment

In this section, we design the mechanism for establish-
ing tunnels in an interdomain setting: Consider two re-
mote stub networks, AS X and AS Y, that decide to de-
ploy stealth probing on their border routers to monitor
the availability of interdomain paths between them. A
suggestive configuration is to deploy a full mesh of ses-
sions from each border router in X (Y) to each border
router in Y (X). In order to assemble this configuration,
each border router in X (Y) needs, first, to find out the
IP addresses of Y’s (X’s) border routers and, second, to
establish security associations with those routers. We ad-
dress these problems in turn.

Discovering Remote Routers:Network operators that
communicate out-of-band and manually configure the re-
mote IP addresses can provide a straightforward solution
to this problem. Manual configuration, despite its limi-
tations, can be useful during limited deployment or as a
last resort. DNS can provide a more scalable solution. In
a DNS-based system for router discovery, each network

5

willing to accept stealth probing sessions would regis-
ter an applicable domain name. For example, using an
imaginarystp top-level domain, ASes X and Y could
respectively register domainsasX.stp andasY.stp .
Top-level DNS servers would respond to queries for any
subdomain ofstp (such asasX.stp andasY.stp)
with the IP addresses of the subdomain’s border routers.
In this way, the discovery of remote routers only requires
a local configuration of the relevant list of domain names.
DNSSEC and replication of top-level DNS servers can
protect the authenticity, integrity, and availability of DNS
responses that would also benefit the host traffic.

Establishing Security Associations:IPsec uses the In-
ternet Key Exchange [13] to establish Security Associ-
ations (SAs). IKE authenticates peers using either pre-
shared secrets or public-key certificates. Preshared se-
crets are typically exchanged out-of-band and configured
manually. Certificate-based authentication scales better
but requires an associated certification authority. Con-
trary to secure routing proposals such as S-BGP [18],
stealth probing does not require a globally trusted certifi-
cation authority. In our example, X and Y can choose to
obtain certificates from a mutually trusted authority irre-
spective of the certificates used in other sessions. Note
that failure of IKE to successfully perform a key ex-
change implies a failure in the corresponding path and,
therefore, that this path should be avoided. DoS attacks
targetting the key exchange can be prevented by using
the Just Fast Keying (JFK) protocol [5] in lieu of IKE.

4 Deployment Incentives

Designing stealth probing as an extension to IPsec offers
benefits beyond secure monitoring, providing additional
incentives for deployment. In this section, we give ex-
amples of benefits reaped by stealth probing in security,
traffic engineering, and network troubleshooting.

Security Benefits.IPsec tunnels at the edge routers of
a network infrastructure (a) protect insecure host-to-host
communications, (b) prevent traffic-analysis attacks that
host-to-host encryption does not prevent, for example, by
hiding the source and destination addresses of data traf-
fic, (c) render misdirection attacks that divert traffic for
eavesdropping and traffic analysis ineffective, (d) enable
ISPs to offer value-added services like secure VPNs to
customers, (e) mitigate denial-of-service attacks that use
source-address spoofing, and (f) mitigate spam. We dis-
cuss now how IPsec tunnels help mitigate DoS and spam.

Spoofing has been routinely used in DoS attacks to
hide the location of offending machines. Although the
availability of massive botnets has made non-spoofing
attacks currently more attractive for the attackers, as mit-
igation strategies for non-spoofing attacks emerge [31]
attackers are likely to resume their strategies. IPsec tun-

nels enable an edge network to filter inbound packets
based on their originating network and, therefore, discard
packets that are spoofed. Contrary to ingress filtering
[10], this technique requires the configuration of filters at
the target network that has the incentives to deploy them.
Consider, for example, IPsec tunnels between networks
X and Y and assume that X hasn’t applied ingress filters.
If a host in X uses a fake source address belonging to a
different prefix, then Y can readily detect the forgery and
configure filters to block it. Inbound packets not belong-
ing to an IPsec tunnel could receive a lower priority at the
receiving network (for example, they could be scheduled
at a lower-priority queue), especially during an attack.

A recent study on how spammers exploit the net-
work [28] reveals that spammers often employ source-
address spoofing (in a method calleddirect spamming
and prefix hijacks (in a method that exploits theBGP
spectrum agility). As discussed above, IPsec tunnels can
filter spoofed packets. IPsec tunnels can also protect
against spammers doing hijacks as the spammer would
not be able to receive the authentication credentials of
the hijacked victim network. Therefore, he wouldn’t be
able to to establish tunnels with the destination networks
of the victim, resulting in spam getting discarded at the
border routers of those networks.

Traffic Engineering Benefits. IP tunnels (that en-
capsulate ESP packets) enable edge networks to engi-
neer their interdomain traffic. Consider, for example, the
problem of controlling inbound traffic at a multihomed
stub network. Existing techniques are based either on a
combination of NAT and DNS that provide limited re-
silience to failures or on BGP hacks (such asAS path
prepending) that provides better resilience at the expense
of coarse control of the inbound traffic. Using the IP
tunnels terminating at their borders routers, edge net-
works can dynamically negotiate bilaterally with source
networks the border router to receive inbound traffic and,
therefore, achieve traffic control in a resilient fashion and
at a fine granularity.

Network Troubleshooting Benefits. Stealth probing
enforces fate sharing between data traffic and probes,
which is broadly useful for troubleshooting network
problems. For example, simple ICMP echo requests and
replies may be treated differently from data packets ei-
ther because of MTU size limits or packet filters that
discard traffic based on the protocol or port numbers.
Stealth probing avoids this problem as the probes are,
in fact, regular data packets.

5 Implementation

We prototyped stealth probing in software. The software
implementation is not a mere artifact of the prototyp-
ing effort. Open-source routers serve as research plat-

6

IP header

Security Parameter Index

Authentication Data

Sequence Number

Initialization Vector

IP Packet

Pad

A(2)

E(1)

IP header

Security Parameter Index

Authentication Data

Sequence Number

Initialization Vector

IP Packet

Pad

A(1)

E(2)

ESP Stealth Probing

Figure 3: Packet format of ESP in tunnel-mode.E stands
for encryption andA for authentication. ESP performs
encryption before authentication (left). Stealth probing
performs the reverse (right).

forms [4] and are also offered as commercial products,
typically deployed at enterprise networks. We used the
Click [19] framework for building software routers. By
comparison to the native Linux support for routing, Click
has better support for extensibility. This enabled us to ef-
ficiently implement data forwarding functionality critical
to the performance of our system (such as the integration
of IPsec security policy with data forwarding outlined in
Section 5.3) in a straightforward fashion.

A Click router is a set of interconnected packet pro-
cessing modules running in a kernel thread. These mod-
ules, also calledelements, are C++ objects. Elements
and their interconnections can be represented by a di-
rected graph, also called a Clickconfiguration, that char-
acterizes the processing flow of packets. Stealth probing
was implemented using modules that extend an existing
IP router Click configuration. In the rest of this section,
we present how we implemented stealth probing and also
our implementation choices.

5.1 Concealment and Integrity Assurance

The encryption and authentication required for conceal-
ment and integrity assurance are implemented using the
Encapsulating Security Payload (ESP) protocol [17] of
IPsec intunnel mode, which provides end-to-end crypto-
graphic protection at the IP layer. In tunnel-mode ESP,
IP packets are encapsulated by an ESP header and trailer
containing cipher-specific fields. The ESP packet is tun-
neled by encapsulating it in a new IP header (see Fig.
3). Standard symmetric ciphers can be used to protect
the packet. ESP uses a 32-bit sequence number as part
of a mechanism that protects from replay attacks. This
mechanism is also used in stealth probing to protect from
attacks that reorder packets.

Our implementation of ESP is fully compliant with the
ESP standard with the exception that authentication is
performed before encryption (see Section 5.2). We used
the AES encryption cipher and the HMAC-SHA1 au-
thentication cipher; code for those ciphers was obtained
from the OpenSSL toolkit.

5.2 Sampling Based on the Keyed Hash

Several possibilities exist for implementing the sampling
process. One possibility is to hash immutable parts of the
inner IP packet (before encryption at ingress and after de-
cryption at egress) using, for example, modular division
as in trajectory sampling [9]. Collisions of the hash func-
tion resulting from identical inbound packets can be pre-
vented by also feeding the sequence number of the ESP
packet as input to the hash. In order to avoid the addi-
tional overhead from modular operations, we chose a dif-
ferent implementation of the sampling process that lever-
ages the pseudorandom output of the keyed hash that au-
thenticates the packet. Using the authenticator, sampling
can be performed by comparing its value (two bytes in
our implementation) to a threshold. However, ESP sends
the authenticator in the clear (see Fig. 3), making it easy
for the adversary to distinguish the probes. We address
this by inverting the order of encryption and authentica-
tion (see Fig. 3). If encryption is performed in Cipher
Block Chaining (CBC) mode, performing authentication
before encryption has been shown to be secure [20]. Be-
cause SHA1 behaves like a random function, the sam-
pling probability is the same for each packet, resulting in
an unbiased selection of probes.

5.3 Integrating Security Policy with
Forwarding

IPsec policyspecifies what traffic should be protected
and how. IPsec defines a Security Policy Database (SPD)
to store this information at the ingress router through
which policy is enforced using packet filters. Rather than
implement a separate SPD, we integrate its functionality
into the Forwarding Information Base (FIB) of the router
in a fashion that may obviate the need for additional fil-
ters. The FIB stores the outbound interface per desti-
nation prefix and must be looked up for inbound pack-
ets to make a forwarding decision. We extend the FIB
to support SPD functionality by adding to each FIB en-
try an additional field. This field stores a pointer either
to the IPsec SA for the corresponding destination prefix
or to NULL, if stealth probing has not been configured
for that prefix. Configuring stealth probing sessions at
a granularity finer than the existing prefixes in the FIB
can be achieved by installing FIB entries for more spe-
cific prefixes (as thelongest prefix match ruleselects the
most specific entries). Access Control Lists that match
the five-tuple can provide even finer control.

Encapsulation at the ingress router and decapsulation
at the egress router should be performed using the same
SA. However, the egress router must decapsulate the
packet before accessing the FIB, making the abovemen-
tioned technique used by the ingress router inapplicable.

7

In order to retrieve the SA, the egress router maintains
a Security Association Database (SADB) accessed using
the Security Parameter Index (SPI), a value that is stored
in the ESP header of the incoming packet. The SPI is a
32-bit integer that, together with the address of the egress
router, uniquely identifies the SA.

Scalability: Using the FIB to enforce IPsec security
policy has the advantage that, irrespective of the num-
ber of outbound IPsec tunnels, the security association
for encapsulating a packet is retrieved simply by fol-
lowing the pointer of the FIB entry. Furthermore, the
lookup delay introduced by the consistent hashing oper-
ation, if more than one IPsec tunnels are configured for
the corresponding destination prefix, grows logarithmi-
cally with the number of tunnels and, therefore, is con-
stant for all practical purposes. The only parameter that
can affect the SA lookup delay, and, thus, the scalabil-
ity of the design, is the granularity of security policy.
Adding more prefixes in the FIB when subprefixes re-
quire separate SAs will increase the FIB lookup delay.
Installing access lists will increase the packet process-
ing delay. Noticeable delays of those kinds could only
arise in a widespread deployment, in which case opera-
tional practice would likely suggest a preferable method
for implementing granular policies. The number of in-
bound tunnels at an egress router only affects the size of
the hash table that stores the SAs.

5.4 Consistent Traffic Splitting

Splitting inbound traffic to multiple outbound paths is
usually performed using a hash function such as CRC16:
The range of the hash function is divided into intervals,
where each interval corresponds to an outbound path,
and hashing maps inbound packets to the intervals. Most
routers hash the source and destination IP address fields
of the packet; hashing the five-tuple is also supported by
some routers. In the general case, traffic is split into un-
equal proportions (decided by a load balancing algorithm
such as [11, 15]). We consider here the simpler case of
an even traffic distribution implying equal-length inter-
vals. This case may arise in practice if stealth probing
makes a binary decision to either use or avoid each path.

Even for this simple case, the abovementioned traffic-
splitting technique is known to perform poorly when
paths are added or deleted dynamically [14]. The reason
is that additions and deletions typically result in signifi-
cant unnecessary changes to the mapping between paths
and TCP flows that may disrupt the latter. Consistent
hashing [16] can minimize changes when objects (such
as web pages) are mapped to a dynamic set of bins (such
as web caches). We have implemented a traffic splitting
scheme for mapping inbound IP traffic to outbound paths
based on consistent hashing that we evaluate in the next

section. To our knowledge, this is the first use of consis-
tent hashing as an IP data forwarding module.

5.5 Performance Monitoring

Upon sampling a packet, the egress router responds by
sending an ACK to the ingress router. To enable the
ingress router to match the ACK with the corresponding
probe, the ACK includes the SPI of the tunnel and the
32-bit sequence number of the probe. We also authenti-
cate the ACK using the SA of the probe, which prevents
(on-path or off-path) adversaries from forging it. Receiv-
ing and generating ACKs is handled by the correspond-
ing Click kernel threads at the ingress and egress routers,
respectively, to avoid the overhead of using a separate
process.

Timing by the Kernel: Measuring losses and round-
trip delays requires timing the probes and ACKs at the
ingress router. Keeping a timeout per probe would meet
the timing requirements of the measurements and at the
same time make the result immediately available for
monitoring performance. However, this method would
incur significant processing overhead for scheduling and
cancelling timeouts and because of the frequent interrup-
tion of the kernel thread. We implemented a different
timing method that can decrease the CPU load by adding
configurable delays to the availability of measurement
results. According to this method, the data forwarding
modules are only responsible for logging and timestamp-
ing probes and ACKs while losses and round-trip delays
are computed by reading the logs. Logs are read by a
Path-Performance Monitor (PPM) that has been imple-
mented in user space. We elaborate on the PPM later in
this section.

The interface between the kernel and PPM is based on
a circular buffer that essentially acts as a queue between
them (see Fig. 4). The circular buffer is exported as
a regular file using a Linux proc-like filesystem called
clickfs. There are two circular buffers, one for the probes
and one for the ACKs. An applicable size for each buffer
can be determined by the sampling rate, the packet rate,
and the round-trip time. For example, if the bit rate of
incoming traffic is1Gbps and the average packet size is
500B, then the packet rate is250000pps. Assuming also
a sampling rate of2% and a round-trip time of 1sec, the
log should contain about5000 entries. Each log entry
contains the32-bit SPI, the32-bit sequence number, and
a 64-bit timestamp. Therefore,5000 entries correspond
to 80KB of memory.

Monitoring in User Space: The Path-Performance
Monitor (PPM) is a daemon implemented in Java that
reads the probe- and ACK-logs in order to measure losses
and round-trip delays. PPM should be invoked fre-
quently enough to preventrollover of the circular buffers

8

LOG[0]

LOG[N-1]

Write
(kernel)

Read
(PPM)

kernel PPM

Figure 4: Circular buffer acting as a queue between the
kernel and the Performance Monitor.

that would imply loss of measurement data. Rollover
could be prevented by forced context switches from the
kernel to PPM that we decided against because they are
intrusive. The kernel adjusts instead the priority of the
PPM daemon according to the occupancy levels of the
buffers and warns PPM after a rollover.

PPM processes the logs using the following algorithm:
First, the entries of the probe-log are added to a hash ta-
ble. Then, for each entry in the ACK-log the hash table
is queried for a matching probe. If a probe is found, the
round-trip delay is calculated and the probe is removed
from the hash table. Otherwise, the ACK is considered
spurious and it is silently discarded. If all entries in the
ACK-log have been processed and there are remaining
probes in the hash table, the probe timestamps are com-
pared to the current time for detecting possible losses.

5.6 Summary of Control Flow

In this section, we outline the packet processing steps at
the ingress and egress routers of a stealth probing ses-
sion. For simplicity, we omit those steps involved in
processing ACKs. The Click configuration, i.e., the di-
rected graph of processing elements and their intercon-
nection according to how packets flow between elements,
is shown in Fig. 5.

Processing Path at Ingress:A packet received from
an input port is first classified. Following classification
and assuming that the protocol number corresponds to
IP, the Ethernet header is removed and the checksum on
the IP header is computed (elementCheck-IP-header).
IPsec-Lookupdetermines whether a packet belongs to
a stealth probing session if so, to which session to di-
rect the packet.IPsec-Lookupeither retrieves the corre-
sponding SA from the FIB or, assuming that stealth prob-
ing is not configured for the packet’s destination address,
determines the output port and directs the packet for
standard IP processing (decrement TTL, compute check-
sum, etc.). If an SA is found, the ESP header is con-
structed (ESP-Encapsulation), the HMAC is computed
(Authentication-HMAC), and sampling is performed us-
ing the first two bytes of the HMAC (Sampling). If a

ESP-Encapsulation

Authentication (HMAC)

Sampling

Encryption

IP-Encapsulation

IP-Decapsulation

Decryption

Authentication (HMAC)

Sampling

ESP-Decapsulation

Strip-Ethernet-Header

Check-IP-Header

IPsec-Lookup

To-Output-Port

IP Processing Steps

To-Output-Port

IP Processing Steps

From-Input-Port

PACKET CLASSIFIER

ARP IP

From-Input-Port

PACKET CLASSIFIER

ARP IP

Ingress
Processing

Path

Egress
Processing

Path

Figure 5: Click configuration of stealth probing.

decision is made to sample the packet, a corresponding
entry is added to the log. After the packet is encrypted
and encapsulated in a new IP header in moduleIP-
Encapsulation(with source address of the ingress router
and destination address of the egress router),IPsec-
Lookupdetermines the outbound interface for forward-
ing the packet and directs the packet for the standard IP
processing steps.

Processing Path at Egress:At the egress router, the
determination of whether a packet belongs to a stealth
probing session and, if so, which session should process
the packet is also made at theIPsec-Lookupelement,
which either looks up the FIB or the SADB depending
on the packet’s destination address and protocol number.
Assuming that the destination address of the packet is
an address of this router and the protocol number cor-
responds to ESP, then SADB uses the SPI to retrieve
the SA. Following that, the outer IP header is removed
(IP-Decapsulation), the packet is decrypted (Decryp-
tion), authenticated (Authentication-HMAC), and sam-
pled (Sampling). If sampling selects the packet, an ACK
is generated and authenticated using the same SA as the
incoming packet. Then the ESP header is removed (ESP-
Decapsulation), andIPsec-Lookupis invoked for a sec-
ond time to find the outbound interface for forwarding
the inner IP packet and direct it for standard IP process-
ing.

6 Evaluation

In this section, we evaluate our prototype implementa-
tion, emphasizing on packet-forwarding efficiency. The
main purposes of the evaluation are, first, to deter-
mine the latency that stealth probing adds on top of
IPsec and destination-based forwarding, second, to com-
pare how the throughput of stealth probing compares to

9

the throughput of IPsec and destination-based forward-
ing, and, third, to determine the CPU resources that
stealth probing requires for path performance monitor-
ing. We also evaluate the impact of consistent hashing
on throughput.

We present our experimental methodology in Sec-
tion 6.1. Section 6.2 evaluates the processing delay
that stealth probing adds to data packets. We evaluate
TCP throughput in Section 6.3 and the impact of path-
performance monitoring on the system in Section 6.4. In
this section, we also identify an inefficiency of the Click
implementation regarding packet encapsulation. We
show in Section 6.5 that, despite this inefficiency, stealth
probing performs comparably to destination-based for-
warding in a realistic traffic mix.

6.1 Experimental Methodology

We measure latency using a Click profiling tool that
counts and aggregates the cycles each processing mod-
ule consumes. We evaluate throughput by measuring the
maximum data throughput, defined as the Bulk Trans-
fer Capacity (BTC), and the maximum packet through-
put, defined as the maximum loss-free forwarding rate
when input traffic satisfies a given distribution. BTC is
the achievable throughput of a bulk transfer TCP connec-
tion [27], which is the maximum throughput that can be
attained in practice. We measure BTC using Iperf 2.0.2,
maximum packet throughput using custom software, and
CPU loads using thetopsystem utility.

We set up a testbed of four commodity PCs connected
in series by three Ethernet links (H1 ⇀↽ R1 ⇀↽ R2 ⇀↽
H2). R1 andR2 run Click 1.5.0 and serve as routers.H1

andH2 serve as hosts. We set the MTU on linksH1 ⇀
R1 andR2 ↽ H2 to 1400-bytes to avoid fragmentation
because of IP and ESP encapsulation. Propagation delay
is negligible and the testbed is isolated from cross traffic.

Each link consists of crossover cables connected to
dedicated Ethernet interfaces. Each PC has a 2.8 GHz
Pentium-4 processor with 1 GB of RAM and running a
Linux 2.6.16 kernel. We selectively used both 100Mbit
(Realtek) and 1Gbit (D-Link) Ethernet cards in our ex-
periments. The Ethernet device drivers used in our setup
do not support “device polling,” a technique used by
Click for improving performance. The effects are notice-
able in the1 Gbit interfaces. Device polling would im-
prove throughput performance of all configurations that
we measure and, therefore, it does not affect our compar-
isons. Note also that despite the absence of physical layer
contention at the links, routers cannot send and receive
packets simultaneously as they are limited by the DMA
(Direct Memory Access) chip, which can process at most
one packet at a time. This negatively affects the through-
put performance of stealth probing, more than the other

0 64 500 1000 1400
0

5

10

15

20

25

30

35

Packet Size (Bytes)

D
el

ay
 (

M
ic

ro
se

co
nd

s)

total
ingress
egress

Figure 6: Processing delay that stealth probing adds to a
non-probe packet as a function of the packet size. Probes
are delayed10.7 µsec more, irrespective of their size.

protocols we compare, because stealth probing invokes
additional traffic (i.e., ACKs).

6.2 Processing Delay

Figure 6 shows the processing delay that stealth prob-
ing modules at the ingress and egress routers add to a
non-probe packet as a function of the packet size. We
measured this delay using the Click profiler to record
the cycle counts of 50 echo requests sent fromH1 to
H2 going through the tunnel fromR1 to R2. We ob-
served a small variability in the measurements on the or-
der of 0.1 µsec due to interruptions of the Click kernel
thread by the scheduler. We report the the minimum cy-
cle counts at ingress and egress and their sum. Stealth
probing adds a total processing delay that varies between
14 and31 µsec, depending on the packet size. The in-
crease in delay for larger packet sizes is due to additional
processing required by the authentication and encryption
ciphers. If a packet is selected to serve as a probe, there
is an additional delay of2.5 µsec at ingress (to update the
log) and8.2 µsec at egress (to generate the ACK), for a
total of 10.7 µsec, independent of packet size. By com-
parison to ESP, non-probes only require an additional
comparison operation for the sampling decision; probes
are more expensive (by10.7 µsec) but their delay is only
invokedx% of the time, wherex is the sampling rate.

6.3 Data Throughput

In this section, we measure the effect of stealth probing
on data throughput by configuring an Iperf client onH1

and an Iperf server onH2. Each experiment has a du-
ration of20 sec and is repeated ten times; we report the
average. Fig. 7 shows data throughput of four configura-

10

100 Mbps 1 Gbps
0

20

40

60

80

100

120

140

160

180

200
T

hr
ou

gh
pu

t (
M

bp
s)

IP
IPsec / ESP
STP (2%)
STP (2%) − CH

Figure 7: Data throughput with 100Mbps and 1Gbps
links.

tions betweenR1 andR2: IP, IPsec (ESP), stealth prob-
ing at2% sampling rate, and stealth probing (at2%) with
consistent hashing (selecting one among 100 tunnels).
We repeat the measurements for100 Mbps and1 Gbps
links. In the first case (100 Mbps links), the stealth prob-
ing data rate is5% less than IP and1% less than ESP.
The overhead of consistent hashing decreases the data
rate by2%. In the second case (1 Gbps links), the stealth
probing data rate is8% less than IP and2% less than
ESP. Consistent hashing decreases the data rate by2%.
Stealth probing at zero sampling rate had approximately
the same performance as ESP.

Impact of Sampling Rate: To measure the impact
of the sampling rate on data throughput, we create addi-
tional traffic to compete with the stealth-probing ACKs
by adding a TCP session in the opposite direction using
an extra Iperf client and server. In the resulting config-
uration there are two TCP sessions one in the direction
H1 → H2 and the other in the directionH1 ← H2.
Both TCP connections start simultaneously in each ex-
periment, have a duration of20 sec and are repeated ten
times; we report the average of the ten measurements.
Fig. 8 shows the data throughput of the two TCP sessions
as the sampling rate varies from1% to 15%; link band-
width is 100 Mbps. We observe that up to a10% sam-
pling rate, throughput decreases slowly as the sampling
rate increases. The decrease in throughput is slow despite
the linear increase in the ACK-traffic and additional pro-
cessing overhead for generating and reading logs. We at-
tribute this to the small size of stealth-probing ACKs (80-
bytes in total) and the efficiency of performance moni-
toring. We elaborate on performance monitoring in the
following section.

2 4 6 8 10 12 14

52

54

56

58

60

62

Sampling Rate (%)

T
hr

ou
gh

pu
t (

M
bp

s)

H1−>H2 (1sec)
H2−>H1 (1sec)

Figure 8: Impact of sampling rate on TCP throughput.

6.4 CPU Resources

Figures 9(a) and 9(b) show CPU utilization during the
data-throughput experiments of the previous section. By
comparison to IP forwarding, stealth probing increases
the CPU load15% in the case of100 Mbps links and
28% in the case of1 Gbps links. Consistent hashing in-
creases the CPU load by1% in both cases. We may ob-
serve in the figures that most of the CPU resources are
consumed in packet forwarding. In actual deployment,
packet forwarding would typically be assigned to ded-
icated hardware. Also shown in the figures is that the
user-space PPM module contributes only1% of the load
in both cases. This experiment, therefore, demonstrates
that PPM is non-intrusive for the processor. We, thus, be-
lieve that performance monitoring could be the respon-
sibility of the CPU of high-end routers, implementing
stealth probing in the data plane, without interfering with
routing-protocol processing.

Fig. 9 shows that the impact of stealth probing on the
CPU is significant. We, therefore, decided to investigate
the source of this inefficiency. In the course of the inves-
tigation, we identified an inefficiency of Click in the stan-
dard procedure it uses for encapsulating packets. Fig. 10
shows the CPU utilization of IP and of IP with adummy
encapsulation and decapsulation stepinside a random
processing module, using the same experimental setup as
Section 6.3. This dummy step alone increases the CPU
load by5%, in the case of100 Mbps links, and by10.5%
in the case of1 Gbps links. This experiment, therefore,
reveals a weakness in the Click software, likely attributed
to inefficient memory management. We further discuss
this inefficiency in the next section.

11

IP IPsec / ESP STP (2%) STP (2%) − CH
0

10

20

30

40

50

60

70

80

90

100
C

P
U

 U
til

iz
at

io
n

(%
)

System
User

(a) 100 Mbps

IP IPsec / ESP STP (2%) STP (2%) − CH
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

til
iz

at
io

n
(%

)

system
user

(b) 1 Gbps

Figure 9: CPU Utilization of IP, IPsec, stealth prob-
ing sampling at2%, and stealth probing with consistent
hashing in the data throughput experiment.

6.5 Packet Throughput

In this section, we compare the maximum zero-loss
packet throughput of stealth probing with that of
destination-based forwarding. The comparison is in-
evitably affected by the aforementioned inefficiency of
Click. Fig. 11(a) shows the maximum zero-loss packet
throughput of IP, of IP with the dummy encapsulation
and decapsulation step, of stealth probing at zero sam-
pling rate, and of stealth probing (at zero rate) with con-
sistent hashing (selecting one among one-hundred tun-
nels) under a realistic traffic-mix. In the traffic mix,
data packet sizes are drawn from a probability distribu-
tion that approximates traffic collected by NLANR dur-
ing February, 2001 [2, 3]. We also show the breakdown
of performance using fixed-size input traffic. Note that
the dummy encapsulation step alone decreases through-
put by approximately20, 000 packets. Stealth probing

100Mbps 1Gbps
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

til
iz

at
io

n
(%

)

IP
IP−dummy−encap/decap

Figure 10: CPU utilization of IP and of IP with dummy
encapsulation and decapsulation.

can sustain a zero-loss packet rate that is23.1% lower
than IP despite the encapsulation inefficiency. Adding
consistent hashing to stealth probing decreases the zero-
loss packet rate by0.8%. Fig. 11(b) shows the break-
down of performance for fixed-size packets. We observe
that the encapsulation inefficiency has a smaller impact
as the packet size increases becoming negligible at 1400-
byte packets used in the data-throughput experiments of
Section 6.3. We are currently investigating the actual
source of the inefficiency and possible ways to fix it.

7 Related Work

Perlman [26] proposed encryption between neighboring
routers to make data and control traffic indistinguishable
and per-packet acknowledgments to monitor the link be-
tween the routers. Stealth probing uses encryption be-
tween remote routers to monitor the availability of paths
and relies on implicit probing based on sampling, which
makes the network overhead unobtrusive.

Fatih [24] is a system for detecting and isolating
malicious routers using a traffic validation method be-
tween terminal routers that relies on clock synchroniza-
tion. Therefore, successful clock-synchronization at-
tacks could enable successful attacks against availability.
Because Fatih does not specify a secure clock synchro-
nization protocol to be used with the system, we cannot
directly compare its security and efficiency. Stealth prob-
ing does not depend on clock synchronization. Further-
more, Fatih sends data packets in the clear, allowing an
adversary to selectively target the traffic. Stealth probing
tunnels and encrypts the traffic to prevent this attack.

Secure traceroute [25] is a scheme for secure localiza-
tion of faulty links that could conceivably be applied at
the path level. In secure traceroute, data packets between
an initiating router and arespondingrouter are selected

12

IP IP (encap / decap) STP (0%) STP (0%) − CH
0

20

40

60

80

100

120

140
P

ac
ke

t T
hr

ou
gh

pu
t (

T
ho

us
an

d
P

ac
ke

ts
 P

er
 S

ec
on

d)

(a) Mixed Input Traffic

0 64 500 1000 1400
0

50

100

150

200

250

Packet Size (Bytes)

P
ac

ke
t T

hr
ou

gh
pu

t (
T

ho
us

an
d

P
ac

ke
ts

 P
er

 S
ec

on
d) IP

STP (0%)
IP (encap / decap)

(b) Fixed Packet Size

Figure 11: Packet throughput (a) under mixed traffic and
(b) under fixed-size traffic.

by the initiator to serve as probes by embedding in them
secret identifiers. However, the responder stores replies
for later retrieval [22], opening the possibility for delay
attacks. Furthermore, data packets are neither encrypted
nor tunneled, allowing an adversary to target individual
components of the aggregate traffic.

Listen [29] and the data-plane monitor of the
Feedback-Based Routing system [34] detect data-plane
attacks by a combination of passive measurements of
TCP traffic and insecure active probing. As such they
have the limitations outlined in Section 2.2.

We previously introduced the idea of stealth probing in
a short paper [6]. This paper makes the following addi-
tional contributions: First, we articulate in detail the de-
sign decisions such as why we choose to monitor avail-
ability from edge routers instead of hosts. Second, we
refine the design and, for example, dismiss secure ac-
tive probing, proposing instead to split traffic on multi-
ple paths and do passive probing on each path. Third,

we present a methodology for infering path-performance
using statistical sampling theory. Fourth, we present in
detail a prototype implementation of the system and, fi-
nally, a thorough evaluation of the prototype in a testbed.

8 Conclusion

Resilience has always been an important priority in the
design of IP networks [8]. However, the threat model
has changed significantly in recent years with increasing
attacks against the Internet infrastructure by subverted
systems. Despite these threats, IP networks still rely
on routing protocols that treat control-plane messages
as an accurate indication of whether and how the data
plane delivers user traffic. Periodic beaconing between
adjacent routers cannot detect whether routers are mali-
ciously discarding or redirecting data packets, while con-
tinuing to forward control messages and active probes to
evade detection. Instead, we argue for secure, passive,
path-level probing between edge routers to identify avail-
ability problems. In stealth probing, a fraction of the data
packets serve as implicit probes and trigger acknowledg-
ment messages that enable accurate estimates of packet
loss and round-trip delay, even if an adversary lies in the
data plane along the path. Experiments with our pro-
totype implementation demonstrate that stealth probing
can operate at high speeds.

Stealth probing can be readily deployed in today’s In-
ternet for three important reasons. First, IP tunnels (that
encapsulate ESP packets) can be deployed accross legacy
routers and ASes. Therefore, stealth probing isback-
ward compatiblewith the existing infrastructure. Edge
networks using secure VPNs would not need to upgrade
their routers. Furthermore, commercial routers increas-
ingly offer IP tunneling and encryption at line rates. Sec-
ond, IPsec security associations can be established bilat-
erally, making stealth probingincrementally deployable.
Any pair of ASes can deploy stealth probing irrespec-
tive of the participation of other ASes. As such, stealth
probing offers immediate benefits even during limited
deployment. Finally, stealth probing isincentive com-
patibleoffering additional benefits from mitigating DoS
attacks and spam to engineering interdomain traffic.

Our work on stealth probing is part of a larger vision
for how to design a secure routing system for the In-
ternet. We believe that secure routing protocols, while
useful, are neither sufficient nor necessary. A secure
control plane cannot easily defend against colluding ad-
versaries or ensure that the data packets actually fol-
low the advertised path. In addition, a secure inter-
domain routing protocol relies on having accurate reg-
istries and a public-key infrastructure, as well as having
the routers perform cryptographic operations on the con-
trol messages. Instead, we argue that the interdomain

13

routing system should be designed to provideavailabil-
ity—ensuring that an edge network has at least one path
that reaches the intended destination—along with secure
path-level probing to identify faulty paths. We believe
that stealth probing, combined with a multi-path interdo-
main routing protocol, can lead to a robust, secure Inter-
net infrastructure for the future.

References

[1] Cisco Systems: Optimized Edge Routing (OER).
[2] http://advanced.comms.agilent.com/.
[3] http://pma.nlanr.net/Datacube/.
[4] http://www.xorp.org/.
[5] W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ioannidis,

A. Keromytis, and O. Reingold. Just Fast Keying: Key
agreement in a hostile Internet.ACM Trans. Information
and System Security, 7(2):242–273, May 2004.

[6] I. Avramopoulos and J. Rexford. Stealth probing: Effi-
cient data-plane security for IP routing. InProc. USENIX
Annual Technical Conference, May/Jun. 2006.

[7] F. Bacceli, S. Machiraju, D. Veitch, and J. Bolot. The
role of PASTA in network measurement. InProc. ACM
SIGCOMM, Sept. 2006.

[8] D. Clark. The design philosophy of the DARPA Internet
protocols. InProc. ACM SIGCOMM, Aug. 1988.

[9] N. Duffield and M. Grossglauser. Trajectory sampling for
direct traffic observation.IEEE/ACM Trans. Networking,
9(3):280–292, Jun. 2001.

[10] P. Ferguson and D. Senie. Network ingress filtering: De-
feating denial of service attacks which employ IP source
address spoofing. RFC 2827, IETF, May 2000.

[11] D. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang.
Optimizing cost and performance for multihoming. In
Proc. ACM SIGCOMM, Aug./Sept. 2004.

[12] F. Guo, J. Chen, W. Li, and T. Cker. Experiences in build-
ing a multihoming load balancing system. InProc. IEEE
Infocom, Mar. 2004.

[13] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). RFC 2409, IETF, Nov. 1998.

[14] C. Hopps. Analysis of an equal-cost multi-path algorithm.
RFC 2992, IETF, Nov. 2000.

[15] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking
the tightrope: Responsive yet stable traffic engineering.
In Proc. ACM SIGCOMM, Aug. 2005.

[16] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the World Wide Web. InProc. ACM STOC, May 1997.

[17] S. Kent and R. Atkinson. IP Encapsulating Security Pay-
load (ESP). RFC 2406, IETF, Nov. 1998.

[18] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway
Protocol (Secure-BGP).IEEE Journal on Selected Areas
in Communications, 18(4):582–592, Apr. 2000.

[19] E. Kohler, R. Morris, B. Chen, J. Janotti, and F. Kaashoek.
The Click modular router.ACM Transactions on Com-
puter Systems, 18(3):263–297, Aug. 2000.

[20] H. Krawczyk. The order of encryption and authentication

for protecting communications (or: How secure is ssl?).
In Proc. CRYPTO, Aug. 2001.

[21] E. L. Lehmann. Testing Statistical Hypotheses. Wiley,
New York, 1959.

[22] G. Mathur, V. Padmanabhan, and D. Simon. Securing
routing in open networks using secure traceroute. Tech-
nical Report MSR-TR-2004-66, Microsoft Research, Jul.
2004.

[23] D. Mcpherson and C. Labovitz. Worldwide infrastructure
security report, Volume II. Technical report, Arbor Net-
works, Sept. 2006.

[24] A. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage.
Fatih: Detecting and isolating malicious routers. In
Proc. International Conference on Dependable Systems
and Networks, Jun. 2005.

[25] V. Padmanabhan and D. Simon. Secure traceroute to de-
tect faulty or malicious routing. InProc. ACM SIGCOMM
HotNets Workshop, Oct. 2002.

[26] R. Perlman.Network Layer Protocols with Byzantine Ro-
bustness. PhD thesis, Massachusetts Institute of Technol-
ogy, Aug. 1988.

[27] R. Prasad, C. Dovrolis, M. Murray, and KC Claffy. Band-
width estimation: Metrics, measurement techniques, and
tools. IEEE Network, Nov.-Dec. 2003.

[28] A. Ramachandran and N. Feamster. Understanding the
network-level behavior of spammers. InProc. ACM SIG-
COMM, Sept. 2006.

[29] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and
R. Katz. Listen and Whisper: Security mechanisms for
BGP. InProc. Symposium on Networked System Design
and Implementation, Mar. 2004.

[30] S. Thompson.Sampling. Wiley Series in Probability and
Statistics. Wiley, second edition, 2002.

[31] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger,
and S. Shenker. Ddos defense by offense. InProc. ACM
SIGCOMM, Sept. 2006.

[32] D. Wendlandt, I. Avramopoulos, D. Andersen, and J. Rex-
ford. Don’t secure routing protocols, secure data delivery.
CMU-CS-06-154, School of Computer Science, CMU,
Sept. 2006.

[33] W. Xu and J. Rexford. MIRO: Multi-path interdomain
routing. InProc. ACM SIGCOMM, Sept. 2006.

[34] D. Zhu, M. Gritter, and D. Cheriton. Feedback based rout-
ing. In Proc. ACM SIGCOMM HotNets Workshop, Oct.
2002.

14

