
DETERMINISTIC SHARING OF

DISTRIBUTED RESOURCES

TAMMO SPALINK

A D ISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

COMPUTERSCIENCE

NOVEMBER 2006

c© Copyright by Tammo Spalink, 2006. All rights reserved.

iii

Abstract

Deterministic performance is desirable for many distributed applications, from vehicle
control systems to financial networks. The trouble is that infrastructure for these applica-
tions must incorporate multiple independent timing sources, because uniform distribution
of timing signals is only possible at small scales, such as for integrated circuits. To for-
mally reason about the behavior of concurrent computations in large distributed systems,
the nondeterminism created by independent timing must be eliminated. This disserta-
tion proposesmetasynchronization, a technique to uniformly time division all resources
in distributed systems that span multiple timing domains. This allows for deterministic
execution of and interaction between distributed computations, analogous to the deter-
ministic behavior of components in synchronous integrated circuits. Such determinism
allows formal correctness verification of computations with strict performance require-
ments. It also allows perfect virtualization of distributed resources, meaning a system
where computations are unable to determine if they are executing on raw physical re-
sources or within a virtualized environment. Nondeterminism makes perfect virtualiza-
tion impossible for conventional systems. Metasynchronization creates the necessary
determinism, and this dissertation proposes an execution model calledhierarchical pro-
visioning, which incorporates perfect virtualization, and thereby allows distributed com-
putations to share resources deterministically. Importantly, metasynchronization creates
uniform timing without distributing a centralized timing signal. Instead, all timing do-
mains reach agreement on shared time in a fully decentralized self-stabilizing manner
that requires no communication overhead, but does depend on small buffers and simple
ongoing numerical computations for each communication link. Because of its decentral-
ization, metasynchronization is highly robust, tolerating multiple simultaneous malicious
(Byzantine) failures under normal circumstances.

iv

Acknowledgments

Many people have helped in uncounted ways to produce this dissertation. The most ob-
vious are my three advisors Garth Gibson, John Hartman, and actual thesis advisor Larry
Peterson. All have gone beyond the call of duty, and I would never have finished without
their great patience for my stubbornness and their tolerance for my flights of fancy. I
am grateful to my committee, David August, Doug Clark, Ed Felten, and Li-Shiuan Peh,
for all of their efforts. I would like to thank my family for (often unwarranted) financial
and emotional support. I would like to thank Sharon Bingham for being a part of my
life. I also very much appreciate all of the support that my friends have provided. If I
tried to enumerate the details of their contributions it would greatly increase the length
of this document, and hence this is avoided. Nevertheless, I am especially grateful to (in
somewhat random order) Mike Wawrzoniak, Georg Essl, Daniel Wang, Andrew Bavier,
Steve Muir, Steven Hand, Mic Bowman, Timothy Roscoe, Bo Brinkman, Scott Karlin,
Oliver Spatscheck, Robert Muth, Matthias Jacob, Carlos Ugarte, Fengyun Cao, Ruom-
ing Pang, Brent Chun, Stephen Edwards, Aleksey Golovinskiy, Jon Qiang Wu, Akihiro
Nakao, Martin Makowiecki, Reid Moran, John Wroclawski, Sanjeev “Scooby” Kumar,
Steve Kleinstein, Bill Rugolsky, Chris Jermaine, Mark Huang, Marc Fiuczynski, Chris
Demetriou, Andrew Hatchell, and Randy Nortman. Finally, I would like to thank Melissa
Lawson for acting as my surrogate mother whenever it seemed that I needed one.

This work was sponsored in part by NFS grant CNS-0335214.

v

Contents

Abstract .iii

1 Introduction 1
1.1 Background .1
1.2 Distributed Reactive Systems .3

1.2.1 Software Determinism .4
1.2.2 Communication Determinism6

1.3 Clock Synchronization .8
1.4 Contribution .9
1.5 Dissertation Plan .11

2 Related Work 13
2.1 Logical Event Clocks .13
2.2 SONET and SDH .14
2.3 Synchronous Overlays .15
2.4 Real-Time Scheduling .16
2.5 The Time Triggered Architecture .16
2.6 Temporal Logic .17

3 Metasynchronization 18
3.1 The Three Rules .19

3.1.1 Logical and Physical Synchrony20
3.1.2 Link Bandwidth and Latency .20
3.1.3 Link Initialization .20
3.1.4 Conservation of Frames .21

3.2 Timing Noise .21
3.2.1 Jitter and Drift .22
3.2.2 Buffering Allows Two-Timing23
3.2.3 Frequency Correction .24
3.2.4 Implementing Correction .25
3.2.5 Correction Frames .26
3.2.6 Inverse Buffer Symmetry .28
3.2.7 Measuring Drift .29

3.3 Self-stabilization .30
3.3.1 The Average Neighbor Algorithm30

vi CONTENTS

3.3.2 Comparison with Markov Processes32
3.3.3 Algebraic Model .33
3.3.4 Visualization of the Model .34

3.4 Robustness .36
3.4.1 Byzantine Immunity .37
3.4.2 Quantifying Fault Tolerance .38

3.5 Discussion: Requirements and Limitations39

4 Deterministic Sharing 40
4.1 Hierarchical Isolation .41

4.1.1 Model Specification .43
4.1.2 Dynamic Scheduling Example48
4.1.3 Static Scheduling Example .50

4.2 Discussion: Comparison with Conventional Systems51
4.3 Discussion: Implementing Isolation .54

5 Conclusion 56
5.1 Future Work .58

A The Metasynchronization Equations
and a Simple Example 59
A.1 Example .61

1

Chapter 1

Introduction

For many distributed computing systems, correct operation requires that calculations con-
sume input data and produce result data within precise timing constraints. Examples in-
clude critical infrastructure components such as automotive and aeronautical control sys-
tems, traffic control systems, and financial networks [60]. The correctness specifications
for such systems explicitly bound their response time to important external events, which
is at odds with the continuous and often unpredictable nature of communication between
distributed computing devices. Only within the constrained setting of synchronous inte-
grated circuits are mechanisms commonplace to enforce deterministic, meaning precisely
bounded, timing upon concurrent calculations. This dissertation introduces techniques to
efficiently impose such determinism upon a much wider range of computing systems.

1.1 Background

Comparing the timing of events in a system is impossible unless those events occur on
a common timeline, meaning that the system has a common clock. To guarantee that
timing constraints on events in a system are met, they must by scheduled against this
shared clock (timeline). The trouble is that implementing shared clocks becomes non-
trivial as physical system sizes and clock frequencies increase.

Synchronous integrated circuits contain such shared clocks, implemented by care-
fully distributing a timing signal. In these systems, computation is broken down into
blocks of logic, composed with intermediate latches to transmit data. Communication
of data by latch from one logic block to another is triggered by transitions in the timing
signal, and hence all communication and concurrent computations are aligned. A simple
synchronous integrated circuit illustration is provided by Figure 1.1.

This uniform scheduling of all computation and communication that is exhibited by
synchronous integrated circuits is henceforth referred to asuniform time divisioning. In a
synchronous circuit, as long as computations always complete between signal transitions,
and as long as the clock signal is received synchronously by all latches, then all events can
be precisely mapped onto a single logical sequence of discrete instants. Unfortunately,
a distributed clock signal can never be received in perfect synchrony. No physical wires
that transmit timing signals in a circuit can have exactly the same transmission delay,
because there exist no manufacturing processes with perfect tolerances. This means that

2 CHAPTER 1. INTRODUCTION

R Logic Adata Logic Bdata R data

clock

Figure 1.1: Simple illustration of a synchronous circuit, where communication between
blocks of logicA andB is governed by a single uniformly distributed clock that triggers
latchesR.

mapping events into discrete time is always merely an illusion. Similar examples include
the process of imposing binary values upon data — physical storage is inherently analog,
but is logically carved into bits. Uniform time divisioning is thus the name for the illusion
that time across a system is a sequence of discrete uniform instants.

For systems with correctness specifications that explicitly bound reaction time, cor-
rectness validation requires uniform time divisioning. Formal verification is a validation
process where correctness criteria are defined using formal logic, and system implemen-
tations are proven to meet these criteria. System validation can also include other ap-
proaches such as on-line testing and simulation, but formal verification provides the most
conclusive indication of correctness and is therefore very desirable [36, 51]. Formal ver-
ification of temporal correctness for a system, proving that timing constraints will hold
in the absence of physical system failure, is significantly more difficult when systems are
not uniformly time divisioned [37, 8].

Unfortunately, implementing uniform time division by synchronously distributing a
timing signal to many computing components across large distances is impractical, es-
pecially if the signal frequency is high. This has even become a problem for recent
integrated circuits. Clock frequencies and chip sizes have grown to the point where the
cost of clock distribution is becoming prohibitive. The overhead actually paid in com-
mercially successful systems provides a good indication that hardware designers find
uniform time division very valuable. In the DEC Alpha 21064 processor, 40% of the
power is dissipated by the clock distribution network alone [41].

Once clock distribution becomes too expensive, multiple clocks can be employed, cre-
ating what is called a globally-asynchronous locally-synchronous (GALS) system [85].
Each clock then generates the timing signal for only a part of the system, called a syn-
chronous timing domain, or simply adomain. Each domain may be independent, and
may even have different frequencies. For example, in a network of general-purpose
processors, each processor is likely equipped with its own clock. Because of physical
factors, perfectly stable oscillator devices, meaning those where the average frequency
is always equal to the actual frequency, do not exist [104, 70, 103]. This means that
no two clocks are ever perfect synchronous, even if they have nominally equivalent fre-
quencies. Hence, systems that span multiple domains and that require the assumption of
system-wide discrete time must employ additional measures to reconcile fluctuations in

1.2. DISTRIBUTED REACTIVE SYSTEMS 3

their clock frequencies and thereby regain uniform time divisioning and the associated
benefits like formal correctness verification.

Large uniformly time divisioned systems are uncommon. Among those which exist, a
prominent example is the SONET/SDH network, which forms the core of the global com-
munications infrastructure [105]. Another example is the Time-Triggered Architecture
for embedded hard-real-time systems [59]. Both of these examples achieve determin-
ism using specialized techniques that to not readily transfer to other applications. The
examples and their techniques are discussed with greater detail by Chapter 2. Consider
that the market for distributed computing systems with deterministic timing is potentially
vast. Many applications that use the Internet for communication today would prefer a
more deterministic platform, provided it can be had cheaply enough [25, 26, 83]. Promi-
nent examples include massive multi-player online games (MMOGs), where commercial
success depends upon the real-time qualities of the user experience [20].

1.2 Distributed Reactive Systems

Pnueli definedreactive systemsas those where the input and output timing of computa-
tions is determined by predictable external environment events to which the computations
must react [78]. The implementation of computations is not important. The distinguish-
ing property of reactive systems is the fixed timing of computations. Distributed reactive
systems are defined as reactive systems that span multiple domains and where computa-
tions in one domain must interact with those in other domains to meet timing constraints
[92]. In other words, timing constraints bind not only computations but also the commu-
nication between them.

More formally, let a computation beself-containedif all inputs are available at the
start of execution, meaning that execution can proceed without interruption until results
are produced. Let a computation bereactiveif it is self-contained and always terminates,
and hence has known bounds on its resource needs. For brevity, let reactive computations
also be calledreactions. Let the definition ofreactive systembe restated more carefully
as an iterating reaction over a sequence of input events, paired with sufficient resources
to ensure that results are available within a known delay for each input event. In other
words, a reactive system is one which “reacts” to its environment at the speed of the latter.
These deterministic properties guarantee that the consumers of computational results can
operate on a fixed schedule, never waiting.

Contrast reactive systems with “interactive” ones, where consumers must tolerate un-
known or unpredictable timing. Interactive systems operate at their own speed and not
that of the environment. Neither reactive nor interactive systems are assumed to termi-
nate, but they contain iterated computations which are individually assumed to. Obvi-
ously, only reactive systems are amenable to formal verification that they satisfy environ-
mental timing constraints. This is because formal verification is a definite process, and
nothing definite can be concluded about interactive systems; they have indefinite proper-
ties.

4 CHAPTER 1. INTRODUCTION

Reactive systems are convenient abstractions because they highlight determinism
while hiding the details of what hardware and software mix is used in their implemen-
tation. Provided that a reaction has the proper timing, it may be implemented purely as
hardware, as a program in a general-purpose instruction set, or as a shorter program in a
domain-specific instruction set. The simplest reactions are blocks of boolean logic com-
posed to create a larger circuit, an adder for example. The following sections discuss in
detail what is required from implementations to qualify as reactive systems.

1.2.1 Software Determinism

To guarantee reactive properties for computations in software systems requires that suf-
ficient resources are allocated to always ensure termination within associated time con-
straints and with correct results. A system can support a mixed workload of reactive and
non-reactive computations as long as the non-reactive computations cannot interfere with
those resources allocated to the reactions. Unfortunately, establishing the properties of
software computations prior to their execution is often non-trivial.

Consider a simple software computation that transforms a single body of input data
into a single body of output data of equal size, and that is known to terminate. Thistrans-
formational model of executioncan be formally described using the following notation:

fρ : x →τ x′ (1.1)

Read this to mean that a computationf transforms input datax into output datax′ over at
most some discrete number of cyclesτ , relative to a processor implementationρ. Assume
that a single memory region contains the inputx prior to computation execution, and the
outputx′ afterwards. Also assume that this memory region initially contains (and hence
that x contains) all necessary executable code forf . Treating code as a component of
input data allows a single number to capture the entire memory resource needs of the
computation. Thus, let the memory region which contains firstx and laterx′ beγ bits in
size, such that it precisely matches the data sizeγ = |x| = |x′|.

Given these assumptions, define theprofile for a computation as the resource quanti-
ties necessary to ensure execution until termination. A profile, a pairing of cycle count
and memory amount for a given processor implementation, is well specified by the fol-
lowing simple tuple:

(τ, γ)ρ (1.2)

To illustrate reactions and their profiles, consider the following example, specified using
the MIPS instruction set.

lw $1, 16($zero)
lw $2, 20($zero)
add $3, $1, $2
sw $3, 24($zero)
[lhs input word]

1.2. DISTRIBUTED REACTIVE SYSTEMS 5

[rhs input word]
[output word]

This program loads two words of input, adds them together, and stores the result. Data
and code occupy a contiguous region of memory, based at memory address zero, where
the input words are initialized with the input values for the program. Given the some-
what unrealistic assumption of single-cycle execution for all instructions, the profile is 4
processor cycles and 7 memory words.

Just as profile notation can be used to fully specify the resource needs of transforma-
tional computations, it can also be used to specify the availability of resources themselves.
Assume that resources in a software system have been uniformly time divisioned, mean-
ing that a discrete timeline has been imposed upon all processors. During each unit of the
timeline, the quantity of available resources at each processor is called aprovisionand is
specified by a profile. One provision exists at each processor during each unit of time,
and hence the frequency of provisions matches the time divisioning frequency.

This notation for provisions and profiles allows a concise redefinition of reactive sys-
tems as those where all computations are allocated provisions with matching profiles, and
where the provision frequency matches the maximum frequency of external events. Soft-
ware reactions are thus transformational computations that have been allocated sufficient
provisions. Because uniform time divisioning creates provisions at each processor with
the same frequency, assume that reactions which have slower event frequencies can be
allocated multiple sequential provisions and thus their execution frequencies matched to
their events.

Quantifying execution time using profiles assumes that processors have deterministic
timing for all operations. Specifically, it assumes that each processor measures time in
discrete units calledcycles, and that the cycle duration for each processor operation is
known. Unfortunately, this need for certainty in durations is at odds with modern proces-
sor architecture. Complex memory hierarchies and deep superscalar instruction pipelines
can exhibit very unpredictable timing [71, 77]. Establishing timing bounds for some
architectures may thus require conservative assumptions and result in poor efficiency.
However, the picture need not always be so bleak. Examples exist where careful manage-
ment of dataflow within a complex memory hierarchy has resulted in both predictability
and improved performance [87].

Even when the durations of processor operations are assumed to be deterministic,
establishing the profile for arbitrary software computations can be difficult or sometimes
impossible. For example, the use of Turing-complete programming languages can greatly
complicate the evaluation of computation profiles, as termination for these languages is
undecidable. Notice that any computation can be forcibly made transformational by sim-
ply interrupting it at the time that results are needed, then taking as results whatever data
it has managed to produce. Value correctness for these results is obviously not guaran-
teed by this method. Verification that computations are reactive requires guaranteeing
proper termination within the profile specified resource budget. This issue has received a
vast amount of research effort, and is generally referred to as worst case execution time
(WCET) analysis [49, 77, 16, 76, 43, 71, 91, 74].

6 CHAPTER 1. INTRODUCTION

An alternative approach is to restrict the software programming model to ensure that
computations are always deterministic. For example, boolean circuits of finite size form
a model of computation that captures all decidable languages [102]. The intuition here
is that any terminating computation on inputs of bounded size (i.e. the simulation of
a Turing machine decider) can be implemented as a finite boolean circuit. Specialized
languages have been developed with such restrictions for the purpose of designing re-
active computations [37, 102, 2, 50]. Specifically, Esterel [17, 18], Lustre [45], and
Signal [44] form a family of “synchronous languages”, which reflect what is called the
“synchronous/reactive” model of computation [46]. These languages have had commer-
cial success with safety-critical systems such as avionics, automotive control, and nu-
clear power plants [15]. Indicative of the nebulous boundary between reactive hardware
(boolean circuits) and software, systems specified in these languages can be compiled
into either form.

The primary focus of the synchronous languages is centralized systems where com-
munication between concurrent computations is instantaneous [14]. Extension to dis-
tributed architectures is straightforward, provided that communication is synchronous
[22]. In short, communication channels with non-zero latency can be represented as mul-
tiple stages of computation, each of which simply implements the identity function. An
alternate but equivalent abstraction is fixed-length first-in-first-out queues for each com-
munication channel.

Popular alternatives to the synchronous languages include StateCharts and its deriva-
tives, which provide a graphically oriented framework for specifying reactive systems
[48, 6]. Also available is Charon, a newer language designed around the reactive for-
malisms of Aluret al. [1, 4, 3]. Other options for creating reactive components include
hardware/software co-synthesis systems, such as Chinook [24].

1.2.2 Communication Determinism

For a uniformly time divisioned reactive system, communication can be abstracted as a
sequence of reactions that apply the identity function to their data. The length of this se-
quence is fixed over time and is determined by the latency of the communication channel
in units of shared discrete time. An alternative but equivalent abstraction for commu-
nication channel is FIFO queues of static length and width, matching the latency of the
channel and the quantity of data to be exchanged, respectively. These abstractions apply
equally to communication between reactions themselves as to communication between
reactions and devices that interface with the external environment. The abstractions are
also indifferent to the mixture of hardware and software used in the implementation of
a system. This should seem natural, since software reactions (provisioned transforma-
tional computations) in a uniformly time divisioned system are the software analog to
computational logic blocks in synchronous circuits, and are computationally equivalent.
An simple such system is illustrated by Figure 1.2.

This dissertation assumes that sensor and actuator devices are logically equivalent
to one-ended or one-sided hardware reactions, meaning ones that behave like reactions

1.2. DISTRIBUTED REACTIVE SYSTEMS 7

A B

data

clock

Figure 1.2: Illustration of two processors in different independent timing domains, but
which operate synchronously like blocks of synchronous logic (see Figure 1.1) while
communicating over potentially large distances. Each dark square indicates a data result.
Using the techniques proposed in this dissertation, the shared clock signal is not actually
distributed, but instead independently calculated by each processor.

where either the input data or the output data lies outside the system. These device reac-
tions must share the same uniform discrete timing as all other system reactions. Device
reactions are assumed to support arbitrary device functionality, provided that the rate of
input or output (as appropriate) and the data quantities are deterministic. Most common
devices can be categorized as converters between continuous and discrete data streams
(analog and digital). Such processes are naturally deterministic, involving fixed sample
frequencies and fixed sample sizes.

For pure hardware systems, meaning those that have only static computations im-
plemented directly in logic and no programmable processors, implementation of these
communication abstractions is straightforward. At the granularity of individual domains,
integrated circuit components are readily available that correspond precisely with the
abstraction semantics, such as latches and FIFOs. At larger granularities, there are no
commonly available “off-the-shelf” solutions. There exist several time divisioned com-
munication protocols, but their timing is either not uniform or it is not trivially conscripted
into the role of also time divisioning computations. Addressing this shortcoming is a pri-
mary goal of this dissertation, and is addressed in detail by Chapter 3. The drawbacks of
existing approaches is discussed by the next Section and by Chapter 2.

For software systems, meaning those with programmable processors, the transfor-
mational execution model already includes communication resources in profile specifi-
cations implicitly. Because transformational computations neither consume nor produce
intermediate data, everything is captured by the profiled memory resources and need not
be otherwise distinguished. The actual communication or exchange of data occurs be-
tween instants on the shared timeline.

The input data for each reaction is really just a union of received communication
data and the program code for the reaction, as specified by the preceding section. The
“persistent state” for a reaction, meaning the data that a given reaction needs during each
iteration of its execution, is best thought of as communication data between earlier and
later instances of that reaction. Results of reactions must similarly include all data that is
to be exchanged with other reactions or with devices. In this manner, communication is
logically instantaneous from the perspective of reactions.

8 CHAPTER 1. INTRODUCTION

1.3 Clock Synchronization

Faced with the problem that a distributed system spans multiple timing domains, one ap-
proach to establishing a shared definition of time is to align each domain with an reference
clock that lies external to the system. By definition perfect synchronization is impossible,
as explained by Section 1.1. The remaining result is approximate synchronization.

Synchronizing multiple clocks to a single absolute (Newtonian) time reference is
calledclock synchronizationor network synchronization. This process continuously cor-
rects the drift between the local clocks in each domain and a centralized reference (such
as UTC via GPS) with bounded accuracy. Clock synchronization has been exhaustively
researched and is well understood [5, 72, 34, 33, 65, 88, 94, 99, 97]. Implementations
such as NTP are widely deployed [81, 82].

Clock synchronization is an example of a distributed algorithm to establish global
shared state in a distributed system. The termdistributed consensusis commonly used to
categorize the goals and properties of this and similar algorithms. Important limitations
of distributed consensus have been discovered. Most relevant to this discussion is that
distributed consensus becomes both highly complex and expensive if the system must
tolerate the failure of physical components or of computations. The important “FLP re-
sult” showed that even a single failure is sufficient to always prevent consensus in an
asynchronous system [40, 32]. Fortunately, this great weakness can be overcome in
practice, because manufacturing tolerances bound the maximum frequency difference
between nominally equivalent oscillators that are functioning properly. Expressed more
formally, domains with nominally equivalent oscillators are merely plesiochronous, only
appearing asynchronous when they have physically failed. However, if components can
fail in a methodically destructive or malicious manner, much additional complexity is in-
troduced. Such extraordinary faults are referred to asByzantine, after Lamport’s famous
Byzantine generals analogy [66]. Note that Byzantine failures need not always imply
attack by an adversary — they are known to result from simple programming errors.

Clock synchronization is a continuous process. Distributed consensus must be re-
peated at regular intervals to compensate for changing oscillator frequencies. Those syn-
chronization implementations that are robust to Byzantine failure are often also burdened
by the strong assumption that all clocks in a system are initially synchronous. Obviously
such an assumption is impractical, especially at large scales. A recent approach by Daliot
et al. addresses this by abandoning the use of an external reference [27, 28]. Instead,
consensus is achieved for a value derived from the clocks inside the system. This relax-
ation allows for significant performance improvements. However, it does not address the
cost of consensus itself.

An alternative approach is to eschew absolute time and focus on aligning the rate at
which time appears to pass within each domain, and thereby ensuring that all domains
experience a common timing signal. From this perspective, the frequency fluctuations
caused by the environment can be treated as noise that obscures this shared timing signal,
not unlike noise on communication channels. Just as communication signals can be re-
covered despite noise by leveraging redundancy in data encodings [100], a shared timing
signal can be recovered by leveraging oscillator redundancy. In a system with multiple

1.4. CONTRIBUTION 9

oscillators that all provide approximate measure of the same value (physical time), and
where differences between their approximations are independent, combining their mea-
surements can lead to a better approximation. This dissertation proposes techniques that
leverage these intuitions.

1.4 Contribution

This dissertation makes a contribution in two parts. It proposesmetasynchronization, a
technique to uniformly time division all resources in distributed systems that span mul-
tiple timing domains. It also proposeshierarchical provisioning, an execution model
that leverages uniform time divisioning to improve the functionality of and simplify the
infrastructure for general-purpose distributed computing.

By focusing exclusively on uniform time divisioning without regard for clock syn-
chronization, metasynchronization can be significantly more efficient and robust than
systems which require the latter (possibly to implement the former). Unlike clock syn-
chronization, uniform time divisioning is not inherently centralized and can be guaranteed
without agreement on absolute time.

THESIS (part 1 of 2): Distributed computing and communication resources
with independent local timing can be uniformly time divisioned in a com-
pletely decentralized manner.

Metasynchronization partitions time into a uniform sequence ofmetacycles, with du-
rations larger than the cycles of any local oscillator. Metacycles cannot map one-for-one
with individual oscillator cycles, as this would preclude tolerating any natural frequency
fluctuations. Instead, metacycle synchronization is achieved at a coarser granularity.

The envelope within which oscillator frequencies vary is usually specified by the os-
cillator manufacturer. Improving production techniques are constantly reducing the cost
of greater oscillator precision. For example, a common quartz oscillator may experience
frequency variations of up to 10 parts per million (ppm), meaning that it stays within
0.001% of its nominal frequency under regular operating conditions [104]. To illustrate
this further, consider an oscillator with frequency specification of100 MHz ± 1000 Hz.
When functioning properly, this oscillator may produce signals between999, 999, 000 Hz
and100, 001, 000 Hz during any given second. The exact frequency function is assumed
to be unpredictable.

For each oscillator, define itsnominal durationas the number of local cycles (and
fractional cycles) that would occur during every metacycle if the oscillator were operating
at precisely its nominal frequency. Define thelogical durationfor each oscillator as the
minimum number of local cycles that are guaranteed to occur during a metacycle. In
other words, the logical duration is the nominal number of cycles which occur during a
metacycle, minus the maximum variation in cycles over that period. Finally, define the
the physical durationfor each oscillator to be the actual number of local cycles which
actually do occur during a specific metacycle. This value changes over time but is always
greater than the logical duration.

10 CHAPTER 1. INTRODUCTION

Metasynchronization is achieved independently for each oscillator by depriving com-
putations of allextracycles beyond the logical duration. Hiding extra cycles from compu-
tations in this manner makes oscillators appear to always operate at precisely their logical
frequency. Although discarding extra cycles may initially seem inefficient, the tiny range
of frequency error for actual oscillators means that cost in practice is usually negligible.
The exact number of extra cycles depends upon the physical duration and hence varies
with time. Accordingly, the duration of metacycles is calculated independently for each
domain and reconciled over time with the changing number of extra cycles. To calcu-
late this number, each domain in the system passively observes its neighbors to discover
changes in the relative timing between them and thereby to estimate local fluctuations
and to correct for them. When the extra cycle estimation is successful in all domains, the
metacycle frequency at each oscillator will match that of its neighbors in the network,
and the system as a whole is said to bemetasynchronous.

Because extra cycles cannot be directly measured and instead are only estimated, lo-
cal fluctuations cannot always be accurately corrected. However, theaverage neighbor
algorithmpresented in Chapter 3 can guarantee that local fluctuations are temporary and
can be hidden from higher levels. Such completely decentralized control processes are
commonly referred to asself-stabilization[31, 61, 42]. In this manner, metasynchroniza-
tion reliably provides the illusion of synchronous discrete time for the entire system.

For further illustration, consider the following simple example. Suppose that two
oscillators are able to observe one another and to calculate differences in their frequen-
cies over time. Let both oscillators have equal frequency specifications of100 MHz ±
1000 Hz. Let the metacycle frequency be1 KHz, such that both logical durations are
999, 999 cycles. During each metacycle there can occur between0 and2 extra cycles
at each oscillator, depending on the changing physical durations. The goal of meta-
synchronization is that, from the perspective of each domain, frequency equality can be
guaranteed such that999, 999 local cycles occur for each999, 999 cycles at the other os-
cillator. This equality for granularities larger than single cycles is the guiding concept
behind metasynchronization. The granularity must be larger than one to allow for fluctu-
ations. In fact, the degree to which the granularity must be larger is a direct function of
the maximum fluctuation amount.

By using a self-stabilizing process, metasynchronization completely avoids the dilemma
of distributed consensus and can be implemented both more efficiently and more robustly
than clock synchronization. Each timing domain can tolerate the simultaneous mali-
cious (Byzantine) failure of multiple neighboring domains without risk of disrupting its
own synchronization to the metaclock. The only resources sacrificed as overhead to the
metasynchronization process are small receive buffers for each link. More detailed per-
formance and robustness evaluation is found in Sections 3.4 and 3.5.

As discussed by Section 1.2, practical techniques to impose uniform time division-
ing allow straightforward implementation of large distributed reactive systems. However,
uniform time divisioning can also be useful for general-purpose distributed computing,
where resources are shared by arbitrary untrusted computations. To support reliable exe-
cution under such circumstances, systems must isolate computations from one another.

1.5. DISSERTATION PLAN 11

Virtualization is a popular and conceptually simple isolation technique, where a single
real execution environment emulates multiple copies of itself. Computations in different
execution environments are limited in their ability to interfere with one another because
the actual sharing of resources is hidden from them. On personal computers, for example,
hypervisor virtualization allows multiple unmodified operating systems to transparently
share a single physical machine [12, 30]. Virtualization can be implemented with vary-
ing degrees of fidelity, and is perfect only when computations are unable to detect any
differences between emulated and actual execution environments. A perfectly virtualized
processor must have performance properties indistinguishable from a physical one, for
example.

THESIS (part 2 of 2): Uniformly time divisioned software systems can sup-
port perfect virtualization, and thereby allow resource sharing by arbitrary
computations with deterministic performance.

The hierarchical provisioning execution model is introduced by Chapter 4 to prove
this claim, and is based on the simple provision resource model defined by Section 1.2.1.
The intuition behind the model is that a single provision can serve as ahost for nested
provisions, each of which spans only a subset of the host resources, including processor
cycles. In turn, this allows an arbitrary collection of computations to be encapsulated
within a singleroot provision, which conveniently corresponds to the resource semantics
imposed by uniform time divisioning.

Because it provides perfect virtualization, the model preserves execution determinism
for all provisions in the hierarchy, meaning that the timing for all execution preemption
is known in advance. This enables all computations to implement any scheduling policy
they wish by creating nested provisions for their subcomputations.

The root provision is guaranteed by the model to be executed with equal resources
during each system time step. The iterated execution timing of nested provisions de-
pends upon the scheduling policies imposed by their host computations. In other words,
the model only guarantees deterministic timing for the root — to support deterministic
time for guest computations, reactions for example, requires that all computations in the
hierarchy on the path to the root schedule them deterministically (statically).

Contrast this scheduling flexibility with the centralized policy arbitration that is neces-
sary in systems with traditional operating system kernels and privileged processor modes.
Implementing the execution model and thereby enabling perfect virtualization requires
isolation mechanisms that enforce provisions. Chapter 4 makes the case that such mech-
anisms can be efficiently implemented in hardware, which implies that hierarchically
provisioned systems have no need for privileged software of any kind.

1.5 Dissertation Plan

The rest of this dissertation is organized as follows. Chapter 2 reviews related work,
providing helpful context for the technical material of later chapters.

12 CHAPTER 1. INTRODUCTION

Chapter 3 introduces the metasynchronization technique, and evaluates its feasibil-
ity. The technique itself is based on three simple rules that govern the computation and
communication of each processor in the system. However, to obey the rules requires
self-stabilization of oscillator frequencies that naturally vary over time. One specific
such algorithm, called theaverage neighbor algorithm, is presented in detail. Meta-
synchronization imposes negligible communication overhead by design, and the average
neighbor algorithm has a fixed small computational footprint. Memory for communica-
tion buffers is the most significant overhead expense imposed by the system, and also
the most complex to predict. Simulation results are provided to show that the expected
memory footprint is also minimal under practical conditions.

Chapter 4 introduces the hierarchical provisioning execution model, which allows de-
terministic sharing of resources by arbitrary untrusted distributed software applications.
This model is first formally specified, and then contrasted with models used by con-
ventional systems. Examples are provided to illustrate the practicality of the model for
common tasks, and implementation strategies are discussion.

Chapter 5 summarizes the contributions and concludes with speculation about promis-
ing directions for future work.

13

Chapter 2

Related Work

There have been many efforts to impose and leverage synchrony for systems larger than
integrated circuits. A discussion of those efforts most relevant to this dissertation follows.

2.1 Logical Event Clocks

Some applications are indifferent to physical time, but still depend on a time reference to
manage relationships between their components. Instead of dealing with the complexity
of clock synchronization, these applications can define time in a purely logical manner,
independent of physical time, by focusing only on the ordering of application events.

Lamport [62] introduced event-based time to distributed systems and defined thehap-
pened beforeevent relation to partially order events. Given any discrete measurement of
time, it is not generally possible to impose a total ordering on all system events. Processes
in a distributed system operate concurrently, meaning that events may occur simultane-
ously within multiple processes. Thus, the happened before relation can impose only a
partial order. Lamport also defineslogical clocksas those relations between simulta-
neous events which extend happened before to totally order events, possibly arbitrarily.
There can be multiple logical clocks for a system, as only the partial ordering is uniquely
determined by system events.

Metasynchronization can be thought of as establishing logical time, in that it does
not rely on any external time reference and hence is in principle independent of real-time.
Any uniform time divisioning process naturally must impose a partial event ordering upon
the concurrent events in a system. However, unlike creation of a purely logical clock,
metasynchronization does approximate real time. The accuracy of this approximation is
a function of the stability of the oscillators in the system. Further, metasynchronization
spans all components, including the sensor and actuator devices that interface with the
real world, allowing physical time constraints to be met.

Isotach networks are a particularly interesting approach to providing logical clocks,
specialized for tightly coupled parallel computers [89]. A key feature of isotach networks
is that the logical timing of communication can be precisely controlled. The sender of
a message can control the logical time at which the message is received. Isotach logi-
cal time is defined as a tuple of integers. One of these integers reflects a “pulse” count,
which is globally shared, and is quite similar to the metacycles imposed by Metasynchro-

14 CHAPTER 2. RELATED WORK

nization. However, isotach pulses are technically independent of physical time; they are
established with explicit communication. Furthermore, the current definition of isotach
networks is intolerant of any component failures.

2.2 SONET and SDH

The Synchronous Optical Network (SONET) protocol [105], and the closely related Syn-
chronous Digital Hierarchy (SDH) used outside the US, form the foundation protocols for
most of the global telecommunications infrastructure. As alluded to in Chapter 1, these
protocols impose uniform time divisioning upon a communication network. Specifically,
SONET is designed around a process calledsynchronous multiplexing, which depends
on the synchronous time divisioning of communication to coordinate the intersection of
multiple communication links at each node in its network. In brief, data is encoded on
each network link in such a way that “frames” of data can be switched between the links
intersecting at a node based solely on time, not based on any in-band signals.

Switching SONET frames occurs at 8KHz on all nodes, meaning that frames are read
from all network links during each interval of 125us. The data within these frames is
then demultiplexed, possibly reordered across multiple frames, and finally multiplexed
and transmitted again. This process only works if exactly the right amount of data to
form a frame is available at each node during each interval. If an upstream node were
to transmit slowly and send less than the expected amount of data during an interval, the
time-based demultiplexing will fail and result in communication failure.

To synchronize communication, SONET depends on both the distribution of a single
“master” clock signal and on synchronization of local clocks at each node. This process
is similar to making a single clock available across a digital circuit, but is adapted for the
physical scales of a global system. Each network has a clock that is transmitted across
the system together with data. This clock governs the time divisioning of resources.

Interestingly, the synchronization is imposed only on the communication between
SONET components; it is invisible to the end-users of the system. In fact, the protocol in-
cludes facilities to track the timing of user communication channels, called “tributaries”,
allowing them to have timing independent of the SONET system.

Timing in SONET is highly complicated and therefore some of the details must be
omitted here. The primary goal is to achieve the level of reliability required of pub-
lic telecommunications infrastructure, generally referred to as “five nines” of reliability,
meaning that the system should be usable 99.999% of the time.

Local clocks help this by providing timing redundancy. Each node has a highly ac-
curate and reliable local clock, combined with dedicated communication bandwidth on
each link for a clock synchronization protocol. To mitigate the cost of expensive accurate
clocks, there are multiple tiers of clock quality. The goal of clock synchronization is to
allowing for reliable operation during periods where communication fails or reference
clocks become unavailable.

SONET experiences a significant drawback by synchronizing to a single timing ref-
erence, which is called the “mid-span meet” problem. The issue is that each commercial

2.3. SYNCHRONOUS OVERLAYS 15

telecommunications provider is inclined to use a different timing source for its own net-
work. This greatly complicates the seamless exchange of data between independently
operated networks, and a surprising amount of the protocol standard is dedicated to its
resolution. The metasynchronization techniques proposed in this dissertation avoid this
problem entirely by being fully decentralized.

Although SONET is a highly successful architecture, being used nearly universally
in global telecommunications, it is too “brute-force” to transfer well to other applica-
tion domains and different time scales. SONET synchronization is expensive, especially
when redundant high quality clocks are needed for robustness. Metasynchronization pro-
vides an alternative algorithmic approach, which is highly robust while tolerating inferior
clocks. Thus, it can be deployed on a larger set of implementation platforms. It can also
be tuned to different synchronization granularities, which can allow application at both
small and large scales.

2.3 Synchronous Overlays

A synchronous overlay tries to provide higher level applications with the illusion of log-
ical synchrony, while being implemented using asynchronous packet forwarding. The
goal is not meeting physical time constraints, rather taking advantage of the reduced con-
currency management complexity that is enabled by synchrony. This is only a weak form
of synchrony as it can be used to organize applications, but not meet real-time constraints
or optimize resources (e.g. synchronous circuits need no communication buffers). In fact,
this weak synchrony is in principle equivalently powerful to asynchrony [23].

A number of research efforts have addressed this issue from various angles [10, 90,
98, 53, 19]. However, all of these approaches have significant drawbacks. The greatest
of these is poor fault tolerance, specifically intolerance of Byzantine failures. The only
exception is a class of “pulse-based” synchronization techniques, where a self-stabilizing
approach is used to combat Byzantine behavior [11, 35, 28]. However, even these system
suffer from significant communication overhead.

All of the frameworks rely on some form of “control” or signaling messages between
components for synchronization, and hence face the risk that this signaling is performed
incorrectly by a component as the result of programming error, failure, or malicious in-
tent. Dealing with such Byzantine behavior is proven to be very complex and expensive,
which likely explains why none of the cited systems do so. Even if faults can be tol-
erated, scalability is troublesome. Broadcast causes control message volume to grow
non-linearly with system size.

Metasynchronization can address both the possibility of traitorous behavior and com-
munication overhead scaling by entirely avoiding the use of control messages. Instead,
the implementation requires that nodes in a network can directly witness the timing be-
havior of their neighbors — which rules out layering as an overlay above networks such
as the Internet. Avoiding explicit messages is critical, as Awerbuch [10] has formally es-
tablished a significant minimum communication overhead for addressing this problem at

16 CHAPTER 2. RELATED WORK

the overlay level. The immunity of metasynchronization to Byzantine faults is described
more precisely in Section 3.4.1.

2.4 Real-Time Scheduling

Systems are commonly calledreal-timeif their correctness depends both on computations
producing expected results and on these results being available at expected times. Such
timing constraints, ordeadlines, are said to behard if failure of the system can cause
negative consequences in the physical world. The field of real-time research obviously
shares many of the stated goals of this dissertation. To evaluate the details of the rela-
tionship, consider that real-time systems can be divided into two classes based on their
approach to scheduling. When applications that share a system compete for resources,
depending on the scheduler, this may result in conflicts or contention. Conflicts can then
either be prevented from occurring, or they can be resolved dynamically once they occur,
hence two categories [21].

A great deal of research has focused on “real-time scheduling”, which generally refers
to the dynamic resolution of conflicting demands for resources [75, 9, 54, 101, 106]. This
approach is applied primarily to centralized or non-distributed systems because coor-
dinating a dynamic scheduler across long-latency communication links is impractical.
Once system state information arrives at a scheduler from far away, it is likely already
out-of-date. However, dynamic approaches cannot be avoided entirely in a general pur-
pose system, since they are necessary for efficiently dealing with those applications that
have unpredictable resource needs.

Instead of dynamically resolving conflicts, an alternative approach is to statically al-
locate resources and to restrict the set of applications accordingly with some admission
control policy [55]. This approach corresponds most obviously with uniform time divi-
sioning, where resources are naturally partitioned into units that can be easily preallo-
cated.

2.5 The Time Triggered Architecture

An existing system that illustrates the static approach to the construction of real-time
systems is the Time Triggered Architecture (TTA) [59, 57]. The TTA is intended for high-
dependability environments, also known as hard-real-time or safety-critical. It provides
a set of techniques for building distributed systems in a highly static manner to allow
for strong confidence that all deadlines will be met. The hardware is assumed to be
customized for and dedicated to an application.

A combination of clock synchronization and dynamic adjustment of clock rates is
used to create a global time reference. The TTA approach has many similarities with
the metasynchronization approach, in that it also seeks to identify and isolate oscillator
variations [58]. However, the TTA approach is less concerned with scalability and hence
adopts a centralized approach to identifying frequency variation. The TTA is synchronous

2.6. TEMPORAL LOGIC 17

at the granularity of “macroticks”, which correspond to metacycles in this dissertation.
A subset of the nodes in the system are categorized as “rate masters” with high-stability
oscillators, which together participate in traditional clock synchronization. Other nodes
are divided into “clusters”, such that each cluster contains a master. Non-master nodes
then derive their own rate changes by adapting to the rate of the master, which they
can measure directly through communication. This is basically the same method used by
metasynchronization on all communication links. Metasynchronization has the advantage
over this system of being completely decentralized and self-stabilizing, which allows it
to avoid the need for high-stability oscillators, to tolerate simultaneous node failures, and
to avoid the need for any traditional clock synchronization.

2.6 Temporal Logic

Temporal logic is a form of modal logic which has been specialized for reasoning about
relationships in concurrent systems, specifically the change in truth of assertions over
time [37, 64]. Temporal logic operators includesometimesandalways, in addition to
those of traditional boolean logic. These operators inherently assume that systems are
synchronous, that a single measurement of time applies everywhere in a system.

Temporal logic is widely used in specifying and verifying the correctness of applica-
tions for synchronous systems. By making synchrony more practical for a wider range of
applications, metasynchronization helps to enable wider use of temporal logic, hopefully
leading systems to become more correct and reliable.

18

Chapter 3

Metasynchronization

“... if a distributed system is really a single system, then the processes must
be synchronized in some way.” — Leslie Lamport [63]

The aim of metasynchronization is to temporally partition both the computations and
the communication of an arbitrarily large distributed system at a fixedmetaclockfre-
quency. This process is complicated because no two independent sources of time ever
agree perfectly, and because uniformly distributing the signal from a single timing source
is neither robust nor scalable.

This chapter introduces a set of techniques to enable synchronization analogous to
that of synchronous integrated circuits, using only independent imperfect timing sources,
and at arbitrary scale. Metasynchronization works by having each independently timed
domain in the system locally identify and correct timing irregularities by watching incom-
ing communication from neighboring timing domains. For simplicity, timing domains are
referred to as processors below, although there is no formal requirement preventing sev-
eral processors from sharing a time source, nor a requirement that these processors be
software programmable.

Although processors have direct access only to their own oscillators, they also have
indirect access to those of neighboring processors, via data signal timing across shared
communication links. Given properly structured communication, processors can compare
their own frequency with that of their neighbors to measure differences between them.
Unfortunately, even once a processor has established that a difference in timing exists
between itself and a neighbor, it cannot know if its own timing or that of the neighbor has
changed, or both. Similarly, if a processor has multiple neighbors, the timing difference
may vary for each one.

It turns out that a simple self-stabilizing solution, referred to here as theaverage
neighbor algorithm, allows each processor to adjust its frequency over time to match that
of its neighbors, with the result that global synchrony emerges. As the name suggests,
the algorithm involves each processor adapting to a single hypothetical average neighbor,
which is the aggregation of its actual neighbors. Section 3.3 shows that this simple decen-
tralized technique causes rapid frequency convergence regardless of network topology.

The overhead costs of metasynchronization depend on how rapidly synchronization
is achieved. Only negligible bandwidth is sacrificed, but each communication link re-
quires dedicated buffering at the receiver, which imposes both memory and latency costs.

3.1. THE THREE RULES 19

Because stabilization is normally very rapid, this overhead can be kept to a minimum in
practice.

The algorithm is implemented independently at each processor using only local infor-
mation, calculating frequency adjustments at regular steps on the timeline of metacycles.
This discrete behavior allows the frequency state of each processor at a given time to
be represented as a simple linear equation over its previous state, and hence the entire
network as a system of such equations. This facilitates mathematical reasoning about the
system and formal verification of the algorithm properties, such as resistance to failure
and frequency stabilization time.

3.1 The Three Rules

For the sake of precision, formally define the desired effect of metasynchronization as
follows. Let anetworkbe a distributed system ofprocessors, which are connected using
bidirectional point-to-pointlinks. Let neighborsbe those processors which share links.
Processors communicate by sending messageframesto their neighbors, the size of which
is determined by the corresponding link bandwidth. Formalize this definition of proces-
sorsP and their neighbor setsηi as follows:

P = {pi | processor(i)} (3.1)

ηi = {pj | link(pi, pj)} (3.2)

Let a network be metasynchronous when communication between any pair of proces-
sors coincides with the communication between all others. This divides communication
into metacycleswhich are perceived equally by all processors, and thereby establishes a
sharedmetaclock— a global logical ordering of communication events. The following
rules are obviously sufficient to impose this synchrony:

RULE symmetry: Communication between any neighboring processorsA
andB must occur as a sequence of symmetrical message exchanges. At any
time, the number of frames sent fromA to B must (approximately) equal the
number sent fromB to A. The difference may temporarily vary by a single
frame.

RULE yoke : Frames must be sent in equal number by a processor to all
of its neighbors. For a processorA with neighborsB andC, the number of
frames sent toB must equal, again within single frame tolerance, the number
of frames sent toC.

RULE isochrony: Frames must be sent by each at a constant frequency
(isochronously).

20 CHAPTER 3. METASYNCHRONIZATION

3.1.1 Logical and Physical Synchrony

Define a network to belogically synchronousif all processors observe an equivalent num-
ber of frame exchanges with their neighbors. The symmetry rule is sufficient to create
logical synchrony for two processors. Applying only symmetry between all neighboring
processors would establish independent shared orderings for each link. Processors would
not be able to reason about timing relationships with non-adjacent processors, however.
The yoke rule aligns orderings across the network, creating an eternal sequence of atomic
steps, which are referred to here asmetacycles, such that processors communicate with
each of their neighbors during each metacycle.

Logical synchrony is unfortunately not very useful in practice. Symmetry and yoke
alone are intolerant ofcommunication faults, meaning circumstances where a link or pro-
cessor becomes unable to transmit frames, or where frames are lost. Without an isochrony
constraint, communication faults result instarvation, where all processors may wait for-
ever for frames and the system as a whole will cease to communicate. Specifically, the
destination processors for any missing frames cannot known when to expect them, and
thereby will interrupt the global frame exchange cycle. This need for physical synchrony
to tolerate failure is well understood and holds for all concurrent systems:

“In programming asynchronous multiprocess systems, the customary ap-
proach has been to make process synchronization independent of the exe-
cution rates of any components. This requires synchronization algorithms in
which one process must wait for another to do something before it can pro-
ceed. In distributed systems, this means waiting for a frame from the other
process. These time-independent algorithms cannot be fault-tolerant because
a process could fail by doing nothing, and such a failure manifests itself only
as a reduction of the process’s execution rate.” — Leslie Lamport [63]

3.1.2 Link Bandwidth and Latency

Metasynchronization only imposes rules on communication; it does not send any data
itself. Frames are simply fixed-size fixed-rate containers for untyped higher level data.
Metasynchronization requires that links be deterministic, with fixed latency and fixed
bandwidth. This allows each link to transmit a fixed size frame during each metacycle.
To maximize the bandwidth available for payload data, choose the frame size for each
link to match the available raw bandwidth. Assume that either sufficient payload data is
always available, or that shortfalls can be filled in with zeros (or random filler).

Importantly, because frames are of fixed size, they need not contain any signaling
overhead! Receiving processors need only count bits to know when a complete frame has
arrived, and thereby also know when the next frame starts.

3.1.3 Link Initialization

Before the synchrony rules are applied, each processor must performlink initialization
to fill the delay-bandwidth product of each link, that is, “priming” them with frames.

3.2. TIMING NOISE 21

This bootstrapping relaxation of the synchronization rules is necessary to fully utilize
bandwidth. If the rules were applied immediately to empty links, each link would be
limited to a single frame in each direction per round-trip time, a significant performance
limitation. Because the rate of frame exchanges must be equivalent for all links (yoke
rule), the throughput of all links would be further bounded by the maximal link delay —
the link with the longest propagation delay must finish its frame exchange in lock-step
with all other links.

During the initialization phase, processors transmit frames but perform no receive
processing. This process addresses the inequality between links with differing propaga-
tion delays, and allows longer links to have more frames “in flight” than shorter links.

As explained in Section 3.2.2, received data on each link is held in buffer memory
prior to consumption by the destination processor. These buffers are said to bebalanced
when precisely half filled with data. Processors should begin processing received frames
for each link once balance is achieved. It is therefore unnecessary for processors to know
link capacities (delay-bandwidth products) to perform initialization.

3.1.4 Conservation of Frames

Once links are full, the rules are imposed and the number of in-transit frames for each link
remains constant, imposing a “law of conservation of frames”. When a frame is removed
from a link in one direction, another must be added in the opposite direction.

For readers familiar with the Internet protocols, this constraint is quite similar to the
desired equilibrium behavior of TCP [93]. To ensure robust behavior during congestion,
conservation of packets is referred to asself-timingby the packet networking commu-
nity [52]. The goal is matching the generation rate for packets on a connection to the
consumption rate.

3.2 Timing Noise

If processors were able to perfectly obey the isochrony rule, communication faults could
be easily identified and tolerated. At the end of each metacycle, if a frame has not ar-
rived on each link, processors expecting the missing data can assume a fault has occurred
and simply abandon the link in question to maintain communication with their other
neighbors. Unfortunately perfect isochrony is impractical and actual metasynchroniza-
tion fault-tolerance is more complex.

Assume that each processor has access to an independent localoscillator, from which
both its communication and computation frequencies are derived. The wordclock is
henceforth intentionally avoided, to highlight that only frequencies and durations are
needed for timing, not any specific counter values that refer to absolute time.

Despite nominal isochrony, the waveform produced by any oscillator will vary natu-
rally over time due to effects from its physical environment, such as temperature fluctu-
ations. Manufacturers of oscillators generally publish these performance properties for
their products [70]. Let thenominal frequencyof the oscillator for each processori be

22 CHAPTER 3. METASYNCHRONIZATION

Time

F
re

qu
en

cy

Nominal Actual

Figure 3.1: An example visualization of frequency variation over time. If frequency
variation exceeds the light envelope and strays into either dark region (too fast or too
slow), than the associated oscillator is defined to have failed. The size of the envelope is
specified by the manufacturer.

defined asωnom
i cycles per second. To account for frequency noise over time, allow theac-

tual frequencyfor an oscillator to wander within a bounded envelope around its nominal
frequency:

ωact
i (t) s.t. (ωnom

i − εi) ≤ ωact
i (t) ≤ (ωnom

i + εi) (3.3)

This says that the actual frequencyωact
i (t) of the oscillator at processori, in cycles

per second (possibly fractional), is a function of time over the bounded rangeωnom
i ±

εi, whereεi is the maximum instability (frequency error), as specified by the oscillator
manufacturing specification. Outside this range, an oscillator and its associated processor
are defined to have failed. Properly functioning processors in a system are expected
to abandon communication with failed processors (and also abandon obedience to the
associated synchronization rules) as soon as they can be identified as such.

To illustrate this further, consider the simple example of two processorsA and B
with equal nominal frequencies of100 MHz, and instability of20 ppm. Assume that
metacycles are locally defined to occur each1 M cycles, meaning a nominal metacycle
frequency of100 Hz. Suppose that comparing the actual frequencies ofA andB with a
perfect reference frequency hasA operating somewhat fast at1 M + 7 cycles per “real”
metacycle andB somewhat slow at1 M − 3. This means metacycles atA occur slightly
more frequently than metacycles atB, despite both internally counting metacycle duration
with an equal number of (local) cycles. Such a difference becomes problematic if it
persists for more than1000 seconds, asA would advance an entire metacycle ahead ofB
with respect to real time.

3.2.1 Jitter and Drift

The following classification of timing noise is derived from Messerschmitt [79], which
is recommended as a reference for the standard (but potentially confusing) terminology
used to discuss synchronization.

When comparing the frequencies of two oscillators, define them to bemesochronous
if they share the same average frequency, but have individual cycles that are occasionally

3.2. TIMING NOISE 23

jitter

isochrony
Figure 3.2: Comparison between two data signals: an isochronous one where units are
evenly spaced, and one with jitter.

out of phase (not be perfectly aligned, i.e. “jittering” back and forth). Accordingly, define
jitter as the difference between two mesochronous frequencies.

Define two frequencies to beplesiochronousif they are nominally equal, but do not
actually share the same average, having diverged over time with no reasonable expecta-
tion of re-convergence. Definedrift as the difference between plesiochronous signals.

Notice that these definitions embrace all forms of difference between nominally equiv-
alent frequencies, including traditionally distinct classifications such as skew. The point
is to segregate noise based exclusively on the timescale over which it manifests, high-
lighting the need for entirely dissimilar correction techniques in the cases of temporary
and of ongoing differences. The details of these techniques are presented in the following
Sections.

Given this perspective, jitter and drift are the same thing, the distinguishing factor
being the duration over which frequency differences are considered. In colloquial terms,
nominally synchronous frequencies progress from mesochronous to plesiochronous de-
pending on how “out of whack” they actually are.

To give an example, two signals generated by a single oscillator but traveling along
separate paths of nominally equal delay will nevertheless experience some jitter due to
physical differences in those paths, but will not experience drift since they share the same
source. On the other hand, signals generated by independent but nominally equivalent
oscillators can be assumed to be plesiochronous (to have drifted from the nominal fre-
quency). There is also the further classification ofheterochronousfrequencies, meaning
those with nominally different frequencies, where synchronization is obviously not pos-
sible.

3.2.2 Buffering Allows Two-Timing

Abstractly, all communication links are simple FIFO queues where enqueuing of frames
by the sending processor can happen at an independent frequency from dequeuing by the
receiver. This independence is necessary, since timing noise (jitter and drift) makes true
synchrony for these frequencies improbable.

The actual implementation of links is immaterial, so long as this abstraction can be
met. For example, if both processors and the link are within a single integrated circuit,
the standard logic for such FIFOs can be used directly. At larger granularities, such
as for a long-distance link over optical fiber, extra receive memory is set aside at each
end of the link and specialized hardware is dedicated to transferring the arriving data

24 CHAPTER 3. METASYNCHRONIZATION

from the fiber to the buffer. This hardware can then be timed by arriving data itself, for
example by using a phase-locked loop (PLL). In all cases, some memory is needed to
provide the necessary isolation between data production and consumption frequencies,
and henceforth is referred to asbuffermemory.

Frame transmission frequency is derived from the local oscillator frequencies of the
source processor. Assume that each processor can and does both produce and consume
exactly one frame for each adjacent link during each metacycle. It does not matter what
form computation takes — processors may be fixed functionality hardware devices or
they may be software programmable, provided that this timing requirement is met un-
der all non-failure circumstances. Furthermore, frame production and consumption may
occur at arbitrary times within each metacycle. What matters is only that the frame rate
for a processor as measured over multiple metacycles matches the metacycle frequency
imposed by its oscillator. In other words, frame rates must expose the drift of their source
oscillators over time, but may have independent jitter.

Assuming that at least one frame of buffer memory is available for each incoming
signal, frame jitter of less than one metacycle is easily and transparently tolerated. How-
ever, jitter of greater magnitude may still cause communication faults. If more than or
less than an entire frame may arrive during a metacycle, additional buffering is needed.
Buffering addresses jitter by artificially extending links to create more frame arrival tim-
ing flexibility. By buffering more than just one frame, the chances can be improved that
at least one frame is always available for consumption. The downside of buffering is the
performance impact of increased link latency.

The quantity of available buffering thus determines the quantity of jitter that can be
tolerated. Consider that jitter is analogous to theburstinessof data in a signal. To best
tolerate both bursts and idle periods, a buffer is ideally only half full on average. This
allows for both kinds of jitter effects, bursts and idleness, which fill or empty the buffer
respectively.

For the sake of illustration, suppose that buffers are implemented circularly, meaning
that the consumption of frames “chases” arriving data around the buffer. The arrival rate
for frames into the buffer is determined by the remote oscillator. Data departs from the
buffer at the rate of the local oscillator, with the processor consuming one frame during
each local metacycle. In this case, communication faults occur either when the consum-
ing processor requires a frame that has not yet completely arrived, or when insufficient
buffer is available to store arriving data without destroying data yet un-consumed. In
other words, failure occurs when the producer and consumer processes operate at differ-
ent frequencies for sufficient time to collide.

3.2.3 Frequency Correction

The metasynchronization approach to drift is correction instead of tolerance. While
buffers can hide mesochrony, sufficiently prolonged plesiochrony will always result in
a buffer fault.

3.2. TIMING NOISE 25

Any persistent difference in frequency between the consumption rate of a receiving
processor and the arrival rate of incoming frames will either under-run or over-run any
finite buffer. In fact, jitter and drift are cumulative in their negative effects. Recall that
a buffer is balanced when half filled, and theimbalanceof a buffer is the difference
between the current level of occupancy and the balanced state (defined formally in Section
3.2.6). Drift reduces the jitter tolerance for a buffer by increasing the imbalance, and thus
decreasing the buffer amount available for the corresponding jitter effect.

Changing the production and consumption rate of a processor is referred to here as
frequency correction. Assume that each processor is equipped (at least abstractly) with a
control knobto adjust its oscillator frequency. Think of the control knob as the source of
artificially induced drift to counteract out the naturally occurring variety. This abstraction
allows the entire metasynchronization process to be simplified as the discovery of proper
control knob settings for all processors over time to correct any drift that manifests be-
tween them.

Notice that the control knob must provide sufficient frequency flexibility for all pro-
cessors to match their oscillator frequency with the least stable oscillator in the network.
This is analogous to a marching army that must either proceed at the rate of the slowest
soldiers or leave them behind.

Quantify the worst-case instability in the network as the greatest ratio between the
maximum frequency error and the nominal oscillator frequency of each processor:

σ = max
∀i∈P

(εi/ω
nom
i) (3.4)

3.2.4 Implementing Correction

Although some systems may be implemented using oscillators that actually allow fre-
quency tuning in a manner matching the control knob abstraction, modification of oscil-
lator frequencies is impossible or at least impractical in many (if not most) circumstances.
The following techniques allow such normally constrained systems to implement the nec-
essary correction mechanism. For oscillators that do support direct adjustment, these
techniques may be ignored. Assume for the moment, however, that an alternative mech-
anism is needed.

Let F be the system-wide frequency of metacycles per second which all processors
are nominally targeting. Conservatively define for each processori the logical duration,
meaning the maximum number of (non-fractional) local oscillator cyclesλi which are
guaranteed to occur during each metacycle of physical time, as:

λi =

⌊
(1− σ) · ωnom

i

F

⌋
(3.5)

This says that, if physical time is divided into metacycle intervals at frequencyF then
a properly functioning oscillator at processori is guaranteed to produce at leastλi local
cycles during each physical metacycle, even when its nominal frequency is affected by a
worst-case slowdown factor ofσ.

26 CHAPTER 3. METASYNCHRONIZATION

Let ρi(t) indicate a control knob setting such that−1 ≤ ρi(t) ≤ 1. Assume that each
processor uses itsλi value as the baseline definition of the duration (in local cycles) of
each metacycle. To effect correction, let each processor choose (over time) the actual
duration of metacycles as the sum of the baseline and some rate of extra correction cycles
ci(t) per metacycle, calculated as:

ci(t) = round(1 + ρi(t)) · dσ ·
ωnom

i

F
e (3.6)

which says that number of correction cycles per metacycle may vary from zero to twice
the maximum possible deviation from nominal. If the oscillator is operating precisely at
the nominal frequency, then the control settingρi(t) = 0, and exactly half the maximum
correction is used, meaningσ · ωnom

i /F extra cycles per metacycle. If the oscillator is
operating faster or slower, a corresponding positive or negative control setting between
allows the correction to be doubled, or reduced to zero, respectively. The result is rounded
to the nearest whole number, as processors cannot meaningfully delay by a fractional
number of cycles. Furthermore, a maximum correction of at least two cycles must always
be possible, to allow for positive, negative, and neutral correction.

Accordingly, define theeffective frequencyfi(t) of metacycles per second for each
processori as a function of its baseline metacycle frequency and its correction:

fi(t) =
ωact

i (t)

λi + ci(t)
(3.7)

which simply says that the frequency of metacycles per second at timet is the current
oscillator frequency, divided by the current cycles per metacycle. This highlights that
ρi(t) is ideally chosen to compensate for the variation inωact

i (t) and thereby causefi(t) =
F .

3.2.5 Correction Frames

It is likely that the communication timing for a processor, meaning the bit frequency
of its transmissions, is derived from its oscillator frequency. In this case, a matching
correction technique must be applied to communication. While a processor is assumed
to implement frequency correction by changing the metacycle durations, communication
frames are of fixed size. Furthermore, assume that links require transmission frequencies
to approximate isochrony. In other words, transmission cannot simply pause to change
timing. This assumption reflects the reality of link implementations where sudden timing
changes risk causing failure in signal clock recovery (e.g. PLL) at the receiver. For
systems where links do not suffer from this restriction, the following may be ignored.

Let the termdata frameindicate what has so far simply been called a frame, meaning
a fixed-size container for untyped higher-level data. Let the termcorrection frameindi-
cate a new kind of frame which does not carry any useful data, but rather acts as variable
sized communication padding. Interleave correction frames between data frames during

3.2. TIMING NOISE 27

Size Padding

n bits = 2n bits

Figure 3.3: Format of correction frames, showing the two necessary fields and their size
in bits.

transmission in a fixed periodic manner, and let the correction frames be discarded im-
mediately upon arrival. The calculations below make the simplifying assumption that
calculation frames are inserted between each pair of data frames. In practice any regular
interleaving is possible, but makes calculation of frame sizes more complicated.

As illustrated in Figure 3.3, let a correction frame be composed of only a size field
and the specified padding. The size of data frames should be chosen appropriately to
allow for empty correction frames (just size fields) to be sent in the slowest case.

Let γij be the nominal bandwidth of the link from processori to processorj, in bits
per metacycle. This bandwidth is shared by both one data and one correction frame, with
the correction frame size reflecting the local metacycle duration as it changes over time.
Communication correction bits of padding per metacycleĉij can be measured in the same
manner as computation correction from Equation 3.6, using the following formula:

ĉij(t) = round(1 + ρi(t)) · dσ · γije (3.8)

such that the maximum rate of padding bits per metacycle is:

ĉmax
ij = 2 · dσ · γije (3.9)

The range of possible correction frame sizes must be known in order to calculate the
data frame size for a link. Letrij be the link equivalent ofλi (from above Equation 3.5),
meaning the maximum number of bits which are always guaranteed to be transmitted,
even during the shortest metacycles, defined as:

rij = b(1− σ) · γijc (3.10)

During metacycles with maximally negative correction, meaning those where correction
frames are empty,rij bits must contain both a data frame and a correction frame size
field. The latter must be large enough to quantify all possible padding amounts including
zero, meaning that they requirelog2(ĉ

max
ij + 1) bits. This allows calculation of the data

frame sizedij, by allowing for at least an empty correction frame (one with zero padding)
during each metacycle, even in the slowest case:

dij = rij − dlog2(ĉ
max
ij + 1)e (3.11)

28 CHAPTER 3. METASYNCHRONIZATION

To illustrate these equations with an example, suppose a link has a rate of1 M±20 bits
per metacycle, reflecting the underlying oscillator frequency and maximum instability.
This means thatγij = 1 M andĉmax

x = 40. Hence, correction frame size fields must be at
least6 bits long, and the data frame size comes out to be1 M− 40− 6 bits.

Because correction frames are so simple, they can be implemented on virtually any
link. However, the actual mechanism chosen in practice may be specialized to the situ-
ation. For example, if processors happen to be physically co-located and communicate
through shared memory, they can change their actual frequency directly — they can sim-
ply remain idle for some number of local oscillator cycles. This does not work well for
longer links because it conflicts with data timing recovery (e.g. PLLs). Notice also that
the effect of correction frames is commonly calledflow control, and is used by many
link-layer protocols — the PAUSE frames in Ethernet (IEEE 802.3x), for example [80].

3.2.6 Inverse Buffer Symmetry

Although processors can directly calculate neither their own oscillator frequency nor the
frame transmission frequency of their neighbors, they can measure the difference between
the two over time by tracking the changing imbalance of their local receive buffers.

Communication synchrony creates a symmetric relationship between the buffers on
opposite sides of each bidirectional link. This is best explained using the law of frame
conservation from Section 3.1.4, which ensures a “closed system” of data. The total
amount of data in receive buffers on opposite sides of each link always remains constant.
Data is produced and consumed at the rate of one frame per metacycle for all processors.
A difference in metacycle frequencies between processors that share a link will thus be
reflected in data accumulating in the buffer on the side of the slower processor. The
quantity of data accumulated will be matched by a deficit in the buffer on the side of the
faster processor. In other words, if the buffer on one side of a link is short data, then the
buffer on the other side must be long an equal amount of data.

Assume that buffers at both ends of each link are of equal capacity. Consider neigh-
boring processorsi andj, with buffers of capacityβij = βji bits, where communication
initialization leaves buffers half-filled, and where the amount of actual data in buffers at
each processor at metacyclet is bji(t) bits andbij(t) bits respectively. Define theimbal-
ance(in bits, possibly negative) of the buffer at processorj for the link from processori
as:

φij(t) = bij(t)− (βij/2) (3.12)

This says that the imbalance for a buffer is the difference between its current fullness and
it being half full. More concisely, the difference between the fullness of the receive buffer
at processorj for frames sent by processori compared with its being half full (balanced),
at timet, is φij(t). This value can be either positive or negative depending on the buffer
being relatively full or empty, respectively. A buffer is perfectly balanced if the imbalance
value is zero.

3.2. TIMING NOISE 29

The law of frame conservation ensures that the imbalance of buffers on opposite sides
of each link have identical quantity but opposite sign:

bij(t) + bji(t) = (βij + βji)/2 ⇒ φij(t) = −φji(t) (3.13)

Processors can exploit this buffer relationship to calculate the relationship between
the local effective frequency and those of their neighbors. By observing local buffer
imbalances over time, the relative deviation between the local consumption and remote
transmission frequencies can be quantified, and eventually used to calculate the proper
local correction. Buffer imbalance can be consideredimplicit feedback, meaning in-
cidental shared state which is created for free, as opposed to information that requires
explicit feedback communication (overhead) to acquire.

Notice that this inverse buffer symmetry depends upon an assumption that the delay-
bandwidth products of associated links are constant. In practice, of course, few things are
precisely constant. Natural factors may slightly change link lengths around their nominal
value. In these circumstances, attempts to achieve precise balance may instead cause
processors to trade slight imbalances back and forth. Alternatively, a threshold could be
added to the calculations below to hide minor imbalances. Because the effects of this
issue are expected to be non-severe, they are ignored below.

3.2.7 Measuring Drift

Given a plot of buffer imbalance over time, consider that the best-fit line through the
imbalance data points provides a good estimate of the average drift between the proces-
sors that share the corresponding link. If the line is flat, such that imbalance is constant,
then data arrival must match consumption, meaning the frequencies are synchronous. If
imbalance is changing, the rate of change in imbalance over time directly reflects the
difference in the two frequencies over that time.

If each processor records the imbalance for all local buffers once each metacycle,
it can approximate the drift between itself and each neighbor. Of course, processors
cannot know if the drift was caused by local or remote frequency variation, but they can
determine when it happens and they can quantify it.

Definem as the system-widemeasurement interval, in metacycles, over which drift
is estimated, and between which correction is recalculated. This value should be derived
from the relationship between buffer sizes and oscillator instability, meaning that the
interval should be long enough to allow for meaningful measurement of drift, but not so
long that the drift has created more imbalance than can be easily corrected.

Assume that drift changes slowly enough to be approximately constant during each
interval. This allows the effect of drift on imbalance values during each interval to be
represented as a linear function, and hence to be well estimated by a linear regression
across the stored imbalance values.

For each measurement interval, composed of metacyclest−m to t, let each processor
i and neighborj ∈ ηi use the imbalance valuesφij(t) on the links between them to apply

30 CHAPTER 3. METASYNCHRONIZATION

the standard regression formula and thereby estimate their driftδij(t) in bits per metacycle
(possibly fractional):

δij(t) =

∑t
τ=t−m((φij(τ)− φavg) · (τ − (t−m/2)))∑t

τ=t−m(φij(τ)− φavg)2
(3.14)

where φavg = avg
τ=(t−m)..t

(φij(τ))

Consider that this linear regression is highly tolerant of jitter. Drift is a long-term
trend, and hence individual imbalance values need not precisely fall on the regression line.
However, many systems experience only minimal drift in practice. For these, regression
is likely more heavyweight mathematics than strictly necessary — simply averaging the
total change in imbalance over the interval is likely to have the same result:

δij(t) =
φij(t)− φij(t−m)

m
(3.15)

3.3 Self-stabilization

Define a processor to be inequilibrium if its buffers are balanced and each adjacent link
has zero drift. Processors must constantly seek equilibrium by both correcting for drift as
it varies over time and by restoring buffer balance as it becomes disturbed by drift. The
difficulty is that processors can only choose one correction amount, as they logically have
only one control knob. Independent correction for each link is not desirable because it
introduces drift between them, and thereby eventually violates the rules.

Metasynchronization employs theaverage neighbor algorithmas a solution to locally
choosing a single correction amount for each processor, such that all processors in the
network eventually reach equilibrium. Because this global effect is achieved through
purely decentralized actions at each processor, metasynchronization is said to beself-
stabilizing[31, 61].

The gist of the algorithm is that each processor iteratively seeks an outgoing frequency
to match the average across its incoming data frequencies. Perhaps surprisingly, this
simple approach can cause frequencies to converge in finite time regardless of network
topology (shown in Sections 3.3.2 to 3.3.4). Furthermore the system is robust to multiple
simultaneous arbitrary failures, including malicious ones. The details of how many such
failures can occur, the actual rate of convergence, and the amount of buffering which is
needed to support convergence without risk of communication faults are evaluated below.

3.3.1 The Average Neighbor Algorithm

Once drift estimations and buffer imbalance values have been calculated, processors can
choose the proper correction factor to meet two goals. These are maintaining balanced
buffers, and eliminating drift with their neighbors.

3.3. SELF-STABILIZATION 31

The drift and buffer imbalance values for each neighbor are currently denominated in
bits. In order to value neighbors equally, normalize them as follows:

δ̄ij(t) =
δij(t)

dσ · γije
and φ̄ij(t) =

2 · φij(t)

βij

(3.16)

To illuminate these equations, consider the value ranges for both variables. Driftδij(t)
between functional processors is limited to aσ fraction of the raw link widthγij. For drift
values outside this range, processor can assume that the associated neighbor has failed
and terminate communication by removing it from the neighbor set. Buffer imbalances
φij(t) may range over half the underlying buffer sizeβij. Both drift and imbalance may
be of either sign.

Using these normalized values, the following equation defines a control function
zij(t) with the same range and meaning asρi(t), but specific to a single link:

zij(t) = δ̄ij(t) + φ̄ij(t) · (1− δ̄ij(t)) (3.17)

This function addresses both drift elimination and any buffer re-balancing. Notice that
the drift correction term̄δij(t) dominates, meaning that drift is corrected at the expense
of buffer imbalance — but when drift is not severe, the imbalance termφ̄ij(t) can have
significant control over correction. Maximum drift will cause maximum correction re-
gardless of imbalance. For zero drift, however, imbalance can cause maximum correc-
tion.

As its name implies, the algorithm actually considers the average correction across
all of its neighbors, and hence the actual correction calculation combines the individual
zij(t) values. This final step in selecting a single processor correction factor is expressed
as:

ρi(t) = α · ρi(t− 1) + avg
∀j∈ηi

zij(t) · (1− α) (3.18)

Notice that each unit oft corresponds with a measurement interval ofm metacycles.
Aside from averaging together the current link-specific corrections at each measurement
interval, this function also factors in its results from the previous measurement interval.
The a scalar multiplierα, in the range{0..1}, controls the balance between the two. The
α value plays the role of a dampening factor, a resistance to change at each processor
which can help prevent rapid frequency oscillation around a target value from one step
to the next. For example, consider a network with only two processors, which share a
single link. Since both implement the same algorithm, each is obligated to implement
only half of any necessary correction. The preciseα setting which leads to optimal net-
work properties is explored in more depth in the next Section. Theα value also helps in
mathematical analysis of the algorithm robustness, as it can abstractly capture the effects
of most failure scenarios. This is discussed further in Section 3.4.1.

32 CHAPTER 3. METASYNCHRONIZATION

3.3.2 Comparison with Markov Processes

Before embarking on the evaluation of the actual behavior of the average neighbor algo-
rithm, consider the following simplification to provide an intuitive perspective on what is
really going on. Ignore buffer imbalance for the time being and focus on the frequency
averaging process.

ρi(t) = α · ρi(t− 1) + avg
∀j∈ηi

δij(t) · (1− α) (3.19)

Let ρ(t) be a vector of correction settings, but let it be initialized to the normalized
difference between processor nominal and actual frequencies. This allows the global
behavior of the algorithm to be captured by the simple equation:

ρ(t) = Tρ(t− 1) where ρi(0) =
ωact

i (0)− ωnom
i (0)

ωact
i (0)

(3.20)

whereT is a |P| × |P| transformation matrix that performs the task of averaging the
ρ(t − 1) values. Construct this matrixT such that each row corresponds to a processor.
Let the entry for each columnj on rowi be

Tij =

1−α
|ηi| if j ∈ ηi

α if j = i
0 otherwise

(3.21)

meaning that each neighbor frequency contributes to the average by an equal share. The
α entries forTii implement the dampening factor by having processors include their own
previous correction values.

These equations reveal the interesting relationship between frequency averaging and
Markov processes. The transformation matrixT is stochastic, meaning that all entries are
positive and that the entries on each row have unit sum. The entry values do not have the
same meaning as those for a Markov process, meaning that they are not probabilities, but
they are mechanistically equivalent. Since it is well known that all Markov processes with
stochastic transformation matrices are known to converge in finite time, use of this simple
correction formula would ensure that processor frequencies for all network topologies
(represented by the values ofT) do so as well [39].

Since the actual correction formula is more complex, this discussion primarily serves
to provide an intuition that the process is likely to have desirable properties, that diaboli-
cal situations which can cause collapse of all network communication are unlikely to ex-
ist. The next Sections will evaluate the actual algorithm, which corrects buffer imbalance
as well as frequency, and hence is not as simple to correlate with standard mathematical
theory.

3.3. SELF-STABILIZATION 33

3.3.3 Algebraic Model

In the previous section theρ correction values are reasoned about as a|P|×1 matrix. This
is then manipulated byT , a specialized adjacency matrix. Consider that theφ imbalance
values can be similarly collected into a|L| × 1 matrix. This is less obvious, since each
link really has two imbalance values. But by the inverse symmetry property, they must
be of equal magnitude and opposite sign, and so can be combined if the sign information
is preserved elsewhere. Aggregation of system state into these two data matrices allows
the following equations to capture the global behavior of the system:

let δ(t) = A · ρ(t− 1) and z(t) =
δ(t)

2
+ φ(t) ◦ (1− δ(t)

2
) (3.22)

in φ(t) = φ(t− 1) +
2 ·m · σ

β
· δ(t) where φ∀i∈L(0) = 0

and ρ(t) = ρ(t− 1) · α + B · z(t) · (1− α) where ρ∀i∈P(0) =
ωact

i (0)− ωnom
i (0)

ωact
i (0)

The transformation matricesA andB are the magic ingredients in these formulas because
they encode both the topology of the system and the averaging process itself. They can
be thought of as specialized adjacency matrices for links and processors, respectively:

A is |L| × |P|. Each row corresponds with a link, and each column with a
processor. Each row has two non-zero entries,+1 and−1 in the columns
corresponding to the processors adjacent to that link. The two non-zero en-
tries can occur in either order, the sign simply serves to differentiate between
being on theleft or right side of the link.

B is |P|×|L|. Each row corresponds with a processor, and each column with
a link. Each row is a non-zero entry for each link adjacent to that processor.
The value of the entries fori is computed as± 1

|ηi| , where the sign is taken
from the corresponding adjacency entry inA.

The calculation ofφ(t) is straightforward, with the understanding that its values are
normalized to unit range. The normalized imbalance for measurement intervalt is cal-
culated as theα-weighted sum of the imbalance for the previous measurement interval
(t−1) and the effects of the interval between them, represented byδ(t). Each entry inδ(t)
corresponds with a link and represents the frequency ratio between the adjacent proces-
sors, normalized with respect toσ, meaning that values fall in the range{−2..2}. TheA
transition matrix performs the per-measurement-interval comparisons between frequen-
cies. To re-normalize the imbalance values as a fraction of (half) the corresponding buffer
size at the granularity of measurement intervals, they are scaled by(2 ·m · σ)/β.

Theρ(t) values are calculated in a similar manner, with theB matrix performing the
function of averaging together the appropriate entries in thez(t) matrix. The entries in
z(t), which is |L| × 1, are derived fromδ(t) to indicate the ideal correction for each
corresponding link. Notice use of the pairwise Hadamard product (represented by the◦
operator) instead of traditional matrix multiplication.

34 CHAPTER 3. METASYNCHRONIZATION

3.3.4 Visualization of the Model

From an engineering perspective, the most important question about metasynchronization
is how much buffering is necessary at each link to ensure that communication faults never
occur, except as the result of real physical faults. The purpose of the above model is to
provide insight into this issue. Unfortunately, it does not provide a simple answer forβ
in terms ofσ, m, α, and the network topology. Instead, this section evaluates the model
for a carefully chosen set of scenarios to argue that small amounts of buffering, meaning
less than two frames, are sufficient for almost any network topology under almost all
circumstances.

To motivate this approach, consider the factors necessary to create a worst-case en-
vironment for metasynchronization. Network topology is the only factor which is not
directly quantifiable. Fortunately, the worst-case topology is easily realized in the form
of a linear network, meaning a chain of processors where each processor but the two
ends of the list have exactly two neighbors, and where the ends each have only one. The
intuition here is that the effectiveness of metasynchronization at each processori is de-
termined by the degree of connectivity, meaning the cardinality of the neighbor set,|ηi|.
Linear networks have the lowest maximum processor degree (2). Only linear and ring
topologies are possible with this maximum degree, and of these the linear network has
fewer such processors (|P|− 2). Linear networks also obviously have the property of the
greatest absolute distance between any two processors (the endpoints) for any topology
with equal processor count. Keeping the endpoints in a linear network metasynchronous
is thus most challenging as they are minimally connected and maximally separated.

0 200 400 600 800 1000

Measurement Interval

-0.02

0.00

0.02

Im
ba

la
nc

e
(n

or
m

al
iz

ed
)

0 200 400 600 800 1000

Measurement Interval

-0.5

0.0

0.5

F
re

qu
en

cy
 E

rr
or

 (
no

rm
al

iz
ed

)

Figure 3.4: Plot ofφ(t) on the left andρ(t) on the right, for a network with31 processors
in linear topology, over1000 measurement intervals, withα = 0.2. Compare with Figure
3.5, which has a much higherα setting.

Figures 3.4 and 3.5 illustrate two evaluations of the algebraic model for a linear net-
work. In each case theA andB matrices were constructed to match a network with linear
topology,φ(0) initialized to zero, andρ(0) initialized with random frequencies in the
range20 ppm around nominal. The evaluations differ only in theirα settings. Each line

3.3. SELF-STABILIZATION 35

0 200 400 600 800 1000

Measurement Interval

-0.5

0.0

0.5

F
re

qu
en

cy
 E

rr
or

 (
no

rm
al

iz
ed

)

0 200 400 600 800 1000

Measurement Interval

0.0

0.1

Im
ba

la
nc

e
(n

or
m

al
iz

ed
)

Figure 3.5: Plot ofφ(t) on the left andρ(t) on the right, for a network with31 processors
in linear topology, over1000 measurement intervals, withα = 0.9. Compare with Figure
3.4, which has a much lowerα setting, especially note the differing y-axis scaling for
φ(t).

in either figure follows a specific linkφ imbalance value or processorρ frequency error
value over time.

The most important thing to note about these plots is that both frequency errors and
buffer imbalances converge. In the first case, whereα = 0.2, imbalance is never more
than3% of the available buffer. In the latter case, with a largerα = 0.9, imbalance is
more prominent (almost12%), but still poses no risk of causing a buffer fault. In all
casesm = 100. No additional drift is introduced over time, as the goal is to study how
rapidly the network can adjust to what is basically the worst-case scenario. This is likely
a reasonable assumption, since drift was controlled sufficiently quickly in all evaluated
cases that the assumed slow rate of natural manifestation for additional drift would have
been unnoticeable.

Further experiments with the model indicate that these results are indicative for net-
works with larger processor sets as well. These results are not presented here on account
of this similarity, and because it becomes impossible to identify individual curves within
the plot for larger networks.

Although evaluation for networks with linear topology is expected to illustrate the
worst case metasynchronization behavior, it is also potentially useful to better understand
other cases, including ones that are likely more common. To this end, Figures 3.6 through
3.8 show model evaluations for network with both radial and tree topologies as well.
A radial network is defined to have one central processor, which in turn has all other
processors as its neighbors. The non-central processors are all leaves. Tree networks are
defined here in a regular manner, specified byheightandfanoutparameters, with height
defining the number of levels of branches, and fanout the number of sub-branches for
each branch. The top level of branches has no sub-branches. Aside from the topology

36 CHAPTER 3. METASYNCHRONIZATION

0 10 20 30 40 50

Measurement Interval

-0.5

0.0

0.5

F
re

qu
en

cy
 E

rr
or

 (
no

rm
al

iz
ed

)

0 200 400 600 800 1000

Measurement Interval

0.00

0.01

0.02

Im
ba

la
nc

e
(n

or
m

al
iz

ed
)

Figure 3.6: Plot ofφ(t) on the left andρ(t) on the right, for a network with50 processors
in radial topology, over1000 and50 measurement intervals respectively, withα = 0.7.
The outlier line is the hub processor. More intervals shown forφ(t) to illustrate con-
vergence. Also notice the scale of the y-axis, indicating that imbalance was minimal
throughout the simulated interval with no threat of communication failure.

andα settings which are specified alongside each plot, the other model parametersσ and
m are the same as for the linear evaluations.

Figure 3.6 illustrates the convergence for a radial topology network, while the remain-
ing Figures illustrate tree networks with two differentα settings to highlight the effects
of this parameter for a more realistic topology. Notice that convergence rates in these
radial and tree topologies correspond with the above intuition that maximum processor
degree and maximum inter-processor distance are dominating factors — they determine
how long the implicit signals sent metasynchronization take to propagate across the net-
work. Radial networks converge very rapidly, in contrast to linear networks that oscillate
only slowly towards equilibrium. The reason is that, in a radial network, the central “hub”
processor can measure the global average frequency with great accuracy, since it has di-
rect connections to all other processors. The hub will thus adapt to this average, and be
minimally influenced by individual “spoke” processors. These spoke processors directly
observe only themselves and the hub, and hence are forced to incrementally adapt to the
hub frequency.

3.4 Robustness

Communication between processors should never fail on account of the synchronization
process, unless the processors or links themselves fail. When such failures do occur they
should be contained to only affect adjacent processors, ideally even if they are malicious
or Byzantinein nature.

Metasynchronization isfault-containing, meaning that only non-recoverable faults
are exposed to its users [42]. Isolation between metasynchronization and these users is

3.4. ROBUSTNESS 37

0 200 400 600 800 1000

Measurement Interval

-0.5

0.0

0.5

F
re

qu
en

cy
 E

rr
or

 (
no

rm
al

iz
ed

)

0 200 400 600 800 1000

Measurement Interval

-0.1

0.0

0.1

Im
ba

la
nc

e
(n

or
m

al
iz

ed
)

Figure 3.7: Plot ofφ(t) on the left andρ(t) on the right, for a network with63 processors
in tree topology (fanout 2, height 5), over1000 measurement intervals, withα = 0.9.
Compare with Figure 3.8, which has a much lowerα setting.

provided by the receive buffers at each processor, and higher level functions only experi-
ence failures when these buffers either overflow or underflow.

3.4.1 Byzantine Immunity

When reasoning about metasynchronization fault tolerance, all forms of faults can be
grouped together, including coordinated malicious behavior by multiple processors with
the aim of harming innocent processors in the network. This is because Byzantine be-
havior is simply impossible, as the process relies entirely on implicit communication.
Whatever correction choices a processor makes are directly observed by its neighbors —
there is no opportunity for deception.

All that a non-conforming processor can do is carefully try to manipulate thez(t)
value for its adjacent links. Assume that a bad processor has the ability to do this perfectly
and is attacking some target processori. In order to cause problems, the bad processor
would cause az(t) value with unit magnitude and with sign opposite to that of the good
neighbors ofi, thereby causingi to adapt to the good processors more slowly. If a bad
processor does anything beyond this, meaning cause az(t) value with greater than unit
magnitude, it risks being flagged as faulty byi because it must have violated the normal
error range defined byσ. Once a processor is flagged as faulty it is removed from the
neighbor set and communication is terminated.

Hence, a malicious processor can do nothing which differs from non-malicious failure
modes without risk of instant detection. This is in stark contrast to algorithms which
require distributed consensus on shared data, where Byzantine failure is possible and
tolerating it is very expensive.

38 CHAPTER 3. METASYNCHRONIZATION

0 50 100 150 200

Measurement Interval

-0.5

0.0

0.5

F
re

qu
en

cy
 E

rr
or

 (
no

rm
al

iz
ed

)

0 50 100 150 200

Measurement Interval

-0.01

0.00

0.01
Im

ba
la

nc
e

(n
or

m
al

iz
ed

)

Figure 3.8: Plot ofφ(t) on the left andρ(t) on the right, for a network with63 processors
in tree topology (fanout 2, height 5), over200 measurement intervals, withα = 0.1.
Compare with Figure 3.7, which has a much higherα setting. Especially note the different
simulation durations (x-axis scale difference).

3.4.2 Quantifying Fault Tolerance

Fault containment implies that one faulty processor or link may not artificially cause
additional faults by negatively effecting adjacent good processors. Obviously, if more
than half of the neighbors for a good processor are faulty, they can dominate the averaging
process and doom the good processor. Thus the question becomes what percentage of
simultaneously faulty neighbors can a processor be guaranteed to tolerate without risk of
failure.

Because of these limitations on their behavior, faulty or bad processors can be very
conveniently reasoned about. They can simply be included as part of theα factor in
the correction calculation. This is actually a conservative approach, and since they do
not properly participate in the algorithm, they need not be given their own frequency
equations. Instead, it can be assumed that each good processor has some fraction of
bad neighborsζ. Bad processors are assumed to be connected and colluding with one
another through external means. Furthermore, a bad processor which is connected to
multiple good processors may present each with different frequencies and hence is logi-
cally equivalent to multiple bad processors. Hence, for the sake of evaluating the effect
of bad processors on frequency and imbalance convergence, theα value applied in the
formula should be the actual value implemented by each processor, sayαact, plus the
maximum percentage of simultaneously faulty neighbors that must be tolerated:

α = aact + ζ (3.23)

3.5. DISCUSSION: REQUIREMENTS AND LIMITATIONS 39

3.5 Discussion: Requirements and Limitations

Metasynchronization depends on deterministic control over both communication and
computation resources. Links must have bounded latency for the transmission of fixed
bandwidth streams of frames, and processors must provide the ability to send frames with
precisely predictable timing. Hence, the natural implementation level for metasynchro-
nization approximately corresponds with the “data link” layer of the OSI model [109], or
with the “network access” layer of the Internet model.

Implementation at other levels is sometimes possible. For example, communication
could be layered above TCP/IP protocols, with the restriction that these be used only
in a dedicated point-to-point manner. Multi-hop IP is not possible because any risk of
contention during the statistically multiplied forwarding process has a non-deterministic
possibility of failure, and hence destroys timing determinism. The most desirable link
technologies are those with semantics equivalent to simple serial connections.

To reconcile this (effectively) mandated low-level implementation with the end-to-end
argument [96], which demands that functionality be provided at the highest possible level,
consider that high-level approaches are necessarily much more expensive. For example,
the conventional approach of synchronizing clocks requires explicit exchange of packets
with signaling information. Direct access to the actual links between neighbors provides
metasynchronization with implicit feedback for free. Furthermore, this implicit approach
eliminates all risk of deceptive behavior by participants in the algorithm, meaning that
metasynchronization can be made highly resistant to all kinds of failure.

40

Chapter 4

Deterministic Sharing

This chapter introduces hierarchical provisioning, an execution model for uniformly time
divisioned software systems that supports perfect virtualization and thereby allows ar-
bitrary untrusted applications to share resources safely and with deterministic perfor-
mance. This means, for example, that reactions can share resources with dynamically
scheduled computations. Implementation of the execution model, and thereby of perfect
virtualization, depends upon mechanisms that enforce isolation. The complexity of these
mechanisms is shown to be limited, and this conclusion is used to argue that hardware
implementation of the model is practical.

Hierarchical provisioning is quite different from the approach used by conventional
systems, where an operating system kernel runs in a privileged processor mode to manage
performance isolation for user computations. This isolation may take the form of virtu-
alization, in the case where the kernel is a hypervisor, or it may take the richer and more
traditional form of UNIX or Windows processes. In neither case is perfect performance
isolation (or virtualization) possible, because system events that require preemption of
execution are unpredictable.

Because it regulates the timing for all events, uniform time divisioning is a natural
building block for perfect virtualization — execution is preempted between all system
time steps and the duration of each step is fixed. On the other hand, hierarchical pro-
visioning is a natural consequence of perfect virtualization being inherently recursive;
when an execution environment supports perfect virtualization of itself, the encapsulated
environment obviously has the ability as well.

Hierarchical provisioning leverages uniform time divisioning of processor resources
into provisions (defined in Section 1.2.1), adding a mechanism for perfect provision vir-
tualization. All provisions in the resulting virtualized hierarchy have equivalent seman-
tics and performance. The only distinction is that encapsulated provisions have smaller
profiles, meaning fewer resources, than their encapsulators. For each processor, all com-
putations are contained within a hierarchy that has a singleroot provision. All scheduling
is thus performed by computations themselves, using the virtualization mechanism. This
means that no monolithic software kernel is necessary to schedule resources or to arbi-
trate contention for a flat collection of computations. Instead, each computation has the
power of a kernel over those resources in its provision.

The profile of the root provision is determined by the uniform time division process,
and one root provision exists during each time step at each processor. The scheduling

4.1. HIERARCHICAL ISOLATION 41

of encapsulated provisions is not necessarily so regular, and is instead determined by
the decisions of the encapsulators. If computations at the root of the hierarchy employ
sufficiently predictable scheduling policies, it becomes possible to reliably execute com-
putations with strict requirements on their execution timing, such as reactions. This is
in contrast to conventional shared systems where the inherent nondeterminism makes
support for reactions impossible.

The rest of this chapter is organized as follows. The details of hierarchical provision-
ing are introduced first, in terms of a formally defined execution model. A pseudo-code
example of dynamic scheduling within a provision is provided to illustrate practicality.
Once the model is sufficiently explained, its features are contrasted with those of exist-
ing conventional systems. Finally, implementation practicality is discussed, arguing that
efficient hardware or software implementation is possible.

4.1 Hierarchical Isolation

Recall that provisions precisely abstract those resources available during each discrete
time unit at each processor of a uniformly time divisioned system. Hierarchical provi-
sioning is a technique that allows computations executing within such provisions to im-
pose resource allocation policy upon their subcomputations. This section introduces and
then formally defines hierarchical provisioning as an execution model — as an abstract
machine.

The key difference between this hierarchy and conventional approaches to isolation is
that all computations have equal power. All computations have equal access to resources.
This stands in contrast to most conventional general-purpose processors, where instruc-
tions are segregated into one or moreprivilegedclasses, and where effective resource
management requires access to privileged instructions.

The hierarchical provisioning model needs and has no such distinction. Instead, it
provides resource management in the form of anisolation functionthat allows computa-
tions to manage the provision in which they are executing by partitioning it into smaller
nested provisions. To elaborate, consider a provision with resource profile(τ, γ) cycles
and memory units, respectively, meaning that all contained computations have access to
γ contiguous units of memory, and have execution time bounded byτ time units or pro-
cessor cycles. Once these cycles have elapsed, execution is terminated and switched to
another provision, regardless of computation state. Execution is also terminated if access
is attempted for memory outside the provisioned contiguous region.

The isolation function allows computations to restrict their resource profile, both in
terms of time and space. The purpose of such restriction is to allow safe execution of
guestsubcomputations by ahostcomputation — for a specified duration ofτ time units,
all memory access is restricted to the specified subregion ofγ memory units. To initiate
isolation, the host declares the resource restrictions, an execution entry point within the
subregion, and an outside exit point for when the restrictions expire. Within such a nested
provision, untrusted software can be executed without risk of memory interference and
with exact bounds on execution time.

42 CHAPTER 4. DETERMINISTIC SHARING

time

pr
oc

es
se

s

io syscallpacket for C io syscall disk data for A io syscallinterrupts

C

B

A

kernel

provision A

root provision

provision B

provision C

time

m
em

or
y

Figure 4.1: Comparison of control flow in a conventional process-based system (top) and
a hierarchically provisioned system (bottom). The heavy line indicates control over the
processor. In the conventional system, unexpected events cause interrupts into the kernel
which acts as the arbiter of all resources and thereby of isolation between processes. In
the hierarchically provisioned system events occur prior to execution of the root provision
and this allows provisions to recursively manage their own resources.

4.1. HIERARCHICAL ISOLATION 43

To ensure that resource restrictions create nested provisions with identical seman-
tics to their encapsulating provisions, the model requires that all memory access during
restricted execution is interpreted as relative to the base address of the currently valid
memory region. This simple extra rule ensures that nested provisions perfectly virtualize
their host provisions. Hence, nested provision isolation can be conveniently specified
using the same profiles as for encapsulating provisions. In fact, encapsulating and nested
provisions have identical semantics, including access to the isolation function and thereby
to further levels of resource restrictions. The only difference between an encapsulating
and a nested provision is resource quantity, meaning the size of memory and the number
of processor cycles available. Any computation may use the isolation function tohost
one or moreguestcomputations within isolated nested provisions. In turn, guest com-
putations can themselves use the isolation function to hosts further, more deeply nested,
guests.

4.1.1 Model Specification

The hierarchical provisioning execution model is specified as follows, using the OCaml
programming language. Any implementation can be considered to comply with the
model if its semantics match that of the code below. A good reason to examine the
model in such detail is to understand its precise semantics and the implied implementa-
tion complexity. The model is presented as four module type signatures and one fully
implemented functor, each of which is discussed in sequence. This specification includes
all of the details governing the implementation of instruction set interpreters, resource
access mechanisms that enforce virtualization, and the isolation function that changes
virtualization parameters.

The followingPROV_USERmodule signature defines the types that describe provisions
as they are experienced by regular computations, the “users” of provisions.

module type PROV_USER = sig

type word
type addr = int
type time = int

type isolation_frame =
{ base : addr ;

size : int ;
deadline : time ;
execution_addr : addr ;
host_iframe_addr : addr }

val isolation_frame_size : int

type rsrc_ops =
{ rd_word : addr -> word ;

wr_word : addr * word -> unit ;
rd_iframe : addr -> isolation_frame ;

44 CHAPTER 4. DETERMINISTIC SHARING

wr_iframe : addr * isolation_frame -> unit ;
budget : unit -> time }

type execution_step =
JumpRel of addr

| JumpAbs of addr

type control_action =
| Jump of execution_step
| Nest of (addr * execution_step)
| Trap

end

At all times, the resource provision available to any computation is fully described by
an associatedisolation_frame datastructure. The important thing to note is that all
of the information needed to enforce isolation at any given time is contained within a
single tuple. The valuesbase , size , anddeadline specify a standard provision profile.
The exact size and encoding of the typesint , addr , and time can be decided by the
implementation.

Thebase value is a physical memory address corresponding with the lowest address-
able memory word available within the provision, andbase + size is a value corre-
sponding with the highest. Thedeadline value specifies the time at which the restric-
tions expire, and is relative to a timer that is decremented with the execution of each
instruction. This timer is initialized at the start of every system time step to reflect the
processing time available to the root provision.

Theexecution_addr value contains the entry and exit execution addresses for provi-
sion execution. Thehost_iframe_addr value is used to implement a stack ofisolation_

frame datastructures in memory to correspond with the levels of nested provisions. The
details of these two values, as well as the details for theexecution_step andcontrol_

action types are discussed in conjunction with theINTERPRETERmodule signature.
The entire state requirements of the model include only memory, a countdown clock,

and one isolation frame. Computations access this state through thersrc_ops interface
functions, which enforce the virtualization specified by the current isolation frame. This
interface is very simple, including only the abilities to read and write words of memory,
to read and write isolation frames in memory, and access to a virtualized interpretation of
the countdown timer. Using these functions, any attempt to access memory outside the
range provided for in the current isolation frame triggers anIsolationFault exception,
and thereby in the immediate premature expiration of the provision.

The rd_word and wr_word operations are the only memory interface available to
computations. Both accept address arguments that are interpreted as offsets within the
memory of the currently active provision. If these offsets are too large and fall outside
provisioned memory, execution of the current computation is terminated. Theword type
is explicitly left opaque to indicate the flexibility for implementations to select their own
memory word size. Therd_iframe and wr_iframe operations are convenience rou-
tines for accessing and modifyingisolation_frame data and use the regular isolation-

4.1. HIERARCHICAL ISOLATION 45

enforcing word-based operations internally. Thebudget operation reports the number of
processor cycles that remain available within the current provision.

Because computations only have access to resources using relative memory address-
ing and access to time relative to their own provision deadlines, each isolation frame im-
poses perfect virtualization. Notice that no computation can observe information about
resources that are not contained within its own provision. In fact, computations have no
way to conclusively determine that other resources even exist.

Notice that resource access has been defined without explicit specification of an in-
struction set. Instead, implementations are free to utilize any instructions, with the limi-
tation that all resource access is performed using thersrc_ops interface, and hence that
all resource access is virtualized. TheINTERPRETERmodule type signature specifies the
functionality available to a machine instruction set.

module type INTERPRETER = sig

include PROV_USER

type instruction

type interpreter_ops =
{ classify : word -> instruction * time ;

eval : rsrc_ops * instruction -> control_action }

val create_interpreter : unit -> interpreter_ops

end

Formally, any instruction set interpreter is compatible with the model if it provides an
interpreter_ops interface. The actions of an instruction set interpreter are decon-
structed into the two actions of classification and evaluation. During the execution of
any computation, each instruction is first classified to reveal its processing cost. If suffi-
cient processing resources are available, the instruction is evaluated. The type signatures
for these two operations ensure that instruction set implementations cannot violate the
isolation that is core to the model. To elaborate, the ability to access and modify memory
is entirely incorporated within thersrc_ops datastructure from thePROV_USERsigna-
ture. During evaluation, these operations allow the instruction set complete flexibility of
memory access within provision bounds. This trivially supports the semantics of normal
“user” mode instructions, but makes the implementation of privileged instructions impos-
sible. Also, note that memory access operations are not available during classification,
thereby ensuring that classification cannot effect changes in execution control flow.

In more detail, theclassify operation returns a decoded instruction that is later
processed by theeval operation, and also returns a time value that corresponds to the
maximum cycle duration for the corresponding instruction. Theinstr type is opaque to
indicate that instruction details do not matter to the execution model. Theeval operation
performs the actual instruction evaluation, using thersrc_ops resource access functions.

For each instruction evaluation, the interpreter must specify how the current execution
context should be modified using thecontrol_action result fromeval . These changes

46 CHAPTER 4. DETERMINISTIC SHARING

include simple movement of the execution pointer to reflect the next instruction, and
also includes the ability toNest a new isolation frame. To continue execution without
imposing any further resource restrictions,eval can return the next execution address
using theJmpRel andJmpAbs actions. This supports sequential execution using relative
increments, as well as jumps and conditional branches.

The Nest control_action is used to recursively create provisions. It requires two
parameters. The first is the address of a newisolation_frame , and the second is the
desired control flow that should take place once the nested provision has terminated. To
maintain the integrity of isolation, the memory that contains the isolation frame must
be inaccessible from within the provision that it describes (elaborated in Section 4.3).
During the execution of any nested provision, the memory which initially contained its
isolation frame specification is used to store the isolation frame of the hosting provision.
This memory cannot be available to guest computations, lest they have the power to alter
those provision properties. In other words, a stack of encapsulating isolation frames is
built in memory, which allows the model to maintain a constant amount of execution state,
regardless of the number of active virtualization layers. New frames are pushed onto this
stack for eachNest invocation, and frames are removed again each time a provision
expires or is violated.

Once execution of nested provisions completes, the system updates the isolation
frame memory with the nested provision specification as well as the final execution ad-
dress of the guest computation. The latter is stored in theisolation_frame.execution_

addr field. When a new provision is initially created usingNest , theexecution_addr is
treated as the entry offset for execution. Once the nested execution is terminated, its final
execution pointer is stored in theexecution_addr memory as diagnostic information for
the host computation. This allows the host to potentially continue execution of the guest,
for example if the guest is terminated due to an insufficient cycle budget.

ThePROV_ADMINmodule type signature specifies the internal administrative function-
ality to manipulate isolation state that is not available to the instruction set, and hence is
hidden from regular computations.

module type PROV_ADMIN = sig

include INTERPRETER

exception IsolationFault
exception Halt

type admin_ops =
{ iframe_push : addr -> addr -> addr ;

iframe_pop : addr -> addr ;
clock_incr : time -> unit }

val create_root_provision :
word list -> time -> admin_ops * rsrc_ops

end

4.1. HIERARCHICAL ISOLATION 47

Isolation state changes in two ways. In the simple case, time passes and the processing re-
source is consumed. This is represented by theclock_incr operation. Isolation state also
changes when nested provisions are created or expire. In the former case, a new isolation
frame is “pushed” onto the stack of hosting isolation frames. The latter case is caused by
attempted violation of the isolation constraints. Memory violations are reported through
theIsolationFault exception by thersrc_ops implementation of therd_* andwr_* ,
and processing violations by theadmin_ops implementation ofclock_incr . When the
last isolation frame has been “popped” from the stack, all execution is halted using the
Halt exception.

Finally, theExecution functor implements the core of the model. This functor takes
a module matching thePROV_ADMINas its parameter, and thereby explicitly shows that
model execution is fully defined without dependence upon implementation details, such
as memory word size or instruction set specifics. Execution is implemented as a straight-
forward loop with each iteration performing the classification and evaluation of one in-
struction. The result of evaluation always includes the change in execution pointer as
well as any change in isolation.

module Execution (ProvAdmin : PROV_ADMIN) : sig

val execute : admin_ops * rsrc_ops * interpreter_ops
-> addr -> unit

end = struct

let execute (admin_ops , rsrc_ops , i_ops) entry_addr =
let rec execute_step addr =

try
let raw_instr = rsrc_ops.rd_word addr in
let (instr , duration) = i_ops.classify raw_instr in
admin_ops.clock_incr duration ;
let calc_jump jump =

match jump with
JumpRel x -> addr + x

| JumpAbs x -> x in
let next_addr =

match i_ops.eval (rsrc_ops , instr) with
Jump j -> calc_jump j

| Nest (x , j) ->
admin_ops.iframe_push x (calc_jump j)

| Trap -> raise IsolationFault in
execute_step next_addr

with IsolationFault s ->
let next_addr = admin_ops.iframe_pop addr in
execute_step next_addr in

try while (true) do
execute_step entry_addr

done with Halt -> ()

end

48 CHAPTER 4. DETERMINISTIC SHARING

To conclude the specification, the hierarchical provisioning execution model intro-
duced above is designed to enable perfect virtualization. This is the key point of contrast
with the common execution models used in computational complexity analysis, such as
Turing Machines or Random Access Machines. Implementations verified to match the
semantics of the model will support perfect virtualization. The practicality of such im-
plementations is discussed in Section 4.3.

4.1.2 Dynamic Scheduling Example

All computations executed within hierarchical provisions have similar resource control
capabilities to traditional operating system kernels. Consider, as a thought experiment,
using nested provisions to implement the functionality of dynamic preemptive process
schedulers. The pseudo-code example below illustrates such a host computation for a
hypothetical distributed system, whereN guest computations have nondeterministic exe-
cution times and where communication involves messages with nondeterministic arrival
timing. Specifically, each guest computation executes indefinitely, but with unpredictable
interruptions to receive or transmit communication packets in a blocking fashion.

Assume that the host is equally provisioned during each system time step. The mem-
ory provisioned for the host is organized as follows. Two subregions act as buffers for
inbound and outbound packet streams. Arriving packets are assumed to include header
information that identifies the guest computation which is their destination. A third re-
gion contains persistent state, meaning that the same region is included within the host
provision during each time step. Let the host record all of the necessary information for
its guests in this persistent state. Let each guest be allocated a contiguous region of the
host memory, which is assumed to contain both its instructions and all of its data.

Each guest is executed within its own nested provision. Guests communicate with
the host in a manner akin to traditional system calls. To interrupt its execution at any
time, ortrap, a guest can simply attempt to access a memory address that lies outside its
provision. This returns execution to the host computation, which can inspect the guest
memory to determine the reason for the trap. To allow guest execution to be interrupted
and later resumed, the host also records an execution pointer for each guest. Once the
host has reacted to the guest request, it can resume the guest execution.

Suppose that each guest must be in one of four states. If the guest is blocked on
communication it is either waiting for a message to arrive or for one to be sent. When it
is not blocked, it is either actively executing or waiting to do so.

During each system time step, the host will attempt to distribute cycles evenly across
the guests. The example scheduling algorithm used below is extremely simple for brevity.
In practice, a more sophisticated algorithm will be desirable, such as fair share [56, 29],
or something more exotic [108].

The following pseudo-code provides a more formal synopsis of the host computation.
To implement nested provisioning, the special functionnest_provision is assumed to
result in the instruction set interpreter returning theNest control_action and thereby

4.1. HIERARCHICAL ISOLATION 49

creating an encapsulated provision with the given profile. Thecycle_budget function is
assumed to return the value of thersrc_ops.budget function.

val N : int // number of guest computations 1
val S : int // memory size for each guest provision 2
val X : int // host outer loop cycle overhead 3
val Y : int // host inner loop cycle overhead 4

5
type mem_range = 6

{ base : word ; 7
sz : int } 8

9
type guest_state = 10

Suspended 11
| Blocked_RD of mem_range 12
| Blocked_WR of mem_range 13

14
type guest_data = { 15

id : int ; 16
state : guest_state ; 17
prov : word array [S] ; 18
x_addr : word } 19

20
val guest_table : guest_data array [N] 21
val i_stream , o_stream : pkt_stream 22

23
val mux_pkt : pkt_stream * int * mem_range -> boolean 24
val demux_pkt : pkt_stream * int * mem_range -> boolean 25

26
val postmort : word array -> guest_state 27

28
let calc_deadline id = 29

let t = cycle_budget () in 30
let remaining_guests = N - id in 31
let share = (t - X) / remaining_guests in 32
(t - share) 33

34
foreach p in guest_table 35

let deadline = calc_deadline p.id in 36
repeat 37

let runnable = match p.state with 38
Blocked_RD buf -> demux_pkt (i_stream , p.id , buf) 39

| Blocked_WR buf -> mux_pkt (o_stream , p.id , buf) 40
| Suspended -> true in 41

if (runnable) then 42
nest_provision (p.prov , deadline , p.x_addr) ; 43
p.state := postmort (p.prov) 44

else () 45
while (deadline < (timer () - Y)) 46

The above code is organized as follows. Lines 6-27 define types. Themem_range

type is simply a tuple of a base address and a size value. Theguest_data type is the

50 CHAPTER 4. DETERMINISTIC SHARING

full execution context for a guest computation, includingS words of contiguous memory
prov , an execution pointerx_addr , and a unique tagid to allows proper demultiplexing
of incoming packets. The context also includes astate record to indicates whether the
guest is currently blocked on communication, together with any necessary packet location
information.

The lines 15-19 declare the guest data values and their types. Theguest_table

records the execution context for allN guests. Host input and output is managed through
the packet streamsi_stream ando_stream . The details of their implementation are hid-
den behind the access routinesmux_pkt anddemux_pkt for brevity. The gist of these
routines is the extraction and insertion of packets from and to the shared host communi-
cation memory. To use them, a guest performs a trap, providing the host with information
about where in their provisions the packet should be read or written as appropriate. This
use is illustrated by line 44, where thepostmort routine is used to extract this information
from the guest provisions each time they are interrupted.

The actual created of nested provisions occurs on line 43. The profile for the new
provision has aτ of deadline , and aγ of p.prov .

4.1.3 Static Scheduling Example

The beauty of the isolation function and the semantics of provisions, is that they allow
hosts to implement arbitrary scheduling policies. The example in the previous section
illustrated dynamic scheduling similar to that used by most general-purpose systems.
This section examines using a static scheduling policy to nesting independent reactive
computations.

Abstractly, composing reactions together is a straightforward process because of their
determinism. For example, Alur and Henzinger have elegantly and comprehensively
formalized the hierarchical composition of modular reactions [4]. They define an intuitive
framework that includes a syntax for high-level specification of reactions and allows for
reactions to internally exhibit a variety of models of computation, including synchronous
boolean circuits, asynchronous shared-memory programs, and concurrent programs with
synchronous message passing.

The isolation function allows for compositions of reactions with other computations
that are not inherently reactive. For example, the resources on a processor may be evenly
divided between a reactive computation and the dynamic scheduler from the previous
section. By isolating each computation within its own provision, there is no risk of inter-
ference. Formal verification of the reactive computation can completely ignore the details
of the computations in other neighboring nested provisions. The only detail that affects
the availability of resources for a nested provision is the scheduling policies imposed by
the encapsulating hierarchy of hosts. If all of these hosts use policies where provision
properties are guaranteed, then the reactivity of the computation can be formally estab-
lished.

Consider the simplest case of two nested provisions for two guest computationsfoo

andbar , illustrated by the following pseudo-code:

4.2. DISCUSSION: COMPARISON WITH CONVENTIONAL SYSTEMS 51

type mem_range = 1
{ base : word ; 2

sz : int } 3
4

val FC , BC : int // foo and bar cycle deadlines 5
val FHI : mem_range // foo input in host buffer 6
val FGI : mem_range // foo input in guest buffer 7
... 8

9
val foo , bar : word array [...] 10
val io_buf : word array [...] 11

12
mem_cpy (io_buf , FHI , foo , FGI) ; 13
mem_cpy (io_buf , BHI , bar , BGI) ; 14

15
nest_provision (foo.prov , FC , 0) ; 16
nest_provision (bar.prov , BC , 0) ; 17

18
mem_cpy (foo , FGO , io_buf , FHO) ; 19
mem_cpy (bar , BGO , io_buf , BHO) ; 20

Lines 1-8 introduce the necessary variables and types. All of the capitalized variables
are constants. Because the resource profiles for the guest computations are deterministic,
many of the details that a dynamic scheduler would need to calculate are simply fixed.
Lines 13-14 and 19-20 perform demultiplexing of input data and multiplexing of output
data, respectively. Lines 16-17 usenest_provision , an instantiation of the isolation
function, to execute the guests within nested provisions.

4.2 Discussion: Comparison with Conventional Systems

As described by the previous section, hierarchical provisioning allows software compu-
tations to share resources in complete isolation from one another. All computations have
equal power to impose scheduling policies upon subcomputations using their provisioned
resources. This power equality is the core architectural difference between hierarchical
provisioning and conventional shared computing systems.

In a system with hierarchical provisioning, it is possible to concurrently support ar-
bitrary different scheduling policies, including static scheduling. This means that such
systems can support reactive computations concurrently with computations that are com-
pletely unpredictable. Such flexibility is impossible, by definition, for nondeterministic
systems.

A system that supports static scheduling obviously cannot have an operating sys-
tem kernel that globally imposes a non-static resource allocation policy. The problem is
that dealing with nondeterministic events like packet communication inherently implies
dynamic resource allocation. This is not much of an issue for conventional distributed
general-purpose computing systems, because they are all designed using nondeterminis-
tic communication and hence have no alternative. It is more of an issue for uniformly

52 CHAPTER 4. DETERMINISTIC SHARING

time divisioned systems, because they cannot make direct use of traditional software ar-
chitectures — doing so would obliterate exactly the determinism which is achieved by
the time divisioning process.

To examine this in more detail, consider that traditional operating system kernels im-
pose two kinds of isolation upon computations. These are isolation in the time dimension
and isolation in the space dimension, sometimes also referred to as performance and value
isolation, respectively. Space isolation is commonly and straightforwardly imposed by
constraining the ability of computations to name resources. For example, virtual memory
provides the illusion of complete name-space ownership. A computation being isolated
in this manner may use any virtual memory address with impunity. Time isolation is
more complicated for nondeterministic systems because absolute discrete specification
of correctness is impossible. This results in performance often being measured in relative
terms, including discussions about the fairness of allocation policies. For communication
resources relative performance is often described using the term Quality of Service (QoS).
The reason is that any absolute performance guarantee such as a computation always exe-
cuting for the first200 K cycles of each1 M processor cycle interval are impractical. They
would require assurance that all events occurring during the allocated processor window
be dealt with by the scheduled computation. For systems designed to allow sharing by
independent untrusted computations, this kind of scheduling is obviously not an option.

Isolation can also be evaluated in terms of how effectively it provides virtualization,
in the sense of technologies like hypervisors. In this context, virtualization means the
precision with which an execution environment can encapsulate smaller versions of itself.
For example, efforts like VMWare and Xen seek to partition the resources in commodity
personal computers, creating the illusion as precisely and efficiently as possible that each
piece is itself a commodity personal computer [12, 30]. Virtualization of spatial resources
is addressed perfectly by the existing virtual memory isolation mechanism. In principle,
it is not possible for computations in different virtualized pieces to detect one another.
If resources are not uniformly time divisioned and partitioning done temporally, it is
obviously impossible to provide perfect temporal virtualization.

What this all means, in summary, is that nondeterministic systems which are designed
to support resource sharing with performance isolation require operating system kernels
and dynamic schedulers. Further, these kernels and schedulers define the resource se-
mantics for all other computations. In correlation with the convention that (at least con-
ceptually) partitions software architectures into horizontal layers, it may be helpful to
think of the kernels and their contained schedulers as the narrow hourglass-waistline for
the space of layered software architectures. Nondeterministic communication system ar-
chitectures are similar. Most prominently, the Internet Protocol serves as an architectural
waistline that defines and constrains the resource management potential of higher level
communication protocols.

Because these waistlines must impose some scheduling policy, the common design
wisdom says that the policy should be as simple as possible, so as to minimally interfere
with the needs of higher levels. In their landmark paper [96], Saltzer et. al. collected and
codified this wisdom in terms of designing protocol layers in communication systems.

4.2. DISCUSSION: COMPARISON WITH CONVENTIONAL SYSTEMS 53

The containedend-to-end argumentprovides excellent design guidelines, not just for
communication systems, but for managing abstractions in nondeterministic systems in
general.

In the face of infrastructure nondeterminism, the end-to-end argument advises apply-
ing an imperative form of Occam’s “razor” to the design of horizontal system layers. The
argument is that each layer added to a system should add minimum functionality. This
prevents a “pork-barrel” approach to layering, where higher level applications are forced
to pay the cost of unnecessary features in monolithic lower layers. This philosophy is ex-
emplified by the following quote from the paper, motivating the elevation of functionality
as much as possible (using the term “level” instead of layer):

“... performing the function at the lower level may cost more – for two rea-
sons. First, since the lower level subsystem is common to many applications,
those applications that do not need the function will pay for it anyway. Sec-
ond, the low level subsystem may not have as much information as the higher
levels, so it cannot do the job as efficiently.”

The situation for hierarchical provisioning is completely different, because of uniform
time divisioning. Where conventional systems are forced to have a privilege dichotomy
between their operating system kernels and their user computations because of nonde-
terminism, root provisions have deterministic resource profiles and hence can adopt iso-
lation like that proposed by this dissertation. By creating a hierarchy of provisions, all
resource allocation policies that introduce nondeterminism can be isolated from one an-
other and from computations that require determinism. This means it is possible to guar-
antee computations deterministic performance, despite the underlying physical resources
being shared with other untrusted computations.

Relating hierarchical provisioning once more to existing systems and their problems,
consider the resource allocation problem that is referred to asdenial of service, which can
be defined as failure to meet performance expectations or guarantees. Denial of service
is inherently a temporal problem, and hence can only be solved in an absolute sense by
having uniform time and applying static scheduling to those computations wishing to
avoid it. In a distributed hierarchical provisioned system, those computations that are
intolerant of denial of service can be segregated, and thereby spared of any risk.

Providing static scheduling concurrently with encapsulated dynamic scheduling is a
feature of distributed hierarchical provisioning that can be explained objectively. Con-
sider that distributed hierarchical provisioning also provides more subjective benefits in
the form of architectural simplicity and elegance. A great deal of research has been
devoted to minimize the complexity of operating system kernels, including the Exok-
ernel, Nemesis, and many microkernel projects [38, 84, 69, 47, 95, 73]. Reasons for
this minimalism include not just the end-to-end argument, but also a desire to reduce the
complexity of privileged computations because their correctness must be trusted by all
others.

Because distributed hierarchical provisioning requires no infrastructure support be-
yond implementation of the isolation functions and uniform time division, both of which

54 CHAPTER 4. DETERMINISTIC SHARING

are likely best implemented in hardware, it can greatly reduce the quantity and complex-
ity of the system components that must be trusted.

4.3 Discussion: Implementing Isolation

Is the implementation of hierarchical provisioning practical? For large distributed sys-
tems that explicitly require determinism, there are no real alternatives and hence any
question of practicality simply implies one of feasibility. But could hierarchical provi-
sioning potentially be worthwhile for conventional distributed general-purpose comput-
ing systems? Hierarchical provisioning is very simple, and simplicity generally implies
efficiency. Such is the intuition behind the following argument in favor of implementation
practicality.

Enforcing provisions calls for isolation in the dimensions of both time and space.
For any provision, resource use in either dimension can be validated using arithmetic
bounds checks against three numbers, namely the provision profile. For the space dimen-
sion (memory), this means comparison of memory offsets with the current provision size,
after which the offset can be translated into a physical address by addition with the pro-
vision base offset. For the time dimension (processor cycles), this refers to decrementing
a counter with the duration of each executed instruction and terminating execution once
the counter reaches zero. While these operations are specified formally in Section 4.1.1,
even this simple explanation serves to show that the state required by the system itself
is small, fixed and independent of provision nesting depth, of memory size, and of pro-
cessor speed. Furthermore, the computation complexity of the system is small. Compare
these attributes with the much more heavyweight mechanisms that are required for con-
ventional systems, such as virtual memory pages that are mapped independently for each
process.

However, specialized hardware need not be the only implementation possibility. Sim-
ilar isolation mechanisms already exist in all common general-purpose processors, in
the form of virtual memory and timing interrupts. These are required by conventional
operating systems and virtual machine monitors to support the traditional asynchronous
preemptive execution model. Techniques have been developed to adapt these mechanisms
to enforce semantics similar to deterministic provisions [55, 54]. However, virtual mem-
ory and interrupts provide much more flexibility than is needed — significant hardware
overhead could be avoided by specializing a processor architecture for the requirements
of hierarchical provisions.

Finally, if isolation cannot be enforced by hardware, it can still be provided at the
software level using static code analysis and instrumentation techniques, such as software
fault isolation [13, 107]. The idea here is that untrusted software programs are subjected
to static analysis, and any execution paths which cannot be verified as correct are modified
with extra instructions to prevent undesirable behavior. In this way, the program itself is
adjusted to enforce isolation upon itself.

Alternatively, the execution model can be implemented entirely in software as illus-
trated by the model specification, but at the expense of significant performance overhead.

4.3. DISCUSSION: IMPLEMENTING ISOLATION 55

In both of these scenarios, where isolation is enforced at the software level, complex pro-
grams such as compilers or fault-isolators must be trusted or verified to be correct. Recent
advances in programming languages research are addressing this issue by allowing for-
mal correctness verification at the machine code level [86, 7], which allow compilers
or isolators to produce formal proofs that their resulting programs meet the correctness
criteria, and hence removing themselves from the trusted base.

Obviously this brief argument cannot conclusively demonstrate the feasibility of its
claims, nor is this the intention. Rather, it highlights how hierarchical provisioning has
the potential to be implemented with very low system complexity, and hence motivates
further investigation.

56

Chapter 5

Conclusion

“In embedded software, time matters. In the 20th century abstractions of
computing, time is irrelevant. In embedded software, concurrency and in-
teraction with hardware are intrinsic, since embedded software engages the
physical world in non-trivial ways (more than keyboards and screens). The
most influential 20th century computing abstractions speak only weakly of
concurrency, if at all. Even the core 20th century notion of ‘computable’ is
at odds with the requirements of embedded software. In this notion, use-
ful computation terminates, but termination is undecidable. In embedded
software, termination is failure, and yet to get predictable timing, subcompu-
tations must decidably terminate.” — Edward Lee [68]

This dissertation introduces techniques to uniformly time division distributed resources,
and thereby to allow computations to deterministically share them, meaning that resource
availability can be made deterministic and computations can be provided with guaran-
teed performance. For hard-real-time applications, such as those in many embedded sys-
tems, deterministic resource availability is necessary for rigorous correctness verification
[36, 67]. For other applications, such as where execution properties may not be decidable
and formal verification is impossible, performance guarantees can still be very valuable
— consider the importance of Quality of Service (QoS) for communication, for example.

The primary contribution of this dissertation is the metasynchronization technique,
which enforces temporally deterministic resource partitioning in a distributed system. It
does this by imposing a single discrete timeline across independently timed resources,
controlling for the natural fluctuations in the frequencies of the oscillators that control
them and that would otherwise force such systems to be asynchronous.

Compared with alternative techniques that depend on synchronizing clocks to con-
tinuous absolute time, metasynchronization is both much more efficient and much more
robust. Metasynchronization requires no explicit communication between processors in
a system. Instead, each processor passively monitors all communication with its directly
connected neighbors to detect any breakdown in synchrony. Frequency differences are
corrected by each processor independently adjusting its own frequency. The magnitude of
these adjustments need only be large enough to match the maximum oscillator frequency
error, commonly on the order of10−7.

57

This means that metasynchronization imposes negligible communication overhead.
Lack of explicit communication also simplifies robustness, since metasynchronization
does not require that processors reach consensus on any information. The cost of meta-
synchronization is the computation and memory needed for monitoring communication
between neighbors, and also buffering memory on each end of each communication link
— used to hide temporary frequency fluctuations when they occur. Metasynchronization
can tolerate the simultaneous malicious failure of multiple processors. Depending on
the precise metasynchronization implementation details chosen, almost half of the neigh-
bors at any processor may simultaneously fail without risk of desynchronizing properly
functioning processors.

Metasynchronization can be readily applied to embedded systems using existing de-
sign techniques, but this is less true for systems with a mixture of reactive and non-
reactive computations. Any system that supports reactive computations must support
scheduling them deterministically (statically). Most general-purpose systems that sup-
port non-reactive computations efficiently are constructed in a manner that ignores or
even destroys available determinism, making them unsuitable for supporting both to-
gether.

The secondary contribution of this dissertation is to address this problem by defin-
ing an execution model that enables resource sharing between reactive and non-reactive
computations. This model allows computations to be isolated within resource provisions,
making their resource usage deterministic for a fixed duration. It also employs recursive
partitioning of provisions to allow any computation to impose a scheduling policy upon
a hierarchy of dependent computations, each encapsulated within a corresponding nested
provision. Using these mechanisms, all computations in a system can be collected into
a single hierarchy or tree of provisions with different scheduling policies being applied
within each subtree.

Hierarchical isolation of computations is much more flexible than the two level situ-
ation prevalent in nearly all conventional systems, where computations either execute in
“kernel” or “user” space. Computations in the latter category are subject to the schedul-
ing policies decided by those privileged computations in the former. This privilege di-
chotomy is a natural design for systems where the timing of events is unpredictable, but
is unnecessary and limiting under deterministic circumstances.

Metasynchronization allows for arbitrary distributed systems to be uniformly time di-
visioned, and hence for determinism to be imposed on all system events. This in turn
allows for the privilege dichotomy to be abandoned in favor of a policy-neutral hierar-
chical architecture where the core implements deterministic scheduling and where all
scheduling policies that destroy determinism are isolated within completely virtualized
nested provisions.

The isolation of nondeterministic scheduling within nested provisions is what allows
arbitrary computations to share a single distributed system. Providing timing guarantees
for computations that require them, such as reactions, becomes only a matter of imple-
menting the necessary scheduling policies within their containing provisions.

58 CHAPTER 5. CONCLUSION

5.1 Future Work

The most important theoretical properties of metasynchronization have been established
in this dissertation, including the formal relationship between the configuration param-
eters of the average neighbor algorithm and the behavior of frequency errors and buffer
imbalances over time. But this is, if you will, only the tip of the iceberg.

Especially valuable would be deeper understanding of the relationship between buffer
size and convergence in the presence of failure. Ideally a formula would be found for
an upper bound onβ in terms of the other parameters. The algebraic model does not
currently fit directly into any common mathematical pigeonhole. Addressing this issue
would likely allow more careful and detailed analysis, and would hopefully provide more
analytical information to complement the empirical study already provided.

More practically, the study of both metasynchronization and hierarchical provisioning
would benefit greatly from one or more performance-conscious implementations, ideally
taking the form of customized hardware. Alternatively a more expedient approach would
involve an overlay for conventional workstations connected by dedicated Ethernet links.
Once implementations are available, the next step is to understand the many freedoms
that they provide to develop more sophisticated resource allocation systems.

59

Appendix A

The Metasynchronization Equations
and a Simple Example

The following is a summary of the equations from Chapter 3, together with a simple
example to illustrate their application.

The setP contains all processorspi, each of which has a neighbor setηi containing
only those processors which are directly adjacent to it:

P = {pi | processor(i)} (3.1)

ηi = {pj | link(pi, pj)} (3.2)

Given per-processor nominal frequenciesωnom
i , corresponding maximum frequency er-

rors εi, and actual frequencies over timeωact
i (t), in cycles per second, the frequency

envelopes of each processor and the normalized maximum error across the whole system
σ, are respectively defined as:

ωact
i (t) s.t. (ωnom

i − εi) ≤ ωact
i (t) ≤ (ωnom

i + εi) (3.3)

σ = max
∀i∈P

(εi/ω
nom
i) (3.4)

The logical duration for each processor is, in cycles per metacycle, and whereF is the
metaclock frequency in metacycles per second:

λi =

⌊
(1− σ) · ωnom

i

F

⌋
(3.5)

Given a “control knob” function of timeρi(t) with unit range, the changing per processor
correction cycles per metacycle, meaning the attempt to match the actual extra cycles
which occur in addition to the logical duration, are defined:

ci(t) = round(1 + ρi(t)) · dσ ·
ωnom

i

F
e (3.6)

60
APPENDIX A. THE METASYNCHRONIZATION EQUATIONS

AND A SIMPLE EXAMPLE

This allows the effective frequency of each processor over time, meaning the actual fre-
quency of metacycles per second reflecting correction, to be defined as:

fi(t) =
ωact

i (t)

λi + ci(t)
(3.7)

Given nominal link bandwidthsγij from processori to processorj in bits per metacycle,
the correspond actual correction and correction bits per metacycle, along with the “logical
duration” link analog, can be calculated as, respectively:

ĉij(t) = round(1 + ρi(t)) · dσ · γije (3.8)

ĉmax
ij = 2 · dσ · γije (3.9)

rij = b(1− σ) · γijc (3.10)

This allows the data frame size for each link to be calculated as:

dij = rij − dlog2(ĉ
max
ij + 1)e (3.11)

Given link receive buffers of sizeβij at processorj for the link from processori contain-
ing bij(t) bits of data over time, the corresponding buffer imbalance can be calculated
as:

φij(t) = bij(t)− (βij/2) (3.12)

Imbalances on opposite sides of each link are inversely symmetrical because the total link
data is always conserved:

bij(t) + bji(t) = (βij + βji)/2 ⇒ φij(t) = −φji(t) (3.13)

Over time, imbalance can be used to estimate the drift on a per-link basis, over a mea-
surement interval ofm metacycles, either using linear regression or a simple average:

δij(t) =

∑t
τ=t−m((φij(τ)− φavg) · (τ − (t−m/2)))∑t

τ=t−m(φij(τ)− φavg)2
(3.14)

δij(t) =
φij(t)− φij(t−m)

m
(3.15)

To allows the average neighbor algorithm to combine drift estimates and imbalance val-
ues from links with differing bandwidths, these are normalized to the range{−1..1},
respectively:

δ̄ij(t) =
δij(t)

dσ · γije
and φ̄ij(t) =

2 · φij(t)

βij

(3.16)

A.1. EXAMPLE 61

This allows the definition of a per-link normalized control function, corresponding to the
desired “control knob” setting for that link:

zij(t) = δ̄ij(t) + φ̄ij(t) · (1− δ̄ij(t)) (3.17)

Finally, the per-link control values are averaged together and a unified control function
created, damped by the scalar factorα:

ρi(t) = α · ρi(t− 1) + avg
∀j∈ηi

zij(t) · (1− α) (3.18)

A.1 Example

Consider a linear network topology of three processorsA, B andC such thatB has the
others as its neighbors, while bothA andC are leaf/edge processors with onlyB as a
neighbor. Define the frequency envelopes as:

ωnom
A = 100 MHz εA = 1000 cycles

ωnom
B = 200 MHz εB = 800 cycles

ωnom
A = 500 MHz εA = 2000 cycles

(A.1)

This means thatσ = max(0.00001, 0.000004, 0.000004) = 0.00001. Let the metaclock
frequencyF be10 KHz, which implies logical durations (in cycles per metacycle) of:

λA = 9999 λB = 19999 λC = 49999 (A.2)

In all cases correction of between0 and2 cycles per metacycle is sufficient to tolerate
the maximum error. To determine similar numbers for communication, let the per-link
per-metacycle bandwidths beγAB = 1000 b andγBC = 8000 b, which correspond to
10 Mbps and80 Mbps respectively. Assume that the links have equal properties in both
directions, such that ordering of the subscript letters does not matter. This allows calcu-
lation of the maximum link padding as:

ĉmax
AB = 2 · d0.01e = 2 b and ĉmax

BC = 2 · d0.08e = 2 b (A.3)

Similarly, the logical link “durations”, in bits, arerAB = 999 b andrBC = 7999 b. Then
the data frame sizes for the two links are calculated as their logical durations, less the
“packet header” overhead for the correction padding:

dAB = rAB − 2 = 997 b and dBC = rBC − 2 = 7997 b (A.4)

To illustrate the actual dynamic behavior of the average neighbor algorithm, consider
the following hypothetical situation, from the perspective of processorB. Assume thatB
has the receive buffer capacity for three data frames on each link, meaningβAB = 2991 b

62
APPENDIX A. THE METASYNCHRONIZATION EQUATIONS

AND A SIMPLE EXAMPLE

andβCB = 23991 b. Assume further that the past behavior of the system has resulted in
buffer imbalances at the current metacycleτ as follows:

φAB(τ) = −300 b and φCB(τ) = +700 b (A.5)

This implies that1195 b of data (1.1990 frames), fromA and12695 b of data (1.5875 frames)
from B is currently buffered. Assume further that the drift values estimated over the past
m = 100 metacycles are, in bits per metacycle:

δAB(τ) = −0.5 and δCB(τ) = +0.7 (A.6)

To apply the average neighbor algorithm, these values are normalized to account for the
variations in bandwidths, to produce:

δ̄AB(τ) =
−0.5

d0.01e
= −0.5 φ̄AB(τ) =

−600

2991
= −0.2006

δ̄CB(τ) =
+0.7

d0.08e
= +0.7 φ̄CB(τ) =

+1400

23991
= +0.0583 (A.7)

Which can be used to calculate the per-link correctionz functions as follows:

zAB(τ) = −0.6003 and zAB(τ) = +0.7174 (A.8)

For simplicity, assume that the past correction for processorB wasρB(τ − 1) = 0. Also
assume a dampening factor ofα = 0.5 which allows the current average correction to be
established as:

ρB(τ) = 0.5 · 0 + avg(−0.6003, +0.7174) · 0.5 = 0.0292 (A.9)

Which means that the processor correction cycles and link padding bits can be calculated
as:

cB(τ) = round(1.0292) · d0.2e = 1

ĉBA(τ) = round(1.0292) · d0.01e = 1

ĉBC(τ) = round(1.0292) · d0.08e = 1 (A.10)

This means that processorB is applying neutral correction, because the opposing “pulls”
of its neighbors effectively cancel one another out during the averaging process. However,
because they each have onlyB as a neighbor, it is expected that they will rapidly adapt to
B instead ofB to them.

63

Bibliography

[1] Rajeev Alur, Thao Dang, Joel Esposito, Yerang Hur, Franjo Ivan, Vijay Kumar, Insup Lee,
Pradyumna Mishra, George J. Pappas, and Oleg Sokolsky. Hierarchical modeling and analysis
of embedded systems.Proceedings of the IEEE, 91(1):11–28, January 2003.

[2] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer Science, 1994.

[3] Rajeev Alur and Thomas A. Henzinger. Logics and models of real time: A survey. InProceedings
of the Real-Time: Theory in Practice, REX Workshop, pages 74–106, Mook, The Netherlands, June
1991. Springer-Verlag GmbH.

[4] Rajeev Alur and Thomas A. Henzinger. Reactive modules.Formal Methods in System Design,
15(1):7–48, July 1999.

[5] Emmanuelle Anceaume and Isabelle Puaut. Performance evaluation of clock synchronization al-
gorithms. Technical Report PI-1208, IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France,
October 1998.

[6] Charles Andre. Representation and analysis of reactive behaviors: a synchronous approach. In
Proceedings of Computational Engineering in Systems Applications (CESA), pages 19–29, Lille,
France, July 1996.

[7] Andrew W. Appel and Amy P. Felty. A semantic model of types and machine instructions for proof-
carrying code. InConference Record of the ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 243–253, Boston, MA, January 2000.

[8] Eshrat Arjomandi, Michael J. Fischer, and Nancy A. Lynch. A difference in efficiency between
synchronous and asynchronous systems. InProceedings of the ACM Symposium on Theory of Com-
puting, pages 128–132, Milwaukee, WI, May 1981.

[9] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard real-time scheduling: The deadline-
monotonic approach. InProceedings of the IEEE Workshop on Real-Time Operating Systems and
Software, pages 133–137, Atlanta, GA, May 1991.

[10] Baruch Awerbuch. Complexity of network synchronization.Journal of the Association for Comput-
ing Machinery (JACM), 32(4):804–823, October 1985.

[11] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George Varghese. Time
optimal self-stabilizing synchronization. InProceedings of the ACM Symposium on Theory of Com-
puting, pages 652–661, sdiego, May 1993.

[12] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. InProceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), pages 164–177, Bolton Landing (Lake George),
NY, October 2003.

[13] Albert Benveniste and Gerard Berry. The synchronous approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9):1270–1282, September 1991.

[14] Albert Benveniste, Benot Caillaud, and Paul Le Guernic. Compositionality in dataflow syn-
chronous languages: specification and distributed code generation.Information and Computation,
163(1):125–171, November 2000.

64 BIBLIOGRAPHY

[15] Albert Benveniste, Paul Caspi, Stephan A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and
Robert de Simone. The synchronous languages 12 years later.Proceedings of the IEEE, 91(1):64–
83, January 2003.

[16] Guillem Bernat, Antoine Colin, and Stefan M. Petters. Wcet analysis of probabilistic hard real-time
systems. InProceedings of the IEEE Real-Time Systems Symposium (RTSS), pages 279–288, Austin,
TX, December 2002.

[17] Gerard Berry. The foundationis of esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors,Proof,
Language and Interaction: Essays in Honour of Robin Milner. The MIT Press, 1998.

[18] Gerard Berry.The Esterel v5 Language Primer. Centre de Mathematiques Appliquees Ecole des
Mines and INRIA, Sophia-Antipolis, France, version 5.21 release 2.0 edition, April 1999.

[19] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in distributed systems.
In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), pages 123–138,
Austin, TX, November 1987.

[20] Anne-Gwenn Bosser. Massively multi-player games: matching game design with technical design.
In ACM SIGCHI International Conference on Advancements in Computer Entertainment Technol-
ogy (ACE), pages 263–268, Singapore, June 2004.

[21] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: a framework for
simulating and prototyping heterogeneous systems. InReadings in hardware/software co-design,
pages 527–543. Kluwer Academic Publishers, 2001.

[22] Paul Caspi, Alain Girault, and Daniel Pilaud. Distributing reactive systems. InProceedings of
the International Conference on Parallel and Distributed Computing Systems, pages 101–107, Las
Vegas, NV, October 1994.

[23] Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous, asynchronous, and
causally ordered communication.Distributed Computing, 9(4):173–191, February 1996.

[24] Pai H. Chou, Ross B. Ortega, and Gaetano Borriello. The chinook hardware/software co-synthesis
system. InProceedings of the International Symposium on System Synthesis, pages 22–27, Cannes,
France, September 1995.

[25] David D. Clark. The design philosophy of the DARPA internet protocols. InProceedings of ACM
SIGCOMM, pages 106–114, Stanford, CA, August 1988.

[26] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting real-time applications in an integrated
services packet network: Architecture and mechanism. InProceedings of ACM SIGCOMM, pages
14–26, Baltimore, MD, August 1992.

[27] Ariel Daliot, Danny Dolev, and Hanna Parnas. Linear time byzantine self-stabilizing clock syn-
chronization. InProceedings of the International Conference on Principles of Distributed Systems,
pages 7–19, Martinique, French West Indies, December 2003.

[28] Ariel Daliot, Danny Dolev, and Hanna Parnas. Self-stabilizing pulse synchronization inspired by
biological pacemaker networks. InProceedings of the International Conference on Self-Stabilizing
Systems, pages 32–48, San Francisco, CA, June 2003. Springer-Verlag GmbH.

[29] Alan Demers, Srinivasan Keshav, and Scott Shenker. Simulation of a fair queueing algorithm. In
Proceedings of ACM SIGCOMM, pages 3–12, Austin, TX, September 1989.

[30] S. Devine, E. Bugnion, , and M. Rosenblum. Virtualization system including a virtual machine
monitor for a computer with a segmented architecture. US Patent, 6397242, October 1998.

[31] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.Communications of the
Association for Computing Machinery (CACM), 17(11):643–644, November 1974.

[32] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for
distributed consensus.Journal of the Association for Computing Machinery (JACM), 34(1):77–97,
January 1987.

BIBLIOGRAPHY 65

[33] Danny Dolev, Joseph Y. Halpern, Barbara Simons, and Ray Strong. Dynamic fault-tolerant clock
synchronization. Journal of the Association for Computing Machinery (JACM), 42(2):143–185,
January 1995.

[34] Danny Dolev, Joseph Y. Halpern, and H. Ray Strong. On the possibility and impossibility of achiev-
ing clock synchronization. InProceedings of the ACM Symposium on Theory of Computing, pages
504–511, Washington DC, April 1984.

[35] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of
byzantine faults. Journal of the Association for Computing Machinery (JACM), 51(5):780–799,
September 2004.

[36] Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Albert Sangiovanni-Vincentelli. Design of
embedded systems: formal models, validation, and synthesis.Proceedings of the IEEE, 85(3):366–
390, March 1997.

[37] E. Allen Emerson. Temporal and modal logic. InHandbook of theoretical computer science (vol.
B): formal models and semantics, pages 995–1072. The MIT Press, Cambridge, MA, 1991.

[38] Dawson R. Engler and M. Frans Kaashoek. Exokernel: an operating system architecture for
application-level resource management. InProceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 251–266, Copper Mountain Resort, CO, October 1997.

[39] SN Ethier and TG Kurtz.Markov Processes: Characterization and Convergence. John Wiley &
Sons, Inc., 1986.

[40] Michael J. Fischer, Nancy A. Lynch, and Michaael S. Paterson. Impossibility of distributed con-
sensus with one faulty process.Journal of the Association for Computing Machinery (JACM),
32(2):374–382, April 1985.

[41] Eby G. Friedman. Clock distribution networks in synchronous digital integrated circuits.Proceed-
ings of the IEEE, 89(5):665–692, May 2001.

[42] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pemmaraju. Fault-containing self-
stabilizing algorithms. InProceedings of the ACM Symposium on Principles of Distributed Com-
puting, pages 45–54, Philadelphia, PA, May 1996.

[43] P. Giusto, G. Martin, and E. Harcourt. Reliable estimation of execution time of embedded soft-
ware. InProceedings of the Conference on Design, Automation and Test in Europe, pages 580–589,
Munich, Germany, March 2001.

[44] P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal – a data flow-oriented language for
signal processing.IEEE Transactions on Signal Processing, 34(2):362–374, April 1986.

[45] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming
language LUSTRE.Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[46] Nicholas Halbwachs. Synchronous programming of reactive systems: a tutorial and commented
bibliography. InProceedings of the International Conference on Computer Aided Verication (CAV),
number 1497 in LNCS, pages 1–16, Vancouver, British Columbia, Canada, June 1998.

[47] Steven M. Hand. Self-paging in the nemesis operating system. InProceedings of the Symposium on
Operating Systems Design and Implementation (OSDI), pages 73–86, New Orleans, LA, February
1999.

[48] David Harel. Statecharts: A visual formalism for complex systems.Science of Computer Program-
ming, 8(3):231–274, June 1987.

[49] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The influence
of processor architecture on the design and the results of wcet tools.Proceedings of the IEEE,
91(7):1038–1054, July 2003.

[50] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems. InProceedings of
the Real-Time: Theory in Practice, REX Workshop, pages 226–251, Mook, The Netherlands, June
1991. Springer-Verlag GmbH.

66 BIBLIOGRAPHY

[51] Christopher Hylands, Edward Lee, Jie Liu, Xiaojun Liu, Stephen Neuendorffer, Yuhong Xiong,
Yang Zhao, and Haiyang Zheng. Overview of the ptolemy project. Technical report, Department of
Electrical Engineering and Computer Science, University of California, Berkeley, California, July
2003. http://ptolemy.eecs.berkeley.edu/.

[52] Van Jacobson. Congestion avoidance and control. InProceedings of ACM SIGCOMM, pages 314–
329, Stanford, CA, August 1988.

[53] David R. Jefferson. Virtual time.ACM Transactions on Programming Languages and Systems
(TOPLAS), 7(3):404–425, July 1985.

[54] Michael B. Jones, Daniel L. McCulley, Alessandro Forin, Paul J. Leach, Daniela Rosu, and Daniel L.
Roberts. An overview of the rialto real-time architecture. InProceedings of the ACM SIGOPS
European Workshop: Systems Support for Worldwide Applications, pages 249–256, Connemara,
Ireland, September 1996.

[55] Michael B. Jones, Daniela Rosu, and Marcel-Catalin Rosu. Cpu reservations and time constraints:
efficient, predictable scheduling of independent activities. InProceedings of the ACM Symposium
on Operating Systems Principles (SOSP), pages 198–211, Saint-Malo, France, October 1997.

[56] J. Kay and P. Lauder. A fair share scheduler.Communications of the Association for Computing
Machinery (CACM), 31(1):44–55, January 1988.

[57] Hermann Kopetz. The time-triggered model of computation. InProceedings of the IEEE Real-Time
Systems Symposium (RTSS), pages 168–177, Madrid, Spain, December 1998.

[58] Hermann Kopetz, Astrit Ademaj, and Alexander Hanzlik. Integration of internal and external clock
synchronization by the combination of clock-state and clock-rate correction in fault-tolerant dis-
tributed systems. InProceedings of the IEEE Real-Time Systems Symposium (RTSS), pages 415–
425, Lisbon, Portugal, December 2004.

[59] Hermann Kopetz and Gunther Bauer. The time-triggered architecture.Proceedings of the IEEE,
91(1):112–126, January 2003.

[60] Jaynarayan H. Lala and Richard E. Harper. Architectural principles for safety-critical real-time
applications.Proceedings of the IEEE, 82(1):25–50, January 1994.

[61] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem.Communications
of the Association for Computing Machinery (CACM), 17(8):453–455, August 1974.

[62] Leslie Lamport. Time, clocks and the ordering of events in a distributed system.Communications
of the Association for Computing Machinery (CACM), 21(7):558–565, July 1978.

[63] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems.ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 6(2):254–280, April 1984.

[64] Leslie Lamport. The temporal logic of actions.ACM Transactions on Programming Languages and
Systems (TOPLAS), 16(3):872–923, May 1994.

[65] Leslie Lamport and P.M. Melliar-Smith. Synchronizing clocks in the presence of faults.Journal of
the Association for Computing Machinery (JACM), 32(1):52–78, January 1985.

[66] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.Journal of
the Association for Computing Machinery (JACM), 30(3):668–676, July 1983.

[67] Edward A. Lee. Embedded software. In M. Zelkowitz, editor,Advances in Computers, volume 56.
Academic Press, London, 2002.

[68] Edward A. Lee. Absolutely positively on time: What would it take? Editorial,
http://ptolemy.eecs.berkeley.edu/˜eal , March 2005.

[69] I.M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E. Hyden.
The design and implementation of an operating system to support distributed multimedia applica-
tions. IEEE Journal on Selected Areas in Communications (JSAC), 14(7):1280–1297, September
1996.

BIBLIOGRAPHY 67

[70] Lindon L. Lewis. An introduction to frequency standards.Proceedings of the IEEE, 79(7):927–935,
July 1991.

[71] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Efficient microarchitecture modeling and
path analysis for real-time software. InProceedings of the IEEE Real-Time Systems Symposium
(RTSS), pages 298–307, Pisa, Italy, December 1995.

[72] Cheng Liao, Margaret Martonosi, and Douglas W. Clark. Experience with an adaptive globally-
synchronizing clock algorithm. InProceedings of the ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 106–114, Saint-Malo, France, June 1999.

[73] Jochen Liedtke. On micro-kernel construction. InProceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 237–250, Copper Mountain, CO, December 1995.

[74] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min, Chang Yun Park,
Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong Sang Kim. An accurate worst case
timing analysis for risc processors.IEEE Transactions on Software Engineering, 21(7):593–604,
July 1995.

[75] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment.Journal of the Association for Computing Machinery (JACM), 20(1):46–61, January
1973.

[76] Thomas Lundqvist and Per Stenstrm. An integrated path and timing analysis method based on
cycle-level symbolic execution.Real-Time Systems, 17(2-3):183–207, November 1999.

[77] Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Static timing analysis of embedded
software. InProceedings of the Design Automation Conference, pages 147–152, Anaheim, CA,
June 1997.

[78] Zohar Manna and Amir Pnueli.The temporal logic of reactive and concurrent systems. Springer-
Verlag GmbH, 1992.

[79] David G. Messerschmitt. Synchronization in digital system design.IEEE Journal on Selected Areas
in Communications (JSAC), 8(8):1404–1419, October 1990.

[80] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local computer
networks.Communications of the Association for Computing Machinery (CACM), 19(7):395–404,
July 1976.

[81] David L. Mills. Internet time synchronization: the network time protocol.IEEE Transactions on
Communication, 39(10):1482–1493, October 1991.

[82] David L. Mills. Improved algorithms for synchronizing computer network clocks.IEEE/ACM
Transactions on Networking, 3(3):245–254, June 1995.

[83] Pablo Molinero-Ferńandez, Nick McKeown, and Hui Zhang. Is IP going to take over the world (of
communications)? InACM HotNets, Princeton, NJ, October 2002.

[84] David Mosberger and Larry L. Peterson. Making paths explicit in the scout operating system. In
Proceedings of the Symposium on Operating Systems Design and Implementation (OSDI), pages
153–167, Seattle, WA, October 1996.

[85] Jens Muttersbach, Thomas Villiger, Hubert Kaeslin, Norbert Felber, and Wolfgang Fichtner.
Globally-asynchronous locally-synchronous architectures to simplify the design of on-chip systems.
In IEEE International ASIC/SOC Conference, pages 317–321, Washington DC, September 1999.

[86] George C. Necula. Proof-carrying code. InConference Record of the ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), pages 106–119, Paris, France, January
1997.

[87] Craig Partridge, Philip P. Carvey, Ed Burgess, Isidro Castineyra, Tom Clarke, Lise Graham, Michael
Hathaway, Phil Herman, Allen King, Steve Kohalmi, Tracy Ma, John Mcallen, Trevor Mendez,
Walter C. Milliken, Ronald Pettyjohn, John Rokosz, Joshua Seeger, Michael Sollins, Steve Starch,
Benjamin Tober, Gregory Troxel, David Waitzman, and Scott Winterble. A 50-Gb/s IP router.
IEEE/ACM Transactions on Networking, 6(3):237–248, June 1998.

68 BIBLIOGRAPHY

[88] Boaz Patt-Shamir and Sergio Rajsbaum. A theory of clock synchronization (extended abstract). In
Proceedings of the ACM Symposium on Theory of Computing, pages 810–819, Montreal, Quebec,
Canada, May 1994.

[89] Jr. Paul F. Reynolds, Craig Williams, and Jr. Raymond .R Wagner. Isotach networks.IEEE Trans-
actions on Parallel and Distributed Systems, 8(4):337–348, April 1997.

[90] Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. Preserving and using context
information in interprocess communication.ACM Transactions on Computer Systems, 7(3):217–
246, August 1989.

[91] Stefan M. Petters. Bounding the execution time of real-time tasks on modern processors. InInter-
national Conference on Real-Time Computing Systems and Applications (RTCSA), pages 489–502,
Cheju, Korea, December 2000.

[92] Amir Pneuli and Roni Rosner. Distributed reactive systems are hard to synthesize. InProceedings
of the Annual Symposium on Foundations of Computer Science, pages 746–757, St. Louis, MO,
October 1990.

[93] Jon Postel. Transmission control protocol (TCP). Request for Comments (RFC) 793, Internet
Engineering Task Force (IETF), September 1981.

[94] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. Fault-tolerant clock synchroniza-
tion in distributed systems.IEEE Computer, 23(10):33–42, October 1990.

[95] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alesandro Forin, David
Golub, and Michael B. Jones. Mach: a system software kernel. InProceedings of the IEEE Com-
puter Society International Conference (COMPCON), pages 176–178, San Francisco, CA, March
1989.

[96] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End arguments in system design.ACM Transac-
tions on Computer Systems, 2(4):277–288, November 1984.

[97] Ulrich Schmid and Klaus Schossmaier. Interval-based clock synchronization.Real-Time Systems,
12(2):173–228, March 1997.

[98] Fred B. Schneider. Synchronization in distributed programs.ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(2):125–148, April 1982.

[99] Klaus Schossmaier. An interval-based framework for clock rate synchronization. InProceedings
of the ACM Symposium on Principles of Distributed Computing, pages 169–178, Santa Barbara,
California, aug 1997.

[100] Claude Elwood Shannon. A mathematical theory of communication.Bell System Technical Journal
(BSTJ), 27:379–423, 1948.

[101] Kang G. Shin. Harts: A distributed real-time architecture.IEEE Computer, 25(5):25–35, May 1991.

[102] Michael Sipser.Introduction to the Theory of Computation. PWS Publishing Company, 1997.

[103] Samual R. Stein. Frequency and timetheir measurement and characterization. In E. A. Gerber and
A. Ballato, editors,Precision Frequency Control, Vol. 2, pages 191–232. acadpr, 1985.

[104] D.B. Sullivan, D.W. Allan, D.A. Howe, and F.L. Walls. Characterization of clocks and oscillators.
Technical Note 1337, National Institute of Standards and Technology (NIST), March 1990.

[105] Telcordia Technologies, Inc. Synchronous optical network (SONET) transport systems: Common
generic criteria. Document Number GR-253, September 2000.

[106] Hideyuki Tokuda and Clifford W. Mercer. Arts: a distributed real-time kernel.ACM SIGOPS
Operating Systems Review, 23(3):29–53, July 1989.

[107] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient software-based
fault isolation. InProceedings of the ACM Symposium on Operating Systems Principles (SOSP),
pages 203–216, Asheville, NC, December 1993.

BIBLIOGRAPHY 69

[108] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible proportional-share resource
management. InProceedings of the Symposium on Operating Systems Design and Implementation
(OSDI), pages 1–11, Monterey, CA, November 1994.

[109] Hubert Zimmermann. OSI reference model – the ISO model of architecture for open systems inter-
connection.IEEE Transactions on Communication, 28:425–432, April 1980.

