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Abstract

In this thesis we study algorithms for online convex optimization and their relation to
approximate optimization.

In the first part, we propose a new algorithm for a general online optimization frame-
work called online convex optimization. Whereas previous efficient algorithms are mostly
gradient-descent based, the new algorithm is inspired by the Newton-Raphson method
for convex optimization, and hence called Online Newton Step. We prove that in
certain scenarios Online Newton Step guarantees logarithmic regret, as opposed to
polynomial bounds achieved by previous algorithms. The analysis is based on new in-
sights concerning the natural “follow-the-leader” (FTL) method for online optimization,
and answers some open problems regarding FTL.

One application is for the portfolio management problem, for which we describe ex-
perimental results over real market data.

In the second part of the thesis, we describe a general scheme of utilizing online game
playing algorithms to obtain efficient algorithms for offline optimization. Using new and
old online convex optimization algorithms we show how to derive the following:

1. Approximation algorithms for convex programming with linear dependence on the
approximation guarantee.

2. Efficient algorithms for haplotype frequency estimation.

3. Fast algorithms for approximate semidefinite programming
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Chapter 1

Introduction

The focus of this thesis is efficient algorithms for optimization, both in the online and the
offline settings.

An example of an online optimization problem we consider is the problem of online
portfolio management. An online investor wants to distribute her wealth on a set of
available financial instruments without knowing the market outcome in advance. The
goal of the online investor is to maximize her change in wealth over a sequence of many
trading periods.

An example of offline optimization is the problem of Linear Programming, in which
one wants to maximize a linear objective function subject to a set of linear constraints.
Another example is Haplotype Frequency Estimation. In this computational problem,
motivated from a biological application, we are given a set of noisy binary strings, in
which several strings contain missing/erroneous bits. The goal is to compute the most
likely distribution over binary strings which generated the noisy data.

In this thesis we propose a new algorithm for the online setting, which is based on
the Newton-Raphson method (see Appendix A). We then describe how the new online
algorithm and other related algorithms can be used to derive efficient approximation
algorithms for several offline optimization problems.

1.1 Online Convex Optimization

In online convex optimization, an online player chooses a point in a convex set. After the
point is chosen, a concave payoff function is revealed, and the online player receives payoff
which is the concave function applied to the point she chose. This scenario is repeated
for many iterations.

The online convex optimization framework generalizes many previous online optimiza-
tion problems. For example, in the problem of online portfolio management an online in-
vestor wants to distribute her wealth on a set of n available financial instruments without
knowing the market outcome in advance. The wealth distribution of the online investor
can be thought of as a point in the set of all distributions over n items (the financial
instruments), which is a convex set. The payoff to the online player is the change in
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wealth, which is a concave function of her distribution. Other examples which fit into
this online framework include the problems of prediction from expert advice and online
zero-sum game playing.

To measure the performance of the online player we consider two metrics. The first
is information theoretic: how well did the player perform considering that she did not
know in advance the concave payoff functions which she will encounter (e.g. the market
behavior) ? In other words, how is the performance of the player limited by lack of
foresight.

The obvious measure would be to compare the performance of the online player to a
player that would have complete knowledge of the future, i.e. knows the concave payoff
functions to be encountered. Indeed such performance metrics have been used to analyze
various online algorithms for interesting problems such as computer cache management.
However, for many real world problems no player which cannot anticipate the future can
even slightly compare with an all-knowing prophet.

There are many approaches to cope with the aforementioned difficulty, but by far
the most common is to measure the performance of the online player versus a “restricted
prophet”, i.e. versus a player that has complete knowledge of the future but is restricted to
choose a single point for all iterations. This performance measure is called regret. Regret
measures the difference in payoff between the online player and the “restricted prophet”
(the best fixed point in hindsight).

The second metric by which we measure performance is computational complexity, i.e.
the amount of computer resources required to compute the online player’s point for the
upcoming iteration given the history of payoff functions encountered thus far.

Previous approaches for online convex optimization are based on first-order optimiza-
tion, i.e. optimization using the first derivatives of the payoff functions. The regret
achieved by these algorithms is proportional to a polynomial (square root) in the num-
ber of iterations. Besides the general framework, there are specialized algorithms, e.g.
for portfolio management, which attain regret proportional to the logarithm of the num-
ber of iterations. However, these algorithms do not apply to the general online convex
optimization framework and are less efficient in terms of computational complexity.

1.2 Approximate optimization and Lagrangian relaxation

In the second part of the thesis we consider the computational problem of minimizing
a convex function over a convex domain. Special cases of this general problem include
Linear Programming, Semidefinite Programming and various network flow problems.

Polynomial time algorithms for this task include interior point methods and the ellip-
soid method. Although of great theoretical and practical importance, for certain convex
and linear programs which occur in practice these methods are too slow.

Lagrangian relaxation is one approach to deal with this difficulty, in which an approx-
imate solution is computed efficiently. A characteristic of lagrangian relaxation methods
is the polynomial dependence of the running time on the approximation guaranty and on
the width - a measure of the size of the instance numbers. This is in contrast to interior
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point methods and the ellipsoid method, whose running time depend poly-logarithmically
on the approximation guaranty and on the width, and are thus much superior to La-
grangian relaxation in this respect. The advantage of Lagrangian relaxation algorithms
is their simplicity, low running time in terms of input size and the use of elementary
operations. On the other hand, interior point methods require “expensive” computations
such as matrix inversions or computing the Cholesky decomposition.

Many researchers have previously observed the close relation between Lagrangian re-
laxation and solving zero sum games. Perhaps the earliest reference goes back to von
Neumann, who noted the connection between the min-max theorem of zero sum games
and linear programming duality. The connection to the online optimization setting stems
from the fact that online convex optimization algorithms can be used to solve zero sum
games.

1.3 Our results

We introduce a new algorithm, Online Newton Step, which uses second-order infor-
mation of the payoff functions and is based on the well known Newton-Raphson method
for offline optimization. The Online Newton Step algorithm attains regret which is
proportional to the logarithm of the number of iterations when the payoff functions are
concave, and is computationally efficient.

The intuition leading to the Online Newton Step algorithm stems from new obser-
vations regarding a very natural approach for online optimization called follow-the-leader.
Informally, this natural approach suggests to use the best point so far for the upcoming
iteration. The connection to the Newton method allows us to prove a strong performance
guarantee for the ”follow-the-leader” approach in a general setting, resolving some open
problems.

After discussing online convex optimization, we proceed to describe how online convex
optimization algorithms can be used to derive efficient offline approximate optimization al-
gorithms. Admittedly, this sounds counterintuitive: online optimization is a more difficult
problem than offline optimization. Yet a general algorithmic scheme called Lagrangian
relaxation is related to online convex optimization.

We generalize previous approaches and describe a framework for deriving approximate
optimization algorithms using online convex optimization algorithms. The main observa-
tion is that the guarantee on the regret for a given online algorithm can be converted to
a convergence guarantee when this algorithm is used to derive an offline approximation
algorithm.

Using the new online convex optimization algorithms, and in particular the Online
Newton Step algorithm, we derive approximation algorithms for convex programming
with linear dependence on the approximation guarantee. Previous approximation algo-
rithms had quadratic dependence on the approximation guarantee. Another advantage of
the new algorithms is that similar to the ellipsoid method, they allow the convex set to
be described implicitly by a separation oracle.

Finally we give concrete examples of Lagrangian relaxation algorithms. First, we
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describe a problem arising from computational biology called Haplotype Frequency Es-
timation. We show how to easily derive an approximation algorithm using the general
framework for deriving approximate optimization algorithms from online convex opti-
mization algorithms. Then we describe an algorithm called HaploFreq which is custom
designed (although related to Lagrangian relaxation) and more efficient.

The next example concerns efficient algorithms for semi-definite programming. The
overall framework is also Lagrangian relaxation, but we also introduce some new ideas,
such as composing lagrangian relaxation with the ellipsoid method, efficient eigenvalue
computation and matrix sparsification.

1.4 Structure of the thesis

The first two chapters deal with the online setting. In chapter 2 we give a survey of
the online convex optimization model, applications and previous algorithms. Chapter 3
contains our new algorithms for the online setting, as well as some experimental results.

In chapter 4 we describe the general framework for deriving approximate optimiza-
tion algorithms from online convex optimization algorithms. This chapter also describes
applications to Linear and Convex Programming.

In the final two chapters we discuss other lagrangian relaxation algorithms. In chapter
5 we describe the Haplotype Frequency Estimation problem and efficient approximation
algorithms designed for it. Chapter 6 concerns efficient algorithms for semi-definite pro-
gramming.

Most chapters can be read independently. An exception is chapter 3, which relies on
definitions and preliminaries given in chapter 2. Chapter 4 connects the chapters which
precede and succeed it, and reading it before chapters 5 and 6 is recommended (although
not necessary).
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Chapter 2

Online Convex Optimization: A
survey

In this chapter we describe the online model which we study in this thesis and its appli-
cations. After defining the model formally, we illustrate how several problem can be cast
as special cases of online convex optimization.

We then proceed to survey some of the previous algorithms for this model. In some
cases we include performance analysis which is different from the original and may be of
independent interest.

We conclude with lower bounds and a discussion on the room left for improvement
over previous algorithms.

2.1 The online convex optimization model

Consider the following simple example: an investor tries to invest in a certain stock. For
simplicity, think of its price movements as up/down. If the investor succeeds in predicting
the market she gains one dollar, and otherwise loses one dollar.

In making her predictions, the online investor is allowed to watch the predictions of
n “experts” (who could be arbitrarily correlated, and who may or may not know what
they are talking about). The investor is also allowed to use random coin tosses for her
decision. For example, she may decide to follow the advice of the first expert with certain
probability, and the second expert otherwise.

The algorithms we are interested in will enable the investor to perform roughly the
same as the best of these experts (in expectation and with high probability if randomization
is allowed). Further, the computation that the investor need perform before each trading
day can be carried out efficiently. At first sight this may seem an impossible goal, since it
is not known until the end of the sequence who the best expert was, whereas the algorithm
is required to make predictions all along.

Below we define the online convex optimization framework formally. After providing
all formal definitions and notation, we proceed to show how the above simple prediction
problem, as well as several other online problems, can be derived as instantiations of this
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model.

2.1.1 A formal definition of the model

In online convex optimization, an online player iteratively chooses a point from a set in
Euclidean space denoted P ⊆ Rn. Following Zinkevich [Zin03], we assume that the set P
is non-empty, bounded and closed. For reasons that will be apparent in section 3.5, we
also assume the set P to be convex.

We denote the number of iterations by T (which is unknown to the online player). At
iteration t, the online player chooses xt ∈ P . After committing to this choice, a convex
cost function ft : P 7→ R is revealed. The cost incurred to the online player is the value
of the cost function at the point she committed to ft(xt).

Consider an online player using a (possibly randomized) algorithm for online game
playing A. At iteration t, the algorithm A takes as input the history of cost functions
f1, ..., ft−1 and produces a feasible pointA({f1, ..., ft−1}) ∈ P. When there is no ambiguity
concerning the algorithm used, we simply denote xt = A({f1, ..., ft−1}). The regret of the
online player using algorithm A at time T , is defined to be the total cost minus the cost of
the best single decision, where the best is chosen with the benefit of hindsight. Formally

Regret(A, {f1, ..., fT }) = E[
∑T

t=1ft(xt)]−minx∈P
∑T

t=1ft(x).

Regret measures the difference in performance between the online player and a “static”
player with the benefit of hindsight - i.e a player that is constrained to choose a fixed point
over all iterations. It is tempting to compare the online player to an adversary which has
the benefit of hindsight but is otherwise unconstrained (i.e. can dynamically change her
point every iteration). However, this allows the adversary to choose the optimum point
x∗t , minx∈P ft(x) each iteration, and the comparison becomes trivial in many interesting
applications.

We are usually interested in an upper bound on the worst case guaranteed regret,
denoted

RegretT (A) = sup
{f1,...,ft}

{Regret(A, {f1, ..., ft})}

Intuitively, an algorithm attains non-trivial performance if its regret is sublinear as
a function of T , i.e. RegretT (A) = o(T ), since this implies that “on the average” the
algorithm performs as good as the best fixed strategy in hindsight.

Remark: For some problems it is more natural to talk of “payoff” given to the online
player rather than cost she incurs. In such cases, the online player receives payoff ft(xt),
where ft is a concave utility function. Regret is then defined to be

Regret(A, {f1, ..., fT }) = max
x∈P

∑T
t=1ft(x)−E[

∑T
t=1ft(xt)].

The running time of an algorithm for online game playing is defined to be the worst-
case expected time to produce xt, for an iteration t ∈ [T ] 1 in a T iteration repeated game.

1here and henceforth we denote by [n] the set of integers {1, ..., n}
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Typically, the running time will depend on n, T and parameters of the cost functions and
underlying convex set.

2.2 Applications

2.2.1 Learning from expert advice

Learning from expert advice is the generic problem of machine learning, which we infor-
mally described in the beginning of this chapter with the stock prediction example. This
problem fits into the online game playing framework as follows. The convex set P is taken
to be the set of all distributions, namely the n dimensional simplex denoted Sn.

Sn =

{
x ∈ Rn, ∀i ∈ [n] xi ≥ 0 ,

n∑

i=1

xi = 1

}

For day t, let the payoff (i.e. the profit we would make if we would take this expert’s
advice) associated with expert i ∈ [n] be at(i). Denote the entire payoff vector by at.
Define the t’th payoff function as

∀x ∈ P ft(x) ,
n∑

i=1

at(i) · x(i) = x>at

Thus, choosing expert i in day t, parallels the choice of the point ei ∈ Sn
2, and results

in payoff of at(i). Even more generally, this models the use of a randomized algorithm
that picks expect i with probability xt(i). The expected payoff is exactly ft(xt).

Let j be the best expert in hindsight, i.e j , arg maxi∈[n]

∑T
t=1 e>i at. Then regret for

an algorithm A in this setting is

RegretT (A) = max
x∈P

∑T
t=1x

>at −E[
∑T

t=1x
>
t at] ≤

∑T
t=1e

>
j at −E[

∑T
t=1x

>
t at]

Which is simply the difference between the profit of the best distribution over experts
in hindsight (which is just the best expert in hindsight) and the payoff attained by A.
Thus, sublinear regret amounts to having the average difference in payoff converge to zero.

Prediction from expert advice is closely related to Boosting —combining several mod-
erately accurate rules-of-thumb into a singly highly accurate prediction rule— which is
a central idea of AI today. As such, many algorithms for this learning problem were
proposed and analyzed. We refer the reader to the survey by Schapire [Sch03].

Efficient algorithms, measured by notions of regret, algorithmic complexity and other
metrics, were proposed in the seminal work of Freund and Schapire on Boosting [FS97].
Their algorithms achieve regret which is bounded by O(

√
T log n) for T prediction iter-

ations, and can be implemented in time O(n) per iteration, where n is the number of
experts. The technique underlying their algorithms is called the Multiplicative Weights
Update Method, which we shall revisit in later sections and chapters.

2ei denotes the i’th standard basis vector, i.e. the n dimensional vector with coordinates all zero except
for one in the i’th position.
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2.2.2 Online zero-sum game playing

Consider the following scenario: Let M be a matrix. On each of a series of rounds, one
player chooses a row i ∈ [n] and the other chooses a column j ∈ [m]. The selected entry
M(i, j) is the loss suffered by the row player and the profit gained by the column player.
We denote by M(x,y) the expected loss to the row player if she plays according to the
distribution x ∈ Sn over the rows and the column player plays distribution y ∈ Sm over
the columns, i.e.

M(x,y) =
∑

i∈[n]

∑

j∈[m]

x(i)y(j)M(i, j)

The game value is defined to be

λ∗ = min
x∈Sn

max
y∈Sm

M(x,y)

According to the von Neumann min-max theorem λ∗ = minx∈Sn maxy∈Sm M(x,y) =
maxy∈Sm minx∈Sn M(x,y). Denote the optimal row/column distributions (also called
mixed strategies) by

x∗ , arg min
x∈Sn

max
y∈Sm

M(x,y)

y∗ , arg max
y∈Sm

min
x∈Sn

M(x,y)

The optimal strategies can be computed in polynomial time using linear programming.
Hence by computing x∗ the row player can guarantee an expected loss of at most λ∗.

There are several drawbacks to this approach. First, the matrix M may be very large
and computing x∗ becomes infeasible. Second, the matrix M may be unknown to the row
player. Third, the column player may not be truly adversarial and allow loss significantly
smaller than the game value.

To phrase this problem in the online convex optimization setting, the convex set P is
chosen to be the set of all distributions over the n rows, i.e. Sn. The cost functions are
defined to be the expected cost according to a given distribution. If the column player
plays according to distribution yt at iteration t, define

∀x ∈ P . ft(x) = M(x,yt) =
∑

i∈[n]

xt(i)M(i,yt)

Notice that the cost functions are linear. An algorithm attaining regret at most RT (A)
over T iterations satisfies

∑T
t=1M(xt,yt)−minx∈Sn

∑T
t=1M(x,yt) ≤ Rt(A)

Note that according to the definition of the game value minx∈Sn M(x,yt) ≤ λ∗. Shifting
sides in the above inequality and normalizing we obtain

1
T

∑T
t=1M(xt,yt) ≤ λ∗ + Rt(A)

T

8



Thus, if RT (A) = o(T ), as the number of game iterations grows T 7→ ∞, the average
cost becomes closer to the game value (or possibly better, to the best fixed strategy in
hindsight).

Algorithms of this type were first proposed by Blackwell [Bla56] and Hannan [Han57],
and later algorithms were proposed by Foster and Vohra [FV99, FV93, FV98] and Freund
and Schapire [FS99].

2.2.3 Portfolio Management

In the universal portfolio management problem, we seek an online wealth investment
strategy which enables an investor to maximize his wealth by distributing it on a set of
available financial instruments without knowing the market outcome in advance or even
any statistical assumptions on its behavior. In fact, our model permits the market to be
adversarial. The study of such a model was started in the 1950s by Kelly [Kel56] followed
by Bell and Cover [BC80, BC88] and Algoet and Cover [AC88].

Absolute wealth maximization in an adversarial market is of course a hopeless task;
we therefore aim to maximize our wealth relative to that achieved by a reasonably sophis-
ticated investment strategy.

One option that comes to mind is versus the best single stock in hindsight. We consider
an even more powerful investment strategy, the constant-rebalanced portfolio [Cov91],
abbreviated CRP. A CRP strategy rebalances the wealth each trading period to have a
fixed proportion in every stock in the portfolio. For example, in a two commodity market
the (1

2 , 1
2) CRP rebalances the wealth evenly over the two commodities after each trading

period. A special case is, of course, a single stock in the market which corresponds to the
CRP that reinvests all wealth in that stock.

However, a CRP is potentially much more powerful strategy, as shown by the following
example. Consider a market with only two stocks: the first increases it’s value ten fold
on even days, and decreases its value to 1/100 on odd days. The second stock changes
its value with inverse correlation - on odd days increases its value ten fold, and even
days decreases its value a hundred fold. Obviously, investing all wealth in any of the
two options results in net decrease of wealth by 10 · 1

100 = 1
10 every two days. However,

reinvesting 50% in each stock every day guarantees 1
2 · 10 + 1

2 · 1
100 = 500.5% increase in

wealth daily !
Let the number of stocks in the portfolio be n. On every trading period t, for t =

1, . . . , T , the investor observes a price relative vector rt ∈ Rn, such that rt(j) is the ratio
of the closing price of stock j on day t to the closing price on day t− 1. A portfolio p is a
distribution on the n stocks, so it is a point in the n-dimensional simplex Sn. If the investor
uses a portfolio pt on day t, his wealth changes by a factor of p>t rt. Thus, after T periods,
the wealth achieved per dollar invested is

∏T
t=1(p

>
t rt). Taking the logarithm of the wealth

change gives the logarithmic growth ratio
∑T

t=1 log(p>t rt). Thus, to fit the online game
playing framework, we define the cost function at time t to be ft(p) = log(p>rt). Notice
that this function is concave.

An investor using a CRP p ∈ Sn achieves the logarithmic growth ratio
∑T

t=1 log(p>rt).
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The best CRP in hindsight p∗ is the one which maximizes this quantity, i.e.

p∗ ∈ arg max
p∈Sn

T∑

t=1

log(p>rt)

The regret of an online algorithm, A, which produces portfolios pt for t = 1, . . . , T , is
then

RegretT (Alg) =
T∑

t=1

log((p∗)>rt)−
T∑

t=1

log(p>t rt).

Thus, an investor using an algorithm with low regret achieves asymptotically the same
daily wealth increase as the best CRP in hindsight.

Since scaling rt by a constant affects the logarithmic growth ratios of both the best
CRP and A by the same additive factor, the regret does not change. So we assume
without loss of generality that for all t, rt is scaled so that maxj rt(j) = 1. We also
make the assumption that after this scaling, all the rt(j) are bounded below by the
market variability parameter ξ > 0. This has been called the no-junk-bond assumption by
Agarwal and Hazan, and can be interpreted to mean that no stock crashes to zero value
over the trading period.

With this setup, Cover [Cov91] gave the first portfolio selection algorithm which had
the optimal regret O(n log T ), without dependence on the market variability parameter ξ.
The running time of his algorithm is exponential: the algorithm computes the portfolio
pt in Ω(tn) time. Kalai et al. [KV03] gave a polynomial implementation of the algorithm
using sampling of logconcave functions from convex domains [LV03b, LV03a], and this
results in a randomized poly(T, n) time algorithm, though the polynomial is still quite
large. Helmbold et al. [HSSW96] gave an algorithm which needs just linear O(n) time
and space per period but has suboptimal regret of O(

√
T log n) (assuming ξ > 0).

In Chapter 3 we describe an algorithm that is both deterministically computable in
time Õ(n2) and attains logarithmic regret O(n log T ) for markets with constant market
variability ξ > 0.

2.3 Previous algorithms for online convex optimization

We begin by describing the parameters used to evaluate algorithms for online convex op-
timization. We then describe some previously known algorithms. At times, we present a
different analysis than the original for some of these algorithms. This may be of indepen-
dent interest to the readers.

2.3.1 Notation and Definitions

Recall that in online convex optimization, the online player iteratively chooses points
from a closed, bounded and non-empty convex set P ⊆ Rn and encounters convex cost
functions {ft : P 7→ R}.

10



Denote by D the diameter of the underlying convex set P, i.e.

D = max
x,y∈P

‖x− y‖2

Unless stated otherwise, we assume that the cost functions {ft} are twice differentiable
and convex. These assumptions are satisfied by all applications described previously. For
some of the algorithms we shall describe, these smoothness conditions can be somewhat
relaxed. For the sake of brevity we leave to the reader to note where such generalization
are applicable.

Recall that the gradient for a f : Rn 7→ R at point x ∈ Rn is the vector ∇f(x) whose
components are the partial derivatives of the function at x. Its direction is the one in
which the function has the largest rate of increase, and its magnitude is the actual rate of
increase. We denote the upper bound (not necessarily finite) on the gradients of the cost
functions by

G = sup
x∈P,t∈[T ]

∇ft(x)

In some cases we are concerned with the `∞ norm of the gradient rather than the Euclidean
norm, in which case we denote the upper bound by G∞.

We also consider the analogue of second derivatives for multivariate functions. The
Hessian of a function f at point x is a matrix ∇2f(x), such that ∇2f(x)[i, j] = ∂2

∂xi,xj
f(x).

Analogous to the one-dimensional case, a function f is convex at point x if and only if its
Hessian is positive-semi-definite ∇2f(x) º 0. We denote a lower bound on the Hessian of
all cost functions by the real number R 3 H ≥ 0:

inf
x∈P,t∈[T ]

∇2ft(x) º H · In

Here, In is the n-dimensional identity matrix and we denote A º B if the matrix A−B º 0
is positive semi-definite (PSD), i.e. all its eigenvalues are nonnegative. Thus, H is a lower
bound on the eigenvalues of all the Hessians of the constraints.

In the following chapters we will consider functions which have bounded gradient and
are strictly convex (i.e. H > 0). An alternative to a bound on G and H is a constant
α > 0 such that exp(−αft(x)) is a concave function of x ∈ P, for all t, i.e.

inf
x∈P,t∈[T ]

∇2 exp(−αft(x)) ¹ 0

This condition is weaker then a bounded gradient and strict convexity, since if G
is bounded and H > 0, one can show that α ≤ H/G2. One can easily verify this for
one-dimensional functions ft : R→ R by taking two derivatives,

h′′t (x) = ((αf ′t(x))2 − αf ′′t (x)) exp(−αft(x)) ≤ 0 ⇐⇒ α ≤ f ′′t (x)
(f ′t(x))2

.

When it is more natural to talk of maximization of payoff rather than minimization of
cost (i.e. for portfolio management), we require the payoff functions to be concave instead
of convex. The parameter H is then defined to be

sup
x∈P,t∈[T ]

∇2ft(x) ¹ −H · In
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2.3.2 Online Gradient Descent

Perhaps the simplest algorithm that applies to the most general setting of online convex
optimization is online gradient descent. This algorithm, which is based on the standard
gradient descent algorithm from offline optimization, was introduced to the online setting
by Zinkevich [Zin03].

Pseudo-code for the algorithm is given in figure 2.1. In each iteration the point chosen
by the algorithm is the previous point plus a multiple of the gradient of the previous
cost function. Adding a multiple of the previous gradient may take the current point
out of the underlying convex set. In such cases, the algorithm projects the point back
to the convex set, i.e. finds the point in the convex set which is closest to the current.
Despite the fact that the upcoming cost function may be completely different than all
those which occurred thus far, the regret attained by the algorithm is sublinear, as shown
in the following theorem by Zinkevich.

Online Gradient Descent.
Inputs: convex set P ⊂ Rn, step sizes η1, η2, . . . ≥ 0, initial x1 ∈ P.

• In iteration 1, use point x1 ∈ P.

• In iteration t > 1: use point

xt = ΠP(xt−1 − ηt∇ft−1(xt−1))

Here, ΠP denotes the projection onto nearest point in P, ΠP(y) = arg minx∈P ‖x−
y‖2.

Figure 2.1: The Online Gradient Descent algorithm definition.

Theorem 2.1. [Zinkevich] Online Gradient Descent with step sizes ηt = G
D
√

t
achieves

the following guarantee, for all T ≥ 1.

RegretT (OGD) =
T∑

t=1

ft(xt)−min
x∈P

T∑

t=1

ft(x) ≤ 3GD
√

T

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x). Define ∇t , ∇ft(xt). By convexity

ft(xt)− ft(x∗) ≤ ∇>t (xt − x∗) (2.1)

Let’s upper-bound ∇>t (xt − x∗). Using the update rule for xt+1 and standard properties
of projections onto convex sets (see section 3.5 lemma 3.9)

‖xt+1 − x∗‖2 = ‖Π(xt − ηt∇t)− x∗‖2 ≤ ‖xt − ηt∇t − x∗‖2. (2.2)
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Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t ‖∇t‖2 − 2ηt∇>t (xt − x∗)

2∇>t (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ ηtG

2 (2.3)

Sum up (1) and (2) from t = 1 to T , and having ηt = D
G
√

t
(with 1

η0
, 0):

2
T∑

t=1

ft(xt)− ft(x∗) ≤ D2
T∑

t=1

(
1
ηt
− 1

ηt−1

)
+ G2

T∑

t=1

ηt

≤ D2 1
ηT

+ G2
T∑

t=1

ηt ≤ 3DG
√

T

The last inequality follows since
∑T

t=1 t−
1
2 ≤ 2

√
T .

The Online Gradient Descent algorithm is straightforward to implement, and
updates take time O(n) given the gradient. However, there is a projection step which
may take longer. For details on computing projections onto convex sets see section 3.5.

2.3.3 The Multiplicative Weights Algorithm

In this subsection we present an algorithm based on the ubiquitous Multiplicative Weights
Update method (for more applications of the method see survey [AHK05a]). For very
detailed analysis of the method in similar settings see also [KW97]. Freund and Schapire
[FS99] analyze exactly the algorithm below, although for linear payoff functions rather
than for general convex functions. Helmbold et al [HSSW96] analyze another instantiation
where the payoff functions are logarithmic. Below we apply the method to online convex
optimization over the simplex.

The Multiplicative Weights online algorithm is depicted in figure 2.2. This algorithm
has been called “exponentiated gradient” in the machine learning literature [KW97]. As
the algorithm is phrased, it needs to know T and G∞ in advance. 3 Standard techniques
can be used so that the algorithm need not accept any input: the dependence on T can
be removed by doubling the value of T as it is being exceeded. The dependence on G∞
can be removed by similar means: maintaining an estimate of G∞ and doubling this
estimate whenever a gradient with larger infinity norm is encountered. Implementation
is straightforward, and updates take time O(n) given the gradient.

The Multiplicative Weights algorithm attains similar performance guarantees to the
“online gradient descent” algorithm of Zinkevich [Zin03]. Despite being less general than
Zinkevich’s algorithm (we only give an application to the n-dimensional simplex, whereas
online gradient descent can be applied over any convex set in Euclidean space), it attains
better regret with respect to the dimension as given in the following theorem.

3Recall from the previous sections that G∞ is an upper bound on the `∞ norm of the cost functions.
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Multiplicative Weights.
Inputs: parameters T , G∞.

• In iteration 1, use the uniform distribution x1 = 1
n1 ∈ Sn. Let ∀i ∈ [n] . w1

i = 1

• In iteration t, update
wt

i = wt−1
i · (1 +

η

G∞
∇t−1(i))

where ∇t , ∇ft(xt), η =
√

log n
T and use point xt defined as

xt , wt

‖wt‖1

Figure 2.2: The Multiplicative Weights algorithm for online convex optimization over the
simplex

Theorem 2.2. The Multiplicative Weights algorithm achieves the following guarantee,
for all T ≥ 1.

RegretMW (T ) =
T∑

t=1

ft(xt)− min
x∈Sn

T∑

t=1

ft(x) ≤ O(G∞
√

log n
√

T )

Proof. Define Φt =
∑

i w
t
i . Since 1

G∞∇t(i) ∈ [0, 1],

Φt+1 =
∑

i

wt+1
i =

∑

i

wt
i(1−

η

G∞
∇t(i))

= Φt − ηΦt

G∞

∑

i

∇t(i)xt(i) since xt(i) = wt
i/Φt

= Φt(1− η∇>t xt/G∞)

≤ Φte−η∇>t xt/G∞ since 1− x ≤ e−x for |x| ≤ 1

After T rounds, we have

ΦT ≤ Φ1e−η
P

t∇>t xt/G∞ = ne−η
P

t∇>t xt/G∞ (2.4)

Also, for every i ∈ [n], using the following facts which follow immediately from the
convexity of the exponential function

(1− η)x ≤ (1− ηx) if x ∈ [0, 1]
(1 + η)−x ≤ (1− ηx) if x ∈ [−1, 0]
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We have

ΦT =
∑

t

wT
i ≥ wT

i

=
∏

t

(1− η∇t(i)/G∞)

≥ (1− η)
P

t>0∇t(i)/G∞(1 + η)
P

t<0−∇t(i)/G∞

where the subscripts ≥ 0 and < 0 refer to the rounds t where ∇t(i) is ≥ 0 and < 0
respectively. So together with (2.4)

ne−η
P

t∇>t xt/G∞ ≥ (1− η)
P

t>0∇t(i)/G∞(1 + η)
P

t<0−∇t(i)/G∞

Taking logarithms and using ln( 1
1−η ) ≤ η + η2 and ln(1 + η) ≥ η− η2 for η ≤ 1

2 we get
for all i ∈ [n] and x∗ ∈ Sn

∑
t

∇>t xt ≤ (1 + η)
∑

≥0

∇t(i) + (1− η)
∑

<0

∇t(i) +
G∞ log n

η

≤
∑

t

∇t(i) + η
∑

t

|∇t(i)|+ G∞ log n

η

≤
∑

t

∇>t x∗ + ηTG∞ +
G∞ log n

η

Therefore
∑

t

ft(xt)− ft(x∗) ≤
∑

t

∇>t (xt − x∗)

≤ ηTG∞ +
G∞ log n

η

And the theorem follows since η =
√

log n
T

2.3.4 Follow the Leader

Perhaps the most intuitive algorithm for online game playing can be described as follows:
at iteration t, choose xt which is the best strategy so far, i.e. the point in P that minimizes
the sum of all cost functions encountered thus far. A precise mathematical definition is
given in figure 2.3. 4

Given the natural appeal of this algorithm, it was considered in the game theory
literature for over 50 years. It is not difficult to show that for linear cost functions, the
Follow The Leader algorithm does not attain any non-trivial regret guarantee (in the

4In case of degenerate cost functions, xt may not be uniquely defined. In such cases we let xt ∈
arg minx∈P

Pt−1
τ=1 fτ (x).
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Follow The Leader.
Inputs: convex set P ⊂ Rn, initial x1 ∈ P.

• In iteration 1, use x1 ∈ P.

• In iteration t > 1: use point

xt = arg max
x∈P

t−1∑

τ=1

fτ (x)

Figure 2.3: The Follow The Leader algorithm definition.

worst case it can be Ω(T ) if the cost functions are chosen adversarially). However, already
in 1957 Hannan [Han57] proposed a randomized variant of FTL, called perturbed-follow-
the-leader, which attained O(

√
T ) regret in the online game playing setting for linear

functions over the simplex. 5

As we show later, this regret bound is optimal. Merhav and Feder [MF92] extend the
FTL approach to strictly convex cost functions over the simplex, and prove that for such
functions FTL attains regret which is logarithmic in the number of iterations. Similar
results were obtained by Cesa-Bianchi and Lugosi [CBL06], and Gaivoronski and Stella
[GS00].

A natural question, asked explicitly by Cover and Ordentlich, Kalai and Vempala, and
others, is whether follow-the-leader provides any non-trivial guarantee for curved (but
not necessarily strictly convex) cost functions ? One application which is not covered by
previous results is the problem of portfolio management.

In Chapter 3 We answer this question in the affirmative, and prove that in fact Follow
The Leader attains optimal regret for curved functions.

2.3.5 Other Algorithms for Linear cost functions

Given the generality and ubiquitousness of applications for online convex optimization
with linear payoff functions, much work has been devoted to various special cases and many
fields of study. It is beyond the scope of this thesis to describe all historical developments
of these interesting results. The preceding algorithms were selected as the culmination
of efforts spanning the last 50 years and more, attain the best theoretical guarantees to
date, and are most relevant to our subsequent discussion.

For more historical context and algorithms the reader is referred to the surveys of
Fudenberg and Levin [FL99], Foster and Vohra [FV99], Cover [Cov96] and Blum [Blu98].

5this algorithm was rediscovered in [KV05], who provide a much simpler analysis and many applications
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2.3.6 Cover’s Algorithm

In [Cov91] Cover introduced the Universal algorithm for portfolio management, which
attains O(n log T ) regret. As detailed in section 2.2.3, portfolio management is a special
case of online convex optimization where the underlying set is the simplex and the payoff
functions are defined by ft(x) = log(p>rt), where rt is a vector of returns on the market
commodities.

The original algorithm was defined in terms of integrals over the simplex. We choose
to provide a discretized version which permits an easier analysis. 6 The algorithm is
defined in figure 2.4.

Universal
Let Sk

n be the k-discretized n-dimensional simplex, for k = T 3n :

Sk
n ,

{
p|p ∈ Sn ; ∀i ∈ [n] n

√
k · p(i) ∈ Z

}

• On period 1, use the uniform portfolio p1 = 1
n1.

• On period t > 1: use portfolio

pt ,
∑

p∈Sk
n
p ·∏t−1

i=1 p>ri∑
p∈Sk

n

∏t−1
i=1 p>ri

Figure 2.4: The Universal algorithm for portfolio management.

As can be seen, Cover’s algorithm takes the portfolio at day t to be a convex combina-
tions of all portfolios in the set Sk

n, weighted according to their performance so far. The
performance of this algorithm, as observed by Cover, is the average performance over all
portfolios in the set Sk

n. Formally,

T∏

t=1

p>t rt =
T∏

t=1

∑
p∈Sk

n
p ·∏t−1

i=1 p>ri∑
p∈Sk

n

∏t−1
i=1 p>ri

· rt =
T∏

t=1

∑
p∈Sk

n

∏t
i=1 p>ri∑

p∈Sk
n

∏t−1
i=1 p>ri

=
1
|Sk

n|
∑

p∈Sk
n

T∏

i=1

p>ri

(2.5)
This observation suffices to prove Universal’s performance:

Theorem 2.1 (Cover, discretized version). For any sequence of returns {r1, ..., rt}, denote
by p∗ the optimal CRP in hindsight. Then

RegretT (Universal) =
T∑

t=1

log(
(p∗)>rt

p>t rt
) ≤ 3n log T + O(1)

6Blum and Kalai [BK97] provide for a much simplified analysis of the original algorithm along the same
lines
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Proof. By observation (2.5):

T∏

t=1

(p∗)>rt

p>t rt
=

QT
t=1(p

∗)>rt
1

|Sk
n|
P

p∈Sk
n

QT
t=1 p>rt

≤ |Sk
n| ·minp∈Sk

n

{QT
t=1(p

∗)>rtQT
t=1 p>rt

}

Taking logs:

T∑

t=1

log(p∗)>rt − log p>t rt ≤ log |Sk
n|+ minp∈Sk

n

{∑T
t=1 log (p∗)>rt

prt

}

≤ 3n log T + T ·minp∈Sk
n

(
(p∗)>rt

prt
− 1

)

It remains to bound the second term above. By definition of Sk
n, we can choose p

to be one of the closest points to p∗ in `∞ as follows (in order for p to be in Sk
n a few

coordinates may need to be increased. This will only improve the bound below):

∀i ∈ [n] . p(i) ,





T−3 · dT 3p∗(i)e p∗(i) ≤ T−1

T−2 · bT 2p∗(i)c o/w

For this p it holds that

∀r . ∃i ∈ [n] .
r>p∗

r>p
≤ p∗(i)

p(i)
≤ T−1

T−1 − T−2
≤ 1 +

2
T

And the theorem follows.

Remark: No attempt was made to optimize the constant 3 above. Indeed, Cover’s
original paper had a better (and in fact optimal) constant.

2.4 Linear versus curved cost functions

Much of the work in online game playing focused on the case where the payoff functions are
linear and the underlying convex set is the set of all distributions over n items, namely the
n-dimensional simplex. This special case is particularly interesting in machine learning
since it generalizes the problems of prediction from expert advice and online zero sum
game playing.

Optimal algorithms, both in terms of regret and computational complexity, are known
for this case. The algorithms of Freund and Schapire [FS97] attain O(

√
T log n) regret

and run in time O(n).
For the more general case, efficient algorithms which attain O(GD

√
T ) regret were

described by Zinkevich [Zin03]. However, an observation made by Zinkevich himself is
that linear cost functions are in some sense the “hardest” to optimize over. In fact, his
algorithm reduces the general case by approximating convex functions by linear functions,
and then applies an algorithm for the linear case.
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A complementary fact we prove in the following section is that any algorithm for online
game playing incurs Ω(GD

√
T ) in the general case.

What remains then to be shown ? A hint is given by Cover’s algorithm: for loga-
rithmic payoff function his algorithm, albeit being inefficient, attains O(n log T ) regret —
potentially exponentially lower ! Is it possible that curved, rather than linear, functions
allow for more efficient algorithms in general ?

In the next chapter we answer this question on the affirmative. Our main insight is to
exploit the curvature of the cost functions, using the second derivative, in order to obtain
logarithmic (in T ) regret. Surprisingly, unlike Cover, we do not need to sacrifice computa-
tional efficiency: the algorithm runs in time which is polynomial in n and independent of
the number of iterations. For many applications (i.e. portfolio management) the running
time is O(n3).

2.5 Lower bounds

The following theorem shows that Zinkevich’s online gradient descent algorithm is essen-
tially tight in terms of regret guarantees.

Theorem 2.3. Any algorithm for online convex optimization incurs Ω(DG
√

T ) regret for
linear cost functions. This is true even if the adversary is non-malicious, i.e. the cost
functions come from a distribution.

Proof. Consider an instance of online game playing where the convex set P is the n-
dimensional hypercube, i.e.

P = {x ∈ Rn , ‖x‖∞ ≤ 1}
There are 2n cost functions, one for each vertex v ∈ {±1}n, defined as

∀v ∈ {±1}n . fv(x) = v>x

That is, the cost functions are linear - inner products with the vectors which are the
vertices of the hypercube. Notice that both the diameter of P and the gradients of the
cost functions are

G =

√√√√
n∑

i=1

(±1)2 =
√

n , D =

√√√√
n∑

i=1

22 = 2
√

n

The cost functions are chosen each iteration uniformly at random from the set {fv}.
Denote by vt the vertex chosen at iteration t. By uniformity and independence, for any t
and xt chosen online Ev[ft(xt)] = Ev[x>t vt] = 0. However,

Ev1,...,vT [min
x∈P

T∑

t=1

ft(x)] = E[min
x∈P

∑

i∈[n]

T∑

t=1

vt(i) · x(i)] = nE[−
∣∣∣∣∣

T∑

t=1

vt(1)

∣∣∣∣∣] = −Ω(n
√

T )
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Chapter 3

The Online Newton Method

In this chapter we describe the Online Newton Step algorithm, proposed in [HKKA06].
The intuition behind the Online Newton Step algorithm stem from new observa-

tions regarding the well studied follow-the-leader method, which is detailed in the second
section of this Chapter. However, once the connection to the Newton-Raphson method
is realized, the original analysis can be simplified, and the analysis we present does not
bear any resemblance to the typical analysis of “follow-the-leader” type algorithms.

After analyzing the Online Newton Step algorithm and its connection to follow-
the-leader, we describe two other new algorithms, which achieve logarithmic regret for
curved payoff functions. We proceed to discuss efficient implementation of projections
onto convex sets, which are important building blocks of both old and new online convex
optimization algorithms. We conclude this chapter with experimental results for portfolio
management, for which we applied many of the online convex optimization algorithms
described both in this and the previous chapters.

3.1 Comparison of new and old results

Recall the online convex optimization setting: there is a fixed closed, bounded and non-
empty convex set P ⊂ Rn and an arbitrary, unknown sequence of convex cost functions
f1, f2, . . . : P → R. The online player must make a sequence of decisions, where the tth

decision is a selection of a point xt ∈ P and there is a cost of ft(xt) on period t. However,
xt is chosen with only the knowledge of the set P, previous points x1, . . . ,xt−1, and the
previous functions f1, . . . , ft−1. Our performance measure is regret:

RegretT , sup
f1,...,fT

{
T∑

t=1

ft(xt)− min
x∗∈P

T∑

t=1

ft(x∗)

}
(3.1)

Figure 3.1 summarizes previous and new algorithms for online convex optimization.
The performance parameters considered include: n is the dimension of the convex set P,
T is the number of iterations, G is a bound on the norm of the cost functions (either G
for `2 norm or G∞ for the `∞ norm), H is a lower bound on the smallest eigenvalue of
the Hessians of the cost functions and α is a constant such that the cost functions are
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α-exp-concave. See section 2.3.1 for a detailed definition of the performance parameters.
The O notation for the regret bounds hides constant factors. For the running time bounds
the Õ notation hides constant factors as well as polylogarithmic factors in n, T, G, H, D, α.

In the running time column, Tproj stands for the time it takes to compute a projection
onto the underlying convex set (see section 3.5). Similarly, T g

proj stands for the time to
compute a generalized projection. All algorithms assume an oracle that given a point in
the convex set returns the value of the cost function on that point and/or the gradient of
the function.

Algorithm Regret bound Running time Citations
OGD O(GD

√
T ) Õ(n) + Tproj [Zin03]

MW O(G∞
√

T log n) Õ(n) [FS99]
perturbed FTL O(G∞

√
T log n) Õ(n) [Han57, KV05]

Universal O(n log T ) Õ(Tn), poly(T, n) [Cov91, KV03]

convex OGD O(G2

H log T ) Õ(n) + Tproj [HKKA06]
ONS O(( 1

α + GD)n log T ) Õ(n2) + T g
proj [HKKA06]

FTAL O(( 1
α + GD)n log T ) poly(n) [AH05, HKKA06]

EWOO O(n
α log T ) poly(T, n) [HKKA06]

Figure 3.1: Previous and New algorithms for online convex optimization.

The upper part of the figure details previous results whereas the lower part our contri-
butions. The main advantage of our algorithms is the logarithmic dependence of the regret
on the number of iterations. The only previous algorithm which attained a logarithmic
regret bound for a setting general enough to include portfolio management was Cover’s al-
gorithm. However, as noted in the previous chapters, for more restricted settings logarith-
mic regret was attained using variants of Follow The Leader [MF92, GS00, CBL06].
The computational complexity of these algorithms is poly(n, T ), whereas the running time
of most of our algorithms is independent from the number of iterations.

Remarks: The Multiplicative Weights algorithm does not apply to the full online
convex optimization framework, but rather to the special case where the underlying convex
set is the simplex. Cover’s algorithm, Universal, only applies to the case of portfolio
management. The Perturbed FTL algorithm only applies to the case where the payoff
functions are linear.

3.2 Online Newton Step

If previous algorithms such as Online Gradient Descent and Multiplicative Weights
are the analogues of the Gradient Descent optimization method for the online setting, then
Online Newton Step is the online analogue of the Newton-Raphson method. The main
difference is that Online Newton Step is based on second order information, i.e.
the second derivatives of the cost functions, whereas previous algorithms only exploit first
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order information. Surprisingly, the information about the second derivatives is used only
in the analysis, the algorithm itself uses only the gradients.

The Online Newton Step algorithm detailed in figure 3.2. The point chosen by
the algorithm for a given iteration is the point chosen in the previous iteration added an
additional vector. Whereas for the Online Gradient Descent algorithm this added
vector is the gradient of the previous cost function, for Online Newton Step this vector
is different: it is reminiscent to the direction in which the Newton-Raphson method would
proceed if it were an offline optimization problem for the previous cost function. The
Newton-Raphson algorithm would move in the direction of the vector which is the inverse
Hessian multiplied by the gradient. In our case this direction is A−1

t ∇t, and the matrix
At is related to the Hessian as will be shown in the analysis.

Since just adding a multiple of the Newton vector to the current point may result in a
point outside the convex set, we project back into the set to obtain xt. This projection is
somewhat different than the standard projection used by Online Gradient Descent
in section 2.3.2. It is the projection according to the norm defined by the matrix At,
rather than the Euclidean norm. The reason for using this projection is technical, and
will be pointed out in the analysis.

ONS

• In iteration 1, use an arbitrary point x1 ∈ P.

• Let β = 1
2 min{ 1

4GD , α}. In iteration t > 1, use point:

xt = ΠAt−1

P

(
xt−1 +

1
β
A−1

t−1∇t−1

)

where∇τ = ∇fτ (xτ ), At =
∑t

i=1∇i∇>i +εIn, ε = 1
β2D2 , and ΠAt−1

P is the projection
in the norm induced by At−1, viz.,

ΠAt−1

P (y) = arg min
x∈P

(y − x)>At−1(y − x)

Figure 3.2: The Online Newton Step algorithm.

The following theorem bounds the regret of Online Newton Step. The intuition
which led to this theorem appears in the next section on follow-the-leader and its surpris-
ing connection to the Newton method. The Online Newton Step algorithm and the
theorem itself appeared in Hazan et al. [HKKA06]. However, the proof we present hereby
was not published elsewhere.

Theorem 3.1.

RegretT (ONS) ≤ 5
(

1
α

+ GD

)
n log T.

We begin with a few lemmas. The first lemma is used to approximate the cost functions
up to the second order. Using the Taylor series we have f(x) = f(y) +∇f(y)(x − y) +
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1
2(x − y)>∇2f(ζ)(x − y) for some ζ on the line between x and y. Instead of using this
approximation, we use a somewhat stronger approximation in which the Hessian of the
cost function is not used, but rather only the gradient. Such an approximation is possible
because we assume that the cost functions are α-exp-concave.

Lemma 3.2. For a function f : P → R, where P has diameter D, such that ∀x ∈
P . ‖∇f(x)‖ ≤ G and exp(−αf(x)) is concave, the following holds for γ ≤ 1

2 min{ 1
4GD , α}:

∀x, y ∈ P : f(x) ≥ f(y) +∇f(y)>(x− y) +
γ

2
(x− y)>∇f(y)∇f(y)>(x− y)

Proof. Since exp(−αf(x)) is concave and 2γ ≤ α, the function h(x) , exp(−2γf(x)) is
also concave. Then by the concavity of h(x),

h(x) ≤ h(y) +∇h(y)>(x− y).

Plugging in ∇h(y) = −2γ exp(−2γf(y))∇f(y) gives,

exp(−2γf(x)) ≤ exp(−2γf(y))[1− 2γ∇f(y)>(x− y)].

Simplifying

f(x) ≥ f(y)− 1
2γ

log[1− 2γ∇f(y)>(x− y)].

Next, note that |2γ∇f(y)>(x − y)| ≤ 2γGD ≤ 1
4 and that for |z| ≤ 1

4 , − log(1 − z) ≥
z + 1

4z2. Applying the inequality for z = 2γ∇f(y)>(x− y) implies the lemma.

Using this lemma we can bound the regret of Online Newton Step by the following
expression

Lemma 3.3. The regret of Online Newton Step is bounded by

RegretT (ONS) ≤ 4
(

1
α

+ GD

)
(

T∑

t=1

∇>t A−1
t ∇t + 2).

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x) be the best decision in hindsight. By Lemma 3.2,
we have

ft(x∗)− ft(xt) ≤ Rt , ∇>t (x∗ − xt)− β

2
(x∗ − xt)>∇t∇>t (x∗ − xt) (3.2)

for β = 1
2 min{ 1

4GD , α}. For convenience, define yt+1 = xt + 1
βA−1

t ∇t so that according
to the update rule of the algorithm xt+1 = ΠAt

Sn
(yt+1). Now, by the definition of yt+1:

yt+1 − x∗ = xt − x∗ +
1
β
A−1

t ∇t, and (3.3)

At(yt+1 − x∗) = At(xt − x∗) +
1
β
∇t. (3.4)
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Multiplying the transpose of (3.3) by (3.4) we get

(yt+1 − x∗)>At(yt+1 − x∗) =

(xt−x∗)>At(xt−x∗)− 2
β
∇>t (x∗−xt) +

1
β2
∇>t A−1

t ∇t. (3.5)

Since xt+1 is the projection of yt+1 in the norm induced by At, it is a well known fact
that (see section 3.5 lemma 3.9)

(yt+1 − x∗)>At(yt+1 − x∗) ≥ (xt+1 − x∗)>At(xt+1 − x∗)

This inequality is the reason for using generalized projections as opposed to standard
projections, which were used in the analysis of Online Gradient Descent (see section
2.3.2 equation (2.2)). This fact together with (3.5) gives

∇>t (x∗−xt) ≤ 1
2β
∇>t A−1

t ∇t +
β

2
(xt−x∗)>At(xt−x∗)− β

2
(xt+1 − x∗)>At(xt+1 − x∗).

Now, summing up over t = 1 to T we get that

T∑

t=1

∇>t (x∗ − xt) ≤ 1
2β

T∑

t=1

∇>t A−1
t ∇t +

β

2
(x1 − x∗)>A1(x1 − x∗)

+
β

2

T−1∑

t=2

(xt − x∗)>(At −At−1)(xt − x∗)− β

2
(xT+1 − x∗)>AT (xT+1 − x∗)

≤ 1
2β

T∑

t=1

∇>t A−1
t ∇t +

β

2

T∑

t=1

(xt−x∗)>∇t∇>t (xt−x∗) +
β

2
(x1 − x∗)>(A1 −∇1∇>1 )(x1 − x∗).

In the last inequality we use the fact that At−At−1 = ∇t∇>t . The matrix At was defined
in the first place to give this equation, so now when looking at

∑
t Rt the terms of the

form (xt − x∗)>(At −At−1)(xt − x∗) would cancel out:

T∑

t=1

Rt ≤ 1
2β

T∑

t=1

∇>t A−1
t ∇t +

β

2
(x1 − x∗)>(A1 −∇1∇>1 )(x1 − x∗).

Using the facts that A1 − ∇1∇>1 = εIn and ‖x1 − x∗‖2 ≤ 2D2, and the choice of
ε = 1

β2D2 we get

RegretT (ONS) ≤
T∑

t=1

Rt ≤ 1
2β

T∑

t=1

∇>t A−1
t ∇t + εD2β

≤ 1
2β

T∑

t=1

∇>t A−1
t ∇t +

1
β

Since β = 1
2 min{ 1

4GD , α}, we have 1
β ≤ 8(GD + 1

α) . This gives the lemma.
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We can now prove Theorem 3.1.

Proof of Theorem 3.1. First we show that the term
∑T

t=1∇>t A−1
t ∇t is upper bounded by

a telescoping sum. Notice that

∇>t A−1
t ∇t = A−1

t • ∇t∇>t = A−1
t • (At −At−1)

where for matrices A,B ∈ Rn×n we denote by A • B =
∑n

i,j=1 AijBij the inner product
of these matrices as vectors in Rn2

.
For real numbers a, b ∈ R+, the Taylor expansion of the logarithm implies a−1(a−b) ≤

log a
b . An analogous fact holds for PSD matrices, i.e. A−1 • (A−B) ≤ log |A|

|B| , where |A|
denotes the determinant of the matrix A (this is proved in Lemma 3.4). Using this fact
we have (for convenience we denote A0 = εIn)

T∑

t=1

∇>t A−1
t ∇t =

T∑

t=1

A−1
t • ∇t∇>t

=
T∑

t=1

A−1
t • (At −At−1)

≤
T∑

t=1

log
|At|
|At−1| = log

|AT |
|A0|

Since AT =
∑T

t=1∇t∇>t + εI and ‖∇t‖ ≤ G, the largest eigenvalue of AT is at most
TG2 + ε. Hence the determinant of AT can be bounded by |AT | ≤ (TG2 + ε)n. Hence
(recall that ε = 1

β2D2 and β = 1
2 min{ 1

4GD , α})

T∑

t=1

∇>t A−1
t ∇t ≤ log

(
TG2+ε

ε

)n
≤ n log(TG2β2D2 + 1) ≤ n log T

Plugging into lemma 3.3 we obtain

RegretT (ONS) ≤ 4
(

1
α

+ 4GD

)
(n log T + 2)

which implies the theorem.

It remains to prove the technical lemma for PSD matrices used above.

Lemma 3.4. Let A º B Â 0 be positive definite matrices. Then

A−1 • (A−B) ≤ log
|A|
|B|

where |A| denotes the determinant of matrix A.

25



Proof. For any positive definite matrix C, denote by λ1(C), λ2(C), . . . , λn(C) its (positive)
eigenvalues.

A−1 • (A−B) = Tr(A−1(A−B))

= Tr(A−1/2(A−B)A−1/2)

= Tr(I −A−1/2BA−1/2)

=
n∑

i=1

[
1− λi(A−1/2BA−1/2)

]
∵ Tr(C) =

n∑

i=1

λi(C)

≤ −
n∑

i=1

log
[
λi(A−1/2BA−1/2)

]
∵ 1− x ≤ − log(x)

= − log

[
n∏

i=1

λi(A−1/2BA−1/2)

]

= − log |A−1/2BA−1/2| = log
|A|
|B| ∵ |C| =

n∏

i=1

λi(C)

In the last equality we use the facts |AB| = |A||B| and |A−1| = 1
|A| for PSD matrices.

3.2.1 Implementation and running time

The Online Newton Step algorithm requires O(n2) space to store the matrix At. Every
iteration requires the computation of the matrix A−1

t , the current gradient, a matrix-vector
product and possibly a projection onto the undelying convex set P.

A näıve implementation would require computing the inverse of the matrix At every
iteration. However, in case At is invertible, the matrix inversion lemma [Bro05] states
that for invertible matrix A and vector x

(A + xx>)−1 = A−1 − A−1xx>A−1

1 + x>A−1x

Thus, given A−1
t−1 and ∇t one can compute A−1

t in time O(n2) using only matrix-vector
and vector-vector products.

The Online Newton Step algorithm also needs to make projections onto P, but
of a slightly different nature than Online Gradient Descent and other online convex
optimization algorithms. The required projection, denoted by ΠAt

P , is in the vector norm
induced by the matrix At, viz. ‖x‖At =

√
x>Atx. It is equivalent to finding the point

x ∈ P which minimizes (x−y)>At(x−y) where y is the point we are projecting. This is
a convex program which can be solved up to any degree of accuracy in polynomial time,
see section 3.5.

Modulo the computation of generalized projections, the Online Newton Step al-
gorithm can be implemented in time and space O(n2). In addition, the only information
required is the gradient at each step (and the exp-concavity constant of the payoff func-
tions).
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3.3 The connection to the Follow The Leader algorithm

The basic follow-the-leader (FTL) method simply chooses on period t the single fixed de-
cision that would have been the best to use on the previous t−1 periods. This corresponds
to choosing xt = arg minx∈P

∑t−1
τ=1 fτ (x) (see figure 2.3). By itself, this basic method fails

to provide sub-linear regret even for linear cost functions.
As explained in section 2.3.4, Hannan [Han57] proposed and analyzed a randomized

variation on the basic approach, which does attain sublinear regret for linear payoff func-
tions over the simplex. Merhav and Feder [MF92] show that FTL achieves logarithmic
regret for strictly convex functions on the simplex (see also Cesa-Bianchi and Lugosi
[CBL06], and Gaivoronski and Stella [GS00]). This left open the question of convex (not
necessarily strictly convex) cost functions, such as for the portfolio management problem.

In this section, we show that a simple deterministic FTL variant called Follow
The Approximate Leader (FTAL), described in figure 3.3 1, does provide sublinear
regret for convex cost functions, including logarithmic payoff functions as for portfolio
management, over any convex set. In fact, it attains regret which is logarithmic in the
number of iterations. This answers questions posed by Cover and Ordentlich [Cov91] and
independently Kalai and Vempala [KV05]. The FTAL algorithm also has computational
advantages over the standard FTL algorithm, which are detailed in the last part of this
section.

Follow The Approximate Leader.
Inputs: convex set P ⊂ Rn, and the parameter β.

• In iteration 1, use an arbitrary point x1 ∈ P.

• In iteration t, use the point xt defined as

xt , arg min
x∈P

t−1∑

τ=1

f̃τ (x)

where for τ = 1, . . . , t− 1, let ∇τ = ∇fτ (xτ ) and

f̃τ (x) , fτ (xτ ) +∇>τ (x− xτ ) +
β

2
(x− xτ )>∇τ∇>τ (x− xτ )

Figure 3.3: The Follow The Approximate Leader algorithm

The standard approach to analyze FTL-type algorithms proceeds by inductively show-
ing,

RegretT (A) =
T∑

t=1

ft(xt)−min
x∈P

T∑

t=1

ft(x) ≤
T∑

t=1

ft(xt)− ft(xt+1) (3.6)

1In case of degenerate cost functions the best decision in hindsight may not unique. In this case we can
define xt ∈ arg minx∈P

Pt−1
τ=1 f̃τ (x). The results of this section extend with this definition appropriately.
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The standard analysis then proceeds by showing that the leader doesn’t change too much,
i.e. xt ≈ xt+1, which in turn implies low regret. Such is the analysis deployed by Hannan
in his seminal paper [Han57], which was then simplified by Kalai and Vempala in [KV05].
The work of [MF92, GS00, CBL06] also proceeds along these lines. In fact, as observed
in [HKKA06], the Online Gradient Descent algorithm can also be analyzed as a
follow-the-leader variant in a similar fashion.

Our analysis does not follow the above paradigm directly, but rather shows average
stability, i.e. that the leader doesn’t change much (xt ≈ xt+1) on average. This focus
on the average case is necessary, since even for portfolio management one can show that
‖xt − xt−1‖ may be large in the worst case, regardless of t. However, using amortized
analysis with the potential function of [AH05], one can show that one the average ‖xt −
xt−1‖ is on the order of 1

t .
The analysis in this section is based on Agarwal and Hazan [AH05] and Hazan et al.

[HKKA06].

Theorem 3.5. For β = 1
2 min{ 1

4GD , α},

RegretT (FTAL) ≤ 16
(

1
α

+ GD

)
n log T

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x). First, observe that by Lemma 3.2, the function
f̃t(x) defined by the Follow The Approximate Leader algorithm satisfies f̃t(xt) =
ft(xt) and f̃t(x) ≤ ft(x) for all x ∈ P. This implies

RegretT (FTAL) =
T∑

t=1

ft(xt)−
T∑

t=1

ft(x∗) (3.7)

≤
T∑

t=1

f̃t(xt)−
T∑

t=1

f̃t(x∗)

≤
T∑

t=1

f̃t(xt)−min
x∈P

T∑

t=1

f̃t(x)

We proceed according to the approach outlined above. As a first step, we prove inductively
that

T∑

t=1

f̃t(xt+1) ≤ min
x∈P

T∑

t=1

f̃t(x)

For t = 1 the two are equal by definition of Follow The Leader. Assume correctness
for T − 1, and

T∑

t=1

f̃t(xt+1) ≤ minx∈P
∑T−1

t=1 f̃t(x) + f̃T (xT+1) by induction hyphthesis

≤ ∑T−1
t=1 f̃t(xT+1) + f̃T (xT+1)

= minx∈P
∑T

t=1 f̃t(x) by definition of Follow The Leader
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Combining (3.7) and the above we get,

RegretT (FTAL) =
T∑

t=1

f̃t(xt)−min
x∈P

T∑

t=1

f̃t(x) ≤
T∑

t=1

[
f̃t(xt)− f̃t(xt+1)

]
(3.8)

The inequality (3.8) implies that it suffices to bound the expression
∑T

t=1

[
f̃t(xt)− f̃t(xt+1)

]
,

which we do in the lemma below.

Lemma 3.6.
T∑

t=1

f̃t(xt)− f̃t(xt+1) ≤ 16
(

1
α

+ GD

)
n log T

Proof. For the sake of readability, we introduce some notation. Define the function Ft ,∑t−1
τ=1 f̃τ . Note that ∇ft(xt) = ∇f̃t(xt) by the definition of f̃t, so we will use the same

notation∇t to refer to both. Finally, let ∆ be the forward difference operator, for example,
∆xt = (xt+1 − xt) and ∆∇Ft(xt) = (∇Ft+1(xt+1)−∇Ft(xt)).

We use the gradient bound, which follows from the convexity of f̃t:

f̃t(xt)− f̃t(xt+1) ≤ −∇f̃t(xt)>(xt+1 − xt) = −∇>t ∆xt (3.9)

The gradient of Ft+1 can be written as:

∇Ft+1(x) =
t∑

τ=1

[
∇τ + β∇τ∇>τ (x− xτ )

]
(3.10)

Therefore, for At ,
∑t

τ=1∇τ∇>τ

∇Ft+1(xt+1)−∇Ft+1(xt) = β

t∑

τ=1

∇τ∇>τ ∆xt = βAt∆xt (3.11)

The LHS of (3.11) is

∇Ft+1(xt+1)−∇Ft+1(xt) = ∆∇Ft(xt)−∇t (3.12)

Putting (3.11) and (3.12) together, and adding εβ∆xt we get

β(At + εIn)∆xt = ∆∇Ft(xt)−∇t + εβ∆xt (3.13)

Pre-multiplying by − 1
β∇>t (At +εIn)−1, we get an expression for the gradient bound (3.9):

−∇>t ∆xt = − 1
β
∇>t (At + εIn)−1[∆∇Ft(xt)−∇t + εβ∆xt]

= − 1
β
∇>t (At + εIn)−1[∆∇Ft(xt) + εβ∆xt] +

1
β
∇>t (At + εIn)−1∇t (3.14)
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Claim 3.7. The first term of (3.14) can be bounded as follows:

− 1
β
∇>t (At + εIn)−1[∆∇Ft(xt) + εβ∆xt] ≤ εβD2

Proof. Since xτ minimizes Fτ over P, the following holds for any point x ∈ P (see [BV04]).

∇Fτ (xτ )>(x− xτ ) ≥ 0 (3.15)

Using (3.15) for τ = t and τ = t + 1, we get

0 ≤ ∇Ft+1(xt+1)>(xt − xt+1) +∇Ft(xt)>(xt+1 − xt) = −[∆∇Ft(xt)]>∆xt

Reversing the inequality and adding εβ‖∆xt‖2 = εβ∆x>t ∆xt, we get

εβ‖∆xt‖2 ≥ [∆∇Ft(xt) + εβ∆xt]>∆xt

=
1
β

[∆∇Ft(xt) + εβ∆xt]>(At + εIn)−1[∆∇Ft(xt) + εβ∆xt −∇t]

(by solving for ∆xt in (3.13))

=
1
β

[∆∇Ft(xt) + εβ∆xt]>(At + εIn)−1(∆∇Ft(xt) + εβ∆xt)

− 1
β

[∆∇Ft(xt) + ε∆xt]>(At + εIn)−1∇t

≥ − 1
β

[∆∇Ft(xt) + εβ∆xt]>(At + εIn)−1∇t

(since (At + εIn)−1 º 0 ⇒ ∀x : x>(At + εIn)−1x ≥ 0)

Finally, since the diameter of P is D, we have εβ‖∆xt‖2 ≤ εβD2.

Applying this claim to (3.14), summing up from t = 1 to T and using (3.9)

T∑

t=1

f̃t(xt)− f̃t(xt+1) ≤ 1
β

T∑

t=1

∇>t (At + εIn)−1∇t + TβεD2 (3.16)

We now bound (3.16) by applying Lemma 3.4 in a similar way as in the analysis of
Online Newton Step.

∑T
t=1∇>t (At + εIn)−1∇t

=
∑T

t=1∇>t (
∑t

τ=1∇τ∇>τ + εIn)−1∇t

=
∑T

t=1(
∑t

τ=1∇τ∇>τ + εIn)−1 • ∇t∇>t
≤ ∑T

t=1 log |Pt
τ=1∇τ∇>τ +εIn|

|Pt−1
τ=1∇τ∇>τ +εIn| by lemma 3.4

= log |PT
τ=1∇τ∇>τ +εIn|

|εIn|
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Since ‖∇t‖ ≤ G, the eigenvalues of the matrix
∑T

τ=1∇τ∇>τ + εIn are bounded by
TG2 + ε. Hence |∑T

t=1∇t∇>t + εIn| ≤ (TG2 + ε)n. Plugging into the inequality above
and setting ε = 1

β2D2T
we get

T∑

t=1

∇>t (At + εIn)−1∇t ≤ n log
(

G2T + ε

ε

)
≤ 2n log(βDGT + 1)

Combining this with (3.16), and since β = 1
2 min{ 1

4GD , α}, ε = 1
β2D2T

T∑

t=1

f̃t(xt)− f̃t(xt+1) ≤ 2
1
β

n log(βDGT + 1) + TβεD2

≤ 2
1
β

n log(βDGT + 1) +
1
β

≤ 16
(

GD +
1
α

)
(n log(T/4 + 1) + 1) ≤ 16

(
GD +

1
α

)
n log T

3.3.1 Implementation and running time

The implementation of Follow The Approximate Leader is straightforward: the
point xt chosen at iteration t is the optimum of the following mathematical program:

xt = arg min
x∈P

t−1∑

τ=1

f̃τ (x)

Since the approximate cost functions f̃t as well as the underlying set P are convex, this
is a convex program which any general convex optimization algorithm applied to (here
is another justification for our assumption that the set P is convex, see section 2.1.1).
Notice that since all f̃t are quadratic polynomials, only the sum of the coefficients of
these polynomials are required. Hence, the algorithm requires Õ(n2) space to store the
sum of all gradients and matrices of the form ∇t∇>t . The time and space complexity is
thus independent from the number of iterations, in contrast to other previous variants of
Follow The Leader.

We note that in practice, we have an excellent starting point to compute xt - the
optimum of the convex program of the previous iteration xt−1. As shown in the analysis,
on the average these two consecutive points are very close.

3.4 Other logarithmic regret algorithms

In this section we describe two simple algorithms which also attain logarithmic regret for
certain scenarios of online convex optimization. The ideas behind these algorithms are
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not new: the first is a variant of Zinkevich’s Online Gradient Descent, and the other
is an exponential weighting algorithm reminiscent of Cover’s algorithm.

Both algorithms have downsides: the Online Gradient Descent algorithm requires
strict convexity, and does not apply to portfolio management (unlike Online Newton
Step).

The exponential weighting algorithm is very general - it guarantees logarithmic regret
in even more general scenarios than Online Newton Step. However, it is not as efficient
to implement as Online Newton Step or Online Gradient Descent.

3.4.1 Online Gradient Descent

The first algorithm that achieves regret logarithmic in the number of iterations is a twist
on the online gradient descent discussed in section 2.3.2, and defined in figure 2.1. The
following theorem, proved by Hazan et al. in [HKKA06], establishes logarithmic bounds
on the regret if the cost functions are strictly convex.

The condition that the cost functions are strictly convex is rather strong, and does
not apply to many interesting problems with curved cost functions such as portfolio man-
agement.

Theorem 3.8. Online Gradient Descent with step sizes ηt = 1
Ht achieves the fol-

lowing guarantee, for all T ≥ 1.

RegretT (OGD) ≤ G2

2H
(1 + log T )

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x). Recall the definition of regret (see section 2.1.1)

RegretT (OGD) =
T∑

t=1

ft(xt)−
T∑

t=1

ft(x∗)

Define ∇t , ∇ft(xt). By H-strong convexity, we have,

ft(x∗) ≥ ft(xt) +∇>t (x∗ − xt) +
H

2
‖x∗ − xt‖2

2(ft(xt)− ft(x∗)) ≤ 2∇>t (xt − x∗)−H‖x∗ − xt‖2 (3.17)

Following Zinkevich’s analysis, we upper-bound ∇>t (xt − x∗). Using the update rule for
xt+1 and the properties of projections (see lemma 3.9), we get

‖xt+1 − x∗‖2 = ‖Π(xt − ηt+1∇t)− x∗‖2 ≤ ‖xt − ηt+1∇t − x∗‖2.

The inequality above follows from the properties of projection onto convex sets. Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t+1‖∇t‖2 − 2ηt+1∇>t (xt − x∗)

2∇>t (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt+1
+ ηt+1G

2 (3.18)
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Sum up (3.18) from t = 1 to T . Set ηt+1 = 1/(Ht), and using (3.17), we have:

2
T∑

t=1

ft(xt)− ft(x∗) ≤
T∑

t=1

‖xt − x∗‖2

(
1

ηt+1
− 1

ηt
−H

)
+ G2

T∑

t=1

ηt+1

= 0 + G2
T∑

t=1

1
Ht

≤ G2

H
(1 + log T )

We remark that the Online Gradient Descent algorithm above can be analyzed
as a follow-the-leader variant. The proof is somewhat more complicated than the one
above, and hence omitted.

3.4.2 Exponentially Weighted Online Optimization

Exponentially Weighted Online Optimization.
Inputs: convex set P ⊂ Rn, and the parameter α.

• Define weights wt(x) = exp(−α
∑t−1

τ=1fτ (x))

• On iteration t use point xt =
R
P x wt(x)dxR
P wt(x)dx

Figure 3.4: The Exponentially Weighted Online Optimization Algorithm.

In this section we describe our Exponentially Weighted Online Optimization
(EWOO) algorithm which gives logarithmic regret for a very general setting of online
convex optimization. All that the algorithm requires is that the cost functions be α-exp-
concave (not even a bound on the gradient required, as opposed to Online Newton
Step). The algorithm does not seem to be directly related to follow-the-leader. Rather,
it is related to Cover’s algorithm for universal portfolio management.

The downside of this algorithm is its running time. A trivial implementation of Ex-
ponentially Weighted Online Optimization would give exponential running time.
Kalai and Vempala [KV03] give a randomized polynomial time (polynomial both in n and
in T ) implementation of Cover’s algorithm, based on random sampling techniques. The
same techniques can be applied to the Exponentially Weighted Online Optimiza-
tion algorithm as well. However, the polynomial in the running time is quite large and
the overall implementation involved.

Remark: In the implementation of Exponentially Weighted Online Optimiza-
tion, choosing xt at random with density proportional to wt(x), instead of computing
the integral, also guarantees our regret bounds on the expectation. This is the basis for
the [KV03] polynomial time implementation.
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Theorem 3.1.
RegretT (EWOO) ≤ 1

α
n(1 + log(1 + T )).

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x). Recall the definition of regret (see section 2.1.1)

RegretT (OGD) =
T∑

t=1

ft(xt)−
T∑

t=1

ft(x∗)

Let ht(x) = e−αft(x). The algorithm can be viewed as taking a weighted average over
points x ∈ P. Hence, by concavity of ht,

ht(xt) ≥
∫
P ht(x)

∏t−1
τ=1 hτ (x) dx∫

P
∏t−1

τ=1 hτ (x) dx
.

Hence, we have by telescoping product,

t∏

τ=1

hτ (xτ ) ≥
∫
P

∏t
τ=1 hτ (x) dx∫
P 1 dx

=

∫
P

∏t
τ=1 hτ (x) dx
vol(P)

(3.19)

By definition of x∗ we have x∗ ∈ arg maxx∈P
∏T

t=1 ht(x). Following [BK97], define
nearby points S ⊂ P by,

S =
{
x ∈ S | x =

T

T + 1
x∗ +

1
T + 1

y , y ∈ P
}

.

By concavity of ht and the fact that ht is non-negative, we have that,

∀x ∈ S ht(x) ≥ T

T + 1
ht(x∗).

Hence,

∀x ∈ S
T∏

τ=1

hτ (x) ≥
(

T

T + 1

)T T∏

τ=1

hτ (x∗) ≥ 1
e

T∏

τ=1

hτ (x∗)

Finally, since S = x∗ + 1
T+1P is simply a rescaling of P by a factor of 1/(T + 1) (followed

by a translation), and we are in n dimensions, vol(S) = vol(P)/(T + 1)n. Putting this
together with equation (3.19), we have

T∏

τ=1

hτ (xτ ) ≥ vol(S)
vol(P)

1
e

T∏

τ=1

hτ (x∗) ≥ 1
e(T + 1)n

T∏

τ=1

hτ (x∗).

The theorem is obtained by taking logarithms.
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3.5 Projections onto convex sets

Some of the algorithms for online convex optimization described in this and the previous
chapters require to compute projections onto convex sets. This correspond to the following
computational problem: given a convex set P ⊆ Rn, and a point y ∈ Rn, find the point
in the convex set which is closest in Euclidean distance to the given vector, denoted

ΠP [y] , min
x∈P

‖x− y‖2

The Online Newton Step algorithm computes generalized projections, which are pro-
jections with respect to a norm other than the Euclidean norm, given by a PSD matrix.
For a given PSD matrix A º 0, a generalized projection of y ∈ Rn onto the convex set P
is defined as

ΠA
P [y] , min

x∈P
(x− y)>A(x− y)

Both type of projections satisfy the following well know fact

Lemma 3.9 (folklore). Let P ⊆ Rn be a convex set, y ∈ Rn and z =
∏A
P [y] be the

generalized projection of y onto P according to PSD matrix A º 0. Then for any point
a ∈ P it holds that

(y − a)>A(y − a) ≥ (z− a)>A(z− a)

If A is the identity matrix, this lemma is standard and follows from the fact that for
any a ∈ P the angle ](y,

∏
P [y],a) is obtuse. The latter is implied by the fact that for

any point outside a convex body there exists a hyperplane which separates it from all
points on the convex set.

For a general PSD matrix A º 0, the lemma can be proved by reduction to the simple
case, as A generates a natural norm ∀x ∈ Rn . ‖x‖A = x>Ax. 2 We include a proof for
completeness.

Proof. By the definition of generalized projections, the point z minimizes the function
f(x) = (x−y)>A(x−y) over the convex set. It is a well known fact in optimization (see
[BV04]) that for z the following holds

∀a ∈ P . ∇f(z)(a− z) ≥ 0

Which implies

2(z− y)>A(a− z) ≥ 0 ⇒ 2a>A(z− y) ≥ 2z>A(z− y)

Now by simple calculation:

(y − a)>A(y − a)− (z− a)>A(z− a)
= y>Ay − z>Az + 2a>A(z− y)
≥ y>Ay − z>Az + 2z>A(z− y) by previous observation

= y>Ay − 2z>Ay + z>Az

= (y − z)>A(y − z) ≥ 0 A is PSD
2This fact also follows from what is referred to in the machine learning community as the “Pythagorean

Theorem” [GW00]
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Both types of projections are essentially convex programs. For convex polytopes, a
projection reduces to a convex quadratic program with linear constraints. These type
of convex programs can be solved more efficiently than general convex programs using
interior point methods [LVBL98]. Another option is to efficiently approximate these
convex programs using the techniques presented in chapter 4.

Even more generally, P can be specified by a membership oracle χP , such that χP(x) =
1 if x ∈ P and 0 if x /∈ P, along with a point x0 ∈ P as well as radii R ≥ r > 0 such
that the balls of radii R and r around x0 contain and are contained in P, respectively.
In this case ΠA

P can be computed (to ε accuracy) in time Õ(n4 log(R
r )) using Vaidya’s

algorithm [Vai96].
However, for many simple convex bodies which arise in practical applications (e.g.

portfolio management and applications of Chapter 4), projections can be computed much
more efficiently. For the n-dimensional unit sphere, cube and the simplex these projections
can be computed combinatorially in Õ(n) time, rendering the online algorithms much more
efficient when applied to these convex bodies.

The unit sphere The simplest projection is over the unit n-dimensional sphere, which
we denote by Bn = {x ∈ Rn , ‖x‖2 ≤ 1}. Given a vector y ∈ Rn, it is easy to verify that
its projection is

ΠP [y] =





y ‖y‖ ≤ 1

y
‖y‖ o/w

The unit cube Another body which is easy to project onto is the unit n-dimensional
cube, which we denote by Cn = {x ∈ Rn , ‖x‖∞ ≤ 1} (i.e. each coordinate is less than
or equal to one). Given a vector y ∈ Rn, it is easy to verify that its projection is

∀i ∈ [n] . ΠP [y](i) =





y(i) y(i) ∈ [−1, 1]

1 y(i) > 1

−1 y(i) < −1

The Simplex The first non-trivial projection we encounter is over the n-dimensional
simplex. The simplex is the set of all n-dimensional distributions, and hence is particularly
interesting in many real-world problems such as portfolio management and haplotype
frequency estimation. Surprisingly, given an arbitrary vector in Euclidean space, the
closest distribution can be found in near linear time. A procedure for computing such a
projection is given in figure 3.5.

Lemma 3.10. SimplexProject (y) is the projection of y ∈ Rn to the n-dimensional
simplex, and can be computed in time Õ(n).
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SimplexProject (y).
Suppose w.l.o.g that y1 ≤ y2... ≤ yn (otherwise sort indices of y).

• Let a ∈ R be the number such that
∑n

i=1 max{yi − a, 0} = 1. Set
∀i ∈ [n] . xi = max{yi − a, 0}.

• return x

Figure 3.5: A Procedure for projecting onto the Simplex

Proof. First, note that the number a computed in SimplexProject exists and is unique.
This follows since the function f(a) =

∑n
i=1 max{yi − a, 0} is continuous, monotone

decreasing, and takes values in [0,∞).
Next, the vector returned x = SimplexProject(y) is in the simplex. All its coordinates

are positive by definition, and
∑n

i=1 xi =
∑n

i=1 max{yi − a, 0} = 1.
To show that x is indeed the projection we need to prove that it is the optimum of

the mathematical program

min
x∈Sn

n∑

i=1

(yi − xi)2

It suffices to show that x is a local optimum, since the program is convex. Let ci ,
yi − xi. Then the values {ci} are decreasing and of the form

(c1, ..., cn) = (a, ..., a,yk, ...,yn)

An allowed local change is of the form x′i ← xi− ε and x′j ← xj + ε for i < j, since all
coordinates larger than k have xk = 0. This would cause a change in the objective of the
form

d∑

i=1

(yi − xi)2 − (yi − x′i)
2 = a2 − (a + ε)2 + cj − (cj − ε)2 = −2(a− cj)ε− 2ε2 < 0

Hence would only reduce the objective. Therefore x is indeed the projection of y.
The procedure SimplexProject requires sorting n elements, and finding the value

a, which is standard to implement in O(n log n) = Õ(n) time.

The bounded positive semidefinite cone In later chapters, when designing approx-
imation algorithms for semidefinite program, the bounded semidefinite cone P = {X º
0,Tr(X) ≤ 1} will be a common underlying convex set for online algorithms. The fol-
lowing lemma establishes how to project a symmetric matrix onto P in Õ(n3) time, using
techniques very similar to those of SimplexProject.

Lemma 3.11. A symmetric matrix Y ∈ Rn×n can be projected onto P = {X º 0,Tr(X) ≤
1} in time Õ(n3).
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Proof. This projection amounts to solving the following optimization problem:
Given a symmetric matrix Y ∈ Rn×n, find

min
X∈P

‖Y −X‖2

Because for matrices the `2 norm is equal to the Frobenius norm, which depends only
on the eigenvalues of the matrix, it is invariant to change of basis. Let Y = U>DU be
the orthogonal diagonalization of Y . Applying the same transformation to X we denote
X = U>ZU . Note that Z is not necessarily diagonal, but since the transformation is
orthogonal remains in Z ∈ P. By the above considerations,

min
X∈P

‖Y −X‖2 = min
Z∈P

‖D − Z‖2 = min
Z∈P





∑

i∈[n]

(λi(Y )− Zii)2 +
∑

i6=j

Z2
ij





Since Tr(Z) ≤ 1 we have
∑

ij Z2
ij = ‖Z‖2 = ‖Z‖F =

∑n
i=1 λi(Z)2 ≤ 1. This mathematical

program can be solved in time Õ(n2) as shown by the claim below.
Altogether, to compute the projection we need to diagonalize Y , compute the matrix

Z, and compute the inverse transformation. All this can be done in time Õ(n3).

Claim 3.12. Given λ1, ..., λn ∈ R, the optimization problem

min
Zº0,

Pn
i=1 Zii≤1





∑

i∈[n]

(λi − Zii)2 +
∑

i 6=j

Z2
ij





can be solved in time O(n2).

Proof. Obviously for i 6= j, set Zij = 0. Let w.l.o.g λ1 ≥ ... ≥ λd ≥ 0 ≥ λd+1 ≥ λn. Again
it is obvious that Zii = 0 for all i > d. If

∑d
i=1 λi ≤ 1, then the solution is obtained by

setting Zii = λi for all i ≤ d.
Otherwise, let a ∈ R+ be the number such that

d∑

i=1

max{λi − a, 0} = 1

We claim that the solution is obtained by setting ∀i ≤ d . Zii = max{0, λi − a}. To
see that, we show that this is a local optimum, and since we have a convex optimization
instance, it is also a global solution. This solution implies that the numbers ci , λi −Zii

are of the form
(c1, ..., cn) = (a, ..., a, λk, ..., λl, 0, ...0)

The allowed changes are of the form Z ′ii ← Zii − ε and Z ′jj ← Zjj + ε. Since the only
i ≤ d which have non-zero Zii have value λi − Zii = a, this would cause a change in the
objective of the form

d∑

i=1

(λi − Zii)2 − (λi − Z ′ii)
2 = a2 − (a + ε)2 + cj − (cj − ε)2 = −2(a− cj)ε− 2ε2 < 0
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Hence would only reduce the objective. The value a can computed in time O(n log n)
by sorting and other elementary operations.

3.6 Experiments with Portfolio Management

In this section we briefly describe experiments with portfolio management on real market
data. The results are taken from [AHKS06].

We implemented the algorithms of Cover [Cov91]3, the Multiplicative Weights algo-
rithm of [HSSW96], the uniform CRP and a variant of Online Newton Step described
below. We also applied the technique of [SL05] to the algorithms of [HSSW96] and On-
line Newton Step to get variants which minimize internal regret. Internal regret is
an alternative (and stronger) performance measure to the “regular” regret defined previ-
ously. This notion is useful for certain game theoretic applications. A precise definition
is beyond our scope and the reader is referred to [SL05]. Table 3.6 below summarizes the
algorithms tested and provides abbreviations that will appears in the comparison charts
henceforth.

Abbreviation Algorithm Citation
Universal Cover’s algorithm [Cov91]
MW Multiplicative Weights algorithm [HSSW96]
IR-MW Internal regret variant of MW [SL05]
ONS Online Newton Step [HKKA06]
IR-ONS Internal regret variant of ONS [AHKS06]
BCRP the best CRP in hindsight -
UCRP the uniform CRP -

Figure 3.6: Algorithms used in the experiments.

The Online Newton Step variant implemented for the experiments is given in
figure 3.7. Notice it is somewhat different than the one described in section 3.2. This
variant is an instantiation of the Online Newton Step algorithm in [HKKA06]. Both
algorithms achieve the same theoretical guaranties through different analysis (the analysis
in [HKKA06] is similar to the one given in section 3.3). The algorithm takes parameters
β and δ for heuristic tuning. We implemented Online Newton Step with parameters
β = 1, and δ = 1

8 . Unless otherwise noted, we omit the results for IR-ONS because it was
inferior to ONS.

We performed tests on the historical stock market data from the New York Stock
Exchange (NYSE) used by Cover and Helmbold et al. In addition we randomly selected

3Recall that Cover’s algorithm has exponential running time. Following previous papers (e.g.
[HSSW96]), we use a random sampling heuristic to approximate Cover’s algorithm. This implies a small
degree of variability in the measurements recorded here. We used 1000 samples, which as suggested by
[SL05], is sufficient to get a good estimate of the behavior of that algorithm.
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ONS(β, δ)

• On period 1, use the uniform portfolio p1 = 1
n1.

• On period t > 1: use portfolio:

pt = ΠAt−1

Sn

(
δA−1

t−1bt−1

)

where bt−1 = (1 + 1
β )

∑t−1
τ=1∇[logτ (pτ · rτ )], At−1 =

∑t−1
τ=1−∇2[log(pτ · rτ )] + In,

and ΠAt−1

Sn
is the projection onto the simplex in the norm induced by At−1, viz.,

ΠAt−1

Sn
(q) = arg min

p∈Sn

(q− p)>At−1(q− p)

Figure 3.7: The Online Newton Step variant for portfolio management.

portfolios of various sizes from a set of 50 randomly chosen S&P 500 stocks4 and performed
experiments over the past 4 years data from 12th December, 2001 to 30th November, 2005
obtained from Yahoo! Finance.

3.6.1 Performance vs. Portfolio Size

To measure the dependence of the performance of various algorithms on portfolio size we
picked 50 sets of n random stocks from the data set, for values of n ranging from 5 to
40. All algorithms were run on the data, trading once every two weeks. The choice of
trading period was to permit completion of the Universal algorithm in reasonable time.
The trading period did not seem to affect the relative performance of the algorithms. The
results are shown in Figure 3.8.

The improvement in the performance of ONS with increasing number of stocks is quite
stark. The reason for this seems to be that ONS does an extremely good job of tracking
the best stock in a given portfolio. Adding more stocks causes some good stock to get
added, which ONS proceeds to track. Other algorithms behave more like the uniform CRP
and so average out the increase in wealth due to the addition of a good stock. Figure 3.9
shows how ONS tracks CMC, which out-performs Kin-Ark for the test period, in a dataset
composed of Kin-Ark and CMC (also used by Cover) while other algorithms have a nearly
uniform distribution on both the stocks. This is the reason ONS outperforms all other
algorithms on this dataset, as can be seen in Figure 3.11.

4The set of stocks used was RTN, SLB, ABK, PEG, KMG, FITB, CL, PSA, DOV, NKE, AT, NEM,
VMC, D, CPWR, NVDA, SRE, HPQ, CMX, LXK, GPC, ABI, PGL, QLGC, OMX, QCOM, KO, PMTC,
SWK, CTXS, FSH, HON, COF, LH, KMG, BLL, WB, OMX, K, LUV, DIS, SFA, APOL, HUM, CVH,
IR, SPG, WY, TYC, NKE.
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Figure 3.8: Performance vs. Portfolio Size
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Figure 3.9: How ONS tracks CMC.

3.6.2 Random stocks from S&P 500

We tested the average APYs (over 50 trials of 10 random stocks from the S&P 500
list mentioned before) of the algorithms, for different frequencies of rebalancing, namely
daily, weekly, fortnightly and monthly. As can be seen in figure 3.10 the performance
of the ONS algorithm is superior to all other algorithms in all 4 cases. As is expected
the performance of all algorithms degrades as trading frequency decreases, but not very
significantly. The simple strategy of maintaining a uniform constant-rebalanced portfolio
seems to outperform all previous algorithms. This rather surprising fact is consistent with
the observation of [BEYG04].
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Figure 3.10: Performance vs. Trading Period.

3.6.3 Cover’s Experiments

We replicated the experiments of Cover and Helmbold et al. on Iroquios Brands Ltd. and
Kin Ark Corp., Commercial Metals (CMC) and Kin Ark, CMC and Meicco Corp., IBM
and Coca Cola for the same 22 year period from 3rd July, 1962 to 31st December, 1984.
As can be seen from Figure 3.11, ONS outperforms all other algorithms except on the
Iroquios Brands Ltd. and Kin Ark Corp. dataset.

Iroq.&Kin−Ark CMC&Kin−Ark CMC&MEI IBM&KO
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Figure 3.11: Four pairs of stocks tested by [Cov91] and [HSSW96].

Figure 3.12 shows how the total wealth (per dollar invested) varies over the entire
period using the different algorithms for a portfolio of IBM and Coke. The ONS algorithm,
and its internal regret variant IR-ONS, outperform even the best constant-rebalanced
portfolio.
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Figure 3.12: Wealth achieved by various algorithms on a portfolio consisting of IBM and
Coke.

3.6.4 Stock volatility

We took the 50 stock data set used in previous experiments which had a history for 1000
days traded fortnightly and sorted them according to volatility and created two sets:
the 10 stocks with largest and smallest price variance. Then we applied the different
algorithms on the two different sets.
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Figure 3.13: Performance of algorithms on high and low volatility datasets.

Figure 3.13 shows that the performance of ONS increases with market volatility
whereas the performance of other algorithms decreases.
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3.6.5 Margins loans

In line with [Cov91] and [HSSW96], we also tested the case where the portfolio can buy
stocks on margin. The data set we tested on was the 22 year IBM and Coca Cola data
mentioned earlier. Results for this case are given in Table 3.1. The margin purchases
we incorporate are 50% down and 50% loan. The ONS algorithm seems to enhances its
performance edge over other algorithms if margin loans are allowed.

Table 3.1: Incorporating margin loans.
Algorithm APY, no margin APY with margin

UCRP 12.73 14.84
Universal 12.46 14.40

MW 12.57 14.39
IR-MW 12.57 14.62
ONS 13.68 16.15

3.6.6 Sharpe Ratio and Mean-Variance Optimal CRPs

It is a well-known fact that one can achieve higher returns by investing in riskier assets
[Lue98]. So it is important to rule out the possibility of the ONS algorithm achieving
higher returns compared to other algorithms by trading more riskily. Parameters like the
Sharpe ratio and the optimal mean-variance portfolio are used to measure this risk versus
reward tradeoff. Sharpe ratio is defined as Rp−Rf

σp
where Rp is the average yearly return

of the algorithm, which indicates reward, Rf is the risk-free rate (typically the average
rate of return of Treasury bills), and σp is the standard deviation of the returns of the
algorithm, which indicates its volatility risk. The higher the Sharpe Ratio the better is
the algorithm at balancing high rewards with low risk.

The mean-variance optimal CRP for an algorithm is the CRP which achieves the same
return as the algorithm but has minimum variance. This is the least risky CRP one could
have used in hindsight to produce the same returns. The closer the volatility of the CRP
to that of the algorithm, the better the algorithm is avoiding risk.

Universal UCRP MW IR-MW ONS
Iro.&Kin-Ark 0.4986 0.5497 0.5390 0.5078 0.4578

CMC & Kin-Ark 0.5740 0.6020 0.5980 0.5812 0.7466
CMC & Meicco 0.3885 0.3834 0.3856 0.3854 0.5177
IBM & Coke 0.5246 0.5376 0.5356 0.5295 0.5824

Figure 3.14: Sharpe ratios for various algorithms on different datasets.

Figure 3.14 shows that ONS has either the best or slightly smaller Sharpe ratio among
all algorithms. In figure 3.15, it can be seen that ONS has comparable volatility to the
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minimum variance CRP, implying that ONS does not take excessive risk in its portfolio
selection. In the case of IBM & Coke and Kin-Ark & CMC, ONS beats the Best CRP in
hindsight. Hence the concept of the optimal mean-variance CRP does not apply and the
results for this case are omitted.

Universal UCRP MW IR-MW ONS
Iro. & Kin-Ark 0.46/0.495 0.493/0.493 0.48/0.493 0.461/0.493 0.46/0.545
CMC & Meicco 0.191/0.273 0.191/0.272 0.191/0.272 0.191/0.272 0.207/0.351

Figure 3.15: Minimum variance CRPs for various algorithms on different datasets. The
number to the left of the slash is the volatility of the minimum variance CRP and the
number to the right is the volatility of the algorithm on the dataset.
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Chapter 4

A Game Playing Framework for
Offline Optimization

In this chapter we describe a general framework for approximate optimization via online
convex optimization algorithms, which generalizes previous Lagrangian relaxation based
methods.

We start by describing the main theorems that can be obtained. Then we give a
few “meta-algorithms”, which transform online convex optimization algorithms with low
regret to approximation algorithms. The new algorithms for online convex optimization,
discussed in chapter 3, give rise to new approximate optimization algorithms which are
more efficient in certain cases. We continue by exploring the limitations of the model, and
relation to the von Neumann min-max theorem.

The results of this section are taken from [Haz06].

4.1 Introduction

The design of efficient approximation algorithms for certain convex and linear programs
has received much attention in the previous two decades. Since interior point methods
and other polynomial time algorithm are often too slow in practice [Bie01], researchers
have tried to design approximation algorithms. Shahrokhi and Matula [SM90] developed
the first approximation algorithm for the maximum concurrent flow problem. Their result
spurred a great deal of research, which generalized the techniques to broader classes of
problems (linear programming, semidefinite programming, packing and covering convex
programs) and improved the running time [LSM+91, KPST94, PST91, GK94, GK98,
Fle00, GK95, KL96, AHK05b].

In this chapter we consider approximations to more general convex programs. The
convex feasibility problem we consider is of the following form (the optimization version
can be reduced to this feasibility problem by binary search),

fj(x) ≤ 0 ∀j ∈ [m] (4.1)
x ∈ Sn
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Here, {fj , j ∈ [m]} is a (possibly infinite) set of convex constraints and Sn = {x ∈
Rn,

∑
i xi = 1, xi ≥ 0} is the unit simplex. Our algorithm work almost without change

if the simplex is replaced by other simple convex bodies such as the ball or hypercube.
The more general version, where Sn is replaced by an arbitrary convex set in Euclidian
space, can also be handled at the expense of slower running time (see section 4.3.1). We
say that an algorithm gives an ε-approximate solution to the above program if it returns
x ∈ P such that ∀j ∈ [m] . fj(x) ≤ ε, or returns proof that the program is infeasible.
A common parameter in the analysis of lagrangian relaxation algorithms is the width -
a measure of the size of the instance numbers. The width of program (4.1) is defined as
ω = maxj∈[m] maxx∈Sn |fi(x)|.

A common feature to all of the prior algorithms is that they can be viewed, some-
times implicitly, as Frank-Wolfe [FW56] algorithms, in that they iterate by solving an
optimization problems over Sn (more generally over the underlying convex set), and take
convex combinations of iterates. The optimization problem that is iteratively solved is of
the following form.

∀p ∈ Sm . Optimization Oracle (p) ,





x ∈ Sn s.t
∑

j pjfj(x) ≤ 0 if exists such x

FAIL otherwise

It is possible to extend the methods of PST [PST91] and others to problems such as
(4.1) (see [Jan04, Kha04]) and obtain the following theorem

Theorem 4.1 (previous work). There exists an algorithm that for any ε > 0, returns a
ε-approximation solution to mathematical program (4.1). The algorithm makes at most
Õ(ω2

ε2 ) calls to Optimization Oracle, and requires O(m) time between successive oracle
calls.

Remark 1: Much previous work focuses on reducing the dependance of the running
time on the width. Linear dependence on ω was achieved for special cases such as packing
and covering problems (see [You95]). For covering and packing problems the dependence
on the width can be removed completely, albeit introducing another n factor into the
running time [Jan04].

Remark 2: In case the constraint functions are linear, Optimization Oracle can
be implemented in time O(mn). Otherwise, the oracle reduces to optimization of a convex
non-linear function over a convex set.

Klein and Young [KY99] proved an Ω(ε−2) lower bound for Frank-Wolfe type algo-
rithms for covering and packing linear programs under appropriate conditions. This bound
applies to all prior lagrangian relaxation algorithms till the recent result of Bienstock and
Iyengar [BI04]. They give an algorithm for solving packing and covering linear programs
in time linear in 1

ε , proving

Theorem 4.2 ([BI04]). There exists an algorithm that for any ε > 0, returns a ε-
approximation solution to packing or covering linear programs with m constraints. The
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algorithm makes at most Õ(n
ε ) iterations. Each iteration requires solving a convex sep-

arable quadratic program. The algorithm requires O(mn) time between successive oracle
calls.

Their algorithm has a non-combinatorial component, viz., solving convex separable
quadratic programs. To solve these convex programs one can use interior point methods,
which have large polynomial running time. Another alternative is to apply lagrangian
relaxation or other approximation methods, but these would introduce another factor
polynomial in 1

ε to the total running time.
We give a simple approximation algorithms for convex programs whose running time is

linear in 1
ε . The algorithms requires just a separation oracle, as opposed to an optimization

oracle.
The Ω(ε−2) lower bound of Klein and Young is circumvented by using the strict

convexity of the constraints. The constraint functions are said to be strictly convex if
there exists a positive real number H > 0 such that minj∈[m] minx∈P ∇2fj(x) º H · I 1 .
In other words, the Hessian of the constraint function is positive definite (as opposed to
positive semidefinite) with smallest eigenvalue at least H > 0.

Our running time bounds depend on the gradients of the constraint functions as well.
Let G = maxj∈[m] maxx∈P ‖∇fj(x)‖2 be an upper bound on the norm of the gradients
of the constraint functions. G is related to the width of the convex program: for linear
constraints, the gradients are simply the coefficients of the constraints, and the width is
the largest coefficient. Hence, G is at most

√
n times the width. In section 4.3 we prove

the following Theorem.

Theorem 4.3 (Main 1). There exists an algorithm that for any ε > 0, returns a ε-
approximate solution to mathematical program (4.1). The algorithm makes at most
Õ(G2

H · 1
ε ) calls to Separation Oracle, and requires a single gradient computation and

additional O(n) time between successive oracle calls.

Remark: Commonly the gradient of a given function can be computed in time which
is linear in the function representation. Examples of functions which admit linear-time
gradient computation include polynomials, logarithmic functions and exponentials.

The separation oracle which our algorithm invokes is defined as

∀x ∈ Sn . Separation Oracle (x) ,





j ∈ [m] s.t fj(x) > ε if exists such fj

FAIL otherwise

If the constraints are given explicitly, often this oracle is easy to implement in time
linear in the input size. Such constraints include linear functions, polynomials and loga-
rithms. This oracle is also easy to implement in parallel: the constraints can be distributed
amongst the available processors and evaluated in parallel.

For all cases in which H is zero or too small the theorem above cannot be applied.
However, we can apply a simple reduction to strictly convex constraints and obtain the
following corollary.

1we denote A º B if the matrix A−B º 0 is positive semidefinite
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Corollary 4.4. For any ε > 0, there exists an algorithm that returns a ε-approximate
solution to mathematical program (4.1). The algorithm makes at most Õ(G2

ε2 ) calls to
Separation Oracle and requires additional O(n) time and a single gradient computation
between successive oracle calls.

In comparison to Theorem 4.1, this corollary may require O(n) more iterations. How-
ever, each iteration requires a call to Separation Oracle, as opposed to Optimization
Oracle. A Separation Oracle requires only function evaluation, which can many
times be implemented in linear time in the input size, whereas an Optimization Ora-
cle could require expensive operations such as matrix inversions.

There is yet another alternative to deal with linear constraints and yet obtain linear
dependence on ε. This is given by the following theorem. The approximation algorithm
runs in time linear in 1

ε , and yet does not require a lower bound on H. The downside of
this algorithm is the computation of “generalized projections”. A generalized projection
of a vector y ∈ Rn onto a convex set P with respect to PSD matrix A º 0 is defined
to be the vector

∏A
P(y) = arg minx∈P(x − y)>A(x − y). Generalized projections can be

cast as convex mathematical programs. If the underlying set is simple, such as the ball
or simplex, then the program reduces to a convex quadratic program (see section 3.5).

Theorem 4.5 (Main 2). There exists an algorithm that for any ε > 0 returns a ε-
approximate solution to mathematical program (4.1). The algorithm makes at most Õ(nG

ε )
calls to Separation Oracle and requires computation of a generalized projection onto
Sn, a single gradient computation and additional Õ(n2) time between successive oracle
calls.

An example of an application of the above theorem is the following linear program.

∀j ∈ [m] . Aj · x ≥ 0, x ∈ Sn (4.2)

It is shown in [DV04] that general linear programming can be reduced to this form, and
that without loss of generality, ∀j ∈ [m] ‖Aj‖ = 1. This format is called the “perceptron”
format for linear programs. As a corollary to Theorem 4.5, we obtain

Corollary 4.6. There exists an algorithm that for any ε > 0 returns a ε-approximate
solution to linear program (4.2). The algorithm makes Õ(n

ε ) iterations. Each iteration
requires Õ(n(m + n)) computing time plus computation of a generalized projection onto
the simplex.

Theorem 4.5 and Corollary 4.6 extend the result of Bienstock and Iyengar [BI04] to
general convex programming 2. The running time of the algorithm is very similar to
theirs: the number of iterations is the same, and each iteration also requires to solve
convex quadratic programs (generalized projections onto the simplex in our case). Our
algorithm is very different from [BI04]. The analysis is simpler, and relies on recent
results from online learning. We note that the algorithm of Bienstock and Iyengar allows
improved running time for sparse instances, whereas our algorithm currently does not.

2Bienstock and Iyengar’s techniques can also be extended to full linear programming by introducing
dependence on the width which is similar to that of our algorithms [Bie06].
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4.1.1 Lagrangian relaxation and solving zero sum games

The relation between lagrangian relaxation and solving zero sum games was implicit in
the original PST work, and explicit in the work of Freund and Schapire on online game
playing [FS99] (the general connection between zero sum games and linear programming
goes back to von Neumann).

Most previous lagrangian relaxation algorithms can be viewed as reducing the opti-
mization problem at hand to a zero sum game, and then applying a certain online game
playing algorithm, the Multiplicative Weights algorithm, to solve the game.

Our main insight is that the Multiplicative Weights algorithm can be replaced by
any online convex optimization (see chapter 2) algorithm. The recent developments in
online convex optimization detailed in chapter 3, introduce algorithms with much better
performance guaranties for online games with convex payoff functions. Our results are
derived by reducing convex optimization problems to games with payoffs which stem from
convex functions, and using the new algorithms to solve these games.

The online framework also provides an alternative explanation to the aforementioned
Klein and Young Ω(ε−2) lower bound on the number of iterations required by Frank-Wolfe
algorithms to produce an ε-approximate solution. Translated to the online framework,
previous algorithm were based on online algorithms with Ω(

√
T ) regret (the standard

performance measure for online algorithms, see chapter 2 for precise definition). Our
linear dependance on 1

ε is the consequence of using of online algorithms with O(log T )
regret. This is formalized in section 4.4.

4.2 The general scheme

We outline a general scheme for approximately solving convex programs using online
convex optimization algorithms. This is a generalization of previous methods which also
allows us to derive the results stated in the previous section.

For this section we consider the following general mathematical program, which gen-
eralizes (4.1) by allowing an arbitrary convex set P.

fj(x) ≤ 0 ∀j ∈ [m] (4.3)
x ∈ P

In order to approximately solve (4.3), we reduce the mathematical problem to a game
between two players: a primal player who tries to find a feasible point and the dual player
who tries to disprove feasibility. This reduction is formalized in the following definition.

Definition 4.7. The associated game with mathematical program (4.3) is between a
primal player that plays x ∈ P and a dual player which plays a distribution over the
constraints p ∈ Sm. For a point played by the primal player and a distribution of the dual
player, the loss that the primal player incurs (and the payoff gained by the dual player)
is given by the following function

∀ x ∈ P , p ∈ Sm . g(x, p) ,
∑

j

pjfj(x)
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The value of this game is defined to be λ∗ , minx∈P maxp∈Sm g(x, p). Mathematical
program (4.3) is feasible iff λ∗ ≤ 0.

By the above reduction, in order to check feasibility of mathematical program (4.3), it
suffices to compute the value of the associated game λ∗. Notice that the game loss/payoff
function g is smooth over the convex sets Sm and P, linear with respect to p and convex
with respect to x. For such functions, generalizations to the von Neumann minimax
theorem, such as [Sio58] 3 imply that

λ∗ = min
x∈P

max
p∈Sm

g(x, p) = max
p∈Sm

min
x∈P

g(x, p)

This suggests a natural approach to evaluate λ∗: simulate a repeated game between
the primal and dual players such that in each iteration the game loss/payoff is determined
according to the function g. In the simulation, the players play according to an online
algorithm.

The online algorithms we consider fall into the online convex optimization framework
(see chapter 2). Recall that in online convex optimization there is a fixed convex com-
pact feasible set P ⊂ Rn and an arbitrary, unknown sequence of convex cost functions
f1, f2, . . . : P → R. The decision maker must make a sequence of decisions, where the
tth decision is a selection of a point xt ∈ P and there is a cost of ft(xt) on period t.
However, xt is chosen with only the knowledge of the set P, previous points x1, . . . , xt−1,
and the previous functions f1, . . . , ft−1. The standard performance measure for online
convex optimization algorithms is called regret which is defined as:

RegretT (A) , sup
f1,...,fT

{
T∑

t=1

ft(xt)− min
x∗∈P

T∑

t=1

ft(x∗)

}

In certain cases we speak of an online player that wants to maximize payoff, rather than
minimize cost. In this case the payoff functions f1, .., fT are concave and regret is defined
to be

RegretT (A) , sup
f1,...,fT

{
max
x∗∈P

T∑

t=1

ft(x∗)−
T∑

t=1

ft(xt)

}

We say that an algorithm A has low regret if RegretT (A) = o(T ). Later, we use to the
procedure OnlineAlg, by which we refer to any low regret algorithm for this setting.

Another crucial property of online convex optimization algorithms is their running
time. The running time is the time it takes to produce the point xt ∈ P given all prior
game history.

The running time of our approximate optimization algorithms will depend on these two
parameters of online game playing algorithms: regret and running time. In chapters 2,3
we survey some old and new online convex optimization algorithms and their properties.

3All algorithms and theorems in this paper can be proved without relying on this minimax theorem.
In fact, our results provide a new algorithmic proof of the generalized min-max theorem which is included
in Appendix 4.5.
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We suggest three methods for approximating (4.3) using the approach outlined above.
The first “meta algorithm” (it allows freedom in choice for the implementation of the online
algorithm) is called PrimalGameOpt and depicted in figure 4.1. For this approach, the
dual player is simulated by an optimal adversary: at iteration t it plays a dual strategy pt

that achieves at least the game value λ∗ (this reduces exactly to Separation Oracle).
The implementation of the primal player is an online convex optimization algorithm

with low regret, which we denote by OnlineAlg. This online convex optimization al-
gorithm produces decisions which are points in the convex set P. The cost functions
f1, f2, . . . : P → R are determined by the dual player’s distributions. At iteration t, if the
distribution output by the dual player us pt, then the cost function to the online player is

∀x ∈ P . ft(x) , g(x, pt)

The low-regret property of the online algorithm used ensures that in the long run, the
average strategy of the primal player will converge to the optimal strategy. Hence the
average loss will converge to λ∗.

The “dual” version of this approach, in which the dual player is simulated by an
online algorithm and the primal by an oracle, is called DualGameOpt. In this case,
the adversarial implementation of the primal player reduces to Optimization Oracle.
The dual player now plays according to an online algorithm OnlineAlg. This online
algorithm produces points in the m-dimensional simplex - the set of all distributions over
the constraints. The payoff functions are determined according to the decisions of the
primal player: at iteration t, if primal player produced point xt ∈ P, the payoff function
is

∀p ∈ Sm . ft(p) , g(xt, p)

We also explore a third option, in which both players are implemented by online
algorithms. This is called the PrimalDualGameOpt meta-algorithm. Pseudo-code for
all versions is given in figure 4.1.

The following theorem shows that all these approaches yield an ε-approximate solution
when the online convex optimization algorithm used to implement OnlineAlg has low
regret.

Theorem 4.8. Suppose OnlineAlg is an online convex optimization algorithm with low
regret. If a solution to mathematical program (4.3) exists, then meta-algorithms Pri-
malGameOpt, DualGameOpt and PrimalDualGameOpt return an ε-approximate
solution. Otherwise, PrimalGameOpt and DualGameOpt return a dual solution prov-
ing that the mathematical program is infeasible, and PrimalDualGameOpt returns a
dual solution proving the mathematical program to be ε-close to being infeasible.

Further, a ε-approximate solution is returned in O(R
ε ) iterations, where

R = R(OnlineAlg, ε) is the smallest number T which satisfies the inequality
RegretT (OnlineAlg) ≤ εT .

Proof. Part 1: correctness of PrimalGameOpt
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PrimalGameOpt (ε)
Let t ← 1. While Regrett(OnlineAlg) ≥ εt do

• Let xt ← OnlineAlg (p1, ..., pt−1).

• Let j ← Separation Oracle (xt). If FAIL return xt. Let pt ← ej , where ej is
the j’th standard basis vector of Rn.

• t ← t + 1

Return p̄ = 1
T

∑T
t=1 pt

DualGameOpt (ε)
Let t ← 1. While Regrett(OnlineAlg) ≥ εt do

• Let pt ← OnlineAlg (x1, ..., xt−1).

• Let xt ← Optimization Oracle (pt). If FAIL return pt.

• t ← t + 1

Return x̄ , 1
T

∑T
t=1 xt

PrimalDualGameOpt (ε)
Let t ← 1. While Regrett(OnlineAlg) ≥ ε

2 t do

• Let xt ← OnlineAlg (p1, ..., pt−1).

• Let pt ← OnlineAlg (x1, ..., xt−1).

• t ← t + 1

If x̄ , 1
T

∑T
t=1 xt is ε-approximate return x̄. Else, return p̄ = 1

T

∑T
t=1 pt.

Figure 4.1: meta algorithms for approximate optimization by online game playing

If at iteration t Separation Oracle returns FAIL, then by definition of Separation
Oracle,

∀p∗ . g(xt, p
∗) ≤ ε ⇒ ∀j ∈ [m] . fj(xt) ≤ ε

implying that xt is a ε-approximate solution.
Otherwise, for every iteration g(xt, pt) > ε, and we can construct a dual solution as

follows. Since the online algorithm guaranties sub-linear regret, for some iteration T the
regret will be R ≤ εT . By definition of regret we have for any strategy x∗ ∈ P,

ε <
1
T

T∑

t=1

g(xt, pt) ≤ 1
T

T∑

t=1

g(x∗, pt) +
R

T
≤ 1

T

T∑

t=1

g(x∗, pt) + ε ≤ g(x∗, p̄) + ε

53



The last inequality follows from the concavity (linearity) of g(x, p) with respect to p
Thus,

∀x∗ . g(x∗, p̄) > 0

Hence p̄ is a dual solution proving that the mathematical program is infeasible.

Part 2: correctness of DualGameOpt
If for some iteration t Optimization Oracle returns FAIL. According to the defi-

nition of Optimization Oracle,

∀x ∈ P . g(x, pt) > 0

implying that pt is a dual solution proving the mathematical program to be infeasible.
Else, in every iteration g(xt, pt) ≤ 0. As before, for some iteration T the regret of the

online algorithm will be R ≤ εT . By definition of regret we have (note that this time the
online player wants to maximize his payoff)

∀p∗ ∈ P (F) . 0 ≥ 1
T

T∑

t=1

g(xt, pt) ≥ 1
T

T∑

t=1

g(xt, p
∗)− R

T
≥ 1

T

T∑

t=1

g(xt, p
∗)− ε

Changing sides and using the convexity of the function g(x, p) with respect to x (which
follows from the convexity of the functions f ∈ F) we obtain (for x̄ = 1

T

∑T
t=1 xt)

∀p∗ ∈ P (F) . g(x̄, p∗) ≤ 1
T

T∑

t=1

g(xt, p
∗) ≤ ε

Which in turn implies that
∀f ∈ F . f(x̄) ≤ ε

Hence x̄ is a ε-approximate solution.

Part 3: correctness of PrimalDualGameOpt
Denote R1, R2 the regrets attained by both online algorithms respectively. Using the

low regret properties of the online algorithms we obtain for any x∗, p∗

∀x∗, p∗ .
T∑

t=1

g(xt, p
∗)−R1 ≤

T∑

t=1

g(xt, pt) ≤
T∑

t=1

g(x∗, pt) + R2 (4.4)

Let x∗ be such that ∀p ∈ P (F) . g(x∗, p) ≤ λ∗. By convexity of g(x, p) with respect to x,

∀p∗ . g(x̄, p∗) ≤ 1
T

T∑

t=1

g(xt, p
∗) ≤ 1

T

T∑

t=1

g(x∗, pt) +
R2 + R1

T
≤ λ∗ + ε
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Similarly, let p∗ be such that ∀x ∈ P . g(x, p∗) ≥ λ∗. Then by concavity of g with respect
to p and equation 4.4 we have

∀x∗ . g(x∗, p̄) ≥ 1
T

T∑

t=1

g(x∗, pt) ≥ 1
T

T∑

t=1

g(xt, p
∗)− R2 + R1

T
≥ λ∗ − ε

Hence, if λ∗ ≤ 0, then x̄ satisfies

∀p∗ . g(x̄, p∗) ≤ ε ⇒ ∀j ∈ [m] . fj(x̄) ≤ ε

And hence is a ε-approximate solution. Else,

∀x∗ . g(x∗, p̄) > −ε

And p̄ is a dual solution proving that the following mathematical program is infeasible.

fj(x) ≤ −ε ∀j ∈ [m]
x ∈ P

4.3 Applications

4.3.1 Strictly convex programs

We start with the easiest and perhaps most surprising application of Theorem 4.8. Recall
that the feasibility problem we are considering:

fj(x) ≤ 0 ∀j ∈ [m]
x ∈ Sn

where the functions {fj} are strictly convex such that ∀x ∈ Sn, j ∈ [m] . ∇2fj(x) º H · In

and ‖∇fj(x)‖2 ≤ G

Proof of Theorem 4.3. Consider the associated game with value

λ∗ , min
x∈Sn

max
j∈[m]

fj(x)

The convex problem is feasible iff λ∗ ≤ 0. To approximate λ∗, we apply the Primal-
GameOpt meta algorithm. In this case, the vectors xt are points in the simplex, and pt

are distributions over the constraints.
The online algorithm used to implement OnlineAlg is Online Gradient Descent

(OGD). According to Theorem 3.8 in section 3.4.1, the regret of OGD is bounded by
RegretT (OGD) = O(G2

H log T ). Hence, the number of iterations till the regret drops to
εT is Õ(G2

H
1
ε ). According to Theorem 4.8, this is the number of iterations required to

obtain an ε-approximation.
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In each iteration, the OGD algorithm needs to update the current online strategy
(the vector xt) according to the gradient and project onto Sn. This requires a single
gradient computation. A projection of a vector y ∈ Rn onto Sn is defined to be

∏
P(y) =

arg minx∈Sn ‖x − y‖2, and can be computed in time Õ(n) (see section 3.5). Other than
the gradient computation and projection, the running time of OGD is O(n) per iteration
(see section 3.4.1).

Remark: It is clear that the above algorithm can be applied the more general version
of convex program (4.3), where the simplex is replaced by an arbitrary convex set P ⊆ Rn.
The only change required is in the projection step. For Theorem 4.3, we assumed the
underlying convex set is the simplex, hence the projection can be computed in time
Õ(n). Projections can be computed in linear time also for the hypercube and ball. For
convex sets which are intersections of hyperplanes (or convex paraboloids), computing
a projection reduces to optimizing a convex quadratic function over linear (quadratic)
constraints. These optimization problems allow for more efficient algorithms than general
convex optimization [LVBL98].

As a concrete example of the application of Theorem 4.3, consider the case of strictly
convex quadratic programming. In this case, there are m constraint functions of the form
fj(x) = x>Ajx+b>j x+c, where the matrices Aj are positive-definite. If minj∈[m] Aj º H ·I,
and ∀x∈Sn‖Ajx+ bj‖2 ≤ G, then Theorem 4.3 implies that an ε-approximate solution can
be found in Õ(G2

Hε) iterations.
The implementation of Separation Oracle involves finding a constraint violated by

more than ε. In the worst case all constrains need be evaluated in time O(mn2). The
gradient of any constraint can be computed in time O(n2). We conclude that the total
running time to obtain a ε-approximation solution is Õ(G2mn2

Hε ). Notice that the input
size is mn2 in this case.

We conclude this subsection with Corollary 4.4 as follows.

proof of Corollary 4.4. Given mathematical program (4.1), we consider the following pro-
gram

fj(x) + δ‖x‖2
2 − δ ≤ 0 ∀j ∈ [m] (4.5)

x ∈ Sn

This mathematical program has strictly convex constraints, as

∀i ∈ [m] . ∇2(fi(x) + δ‖x‖2
2 − δ) = ∇2fi(x) + 2δI º 2δI

The last inequality follows from our assumption that all constraints in (4.1) are convex
and hence have positive semidefinite Hessian. Hence, to apply Theorem 4.3 we can use
H = 2δ. In addition, by the triangle inequality the gradients of the constraints of (4.5)
satisfy

‖∇(fi(x) + δ‖x‖2
2 − δ)‖2 ≤ ‖∇fi(x)‖2 + 2δ‖x‖1 ≤ G + 2δ = O(G)
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where G is the upper bound on the norm of the gradients of the constraints of (4.1).
Theorem 4.3 implies that a ε-approximate solution to (4.5) can be computed in Õ(G2

δε )
iterations, each requiring a single gradient computation and additional Õ(n) time.

Given a ε-approximate solution to (4.5) denoted y, it satisfies

∀j ∈ [m] . fj(y) + δ‖y‖2
2 − δ ≤ ε ⇒ fj(y) ≤ −δ‖y‖2

2 + δ + ε ≤ δ + ε

Hence y is also a (ε + δ)-approximate solution to (4.1). In addition, if (4.1) is feasible,
i.e there exists x∗ ∈ Sn such that minj∈[m] fj(x∗) ≤ 0, then so is (4.5) since the same x∗

satisfies minj∈[m] fj(x∗)+δ‖x‖2
2−δ ≤ δ‖x‖2

2−δ ≤ 0. This implies that proof of infeasibility
of (4.5) also proves infeasibility for (4.1).

Choosing δ = ε, we conclude that a 2ε-approximate solution to (4.1) can be computed
in Õ(G2

ε2 ) iterations.

4.3.2 Linear and Convex Programs

In this section we prove Theorem 4.5, which gives an algorithm for convex programming
that has running time proportional to 1

ε . As a simple consequence we obtain corollary 4.6
for linear programs.

Since for general convex programs the constraints are not strictly convex, one cannot
apply online algorithms with logarithmic regret directly as in the previous subsection.
Instead, we first perform a reduction to a mathematical program with exp-concave con-
straints, and then approximate the reduced instance.

Proof of Theorem 4.5. In this proof it is easier for us to consider concave constraints
rather than convex. Mathematical program (4.1) can be converted to the following by
negating each constraint:

fj(x) ≥ 0 ∀j ∈ [m] (4.6)
x ∈ P

where the functions {fj} are all concave such that ∀x ∈ P, j ∈ [m] . ‖∇fj(x)‖2 ≤ G and
∀x ∈ P, j ∈ [m] . |fj(x)| ≤ ω. This program is even more general than (4.1) as it allows
for an arbitrary convex set P rather than Sn.

Let ρ = maxx∈P minj{fj(x)}. The question to whether this convex program is feasible
is equivalent to whether ρ > 0.

In order to approximately solve this convex program, we consider a different concave
mathematical program,

log(e + ω−1fj(x)) ≥ 1 ∀j ∈ [m] (4.7)
x ∈ P

It is a standard fact that concavity is preserved for the composition of a non-decreasing
concave function with another concave function, i.e. the logarithm of positive concave
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functions is itself concave. To solve this program we consider the (non-linear) zero sum
game defined by the following min-max formulation

λ∗ , max
x∈P

min
j∈[m]

log(e + ω−1fj(x)) (4.8)

The following two claims show that program (4.7) is closely related to (4.6).

Claim 4.9. λ∗ = log(e + ω−1ρ).

Proof. Let x be a solution to (4.6) which achieves the value ρ, that is ∀j ∈ [m] . fj(x) ≥
ρ. This implies that ∀j ∈ [m] . log(e + ω−1fj(x)) ≥ log(e + ω−1ρ), and in particular
∀q g(x, q) ≥ log(e + ω−1ρ) hence λ∗ ≥ log(e + ω−1ρ).

For the other direction, suppose that λ∗ = log(e + z) > log(e + ω−1ρ) for some
z > ω−1ρ. Then there exists an x such that ∀j ∈ [m] . log(e+ω−1fj(x)) ≥ λ∗ > log(e+z)
or equivalently ∀j ∈ [m] . fj(x) ≥ z > ρ in contradiction to the definition of ρ.

Claim 4.10. An ε-approximate solution for (4.7) is a 3ωε-approximate solution for (4.6).

Proof. A ε-approximate solution to (4.7) satisfies ∀j . log(e + ω−1fj(x)) ≥ λ∗ − ε =
log(e + ω−1ρ)− ε. Therefore, by monotonicity of the logarithm we have

ω−1fj(x) ≥ elog(e+ω−1ρ)−ε − e

= (e + ω−1ρ) · e−ε − e

≥ (e + ω−1ρ)(1− ε)− e since e−x ≥ 1− x

= ω−1ρ(1− ε)− eε

Which implies
fj(x) ≥ ρ(1− ε)− 3ωε

We proceed to approximate λ∗ using PrimalGameOpt and choose the Online New-
ton Step (ONS) algorithm (see chapter 3) as OnlineAlg. We note that here the primal
player is maximizing payoff as opposed to the minimization version in the proof of Theo-
rem 4.8. The maximization version of Theorem 4.8 can be proved analogously.

In order to analyze the number of iterations required, we calculate some parameters
of the constraints of formulation (4.7). See chapter 3 for explanation on how the different
parameters effect the regret and running time of Online Newton Step.

The constraint functions are 1-exp-concave, since their exponents are linear functions.
Their gradients are bounded by

G̃ , max
j∈m

max
x∈P

‖∇ log(e + ω−1fj(x))‖ = max
j∈m

max
x∈P

‖ ω−1∇fj(x)
e + ω−1fj(x)

‖ ≤ ω−1G

According to Theorem 3.1 in chapter 3, the regret of ONS (4.8) is O(( 1
α +GD)n log T ).

In our setting, α = 1 and G is replaced by G̃. Therefore, the regret becomes smaller then
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εT after O(nGDω−1

ε ) iterations. By Theorem 4.8, after T = Õ(nGDω−1

δ ) iterations we
obtain an δ-approximate solution, i.e a solution x∗ such that

min
j∈[m]

log(e + ω−1fj(x∗)) ≥ λ∗ − δ

Which by claim 4.10 is a 3ωδ-approximate solution to the original math program. Taking
δ = O(ω−1ε) we obtain an ε-approximate solution to concave program (4.6) in T =
Õ(nGD

ε ) iterations.
We now analyze the running time per iteration. Each iteration requires a call to

Separation Oracle in order to find an ε-violated constraint. The gradient of the
constraint need be computed. According to the gradient the ONS algorithm takes O(n2)
time to update its internal data structures. Finally ONS computes a generalized projection
onto P (see section 3.5).

If P = Sn, then D = 1 and the bounds of Theorem 4.5 are met.

Given Theorem 4.5, it is straightforward to derive corollary 4.6 for linear programs:

proof of Corollary 4.6. For linear programs in format (4.2), the gradients of the con-
straints are bounded by maxj∈[m] ‖Aj‖ ≤ 1. In addition, Separation Oracle is easy to
implement in time O(mn) by evaluating all constraints.

Denote by TS
proj the time to compute a generalized projection onto the simplex. A

worst case bound is TS
proj = O(n3), using interior point methods (this is an instance

quadratically constrained convex quadratic program, see [LVBL98]).
Plugging these parameters into Theorem 4.5, the total running time comes to

Õ(
n

ε
· (nm + n2 + TA,proj))

Remark: As is the case for strictly convex programming, our framework actually
provides a more general algorithm that requires a Separation Oracle. Given such an
oracle, the corresponding optimization problem can be solved in time Õ(n

ε · (n2 +TA,proj +
Toracle)) where Toracle is the running time of Separation Oracle.

4.3.3 Derivation of previous results

For completeness, we prove Theorem 4.1 using our framework. Even more generally, we
prove the theorem for general convex program (4.3) rather than (4.1).

Proof of Theorem 4.1. Consider the associated game with value

λ∗ , min
x∈P

max
j∈[m]

fj(x) = max
p∈Sm

min
x∈P

m∑

i=1

pifi(x)

The convex problem is feasible iff λ∗ ≤ 0. To approximate λ∗, we apply the Dual-
GameOpt meta algorithm. The vectors xt are points in the convex set P, and pt are
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distributions over the constraints, i.e. points in the m dimensional simplex. The payoff
functions for OnlineAlg in iteration t are of the form

λp . g(xt, p) =
∑

i

pifi(xt)

The online algorithm used to implement OnlineAlg is the Multiplicative Weights
algorithm (MW). According to Theorem 2.2 in section 2.3.3, the regret of MW is bounded
by RegretT (MW ) = O(G∞

√
T log m) (the dimension of the online player is m in this

case). Hence, the number of iterations till the regret drops to εT is Õ(G2∞
ε2 ). According to

Theorem 4.8, this is the number of iterations required to obtain an ε-approximation.
To bound G∞, note that the payoff functions λp . g(xt, p) are linear. Their gradients

are m-dimensional vectors such that the i’th coordinate is the value of the i’th constraint
on the point xt, i.e. fi(xt). Thus, the `∞ norm of the gradients can be bounded by

G∞ = max
x∈P

max
t∈[T ]

∇(λp . g(xt, p)) ≤ max
i∈[m]

max
x∈P

fi(x)

And the latter expression is bounded by the width ω = maxi∈[m] maxx∈P |fi(x)|. Thus
the number of iterations to obtain an ε-approximate solution is bounded by Õ(ω2

ε2 ).
In each iteration, the MW algorithm needs to update the current online strategy

(the vector pt) according to the gradient in time O(m). This requires a single gradient
computation.

4.4 Lower bounds

The algorithmic scheme described hereby generalizes previous approaches, which are gen-
erally known as Dantzig-Wolfe-type algorithms. These algorithms are characterized by
the way the constraints of mathematical program (4.1) are accessed: every iteration only
a single Optimization Oracle call is allowed.

For the special case in which the constraints are linear, there is a long line of work
leading to tight lower bounds on the number of iterations required for algorithms within
the Dantzig-Wolfe framework to provide an ε-approximate solution. Already in 1977,
Khachiyan proved an Ω(1

ε ) lower bound on the number of iterations to achieve an error of
ε. This was tightened to Ω( 1

ε2 ) by Klein and Young [KY99], and independently by Freund
and Schapire [FS99]. Some parameters were tightened in [AHK05a].

For the game theoretic framework we consider, it is particularly simple and intuitive
to derive tight lower bounds. These lower bounds do not hold for the more general
Dantzig-Wolfe framework. However, virtually all lagrangian-relaxation-type algorithms
known can be derived from our framework. Thus, for all these algorithms lower bounds
on the running time in terms of ε can be derived from the following observation.

In our setting, the number of iterations depends on the regret achievable by the online
game playing algorithm which is deployed. Tight lower bounds are known on regret
achievable by online algorithms. Theorem 2.3 in section 2.5 shows that any online convex
optimization algorithm incurs Ω(DG

√
T ) regret for linear cost functions. For linear cost

functions over the real line segment [−1, 1] the following weaker bounds hold
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Lemma 4.11 (folklore). For linear cost functions over the real line segment [−1, 1] any
online convex optimization algorithm incurs Ω(G∞

√
T ) regret.

Proof. This can be seen by a simple randomized example. Consider P = [−1, 1] and linear
functions ft(x) = rtx, where rt = ±1 are chosen in advance, independently with equal
probability. Ert [ft(xt)] = 0 for any t and xt chosen online, by independence of xt and rt.
However, Er1,...,rT [minx∈K

∑T
1 ft(x)] = E[−|∑T

1 rt|] = −Ω(
√

T ). Multiplying rt by any
constant (which corresponds to G∞) yields the result.

The above simple lemma is essentially the reason why it took more than a decade to
break the 1

ε2 running time. The reason why we obtain algorithms with linear dependance
on ε is the use of strictly convex constraints (or, in case the original constraints are linear,
apply a reduction to strictly convex constraints).

4.5 A general min-max theorem

In this section prove a generalized version of the von Neumann min-max theorem. The
proof is algorithmic in nature, and differs from previous approaches which were based on
fixed point theorems.

Freund and Schapire [FS99] provide an algorithmic proof of the (standard) min-max
theorem, and this proof is an extension of their ideas to the more general case. The addi-
tional generality is in two parameters: first, we allow more general underlying convex sets,
whereas the standard min-max theorem deals with the n-dimensional simplex Sn. Second,
we allow convex-concave functions as defined below rather than linear functions. Both
generalities stems from the fact that we use general online convex optimization algorithms
as the strategy for the two players, rather than specific “expert-type” algorithms which
Freund and Schapire use. Other than this difference, the proof itself follows [FS99] almost
exactly.

The original minimax theorem can be stated as follows.

Theorem 4.12 (von Neumann). If X, Y are finite dimensional simplices and f is a
bilinear function on X × Y , then f has a saddle point, i.e.

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y)

Here we consider a more general setting, in which the two sets X, Y can be arbitrary
closed, non-empty, bounded and convex sets in Euclidian space and the function f is
convex-concave as defined by:

Definition 4.13. A function f on X × Y is convex-concave if for every y ∈ Y the
function ∀x ∈ X fy(x) , f(x, y) is convex on X and for every x ∈ X the function
∀y ∈ Y fx(y) , f(x, y) is concave on Y .

Theorem 4.14. If X,Y are closed non-empty bounded convex sets and f is a convex-
concave function on X × Y , then f has a saddle point, i.e.

max
y∈Y

min
x∈X

f(x, y) = min
x∈X

max
y∈Y

f(x, y)
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Proof. Let µ∗ , maxy∈Y minx∈X f(x, y) and λ∗ , minx∈X maxy∈Y f(x, y). Obviously
µ∗ ≤ λ∗ (this is called weak duality).

Apply the algorithm PrimalDualGameOpt with any low-regret online convex op-
timization algorithm. 4 Then by the regret guaranties we have for the first algorithm (let
ȳ = 1

T

∑T
t=1 yt)

1
T

T∑

t=1

f(xt, yt) ≤ minx∈X
1
T

∑T
t=1 f(x, yt) + R1

T

≤ minx∈X f(x, ȳ) + R1
T concavity of fx

≤ maxy∈Y minx∈X f(x, y) + R1
T

= µ∗ + R1
T

Similarly for the second online algorithm we have (let x̄ = 1
T

∑T
t=1 xt)

1
T

T∑

t=1

f(xt, yt) ≥ maxy∈Y
1
T

∑T
t=1 f(xt, y)− R1

T

≥ minx∈X f(x̄, y) + R1
T convexity of fy

≥ minx∈X maxy∈Y f(x, y) + R1
T

= λ∗ + R1
T

Combining both observations we obtain

λ∗ − R2

T
≤ µ∗ +

R1

T

As T 7→ ∞ we obtain µ∗ ≥ λ∗.

4for a low-regret algorithm to exist, we need f to be convex-concave and the underlying sets X, Y to
be convex, nonempty, closed and bounded.
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Chapter 5

Estimating Haplotype Frequencies
Efficiently

This chapter describes an algorithm for a computational biology application, which orig-
inally appeared in a joint paper with Eran Halperin [HH06]. The original motivation
was completely biological and had no relation to online convex optimization. However,
the mathematical program arising in this application is surprisingly similar to that from
universal portfolio management discussed earlier. Given this similarity, it is tempting
to apply our online convex optimization techniques, and indeed this results in simpler
analysis, as described below.

The first two sections deals with describing the biological motivation, and how to
model it mathematically. Some background in biology is assumed for this part. The
remaining sections deal with optimization, and the reader who is only interested in these
aspects can skip directly to section 5.3.

The original algorithm from [HH06], called HaploFreq, was implemented and bench-
marked on actual biological data sets. As a final note, recently the HaploFreq software
suite was made available from the National Center for Biotechnology Information (NCBI)
web site, and is used by biologists around the world to analyze genetic data.

5.1 Introduction

The effort to characterize human variation is currently a major focus for the international
research community [NIH02]. A central motivation is to associate specific portions of our
genome with disease and traits. Most of the genetic variation among different people
can be characterized by single nucleotide polymorphisms (SNPs), which are mutations
at a single nucleotide position that occurred once in human history and were passed on
through heredity. In order to understand the structure of this variation, we need to be
able to determine the haplotypes of individuals, or which nucleotide base occurs at each
position for each chromosome.

As opposed to haplotypes, the genotype gives the bases at each SNP for both copies
of the chromosome, but loses the information as to the chromosome on which each base
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appears. Unfortunately, many sequencing techniques provide the genotypes and not the
haplotypes. Haplotype analysis has become increasingly common in genetic studies of
human disease. However, many of these methods rely on phase information, that is, the
haplotype information vs. the genotype information. Phase can be inferred by genotyping
family members of each subject, but this has its downsides because of logistic and budget
issues. Alternatively, laboratory techniques such as long range PCR or chromosomal
isolation have been also used [PBH+01, MBTB+96] but these are often costly and are not
suitable for large scale polymorphism screening. As an alternative to those technologies,
many computational methods have been developed for phasing the genotypes (e.g. [Cla90,
Gus00, Gus01, LBI+01, SSD01, NQXL01, Gus02, HE04, KS04].

Even though much of the attention was aimed at finding the haplotype phase, it is
usually crucial to estimate correctly the haplotype frequencies in the population and not
necessarily to phase the individual genotypes. For instance, in disease association studies,
it is usually more informative to find the discrepancies between the control haplotype
distribution and the cases haplotype distribution, than to find the phase of the haplotypes.
The most likely estimation for the haplotype distribution in a population can be viewed
as a weighted average over all possible phasing options. Therefore, finding the most likely
phase and counting the number of occurrences of each haplotype could be used as a
crude estimate for the haplotype distribution. In some cases this crude estimate may be
inaccurate and more accurate frequency estimators are needed.

There are algorithms, based on the Expectation Maximization technique, that directly
estimate the haplotype frequencies ([ES95, FS00, HK95, LWU95]). These methods use a
likelihood function based on the underlying assumption that the Hardy-Weinberg equi-
librium holds (that the two haplotypes of an individual are independently drawn from
the haplotype distribution in the population). In particular, those methods try to find
a haplotype distribution which maximizes the probability of observing genotypes in the
given sample, under the assumption of Hardy-Weinberg equilibrium.

One of the main drawbacks in all previous methods is that there is no guarantee
that the algorithm converges to a global maximum, or that the algorithm converges in
polynomial time. Both the convergence of the EM algorithm to a global optimum and its
running time are heavily affected by the starting point of the algorithm which is usually
a ’reasonable’ guess or a random point.

We present a method called HaploFreq which aims in overcoming the above lim-
itations of previous approaches. Similarly to previous approaches, we use a likelihood
function model. Our approach is different from previous approaches in the following as-
pects. First, we use an algorithm which is provably guaranteed to run efficiently and to
find the haplotype distribution assuming that the number of samples is large enough and
assuming a uniform error model. Second, we consider two different likelihood functions,
one that assumes Hardy-Weinberg equilibrium and another that does not. The latter is
used in order to find the genotype distribution given missing data, or the haplotype distri-
bution given phased haplotypes with missing data. For instance, the phased haplotypes
are given when sequencing chromosome X in men, or when sequencing the genome of

64



certain organisms that are either haploid or have a short life span1.
In the case where the Hardy-Weinberg equilibrium holds, the maximum likelihood

function is a multinomial of high degree. In order to find the maximum value of this
multinomial we relax the problem by allowing the variables to be n-dimensional vectors
instead of real numbers. We then use convex optimization methods to find the maximum
value of the relaxed problem. This relaxed objective function can be thought of as an
alternative likelihood function since we show that the maximum value of the relaxed
function approaches asymptotically to the haplotypes frequencies in the population.

We measured the performance of our algorithm over various data sets and compared
it to the most widely used program PHASE [SSD01]. The promising experimental results
appear in [HH06].

5.2 Estimating Haplotype Frequencies

One of the most natural tools in disease association studies is the search for discrepancies
in the allele distribution between the cases and the controls. A natural extension of this
tool is the search for discrepancies between the haplotype distribution in each of the
populations. In particular, the haplotype frequency is calculated from the samples of
each of the populations, and a statistical test (e.g. chi squared) is performed in order
to assess whether the haplotype distributions of the two populations are identical. If the
distributions are significantly different, then the region is likely to be correlated with the
disease.

In order to estimate the haplotype frequencies in a population, a geneticist would
sample a set of n individuals from the population. Throughout this section we assume
that these n individuals are independently sampled from a large population. Each sample
consists of a genotype, which is the information of the two copies of the chromosome
in each base. The haplotype information therefore has to be derived from the genotype
information. Furthermore, the sequenced data usually contains some missing data, which
adds another complexity to the problem. In this chapter we focus on estimating the
haplotype frequencies from the genotype data, with missing data. Both the model and
algorithms have natural extensions for other types of noise, such as sequencing errors.

5.2.1 A maximum likelihood approach

In order to formalize the above scenario, we first need to set some notations and definitions.
A complete haplotype is a binary string of length k. The values 0 and 1 correspond to the
mutation and the wild type alleles. A partial haplotype is a string over {0, 1, ∗}k. The
character ‘*’ corresponds to an unknown value (missing data).

We denote a genotype by a string over {0, 1, 2, ∗}k, where 0,1 correspond to homozy-
gous sites (i.e. the bases of the mother’s chromosome and the father’s chromosomes are
the same), the value ’2’ corresponds to a heterozygous position, that is, a position where

1For example in Drosophila, the phased haplotypes can be obtained by breeding
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the mother chromosome carries a different base than the father chromosome and ’*’ cor-
responds to unknown values for both haplotypes. For a given genotype g or haplotype h,
we denote by g(i) (h(i) respectively) its value in the i-th coordinate.

We say that a genotype g ∈ {0, 1, 2, ∗}k, and a pair of complete haplotypes h1, h2 ∈
{0, 1}k are compatible if for every position i, if g(i) ∈ {0, 1} then h1(i) = h2(i) = g(i)
and if g(i) = 2 then h1(i) 6= h2(i).

For a genotype g, we define C(g) to be the set of pairs of haplotypes that are compatible
with g. We assume that the genotypes admit a Hardy-Weinberg equilibrium, that is, that
the two haplotypes of each individual are independently picked from the distribution of
haplotypes in the population.

Let P be a distribution over the set of all possible complete haplotypes of length k.
We denote by p(h) the probability assigned to the haplotype h by P. We consider the
following likelihood function [ES95] of a set of partial genotypes G and a distribution P:

L(G,P) =
∏

g∈G

∑

(h1,h2)∈C(g)

p(h1)p(h2). (5.1)

The function L(G,P) is simply the probability of observing the genotypes G in a random
sample of the population under Hardy-Weinberg equilibrium, given that the distribution
of complete haplotypes in the population is P and that the distribution of missing data
in a genotype g does not depend on the contents of g.

When the sample size approaches infinity, the maximum likelihood is attained when
P is the actual distribution of haplotypes in the population2. Therefore, it is only natural
to aim in finding the distribution P which maximizes the likelihood and to estimate the
distribution of haplotypes in the population as P. Previous methods [ES95, FS00, SSD01]
use Expectation Maximization (EM) in order to find the maximum likelihood. When
using EM, both the running time and the convergence to a global maximum depend on
the starting point. In particular, these algorithms may be exponential, and they may
give a non-optimal solution, even when the number of samples is large. In Section 5.4 we
introduce an alternative approach which is guaranteed to converge to a global optimum
of another likelihood function L2(G,P). We further show in Section 5.4.1 that L and L2

have the same asymptotic behavior under Hardy-Weinberg.

5.2.2 Working with phased data

In some cases we are given the phased genotypes, possibly with missing data. For instance,
some sequencing techniques provide the haplotypes and not the genotypes. In haploid
organisms, or in diploid organisms with short life span such as drosophila3 we can get the
phased haplotypes. It is therefore interesting to estimate the haplotype frequencies given
a sample of haplotypes with missing data. This approach may also be useful to estimate
the genotype frequencies, given a sample of genotypes with missing data. The latter may
be particularly important when there are departures from Hardy-Weinberg equilibrium
in the underlying genotype distribution.

2This is true under some reasonable assumptions on the distribution of the missing data.
3In diploid organisms the haplotype data is found through breeding.
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In order to formalize the above scenario, we need to introduce a few more notations and
definitions. We say that a partial haplotype h1 ∈ {0, 1, ∗}k is consistent with a complete
haplotype h2 ∈ {0, 1}k if they share the same values whenever h1(i) 6= ∗. Given a partial
haplotype h, we define C(h) to be the set of complete haplotypes that are consistent with
h.

As before, let P be a distribution over the set of all possible complete haplotypes of
length k. Given the set of partial haplotypes H, the likelihood of P is given by

L(H,P) =
∏

h∈H

∑

h′∈C(h)

p(h′).

The function L(H,P) is simply the probability of observing the partial haplotypes H in
a random sample of the population, given that the distribution of complete haplotypes in
the population is P and that the distribution of missing data in a haplotype h does not
depend on the contents of h.

Again, in order to estimate the haplotype frequencies, we find the distribution P that
maximizes the likelihood L(H,P). In Section 5.3 we introduce an efficient polynomial time
algorithm that finds the global maximum of L(H,P). This may seem surprising given
that we essentially find a maximum point of a polynomial of potentially high degree. In
general, finding an extremum of a polynomial is an intractable problem.

5.3 Estimating Haplotype Frequencies from a Phased Sam-
ple

In this section we introduce an algorithm which estimates the haplotype frequencies in a
population given a sample of phased haplotypes with missing data.

Formally, given a set H of n partial haplotypes, we are interested in finding a distri-
bution P which maximizes the function L(H,P) which is given in the previous section.
Equivalently, are interested in maximizing the logarithm of the likelihood functionH (tak-
ing the logarithm is useful to avoid numerical instabilities). Thus, finding the distribution
of maximum likelihood can be done by solving the following mathematical programming
problem:

Maximize
∑

h∈H log(
∑

h′∈C(h) p(h′))
s.t.

∑
h∈{0,1}k p(h) = 1

p(h) ≥ 0 , h ∈ {0, 1}k

We will use the following definition in order to simplify the notations.

Definition 5.1. Given a partial haplotype h ∈ {0, 1, ∗}k and a set of haplotypes S =
{h1, ..., hn} ⊆ {0, 1}k, define the compatibility vector of h with respect to S as a vector
Ah ∈ {0, 1}n such that Ah(i) = 1 if hi ∈ C(h) and Ah(i) = 0 otherwise.

Note that in practice the values of k are relatively small, and the set of possible
haplotypes is limited to a reasonable size. A typical value for k is in the range of 10− 50,
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and there are typically at most a few hundreds of possible haplotypes, that is, haplotypes
that are compatible with one of the genotypes.

Using this definition, the maximum likelihood formulation above is equivalent to solv-
ing the following problem. Note that we took the logarithm of the objective functions and
scaled by the number of constraints. Maximizing the logarithm of the maximum likelihood
is standard, to avoid numerical instabilities. We scale by the number of summands so that
approximation of this mathematical program is independent of the problem dimension.

Definition 5.2 (Frequency Estimation of Phased Genotypes). .
Input: A matrix A ∈ {0, 1}m×n consisting of n row vectors {A1, ..., Am} ∈ {0, 1}n

Goal: Find a vector p ∈ Rn
+, such that:

1. p ∈ Sn = {p ∈ Rn|∑n
i=1 pi = 1 ; ∀i pi ≥ 0}

2. The following quantity is maximized: f(p) = 1
m

∑m
i=1 log(A>i · p)

The above mathematical program concerns the maximization of a concave function (a
sum of logarithms - which are concave functions - is also concave) over a convex set - the
n dimensional simplex. Thus, Frequency Estimation of Phased Genotypes with-
out assumption of Hardy-Weinberg equilibrium can be solved using the ellipsoid method
or more efficient interior point methods. Both approaches have large (although polyno-
mial) theoretical running time bounds suffers from poor performance in practice for our
application.

5.3.1 Efficient Approximation Scheme

We proceed to provide an efficient combinatorial algorithm that approximates the solution
to Frequency Estimation of Phased Genotypes to within any required (constant)
precision parameter. The algorithm and analysis are simpler, albeit less efficient, than the
ones presented in the original work [HH06], and are based on the machinery developed in
the previous chapters. We remark that Helmbold et al [HSSW95] describe a very similar
algorithm, that is less efficient in terms of the approximation guarantee.

In the next subsection we present the original HaploFreq algorithm and its analysis,
which are based on different techniques altogether.

As in previous chapters, we denote by p∗ the optimum solution to a given instance of
Frequency Estimation of Phased Genotypes. A solution p ∈ Sn is ε-approximate
if f(p) ≥ f(p∗)− ε.

As a first step, we describe a simple algorithm which follows from the most essential
application of the techniques of Chapter 4. Notice that the optimal solution of Fre-
quency Estimation of Phased Genotypes satisfies ∀i ∈ [m] . A>i p∗ ≥ τ > 0. Hence,
we can write the following mathematical program, where α is an estimate of the value of
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the optimal solution.

f0(p) =
1
m

m∑

i=1

log(A>i p)− α ≥ 0 (5.2)

fi(p) =
1
τ
· (A>i p− τ) ≥ 0 ∀i ∈ [m]

p ∈ Sn

As detailed in Chapter 4, we reduce this optimization problem into a zero sum game
with value

λ∗ = max
p∈Sn

min
i∈[0,m]

fi(p)

The MW HaploFreq algorithm to solve this mathematical program, depicted in figure
5.1, is derived from meta algorithm PrimalGameOpt, while using the Multiplicative
Weights algorithm as OnlineAlg. The theoretical guarantee we can prove for this algo-
rithm is given in the following theorem

MW Haplofreq.
Inputs: matrix A ∈ {0, 1}n×m, approximation parameter ε.
Guess α ∈ [− log n, 0] for program 5.2 by binary search.
while t < log n

τ2ε2 repeat

• Start with the uniform distribution p1 = 1
n
~1 ∈ Sn. Let ∀i ∈ [n] . w1

i = 1

• At iteration t, let it = arg minm
0=1 fi(pt−1) be the index of the most violated con-

straint.
if fit(pt−1) ≥ −ε, return pt−1.
else if j = arg minm

i=1 fi(pt−1) < −ε set it ← j.

• update
wt

i = wt−1
i · (1 +

τ

2
∇fit(pt−1)[i])

and let pt , wt

‖wt‖1

• t ← t + 1

return FAIL

Figure 5.1: The Multiplicative Weights algorithm applied to Frequency Estimation
of Phased Genotypes

Theorem 5.3. Algorithm MW HaploFreq returns a ε-approximate solution in time
Õ( mn

τ2ε2 ).

Proof. The MW HaploFreq algorithm is an instantiation of the PrimalGameOpt
meta algorithm, using the Multiplicative Weights online convex optimization algorithm
as OnlineAlg.
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Correctness (the fact that the algorithm returns a ε-approximate solution) follows
immediately from Theorem 4.8. The number of iteration required to produce an ε-
approximate solution, given the regret bounds for the Multiplicative Weights algorithm
(see Chapter 2) is O(G2∞ log n

ε2 ). Each iteration involves computing the gradient of the
objective function, which takes O(mn) time, and updating the current solution pt, which
takes another O(n) time.

The parameter α can be guessed by binary search over the solution range, which is
[log 1

n , 0]. Hence, binary search over this space up to precision ε requires O(log( log n
ε )) =

Õ(1) iterations.
G∞ can be bounded as follows: for all constraint functions {fi, i > 0}, the gradient is

simply 1
τ ·Ai, and hence its infinity norm is bounded by 1

τ . Observe that if mini∈[m] A
>
i p <

1
2τ , then the value of the i’th constraint is at most fi(p) ≤ −1

2 ≤ −ε, thus violated by
more than ε.

Hence, the objective function constraint is the only constraint violated by ε only if
mini∈[m] A

>
i p ≥ 1

2τ . In this case, the infinity norm of the gradient is at most

‖∇f0(p)|‖∞ =

∥∥∥∥∥
1
m

m∑

i=1

Ai

A>i p

∥∥∥∥∥
∞
≤ 1

mini A>i p
≤ 1

τ

Since every row of the matrix A contains at least one non-zero entry (otherwise we could
reduce the problem’s dimension to begin with). Overall G∞ ≤ O( 1

τ ), and the number of
iterations to achieve an ε-approximation is bounded by Õ( 1

τ2ε2 ).

The key to obtain a purely polynomial running time is the following lemma.

Lemma 5.4. For the optimum p∗ of an instance of Frequency Estimation of Phased
Genotypes, it holds that mini A

>
i p∗ = Ω( 1

mn).

Proof. By the biological assumptions, each compatibility vector has at least one non-zero
coordinate. Suppose that for p∗ there exists some Ai, w.l.o.g A1, for which A>1 p∗ < c

mn ,
for some small constant c to be determined later.

Let g(p) = emf(p) =
∏m

j=1 A>j p. Obviously g and f have the same optimum over the
simplex.

Consider p′ = p∗(1− c
m) + c

mn
~1. Naturally, p′ is also a distribution. We show that it

has higher objective value, contradicting the optimality of p∗. Notice that

A>1 p′ ≥ A>1 p∗(1− c

m
) +

c

mn
≥ A>1 p∗(2− c

m
)

In addition, for all other terms we have

A>i p′ ≥ A>i p∗(1− c

m
)
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Hence,

g(p′) =
∏m

i=1 A>i p′

≥ (2− c
m)(1− c

m)m−1
∏m

j=1 A>j p∗

≥ 3
2e−2cg(p∗) > g(p∗) for c ≤ 1

8

In contradiction to the optimality of p∗.

Lemma 5.4 and Theorem 5.3 imply that the running time of MW HaploFreq is
polynomial in the input size, as given in the following corollary.

Corollary 1. Setting τ = Ω( 1
mn) , algorithm MW HaploFreq returns a ε-approximate

solution in time Õ(m3n3

ε2 ).

5.3.2 The HaploFreq algorithm

In this section we present the HaploFreq algorithm, given in Figure 5.2. The algorithm
and analysis are not derived from the framework of chapter 4, although a very similar
algorithm could be derived using Online Gradient Descent as the online algorithm. The
running time bounds are better than those of the algorithm in the previous section, and
any straightforward application of the framework. Another advantage of HaploFreq is
its easy generalization to the semidefinite version of the problem we shall encounter in
the next chapter.

HaploFreq
Inputs: matrix A ∈ {0, 1}n×m, approximation parameter ε.
Set t ← 1 , p1 ← 1

n
~1.

Set δ1 ← FindDelta (p1, A).

while
∑m

i=1
A>i δt

A>i pt
> ε repeat

• t ← t + 1

• Update pt ← pt−1 + τ2ε
16mδt−1

• if mini∈[m] A
>
i pt ≤ τ then pt ← (1− 1

8m)pt + 1
8mn1

• Set δt ← FindDelta (pt, A)

return pt

Figure 5.2: Algorithm HaploFreq

Our algorithm is a hill climbing algorithm. We start from the uniform distribution,
and make a series of improvement steps until required performance guarantee is reached.
In contrast to the algorithms of the previous subsection, or any of the algorithms we
encountered so far, the solution is guarantied to improve in every iteration.
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In the rest of this section we prove the following performance guarantee (notice this
is a factor m

ε improvement over the algorithm of the previous section).

Theorem 5.5. For any constant ε > 0, the algorithm HaploFreq (ε) finds an ε-
approximate solution in time Õ(m2n3

ε ).

To prove this theorem, we show that HaploFreq makes a series of improvements and
quantify by how much the objective value changes. Key in this scheme is the following
definition.

Definition 5.6. Define a ε-good vector with respect to a current solution p as a vector
δ that satisfies:

n∑

i=1

δi = 0 ; 0 ≤ δi + p(i) ≤ 1 ; |Aiδ| ≤ 2 ;
m∑

i=1

A>i ~δ

A>i p
≥ ε

The procedure FindDelta returns an ε-good vector if one exists. Note that Find-
Delta is a linear optimization problem can be implemented using linear programming,
but this is not very efficient. The following combinatorial method runs in Õ(nm) time.

Procedure FindDelta (p,A)
Let ~α such that ∀i . αi =

∑m
j=1

Aji

A>i p

Suppose w.l.o.g that α1 ≤ α2 ≤ ... ≤ αm (o/w sort ~α)
Set δm = 1− pm

Set ∀i < m . δi = −pi

return ~δ

Lemma 5.7. The procedure FindDelta finds a ε-good vector for the largest possible ε,
and can be implemented in time Õ(nm).

Proof. The vector returned by FindDelta obviously satisfies the second and third of the
conditions of a ε-good vector.

As for the first condition, note that:

n∑

i=1

δi = −
∑

i<n

pi + (1− pn) = 1−
n∑

i=1

pi = 0

In addition, δ maximizes
∑m

i=1
Ai

~δ
A>i p

under the first two conditions. This follows from

the fact
∑m

i=1
Ai

~δ
A>i p

= ~αT · ~δ and the definition of ~δ.

To prove Theorem 5.5, we first prove that we can always find an (εm)-good vector if
our current solution is not a ε-approximate solution. Recall that our objective function
is f(p) = 1

m

∑m
i=1 A>i p.

Lemma 5.8. If f(p∗)− f(pt) ≥ ε, then there exists an (εm)-good vector δt.
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Proof. The optimal solution gives rise to a natural vector δ := p∗ − pt. It obviously
satisfies the first three conditions above, and as for the last:

m∑

i=1

A>i δ

A>i pt
=

m∑

i=1

A>i p∗ −A>i pt

A>i pt
=

m∑

i=1

A>i p∗

A>i pt
−m

≥ m · m

√√√√
m∏

i=1

A>i p∗

A>i pt
−m = m · m

√
em(f(p∗)−f(pt)) −m

≥ m · m
√

eεm −m = m · (eε − 1) ≥ εm

where the first inequality follows from the arithmetic and geometric mean inequality and
the last inequality is true since ex ≥ x + 1.

Lemma 5.8 shows that if we are still far from the optimal solution then there is at
least one (εm)-good vector. Since one such vector exists, FindDelta is guarantied to
provide such a vector. We now show that the resulting improvement step brings us closer
to the optimum.

Lemma 5.9. Let 0 < ε ≤
√

m
τ and let δt be a ε-good vector with respect to pt. As before,

let τ = mini∈[m] A
>
i pt. Let pt+1 := pt + σδt where σ = τ2ε

8m . Then f(pt+1)− f(pt) ≥ ε2τ2

16m
.

Proof. Denote ci := A>i δt

A>i pt
. By Lemma 5.7 we know that |A>i δt| ≤ 2, and therefore |ci| ≤ 2

τ .
Hence:

m(f(p′)− f(p)) =
m∑

i=1

log
(

A>i (p + σδ)
A>i p

)
=

m∑

i=1

log(1 + σci)

≥
m∑

i=1

[
(σci)− (σci)2

] ≥ σε− σ2
m∑

i=1

c2
i ≥ σε− 4mσ2

τ2
≥ ε2τ2

16m
,

where the approximation to the logarithm holds since |σci| ≤ 1
2 (as long as ε ≤

√
m
τ ).

Now we can prove Theorem 5.5:

Proof of Theorem 5.5. By Lemmas 5.8 and 5.7, at iteration t the procedure FindDelta
will return a (f(p∗)− f(pt))m-good vector. Thus by Lemma 5.9,

f(pt+1)− f(pt) ≥ τ2m2(f(p∗)− f(pt))2

16m

Therefore, as long as f(p∗)− f(pt) ≥ ε,

f(p∗)− f(pt+1) ≤ (1− τ2mε

16
)(f(p∗)− f(pt)).

73



Since we can start from a solution of value at least m · 1
m log 1

n = log 1
n and the optimal

solution is bounded by 1, we have that f(p∗) − f(p1) ≤ log n. Therefore, after Õ( 1
τ2mε

)
iterations we find a solution such that f(p∗)− f(pt) ≤ ε.

The HaploFreq algorithm updates pt ← pt(1− 1
8m)+ 1

8mn
~1 in case mini∈[m] A

>
i pt <

τ . By Lemma 5.4 this causes the objective value of pt only to increase, and maintains
the invariant that τ = Ω( 1

mn). Therefore the total number of iterations is Õ( 1
τ2mε

) =
Õ(mn2

ε ).

5.4 Estimating Haplotype Frequencies from Unphased Geno-
types

We now turn to the case where we have a set of genotypes and our goal is to find the
frequencies of the underlying haplotypes. Recall that under the Hardy-Weinberg equi-
librium, the likelihood function of a set of genotypes G and a distribution P is given by
equation (5.1). Thus, finding the haplotype distribution with the maximum likelihood
can be done by solving the following mathematical programming problem:

Maximize
∏

g∈G
∑

(h1,h2)∈C(g) p(h1)p(h2)
s.t.

∑
h∈{0,1}k p(h) = 1

p(h) ≥ 0 , h ∈ {0, 1}k

We follow the approach used for phased data, and try to solve this mathematical pro-
gram by first abstracting it out. We first need the following definition, which is analogous
to Definition 5.1.

Definition 5.10. Given a genotype g ∈ {0, 1, 2, ∗}k and a set of haplotypes S = {h1, ..., hn} ⊆
{0, 1}k, define the (symmetric) compatibility matrix of g with respect to S as a matrix
Ag ∈ {0, 1}n×n such that Ag

ij = 1 if (hi, hj) ∈ C(g) and Ag
ij = 0 otherwise.

It is easy to verify that the maximum likelihood formulation given above can be solved
if the following problem can be solved:

Definition 5.11 (Frequency Estimation of Unphased Genotypes). .
Input: A set of matrices {A1, ..., Am} ∈ {0, 1}n×n

Goal: Find a vector p ∈ Rn
+, such that:

1. p ∈ Sn = {p ∈ Rn|∑n
i=1 pi = 1 ; ∀i pi ≥ 0}

2. The following quantity is maximized: f(p) = 1
m

∑m
i=1 log(p>Aip)

Unfortunately, the above mathematical program is NP-hard (see Section 5.5). We
therefore suggest to use a different likelihood function L2 which can be thought of as a
relaxation of L. Instead of having a distribution P over the haplotypes, we assign to each
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haplotype hi an n-dimensional vector ~vi, such that
∑n

i=1 ~vi = v0 where ‖v0‖ = 1. The
likelihood L2 is now defined as a function of G and of V = {~v1, . . . , ~vm}:

L2(G,V) =
∏

g∈G

∑

(hi,hj)∈C(g)

~vi · ~vj .

We call V a vector distribution of the haplotypes. Note that if we restrict the vectors
of V to be in one dimensional space then V is a probability distribution and L2(G,V) =
L(G,V). The vectors V can be represented by a positive semidefinite (PSD) matrix P
such that Pij = ~vi · ~vj , i.e., Pij is the scalar product of ~vi and ~vj . Therefore, an analogous
problem to Frequency Estimation of Unphased Genotypes is the following:

Definition 5.12 (Maximum Relaxed Unphased Likelihood). .
Input: A set of matrices {A1, ..., Am} ∈ {0, 1}n×n

Goal: Find a PSD matrix P ∈ Rn×n such that:

1.
∑

i,j Pij = 1 , ∀i, j Pij ≥ 0

2. The following quantity is maximized: f(P ) = 1
m

∑m
i=1 log(Ai • P )

If we can solve Maximum Relaxed Unphased Likelihood we could find the vector
distribution ~V which maximizes L2(G,V ), by computing the Cholesky decomposition of
the matrix P . In section 5.4.2 we introduce an efficient algorithm which solves Maximum
Relaxed Unphased Likelihood in polynomial time.

5.4.1 Asymptotic Behavior of the Likelihood Function.

Finding the maximum likelihood of L2 does not ensure us that we will converge to the
correct haplotype distribution when the number of samples is sufficiently large. We now
turn to show that under Hardy-Weinberg equilibrium, and under the assumption that
there is no missing data, if the sample size is large enough, the maximum of L2(G,V) is
attained in a point which converges to the correct distribution.

Lemma 5.13. Under the Hardy-Weinberg, the solution to Maximum Relaxed Un-
phased Likelihood converges to the haplotype frequencies in the population.

Proof. Let the set of sampled genotypes be G. Denote by p(g) the frequency of genotype
g in the population. Therefore, p(g) is the probability to sample a genotype g ∈ G. When
the number of samples goes to infinity, the ratio of sampled genotypes g approaches p(g).
If the ratio is exactly p(g), then maximizing L2(G,V) is equivalent to maximizing the
function

∏

g∈G


 ∑

hi,hj∈C(g)

~vi · ~vj




pg

It is easy to see that this objective is maximized when:

∀g∈G
∑

hi,hj∈C(g)

~vi · ~vj = pg.
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As |G| 7→ ∞, we know that pg 7→
∑

i,j∈C(g) pipj . Therefore, one optimal solution to this
equation system is the solution ~vi = pi. Observe that equations above imply that the
homozygous genotype gii with haplotype hi satisfies that p2

i = ‖~vi‖2. These restrictions,
together with the rest of the constraints, determine V uniquely. We can now use the
fact that the function maxV L2(G,V) is a continuous function in order to complete the
proof.

Now that we know that the solution of Maximum Relaxed Unphased Likelihood
converges to the correct solution, in particular we know that for large enough sample the
vectors ~vi should be closed to one dimensional. We therefore define pi = ~vi · ~1 as the
suggested probability distribution. By Lemma 5.13, as the number of samples grow, the
probabilities pi get closer to the true frequencies in the population.

5.4.2 The HaploFreq2 algorithm

In this section we describe the SDP analogue of HaploFreq for the SDP version of
the problem, which is given in Figure 5.4.2. Although algorithms with better theoretical
running time bounds can be derived from the framework of Chapter 4, HaploFreq2 is the
only algorithm which requires only eigenvalue computations and elementary operations.
All other methods require Cholesky decomposition or matrix inversions, which are of the
most time consuming operations to implement in practice.

The general framework for our algorithm is identical to the algorithm for the linear
case. Starting from the uniform solution (the all-ones matrix J), the algorithm makes a
series of local improvements up to the required performance guarantee is reached. How-
ever, for each ”improvement step” we amend the current PSD matrix into another PSD
matrix such that to improve the overall value of the solution. The improvement matrix,
computed by the procedure FindPsdDelta, can be computed by a semidefinite program
with linear constraints. A much more efficient way to implement FindPsdDelta is given
in Chapter 6. We choose to describe the efficient implementation of FindPsdDelta in
Chapter 6 as we feel the exposition of this procedure in the context of the entire chapter
should be clearer.

In the rest of this section we prove the following performance guarantee.

Theorem 5.14. For any constant ε > 0, the algorithm HaploFreq2 finds a ε-approximate
solution in Õ(mn4

ε ) iterations.

The proof is similar in nature to the linear variant proof, with several technical points
that need attention. The improvement matrix ∆ which is iteratively added to the current
solution is defined as follows.

Definition 5.15. Define a (ε, σ)-good matrix with respect to a current solution P as a
matrix ∆ that satisfies:

1. W , P + ∆ º 0

2.
∑

i,j Wij = 1 ; Wij ≥ 0
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HaploFreq2
Inputs: set of m matrices {Ai ∈ {0, 1}n×n, i ∈ [m]}, approximation parameter ε.
Set t ← 1 , P1 ← 1

n2 J.
Set ∆1 ← FindPsdDelta (P1, {Ai}).
while

∑m
i=1

Ai•∆t
Ai•Pt

> ε repeat

• t ← t + 1

• Update Pt ← Pt−1 + τ2ε
16m∆t−1

• if mini∈[m] Ai •Pt ≤ τ then Pt ← (1− 1
20m)Pt + 1

20mn2 J

• Set ∆t ← FindPsdDelta (Pt, {Ai})
return Pt

Figure 5.3: Algorithm HaploFreq2

3.
∑m

i=1
Ai•∆
Ai•P ≥ ε or equivalently (

∑m
i=1

Ai
Ai•P) •W ≥ ε−m

The procedure FindPsdDelta is similar to the procedure FindDelta used in the
linear variant. For its implementation, one can apply any solver to solve the corresponding
SDP. A much more efficient implementation is given in the following lemma, which is
proved in Chapter 6.

Lemma 5.16. For any δ > 0, the (ε−δ)-good for the maximal ε > 0 can be found in time
Õ(n2.5

δ2 ). Further, the computation can be carried out using only approximate eigenvalue
computations and elementary operation.

We proceed to show that in case we’re far from the optimum, there exists an improve-
ment matrix.

Lemma 5.17. If f(P ∗)− f(P ) ≥ ε, then there exists a (εm)-good matrix with respect to
P .

Proof. We assume that the current solution P is a PSD matrix, and satisfies
∑

ij Pij = 1.
The optimal PSD matrix, denoted P∗, gives rise to a natural improvement matrix ∆ :=
P∗−P. Note that ∆ satisfies the first two conditions of being (εm)-good, since P∗ is the
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optimal solution. In addition:
m∑

i=1

Ai •∆
Ai •P

=
m∑

i=1

Ai •P∗ −Ai •P
Ai •P

=
m∑

i=1

Ai •P∗

Ai •P
−m

≥ m · ( m

√√√√
m∏

i=1

Ai •P∗

Ai •P
− 1) by the AMGM inequality

= m · ( m
√

em(f(P∗)−f(P)) − 1) ≥ m( m
√

emε − 1)
≥ mε by Taylor series of ex

Lemma 5.18. Let ∆ be a (εm)-good PSD matrix with respect to Pt. Define Pt+1 :=
Pt + δ · ∆ for δ = τ2ε

2 . Then Pt+1 is a feasible solution with value larger then the one
obtained by Pt by at least:

f(Pt+1)− f(Pt) ≥ 1
2
mτ2ε2

Proof. First we prove that Pt+1 is a feasible solution. Since ∆ is a (εm)-good matrix,
Wt , Pt + ∆ º 0. Since the PSD cone is convex we have Pt+1 = δWt + (1 − δ)Pt º 0.
Similarly, by definition of ∆ we have J •Wt = 1 and Wt(i, j) ≥ 0, thus

J •Pt+1 = J • (δWt + (1− δ)Pt) = δJ •Wt + (1− δ)J •Pt = 1

and
Pt+1(i, j) = δWt(i, j) + (1− δ)Pt(i, j) ≥ 0

We proceed to show that the objective value increases. Denote

ci := δ · Ai •∆
Ai •Pt

Since the matrices Pt and Wt are PSD with trace at most one, ∀i|Ai • (Wt−Pt)| ≤ 1,
and therefore |ci| = δ|Ai•(Wt−Pt)

Ai•Pt
| ≤ δ

τ = 1
2τε ≤ 1

2 . Hence,

f(Pt+1)− f(Pt) =
m∑

i=1

log
(

Ai • (Pt + δ∆)
Ai •Pt

)

=
m∑

i=1

log(1 + ci)

≥
m∑

i=1

[
ci − (ci)2

]
holds when |ci| < 1

2

≥ δmε−m
δ2

τ2
≥ 1

2
mτ2ε2 for δ = τ2ε

2
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Proof of Theorem 5.14. By Lemmas 5.17,5.16, at iteration t the procedure FindPsd-
Delta will return a (m(f(P∗)− f(Pt)))-good matrix. Thus by Lemma 5.18,

f(Pt+1)− f(Pt) ≥ τ2m(f(P∗)− f(Pt))2

2

Therefore, as long as f(P∗)− f(Pt) ≥ ε,

f(P∗)− f(Pt+1) ≤ (1− τ2mε

2
)(f(P∗)− f(Pt)).

Since we can start from a solution of value at least m · 1
m log 1

n2 = log 1
n2 and the

optimal solution is bounded by 1, we have that f(P∗)− f(P1) ≤ 2 log n. Therefore, after
Õ( 1

τ2mε
) iterations we find a solution such that f(P∗)− f(Pt) ≤ ε.

The HaploFreq2 algorithm updates Pt ← (1− 1
20m)Pt+ 1

20mn2 J in case mini∈[m] A
>
i Pt <

τ . By Lemma 5.19 below this causes the objective value of Pt only to increase, and main-
tains the invariant that τ = Ω( 1

mn2 ). Therefore the total number of iterations is bounded
by Õ( 1

τ2mε
) = Õ(mn4

ε ).

Lemma 5.19. For the optimum P∗ of an instance of Maximum Relaxed Unphased
Likelihood, it holds that mini Ai •P∗ = Ω( 1

mn2 ).

Proof. Follows directly from Lemma 5.4 and the fact that if P∗ is PSD then the matrix
P′ = (1− c

m)P∗ + c
mn2 J is also PSD.

5.5 Lower Bounds

In this section we show the following hardness result for the specific case of Frequency
Estimation of Unphased Genotypes. In general, strong hardness results for optimiz-
ing over polynomials are known (see [BR92]). In some cases, as presented in this paper,
the specific structure of a specific polynomial may be used to get a polynomial time al-
gorithm. We show that for the special case of the polynomial introduced in Frequency
Estimation of Unphased Genotypes, there is no such polynomial time algorithm if
P 6= NP .

We denote the size of a certain an instance for the problem by N (that is, N = m ∗n2

where m is the number of matrices and n their dimension). We now prove the following.

Theorem 5.20. The Frequency Estimation of Unphased Genotypes Problem is
NP-hard to approximate to within 2N1−ε

for every constant ε > 0.

To prove the theorem, we first show that Frequency Estimation of Unphased
Genotypes is NP-hard, via a reduction from the Maximum Clique problem. The re-
duction is done using the following simple rule. An instance for the Maximum Clique
problem is a graph G = (V, E). We use the adjacency matrix AG as an instance for Fre-
quency Estimation of Unphased Genotypes. In particular, in this new instance,
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the set of matrices {A1, ..., Am} consists of a single matrix, which is the adjacency ma-
trix of G. We denote this new instance as IG. Rewriting the objective function, we get
that a probability pi is assigned to every vertex in the graph, and we seek to maximize∑

(i,j)∈E pipj where
∑

i∈V pi = 1, and pi ≥ 0.

Claim 5.21. For a given graph G, the objective of the Frequency Estimation of
Unphased Genotypes instance IG has value 1

2(1− 1
r ) if and only if the maximal clique

size of G is r.

Proof. If the graph G contains a clique of size r, then by assigning pi = 1
r for all vertices

of this clique and 0 for all other vertices, we obtain an objective value of 1
2(1− 1

r ) for IG.
The other direction is a generalization of Turán’s theorem (see [AS92]). Turán’s

theorem states that for a graph with n vertices, that does not contain a clique of size
r+1, the maximum number of edges is n2

2 (1− 1
r ). Furthermore, the maximum is attained

for the complement of the graph composed of r disjoint cliques of size n
r each (these graphs

are called Turán’s graphs). When every vertex has a weight pi, and the weight of an edge
is pipj , then Turán’s theorem can be viewed as a special case of our claim, in which all
pi must be set to 1

n , and thus all edges have the same weight. We now show that even
when the vertices may have different weights, as long as the weights are non-negative,
the objective function value for a graph without Kr+1 is maximized for the Turán graph
T r(n), in which it is precisely 1

2(1− 1
r ).

We first consider the properties of an optimal solution to the instance IG. Consider an
optimal solution p1, . . . , pn, and consider any two vertices vi, vj , such that 1 > pi, pj > 0.
One can verify, that by setting pi 7→ pi + ε and pj 7→ pj − ε, the objective function will be
changed in the following way:

∆(i, j, ε) = ±Θ(ε2) + ε
∑

t∈Γi4Γj

xt,

where Γi denotes set of neighbors of vi, and Γi 4 Γj is the symmetric difference between
the two sets. We thus get that for all pi, pj that are non-zero, the optimal solution satisfies
Pi = Pj , where Pi ,

∑
j∈Γ(i) pj is the sum of all variables corresponding to the vertices

in Γ(i). We denote ∀i . P = Pi.
Assume that for the optimal solution,

∑
(i,j)∈E pipj > 1

2(1 − 1
r ). It suffices to show

that the maximal clique size in G is ω(G) > r. By the definition of P , we get

P =
∑

i∈V

piP =
∑

i∈V

pi

∑

j∈Γi

pj = 2
∑

(i,j)∈E

pipj > 1− 1
r
.

Consider the subgraph of all vertices with pi > 0, and consider the largest clique of
this subgraph, say of size k. For simplicity of notations, assume that the variables of such
a clique are p1, ..., pk. The set of neighbors of these vertices satisfy:

k∑

i=1

Pi =
k∑

i=1

∑

j∈Γ(i)

pj ≤ (k − 1)
∑

j∈V

pj ≤ k − 1,
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where the first inequality holds since each vertex in the graph can be a neighbor of at most
k− 1 vertices of the clique. On the other hand, we have that

∑k
i=1 Pi = k ·P > k(1− 1

r ).
Using both inequalities, we get that k(1− 1

r ) < k − 1 and thus k > r

In order to prove Theorem 5.20, we use the following theorem by Hastad (see [Has96]),

Theorem 5.22 (Hastad). It is NP-hard to decide whether a given graph on n vertices
contains a clique of size n99/100 or whether the maximal clique in the graph is of size at
most n1/100.

Using this theorem we can now prove:

Theorem 5.20. According to Claim 5.21 and Hastad’s theorem, Frequency Estimation
of Unphased Genotypes is NP-hard to approximate to within:

(1−N−99/100)
(1−N−1/100)

= 1 +
N−1/100 −N−99/100

1−N−1/100
≥ 1 +

1√
N

Now amplify this construction as follows: Given a graph G, create an instance of Fre-
quency Estimation of Unphased Genotypes as follows. In this instance, the set of
matrices {A1, ..., An} consists of a M copies of the adjacency matrix of G. We denote this
new instance as I ′G.

The size of the instance built is MN , where N is the size of the instance IG described
in Claim 5.21 (with a single copy of the adjacency matrix of G). Since IG is hard to
approximate within 1 + 1√

N
, it follows that I ′G is hard to approximate within

(
1 +

1√
N

)M

≥ e−M/
√

N

Taking M to be a large polynomial in N , say M = Nk, we get an instance of size

T , Nk+1 that is hard to approximate within e−Nk−1/2 ≤ e−T 1− 2
k . Taking k = 1

2ε
completes the proof.
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Chapter 6

Fast Approximation Algorithms
for Semidefinite Programming

This chapter describes a Lagrangian relaxation technique for approximately solving sev-
eral families of semidefinite programs. The improvements in running time compared to
previous approaches stem from a new method for reducing the width as well as improve-
ments in approximate eigenvalue computations by using random sampling.

The results of this chapter are taken from a joint paper with Sanjeev Arora and Satyen
Kale [AHK05b].

6.1 Introduction

Semidefinite programming (SDP) solves the following general problem:

min c •X

Ai •X ≥ bi j = 1, 2, . . . , m

X º 0 (6.1)

Here X ∈ Rn×n is a matrix of variables and A1, A2, . . . , Am ∈ Rn×n. As appeared
elsewhere in this thesis, for n×n matrices A and B, A •B is their inner product treating
them as vectors in Rn2

, and A º 0 is notation for “A is positive semidefinite”.
The first polynomial-time algorithm (strictly speaking, an approximation algorithm

that computes the solution upto any desired accuracy ε) used the Ellipsoid method [GLS94]
but faster interior-point methods were later given by Alizadeh [Ali95], and Nesterov and
Nemirovskii [NN94]. The running time of Alizadeh’s algorithm is Õ(

√
m(m + n3)L)

where L is an input size parameter. In this section, the Õ notation is used to suppress
polylog(mn

ε ) factors.
Much attention was focused on SDP as a result of the work of Goemans and Williamson

[GW95], who used SDP to design new approximation algorithms for several NP-hard prob-
lems such as MaxCut, Max 2-Sat, and Max 3-Sat. In subsequent years, SDP-based
approximation algorithms were designed for coloring k-colorable graphs, Max Dicut, etc.
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Then progress halted for a few years, until recent work of Arora, Rao, Vazirani [ARV04]
that gave a new O(

√
log n)-approximation for Sparsest Cut. The ideas of this paper

have been quickly extended to derive similar approximation algorithms for Min 2CNF
Deletion, Min Uncut, Directed Sparsest Cut, Directed Balanced Separator
in [ACMM05] and Non-Uniform Sparsest Cut in [CGR05, ALN05]. These new results
rely on the so-called triangle inequality constraints, which impose a constraint for every
triple of points. Thus the number of constraints m = O(n3), and the time to solve such
SDPs is Õ(n4.5).

In addition to these well-known approximation algorithms, SDP has also proved useful
in a host of other settings. For instance, Linial, London, and Rabinovich [LLR95] observe
that given an n-point metric space, finding its minimum-distortion embedding into `2 is
a SDP with m = n2 constraints, which takes n4 time to solve. Recent approximation
algorithms for cut norm of the matrix [AN04] and for certain subcases of correlation
clustering [CW04] use a type of SDPs with m = O(n), and hence require time Õ(n3.5).
(An intriguing aspect of this work is that the proof that the integrality gap of the SDP used
in [AN04] is O(1) uses the famous Grothendieck inequality from analysis.) Halperin and
Hazan [HH06] showed that a biological probability estimation problem, which estimates the
frequencies of haplotypes from a noisy sample, can be solved using SDP with m = n2 (see
chapter 5). Chazelle, Kingsford, and Singh [CKS04] use an SDP for side chain positioning,
a problem in genomics.

Given the growing popularity of SDP, it would be extremely useful to develop alter-
native approaches that avoid the use of general-purpose interior point methods. Even
problem-specific approaches would be very useful and seem hard to come by.

A similar situation developed in the past decade in case of linear programming, after
LPs were used to design many approximation algorithms. Subsequent improvements to
running times for these algorithms fall into two broad camps: (A) Eliminating use of LP
in favor of a direct, combinatorial algorithm that uses the same intuition (in many cases,
the same proof of the approximation ratio); (B) Solving the LP approximately instead
of exactly. Typically this uses some version of the classical Lagrangian relaxation idea.
Shahrokhi and Matula [SM90] gave the first approximation algorithm for flow problems.
Plotkin, Shmoys, and Tardos [PST91] generalized the method to the family of pack-
ing/covering LPs. Later, Garg and Konemann [GK98] and Fleischer [Fle00] improved the
running times further for flow LPs. A recent survey [AHK05a] by Arora, Hazan and Kale
points out that all such algorithms are a subcase of a more general, widely useful, and
older framework they called multiplicative update rule algorithms. From now on we refer
to this as the MW framework. In chapter 4 we described an even more general framework
for deriving approximation algorithms from online convex optimization algorithms. In
this framework most previous lagrangian relaxation algorithms are special cases in which
the online convex optimization algorithm used is the Multiplicative Weights algorithm (as
given in section 2.3.3). However, for this chapter we concern only with the MW algorithm,
and the additional generality is not required.

Speedups of type (A) and (B) for SDP-based algorithms are not easy. Speedups of
type (A) have proved difficult because unlike LP-based approximation algorithms, the
approximation ratio of SDP-based algorithms is proved by analysing a rounding algo-
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rithm rather than by comparing to the dual. The lone exception we are aware of is
the notion of expander flows studied by Arora, Rao, and Vazirani (this was presented
as an alternative to their more well-known rounding approach that was useful in most
later papers). This duality-based framework allowed Arora,Hazan and Kale to design a
O(
√

log n)-approximation algorithm for (uniform) Sparsest Cut that was combinatorial
and ran in Õ(n2) time [AHK04], a significant improvement over the previously known run-
ning time of Õ(n4.5). Interestingly, this algorithm was also derived in the MW framework.
However, the duality-based framework from [ARV04] has it to be extended to problems
other than uniform Sparsest Cut, though this may yet happen. Thus improvements of
type (A) have not been forthcoming for the other problems.

Klein and Lu [KL96] initiated study of algorithms of type (B) for SDPs. They adapted
the MW framework to approximately solve SDPs that arose in the algorithms of Goemans-
Williamson and Karger, Motwani, and Sudan. The Klein-Lu approach reduces SDP
solving to a sequence of approximate eigenvalue/eigenvector computations, which can be
done efficiently using the well-known power method.

Our work. While the Klein-Lu work seemed promising, further progress then stalled.
As we discuss in some detail later on, the main reason has to do with the width parameter,
which is ρ such that the linear functions appearing in the constraints take values in the
range [−ρ, +ρ]. Then the number of iterations in the MW framework is proportional to ρ2.
(Aside: In the PST packing-covering framework, the range of values was [0, ρ], in which
case the number of iterations is O(ρ). This issue is discussed in [AHK05a].) Unfortunately,
the width is large in most of the SDP relaxations mentioned above —the SDPs considered
by Klein-Lu happened to be among the few where this problem is manageable.

Our first contribution is to modify the MW technique to handle some of these high-
width SDPs. Our technique is a hybrid of the MW technique and an “exterior point”
(i.e., Ellipsoid-like method) of Vaidya; this lowers the dependence on the width and is
very efficient so long as the number of constraints with high width is “not too high.”
(Actually the Vaidya algorithm is overkill in most instances, where the number of high-
width constraints is a small constant, and one can use simpler ideas, based on binary
search, that are reminiscent of fixed-dimension LP algorithms.) Formally one needs a
two-level implementation of the multiplicative update idea, that combines old constraints
into new, smaller number of constraints. While this makes intuitive sense —MW methods
excel at handling many low-width constraints and exterior point methods excel at handling
a few, high-width constraints—this hybrid technique appears to be new. (It is related
though to the observation in [PST91] that their packing-covering problems are solvable
in polynomial time using the dual ellipsoid method.)

Our second contribution is to use a better technique for eigenvalue/eigenvector com-
putations than the power method, namely, the Lanczos algorithm. This is the method
of choice among numerical analysts, but has not been used in theory papers thus far
because worst-case analysis for it is hard to find in the literature. We adapt an analysis
for semidefinite matrices [KW92] to our needs (see Lemma 6.5). Then we suggest further
speeding up the Lanczos algorithm for general matrices by first sparsifying the matrix
with random sampling.
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6.1.1 Overview of our results

Our algorithms assume a feasibility version of the SDP (6.1). Here, we implicitly perform
a binary search on the optimum and the objective is converted to a constraint in the
standard way. We also assume an additional constraint, a bound on the trace of the
solution:

Aj •X ≥ bj j = 1, 2, . . . , m∑

i

Xii ≤ R

X º 0 (6.2)

The upper bound on the trace, Tr(X) =
∑

i Xii, is usually absent in the textbooks, but is
natural for relaxation SDPs. For instance, in combinatorial optimization, usually we have
some unit vectors v1, v2, . . . , vn associated with, say, the nodes in a graph, and Xij = vi ·vj .
Then Tr(X) = n. In any case, Tr(X) for the optimum X can usually be “guessed” by
binary search.

We wish to solve the SDP approximately up to a given tolerance ε, by which we mean
that either we find a solution X which satisfies all the constraints up to an additive error
of ε, i.e. Aj • X − bj ≥ −ε for j = 1, 2, . . . ,m, or conclude correctly that the SDP is
infeasible.

As in the case of LP solving (PST, etc.), the Multiplicative Weights Update idea for
solving SDPs is to associate at time t a non-negative weight w

(t)
j with constraint j, where

∑
j w

(t)
j = 1. A high current weight for a constraint indicates that it was not “satisfied”

too well in the past, and is therefore should receive higher priority in the next step. The
optimization problem for the next step is to

max
∑

j

w
(t)
j (Aj •X − bj)

X º 0∑

i

Xii ≤ R

This is actually an eigenvalue problem in disguise, since the optimum is attained (wlog)
at an X that has rank 1. Thus the Lagrangian relaxation idea would be to solve this
eigenvalue problem, and update the weights wi according to the usual multiplicative
update rule

w
(t+1)
i ← w

(t)
i (1− α(AjXt − bj))

where Xt was the solution to the eigenvalue problem (expressed as a rank 1 psd matrix) at
time t. Then if α is small enough, this

∑
t Xt is guaranteed to converge to a near-feasible

solution to the original SDP (assuming a feasible solution exists). 1

1In the terminology of chapter 4, this approach is the DualGameOpt meta-algorithm, where On-
lineAlg is implemented using the Multiplicative Weights algorithm of section 2.3.3. The Optimization
Oracle reduces to an eigenvalue computation.
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Problem Previous best This paper Improvement

MaxQP Õ(n3.5) Õ
(

n1.5

ε2.5 ·min
{

N, n1.5

εα∗

})
For N = o(n2)

α∗ ∈ [ 1
n , 1] or α∗ = ω( 1√

n
)

HaploFreq Õ(n4) Õ
(

n2.5

ε2.5

)
Ω(n1.5)

SCP Õ(n4) Õ
(

n1.5N
ε4.5

)
Ω(n3.5

N )

Embedding Õ(n4) Õ
(

n3

d2.5
minε3.5

)
For dmin = ω(n−2/5)

Sparsest Cut Õ(n4.5) Õ(n3

ε2 ) For ε = ω(n−0.75)

Min Uncut Õ(n4.5) Õ
(

n3.5

ε2

)
For ε = ω( 1√

n
)

Balanced Separator ε = O(OPT
|E| )

Min 2CNF deletion

Figure 6.1: Running time obtained for several applications.

Our new contributions to this approach, including the issue of managing the high-
width constraints, and of fast eigenvalue computations, were already discussed earlier.
Now we describe our main new results. The main point to stress is that in practice our
algorithm may run even faster than the worst-case estimates summarized in table 6.1.
Throughout the paper we carefully list times in terms of number of eigenvalue/eigevector
computations required, and these tend run much faster than our worst-case estimate
(which are formally given in Lemma 6.5 below). By contrast, each iteration of Alizadeh’s
SDP solver requires Cholesky decomposition, which is inherently a Θ̃(n3) operation.

The worst-case running time is a function of the approximation guarantee ε. In some
cases, there are also dependencies upon other problem parameters. For instance, in em-
bedding, where one is seeking the minimum distortion embedding into `2, the ε is benign,
say 0.1. However, there is a dependence on the aspect ratio; in other words, minimum
squared internode distance dmin, where sum of squares of all

(
n
2

)
internode distances is

normalized to n2. Our algorithm provides a speeedup when dmin is at least n−2/5. (This is
still an interesting set of metrics.) Likewise, our algorithm for MaxQP provides speedups
when either of the following two conditions are true (a) the number of nonzero entries in
the matrix A is N = o(n2) or (b) the optimum α is at least 1√

n

∑
i,j |Aij | . Again, this is

an interesting class of matrices.
For problems such as (uniform) SPARSEST CUT, BALANCED SEPARATOR, and

MIN-2-CNF-DELETION, the current approximation algorithms require a very small ε,
namely, OPT/ |E|. We improve upon existing SDP solvers when this is at least 1/

√
n.

6.2 An illustration of the method

In this section, we give more details of the method by illustrating its application to the
SDP (MaxQP) given below. This SDP arises in many algorithms such as approximating
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MaxCut, maximizing the correlation in correlation clustering, approximating the Cut-
Norm of a matrix, approximating the Grothendieck constant of a graph, etc. See [CW04]
for a discussion.

max A •X

Xii ≤ 1 i = 1, 2, . . . , n

X º 0 (MaxQP)

We assume here that diag(A) ≥ 0, i.e. all diagonal entries of A are nonnegative. Let
N ≥ n be the number of non-zero entries of A. We wish to get a multiplicative 1−O(ε)
approximation to the optimum value of the SDP. Note that Alizadeh’s interior point
method solves the SDP in Õ(n3.5) time.

Step I: Bounding the optimum and trace. We compute bounds on the opti-
mum of the SDP, denoted by α∗. For simplicity, assume

∑
ij |Aij | = 1, this amounts

to scaling the optimum by a fixed quantity. Let X∗ be the optimum solution. Since
X∗ is positive semidefinite, for any i, j, (X∗

ij)
2 ≤ X∗

iiX
∗
jj ≤ 1, so |X∗

ij | ≤ 1. Thus,
α∗ = A • X∗ =

∑
ij AijX

∗
ij ≤

∑
ij |Aij | = 1. Conversely, the solution X specified by

Xij = sgn(Aij)
n and Xii = 1 is positive semidefinite, and achieves an objective value of 1

n .
This gives a lower bound on α. We also compute a bound on Tr(X). In this case, this is
simply

∑
i Xii ≤ n.

Step II: Reduction to feasibility problem. We “guess” the value of α using binary
search in the range computed in Step I. Let α be our current guess. Define a convex set
P = {X º 0,

∑
i Xii ≤ n}. We rewrite the SDP as a feasibility problem for the binary

search as follows:

1
α

A •X − 1 ≥ 0

1−Xii ≥ 0 i = 1, 2, . . . , n

X ∈ P (6.3)

We now need to estimate the width of each constraint. This is defined as the maximum
absolute value it can take for X ∈ P. More specifically, for a constraint of the kind
A •X − b ≥ 0 where X ∈ P, assume that the range of values that A •X − b can take is
[−`, ρ] or [−ρ, `] where 1 ≤ ` ≤ ρ. Then ρ is called the width of the constraint. In (6.3),
the range of the constraint 1

αA •X − 1 ≥ 0 for X ∈ P is [−n
α , n

α ], so the width is n
α . The

range of the constraint 1−Xii ≥ 0 for X ∈ P is [−n, 1], so the width is n.
Note that an additive error of ε translates to a multiplicative error of 1−O(ε) to the

objective, assuming the binary search guessed the value of the optimum to within a factor
of 1 + ε.

Step III: The Multiplicative Weights Update algorithm. Lagrangian relaxation
algorithms assume that there is an algorithm, Oracle, to solve the following relaxed
feasibility problem: given non-negative weights w0, w1, w2, . . . , wn on the constraints such
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that
∑n

i=0 wi = 1, consider the weighted combination of constraints w0( 1
αA • X − 1) +∑n

i=1 wi(1 − Xii). Then Oracle either finds an X ∈ P which makes this combination
≥ − ε

2 or declares correctly that no X ∈ P makes the combination non-negative.
In the latter case, we declare infeasibility of (6.3) since otherwise any feasible solution

would make the weighted combination of constraints non-negative, a contradiction. If the
former case holds whenever the Oracle is presented a set of weights, then we can get an
ε approximate solution to (6.3), as given in the following theorem:

Theorem 6.1. Consider the general SDP (6.2). Let P = {X º 0,
∑

i Xii ≤ R}. Assume
that for any j, Aj •X−bj lies in one of the ranges [−`, ρ], [−ρ, `]. Also, assume that there
is an algorithm, Oracle, which runs in time Toracle, and given any set of non-negative
weights w1, w2, . . . , wm on the constraints summing to 1, either finds an X ∈ P which
makes the weighted combination

∑m
j=1 wj(Aj •X − bj) ≥ − ε

2 or declares correctly that no
X ∈ P makes this combination non-negative. Then there is an algorithm which runs in
O( `ρ

ε2 (Toracle + m)) time and either gets an ε approximate solution to (6.2) or concludes
that it is infeasible.

Step IV: Oracle from eigenvector computations. Note that the Oracle of Theo-
rem 6.1 needs to maximize the weighted combination of constraints

∑m
j=1 wj(Aj •X− bj)

over the set P of all positive semidefinite matrices X whose trace is bounded by R. We
show in section 6.4 that this amounts to approximately computing the largest eigenvector
of the matrix C =

∑m
j=1 wj(Aj − bj

R I) up to tolerance δ = ε
2R . Define Tev(C, δ) to be the

time needed for this. In Lemma 6.4, we show that Toracle = Õ(Tev(C, δ)).
Getting back to our example, SDP (MaxQP), we have the following parameters:

` = ρ = n
α , m = n+1, R = n. The running time from Theorem 6.1 is Õ( n2

ε2α2 (Toracle +n))
which is worse than Alizadeh’s algorithm for α = o(n−0.25) even without factoring in
Toracle. We show how to improve the running time in the next step.

Step V: Inner and Outer SDPs. Now we indicate our width reduction technique.
Observe that there is a single constraint, 1

αA • X − 1 ≥ 0, which has high width (n
α).

The other constraints have width bounded by n. This happens in all our applications:
we will find a constant sized set of constraints of high width and the rest will have low
width. We devise a hybrid algorithm, using the multiplicative update method to handle
the low width constraints and an exterior point algorithm to handle the (few) high width
constraints.

The idea is to push the high width constraint, 1
αA •X − 1 ≥ 0, into the convex set,

to create a new convex set Q = {X ∈ P, 1
αA • X − 1 ≥ 0}, and run the Multiplicative

Weights Update algorithm of Theorem 6.1 on the other constraints over Q. We call this
the outer SDP.

The Oracle now gets a weighted combination of the constraints,
∑n

i=1 wi(1 −Xii),
and needs to find an X ∈ Q which makes this ≥ − ε

2 or declare that no such X makes the
combination non-negative. This can be achieved by approximately solving the 2 constraint
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SDP of the form
n∑

i=1

wi(1−Xii) ≥ 0

1
α

A •X − 1 ≥ 0

X ∈ P

We call this the inner SDP. The Oracle for this SDP needs to optimize a weighted
combination of all constraints over P, this is identical to the one we had in Step IV.

We solve the inner SDP using an exterior point algorithm. The observation is that
the Oracle yields a separation hyperplane for the dual problem, and so we can apply
Vaidya’s algorithm. Recall that m is the number of constraints. Let M(m) = O(m2.36)
be the time needed to multiply two m×m matrices.

Theorem 6.2. With the setup as in Theorem 6.1, there is an algorithm which produces
an ε approximate solution to the general SDP (6.2) or declares correctly its infeasibility
in time

Õ(m log(ρ) · Toracle + m log(ρ)M(m log(ρ)))

Note that this algorithm has poor dependence on the number of constraints but handles
high width very well. In our example, the number of constraints in the inner SDP is just
2, and the width is poly(mn) from the trace bound. Thus, the algorithm of Theorem 6.2
solves it in Õ(Toracle) = Õ(Tev(C, ε

2n)) time.
In all our applications, we have a constant sized set of constraints with much higher

(yet, polynomial) width than the rest. Let the other, low width, constraints take values
in the range [−`L, ρL] or [−ρL, `L].

Corollary 2. With the given setup, the hybrid algorithm which composes an outer and
inner SDP runs in time

Õ

(
`LρL

ε2

[
Tev

(
C,

ε

2R

)
+ m

])

For SDP (MaxQP), this yields the following theorem, which will be proved in section
6.5.1:

Theorem 6.3. A multiplicative 1−O(ε) approximation to SDP (MaxQP) can be obtained
in time

Õ

(
n1.5

ε2.5
·min

{
N,

n1.5

εα∗

})

This running time is always better than the Õ(n3.5) running time of Alizadeh’s interior
point algorithm. It is asymptotically faster if the matrix A is not dense, i.e. N = o(n2),
or if α∗ = ω( 1√

n
).
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We note here the special case of the MaxCut SDP. For this problem, the matrix
A is the combinatorial Laplacian of the input graph, divided by 4m. We note that
α∗ ≥ 1

8 is easily obtained from the greedy algorithm. Thus, our algorithm runs in time
Õ(n1.5 ·min{N, n1.5}).

The best algorithm for solving the MaxCut SDP is due to Klein and Lu [KL96], with
running time Õ(nN). Our algorithm is a

√
n factor worse when N = o(n2). However, our

algorithm solves the much more general problem (MaxQP) and the approach of [KL96]
does not extend to this general problem.

6.3 Proofs of the Main Theorems

In this section we prove Theorem 6.2 and describe the proof of Theorem 6.1. For conve-
nience of notation, we define the linear functions fj(X) = Aj •X− bj for 1 ≤ j ≤ m. The
problem is to check the feasibility of the system of inequalities fj(X) ≥ 0, for 1 ≤ j ≤ m,
with X ∈ P. We assume that there is an Oracle which does the following task: given
non-negative weights p1, p2, . . . , pm summing to 1, it either finds an X ∈ P which makes
the weighted combination

∑
j pjfj(X) ≥ − ε

2 or declares correctly that no X ∈ P makes
the combination non-negative.

Theorem 4.1 in chapter 4 applies to the setting of Theorem 6.1, and gives somewhat
worse running time: O( (`+ρ)2

ε2 (Toracle + m)) instead of O( `ρ
ε2 (Toracle + m)).

The improvement in running time is obtained by a more careful analysis of the regret
if the MW algorithm for linear payoff functions. This analysis is given in the survey
[AHK05a], and not detailed hereby due to its similarity to the analysis of section 2.3.3.

Proof of Theorem 6.2. To devise the algorithm, we will need the following version of
Farkas’ lemma:

Lemma 6.1 (Farkas). Given an n×m matrix A and a 1×m row vector c, both with real
coefficients, one and only one of the following systems has a solution:

1. Ap ≤ 0, p ≥ 0 and cp > 0 for some m-column vector p;

2. qA ≥ c and q ≥ 0 for some n-row vector q.

Lemma 6.2. Consider X1, ..., Xn ∈ P. Then exactly one of the following holds:

1. There exists a distribution p1, p2, . . . , pm ≥ 0,
∑

j pj = 1 such that such that: ∀i ∈
[n], we have

∑
j pjfj(Xi) ≤ −ε.

2. There exist a distribution q1, q2, ..., qn ≥ 0,
∑

i qi = 1, such that for y =
∑

i qiXi we
have that ∀j ∈ [m], y satisfies fj(y) ≥ −ε.

Proof. In Farkas’ Lemma, choose the matrix A to be Aij = fj(Xi) + ε, and the vector
c as cj = 1 for all j, 1 ≤ j ≤ m. Since c > 0, we conclude that the vectors p and q
in Farkas’ Lemma are non-zero and non-negative. By scaling we may assume that p is a
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distributions as required in this lemma. Then the first case exactly corresponds to the first
case of Farkas’ Lemma. The second case of Farkas’ Lemma translates to: there is a vector
q̃1, q̃2, . . . , q̃n ≥ 0 such that ∀j ∈ [m], we have

∑
i q̃i(fj(Xi)+ ε) ≥ 1. Set qi = q̃i/

∑
k q̃k so

that q1, q2, . . . , qn is a distribution. Then ∀j ∈ [m], we have
∑

i qifj(Xi) ≥ 1P
i q̃i
− ε ≥ −ε

which implies that fj(
∑

i qiXi) ≥ −ε, since fj is a linear function. Setting y =
∑

i qiXi

concludes the proof.

Lemma 6.3. Consider X1, ..., Xn ∈ P. Suppose the first case of Lemma 6.2 holds, i.e.
there is a distribution p∗1, p

∗
2, . . . , p

∗
m such that ∀i ∈ [n], we have

∑
j p∗jfj(Xi) ≤ −ε. Then

the polytope Q of vectors 〈p1, p2, . . . , pm〉 ∈ Rm defined by the linear inequalities

∀i ∈ [n] :
∑

j

fj(Xi)pj ≤ −ε

2
∑

j

pj ≤ 1 +
ε

2ρ

∀j ∈ [m] : pj ≥ − ε

2mρ
(6.4)

has volume at least ( ε
mρ)m. Further, it is contained in an `∞ box of volume 2m.

Proof. We show that the `∞ box around p∗ = 〈p∗1, p∗2, . . . , p∗m〉 defined by B = {p ∈
Rm| ||p − p∗||∞ ≤ ε

2mρ} is contained in Q. This box has volume ( ε
mρ)m. This is true

because for any p ∈ B, we have (considering the constraints in reverse order) ∀j ∈ [m],
pj ≥ p∗j − ε

2mρ ≥ − ε
2mρ ,

∑
j pj ≤

∑
j p∗j + m · ε

2mρ = 1 + ε
2ρ , and finally, for any i ∈ [n], we

have

∑

j

fj(Xi)pj ≤
∑

j

[
fj(Xi)p∗j + |fj(Xi)| · ε

2mρ

]
≤ −ε + mρ · ε

2mρ
= −ε

2

using the fact that |fj(Xi)| ≤ ρ.
Next, note that all pj satisfy − ε

2mρ ≤ pj ≤ (1 + ε
ρ). So Q is contained in the box

{p ∈ Rm| ∀j ∈ [m] : − ε
2mρ ≤ pj ≤ (1+ ε

2ρ)}, which has volume ((1+ ε
ρ)+ ε

2mρ)m ≤ 2m.

At this point, we are ready to present the algorithm. We run Vaidya’s algorithm
[Vai96] for deciding emptiness of a convex polytope equipped with a separation oracle.
The algorithm is analogous to the Ellipsoid Algorithm but is more efficient in terms of
iterations needed.

The polytope in question is defined adaptively as follows: in each iteration, a point
X ∈ P may be generated by the separation oracle. Let X1, X2, . . . , Xn be all the points
generated by the separation oracle over all iterations. Then the polytope is Q, defined
by the linear inequalities (6.4) in Lemma 6.3. The separation oracle works as follows:
first it checks the last 2 constraints trivially, and returns one of them if it is violated.
Otherwise, it calls Oracle on the test point p. If Oracle declares that there for all
X ∈ P,

∑
j pjfj(X) < 0, then the algorithm immediately aborts and declares infeasibility

of the system. Otherwise, Oracle returns a point X ∈ P such that
∑

j pjfj(X) ≥ − ε
2 .
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Then the constraint
∑

j pjfj(X) ≤ − ε
2 serves as a separating hyperplane for Vaidya’s

algorithm and X becomes one of the Xi’s mentioned above.

Vaidya’s algorithm needs n = O

(
log

(
2m

( ε
mρ

)m

))
= Õ(m log(ρ)) iterations to decide

emptiness of the polytope Q. In this case, the first case of Lemma 6.2 doesn’t hold, so the
second must. Since the existence of the distribution q1, q2, . . . , qn has been established, it
can be found by solving the linear program:

∀j ∈ [m] :
∑

i

fj(Xi)qi ≥ −ε

∑

i

qi = 1

∀i ∈ [n] : qi ≥ 0 (6.5)

Note that n = Õ(m log(ρ)) so the linear program has Õ(m log(ρ)) variables and Õ(m log(ρ))
equations, and can be solved in Õ((m log(ρ))3) time using Ye’s algorithm [Ye91]. The time
needed for Vaidya’s algorithm is Õ(m log(ρ) · Toracle + m log(ρ)M(m log(ρ)))), so overall
the time complexity is also Õ(m log(ρ) · Toracle + m log(ρ)M(m log(ρ)))).

6.4 Implementing Oracle using the approximate eigenvec-
tor computations

In this section, we present lemmas which describe how to efficiently implement the Ora-
cle of Theorem 6.1 using approximate eigenvector computations.

Lemma 6.4. Suppose we have a procedure, that given a matrix C ∈ Rn×n and a tol-
erance δ > 0, computes a unit vector x which satisfies xT Cx ≥ −δ, in time Tev(C, δ),
or declares correctly that C is negative definite. Then using this procedure once with
C =

∑m
j=1 wi(Aj − bj

R I) and δ = ε
2R we can implement Oracle.

Proof. Recall that the Oracle from Theorem 6.1 is given non-negative weights w1, w2, . . . , wm

summing to 1 and needs to find an X ∈ P which makes the weighted combination∑m
j=1 wj(Aj •X−bj) ≥ − ε

2 or prove that no X ∈ P makes this combination non-negative.
Suppose

∑m
j=1−wj · bj ≥ 0. In this case, the Oracle can simply return X = 0. So

assume that
∑m

j=1−wj · bj < 0, or equivalently,
∑m

j=1 wj · bj > 0.

Then the Oracle constructs the matrix C =
∑m

j=1 wj(Aj − bj

R I) and applies the
eigenvector procedure on C with δ = ε

2R . Suppose the procedure yields a unit vector
x such that xT Cx ≥ −δ, then the Oracle returns the matrix X̃ = RxxT . Note that
Tr(X̃) = R. For this matrix, we have

m∑

j=1

wj(Aj • X̃ − bj) =
m∑

j=1

wj(Aj • X̃ − bj

R
I • X̃)

= C • X̃ = C •RxxT = RxT Cx ≥ R · − ε

2R
= −ε

2
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as required.
Otherwise, the procedure declares correctly that the largest eigenvalue of C is negative,

i.e. C is negative definite. In this case, the Oracle declares no X ∈ P makes the
combination non-negative. We show now that this is correct. Suppose that in fact there
were an X ∈ P which satisfies

∑m
j=1 wj(Aj •X − bj) ≥ 0. Because X ∈ P, Tr(X) ≤ R

and X º 0. Since C ≺ 0, we have C •X < 0 (note that X 6= 0: we checked this solution).
Then we have

0 > C •X =
m∑

j=1

wj

(
Aj •X − bj

R
I •X

)
=

m∑

j=1

wj

(
Aj •X − bj

R
Tr(X)

)

=
m∑

j=1

wj(Aj •X − bj) +
m∑

j=1

wjbj

(
1− Tr(X)

R

)
≥ 0

by the conditions on X given above. Thus, we have a contradiction.

By Lemma 6.4, the Oracle needed for our algorithms can be implemented by comput-
ing the eigenvector of the largest eigenvalue of the matrix which represents the weighted
combination of the constraints. The Lanczos algorithm with a random starting vector is
the most efficient algorithm for finding extreme eigenvectors. The running time for the
Lanczos algorithm used in our context is the following:

Lemma 6.5. Let C ∈ Rn×n be a matrix with N ≥ n non-zero entries and eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn. Let δ > 0 be a given error parameter. Let γ = max{ |λ1|

|λ1|+|λn| ,
δ
|λn|}.

Then the Lanczos algorithm with a random start applied to the matrix C + ΛI yields with
high probability a unit vector x which satisfies xT Cx ≥ −δ or declares correctly that C is
negative definite in time Tev(C, δ) = Õ( N√

γ ).

The parameter γ in Lemma 6.5 is not known a priori, but in applications we will derive
lower bounds for it.

Proof. We need Theorem 3.2(a) of Kuczyński and Wozńiakowski [KW92]:

Theorem 6.4 (KW). Let M ∈ Rn×n be a positive semidefinite matrix with N non-zero
entries. Then with high probability, the Lanczos algorithm produces in O( log(n)√

γ ) iterations

a unit vector x such that xT Mx
λ(M) ≥ 1− γ.

Note that each iteration of the Lanczos algorithm takes Õ(N) time. Now let M =
C + |λn|I. Notice that M is positive semidefinite, and λ(M) = λ1 + |λn|. We apply
Theorem 6.4 with γ = max{ |λ1|

|λ1|+|λn| ,
δ
|λn|} to obtain in time Õ( N√

γ ) a unit vector x such
that:

xT Mx

λ(M)
=

xT (C + |λn|I)x
λ1 + |λn| =

xT Cx + |λn|
λ1 + |λn| ≥ 1− γ

Simplifying, we get xT Cx ≥ (1 − γ)λ1 − γ|λn|. If λ1 ≥ 0, then for either choice of γ we
get xT Cx ≥ −δ, so we return x. Otherwise, if xT Cx < −δ, we conclude that λ1 < 0, so
we declare C to be negative definite.
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The previous lemma shows that the running time of the Oracle depends on the
sparsity of C, i.e. the number on non-zero entries in it. In section 6.6 we provide a
randomized sparsification procedure with the following guarantee:

Lemma 6.6. Let C ∈ Rn×n be a symmetric matrix with N non-zero entries and let
S =

∑
ij |Cij |. Let δ > 0 be a given error parameter. Then there is a randomized procedure

which runs in Õ(N) time and with high probability produces a symmetric matrix C ′ such
that C ′ has O(

√
nS
δ ) non-zero entries and ||C − C ′||2 = O(δ).

Thus, C ′ can be used in place of C in the Lanczos algorithm, if it turns out to be
sparser: the decision for specific applications depends on the smaller of the quantities N

and
√

nS
δ .

6.5 Applications

In this section, we describe several applications of the method outlined above. It should
be noted that the method does not automatically yield faster algorithms; additional fine-
tuning (mostly in terms of bounding large negative eigenvalues) is necessary for specific
applications.

6.5.1 SDP relaxations of Quadratic Programs

Our first application is the SDP (MaxQP) that we used to illustrate the method, and we
complete the proof of Theorem 6.3.

Proof. [Theorem 6.3]
We apply Corollary 2. The range of the constraints of the outer SDP, viz. 1−Xii ≥ 0

for 1 ≤ i ≤ n, is [1,−n] for X ∈ Q. Thus `L = 1, ρL = n. Now we bound the running
time of the eigenvector computation procedure for the Oracle.

Given non-negative weights w0, w1, . . . , wn which sum to 1, the matrix C from Lemma
6.4 in this case is w0( 1

αA− 1
nI) +

∑n
i=1 wi( 1

nI − eie
T
i ), where ei is the ith standard basis

vector, and δ = ε
2n .

To apply Lemma 6.5, we need to bound the most negative eigenvalue, λn, of C.
Observe that Tr(C) = w0( 1

αTr(A) − 1) ≥ −1. Since the trace equals the sum of the
eigenvalues, we conclude that (n − 1)λ1 + λn ≥ −1. If λ1 ≥ 0. This implies that
|λ1|

|λ1|+|λn| ≥
|λn|−1

(n−1)(|λ1|+|λn|) . If |λn| ≥ 2, then |λ1|
|λ1|+|λn| ≥ 1

n . Otherwise, δ
|λn| ≥ ε

4n . Thus, γ =

max{ |λ1|
|λ1|+|λn| ,

δ
|λn|} ≥ ε

4n , and by Lemma 6.5, the eigenvector procedure takes Õ(N
√

n√
ε
)

time.
If we apply the sparsification procedure of Lemma 6.6, then the relevant parameters

are S =
∑

ij |Cij | = O( 1
α

∑
ij |Aij |) = O( 1

α) (recall
∑

ij |Aij | = 1). Thus the sparsification

procedure yields a matrix C ′ with O(n1.5

εα ) non-zero entries. Overall, the running time of
the Lanczos algorithm becomes Õ(min{N, n1.5

εα } ·
√

n
ε ) as stated.
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Putting everything together, the final running time of the algorithm becomes

Õ

(
n1.5

ε2.5
·min

{
N,

n1.5

εα∗

})

6.5.2 SDP relaxations of biological probability estimation problems

The following SDP arises in the context of the biologically-motivated problem of estimat-
ing haplotype frequencies. See chapter 5 for a more detailed description of the problem.

max A •X∑

ij

Xij = 1

Xij ≥ 0 1 ≤ i, j ≤ n

X º 0 (HaploFreq)

where A is a non-negative matrix, i.e. all its entries are non-negative. This SDP is
a natural relaxation in certain problems where a probability distribution is required.
Intuitively, we want to find a probability distribution {p1, p2, . . . , pn} which maximizes
the objective

∑
ij Aijpipj . In the SDP relaxation, the Xij variables represent pipj .

We apply our method to this problem. Step I requires that we bound the optimum and
the trace. Let the optimum to this SDP be denoted α∗. We claim that α∗ is in the range
maxij{Aij} · [14 , 1]. The upper bound is trivial since the objective is a linear combination
of the Aij values. Let Akl be the maximal Aij . Then the lower bound is obtained by
taking the unit vector u = 1

2(el +ek), where ei is the ith standard basis vector, and letting
X be the positive semidefinite matrix uuT . Since all Aij are non-negative, this solution
has value at least 1

4Akl.
The trace of X is trivially bounded by 1 from the first constraint. Note also that

w.l.o.g. we can relax the first constraint to be
∑

ij Xij ≤ 1, in the optimum the sum
obviously equals 1 since all the quantities are non-negative.

Theorem 6.5. SDP (HaploFreq) can be approximated up to a multiplicative error of
1−O(ε) in Õ(n2.5

ε2.5 ) time.

Proof. According to step II, we “guess” α using binary search and write the following
feasibility SDP. Here, P is the convex set {X º 0 ,

∑
i Xii ≤ 1}.

1
α

A •X − 1 ≥ 0

1−
∑

ij

Xij ≥ 0

Xij ≥ 0 1 ≤ i, j ≤ n

X ∈ P
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The width of the first constraint is ( 1
α

∑
ij |Aij |)2 = O(n4). This is the high width con-

straint which we will put into the inner SDP. The width for the rest of the constraints is
O(1), these constitute the outer SDP. Thus, `L = ρL = 1, and δ = ε

2 . Let C represent the
weighted combination of the constraints for the Oracle. According to Corollary 2, the
SDP can be ε approximately in Õ( 1

ε2 · [Tev(C, ε
2) + n2]) time.

It remains to estimate Tev(C, ε
2). The matrix C is of the form w0( 1

αA− 1
nI)+w1( 1

nI−
J) +

∑
ij wijEij , where J is the all 1’s matrix, and w0, w1, wij for 1 ≤ i, j ≤ n are non-

negative weights summing to 1.
To bound the most negative eigenvalue, λn, of C, we use the Gershgorin circle theorem.

This implies that |λn| ≤ maxi{
∑

j |Cij |}. For the matrix C, the dominant contributors
to this maximum are the matrices 1

αA and J . For any i, we have
∑

j
1
α |Aij | ≤ 4n since

α ≥ 1
4 maxij Aij . Also, for any i,

∑
j |Jij | = n. Thus, the bound on |λn| is O(n).

Thus, the γ of Lemma 6.5 is ≥ Ω( ε
n), and hence Tev(C, ε

2) = Õ(n2.5√
ε
) because C is a

dense matrix. Since
∑

ij |Cij | can be as large as Ω(n2), sparsification does not help here.

Finally, the total running time comes to Õ(n2.5

ε2.5 ).

For comparison, the best known interior point algorithm solves this SDP in Õ(n4)
time. As a corollary to this theorem we can prove Lemma 5.16 from section 5.4.2:

Proof of Lemma 5.16. By definition 5.15, an ε-good matrix X with respect to a PSD
matrix P º 0 satisfies:

∑

ij

Xij = 1

Xij ≥ 0 1 ≤ i, j ≤ n

X º 0

(
m∑

i=1

Ai

Ai • P
) •X ≥ ε−m

where the matrices Ai are non-negative. Hence, the ε-good matrix for the largest pos-
sible ε can be found by solving SDP (HaploFreq) where the matrix A is replaced by
(
∑m

i=1
Ai

Ai•P ).

6.5.3 SDP relaxations in Side Chain Positioning Problems

Consider the following SDP arising from computational problems having to do with side
chain positioning problems in analyzing protein structure [CKS04]:

min E •X∑

i,j∈Vk

Xij =
∑

j∈Vk

Xjj = 1 1 ≤ k ≤ p

Xij ≥ 0 1 ≤ i, j ≤ n

X º 0 (SCP)
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Here, the Vk for 1 ≤ k ≤ p are disjoint sets of indices which together cover all the indices
in [n]. In the protein folding problem, the sets Vk are bounded in size by a constant. This
implies that the the ratio n

p is also bounded by a constant.
Physically, the matrix E represents the energy matrix of the protein, and the entry

Eij specifies the energy between the positions i, j. Typically, for any position i, only a
constant number (as n and p grow) of positions j have a significant value of Eij . Thus, it
may be assumed that for any i, the sum

∑
j |Eij | is bounded by a constant. This enables

us to bound the eigenvalues of E by a constant, via the Gershgorin Circle Theorem.
Depending on the specific instance, the objective value of the SDP, denoted by α∗,

above can be either negative or positive. Thus an additive ε approximation to α∗ is
appropriate here. An obvious bound on |α∗| is

∑
ij |Eij | = O(n). So the binary search

needs only Õ(1) steps. Finally, a bound on the trace of X is p, which follows from the
second constraints. Let N denote the number of non-zero entries of the matrix E.

Theorem 6.6. SDP (SCP) can be approximated up to an additive error ε in Õ
(

n1.5N
ε4.5

)

time.

Proof. As usual, guess the objective value α using binary search and write the following
SDP. This time we choose the convex set to be P = {X º 0 ,

∑
i∈Vk

Xii = 1, E•X ≤ α }.
For convenience of notation, the equality constraints below really stand for two inequalities
in the standard manner.

1−
∑

i,j∈Vk

Xij = 0 1 ≤ k ≤ p

Xij ≥ 0 1 ≤ i, j ≤ k

X ∈ P

Since X º 0, we have |Xij | ≤
√

XiiXjj ≤ Xii+Xjj

2 = O(1) for X ∈ P. Thus, the
range of the constraints Xij ≥ 0 is [−O(1), O(1)]. Since the sets Vk are of constant size,
the constraints 1 − ∑

i,j∈Vk
Xij = 0 contain O(1) terms, each bounded by O(1), so the

range for these constraints is also [−O(1), O(1)]. Thus, by Theorem 6.1, this SDP can be
approximated up to ε in time Õ( 1

ε2 (n2 + Toracle)).
Here, Toracle is the time required to approximate the following SDP. Let C1 be the

matrix obtained by the weighted combination of the constrains of the previous SDP as
specified by Lemma 6.4. Let Q = {X º 0 ,

∑
i Xii = p}.

C1 •X ≥ 0
α−E •X ≥ 0∑

i∈Vk

1−Xii = 0

X ∈ Q

The range of the constraints of the type 1−∑
i∈Vk

Xii = 0 is [−1, p] or [−p, 1] (for the
two inequalities) by the trace bound. The two other constraints have width bounded by
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O(n2). We use the SDP composition of Corollary 2, and put the two high width constraints
into the inner SDP and the rest into the outer SDP. Here, `L = 1, ρL = p, m = p + 2,
and δ = ε

2p . Let C2 be the matrix representing the weighted combination of all the
constraints.Thus, an ε approximate solution to the SDP can be found in time

Toracle = Õ

(
p

ε2
·
[
p + Tev

(
C2,

ε

2p

)])

The most negative eigenvalue of C2, λn, can be bounded in absolute value by O(1).
This is because the eigenvalues of E are bounded by a constant as discussed earlier. All
the other constraints have only O(1) terms so the same is true for the them. Thus, by
Lemma 6.5, Tev(C2,

ε
2p) can be bounded by O(N

√
p√

ε
). Sparsification does not help here

(and it is expected that the matrix E is sparse to begin with). Since p = O(n), the total
running time comes to Õ(n1.5N

ε4.5 ).

For comparison, the best known interior point algorithm solves this SDP in Õ(n4)
time.

6.5.4 Embedding of finite metric spaces into `2

Given a finite metric space on n points specified by the pairwise distances {Dij}, em-
bedding into `2 with minimum distortion amounts to solving the following mathematical
program. For convenience of notation, let dij = D2

ij .

min α

dij ≤ ||vi − vj ||2 ≤ α · dij 1 ≤ i < j ≤ n

vi ∈ Rn 1 ≤ i ≤ n (Embedding)

By Bourgain’s theorem [cite...] the minimum distortion is O(log n). Thus, the optimum
value α∗ of SDP Embedding is O(log2 n). We assume that the distances are scaled so that∑

ij dij = n2. We claim that this implies that there is an optimal solution v1, v2, . . . , vn

which satisfies
∑

i ||vi||2 ≤ α∗n: we may assume that the optimal solution satisfies
∑

i vi =
0, otherwise we can shift the origin to the sum of the vectors; this does not change the
pairwise distances ||vi − vj ||2. Thus we have α∗

∑
ij dij ≥

∑
ij ||vi − vj ||2 = n

∑
i ||vi||2.

Since α∗ = O(log n), the claim follows.

Theorem 6.7. SDP (Embedding) can be approximated up to a 1 + O(ε) multiplicative
factor in Õ( n3

d2.5
minε3.5 ) time.

Proof. Guess α using binary search, and formulate the following SDP. Define the convex
set P = {X º 0 | ∑

i Xii ≤ αn}.
α

dij
(Xii − 2Xij + Xjj)− 1 ≥ 0 1 ≤ i < j ≤ n

1− 1
dij

(Xii − 2Xij + Xjj) ≥ 0 1 ≤ i < j ≤ n

X ∈ P (6.6)
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Since X º 0, the expression (Xii − 2Xij + Xjj) is always positive. The bound on the
trace implies that these terms are bounded by n. Hence the width of the constraints of
SDP (6.6) is bounded by ρL ≤ nα

dij
= Õ( n

dmin
), where dmin = minij{dij}. Also, `L = 1,

m = 2n2, and δ = ε
2αn . Let C be the matrix representing the weighted combination of

all the constraints. Thus, an ε approximate solution to the SDP can be found in time
Õ( n

dminε2 ·
[
n2 + Tev

(
C, ε

2αn

)]
).

The most negative eigenvalue of C, λn, can be bounded in absolute value by O( 1
dmin

).
This is because all constraints have only O(1) terms, each bounded in absolute value by
O( α

dmin
) = Õ( 1

dmin
). Since C is a convex combination of the constraints, we conclude

that
∑

ij |Cij | = Õ( 1
dmin

), and this bounds |λn|. Thus, by Lemma 6.5, Tev(C, ε
n) can be

bounded by Õ( N
√

n√
εdmin

), where N is the number of non-zero entries in C.
Sparsification could potentially reduce the number of matrix entries. Since S =∑

ij |Cij | = Õ( 1
dmin

), so by Lemma 6.6 the number of entries could be reduced to Õ( n1.5

εdmin
).

Thus the total running time comes to

Õ

(
min

{
n3

d2.5
minε

3.5
,

n3.5

d1.5
minε

2.5

})

For comparison, interior point methods can solve this SDP in time Õ(n4). Note that
in order to beat the running time of interior point methods, the first expression is always
better.

6.5.5 SDP relaxation of Sparsest Cut

For a graph G = (V, E) with V = {1, 2, . . . , n}, the following SDP arises as a relaxation
for the Sparsest Cut problem in [ARV04]:

min
∑

{i,j}∈E

||vi − vj ||2

||vi − vj ||2 + ||vi − vk||2 − ||vj − vk||2 ≥ 0 1 ≤ i < j < k ≤ n∑

i<j

||vi − vj ||2 = n (Sparsest Cut)

The range of the optimum, α∗, is clearly [0, n]. We desire an additive ε approximate
solution.

Theorem 6.8. SDP (Sparsest Cut) can be approximated up to an additive error ε in
Õ(n3

ε2 ) time.

Proof. As usual, we guess α using binary search, and write the following SDP, with the
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convex set P = {X º 0,
∑

i Xii = 1}:
α−

∑

ij∈E

(Xii − 2Xij + Xjj) ≥ 0

(Xii − 2Xij + Xjj) + (Xii − 2Xik + Xkk)− (Xjj − 2Xjk + Xkk) ≥ 0 1 ≤ i < j < k ≤ n

X ∈ P
Here, just as in the embeddings problem from the previous section, we make the

assumption that
∑

i vi = 0 w.l.o.g. Then the constraint
∑

ij ||vi − vj ||2 ≤ n is equivalent
to

∑
i ||vi||2 ≤ 1.

Since
∑

i Xii = 1, for any i, j, |Xij | ≤
√

XiiXjj ≤ 1. Thus, the width of the first
constraint is O(n2). The width for the rest of the constraints is O(1). Since there are
n3 constraints anyway, for the Oracle we solve the eigenvector problem up to arbitrary
precision using a standard algorithm such as QR, which runs in n3 time as well. Finally,
using the inner and outer SDPs of Corollary 2,the SDP can be approximated up to ε in
time:

Õ(
1
ε2
· [Toracle + n3

]
) = Õ

(
n3

ε2

)

6.5.6 SDP relaxations for Min Uncut and related problems

The approximation algorithm of Charikar et al [ACMM05] for the Min Uncut prob-
lem for a graph G = (V, E) requires solving the following SDP formulation, for vectors
v1, v2, . . . , vn, v−1, v−2, . . . , v−n ∈ Rn×n:

min
1
4

∑

{i,j}∈E

‖vi − vj‖2

||vi − vj ||2 + ||vi − vk||2 − ||vj − vk||2 ≥ 0 1 ≤ i < j < k ≤ n

||vi||2 = 1 1 ≤ i ≤ n

vi · v−i = −1 1 ≤ i ≤ n (Min Uncut)

The range of the optimum is clearly bounded by [0, |E|]. We desire an additive ε
approximate solution.

Theorem 6.9. SDP (Min Uncut) can be approximated up to an additive error of ε in
Õ(n3.5

ε2 ) time.

Proof. Guess α by binary search. Note that the positive semidefinite matrix X has rows
and columns indexed by 1, 2, . . . , n,−1,−2, . . . ,−n, unlike the other examples. We use a
inner and outer SDP formulation as usual, except that this time we solve the inner SDP
using Alizadeh’s algorithm.

Thus, define the convex set

P = {X º 0; 1 ≤ i ≤ n : Xii = 1, Xi,−i = −1;
∑

{i,j}∈E

(Xii − 2Xij + Xjj) ≤ α }
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We consider the following SDP:

(Xii − 2Xij + Xjj) + (Xii − 2Xik + Xkk)− (Xjj − 2Xjk + Xkk) ≥ 0 1 ≤ i < j < k ≤ n

X ∈ P (6.7)

Since all solutions we consider are in the polytope P, the width is O(1). According to
Theorem 6.1, the SDP can be approximated up to ε in time Õ( 1

ε2 ·
[
n3 + Toracle

]
), where

Toracle is the time required to approximately solve the following SDP:

C •X ≥ 0
Xii = 1 1 ≤ i ≤ n

Xi,−i = −1 1 ≤ i ≤ n∑

{i,j}∈E

(Xii − 2Xij + Xjj) ≤ α

X º 0

where C is the matrix obtained from a weighted combination of the constraints of SDP
(6.7). This SDP can be solved using Alizadeh’s algorithm in time O(n3.5). The total
running time comes to: O(n3.5

ε2 ).

We note here that similar SDPs arise in relaxations of the other problems like Bal-
anced Separator, Min 2CNF Deletion, etc. See [ACMM05] for a discussion. All of
these can be solved in exactly the same manner.

The usefulness of this method for these problems is limited by the fact that the additive
error needed for the approximation algorithms to work as desired is quite small, like
Õ(OPT

|E| ), where OPT is the particular value we are trying to approximate; such as the
minimum number of edges not cut in the Min Uncut problem, the minimum number of
edges cut in the Balanced Separator problem, and the minimum number of unsatisfied
clauses in Min 2CNF Deletion. Provided these numbers are large enough in comparison
to |E|, we get performance gains over Alizadeh’s interior point algorithm, which takes
Õ(n4.5) time for all these problems.

6.6 Matrix sparsification

In this section, we prove the sparsification lemma (Lemma 6.6):

Proof. [Lemma 6.6]
The required procedure, Sparsify, is given in Figure 6.2. We now prove that it produces
the desired result with high probability.

First, we prove that the number of non-zero entries in Ã is with high probability
O(

√
nS
ε ).

Lemma 6.7. With probability at least 1− exp(−Ω(
√

nS
ε )), the matrix Ã contains at most

O(
√

nS
ε ) non-zero entries.

101



Procedure Sparsify(A, ε)
for each i ≤ j ∈ [n] do
if |Aij | > ε√

n
then

Ãji = Ãij = Aij

else

Ãji = Ãij =





sgn(Aij) · ε√
n

with probability pij =
√

n|Aij |
ε

0 with probability 1− pij

return Ã

Figure 6.2: Procedure Sparsify

Proof. Since
∑

ij |Aij | = S, the number of entries with magnitude larger than ε√
n

is

at most
√

nS
ε . So without loss of generality, we may assume that all the entries have

magnitude smaller than ε√
n
.

The Chernoff bound [MR95] asserts that if X1, X2, . . . , Xn are indicator random vari-
ables and X =

∑
i Xi with E[X] = µ, then

Pr[X > (1 + δ)µ] <

[
eδ

(1 + δ)1+δ

]µ

In our case, we set up indicator random variables Xij for i ≤ j which are 0 or 1 depending
on whether Ãij = 0 or not. Let X =

∑
i≤j Xij . Then 2X is an upper bound on the

number of non-zero entries of Ã. We have

E[X] =
∑

i≤j

pij =
∑

i≤j

√
n|Aij |
ε

≤
√

nS

ε
.

The claim follows by using the Chernoff bound with δ = e− 1.

Next, define M = A− Ã. We will show that with high probability, for all unit vectors
x, we have |x>Mx| ≤ O(ε), which implies ‖A− Ã‖2 ≤ O(ε).

Notice that for all coordinates i, j such that |Aij | ≥ ε√
n
, we have Mij = 0 . For the

rest of the coordinates, since E[Ãij ] = sgn(Aij) · ε√
n
×

√
n|Aij |

ε = Aij , we conclude that
E[Mij ] = 0. We will now consider a ε0√

n
-grid on the unit sphere (ε0 is set to some constant,

say 1
2),

T =
{

x : x ∈ ε0√
n
Zn, ‖x‖2 ≤ 1

}
.

Feige and Ofek [FO05] give a bound on the size of T and show that it suffices to
consider only vectors in T , which we reprove here for completeness.

Lemma 6.8. The size of |T | is at most exp(cn) for c = ( 1
ε0

+ 2). If for every x, y ∈ T

we have |x>My| ≤ ε, then for every unit vector x, we have |x>Mx| ≤ ε
(1−ε0)2

.
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Proof. Map every point in x ∈ T in a one-to-one correspondence with a n-dimensional
hypercube of side length ε0√

n
on the grid:

x 7→ Cx =
{

x + u : u ≥ ~0, ‖u‖∞ ≤ ε0√
n

}
.

The maximum length of any vector in Cx is bounded by ‖x‖ + ε0 ≤ 1 + ε0, and thus
the union of these cubes is contained in the n-dimensional ball B of radius (1 + ε0). We
conclude:

|T | ×
(

ε0√
n

)n

=
∑

x∈T

vol(Cx) ≤ vol(B) =
πn/2

Γ(n/2 + 1)
(1 + ε0)n.

And so:

|T | ≤ πn/2

Γ(n/2 + 1)

(
(1 + ε0)

√
n

ε0

)n

≤ exp
((

1
ε0

+ 2
)

n

)
.

Next, given any unit vector, x, let y = (1−ε0)x. By “rounding down” the coordinates
of y to the nearest multiple of ε0√

n
, we get a grid point z such that y ∈ Cz. Thus, the

maximum length of any vertex of Cz is bounded by ‖y‖ + ε0 = 1, so all vertices of Cz

are grid points in T . Express y as a convex combination of the vertices vi of Cz; viz.
y =

∑
i αivi with αi ≥ 0 and

∑
i αi = 1. Then we have

|y>My| = |(
∑

i

αivi)>M(
∑

i

αivi)| ≤
∑

i,j

αiαj |v>i Mvj | ≤
∑

i,j

αiαjε = ε.

The second inequality above follows because we assumed that for all x, y ∈ T , |x>My| ≤ ε.
Finally, since y = (1− ε0)x, we have

|x>Mx| =
|y>My|
(1− ε0)2

≤ ε

(1− ε0)2
.

Let x, y ∈ T . Since E[Mij ] = 0, we conclude that E[x>My] = 0. We now a prove
strong concentration bound:

Lemma 6.9. With probability at least 1 − exp(−Ω(n)), for every x, y ∈ T it holds that
|x>My| ≤ cε.

Proof. We use the following bound from Hoeffding’s original paper [Hoe63]: let X1, ..., Xn

be independent random variables, such that Xi takes values in the range [ai, bi]. Let
X =

∑
i Xi, and E[X] = µ. Then for any t > 0

Pr[|X − µ| ≥ t] ≤ 2 exp
(
− 2t2∑

i(bi − ai)2

)
.
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Consider the random variables Zij = Mijxiyj , then x>My =
∑

ij Mijxiyj =
∑

ij Zij .

Since Ãij is either sgn(Aij) · ε√
n

or 0, the squared range of Mij is ε2

n . Thus, the sum of

squared ranges for the variables {Zij , i ≤ j} at most
∑

i≤j
ε2

n x2
i y

2
j ≤ ε2

n

∑
i x

2
i

∑
j y2

j ≤ ε2

n ,

and similarly the sum of squared ranges for the variables {Zij , i > j} is bounded by ε2

n .
Since E[Zij ] = 0, by the Hoeffding bound we have:

Pr


|

∑

i≤j

Zij | ≥ cε


 ≤ 2 exp

(
−2c2ε2

ε2

n

)
= 2 exp(−2c2n).

A similar bound holds for Pr[|∑i>j Zij | ≥ cε]. Since |x>My| = |∑i≤j Zij +
∑

i>j Zij |,
by the union bound we have

Pr[|x>My| ≥ 2cε] ≤ 4 exp(−2c2n).

Since there are exp(2cn) pairs of vectors x, y ∈ T , the union bound implies that with
probability at least 1− exp(−Ω(n)), for all vectors x, y ∈ T , we have |x>My| ≤ cε.

This concludes the proof of Lemma 6.6.

6.7 Discussion

In this chapter we have described hybrid Lagrangian relaxation algorithms for solving
SDPs. The ideas are general though we customize them for some interesting SDPs. Each
iteration step is an approximate eigenvector computation, which is very efficient in prac-
tice, even though the theoretical worst case bounds listed here do not show this. (Even
so, in several cases the worst-case bounds provide speedups for specific SDPs over interior
point methods.) The main benefit comes from avoiding expensive Cholesky decomposi-
tions which interior point methods require. Also, since the final solution is obtained as
a convex combination of many rank 1 matrices, its Cholesky decomposition is automati-
cally obtained and there is no extra work to be done. Typically, approximation algorithms
require the Cholesky decomposition of the optimal solution.

The chief limitation of this method is chiefly from the polynomial dependence on 1
ε .

Some applications (such as general SPARSEST CUT) requires ε to be very tiny and then
this method is rendered useless. The main goal of future work will be to reduce the
dependence on 1

ε . The framework of chapter 4 is clearly relevant for this goal.
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Appendix A

A brief history of Newton’s
method

Isaac Newton first described his method for iteratively solving equations of the form
f(x) = 0 in “De metodis fluxionum et serierum infinitarum”, dating back to mid 1669 1.
In modern terms, the algorithm iteratively updates an approximate solution according to
the formula

xi+1 ← xi − f(xi)
f ′(xi)

The original description is quite far from this succinct formula, but rather proceeds
by computing a sequence of polynomials and deriving the approximation only at the end.
His original method applies only to polynomial functions (although later in “Principia
Mathematica”, Newton applied the method to a function which is not a polynomial).

Newton’s method was probably based on the widely used (at the time) Viete method,
published circa 1600, which is a less efficient iterative procedure for computing the solution
for equations of the form f(x) = 0. The origins of Viete’s method go back to the arabic
mathematician of the 12’th century Sharaf al-Din al-Tusi, and possibly even earlier. The
idea of an iterative procedure for computing solutions goes back further, to the arabic
algebraist al-Khaayyam (active circa 1100) and earlier to Babylonian and Greek methods.

Joseph Raphson published his work on an iterative method for solving equations in
1690. The method is a significant simplification of Newton’s original presentation, al-
though like Newton, Raphson considered the application only to polynomial equations.
Interestingly, Raphson did not notice the connection to Newton’s method, and maintained
it was of different origin. Lagrange observed in 1798 that the two methods are identical.

Surprisingly, it seems that both Newton and Raphson viewed their methods as purely
algebraic, and failed to notice the intimate connection to calculus (whose development
is attributed to Leibnitz and Newton himself). The connection to calculus was noted
by Thomas Simpson (1710-1761), who also noted that the method can be used to solve
systems of non-linear equations in several variables.

1the material in this section is taken from Ypma’s comprehensive study on the history of Newton’s
method [Ypm95]
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Simpson also observed that the Newton method can be used in multivariate uncon-
strained optimization: in order to maximize a function of several variables, he proposed to
set the gradient equal to zero, and solve the system of nonlinear equations using Newton’s
method.
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