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Abstract

A major challenge in computational biology is to understand the mechanisms that control

gene expression. Transcription factor proteins mediate this process by interacting with a

cell’s DNA. Here the problem of identifying sequence-specific DNA binding sites of tran-

scription factors is studied, taking two complementary approaches, one based primarily on

identifying sequence features and the other exploiting a transcription factor’s structure.

The first approach considers the problem of developing a representation for DNA

binding sites known to be bound by a particular transcription factor, in order to recog-

nize its other binding sites. The effectiveness of several commonly used approaches is

compared, including position-specific scoring matrices, consensus sequences and match-

mismatch based methods, showing that there are statistically significant differences in

their performances. Furthermore, the use of per-position information content improves

all basic approaches, and including local pairwise nucleotide dependencies within binding

site models results in statistically significant improvements for approaches based on nu-

cleotide matches. Based on the analysis, the best results when searching for DNA binding

sites of a transcription factor are obtained by methods that use both information content

and local pairwise correlations.

The second approach focuses on a particular structural class of transcription factors,

the C2H2 zinc fingers, that comprise the largest family of eukaryotic transcription fac-

tors. Zinc finger protein-DNA interactions are modeled by their pairwise residue-base

interactions that make up their structural interface using a modified support vector ma-

chine framework to find the favorability of each residue-base interaction. Unlike previous

approaches, this framework includes not only examples of known interactions but also

quantitative information about the relative binding affinities between different protein-

DNA configurations. The resulting classifier performs well in a variety of cross-validation

testing.
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Chapter 1

Introduction

1.1 Biological Background

The entire genetic complement of hundreds–soon to be thousands–of organisms has been

determined. A major task is that of uncovering the relationship between an organism’s

genome and how it functions. In this thesis, computational methods to help understand

the process of gene expression are developed, in particular to identify the sequence-specific

elements that transcription factor proteins bind in order to control gene expression.

Each cell of an organism contains a copy of its genome, which itself contains the

encoding for every protein the cell can produce. At any given moment, however, only a few

of these potential genes are actually expressed, as it is both uneconomical and potentially

deadly to produce proteins unless they are needed. Similarly, it is also dangerous to

underproduce necessary proteins. A cell has several mechanisms for controlling gene

expression and these mechanisms allow the cell to respond to changes in its environment

(for example, when a bacteria finds a source of food), to signals sent from other cells

in a multi-cellular organism (e.g., hormones), or to changes in the cell’s internal state

(e.g., progressing from cell growth to cell division). In multi-cellular organisms, tissues

express different genes depending on their location and role within the organism.
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There are several mechanisms for controlling which proteins are present in a cell,

corresponding to distinct stages in gene production. Gene production proceeds from DNA

to mRNA to protein, according to the central dogma of molecular biology. The production

of mRNA from DNA is called transcription, while producing protein from mRNA is called

translation. Of these, the most often used and most economical for controlling protein

levels is transcriptional regulation: turning genes off before a mRNA transcript is made.

If a protein is produced, it may be later modified, or it may also need to combine with

other proteins to form larger complexes.

In order to start the production of genes, transcriptional machinery attaches to a

segment of DNA nearby the target gene (called the promoter region), assembles itself,

and proceeds to read the DNA sequences while producing the corresponding mRNA chain.

The transcriptional machinery itself is composed of several proteins and the entire complex

is referred to as RNA polymerase. In order for RNA polymerase to attach and begin, it

often needs the help of additional proteins called (positive) transcription factors. Positive

factors bind near the start of the gene and help RNA polymerase find its place. Performing

exactly the opposite role, negative factors prevent the production of genes, for example,

by competing directly with RNA polymerase for the same piece of DNA, or by binding to

a piece of DNA between the promoter region and the gene (physically preventing RNA

polymerase from transcribing the gene). Several transcription factors often coordinate

the production of a single gene. For example, in E. coli , lactose metabolizing proteins are

only produced in the presence of lactose and absence of glucose (glucose is the preferred

energy source), and each condition corresponds to an individual regulating protein.

Transcription factors need to accomplish two goals: bind to a specific sequence of

DNA, and interact with RNA polymerase or another protein. They perform these tasks

using structurally distinct parts, called domains. Domains designed to bind DNA are

called DNA binding domains (DBDs), or sometimes called a binding motif. If present,

another domains may interact with RNA polymerase (either helping or hindering the
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production of the nearby gene), other transcription factors, or other proteins. In many

examples, these two domains functions independently, so it is possible to swap the DBDs

of two transcription factors in order to change which genes they effect. The specific

mechanisms of binding are rather intricate and will be explained for a single DBD in a

subsequent chapter, but all that is needed currently is that transcription factors bind to

specific regions of DNA near the beginning of a coding sequence, thereby influencing the

production of nearby genes.

A transcription factor typically influences the production of many genes, so its presence

or absence will most likely have a significant effect on the life of the cell. As factors

are themselves proteins, their expression is also controlled, often by other transcription

factors. In addition, transcription factors commonly negatively regulate themselves in

order to stop production when their concentration is high enough.

Mutations in transcription factors can also have serious consequences. One example

of this is found in Drosophila (fruit fly), where the change in a single transcription factor

can cause the development of an extra leg or an extra pair of wings.

Besides transcription factors, the cell also has other techniques for regulating gene

expression. For example, methyl groups can be added to individual bases in gene, which

usually results in decreased transcription. Another technique for regulating gene expres-

sion involves the way in which DNA is packaged. Inside the cell, DNA is wound twice

around nucleosomes, much in in the same way that thread is wound around a spool. Nu-

cleosomes are connected together by linking DNA sequences, and when they are packaged

together tightly outside molecules are unable to access the DNA sequence.

Gene expression is a complicated and rather marvelous process. Controlling gene

expression involves the interactions of multiple proteins in long signaling pathways with

several transcription factors often regulating one another. If that was not enough, all

these molecules collaborate to produce the right proteins only where, and when, they are

needed [2].
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1.2 Contributions

This thesis focuses on one piece of the complex gene expression process: the relationship

between a transcription factor and the specific DNA sites that it binds. This is an impor-

tant component of unraveling the transcriptional circuitry for any genome, as the DNA

binding sites of a transcription factor also reveal the corresponding regulated proteins.

Since a single transcription factor can bind sites of considerable variability, it is difficult

to find rules for identifying novel binding sites for a given protein, and much research in

computational biology has focused on this problem.

Here, two complementary approaches to identifying the binding sites for a given tran-

scription factor are considered. The first approach exploits sequence features of known

binding sites for a transcription factor in order to recognize its other binding sites. The

second approach builds a model for a particular single structural class of transcription

factors in order to recognize binding sites for any protein within that class. While the

first approach can predict binding sites for any transcription factor for which some bind-

ing sites are known, the second permits prediction of binding sites for proteins for which

there are no binding sites, as long as the protein has the studied structure.

The first approach (described in chapter 2) considers the problem of developing a

representation for a group of DNA binding sites known to be bound by a given transcrip-

tion factor, in order to recognize its other binding sites. Commonly used methods for

this problem include consensus sequences (e.g., [3]) and probabilistic approaches [4, 5].

A consensus sequence of a group of aligned binding sites is one that contains the most

frequently occurring residue (or pair of residues) in each column, and nucleotide matches

to a consensus sequence are used to evaluate the suitability of other putative binding

sites. Probabilistic approaches, commonly referred to as position-specific scoring matri-

ces (PSSMs) or weight matrices, assess the likelihood of observing a base in a particular

position of the binding site.
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The following basic methods for representing and searching for transcription factor

binding sites are evaluated: consensus sequences, PSSMs, and a novel method that com-

putes the average number of nucleotide matches between a putative site and all known

sites. Whereas each of these basic methods assume that each base contributes indepen-

dently to binding, it has been demonstrated that there are interdependent effects between

bases [6, 7]. Similarly, the use of information content has been shown to be useful in

representing binding sites [8] and in motif discovery [9]. Therefore, each basic method

is extended to include either interdependent bases and/or information content. Cross-

validation testing on a dataset of known E. coli transcription factor binding sites [10]

shows that there are statistically significant differences between how well these methods

identify binding sites. The use of per-position information content improves the perfor-

mance of all basic approaches. Furthermore, including local pairwise dependencies within

binding site models result in statistically significant performance improvements for ap-

proaches based on nucleotide matches. Based on this analysis, the best results when

searching for DNA binding sites are obtained by methods that include both information

content and local pairwise correlations.

The second approach (described in chapter 3) considers the problem of identifying

binding sites of a regulatory protein when the overall structural interface is known. In

this case, solved crystal structures of protein-DNA complexes for a structural family of

transcription factors are used to determine conserved interactions between specific amino

acids and nucleotides. Proteins within the same structural family exhibit different binding

sites by varying residues in key DNA-binding positions.

The C2H2 zinc finger family of transcription factors were used as a model transcription

family with a well conserved binding interface. This family is the largest known DNA-

binding family in eukaryotes, and has been studied extensively (review, see [11]). C2H2

zinc finger proteins typically bind DNA target according in a well-known and conserved

model, with specific residue and base combinations mediating the protein-DNA interac-

5



tion. There have been several previous approaches to uncover the favorability of different

residue and base combinations in C2H2 zinc finger contacts, including a statistical me-

chanics based formulation [12] and one that uses an expectation-maximization approach

on C2H2 zinc finger binding data [13]. The approach presented here differs from these

in that it includes not only known C2H2 zinc finger protein-DNA interactions but also

quantitative information about the relative binding affinities between different protein-

DNA configurations. As high-throughput datasets with quantitative information about

protein-DNA binding become more widely available (e.g., [7]), methods that can use such

information will become increasingly important.

A modified support vector machine (SVM) framework was used to find the favorability

of each residue-base interaction. Information about relative binding affinities of C2H2 zinc

finger protein-DNA interactions are included as pairwise constraints which influence the

model. This method was tested using stringent per-protein cross-validation, and shown to

outperform or perform comparably with previously published methods. The results show

that the SVM-based method holds great potential, especially as more high-throughput

experiments give quantitative information about protein-DNA binding.
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Chapter 2

Comparative Analysis of Methods

for Representing and Searching for

Transcription Factor Binding Sites

2.1 Introduction

This chapter analyzes how to represent binding sites for a particular transcription factor

with the goal of searching for additional binding sites. A single transcription factor can

bind sites of considerable variability; as a result, a number of different methods have been

proposed (e.g., [3–5,14–16]). Traditionally, a transcription factor’s preference for binding

has been represented by a consensus sequence (e.g., [3]), and more recently as a sequence

logo [8]. Novel sites are typically found by either matching to a consensus sequence, or

using position-specific scoring matrices (PSSMs) [4].

While many methods for identifying regulatory binding sites have been proposed, the

availability of online datasets of transcription factors and their aligned binding domains

(e.g., [10, 17]) allows us to quantify the effectiveness of different approaches. In par-

ticular, cross-validation testing is used to quantify how well each method performs in
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distinguishing between the DNA binding sites for a one transcription factor and those

of other proteins. While there may be some overlap between the binding domains for

different transcription factors, the known DNA binding sites for the transcription factor

under consideration should be among the top-ranked sites. Such an empirical evalua-

tion is important and timely, as whole-genome scans in search of the binding sites are

increasingly used to make functional annotations of uncharacterized proteins, and to infer

properties of transcriptional regulatory networks (e.g., [18]). Additionally, the previously

mentioned methods are the basis for other more sophisticated approaches for predicting

transcription factor binding sites, including motif discovery and cross-genomic approaches

(e.g., [9, 19–25]).

This chapter evaluates four basic methods for representing and searching for tran-

scription factor binding sites: consensus sequences [3], two variants of position specific

scoring matrices (log-odds matrices, and the statistical mechanics based Berg and von

Hippel method [5]), as well as a method based on nucleotide matches, called Centroid,

that computes the average number of nucleotide matches between a putative site and all

known binding sites.

Each basic method is considered with two natural extensions: pairwise nucleotide

dependencies and per-position information content. Whereas the basic methods assume

that each base contributes independently to binding, it has been demonstrated that there

are interdependent effects between bases [6,7]. Though the independence assumption has

clearly been useful in practice and seems to provide a good approximation to the energetics

of DNA-protein binding [26], here it is assessed whether improvement is possible by using

pairwise dependencies. Similarly, the use of per-position information content was shown

to be useful in representing binding sites [8] and in motif discovery [9]; here, it is applied

directly to the problem of searching for binding sites by using using the information

content of a position to weigh its contribution towards the overall score.
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These methods and their extensions are compared in how well they perform in identi-

fying the binding sites for a particular transcription factor without additionally identify-

ing binding sites for other proteins. Improvement in performance are assessed using the

matched-pairs signed-ranks test as well as receiver operating characteristic (ROC) curves.

The rank test evaluates whether the frequency with which one method outperforms an-

other is statistically significant, and a ROC curve compares the performance of two or

more methods over a range of possible false positive rates.

Testing on a dataset of E. coli transcription factor binding sites [10], there are statis-

tically significant differences between these methods. The main findings are:

1. Using per-position information content to weigh positional scores improves the per-

formance of all methods, sometimes dramatically. For example, consensus sequences

have by far the poorest performance of all basic methods in discriminating between

binding sites for the transcription factor of interest and binding sites of other tran-

scription factors; however, weighing each match to a consensus base by the ap-

propriate per-position information content makes consensus sequences much more

competitive with other methods.

2. Methods based on nucleotide matches, such as consensus sequences and Centroid,

show statistically significant improvements when including pairwise nucleotide de-

pendencies. Furthermore, in these cases, the choice of which pairs to include in the

model is important; in particular, considering all possible pairs of nucleotides in

a binding site is not as effective as using just neighboring pairs. Somewhat unex-

pectedly, probabilistic methods, such as log-odds PSSMs, do not show statistically

significant improvements when including pairwise dependencies.

3. The difference in performance between methods decreases substantially when both

information content and pairs are used.
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In general, when searching for DNA binding sites, methods using information content

and pairwise dependencies were found to be most effective. For organisms like E. coli

with many well-characterized transcription factors and binding sites, analysis similar to

the one performed here should aid in choosing a specific method and suitable threshold.

Software implementing all the methods discussed in this chapter was included with

the original publication [1]. Appendix 2.A briefly describes some of the issues that were

addressed during implementation. Finally, appendix 2.B describes a statistical procedure

used throughout the chapter to assess the significance of multiple hypotheses.

2.2 Methods

2.2.1 Dataset

[10,22] contains 68 regulatory proteins and their aligned DNA binding sites; the dataset

used in this chapter was constructed from it as follows. First, only proteins with at least

four binding sites were considered. Second, in the original database, occasionally the

binding sites for a single regulatory protein were split into multiple groups based on the

number of tandem duplications; individual sites for ArgR, MetJ, and PhoB were included

rather than their tandem-repeated counterparts. Third, binding sites from sigma factors

were removed, as were binding sites from NarP, since all the latter are also binding sites

for NarL. Fourth, duplicate binding sites were removed in order to preserve leave-one-out

cross-validation. Finally, each binding site was located within the E. coli K-12 genome

(version M54 of strain MG1655 [27]), and was extracted along with flanking regions on

each side. Binding sites that could not be located unambiguously within the genome were

excluded from the study. This process left 35 transcription factors and 410 binding sites,

with an average of 11.7±8.5 (standard deviation) sites per transcription factor. Figure 2.1

shows the number of sites and site length for each transcription factor in the final dataset.
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Figure 2.1: Number of sites and site length for each transcription factor in the final
dataset. Marginal distributions are shown as histograms near the bottom and right hand
side. This and subsequent charts were designed according to the principles of graphical
excellence and data integrity, as demonstrated and explained in [28–30].
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2.2.2 Approaches for Predicting Binding Sites

Four basic approaches for searching for transcription factor binding sites were evaluated.

Specific implementation details were found to affect performance, and so each of the

methods is described briefly below.

First, a word about notation. Let S be the N binding sites for a particular transcrip-

tion factor. Each binding site has length l and that these binding sites are aligned. Define

ni(b) to be the number of times base b appears in the i-th position of any sequence in S,

and fi(b) to be the corresponding frequency. Similarly, define n(b) to be the number of

times base b appears overall in the N binding sites, and f(b) to be the overall frequency

for base b. Each method is used to score a new DNA subsequence t (also of length l) in

an attempt to predict whether t is a binding site of the given protein. Let ti denote the

i-th base of the sequence t to be scored.

Extending the above notation to pairs of positions, let nij(b, d) be the number of times

the ordered pair of bases (b, d) occurs in positions i and j of any sequence belonging to S,

and fij(b, d) be the corresponding frequency. Ideally, pairwise interdependencies should

only be included for those pairs that are known, perhaps through structural studies, to act

together in determining DNA-protein binding specificity. Since such precise information is

not always readily available, as a first approximation consider only pairwise dependencies

between nearby positions. We introduce the notion of scope to delimit which pairs are

considered important when determining specificity. For instance, a scope of one restricts

dependent positions to adjacent pairs while a scope of two considers both adjacent pairs

and pairs separated by an intermediate base.

Next, define the information content (IC) of a position in a binding site. Information

content is based on the information theoretic notion of entropy introduced in a seminal

paper by Claude Shannon [31]. In the current application, the entropy of a position

expresses the average number of bits necessary to describe the position in a binding site,

and the information content of a position is calculated by subtracting its entropy from
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the value of the maximum possible entropy. That is, the higher the information content,

the more conserved (and presumably more important) the position. More specifically, the

information content ICi of position i in S is defined as 2 +
∑

b∈DNA fi(b) log fi(b). The

total information content of a transcription factor’s binding sites is computed by summing

ICi over all positions, and varies from 12 to 42 bits. The information content ICij of a

pair of positions is 4 +
∑

b,d∈DNA fij(b, d) log fij(b, d) [14]. Information content is used in

Sequence Logos by [8] mainly as a visualization tool to identify important positions in a

binding site. A different, more direct usage in a scoring scheme is proposed here, namely

by including the IC of a position as a multiplicative factor in scoring a target binding site

sequence.

The following basic methods were used:

Consensus: These methods vary considerably [3]; a version of consensus sequences de-

scribed by [32] was used. For each position i, let b be the most frequent base and

d be the second most frequent base. If fi(b) > 0.5, then b is the consensus base

for position i (denoted by consensusi); otherwise if fi(b) + fi(d) > 0.75 then both

b and d are the consensus bases. If neither is true, there is no consensus base for

this position. The score of a new sequence t is obtained by counting the number of

times ti agrees with the consensus base for the i-th position.

PSSM: Typically, this method assumes independence between positions, and computes

a log-odds score for a potential binding site. A commonly used Bayesian estimate

to handle the zero frequency case was used, replacing fi(b) by f̂i(b) = ni(b)+f̂(b)
N+1 [33],

where f̂(b) is the estimate of overall background frequency of base b, computed as
n(b)+.25

Nl+1 .

Berg and von Hippel: The full analysis was conducted using a statistical mechanics-

based method that makes the connection between base-pair statistics of sites and

its binding free energy. Denoting the number of occurrences of the most common
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base in position i of binding sites by ni(0), the method scores a new sequence t by

computing a per-positional corrected log-odds score of observing a base of t versus

the most frequent base in the corresponding position of the sequences [5, 34].

Centroid: This novel method scores a sequence t by computing the average shared iden-

tity between t and every sequence in S.

Next, extensions of the above methods that include pairwise dependencies were con-

sidered:

Consensus-P: For a sequence t, this method counts both the number of nucleotides

matching the consensus sequence and the number of nucleotide pairs within a given

scope matching the corresponding bases in the consensus sequence.

Centroid-P: This method considers the number of shared bases as well as the number

of shared pairs of bases within a particular scope between the sequence t and each

sequence in S.

PSSM-P: This method is an extension of the PSSM log-odds method that also accounts

for pairwise dependencies. Although rigorously generalizing PSSM-P beyond adja-

cent pairs is not difficult in principle, in practice the small number of known sites

per transcription factor limits the rigorous probabilistic derivation of the method

to only adjacent pairs [35]. For example, a derivation of scope two requires calcu-

lating triplet frequencies. Instead, the analysis evaluates an intuitive definition of

the method that considers only pairwise dependencies regardless of scope.1 A stan-

dard Bayesian approach was used to handle the zero frequency case by replacing

fij(b, d) by f̂ij(b, d) = nij(b,d)+f̂(b)f̂(d)
N+1 . Several different ways of computing the ref-

erence “background” pair frequencies were evaluated; modeling this as the product

of single column frequencies had the best overall performance.
1For scope value of one, the rigorous derivation that assumes that position i depends on position i + 1

subtracts single columns log-odds scores; the method described here tests better without subtracting these
singlet scores.
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Method Column Score Pair Score (j = i + s)

Consensus [ti ∈ consensusi] [(ti, tj) ∈ consensusij ]

PSSM log f̂i(tj)

f̂(ti)
log f̂ij(ti,tj)

f̂(ti)f̂(tj)

Berg and von Hippel log ni(ti)+0.5
ni(0)+0.5 log nij(ti,tj)+0.5

nij(0,0)+0.5

Centroid fi(ti) fij(ti, tj)

Table 2.1: Column and pair scores computed by various methods. The final score for a
basic method is

∑l
i=1 •, where • is the column score listed above. The final score for a

pair method is the basic score plus
∑scope

s=1

∑l−s
i=1 ••, where •• is the pair score listed above.

Berg and von Hippel-P: The Berg and von Hippel method was extended to include

pairs of bases in a similar manner, with nij(0, 0) giving the most frequent pair of

bases in positions i and j.

Finally, for every method considered, its variation in which per-position information

content is used to weigh the contribution of each position (or pair of positions) towards

the overall score is examined.2 For instance, the score computed by Centroid IC is∑l
i=1 ICi fi(ti), and the score computed by its pair counterpart Centroid-P IC with scope

parameter scope is the sum of the Centroid IC score and
∑scope

s=1

∑l−s
i=1 ICij fij(ti, tj), where

j = i + s. All of these methods and variations are summarized concisely in table 2.1.

2.2.3 Cross-validation Testing and Analysis

The most common use of any of the methods described above would be to scan non-

coding regions in a genome in order to find possible binding sites. This entails scoring

consecutive windows of appropriate length and considering windows that score above a

chosen threshold to be predicted binding sites. However, such a framework is not easily

applicable when evaluating and comparing different methods; for example, the E. coli

genome contains many yet uncharacterized binding sites, and predicted windows may
2 [14] suggest using a sampling error correction based on the expected information content of n random

samples. This correction did not improve performance during testing and so only uncorrected information
content is reported.
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correspond to true binding sites even if they are not annotated in the dataset. Instead,

leave-one-out cross-validation studies are conducted to evaluate each method, considering

each binding site s in turn. Suppose s belongs to known binding sites S, each of length

l, for transcription factor TF. The method under consideration then uses all the sites

except s, i.e. S − {s} to build the binding site representation for TF, and scores s

as well as the negative examples. Negative examples consist of all binding sites except

those known to be bound by TF. A negative binding site t is scored by examining all

possible alignment positions of this binding site against the binding site representation

of TF such that either the representation of TF is completely contained within t, or

t is completely contained within the representation of TF. In the latter case, genomic

flanking regions around t are used for scoring. Six pairs of binding sites were found to

reside completely inside one another in the genome. In these cases, when scoring the

negative binding site, a true binding site for the transcription factor of interest is present;

thus these corresponding binding sites were removed from the pool of negative examples

during cross-validation testing. The final score for a target sequence is taken to be the

higher score when considering both the original sequence and its reverse complement. It

is still possible that transcription factor TF can bind some of the negative examples, but

nevertheless s should be among the top scoring sites.

The discriminatory power of each method, exhibited in the relative score of the actual

binding site among all scored sites, is analyzed using two data-mining tests: averaged

ranks and receiver operating characteristic (ROC) curves (e.g., [36]). In particular, for

each site s of a transcription factor under consideration, its rank in cross-validation testing

is computed by counting how many negative examples score as well or better than s,

with lower rank indicating better performance. Then, to compare how well two methods

perform, a matched-pairs signed-ranks test is used. Briefly, the number of times one

method outperforms the other is compared with how many times such an event would

happen merely by chance under the assumption that both methods perform equally well.
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P-values of less than .05 are considered significant. For ROC analysis, a ROC curve

was first created for each individual leave-one-out test (i.e., keeping track of whether the

binding site was found as a function of the number of false positives allowed) and then

averaged over all sites for that transcription factor. Curves are then further averaged

across the various transcription factors to arrive at a final curve for each method.

2.3 Experimental Results

2.3.1 Comparison of Basic Methods

This section established baseline performance of each of the four basic methods. Figure 2.2

compares the performance of the Consensus, PSSM, Berg and von Hippel and Centroid

methods using ROC analysis. Each curve plots the fraction of correctly classified positive

examples (TP rate) as a function of the incorrectly classified negative examples (FP rate).

As expected, Consensus performs markedly the poorest, consistently lying to the lower-

right of the other curves. The remaining methods are comparable, as their curves lie very

close to one another and cross at various FP rates.

As seen in this test, and in all of the following testing scenarios, PSSM and its variants

perform virtually identically to Berg and von Hippel’s method and its variants. Therefore,

results omit the latter method in order to simplify the analysis.

2.3.2 Influence of Pairwise Dependencies

Next, the performance of the basic methods described above is evaluated considering the

effect of adding pairwise correlations. Ideally, a method for including pairwise correla-

tions should only take into account those pairs that are known, perhaps through structural

studies, to act together in determining DNA-protein binding specificity. Such precise in-

formation is not readily available, and so, a first approximation focuses on considering

pairwise correlations between bases that are nearby in sequence. A comparison of results
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Figure 2.2: ROC curves comparing performance of the four basic methods: Centroid,
PSSM, Berg and von Hippel, and Consensus. The top and left axes indicate average
false positive rate and true positive rate, respectively (for a given false positive rate, true
positive rates were averaged over all transcription factors to give the shown curves). The
bottom and right axes shows the average number of binding sites corresponding to each
rate (there are a total of 410 binding sites and 35 transcription factors in the current
dataset). The 50% precision line indicates the boundary at which the methods would
predict as binding sites as many incorrect sites as correct ones. Consensus is clearly
outperformed by the other three methods.
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is done using pairwise correlations as the positional distance allowed between pairs of

bases (i.e., the scope) is varied. Figure 2.3 summarizes the effect of considering various

pairwise correlations for centroid and PSSM. The effect of nearby pairwise correlations

are further quantified by scope parameters between zero (where no pairwise dependencies

are assumed) and four are considered, as well as full scope. For Centroid-P, neither zero

scope nor full scope performs best, whereas curves with scopes in the range of two to four

consistently achieve higher TP rates across the relevant range of FP rates (results are only

shown for scope two). The improvement for scope two is modest (3% improvement when

allowing no false positives, and approximately 5% when allowing one false positive) yet sig-

nificant with a p-value of less than 10−4, as judged by the matched-pairs signed-ranks test

(section 2.3.4 on page 22). Thus, including pairwise correlations improves the discrimina-

tory ability of the centroid method; however, it is important to consider only certain pairs

of positions. In the remainder of this chapter, Centroid-P is used with scope two as it is

less computationally intensive than those with scopes three and four and yet performance

is comparable. A similar trend is observed for Consensus (not shown), where a dramatic

improvement in performance occurs with the addition of pairwise correlations. At scope

two, used for all subsequent analysis, performance increases over scope zero by 25% when

allowing no false positives, and 26% when allowing one false positive. In contrast, for

PSSM-P, including pairs at small scopes results in a performance decline (section 2.4 on

page 26). At larger scopes PSSM-P performs very similarly to PSSM. For the remaining

analysis, PSSM-P is used with scope three; performance increases over scope zero by 8%

with no false positives and by 3% with one false positive. However, this improvement is

not statistically significant (see below). To summarize, for the methods based on tallying

up nucleotide matches, such as Centroid and Consensus, considering pairwise correlations

clearly helps. However, the same claim cannot be made for probabilistic methods such as

PSSM; perhaps because these methods are less stable when very few sites are known.
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Figure 2.3: ROC curves comparing performance when pairs are considered for Centroid
(a) and PSSM (b). For each, the basic method (scope zero) is shown, along with the
method using all possible pairs (full scope) and the method using the best performing
scope (scope two for Centroid-P and scope three for PSSM-P). In all further testing
Centroid-P is shown with scope two while PSSM-P is shown with scope three.
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Figure 2.4: ROC curves comparing Centroid-P with scope two using regular sites and sites
with columns shuffled. The solid curve is an average over 1,024 different shuffles, while
dashed curves show performance out to one standard deviation with random shuffling.

The improvement gained by using pairwise correlations is further quantified by con-

sidering the performance of the Centroid-P method in the same cross-validation scenario

but on a perturbed dataset, produced by randomly shuffling the columns of the binding

sites used as positive examples. While shuffling the columns for binding sites preserves

per-column nucleotide composition, it also, on average, destroys any local pairwise corre-

lations found in the original alignment. The results are shown in figure 2.4 where a ROC

curve for Centroid-P tested on the original dataset is plotted against the same method

tested on the shuffled dataset. Shuffling and cross-validation are averaged over 1,024 tri-

als producing the solid shuffling curve, while the dashed curves show performance out

to one standard deviation (due to the effects of randomness). The benefit of including
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nearby inter-column correlations is clearly observed, as performance on shuffled sites is

consistently worse than performance on the original sites.

2.3.3 Influence of Per-position Information Content

Next, the performance of the basic methods described above is evaluated considering the

effect of adding per-position information content to each method. A rank chart compares

the performance of the Consensus, PSSM and Centroid methods, along with their pair

counterparts with and without information content.

Figure 2.5 shows average ranks (as computed over the binding sites for each transcrip-

tion factor) for both versions of each method and its pair extension. Comparing median

performance, it is clear that adding per-position information content results in improved

performance in both the original and pairwise versions of the basic methods. Noticeably,

the addition of information content to the Consensus method dramatically improves its

performance, and in fact makes it much more competitive with the other methods.

When considering performance differences of both pairwise dependencies and per-

position information content at particular values of false positives, basic Consensus shows a

36% improvement when allowing no false positives and a 37% improvement when allowing

one false positive. These values for Centroid are 2% and 9%, and for PSSM are 10.5%

and 8%.

2.3.4 Statistical Significance of Methods Comparison

A matched-pairs signed-ranks test is used to compare methods and assess whether the

differences in performance (partially described above) of various methods are statistically

significant. The change in the rank of the left-out-example is calculated for every com-

parison and each cross-validation test. These rank differences are converted into p-values

under the assumption that both methods perform equally well. Calculated p-values rep-

resent the probability that the observed differences in performance could have occurred
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Figure 2.5: Performance of methods based on averaged rank. For each transcription
factor, an average rank is computed from the rank of each of its binding sites in cross-
validation testing. The horizontal line in each box is the median transcription factor’s
average rank while each box shows the 25th–75th percentiles for average ranks.
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by chance alone, and an individual test is considered significant if the p-value associated

with it is small enough. The criteria for significance is taken from a multiple hypoth-

esis test, which limits the overall probability of judging any combination of individual

tests as statistically significant due to chance alone. For example, the classical Bonferroni

multiple hypothesis test requires that p ≤ α/n for each individual test, where n is the

number of tests being performed and 1 − α is the desired overall significance level for

the entire procedure. An improved multiple hypothesis test called sequentially rejective

Bonferroni [37] was used. This procedure is described fully in appendix 2.B. Sequentially

rejective Bonferroni is statistically more powerful than the classical Bonferroni test while

still guaranteeing that the overall probability of accepting any combinations of compar-

isons as statistically significant by chance alone is less than α [37]. An alpha value of 5%

was used during testing, making the overall procedure significant at the 95% level.

Several possible pairs of methods were chosen to be tested with the goal of identi-

fying the best performing methods and quantifying improvement (if any) resulting from

including information content and pairwise dependencies. For each basic method, all its

variations are compared to each other; additionally, the versions of every method that

includes both pairs and information content are compared to each other. The results are

shown in figure 2.6, producing a graph in which a directed edge connects a pair of methods,

one with a significant performance improvement over the other. The overall conclusion is

that including pairs and information content for each basic method outperforms the other

methods in its group (with the exception of Consensus-P IC which did not perform sig-

nificantly better than Consensus-IC). As for the overall best method, Centroid-P IC has

the best average rank; and both Centroid-P IC and PSSM-P IC statistically outperform

the highest number of other methods. All information content weighted methods per-

form significantly better than their non-weighted counterparts, with a qualification that

although Centroid-P IC and Centroid IC perform better than Centroid-P and Centroid

at individual p-values of .02, these differences are not statistically significant with the
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Figure 2.6: Partial ordering (at the 95% significance level) of methods based on a signed
ranks test. Arrows point towards worse performing methods, with labels indicating the
difference in average rank between the methods, both as an absolute number and as per-
centage improvement. Pairwise comparisons were performed between all four variations
of each method, as well as between the three P IC methods, for a total of 21 tested
hypotheses. P-values were adjusted for multiple hypothesis testing using a sequentially
rejective Bonferroni test [37]. Dotted edges show differences that were not found to be
significant with the Bonferroni correction, but have individual p-values < .05.
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Bonferroni correction. The improvement resulting from adding pairwise dependencies is

more modest, observing only some of the possible arrows relating a method and its pair

counterpart.

2.4 Discussion

Based on the results presented in section 2.3, both pairwise dependencies and especially

information content can be used to improve the discriminatory power of computational

methods for binding site recognition and prediction.

The influence of pairwise dependencies within binding sites has been a topic of debate

within the computational biology research community, and numerous papers have been

published supporting both viewpoints (e.g., [7, 38]). In part, the findings are consistent

with both opinions, as considering pairs improves performance for all three methods,

though the improvements are not significant for PSSM-P (Figure 5). Moreover, while

the resulting improvement is dramatic for Consensus-P, it is more modest for Centroid-

P. Nevertheless, testing suggests that inter-positional information can provide additional

binding domain specificity, especially when the appropriate pairs are considered. This is

demonstrated by the fact that considering some pairs of positions (i.e., those within close

sequential proximity) results in improved performance for the nucleotide match methods

such as Centroid-P; it may be possible that more careful selection of pairwise dependencies,

perhaps from crystal structures, would result in further improvements.

The performance of the statistical methods, such as PSSM-P, do not show statistically

significant improvements when using pairs most likely because of the non-occurrence of

many base-pair combinations in the small dataset; such a case is more severely penalized

in PSSM-P scoring than in Centroid-P or Consensus-P scoring.

It is not clear that the addition of information content should improve performance of

methods that already include frequency information. Nevertheless, information content

benefits all methods tested, and a clear trend is observed when considering the methods
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and their IC counterparts (figure 2.5 on page 23). Additionally, the performance of most

methods is comparable once per-position IC weights have been included. This suggests

that information content is the measure that allows us to rigorously identify the highly

conserved positions in the binding site; these are presumably the functionally important

positions in the interaction between a transcription factor and its DNA binding domain.

Given those key positions, the precise way of making use of that information appears

less critical; even Consensus, a clearly inferior method utilizing the simplest matching

criterion, receives noteworthy improvement from including information content.

Finally, some variation in method performance per transcription factor was observed.

This suggests that no single method is optimal for all situations. This is not surprising

given the high degree of variation observed in protein-DNA interactions. Whereas in gen-

eral methods using information content and pairwise nucleotide information are expected

to be most effective when searching for DNA binding sites, for a specific transcription

factor and its binding sites, an alternate method may perform better. Additionally, in

some scenarios it is desirable to allow a higher number of predicted binding sites that can

be later eliminated using other approaches (e.g., using cross-genomic information). Anal-

ysis similar to the one performed here is likely to prove useful in choosing, for different

contexts, a specific method and suitable threshold for finding binding sites.

27



2.A Appendix: Software Implementation

This chapter compared different methods for identifying previously known binding sites.

However, in more natural circumstances the task is to find probable binding sites in a new

sequence. A collection of known binding sites for a given protein is still assumed to be

available, but now the task is to give the user the ability to gain confidence that a newly

discovered subsequence is an actual binding site.

A software utility was created containing all the methods described in section 2.2.2.

All implementational issues are hidden to the user and he or she simply specifies which

method (basic method, scope, and whether or not to use information content) and criteria

are used to identify potential new sites. These criteria are described briefly below.

Top: Only show the top scoring subsequence within a given sequence. This could be

useful, for example, when scanning the upstream region of a gene to determine

whether a transcription factor has any direct influence on the expression of that

gene.

Cutoff: Only show subsequences with a score greater than a previously determined cutoff.

This could be useful when the user has already performed analysis of scores on

positive and negative sites and has determined a threshold suitable for his or her

needs. For example, choosing a cutoff equal to the lowest score for known sites

allows the user to find sites which score as well or better than all known sites.

P-value: Choose a cutoff so that the probability of a randomly generated site scoring

higher than the cutoff is equal to a given p-value. This is further explained below.

False-Positive Rate: In this case, negative example sequences are also provided by the

user. Each example sequence is scanned, recording its highest scoring subsequence.

A threshold is chosen so that only a given percentage of these sites would contain

at least one potential new site. This could be useful when the user has a collection
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of upstream regions (for example, all upstream regions in a genome), and would like

to control the number of false positive sites returned.

Additionally, criteria can be combined as required (for example, only showing the top

site in a sequence, and only if it has a low p-value). The p-value criteria requires some

additional clarification. The user specifies the overall expected GC content of scanned

sequences and base frequencies for random sequences are chosen accordingly, with com-

plementary bases assumed to occur with the same probability. Random subsequences are

generated by choosing a base independently for each position over the entire length of

the site. Given this random model and assuming a non-pairs method, the score for a

randomly generated subsite equals,

S =
∑

i

Si

where Si are random variables for position scores, Si = Si(b) with probability P[ b ], and

i ranges over the length of the site. The expectation and variance of S can be calculated

using linearity of expectation and linearity of variance for independent variables (e.g., [39]),

E[S ] =
∑

i

E[Si ]

Var(S) =
∑

i

Var(Si)

For pair-based methods the score includes pair terms,

S =
∑

i

Si +
∑
ij

Sij

where Sij are random variables for pair scores, Sij = Si(b, d) with probability P[ (b, d) ] =

P[ b ]P[ d ], and ij iterates over all pairs within a given scope.
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Expected score and variance are calculated as follows,

E[S ] =
∑

i

E[Si ] +
∑
ij

E[Sij ]

Var(S) =
∑

i

Var(Si) +
∑
ij

Var(Sij) + 2
∑
i, jk

Cov(Si, Sjk) + 2
∑
ij<kl

Cov(Sij , Skl)

where Cov(Si, Sjk) = 0 and Cov(Sij , Skl) = 0 unless the column/pair(s) overlap. Co-

variances are needed because the random variables are correlated. The last summation

computes the covariance between pair-scores, considering each pair of pairs only once.

Having calculated the mean (µ) and standard deviation (σ =
√

Var(S)) of scores for

random subsites, the distribution of scores is approximated by a normal distribution with

first two moments matching, S ≈ N(µ, σ). Finally, a cutoff is chosen that gives the desired

p-value.

P[N(µ, σ) ≥ cutoff ] = p-value
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2.B Appendix: Bonferroni Multiple Hypothesis Testing

Calculated p-values represent the probability that the observed differences could have

occurred by chance alone. An individual test is considered significant if its p-value is

small enough.

A multiple hypothesis test limits the overall probability of judging any combination of

individual tests as statistically significant due to chance alone. The classical Bonferroni

multiple hypothesis test requires that pi ≤ α/n for each individual test, where n is the

number of tests being performed. Let i ∈ I be the hypotheses that are false (that is,

their null-hypotheses are true), and let m = |I|. The probability of rejecting all false

hypotheses can be bounded using the union bound.

P[ pi > α/n for all i ∈ I ]

= 1− P[ pi ≤ α/n for any i ∈ I ]

≥ 1−
∑
i∈I

P[ pi ≤ α/n ]

= 1−m(α/n)

≥ 1− α

Therefore, 1 − α is the overall significance level for the entire procedure. A less strict

criteria α/m could have been used instead of α/n, except that m is not known.

Sequentially rejective Bonferroni [37] realizes a less strict bound without knowing m,

while still ensuring the same overall level of significance. First, p-values are ordered so

that p(1) ≤ . . . ≤ p(n). The first p(i) is found such that p(i) > α/(n+1−i). Hypotheses p(1)

through p(i−1) are accepted as statistically significant, while p(i) through p(n) are rejected

as statistically inconclusive (tied p-values are either all accepted or all rejected). The

criteria for the smallest p-value is the same as in the classical test, while the criteria for

the largest p-value (if it wasn’t rejected earlier) is the same as in a single hypothesis test.
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To show that this procedure is valid, consider the event A = {pi > α/m for all i ∈ I}.

P[A ] ≥ 1 − α, as shown above. Consider the smallest pi for i ∈ I. We don’t know

the position of the pi among the other p-values, but it is the smallest of m values, so

i ≤ n + 1−m. This is equivalent to m ≤ n + 1− i. Given that event A has occurred,

p(i) > α/m ≥ α/(n + 1− i)

Therefore, the first false hypothesis will be rejected, and the same for all false hypotheses

following it.

The criteria for individual tests is not as strict as in classical Bonferroni, so the overall

procedure is statistically more powerful (accepts more hypotheses as true). This advantage

can be most clearly seen in the following scenario. Suppose hypotheses p1 through pa are

true, but are nevertheless included in the multiple hypothesis testing. Their p-value will

be approximately zero, so they will be the smallest p-values tested and accepted as true.

The remaining hypotheses are tested as if the true cases were never present, while, in

the classical multiple hypothesis test, all hypotheses are tested using a more stringent

criteria.
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Chapter 3

Protein-DNA Interactions:

Including Relative Binding

Affinity Using SVMs

This chapter presents a framework for predicting the binding sites of a transcription factor

using knowledge about its 3D structure. The method presented may be seen as a natural

extension of the previous chapter—whereas there binding sites were represented with no

reference to the actual protein, in this chapter the overall structural interface between

the transcription factor and DNA is known and modeled explicitly. This allows a more

expressive model of binding to be built, representing both DNA bases and the amino

acids contacting them, and provides a means for predicting the binding sites of other

structurally similar proteins, even those for which no binding sites are known.

The framework presented in this chapter for structure-based prediction of transcription

factor binding sites has been developed for the C2H2 zinc finger protein family. C2H2 zinc

fingers comprise the largest family of eukaryotic transcription factors, with several hundred

C2H2 zinc finger proteins known in the human genome [40].
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Zinc finger proteins1 have been extensively studied, with crystal structures and ex-

perimental studies having explained many of the determinants of binding specificity (re-

views, [11, 41]). Zinc finger proteins bind DNA in a well-characterized manner which

specifies the exact interactions between specific residues in the DNA binding regions of

the protein with nucleotides at the DNA site (see section 3.1.2 and figure 3.4 on page 44).

Knowledge of this “canonical” structural interface can be used in predicting zinc finger

specificity.

This chapter models zinc finger protein-DNA interactions by the pairwise residue-base

interactions. A modified support vector machine (SVM) framework was used to find the

favorability of each residue-base interaction. This framework includes not only examples

of known zinc finger-DNA interactions but also quantitative information about the relative

binding affinities between different protein-DNA configurations. Previous bioinformatics

methods for predicting zinc finger protein-DNA interactions utilize only known examples

of protein-DNA interactions (e.g., [12,13,42]); they are not able to use information about

relative binding affinities. As high-throughput datasets with quantitative information

about protein-DNA binding become more widely available (e.g., [7]), methods that can

use such information will become increasingly important.

The SVM method developed in this chapter was tested using stringent per-protein

cross-validation2 and shown to be overall compatible with previous experimental data.

Additionally, this method is shown to be competitive with previously published methods

in a wide range of cross-validational testing. Overall, the SVM method holds great po-

tential, especially as more quantitative information about binding is made available in

high-throughput experiments.

1Though there are many types of zinc fingers, throughout this chapter, the term zinc fingers or zinc
finger proteins to refer exclusively to C2H2 zinc finger proteins.

2Proteins with identical amino acids in DNA binding positions are considered the same for the purposes
of creating a training dataset. See section 3.2.4 on page 48 for more details.
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The rest of the chapter is organized as follows. Section 3.1 gives introductory struc-

tural information. First, DNA will be briefly described, concentrating on the way in which

proteins are able to differentiate among bases. Then, the conserved sequence and struc-

ture of C2H2 zinc fingers will be shown. Finally, the pattern of binding between individual

fingers and DNA sequence is outlined—this pattern is the central building block used to

create the model of binding for the entire protein. Section 3.2 describes the framework

used to train the model on collected zinc finger data, and gives implementation details.

Section 3.3 describes the process of gathering examples of binding and non-binding con-

figurations from the literature. References and brief descriptions of the experimental

techniques used in these papers are provided, including a description of the quantitative

way in which binding affinity is measured. Section 3.4 briefly outlines previous methods

used to predict zinc finger binding. Section 3.5 describes extensive testing used to verify

the integrity of the model, and includes the final derived weight vector. Finally, section 3.6

has some concluding remarks, while appendix 3.A describes binding affinity.

3.1 Background

This section provides some general structural background to DNA, protein-DNA binding,

and zinc finger proteins.

3.1.1 DNA

DNA is composed of nucleic acids—each nucleic acid has a sugar, phosphate, and base.

Sugars and phosphates are water soluble, and the structure of DNA attempts to hide the

hydrophobic bases inside while exposing the hydrophilic sugars and phosphates outside [2].

Nucleic acids attach to one another forming a strand of DNA, while two complementary

strands combine in opposite directions to form the famous double helix. The overall shape

of the double helix can be thought of as a twisted ladder or a helical staircase with the bases

acting as rungs or steps. Phosphates and sugars are located on the outside edges, holding
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the bases in place. The double helix is constantly in motion, twisting, turning, winding and

unwinding due to forces exerted on it from its changing environment (e.g., transcription

factors, RNA polymerase, nucleosomes, and water) [2].

DNA can take on several different forms. The preferred confirmation in the cell is

called the B-form, containing 10 bases per complete turn of DNA. The backbone of the

B-form has two openings—the major and minor groove—through which proteins can bind

with the bases. It is easier for amino acids to enter the larger major groove than the smaller

minor groove. Each of the four nucleic bases presents a unique pattern of chemical groups

(donors and acceptors) in the major groove of DNA, allowing proteins the ability to bind

to specific sequences of DNA (called the base pair recognition code). The minor groove

also presents an opportunity for proteins to enter, although in this case complementary

base pairs present the same chemical groups making it impossible to distinguish between

them chemically [43, DNA Structures].

Another form of DNA, the A-form, contains an extra twist per turn, making its major

and minor grooves more similar to one another. There are other forms of DNA (e.g., the

Z-form twists in the other direction as the A- and B-forms), although in vivo DNA is

usually found between the A- and B-form [2].

A protein attaches itself to a sequence of DNA when it can make enough stable con-

tacts with bases and backbone. Transcription factors bind DNA in a number of common

structural conformations; common classes of transcription factors include leucine zippers,

helix-turn-helix proteins, and zinc finger proteins [44]. Transcription factors are generally

very specific, binding only to a sequence or range of sequences but not binding to the

vast majority of sequences found within a genome. This level of specificity is required for

meaningful regulation and many other biological molecules also show such a high level

of specificity (e.g., hemoglobin combines only with oxygen, enzymes digest only certain

foods, and antibodies attach only to specific antigens) [45]. The internal workings of the

cell also include non-specific molecules, such as nucleosomes and histones.
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3.1.2 C2H2 Zinc Finger Proteins

An authoritative description of the C2H2 binding domain may be found in [46]. More

recent reviews can be found in [11, 41].3 This section begins by describing sequence

features of C2H2 zinc finger proteins, following by a description of their structure.

Sequence Features of the Zinc Finger Domain

Zinc finger domains are readily identifiable via sequence-based methods. While reported

consensus sequences corresponding to the zinc finger domain vary [11,13,41,46–48], there

is general agreement that zinc fingers share a sequence pattern of C-Xa-C-X12-H-Xb-H,

where X represents any residue and Xa and Xb is an arbitrary sequence of amino acids

of length 2 to 5. Of the 7,005 zinc finger domains annotated via PROSITE [48], the vast

majority of these (97%) match this consensus pattern, while 94% match the consensus

pattern with parameters a = 2 and b = 3.

Figure 3.1 shows a sequence logo for the most frequent occurring zinc finger pattern.

The height of each letter corresponds to the level of conservation for that amino acid,

while the total height of each column of letters represents the overall conservation for that

position. The observed residues agree well with published consensus sequences. There

is a high level of conservation in the linker region (TGEKP), which connects adjacent

finger domains [11,41]. The positions along the domain that are marked with stars make

frequent contact with DNA bases (see next section). The stability of the domains allows

a high level of variability in these positions, which in turn, allows different zinc finger

proteins to bind a range of DNA, and allows the design of novel zinc finger proteins [41].

3Another source of information is the US Patent and Trademark Office, which (at the time of writing)
listed 36 patents with the words ‘zinc finger’ in the title. The earliest patent was given in 1998 for designing
zinc fingers for DNA binding.
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Figure 3.1: Sequence logo of zinc finger domains matching the pattern C-X2-C-X12-H-X3-
H. The height of each position corresponds to the level of conservation for that position,
measured in bits (a perfectly conserved position corresponds to log2(20) bits). Below
the sequence logo is the secondary structure, including two beta strands and an alpha
helix. A well conserved linker region, which connects tandem zinc fingers, is shown near
the end. Positions predominantly responsible for recognizing DNA sequences in canonical
zinc fingers are marked with stars, and are referred to as the -1, 2, 3 and 6 (numbered
relative to the start of the alpha helix). Sequence logo was created using [49].
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Genes with Domain Domains
Organism Number Percent Per Gene

A. mellifera 92 1.5% 5.0
G. gallus 301 1.7% 4.9
D. melanogaster 347 2.1% 4.6
R. norvegicus 469 2.1% 6.9
C. familiaris 556 3.3% 8.5
P. troglodytes 629 2.9% 8.1
M. musculus 715 2.7% 7.9
B. taurus 759 2.0% 6.4
H. sapiens 858 3.1% 8.9
D. rerio 936 3.2% 10.1

Table 3.1: Number of genes in an organism that contain a C2H2 zinc finger domain, as
judged by PROSITE [48]. Columns: model organism, number of genes with at least one
C2H2 zinc finger binding domain and percentage of the organism’s genes that this number
represents, and average number of zinc fingers in genes with at least one. Organisms
represented (from top to bottom): honeybee, chicken, fruit fly, rat, dog, chimpanzee,
mouse, cattle, human, and zebra fish.

Table 3.1 shows the result of scanning for C2H2 zinc finger domains in available

genomes [50] using a profile-based representation [48].4 As seen in the table, zinc fin-

gers are prevalent in multicellular organisms. The number of genes with at least one

zinc finger motif varies, from less than a hundred in the western honeybee to over 800 in

human, and more than 900 in zebra fish. Roughly 1 to 3% of the genes in the genomes

for these organisms code for proteins containing at least a single zinc finger. Of the or-

ganisms shown, dog has the highest concentration of zinc finger containing genes, while

the honeybee has the lowest concentration. The number of finger motifs per gene varies

from a low of five in fruit fly to over ten in zebra fish.

4 [48] reports 99.9% and 98.94% precision and recall rates when scanning SwissProt.
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Structure of Zinc Finger Proteins

The C2H2 zinc finger binding domain has a strongly conserved secondary structure, con-

sisting of two beta strands followed by an alpha helix [43, Structural Motifs of Eucaryotic

TFs]. All three secondary structures are connected to one another through an intermedi-

ate zinc ion. Specifically, two cysteines (located in the beta strands) and two histidines

(located in the alpha helix) bind with zinc. These cross-links between distant parts of the

domain make zinc fingers highly stable, resulting in a smaller, more compact structure

than would be possible without such cross-links [47].

The structure of Zif268 [51], a mouse transcription factor (also known as Egr-1 and

Krox-24) with three zinc finger domains has served as a model system for studying the

specificity of zinc finger protein-DNA interactions. Figure 3.2 shows a rendering of crystal

structure 1AAY [52], which is wild type Zif268 binding to its native binding site. The

protein is seen to wrap around the DNA, with the alpha helix in each finger fitting into

the major groove of DNA. The three binding domains are spaced so that each finger binds

different bases.

Studies of C2H2 zinc finger proteins (e.g., [52, 54]) have found that a large portion of

zinc fingers, called canonical zinc fingers [41], bind DNA in a manner similar to Zif268.

This pattern of side chain-base interactions, which is referred to as the canonical binding

model, is shown schematically in figure 3.3. The amino acid sequence proceeds from right

to left while the mainly contacted DNA strand is shown 5’ to 3’. Only the alpha helix

is situated close enough to the DNA to make contact with bases, and four amino acid

side chains in or near it are responsible for the majority of contacts. These positions are

6, 3, -1 and 2, numbered relative to the start of the alpha helix. Canonical C2H2 zinc

fingers provide a conserved, modular domain which serves as an essential starting point

for predicting the protein’s DNA binding.
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Figure 3.2: Wild type Zif268 protein binding to its native binding site as captured in the
PDB crystal structure 1AAY [52]. Residues in the alpha helix of each finger make contact
through the major groove of DNA. Alpha helical regions are depicted as shaded ribbons.
Contacting amino acids are shown in black. Linker regions and beta strands are shown as
a black string while zinc atoms are shown as gray spheres. The four centrally coordinated
cysteine (yellow) and histidine amino acids (blue) are shown for the second zinc finger
(red ribbon; far right). Crystal structure was rendered using Chimera [53].
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Figure 3.3: Canonical binding pattern frequently seen in C2H2 zinc fingers [41]. Relative
to the start of the alpha helix, positions 6, 3, and -1 contact three consecutive bases on the
main strand, whereas position 2 contacts the following base, but on the complementary
strand. Zinc fingers exhibiting this interaction pattern are referred to as canonical fingers.
Amino acids and bases shown correspond to fingers 1 and 3 of wildtype Zif268 binding to
its natural site.

3.1.3 Analysis of Zinc-Finger Structural Interface

With the availability of many crystal structures, it is possible to estimate how well the

canonical binding model approximates observed bonding in solved structures. Nineteen

crystal structures were gathered from the PDB: 1A1F, 1A1G, 1A1H, 1A1I, 1A1J, 1A1K,

1A1L, 1AAY, 1F2I, 1G2D, 1G2F, 1JK1, 1JK2, 1P47, 1TF6, 1UBD, 1ZAA, 2DRP, and 2GLI.

For each structure, Chimera was used to remove solvent atoms, add hydrogen atoms,

and calculate potential hydrogen bonds between proteins and DNA [55].5 A total of 197

distinct bonded amino-acid base pairs were identified. Considering only the amino acid

involved, table 3.2 shows which amino acid positions (with respect to the start of the

alpha helix) are responsible for the binding between protein and base. Positions -1, 2, 3,

and 6 (canonical amino acid positions) account for the vast majority of found contacts

(98%), supporting the use of only these positions in predicting future interactions.

Next, the binding pattern of amino acids for an individual finger were considered.

Chemical bonds were grouped by their zinc finger, and binding with DNA was compared
5Similar results were obtained using HBPLUS [56].
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Base Contacts Backbone Contacts
Position Number Percent Number Percent

-1 62 31% 7 6%
1 2 2%
2 35 18% 2 2%
3 45 23% 1 1%
5 1 1% 11 10%
6 51 26%
7 51 46%
9 4 4%
10 2 1%

Other 1 1% 33 30%

Total 197 100% 111 100%

Table 3.2: Hydrogen bonds found in nineteen crystal structures containing C2H2 zinc
finger domains. Position refers to the position of the amino acid side chain contacting
DNA. Positions -1, 2, 3, and 6 correspond to canonical position and include 98% of all
base contacts.

against the canonical binding model (several fingers could not be registered successfully

and were removed from the sample). Table 3.3 shows which contacts are most prevalent

in the remaining 76 zinc fingers. Contacts following the canonical binding pattern account

for 98% of all contacts found, although the average finger was found to contain only 2.5

out of the 4 contacts specified in the model.

Contacts
Position Number Percent

6 46 61%
3 41 54%

-1 58 76%
2 35 46%

Other 7 9%

Table 3.3: Contacts following the canonical binding pattern account for 96% (180 out of
187) of all contacts found in 76 fingers from nineteen crystal structures. The canonical
binding pattern states that positions 6, 3, -1 contact three consecutive bases in one strand
whereas position 2 contacts the next base, but on the complementary strand.
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Figure 3.4: Canonical binding model applied to a three fingered proteins, such as Egr-1
(shown here). Actual crystal structures do not exhibit all the depicted contacts, although
a majority of contacts were found in nineteen crystal structures in the PDB.

Of the nineteen crystal structures considered, seventeen exhibited a simple binding

pattern, where consecutive fingers bind consecutive patches of DNA, with a single base-

pair overlap. Figure 3.4 shows this type of binding for a three fingered protein, which

constitutes most of the examples gathered from the literature (as described in section 3.3).

Exceptions to this binding pattern were found in 1tf6 and 2gli. 1tf6 (TFIIIA) is a 6-

fingered protein: fingers 1-3 bind in a manner similar to Zif268, fingers 4 and 6 bind

through the minor groove of the DNA, and finger 5 binds again in the major groove [57].

The spacing between binding sites is not regular. 2gli is a 5-fingered protein: finger 1

does not bind to DNA, fingers 2-4 bind in a manner similar to Zif268, and a gap lies before

the bases contacted by finger 5 [58].
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3.2 Methods

3.2.1 Representing Zinc Fingers

Zinc fingers will be assumed to bind according to the canonical binding model (as shown

in figure 3.4 on the previous page), which will be the basis for representing zinc finger

protein-DNA interactions. The canonical binding model is an approximation often made

when modeling these type of interactions [12,13,42]. A protein-DNA configuration (either

binding or non-binding) is represented mathematically by a feature vector x, where the

coordinate xp,a,b is the number of times amino acid a is in position p in one of the fingers

of the protein and base b would be the contact in the canonical binding model.

The goal is to find a weight vector w that represents the “favorability” of each possible

amino-acid base-pair pairings in each of the four canonical positions.

3.2.2 Standard Support Vector Machines

Given a dataset of binding and non-binding examples, support vector machines (SVMs)

are one means for learning a way to classify the two [59]. SVMs try to find a weight vector

w that best separates binding and non-binding examples, as follows:

minimize ‖w‖2

subject to

 w · xi + b ≥ 1 for binding examples

w · xi + b ≤ −1 for non-binding examples

(3.1)

This optimization searches for the feature vector of minimum length, which can be inter-

preted as the ‘least complicated’ weight vector classifying all examples correctly. Model 3.1

can be used when the dataset is separable (when a weight vector exists that is consistent

with all observed examples). When this is not the case, the following formulation is used.
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minimize
1
2
‖w‖2 + C

∑
i
εi

subject to

 w · xi + b ≥ 1− εi for binding examples

w · xi + b ≤ −1 + εi for non-binding examples

where εi ≥ 0

(3.2)

The optimization finds a compromise between a ‘least complicated’ weight vector and

fitting the training data. C is called the cost factor, and is the tradeoff between these two

alternatives.

The trained weight vector can be used to make predictions for unknown configuration

by calculating p = w ·x+ b for the feature vector x corresponding to a novel configuration

of protein and DNA. A more positive score predicts stronger binding.

3.2.3 Modified SVM

The SVM model shown in model 3.2 has been used successfully to solve a wide range of

machine learning problems [59, 60]. However, it poses two problems when applied to the

current situation. First, in many cases, quantitative information about the binding affinity

of zinc finger-DNA pairs is known. Affinity information is lost in the binary positive and

negative classification, and could be very valuable. Second, experimental protocols vary

in the sources used for gathering experimental data. Specifically, the sources do not agree

on what is considered ‘non-binding’ (for example, ‘non-binding’ in one experiment may

be considered ’weakly-binding’ in another). Therefore, it is unclear how to extract clean

and comparable negative examples from combined sources.

Both concerns are addressed by substituting ‘comparative examples’ in place of ‘non-

binding’ examples in the optimization. As the name suggests, comparative examples

capture the binding preference between two configurations. Suppose x and y are feature

corresponding to two protein-DNA configurations and it is known that configuration x

binds more strongly than configuration y. In terms of the weight vector w, this corresponds
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to w · x + b > w · y + b, so that z = y − x can be added as a negative example, capturing

the desired relation. The modified SVM used during training is shown in model 3.3.

minimize
1
2
‖w‖2 + C

∑
i
εi

subject to

 w · xi + b ≥ 1− εi for binding examples

w · zi ≤ −1 + εi for comparative examples

where εi ≥ 0, and
zi = yi − xi when xi binds more strongly than yi

(3.3)

Including comparative examples (w.x > w.y) require a linear classifier, which precludes

the use of non-linear kernels in the optimization. Kernel functions were tried using a

standard dataset of positive and negative examples. However, the resulting classifier did

not perform as well as the simpler linear model, possibly due to the difficulty in trying to

establish comparable positive and negative examples from various sources.

Implementation

SVM-light [61] version 6.01 was used to solve model 3.3, and found an optimal weight

vector in a time-efficient manner even with over a hundred thousand examples used during

training. Alternative solvers were also tried [62,63], giving similar results.

A cost factor of C = 50 was used, based on trying several different C values for

cross-validation testing (section 3.5.4).

A heuristic that improved performance during testing was to scale error terms for

positive examples so that they are not dominated by other examples [36]. Specifically,

εi was scaled by O/P for error terms associated with positive examples, where P is the

number of positive examples and O be the number of other examples. A second heuristic

was to eliminate the constant term b, thus reducing the number of variables in the model.
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3.2.4 Cross-Validation

It is tempting to calculate the number of misclassified comparative examples using the

learned SVM model. However, this error rate (called the resubstitution error rate) does

not give an accurate indication of the anticipated error for novel examples, as the classifier

may overfit on the learned data [36]. With a potential of 320 variables in the final model,

overfitting is a concern in the current scenario.

There are several standard methods to compensate for overfitting or similar machine

learning difficulties. When the amount of available data is large, a viable option is to

divide the dataset into two parts [36]. Training is done on one part, while the other is

used for the final evaluation. If there are several stages in training, then the data can be

divided into several portions, always reserving one for final testing. In this case, however,

there is a limited supply of data so a more conservative approach is needed.

Cross-validation, used throughout this chapter, removes from training the portion

of the dataset used during testing. Because examples are often related to one another

(e.g., comparative example y − x is related to examples x and y), training examples

are removed on a per-protein basis. As a specific example, human SP1 contains three

binding zinc fingers with contacting amino acids KSHA, RDER, and RDHK (positions -1, 2,

3, 6). When testing on human SP1, any examples with the same contacting amino-

acids is removed from training. Examples with the same contacting amino acids, but in

an alternate order, are also removed from training. Comparative examples are treated

conservatively, removing them if either x or y match a testing example. Using per-protein

cross-validation, performance tests are less likely to be influenced by overfitting or chance.
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3.3 Gathering Experimental Data

3.3.1 Sources of Experimental Data

An extensive literature search was performed to gather examples of binding and non-

binding configurations (as stated by the authors) of C2H2 zinc fingers and DNA. Some of

the experiments quantified the binding affinity binding between protein and DNA, usually

in the form of an association or dissociation value (higher association and lower dissocia-

tion values correspond to stronger binding). Examples with binding affinity information

will be referred to as quantitative examples. Binding affinity, association and dissociation

values are described in more detail in appendix 3.A. The following sources were used to

gather experimental examples, most recent source first.

[64] changed eight three-zinc-finger proteins into repressors by fusing their DNA

binding domain (DBD) with a known repressor domain. The proteins were designed to

bind upstream of HIV-1 genes. One was found to inhibit HIV-1 replication by 75%,

demonstrating the potential of designing novel zinc finger proteins for antiviral therapy.

[65] combined a single zinc finger domain from the human genome with two domains in

Zif268, creating a novel three fingered DBD. These DBDs were later fused with activator

or repressor domains, creating novel activator and repressor transcription factors.

[66] designed several three-fingered and six-fingered proteins to bind upstream of a

human skin-specific gene, allowing the expression of that gene in non-skin cells.

[7] analyzed the binding affinity of wild-type Zif268 and four variants against a variety

of binding sites using a high-throughput microarray based approach. Briefly, a microar-

ray glass slide was filled with different DNA strands, corresponding to different binding

sites. This array was exposed to a solution containing a known concentration of a zinc

finger protein and a non-specific control. The protein and the control were tagged using

fluorescent dyes of differing color. The solution was rinsed, retaining only bound proteins.

The intensities of colors seen on the microarray were measured, indicating the binding
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affinity of the tested protein against all binding sites on the array. This high-throughput

approach allowed the measurement of the binding affinity of 64 binding sites for five pro-

teins, although some combinations of protein-DNA were below experimental detection.

[67] constructed a library of zinc fingers that are capable of binding to 3-base subsites

beginning with adenine. This library was based on a protein that binds more strongly to

its binding site than wild-type Zif268 (the majority of protein variants bound less strongly

than the original).

[68] constructed zinc finger proteins for a nine base-pair site by first creating two

three-fingered proteins, each designed to bind to overlapping five base pair sequences.

The three-fingered proteins were created in such a way so that it is possible to combine

them into a single protein which will bind to the desired site. The resulting proteins were

tested to bind upstream of a HIV-1 promoter.

[69, 70] constructed and analyzed zinc fingers capable of binding to 3-base subsites

beginning with guanine.

[71, 72] used a unique selection protocol to create novel three-fingered zinc finger

proteins. Briefly, the desired binding site was joined to a known two-finger site. The

known site was used as an ‘anchor’ to optimize a single finger extending into the desired

site. Once one finger was known, binding domains where shifted and the process was

repeated, each time adding more of the desired site.

[73] investigated the interactions of the overlapping base between adjacent zinc finger

binding domains. [74] changed individual fingers of Zif268 one at a time, giving information

about the modularity of the C2H2 binding domains.

[75] used phage display to investigate zinc finger DNA binding. Briefly, randomized

zinc finger genes are injected into bacterial viruses (phages) which express the proteins

on their surface. A solution containing a pool of phages with different expressed zinc

fingers is mixed with immobilized strands of DNA. Bacteria with binding zinc fingers

attach themselves to DNA and are not washed away during rinsing. Examples of proteins
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that survived several rounds of selection were given. [76] investigated zinc finger binding

using a SELEX protocol. Unlike phage display, during SELEX the protein is fixed while

a pool of randomized DNA segments compete to bind with it. Binding and non-binding

examples often differed in only a single base, demonstrating the specificity of zinc finger

proteins.

[77, 78] mutated the first finger of Zif268. [79] investigated the binding of three zinc-

finger proteins. Identical and non-identical binding domains were considered, and the

change in binding affinity was measured after exchanging binding domains. [80] changed

key positions in the second finger and reported dissociation values for several binding

sites. [81] reported the relative binding affinity of ten zinc finger proteins (Zif268 and nine

mutations) on a total of fourteen binding sites each.

Definite information about zinc finger interactions was extracted from crystal struc-

tures found in the PDB [82]. Structures that follow the canonical binding model were

taken into consideration: 1A1F, 1A1G, 1A1H, 1A1I, 1A1J, 1A1K, 1A1L, 1AAY, 2DRP, 1F2I,

1G2D, 1G2F, 1JK1, 1JK2, 1ZAA, 1P47.

Binding sites for variants of Egr-1 were taken for a previously published study of

zinc finger binding [12, 83]. Over a thousand positive examples of binding zinc finger

proteins were included from fifty-four journals. Some of this data overlaps data gathered

above. The vast majority of this data were for proteins such as Egr-1, although some

examples were for two fingered proteins. No direct information about the binding affinity

for protein-DNA complexes is given. Many of the experiments were the result of selection

experiments where key amino acids or key nucleotides were randomized and the given

protein-DNA were among the highest binding combinations found.

Finally, binding sites detailed by [13] were added to the dataset.
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Type of Number of
Example Examples

Binding 494
Quantitative 350
Qualitative 144

Non-binding 310
Quantitative 300
Qualitative 10

Comparative 1,302

Table 3.4: Number of examples in the gathered dataset (before processing), not including
data from [12, 83]. Some examples contained quantitative information about binding
affinity (either an association or dissociation value), while qualitative examples were stated
as either binding or non-binding. Comparative examples give information about the
relative binding affinity of two configurations.

3.3.2 Data Processing

Data for [13, 64–81] was entered manually; data for [7] was downloaded from the sup-

plementary information web site; crystal structures were taken from the PDB [82]; data

for [12,83] was taken from a public file. In order to lessen the chance of error, a file format

was created which resembles the way in which experimental results are presented in the

literature. As an example, figure 3.5 shows the input for one source. A small parser was

written to convert such datafiles into a format suitable for further analysis. Table 3.4

shows the number of examples of the initial dataset, before any processing.

Experiments differ on what is considered ‘binding’ and ‘non-binding’. It is not clear

how to compare association and dissociation values for sources with differing experimental

protocols. Thus, it is advantageous to convert the original dataset into a form that is

independent of such differences. While the original dataset contains positive, negative, and

comparative examples, the final dataset contains only positive and comparative examples.

Although sources may disagree on the what is considered binding and non-binding, the

relation between weak and strong binding should be more easily conserved.
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/**
@articleICK97,
author ="M. Isalan and Y. Choo and A. Klug",
title ="Synergy between adjacent zinc fingers in sequence-specific DNA recognition",
journal=PNAS,
year =1997, volume=94, number=11, pages="5617--5621", month=may
**/
source=ICK97

dna=tatatagcg___gcgtatata
# xxx===---...---===xxx

# amino acid positions: -1 1 2 3 4 5 6 7 8 9 10
zf=3
f1=RSDELTRHIRI
f2=__________T
f3=RS_ERKRHTKI

# figure 4
ex=Kd
{
f2=RSDHLTTHIR dna=TGG # Zif
{ f3=D Kd=2.8 KdSd=0.6; } # wt
{ f3=A Kd=10.0 KdSd=3.3; } # mut

//
f2=REDVLIRHGK dna=GTG # F2-Arg
{ f3=D Kd=1.3 KdSd=0.1; } # wt
{ f3=A Kd=5.6 KdSd=1.3; } # mut

}

Figure 3.5: Example of file in the gathered dataset [73]. Essential features of the file format
include: arbitrary tags declared using tag=value, semicolons end examples, curly brackets
designate scope (in the sense of computer languages), and underscores are considered
placeholders. In this data format, placeholders must be filled-in before an example is
printed and tags can only be filled-in, never redefined. These safety mechanisms help
catch errors. For example, the dna= declaration near the beginning ensures that all
examples from this source will have a DNA sequence of equal length. The parser that
processes this file format also checks whether every example that could have been printed
was printed (for example, in case of a missing semicolon).
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Type of Number of
Example Examples

Binding 937
Comparative 19,353

Table 3.5: Number of examples in the final dataset (after processing). The large number
of comparative examples were derived from positive and negative examples in the gathered
dataset (table 3.4 on page 52). The number of binding examples has changed, as data
from [12,83] was added, and duplicate examples in the combined dataset were removed.

The dataset used for training was created as follows. Positive and comparative ex-

amples are passed to the final dataset unaltered. Additional comparative examples are

created considering each source individually. First, every pair of quantitative examples

which association or dissociation values differ by a ratio of two or more are used to create

a comparative example. Second, all positive examples are paired with negative examples,

representing negative examples indirectly in the form of many comparative examples.

Table 3.5 shows the number of examples in the final dataset, while figure 3.6 shows the

frequency of amino acids and binding subsites for individual fingers.

3.3.3 Alternative Sources of Experimental Data

There are several general databases of transcription factors and their binding sites, in-

cluding Transfac [84] and JASPAR [85]. Neither is ideal for a structural-based approach

as the binding pattern is not given explicitly. However, there are computational methods

for predicting the most likely binding site within a larger sequence. For example, [13] used

an iterative approach (expectation maximization) to learn both binding preferences and

the actual binding sites within sequences given in Transfac.

However, there are advantages for using the constructed dataset instead of the databases

described above. In particular, most of the experiments provide quantitative information

about binding affinity, and this is used to construct a large number of comparative exam-

ples. Given high enough concentration, even weakly binding proteins will bind at some
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Figure 3.6: Frequency of amino acids and bases for individual fingers and binding subsites
in the final dataset. (a) shows the frequency of amino acids in positions -1 through 6,
while (b) shows the frequency of binding subsites contacted by an individual C2H2 zinc
finger. DNA is shown 5’ to 3’ on the primary strand. Only binding examples are included
in the figure, and only zinc fingers and bases contacting or within varied subsites (many
experiments varied bases contacted by a single zinc finger, keeping the remaining binding
site fixed).
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level, so a measurement of binding affinity may be helpful in building a computational

model. Moreover, as mentioned above, in the sources gathered for the dataset experiments

were designed in such a way that the alignment of protein to DNA is explicitly known.

3.4 Previous Methods

3.4.1 Sequence Based Methods

The constructed SVM model was compared against several alternate sequence based meth-

ods, briefly described below.

Kaplan et al. [13] A probabilistic method based on the binding sites in the Transfac

database. Transfac does not provide exact sites, but provides a longer sequence in

which the binding site resides, so in order to use this database expectation maxi-

mization was used to learn both the probabilities associated with different amino

acids and bases and the locations of binding sites in the database. Potential binding

sites were scored using a log-odds score, assuming a uniform background probability.

SAMIE [12] A probabilistic computational model of Zif268 binding trained on SELEX

and phage display experimental data gathered from the literature. The model was

fit in order to maximize the specificity of the binding zinc finger.

Mandel-Gutfreund et al. [42] A computational method based on the hydrogen bond-

ing patterns extracted from crystal structures from crystal structures of various

proteins in the PDB and NDB. The weights used in this method represent more

general trends found in protein-DNA interactions, although testing was done on

C2H2 zinc finger proteins.

Suzuki et al. [86] A method based on expert knowledge of biochemical principles. Two

distinct components of protein-DNA binding are considered: chemical and stereo-

chemical. Chemical rules are general and are based on the inherent chemical com-
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patibility of amino acids and bases; a table of numerical compatibilities is given.

Stereochemical rules are specific to individual classes of transcription factors and

correspond to amino acid-base contacts. As in the previous method, the weights

given in this method represent more general principles. C2H2 zinc fingers were

among several transcription factors considered.

3.4.2 Physics-Based Methods

Some methods predict protein-DNA interactions based on detailed crystal structures.

These physics-based methods (e.g., [87,88]) extract the binding pattern between the DNA

and protein (or a close homolog), and use detailed structural information and energy

functions to evaluate protein-DNA configurations. SVM was not compared against these

two, because of computational concerns and because detailed structures are not available

for use for all test proteins.

3.5 Results

3.5.1 Evaluating Adding Comparative Examples

A heuristic which improved overall performance is to expand comparative examples to

include shifted binding sites. Specifically, if a protein-DNA configuration x binds more

strongly than protein-DNA configuration y, then it also binds more strongly than config-

uration y′, where y′ has the DNA strand shifted left or right, or reverse complemented.

First, the classifier was trained on comparative examples originally in the dataset.

Then, reverse-complemented examples were added. Then, the DNA strand of the less-

strongly-binding examples were shifted one, two, or three bases from the original position.

Table 3.6 shows the number of comparative examples in each dataset. Shifted datasets

were compared using binding data for Human SP1, described next.
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Dataset Comparative Examples

Original examples 19,353
Reverse-complemented 38,674
Shifted-by-one base 114,799
Shifted-by-two bases 191,942
Shifted-by-three bases 265,046

Table 3.6: Number of comparative examples after adding shifted examples.

Human SP1

[89] have made available binding sites for transcription factors along human chromosomes

21 and 22. Of the proteins tested, SP1 is a zinc finger protein containing three fingers

binding in tandem as in the canonical binding model described in this chapter. Binding

preferences are given in the form of a p-value comparing the binding of SP1 versus two

controls. From this, binding and non-binding regions were extracted, merging overlapping

regions and removing overlapping regions between binding and non-binding regions. A p-

value of 10−5 or less was used for positive binding sites and 99% or more for negative sites,

resulting in 1,992 binding regions (positives) and 5,646 non-binding regions (negatives).

This dataset gives valuable information for a real protein and gives in vivo information

about binding on a very large sequence. Therefore, it represents a natural testing scenario

that is what a zinc finger classifier may be asked to perform in practice. The majority of

data is also not found in the training dataset, so it represents an external way of testing

the built classifier and was used to optimize model parameters and decide which examples

should be included during training.

Figure 3.7 shows the results of classifying Human SP1 binding sites using different

comparative examples. For each curve, several cost factors were tried and only the optimal

performing value is shown. ROC curves were generated using leave-protein-out cross-

validation, so that Human SP1 protein was not used during training. The classification

power of the resulting classifier increases with the addition of shifted sites, as seen on
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Figure 3.7: Improvement classifying Human SP1 binding sites by adding shifted examples.
The first curve uses only comparative examples explicitly in the dataset. The following
curve adds reverse-complemented examples. Then, the DNA strand of the less-strongly-
binding examples are shifted by one, two, or three bases from the original position. ROC
curves were generated using leave-protein-out cross-validation.
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the ROC curve. Quantitatively, the AUC6 is 17% (original dataset), 22%, 32%, 33%,

and 31% (shifted-by-three bases) as more comparative examples are added. As a result,

all figures and calculations remaining in this chapter have been done using the expanded

shifted-by-two dataset.

3.5.2 Evaluating Data Sources

The learning model introduced in section 3.2 depends on the examples gathered in sec-

tion 3.3. Therefore, it is important that the data used during learning is as accurate and as

complete as possible. Here, this question is addressed by using cross-validation testing to

test whether including each source of data improves upon the overall results. Specifically,

examples from source (a) were treated as testing examples and a training dataset was cre-

ated using leave-protein-out cross-validation. For each remaining source (b), the classifier

was trained and evaluated using the full training dataset and again without any examples

from (b). The percentage of comparative examples classified correctly from source (a) was

used as an indication of performance, and a matched-pairs signed-rank test was used to

test whether adding (b) improves overall performance. Table 3.7 shows the results of the

signed rank test.

All p-values fall within expected values, meaning that all sources either improve per-

formance during cross-validation or do not hurt performance enough to be deemed statis-

tically significant. This supports using all of the data sources during training.

3.5.3 Predicting Binding Affinity

[7] analyzed the binding affinity of wild-type Zif268 and four variants against 64 binding

sites using a high-throughput microarray based approach. Binding affinity measurements

were given for a total of 124 protein-DNA combinations.
6Area underneath the curve, calculated by integrated the roc curve from 0 to 20% false-positive rate

(x-axis).
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Source Better Worse Same Z-score P-value

[66] 14 1 6 2.96 0%
[69] 12 1 8 2.75 1%
[70] 13 4 4 2.41 2%
[74] 9 4 8 1.60 11%
[64] 8 4 9 1.44 15%
[73] 7 3 11 1.40 16%
[68] 7 3 11 1.30 19%
[77] 8 4 9 1.22 22%
[79] 9 4 8 1.21 23%
[82] 3 1 17 1.05 29%
[65] 9 7 5 0.93 35%
[75] 4 2 15 0.86 39%
[67] 6 5 10 0.50 62%
[13] 3 2 16 0.49 62%
[76] 7 6 8 0.45 65%
[7] 8 6 7 0.37 71%
[78] 6 6 9 0.26 80%
[72] 2 2 17 0.10 92%
[80] 4 4 13 -0.08 94%

[12,83] 6 6 9 -0.16 87%
[71] 5 7 9 -0.44 66%
[81] 6 6 9 -0.46 65%

Table 3.7: Testing whether including a source improves overall performance during cross-
validation. Sources are listed on the left. The following three columns show the number of
times including a source helped/worsened/or did not effect performance when calculating
the percentage of comparative examples classified correctly during cross-validation on the
remaining sources. The final two columns give the z-score and p-value associated with a
matched-pair signed-rank test [90], accessing the statistical significance of the previous
three columns.
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Zif268 Kaplan Mandel-Gut- Suzuki
Variant # SVM et al. SAMIE freund et al. et al.

RSDH 15 .51 .30 .38 .40 .39
RGPD 17 .47 .50 .47 .37 .43
REDV 15 .51 .35 .48 .23 .41
LRHN 13 .50 .30 .46 .49 .44

Table 3.8: Correlation coefficients between predicted binding site scores and experimental
binding affinities for the built SVM classifier and previously published methods. First
two columns list the Zif268 protein and number of observations used to calculate the
correlation coefficient. RSDH is the wildtype Zif268 protein. The observations used
correspond to those with binding affinity above experimental detection.

Table 3.8 shows the correlation coefficient between predicted scores and actual binding

affinities for four variants (the non-specific KASN protein was omitted from considera-

tion; each method performed poorly trying to predicting its binding preference). SVM

performance was measured using cross-validation, leaving out the target protein (and any

example made using this protein, or any other protein having the same DNA binding

amino acids) from the dataset during training.

SVM had the highest correlation coefficient for RSDH (wildtype Zif268), REDV and

LRHN (although very close with the second ranking method). It had second best per-

formance for RGPD (tying with another method). Overall, SVM scored very well corre-

lating with published binding affinities, showing that a strong model can be built using

a combination of support-vector-machines, comparative examples, and high-throughput

quantitative data.

3.5.4 Human SP1

As described in section 3.5.1, [89] contains binding data for a single human transcrip-

tion factor, SP1, along two human chromosomes. Positive (binding) and negative (non-

binding) regions were extracted from this dataset, giving information about in vivo bind-

ing of a naturally occurring protein.
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Figure 3.8: Comparison of SVM and four previously published methods in finding Human
SP1 binding sites. ROC curve for SVM was generated using leave-protein-out cross-
validation. The AUC (area underneath the curve, integrated from 0 to 20% false-positive
rate) for each method is: 57% (Kaplan), 56% (SAMIE), 38% (Suzuki), 33% (SVM), 31%
(Mandel-Gutfreund). See section 3.4 on page 56 for details on previous methods.

Figure 3.8 compares the SVM built classifier with four previously published methods.

ROC curves for the SVM were generated using cross-validation, while other methods were

taken from their respective sources. As can be seen, when predicting the binding sites

of human SP1, SVM classifies comparably with [42], yet is outmatched by more recent

methods. It should be stressed, however, that other methods used different datasets for

training. For example, Kaplan et al. [13] extracted data from Transfac [84] using an

expectation-maximization approach, and the authors themselves note they have a large

number of SP1 targets in their dataset. In general, SP1 binds G-rich binding sites, and it
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Kaplan Mandel-Gut- Suzuki
ZF SVM et al. SAMIE freund et al. et al.

A 21 5 1 11 1
B 5 1 65 39 46
D 58 22 2 11 28
E 110 201 59 43 345
F 138 306 520 2,040 1,016
G 606 65 1,385 92 140

Avg. 157 100 339 373 263

Table 3.9: Rankings of target sites within the HIV-1 genome. For each protein, the
method with the lowest ranking site is shown underlined (lower numbers in the table are
better). Protein C was omitted from the table because it was predicted as one of the
weakest binding sites by all computational methods.

is possible that the current dataset, comprised of primarily of mutational data binding a

large variety of sites, does not adequately reflect this bias.

3.5.5 HIV-1

[68] listed several proteins designed to bind to sequences of DNA found within the Human

Immunodeficiency Virus type 1 genome. Seven proteins were engineered to have high

binding affinity to its target site and low binding affinity to the target sites of other

proteins. This section extends (computationally) this type of analysis to the entire HIV-1

genome (Genbank accession number K03455).

Previous scoring methods and the built SVM classifier were used to build a weight

matrix capturing predicted binding preferences for each of the engineered proteins in the

study. This weight matrix was used to scan HIV-1, noting the ranking of the target

site among the protein’s top scoring sites. Because each protein was engineered to bind

to its intended target with high specificity, the target site is expected to be among the

highest scoring sites. SVM classifier was built using cross-validation, while other methods

were taken as-is. Table 3.9 shows the result of these scans (lower numbers in the table

are better). Overall, the SVM classifier had the second best average of all methods,
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most accurately predicting the target site among all possible sites for a single engineered

protein, making SVM competitive with previously published methods. There was no clear

leading approach in this test, as each method had the lowest ranking target site for at

least one protein.

3.5.6 Learned Weights

Table 3.10 show the final SVM weight vector trained using all examples in the dataset.

Learned weights were rounded to two decimal places to increase the numerical stability of

the method. Rounded weights were always used during testing. Empty entries indicate

features no found in the dataset.

3.6 Conclusions

This chapter investigated using structural information and relative binding affinities for

modeling protein-DNA interactions, dealing with a prevalent class of transcription factors

known as C2H2 zinc fingers. Structural analysis verified that these types of proteins bind

DNA in a conserved binding pattern, and that this binding pattern can be used build a

sequence-based model of the protein-DNA interface. Then, an extensive database of C2H2

Zinc Finger interactions was gathered from the literature, including (when available) infor-

mation about the relative binding affinity of various protein-DNA configuration. Finally,

the collected dataset was used to train a modified linear SVM, including a large num-

ber of comparative examples encoding relative binding affinities as well as non-binding

(negative) examples.

Overall results are very promising—the SVM approach performed competitively with

previously published methods in a wide variety of scenarios. SVM was tested using strin-

gent per-protein cross-validation while other methods were run as is. As a result, testing

was done conservatively with respect to the SVM method–so, if it were possible to perform

cross-validation for the other methods, SVM’s relative performance may improve.
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In the future, one possibility would be to expand the database further, perhaps by

including data from Transfac [84] or JASPAR [85]. Methodological improvements are

possible by changing the optimization to include prior knowledge, perhaps in the form of

previously estimated residue and base recognition preferences. Additional improvements

may be possible by changing the basic binding model–for example, by considering contact 2

of one finger together with contact 6 of the next finger, or by using structural information

further to eliminate from consideration residue-base combinations whose small size would

prevent contact.

The current line of research could also benefit by including testing in other settings.

For example, there have been several recent high-throughput in vitro studies mapping

the DNA-binding specificities of transcription factors using DNA microarrays [91] and

protein microarrays [92]. These studies include some zinc finger proteins, and while the

exact binding sites are not known, and so the data cannot be used for training (at least

not as binding examples), they provide a good external source of testing. Similarly, zinc

finger binding preferences have also been explored in large-scale in vivo data (e.g., [93,94]),

and may also provide a useful, though less direct, means for testing.

In conclusion, judging from the current findings, structural models of protein-DNA

binding benefit from including binding affinity information. These types of approaches

are expected to play an increasingly important role as more high-throughput data of

protein-DNA binding is made available.
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3.A Appendix: Binding Affinity

From a chemical point of view, protein-DNA binding are described succinctly with the

following chemical reaction,

Prot + DNA
Kon


Koff

Complex (3.4)

Equation 3.4 states that protein (in this case, zinc fingers) binds with DNA, producing

a protein-DNA complex. According to the law of mass action, the rate of a reaction is

proportional to the concentration of the reactants: the rate of the forward reaction is

Kon[Prot][DNA], while the rate of the reverse reaction is Koff[Complex]. At equilibrium

these two rates are equal, which implies that the following quantity is a constant.

Koff

Kon
=

[Prot][DNA]
[Complex]

(3.5)

Kd = Koff/Kon is known as the dissociation constant, while Ka = 1/Kd is known as

the association constant. Kd is expressed in units of concentration and is equal to the

concentration of DNA required so that exactly half of the protein is bound (i.e.: when

[Prot] = [Complex]). Higher Ka values correspond to stronger binding. Examples with

either a Ka or Kd value are referred to as quantitative examples in the text.

While binding affinity measures the attraction between two molecules, the ability of

a molecule to selectively bind to its intended target is called its binding specificity. Both

binding affinity and specificity are important in controlling transcription. An ideal protein

would have both high affinity and high specificity for its intended target (which implies

low affinity for other targets).
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Chapter 4

Conclusions

This thesis has made made contributions towards solving an important problem that arises

when studying gene expression and regulation: that of identifying transcription factor

binding sites. Approached from a computational viewpoint, identifying binding sites is a

first step in uncovering the transcriptional circuitry of a cell, an understanding of which

ultimately will inform how a cell functions by responding to its changing circumstances.

Two distinct approaches were taken. The first approach, described in chapter 2,

is based on conserved statistical patterns in binding sites. A comprehensive study of

various binding site representation methods was performed, evaluating how well they

could identify additional binding sites of a transcription factor, when given a group sites

it is already known to bind. Cross-validation testing and a rank sum test have shown

that including information content and including local pairwise information results in

statistically significant improvements in classifying binding sites.

The second approach, described in chapter 3, concentrates on a single family of tran-

scription factors with a known structure and well-conserved binding pattern. This binding

pattern was verified using crystal structures from the PDB and used to construct a binding

model. A modified support vector machine (SVM) was used to learn from data gathered

from the literature. The structural approach allows the addition of protein information,
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while the modified SVM allowed including relative binding information through compar-

ative examples. Overall, current performance was comparable to previous methods, as

demonstrated on numerous results, and performance is expected to improve as further

data of relative binding affinity is made available.

While these two approaches towards recognizing transcription factor binding sites are

very different, future research combining the two may be beneficial. For example, in the

sequence-based approach, including pairwise nucleotide correlations resulted in improved

performance in recognizing binding sites, but only if the nucleotides considered were close

together in sequence. It may be possible that more careful selection of pairwise dependen-

cies, perhaps using some structural information, would result in further improvements.

Similarly, the use of several known binding sites for certain zinc finger proteins may be

helpful in further evaluating the effect of residue-base combinations.

Finally, the research presented in this thesis on predicting zinc finger interactions mo-

tivates studying protein-DNA interactions based on other structural motifs. Transcription

factors in the PDB fall into eight structural groups, which can be further classified into

approximately 50 structural families [44]. As quantitative affinity data and examples of

non-binding DNA segments are gathered via high-throughput technologies for structurally

diverse transcription factors, an optimization strategy similar to what was done with the

zinc fingers may be useful for predicting the binding of other structural families.
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