THE THEORY AND PRACTICE OF DATA DESCRIPTION

YITZHAK H. MANDELBAUM

A DISSERTATION
PRESENTED TO THEFACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE
BY THE DEPARTMENT OF

COMPUTERSCIENCE

SEPTEMBER 2006

(© Copyright by Yitzhak H. Mandelbaum, 2006. All rights reserved.

Abstract

Massive amounts of useful data are stored and processed in ad hoc formats for which critical tools like
parsers and formatters do not exist. Ad hoc data formats are often poorly documented, and the data itself
can be very large scale with a significant number of errors, like missing or malformed data and out-of-range
values. Traditional databases and XML systems provide rich infrastructure for processing well-behaved
data, but are of little help when dealing with data in ad hoc formats.

In this thesis, we discuss our attempts to address the challenges of ad hoc data. We explain the design
and implementation afADS/ML, a new language and system that facilitates generation of data processing
tools for ad hoc formats. Theabs/ML design includes features such as dependent, polymorphic and recur-
sive datatypes, which allow programmers to describe the syntax and semantics of ad hoc data in a concise,
easy-to-read notation. ThsDS/ML implementation compiles these descriptions imto structures and
functors that include types for parsed data, functions for parsing and printing, and auxiliary support for
user-specified, format-dependent and format-independent tool generation.

In addition, we present a general theory of data description language$Aike/C, PADS/ML,
DATASCRIPT, and PACKETTYPES In the spirit of Landin, we present a calculus of dependent types to
serve as the semantic foundation for this family of languages. In the calculus, each type describes the phys-
ical layout and semantic properties of a data source. In the semantics, we interpret types simultaneously as
the in-memory representation of the data described and as parsers for the data source. The parsing func-
tions are robust, automatically detecting and recording errors in the data stream without halting parsing.
We show the parsers are type-correct, returning data whose type matches the simple-type interpretation of
the specification. We also prove the parsers are “error-correct,” accurately reporting the number of physical
and semantic errors that occur in the returned data. We use the calculus to describe the features of various
data description languages. Finally, we discuss how the semantics has impactedsfeeandPADS/ML

implementations.

Acknowledgments

| would like to thank my advisor, David Walker, for his advice, encouragment and support, and for
generally putting up with me, from my first year in graduate school until my last. | also owe Dave a special
thanks for his apparently limitless flexibility and understanding of my needs as a parent of young children.

Next, | would like to thank Kathleen Fisher, my “second” advisor. From the first summer that | worked
with her at AT&T Labs through the end of my work on my thesis, Kathleen has devoted countless hours
to helping me in all aspects of my work. Despite her incredibly busy schedule, she has consistently found
time to discuss my questions or concerns, whether about research, grad school, or job hunting. | would also
like to thank Kathleen and Andrew Appel for reading my thesis and giving me excellent feedback on both
content and style. | owe an additional thanks to Andrew for introducing me to the field of Programming
Languages.

| would like to thank Melissa Lawson, our incredible Graduate Coordinator, for all of her help with
anything and everything administrative over my five years in graduate school.

I thank my wife, Rachel, for her constant support, patience, and love. And for showing me what it
really means to work hard. Along with her, | want to thank my wonderful children, Rivka and Batya, for
constantly reminding me that there are things in life that are far more important than one’s work. | owe
a special thank you to my parents, Richard and Paulette Mandelbaum, for helping me in every way, from
as early as | can remember until today. Any attempt on my part to list everything that | owe them, or
even a fraction of it, would only lessen the significance of their contributions. | would also like to thank
my parents-in-law, Gerald and Sunny Katz, for their constant support and generous help with watching,
playing with, and caring for our children when we needed them.

Finally, | would like to thank the numerous people who helped me along the way, in ways both big
and small: Robert Gruber and Mary Famez, of AT&T Labs; my fellow Programming-Languages grad-
uate students Jay Ligatti, Limin Jia, Sudhakar Govindavajhala, Dan Dantas, and Frances Spalding; Derek
Dreyer, of Toyota Technological Institute at Chicago;and professors Kevin Wayne, Vivek Pai, Kai Li, and
J.P. Singh.

This material is based upon work supported by National Science Foundation grants numbers CCF-
0238328 and 11S-0612147, and a Sloan Fellowship. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author and do not necessarily reflect the views of the

National Science Foundation or the Sloan Foundation.

Contents

ADSTract iii
1 Introduction 1
1.1 TheChallengeof AdhocData, 1
1.2 PADS/Cand PADS/ML e 5
1.3 ThesSisOVerview 9
2 PADS/ML: A Functional Data Description Language 11
2.1 Introduction L e e 11
2.2 Describing Datain PADS/ML 13
221 Simple Structured TYpeS e 14
2.2.2 Recursive TYPES i i 17
2.2.3 Polymorphic Types and Advanced Datatypes 17
2.3 From PADS/MLtoO'CAML e 21
231 TypesasModules. 21
2.3.2 Usingthe Generated Libraries, 24
2.4 The Generic Tool Framework e 26
2.4.1 The Generic-Tool Interface 29
242 ExampleTools e 30
2.5 Future Implementation Work and Conclusions 32
3 A Theory of Data Description Languages 34
3.1 ADataDescriptionCalculus 37

3.1.1 DDCHSYNAX . . . v o e e e 38

3.1.2 HostLanguage e e 39
3.2 DDC*SemantiCS e 41
3.21 pDcHKIinding e 44
3.2.2 pbc*Normalization 45
3.2.3 Representation Semantics 46
3.2.4 Parsing Semanticsoftbec™ oL 49
3.3 Metatheory e 56
3.3.1 Type COIrectness ot i e e e 62
3.3.2 Canonical Forms 66
3.4 Encoding®DLSINDDC™ o i e e 70
3.4.1 IPADS: AnldealizedDDL 70
3.4.2 paDSElaboration 71
3.4.3 BeyondPADS 71
3.5 Applications of the Semantics 77
351 BugHunting 77
3.5.2 Principled Language Implementation L. 77
3.5.3 Distinguishing the Essential from the Accidental 78
3.6 Future Workand Conclusions. 78
4 Related Work and Conclusions 81
4.1 Related Work 81
4.1.1 PADSIML . . o o 81
4.1.2 DDCY . . o e e 85
4.2 ConcludingRemarks e 86
A Proofs of Selected Lemmas and Theorems 88
B Complete PADS/ML Grammar 100
C PADS/ML Runtime Interface 102

Vi

D Generic-Tool Interface 107

E Generic XML Conversion Tool 111

Vii

Chapter 1

Introduction

1.1 The Challenge of Ad hoc Data

XML. HTML. CSV. JPEG. MPEG. These data formats represent vast quantities of industrial, governmental,
scientific, and private data. Because they have been standardized and are widely used, many reliable,
efficient, and convenient tools for processing data in these formats are readily available. For instance,
mainstream programming languages typically have libraries for parsing XML and HTML as well as reading
and transforming images in JPEG or movies in MPEG. Query engines are available for querying XML
documents. Widely-used applications like Microsoft Word and Excel automatically translate documents
between HTML and other standard formats. In an ideal world, all data would be in such formats. In reality,
however, we are not nearly so fortunate.

Vast amounts of data are maintaine@hhoc data formats nonstandard data formats that lack readily-
available tools for common data processing tasks, such as parsing, querying, analysis, or transformation.
Every day, network administrators, financial analysts, computer scientists, biologists, chemists, and physi-
cists deal with ad hoc data in a myriad of complex formats. Since off-the-shelf tools for processing these
ad hoc data formats do not exist or are not readily available, talented scientists, data analysts, and program-
mers must waste their time on low-level chores like parsing and format translation to extract the valuable
information they need from their data.

At AT&T alone, analysts work with numerous data sources, including call detail data™{@GHP

web server logs [KR0O1], netflows capturing Internet traffic [Net], log files characterizing Internet back-

Name: Use

| Representation

Processing Problems

Gene Ontology (GO) [Con]:
Gene Product Information

Variable-width
ASCI| records

White-space ambiguities

SDSS/Reglens Data [MH®)5]:
Weak gravitational lensing analys

Floating point numbers,
samong others

Repeated multiplicative error

Web server logs (CLF):
Measuring web workloads

Fixed-column
ASCII| records

Race conditions on log entry
Unexpected values

AT&T provisioning data (Sirius):
Monitoring service activation

Variable-width ASCII records

Unexpected values
Corrupted data feeds

AT&T call detail data: Fixed-width Undocumented data

Phone call fraud detection binary records

AT&T billing data: Cobol Unexpected values
Monitoring billing process Corrupted data feeds

IP backbone data (Regulus) ASCII Multiple missing-value repre-

Monitoring network performance

sentations. Undocumented da

Netflow
Monitoring network performance

Data-dependent number of
fixed-width binary records

Missed packets

Newick Standard: Immune
system response simulation

Fixed-width ASCII records
in tree-shaped hierarchy

No known problems

OPRA:
Options-market transactions

Mixed binary & ASCII records
with data-dependent unions

100-page informal
documentation

Palm PDA:

Device synchronization

Mixed binary & character
with data-dependent constrain

No high-level
tsdocumentation available

Figure 1.1: Selected ad hoc data sources.

ta

bone resource utilization, amd wire formats for legacy telecommunication billing systems. Biologists

manipulate their own data formats, including phylogenies [Newa] (evolutionary trees describing the an-

cestor/descendent relationships between organisms) and gene ontologies [Con] (shared vocabularies for

attributes of genes and gene products). In the financial community, the Options Price Reporting Author-

ity (OPRA) provides financial institutions with last sale information (information about options sales) and

current options quotations (up-to-date option price listings) [Aut05].

Figure 1.1 summarizes some of the salient characteristics of these sources and others to give a partial

sense of the range and pervasiveness of ad hoc data. It describes ad hoc data formats from several different

domains ranging from genomics to cosmology to networking to finance to internal corporate billing infor-

mation. They include ASCII, binary, and Cobol data formats, with both fixed and variable-width records,

ranging in size from relatively small files through network applications which process over a gigabyte per

second. Figures 1.2, 1.3, 1.4 and 1.5 provide data fragments from a number of these data sources to provide

the user with concrete examples of ad hoc data.

format-version: 1.0

date: 11:11:2005 14:24

auto-generated-by: DAG-Edit 1.419 rev 3
default-namespace: gene_ontology

subsetdef: goslim_goa "GOA and proteome slim"

[Term]

id: GO:0000001

name: mitochondrion inheritance

namespace: biological_process

def: "The distribution of mitochondria \, including the mitochondrial
genome)\, into daughter cells after mitosis or meiosis \, mediated by
interactions between mitochondria and the cytoskeleton."
[PMID:10873824,PMID:11389764, SGD:mcc]

is_a: G0:0048308 ! organelle inheritance

is_a: G0O:0048311 ! mitochondrion distribution

Figure 1.2: Ad hoc data in biology. Shown here is a fragment of the Gene Ontology [Con] encoded in the
OBO format, including the file header and the first entry in the ontology. The Gene Ontology describes
gene products and links genes known to be related.

HAOOOOOOOOSTART OF TEST CYCLE

aA00000001BXYZ U1AB0000040000100B0000004200

HLOOOOO0O02START OF OPEN INTEREST

d 00000003FZYX G1AB0000030000300000

HMOOOOOOO4END OF OPEN INTEREST

HEOOOOOOO5START OF SUMMARY

f 00000006NYZX B1QB00052000120000070000B000050000000520000
00490000005100+00000100B00000005300000052500000535000

HFOOO000007END OF SUMMARY

k 00000008LYXW B1KB0000065G0000009900100000001000020000

HBOOOOOOO9END OF TEST CYCLE

Figure 1.3: Ad hoc data in finance. The Options Price Reporting Authority (OPRA) provides last sale

information and current options quotations to customers in its own proprietary format. Here we provide

an example data fragment — adapted from the OPRA format’s manual [AutO5] — describing a simple test
transaction.

207.136.97.49 - - [15/0Oct/1997:18:46:51 -0700]
"GET /tk/p.txt HTTP/1.0" 200 30

tj62.aol.com - - [16/0ct/1997:14:32:22 -0700]
"POST /scpt/dd@grp.org/confirm HTTP/1.0" 200 941

234.200.68.71 - - [15/0Oct/1997:18:53:33 -0700]
"GET /r/img/gift.gif HTTP/1.0 200 409

240.142.174.15 - - [15/0Oct/1997:18:39:25 -0700]
"GET /tr/img/wool.gif HTTP/1.0" 404 178

188.168.121.58 - - [16/0Oct/1997:12:59:35 -0700]
"GET / HTTP/1.0" 200 3082

214.201.210.19 ekf - [17/0Oct/1997:10:08:23 -0700]
"GET /img/new.gif HTTP/1.0" 304 -

Figure 1.4: Ad hoc data from web server logs. Shown here is a six-entry fragment of a web server log,
encoded in the Common Log Format. Each entry has been broken into two lines for readability.

00000000: 9192 d8sfb 8480 0001 05d8 0000 0000 0872 r
00000010: 6573 6561 7263 6803 6174 7403 636f 6d00 esearch.att.com.
00000020: 00fc 0001 cOOc 0006 0001 0000 0el0 0027 '
00000030: 036e 7331 c00c 0a68 6f73 746d 6173 7465 .nsl...hostmaste
00000040: 72cO0 0Oc77 64e5 4900 000e 1000 0003 8400 r..wd.l.........
00000050: 36ee 8000 000e 10cO OcOO0 Of00 0100 000e 6...............
00000060: 1000 0a00 0a05 6¢69 6e75 78cO0 OccO 0c00 ... linux.....
00000070: 0f00 0100 000e 1000 0OcOO 0aO7 6d61 696¢C mail
00000080: 6d61 6ecO OccO 0cO0 0100 0100 000e 1000 man.............
00000090: 0487 cfla 16c0 0cO0 0200 0100 000e 1000
000000a0: 0603 6e73 30cO0 OccO 0cO0 0200 0100 000e ..nsO...........
000000b0: 1000 02c0 2e03 5f67 63cO 0cO0 2100 0100 _gc..l...
000000c0: 0002 5800 1d00 0000 640c c404 7068 7973 ..X.....d...phys
000000d0: 0872 6573 6561 7263 6803 6174 7403 636f .research.att.co

Figure 1.5: Ad hoc data in computer networking. Shown here is a fragment of a DNS packet, as displayed
by the hexdump program. The left-most column provides byte numbers (in hexadecimal), the center
eight columns display the contents in hexidecimal, and the remaining columns display the same content in
ASCII, using a’.’ when the corresponding byte is unprintable.

Ad hoc data poses a number of challenges to its users. In addition to the inconvenience of having to
build custom processing tools from scratch, the nonstandard nature of ad hoc data frequently leads to other
difficulties. First, documentation for the format may not exist, or it may be out of date. For example,

a common phenomenon is for a field in a data source to fall into disuse. After a while, a new piece of
information becomes interesting, but compatibility issues prevent data suppliers from modifying the shape
of their data, so instead they hijack the unused field, often failing to update the documentation to reflect the
change.

Second, such data frequently contain errors, for a variety of reasons: malfunctioning equipment, pro-
gramming errors, nonstandard values to indicate “no data available,” human error in entering data, and
unexpected data values caused by the lack of good documentation. Detecting errors is important, because
otherwise they can corrupt valid data. The appropriate response to such errors depends on the applica-
tion. Some applications require the data to be error free: if an error is detected, processing needs to stop
immediately and a human must be alerted. Other applications can repair the data, while still others can
simply discard erroneous or unexpected values. For some applications, errors in the data can be the most
interesting part because they can signal where two systems are failing to communicate.

Today, many programmers tackle the challenge of ad hoc data by writing scripts in languages like Perl.
Unfortunately, this process is slow, tedious, and often unreliable. Error checking and recovery in these
scripts is frequently minimal or nonexistent because, when present, such error-handling code swamps the
main-line computation. The program itself is often unreadable by anyone other than the original authors
(and usually not even them in a month or two) and consequently cannot stand as documentation for the
format. Processing code can end up intertwined with parsing code, making it difficult to reuse the parsing
code for different analyses. In general, while makeshift programs suffice for short-term use, their benefits
come at a high cost. Yet, the cost in time and effort of systematically developing analysis software is well

beyond what most analysts can afford.

1.2 PADS/C and PADS/ML

We have designed tieaDs/ML language to address the challenges of ad hoc #atas/ML has evolved

from prior work by Fisher and Gruber ambps/c * [FG05]. BothPADS/ML and PADS/C are high-level

1We refer to the originabADS language asADS/C to distinguish it fromPADS/ML.

languages for declaratively describing data sources such that descriptions can be used to automatically
generate a suite of tools for processing the data source. Each language supports the description of the phys-
ical format of a data source and its semantic constraints. Such constraints might specify ranges on fields
in the data source, or relationships between fields. Both languages are general-purpose data description
languages, not focused on any particular data encoding or application domain. They support a variety of
data encodings: ASCII formats used by financial analysts, medical professionals and scientists; EBCDIC
formats used in Cobol-based legacy business systems; binary data from network applications; and mixed
encodings as well.

For bothpaDS/C and PADS/ML, authors describe data sources declaratively using type declarations.
PADS/C types are based on the types of therogramming language and theDs/c compiler generates
tools as libraries of source code.PADS/ML types are based on the types of the language and the
PADS/ML compiler generates tools a8 modules.PADS/ML goes beyondADS/C in a number of ways,
most notably with improved support for reusing descriptions and for extending the suite of generated tools.
Both of these languages can describe a wide range of real data formats, including all of those mentioned in
Table 1.1.

A key benefit of our approach is the high return-on-investment that analysts can derive from describing
their data declaratively. While the suite of tools generated from a description varies betnwe®o and
PADS/ML (PADS/C currently produces more tools because of its greater maturity), the core tools produced
by the compilers for both languages are a parser and a printer for the associated data source. The parser
maps raw data into two data structures: a canomggaksentatiorof the parsed data ancparse descriptar
a metadata object detailing properties of the corresponding data representation, including any errors that
may have occured during parsing. Parse descriptors provide applications with programmatic access to this
meta data. The printer inverts the process, mapping internal data structures and their corresponding parse
descriptors back into raw data. In addition, both compilers can generate tools to convert the data into
XML, print the data in human-readable form, check whether the data meets its semantic constraints, and
summarize the data.

As an example, Figure 1.6 illustrates hewbs/c andPADS/ML parsers are generated and used. In the
diagram, a data analyst constructs a type describe the syntax and semantic properties of the format in

guestion. A compiler converts this description into parsing code, which maps raw data into an in-memory

Data Description

(Type T)

Description
Compiler

Representation
for Type T

010010100100.. Generated | (Gazz:ic)
Parser Cose
Parse

Descriptor
for Type T

Figure 1.6: lllustration of generation and usersbs/c andPADS/ML parsers.

representation and parse descriptor. A host-language program (user written or compiler generated) can then
analyze, transform or otherwise process the data representation and parse descriptor.

The architecture oPADS/ML and PADS/C helps programmers face the challenges of ad hoc data in
multiple ways. Both languages allow programmers to describe both the physical layout of data as well as
its deeper semantic properties. Yet, despite this expressiveness, format specifications are easier to write
than the equivalent low-leveleRL script or C parser, as we will see in Chapter 2. The domain-specific
constructs of the language simultaneously ease the programming burden for the user while restricting the
range of expressable programs, and, hence, expressable bugs. Once written, such specifications serve as
high-level documentation that is more easily read and maintained. For example, if a data source changes,
as they frequently do, by extending a record with an additional field or new variant, one often only needs to
make a single local change to the declarative description to keep it up-to-date. Furthermore, as modifying
the description is the most effective way to update the generated tools, the documentation and tools are
necessarily maintained together.

PADS/C and PADS/ML address the particular challenges of error-handling in two ways. First, both
compilers automatically include systematic error handling code in the generated tools. For example, the
generated parsers check all possible error cases: system errors related to the input file, buffer, or socket;
syntax errors related to deviations in the physical format; and semantic errors in which the data violates
user constraints. Yet, because these checks appear only in generated code, they do not clutter the high-level
declarative description of the data source. Moreover, since tools are generated automatically by a compiler

rather than written by hand, they are far more likely to be robust and far less likely to have dangerous

vulnerabilities such as buffer overflows. Secopdps/c andPADS/ML parsers return parse descriptors so
that application-writers can respond to errors in application-specific ways. Based on the parse descriptors,
for example, programmers can choose to fix or remove erroneous data, or even halt parsing entirely.

Another benefit of theeADS languages is their basis in type theory, which is especially helpful as
ordinary programmers have built up strong intuitions about types. We have exploited these intuitions in
the design oPADS/ML andPADS/C to make the syntax and semantics of descriptions particularly easy to
understand, even for beginners. For instance, an array type is used to describe sequences of data objects.
Similarly, union types are used to describe alternatives in the data source.

Finally, we support large data sources by generatingtiple-entry point parserswhich provide a
separate point to begin parsing for each type declaration in the description. In this way, programmers can
choose the granularity at which to parse the data source. For example, a data source that consists of a
sequence of records could be parsed in (at least) two ways. The programmer could use the entry point that
corresponds to the description of the entire source, in which case the parser would return after parsing the
entire source. Or, the programmer could parse the source one record at a time, by using the entry point that
corresponds to the description of a single record. Notice that the former strategy might be appropriate for a
small data source that would fit entirely into main memory, whereas the latter strategy might be appropriate
for a large data source where only one record, or group of records, could fit in memory at once.

As an aside, although the syntax of everyday programming languages might be considered ad hoc, we
explicitly exclude programming language syntax from our domain of interest. The challenges related to
programming languages are different than those of the kind of data with which we are concerned. For
example, programming languages can be (nearly always) described with context-free grammars, whereas
other data sources often cannot. It is rarely, if ever, worth compiling a program with errors in it, while we
quite often need to be able to process data sources with errors. The tools that we produce from descriptions,
like the summary tool and thevL converter, would not be useful for processing a program. Perhaps most
importantly, a great deal of work has gone into addressing the challenges of processing programming

language syntax, while the challenges presented by other forms of ad hoc data have been largely neglected.

1.3 Thesis Overview

In this thesis, we will discuss the design and implementatiopaafs/mL followed by a general theory of

data description languages. Chapter 2 presentsAhe/ML language, discusses the process of compiling

a PADS/ML description into useful tools, provides example uses of these tools, and disensségL’s

tool development framework. Chapter 3 focuses on the semantics of data description languages. We define
the syntax and semantics of a formal data description language, call@htadescription Calculusr

DDc®. We designed the constructs of this language for simplicity and orthogonality, each intended to serve
a single purpose. We define the semanticeaais/c through an elaboration of the complex constructs of
PADS/C into the simpler constructs afbc®. Finally, we discuss howbDc® can be used more broadly to
define the semantics of other data description languages. We conclude with a discussion of related work
for both PADS/ML andDDc®. Note that we will not discusBaDS/C in this thesis, except as it relates to

our work onpPADS/ML and our theory of data description languages, because the design and development
of PADS/C were done largely independently of the work presented in this thesis.

The bulk of this thesis is based on two previous works. Chapter 2 is based on the technical re-
port “PADS/ML: A Functional Data Description Language,” by Yitzhak Mandelbaum, Kathleen Fisher,
David Walker, Mary Ferandez, and Artem Gleyzer [MFW06]. Chapter 3 is based on the published
paper “The Next 700 Data Description Languages,” by Kathleen Fisher, Yitzhak Mandelbaum and David
Walker [FMWO06]. Both of these works were edited and expanded considerably for this thesis. At an aes-
thetic level, we have attempted to unify the works into a coherent whole and we have expanded and revised
the explanatory text in numerous places. At a technical level, Chapter 3 extends and revises the theory
and metatheory presented in “The Next 700 Data Description Languages” based on new work presented
in “PADS/ML: A Functional Data Description Language.” The main innovation of the technical report is
the ability to define functions from types to types, which are needed to nraaet/ML’s polymorphic
datatype. In addition, we simplify the overall semantics by making a couple of subtle technical changes.
We have eliminated the complicated “contractiveness” constraint from our earlier work, and we now treat
recursive type variables as abstract, rather than storing their unfoldings in the kinding context. We have
also restated our “error correlation” theorem as a canonical forms lemma. Finally, this thesis contains two

important contributions that are not found in either of the other works: first, we include the statements of all

essential lemmas for the meta-theorypafc®, in addition to proofs and proof sketches, where appropriate;

second, we specify the formal semanticeabs/ML polymorphic, recursive datatypesmmc®.

10

Chapter 2

PADS/ML: A Functional Data

Description Language

2.1 Introduction

PADS/ML is a domain-specific language designed to improve the productivity of data analysts, be they
computational biologists, physicists, network administrators, healthcare providers, financial analysts, or
others. The design of ttreaDS/ML language was inspired by the type structure of functional programming
languages. SpecificallpaDs/ML provides dependent, polymorphic recursive datatypes, layered on top of
a rich collection of base types, to specify the syntactic structure and semantic properties of data formats.
Together, these features enable analysts to write concise, complete, and reusable descriptions of their data.
We describe theabs/ML language using examples from several domains in Section 2.2.

A key benefit of our approach is the high return-on-investment that analysts can derive from describing
their data inPADS/ML. In particular,PADS/ML makes it possible to produce automatically a collection of
data analysis and processing tools from each description. As a starfdkBvL compiler generates from
each description a parser and a printer for the associated data source. The parser maps raw data into two
data structures: a canonicapresentatiorof the parsed data andparse descriptgra metadata object

detailing properties of the corresponding data representation. Parse descriptors provide applications with

11

programmatic access to errors detected during parsing. The printer maps data representations back into raw
data, guided by the corresponding parse descriptors.

We have implementedabs/ML by compiling descriptions int@’ CAML code. We use a “types as
modules” implementation strategy in which eagkbs/ML type becomes a module and eastDs/ML
type constructor becomes a functor. We chaseas the host language because we believe that functional
languages lend themselves to data processing tasks more readily than imperative languages such as
JAVA. In particular, constructs such as pattern matching and higher-order functions make expressing data
transformations particularly convenient. Section 2.3 describes our “types as modules” strategy and shows
how PADS/ML-generated modules together with functiondEAML code can concisely express common
data-processing tasks such as error filtering and format transformation.

In addition to generating parsers and printers, our framework permits developers to add
format-independent, ayeneric tools without modifying theeADS/ML compiler. A new tool need only
match a generic interface, specified asvansignature. Correspondingly, for eaeADS/ML description,
the PADS/ML compiler generates a metatool (a functor) that takes a generic tool and specializes it for use
with the particular description. Section 2.4 describes the tool framework and gives examples of three
generic tools that we have implemented: a data printer useful for description debugging, an accumulator
that keeps track of error information for each type in a data source, and a formatter that maps data into
XML .

PADS/ML has evolved from previous work amnDs/c [FGO5], butPADS/ML differs from PADS/C in
three significant ways. First, it is targeted at tine family of languages. UsingiL as the host language
simplifies the implementation of many data processing tasks, like data transformation, which benefit from
ML’s pattern matching and high level of abstraction. Second, umi®@s/c types,PADS/ML types may
be parameterized by other types, resulting in more concise descriptions through code reuse. ML-style
datatypes and anonymous nested tuples also help improve the readability and compactness of descriptions.
Third, PADS/ML provides significantly better support for the development of format-independent tools
with its generic interface against which such tool can be writtenpADS/C, format-independent tools
are written as code generators within the compiler, and, therefore, developing a format-independent tool
requires understanding and modifying the compiler.

In summary, this chapter discusses the following contributions:

12

e We have designed and implementexbs/mML, a novel data-description language that includes de-
pendent polymorphic recursive datatypes. This design allows data analysts to express the syntactic
structure and semantic properties of data formats from numerous application domains in a concise

and easy-to-read notation.

e Our PADS/ML implementation employs an effective and general “types as modules” compilation
strategy that produces robust parser and printer functions as well as auxiliary support for user-

specified tool generation.

2.2 Describing Data in PADS/ML

A pADS/ML description specifies the physical layout and semantic properties of an ad hoc data source.
These descriptions are composed of types: base types describe atomic data, while structured types de-
scribe compound data built from simpler pieces. Examples of base types include ASCIl-encoded, 8-bit un-
signed integersRuint8) and 32-bit signed integer®int32), binary 32-bit integersRbint32), dates
(Pdate), strings Pstring), zip codesPzip), phone humberdphone), and IP addressePRip). Se-
mantic conditions for such base types include checking that the resulting number fits in the indicated space.
For examplePint16 checks that any integers that it parses fit into 16-bits.

Base types may be parameterized My values. This mechanism reduces the number of built-in
base types and permits base types to depend on values in the parsed data. For example, the base type
Puintl6_FW(3) specifies an unsigned, two-byte integer physically represented by exactly three charac-
ters, and the base tystring takes an argument indicating the character in the source that immediately
follows the string, which is called thterminator character

To describe more complex datbs/ML provides a collection of type constructors derived from the
type structure of functional programming languages like Haskell and ML. We explain these structured types
in the following subsections using examples drawn from data sources that we have encountered in practice.
However, we do not cover every detail BAiDS/ML in this section. For a complete listing of the syntax,

please see Appendix B.

13

0/1005022800
9153]91531/00|0]0]|152268|LOC_6|0|FRDW1|DUO|LOC_CRTE|1001476800|LOC_OS_10|1001649601
9152|9151|1]9735551212|0||9085551212|07988|no_ii152272|EDTF_6|0JAPRL1|DUO|10]1000295291

Figure 2.1: Sirius data used to monitor billing in telecommunications industry.

2.2.1 Simple Structured Types

The bread and butter of BADS/ML description are the simple structured types: tuples and records for
specifying ordered data; lists for specifying homogeneous sequences of data; sum types for specifying
alternatives; and singletons for specifying the occurrence of literal characters in the data. We describe each
of these constructs as applied to the Sirius data presented in Figure 2.1.

Sirius data summarizes orders for phone service placed with AT&T. Each Sirius data file starts with a
timestamp followed by one record per phone service order. Each order consists of a header and a sequence
of events. The header has 13 pipe separated fields: the order number, AT&T’s internal order number, the
order version, four different telephone numbers associated with the order, the zip code of the order, a billing
identifier, the order type, a measure of the complexity of the order, an unused field, and the source of the
order data. Many of these fields are optional, in which case nothing appears between the pipe characters.
The billing identifier may not be available at the time of processing, in which case the system generates a
unique identifier, and prefixes this value with the string_iiido indicate that the number was generated.

The event sequence represents the various states a service order goes through; it is represented as a newline-
terminated, pipe-separated list of state, timestamp pairs. There are over 400 distinct states that an order
may go through during provisioning. The sequence is sorted in order of increasing timestamps. From this
description, it is apparent that English is a poor language for describing data formats!

Figure 2.2 contains theaDps/ML description for the Sirius data format. The description is a se-
guence of type definitions. Type definitions precede uses, therefore the description should be read bot-
tom up. The typeSource describes a complete Sirius data file and denotes an ordered tuple contain-
ing a Summary_header value followed by anOrders value. Other tuple types are defined in the
Summary_header , Event , andOrder types.

The typeOrders uses the list type constructBtist to describe a homogenous sequence of values
in a data source. THelist constructor takes three parameters: on the left, the type of elements in the list;

on the right, a literabeparatorthat delimits elements in the list, and a litetatminator. In this example,

14

ptype Summary_header = "0|" * Ptimestamp * \n’

pdatatype Dib_ramp =
Ramp of Pint
| GenRamp of "no_ii" * Pint

ptype Order_header = {
order_num : Pint;

|'; att_order_num : [i:Pint | i < order_num];

|'; ord_version : Pint;

|'; service_tn : Pphone Popt;

I'; billing_tn : Pphone Popt;

'I'; nlp_service_tn : Pphone Popt;

|'; nlp_billing_tn : Pphone Popt;

|'; zip_code : Pzip Popt;

I!.

I

I

I

I

'I'; ramp : Dib_ramp;

", order_sort : Pstring(’|);
'I'; order_details : Pint;
I's unused : Pstring(’|);

", stream : Pstring(’|’);

}

Pstring(|’) * ' * Ptimestamp
Event Plist(|’, \n’)

ptype Event
ptype Events

ptype Order
ptype Orders
ptype Source

Order_header * Events
Order Plist(\n’, peof)
Summary_header * Orders

Figure 2.2:pADS/ML description of Sirius provisioning data.

15

ptype BranchLength = ' * Pfloat32

pdatatype Tree =
Interior of ' * Tree Plist(’,’,’)’) * ')’ * BranchLength
| Leaf of Pstring(’:") * BranchLength

Figure 2.3:pADS/ML description of Newick format.

the typeOrders is a list of Order elements, separated by a newline, and terminatgeeby , a special
literal that describes thend-of-file marker Similarly, theEvents type denotes a sequence®fent
values separated by vertical bars and terminated by a newline.

Literal characters in type expressions denote singleton types. For exam#wethie type is a string
terminated by a vertical bar, followed by a vertical bar, followed by a timestamp. The singletoifi type
means that the data source must contain the vertical bar character at this point in the input stream. String,
character, and integer literals can be embedded in a description and are interpreted as singleton types. For
example, the singleton typ8|" in theSummary_header type denotes thed| " string literal.

The typeOrder_header is a record type, which is essentially a tuple type in which each field may
have an associated name. The named &#idorder_num illustrates two other features eADS/ML:
dependencies and constraints. Haté,order_num depends on the previous fielokder_num , and
is constrained to be less than that value. In practice, constraints may be complex, have multiple dependen-
cies, and can specify, for example, the sorted order of records in a sequence. Constrained types have the
form [xT | €] wheree is an arbitrary pure boolean expressioata satisfies this description if it
satisfiesT and booleare evaluates to true when the parsed representation of the data is substituted for
If the boolean expression evaluates to false, the data contagrmanticerror.

The datatype definition ddib_ramp specifies two alternatives for a data fragment, either one integer
or the fixed strind'no_ii" followed by one integer. The order of alternatives is significant, that is, the
parser attempts to parse the first alternative and only if it fails, will it attempt to parse the second alternative.
This semantics differs from similar constructs in regular expressions and context-free grammars, which

nondeterministically choose between alternatives.

Iwhile PADS/ML requires that the expression be pure, the implementation does not yet enforce this requirement.

16

(((erHomoC:0.28006,erCaelC:0.22089):0.40998,(erHomoA:0.32304,(erpCaelC:0.58815,((erHomoB: \
0.5807,erCaelB:0.23569):0.03586,erCaelA:0.38272):0.06516):0.03492):0.14265):0.63594, \
(TRXHomo:0.65866, TRXSacch: 0.38791):0.32147,TRXEcoli:0.57336)

Figure 2.4: Simplified tree-shaped data in Newick Standard format [Newb]. Katidicates a newline
that we inserted to improve legibility.

2:3004092508||5001|dns1=abc.com;dns2=xyz.com|c=slow link;w=lost packets|INTERNATIONAL

3:/3004097201|5074|dns1=bob.com;dns2=alice.com|src_addr=192.168.0.10;dst_addr= \
192.168.23.10;start_time=1234567890;end_time=1234568000;cycle_time=17412|SPECIAL

Figure 2.5: Simplified network-monitoring data. The in the second line indicates a newline that we
inserted to improve legibility.

2.2.2 Recursive Types

PADS/ML can describe data sources with recursive structure. One example of recursive data is the Newick
Standard format, a flat representation of trees used by biologists [Newa] that employs properly nested
parentheses to specify a tree’s hierarchy. An interior tree node is represented by a matched pair of paren-
theses containing a (possibly empty) sequence of children nodes separated by commas. An exterior node is
represented by its name. Additionally, every node is annotated with the length of the branch that separates
the node from its parent.

Figure 2.3 contains a concise description of Newick Standard. Notice that branch lengths are described
as floating point numbers and node names are described as strings terminated by colons. Figure 2.4 contains
a small fragment of example data. In this example, the string labels are gene names and the branch length
denotes the number of mutations that occur in the antibody receptor genes of B lymphocytes. Steven
Kleinstein provided this data. He used similar data in his study of the proliferation of B lymphocytes

during an immune response.

2.2.3 Polymorphic Types and Advanced Datatypes

The Regulus project at AT&T monitors network links, sending out alarms when problems are encountered.
In Figure 2.5, we show a small fragment of example Regulus data. Each entry records a particular alarm
sent out by Regulus. The data in each alarm is encoded largely in name-value pairs. For example, in Line 1
of Figure 2.5, the name-value paiirisl=abc.com " tells us that the domain name of the source of the
network link is “abc.com .” Because of the prevalence of hame-value pairs, we would like to describe

name-value pairs with a type definition that could be used throughout the description of the Regulus data.

17

However, while the names in such pairs are always strings, the types of the values can differ. Also, for
some pairs, a particular name is specified by the format, while for others, any name is valid. It would seem
that we need to define a separate type for each different kind of name-value pair in the data source.

Polymorphictypes enable analysts to define reusable descriptions by abstracting type definitions over
type and value parameters. Reusable descriptions, in turn, allow for more concise descriptions, because
common description elements can be written once and then referenced by name in the remainder of the
description. In Figure 2.6, we showraDS/ML description of the Regulus data format that uses poly-
morphic types to concisely describe the many kinds of name-value pairs that appear in Regulus data. In
particular, we define the polymorphic typavp, which abstracts over the type of the value, as a basis for
all name-value pair variants. For all polymorphic type definitions, type parameters appear to the left of the
type name, as is customarynn ; value parameters and their types appear to the right of the type name.

In the definition of typePnvp, there is a single type parameter namddpgha and no value parameters.
Informally, Pnvp describes a name-value pair where the value hasAjgiea .

We usePnvp twice in the Regulus description. First, we define the polymorphic iyge that uses
Pnvp to define a name-value pair whose name must match the string argonarerf but whose value
can have any type. Later in the description, the type paramefdyids instantiated with IP addresses,
timestamps, integers, and strings. Second, we reuse thePtyge in the definition of theGeneric
variant of thelnfo type. We applyPnvp to the typeSVString to describe a name-value pair whose
value is a string terminated by a semicolon or vertical bar.

To appreciate the utility of polymorphic types, itis helpful to comparertkies/ML Regulus description
in Figure 2.6 with theeaDS/C description in Figures 2.2.3 and 2.2.3. In particular, notice thapimes/c
description of this format must define a different type for each variant.

The Regulus description also illustrates the usewitcheddatatypes. A switched datatype selects a
variant based on the value of a user-specifiedamL expression, which typically references parsed data
from earlier in the data source. For example, the switched datétfpe chooses a variant based on the
value of itsalarm_code parameter. More specifically, if the alarm cod&@Y4 , the format specification
given by theDetails constructor will be used to parse the current data. Otherwise, the format given by

theGeneric constructor will be used to parse the current data.

18

(* Pstring terminated by semicolon or vertical bar. *)
ptype SVString = Pstring_SE("/;|\|/")

(* Generic name value pair. *)
ptype (Alpha) Pnvp = Pstring('=") * '=" * Alpha

(* Name value pair with name specified. *)
ptype (Alpha) Nvp(name:string) = [nvp: Alpha Pnvp | fst nvp = name]

ptype Details = {

source : Pip Nvp("src_addr");
vy dest : Pip Nvp("dest_addr");
Vi start_time : Ptimestamp Nvp("start_time");
Vs end_time . Ptimestamp Nvp(“"end_time");

iy cycle_time : Puint32 Nvp(“cycle_time")

pdatatype Info(alarm_code : int) =
match alarm_code with
5074 -> Details of Details
| _ -> Generic of (SVString Pnvp) Plist(;’,’|")

pdatatype Service =

DOMESTIC of "DOMESTIC"
| INTERNATIONAL of "INTERNATIONAL"
| SPECIAL of "SPECIAL"

ptype Alarm = {

alarm [a: Puint32 | a =2 or a= 3]
7 start . Ptimestamp Popt;
I's clear . Ptimestamp Popt;
I code : Puint32;

I
I
I'; src_dns : SVString Nvp("dns1");
;v dest_dns : SVString Nvp("dns2");
I
|

I info . Info(code);
I'; service . Service
}
ptype Source = Alarm Plist(\n’, peof)

Figure 2.6:pPADS/ML description of Regulus data.

19

/* Pstring terminated by ;" or | */
Ptypedef Pstring_SE(:"/;]\\|/":) SVString;

Pstruct Nvp_string(: char * s:)({

s; "="; SVString val;

2

Pstruct Nvp_ip(: char * s:){
s; "="; Pip val;

2

Pstruct Nvp_timestamp(: char * s:){
s; "="; Ptimestamp val;

2

Pstruct Nvp_Puint32(: char * s:){
s; "="; Puint32 val;

2

Pstruct Nvp_a{
Pstring(:’=") name;
=", SVString val;
2

Pstruct Details{
Nvp_ip(:"src_addr":) source;
i Nvp_ip(:"dst_addr":) dest;
7y Nvp_timestamp(:"start_time":) start_time;
Vs Nvp_timestamp(:"end_time™) end_time;
v Nvp_Puint32(:"cycle_time":) cycle_time;

Parray Nvp_seq{
Nvp_a [] : Psep(;) && Pterm ('|');
%

Punion Info(: int alarm_code:){
Pswitch (alarm_code){
Pcase 5074: Details details;
Pdefault : Nvp_seq generic;
}
3

Penum Service {
DOMESTIC,
INTERNATIONAL,
SPECIAL

%

Figure 2.7:pADS/C description of Regulus data, part 1.

20

Pstruct Alarm {
Puint32 alarm : alarm == 2 || alarm ==
: Popt Ptimestamp start;
I Popt Ptimestamp clear;
|; Puint32 code;
I's Nvp_string(:"dns1™) src_dns;
v Nvp_string(:"dns2";) dest_dns;
I's Info(:code:) info;
|'; Service Service;

Psource Parray Source {
Alarm[];
2

Figure 2.8:pADS/C description of Regulus data, part 2.

The last feature of interest in the Regulus description is the use of literals as datatype branches. In the
Service datatype, the string literals in each branch specify to parse the string literal, but omit it from the

internal data representation, because the literal can be determined by the datatype constructor.

2.3 From PADS/ML to O'CAML

PADS/ML descriptions are compiled int cAML modules that can be used by amycAamL program. The

contents of the generated modules include a parser and printer, a functor to specialize generic tools to the
given data source, and type declarations to describe the in-memory representation of the data source and
its corresponding parse-descriptor. In this section, we describe the generated modules and their contents in

detail, and illustrate their use.

2.3.1 Types as Modules

We use thed’ cAML module system to structure the libraries generated byames/mL compiler. Each
PADS/ML base type is implemented as ahncAML module. For eaclrADS/ML type in a description, the
PADS/ML compiler generates an cCAML module containing the types, functions, and nested modules that
implement therADS/ML type. All the generated modules are grouped into one module that implements

the complete description. For examplepaDs/ML description namedirius.pml containing three

21

type pd_header = {
nerr int;
error_code : error_code;
error_info : error_info;
span . span;

Figure 2.9: Theo’ caML type of parse-descriptor headers. The typesr_code ,error_info , and
span are defined in Appendix C.

named types results in tt@d camL file sirius.ml defining the modulé&irius , which contains three
submodules, each corresponding to one named type.

Namespace management alone is sufficient motivation to employ a “types as modules” approach, but
the power of themL module system provides substantially more. We implement polymoR#bs/mML
types as functors from (type) modules to (type) modules. Ideally, we would like to map recasisiL
types into recursive modules. Unfortunately, this approach currently is not possible, becausa
prohibits the use of functors within recursive modules, and the output efathe/mL compiler includes a
functor for each type. Instead, we implement recursive types as modules containing recursive datatypes and
functions. As there is no theoretical reason to prevent recursive modules from containing functors [Dre05],
we pose our system as a challenge to implementers of module systems.

More precisely, a module generated for a monomorphizs/ML type matches the signatuge

module type S = sig
type rep
type pd_body
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
(* Functor for tool generator ... *)
module Traverse ...
end

The representation(rep) type describes the in-memory representation of parsed data, whifeatke-
descriptor(pd) type describes metadata collected during parsing. Every parse descriptor contains a header
and a body. The header includes the number of subcomponents that contain errors, an error code that
classifies the errors encountered during parsing (if any), an expanded description of the errors encountered,
and the span — the start and end locations — of the raw data in the data source. The body contains the parse
descriptors for subcomponents of the corresponding representation. Parse descriptors for base types have a

body of typeunit

22

Theparse function converts the raw data into an in-memory representation and parse descriptor for
the representation. Theint function converts a data representation into a string of data in the original,
raw format. The printing is guided by a parse descriptor that corresponds to the data representation. In
particular, any data marked by the parse descriptor as syntactically invalid is omitted from the generated
string. Other data, though, is printed in its original form or an equivalent, depending on the particular base
types included in the description. The modiilaverse is a functor that takes a format-independent tool
and specializes it to the data format described withrkms/ML type; we defer a description of this functor
to Section 2.4.

The modulePads contains the built-in types and functions that occur in base-type and generated mod-
ules. For exampleRads.pd_header , shown in Figure 2.9, is the type of all parse-descriptor headers
andPads.handle s an abstract type containing the private data structesxes/mML uses to manage data
sources. A complete listing of tHeads interface is provided in Appendix C.

The structure of the representation and parse-descriptor types resembles the structure of the corre-
spondingPADS/ML type, making it easy to see the correspondence between parsed data, its internal repre-
sentation, and corresponding metadata. For example, givernth&ML type of a character and integer
separated by a vertical bar:

ptype Pair = Pchar * ’|' * Pint

the compiler generates a module with the signature:

module type Pair_sig = sig
type rep = Pchar.rep * Pint.rep
type pd_body = Pchar.pd * Pint.pd

type pd Pads.pd_header * pd_body

val parse : Pads.handle -> rep * pd

val print : rep -> pd -> Pads.handle -> unit
end

The signature for a polymorphinbDs/ML type uses the signatug; defined above. For example, given
the polymorphiceADS/ML type ABPair :

ptype (Alpha,Beta) ABPair = Alpha * ’|' * Beta

the compiler generates a module with the signature:

23

module type ABPair_sig (Alpha : S) (Beta : S) =

sig
type rep = Alpha.rep * Beta.rep
type pd_body = Alpha.pd * Beta.pd
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print . rep -> pd -> Pads.handle -> unit
end

2.3.2 Using the Generated Libraries

Next, we presend’ CAML programs that demonstrate how to e@®s/ML modules to compute properties

of ad hoc data, to filter it, and to transform it.

Example: Computing Properties

Given thepADS/ML type:
ptype IntTriple = Pint * ’|' * Pint * ’|' * Pint

the followingo’ cAML expression computes the average of the three integers:

let ((i1,i2,i3), (pd_hdr, pd_body)) =
Pads.parse_source IntTriple.parse “input.data"
in match pd_hdr with
{error_code = Pads.Good} -> (i1 + i2 + i3)/3
| _ -> raise Pads.Bad_file

Theparse_source function takes a parsing function and a file name, applies the parsing function to the
data in the specified file, and returns the resulting representation and parse descriptor. To ensure that the
data is valid, the error code in the parse-descriptor header is examined. The errGooutiadicates that

the data is syntactically and semantically valid. Other error codes indNede, indicating an error in a
subcomponenyn, indicating that a syntactic error occurred during parsing,2em indicating that the

data violates a semantic constraint. The expression above raises an exception if it encounters any of these
error codes.

Checking the top-level parse descriptor for errors is sufficient to guarantee that there are no errors in
any of the subcomponents. This property holds for all representations and corresponding parse descriptors.
This design supports a “pay-as-you-go” approach to error handling. The parse descriptor for valid data
need only be consulted once, no matter the size of the corresponding data, and user code only needs to

traverse the nested parse descriptors if more precise information about an error is required.

24

open Pads

let classify_order order (pd_hdr, pd_body) (good, bad)=
match pd_hdr with
{error_code = Good} -> (order::good, bad)
| _ -> (good, order::bad)

let split_orders orders (orders_pd_hdr,order_pds) =
List.fold_right2 classify_order orders order_pds []

let ((header, orders),(header_pd, orders_pd)) =
parse_source Sirius.parse "input.txt"

let (good,bad) = split_orders orders orders_pd

Figure 2.10: Error filtering of Sirius data

Example: Filtering

Data analysts often need to “clean” their data, by removing or repairing data containing errors, before load-
ing the data into a database or other applicatiohcamML’s pattern matching and higher-order functions
can simplify these tasks. For example, the expressions in Figure 2.10 partition Sirius data into valid orders

and invalid orders.

Example: Transformation

Once a data source has been parsed and cleaned, a common task is to transform the data into formats
required by other tools, like a relational database or a statistical analysis package. Transformations include
removing extraneous literals, inserting delimiters, dropping or reordering fields, and normalizing the values
of fields — for example, by converting all times into a specified time zone.

Because relational databases typically cannot directly store fields whose content type varies, one com-
mon transformation is to convert such fields into a form that such systems can handle. One option is to
partition or “shred” the data into several relational tables, one for each variant of the field. A second option
is to create a universal table, with one column for each variant of any field. If a given variant does not occur
in a particular field, its value is marked as missing.

In Figure 2.11, we show a partial listing BegulusNormal.pml , a normalized version of the Reg-
ulus description from Section 2.2. In this shredded verséddarm has been split into two top-level types

D_alarm andG_alarm . The typeD_alarm contains all the information concerning alarms with the de-

25

ptype Header = {
alarm : [a : Puint32 | a = 2 or a = 3];

start : Ptimestamp Popt;

|'; clear : Ptimestamp Popt;

' code: Puint32;

' src_dns : Nvp("dnsl");

', dest_dns : Nvp("dns2");

' service : Service

ptype D_alarm = {
header : Header;
I's info . Details

}

ptype G_alarm = {

header : Header;
I'; info : (SVstring Pnvp) Plist(’;",|")
}

Figure 2.11: Partial Listing dRegulusNormal.pml , a normalized format for Regulus data. All named
types not explicitly included in this figure are unchanged from the original Regulus description.

tailed payload, whilé&s_alarm contains the information for generic payloads. In the original description,
theinfo field identified the type of its payload. In the shredded version, the two different types of records
appear in two different data files. Since neither of these formats contains a union, they can be easily loaded
into a relational database.

The code fragment in Figure 2.12 shreds Regulus data in the format descriBegjblus.pml into
the format described iRegulusNormal.pml . It uses thanfo field of Alarm records to partition
the data. In the process, we also reorder the fields, puttingetvice field into the commoreader .
Notice that the code invokes thmint functions generated for th@_alarm andD_alarm types to

output the shredded data.

2.4 The Generic Tool Framework

An essential benefit gfADS/ML s that it can provide users with a high return-on-investment for describing
their data. While the generated parser and printer alone are enough to justify the user’s effort, we aim to
increase the return by enabling users to easily construct data analysis tools. However, there is a limit, both

in resources and expertise, to the range of tool generators that we can develop. Indeed, new and interesting

26

open Regulus

open RegulusNormal
module A = Alarm
module DA = D_alarm
module GA = G_alarm
module Header = H

type (‘a,’b) Sum = Left of 'a | Right of 'b

let splitAlarm a =
let h =
{H.alarm=a.A.alarm; H.start=a.A.start;
H.clear=a.A.clear; H.code=a.A.code;
H.src_dns=a.A.src_dns;
H.dest_dns=a.A.dest_dns;
H.service=a.A.service}
in match a with
{info=Details(d)} ->
Left {DA.header = h; DA.info = d}
| {info=Generic(g)} ->
Right {GA.header = h; GA.info = g}

let process_alarm pads [pads_D; pads_G] =
let a,a_pd = A.parse pads in
match (split_alarm a, split_alarm_pd a_pd) with
(Left da, Left da_p) -> DA.print da da_p pads_D
|(Right ga, Right ga_p) -> GA.print ga ga_p pads_G
| _ -> ... (* Bug! %

let _ = process_source process_alarm
"input.data” ["d_out.data";"g_out.data"]

Figure 2.12: Shredding Regulus data based oririfiee field.

27

data analysis tools are constantly being developed, and we have no hope of integrating even a fraction of
them into thepADS/ML system ourselves. Therefore, it is essential that we provide a simple framework for
others to develop tool generators.

The techniques of type-directed programming, known variousgeagric[Hin00] or polytypic[JJ96]
programming, provide a convenient conceptual starting point in designing a tool framework. In essence,
any tool generator is a function from a description to the corresponding to®laBS' ML descriptions are
types, a tool generator is a type-directed program.

Support for some form of generic programming over data representations and parse descriptors is an es-
sential first step in supporting the development of tool generators. While a full-blown generic programming
system like Generic Haskell [HJ03] would be useful in this contextAML lacks a generic programming
facility. Yet, we can still achieve some of the benefits of generic programming even without such a facility,
as a number of useful data processing tools can be specified genericly using opiptigiL compiler
and theo’ cAML module system.

In particular, many of the tools we have encountered perform their computations in a single pass over
the representation and corresponding parse descriptor, visiting each value in the data with a pre-, post-, or
in-order traversal. This paradigm arises naturally as it scales to very large data sets. It can be abstracted
in a manner similar to the generic functions of Lammel and Peyton-Jones [LP03]. For each format de-
scription, we generate a format-dependent traversal mechanism that implements a generalized fold over the
representation and parse descriptor corresponding to that format. Then, tool developers can write a format-
independentgeneric toolby specifying the behavior of the tool for eaeADS/ML type constructor. The
traversal mechanism interacts with generic tools through a signature that every generic tool must match.

The generic tool architecture eADs/ML delivers a number of benefits over the fixed architecture of
PADS/C. In PADS/C, all tools are generated from within the compiler. Therefore, developing a new tool
generator requires understanding and modifying the compiler. Furthermore, the user selects the set of tools
to generate when compiling the descriptionPADS/ML, tool generators can be developed independent of
the compiler and they can be developed more rapidly because the boilerplate code to traverse data need not
be replicated for each tool generator. In addition, the user can choose which tools to generate for a given
data format on a program-by-program basis. This flexibility is possible because tool generation is simply

the composition of the desired generic tool modules with the traversal functor.

28

module type S = sig

type state
module Int = sig
val init : unit -> state
val process : state -> int option -> Pads.pd_header -> state
end
module Record : sig
type partial_state
val init . (string * state) list -> state
val start . state -> Pads.pd_header -> partial_state
val project . state -> string -> state
val process_field : partial_state -> string -> state -> partial_state
val finish . partial_state -> state
end
module Datatype : sig
type partial_state
val init : unit -> state
val start . state -> Pads.pd_header -> partial_state
val project . state -> string -> state option
val process_variant : partial_state -> string -> state -> partial_state
val finish . partial_state -> state
end
end

Figure 2.13: Excerpt of generic-tool interfaGeneric _tool.S . Thelnt module is a simplified version
of the actualnt module inGeneric _tool.S . A complete listing is provided in Appendix D.

2.4.1 The Generic-Tool Interface

The interface between format-specific traversals and generic tools is specifiedbassn signature.
For each essential’ cAML built-in type (nt , char , string , andunit) and for every type constructor
in PADS/ML, the signature describes a sub-module that implements the generic tool for that type or type
constructor. In addition, it specifies an (abstract) type for auxiliary state that is threaded through the traver-
sal. Figure 2.13 contains an excerpt of the signature that includes the signaturekof ffRecord , and
Datatype modules. The signatures of other modules are quite similar. A complete listing of the interface
is provided in Appendix D.

Thelnt module contains two functiongnit to create initialstate data for an integer field, and
process to process an integer field based on a parse descriptor and previous state. Notice that the integer

argument tgrocess is wrapped in an option. This wrapping is necessary because the integer value might

29

not exist if the parse failed. As the possibility of failure is not limited to integersptbeess function
for all base types receives an optional value argument.

The Record module includes a typpartial_state that allows tools to represent intermediate
state in a different form than the general state. e function forms the state of the record from
the state of its fields. Thstart function receives the PD header for the data element being traversed
and begins processing the element. Funcfimject takes a record’s state and the name of a field and
returns that field's state. Functi@nocess_field updates the intermediate state of the record based on
the name and state of a field, afimish ~ converts the finished intermediate state into general tool state.
Note that any of these functions could have side effects.

Although theDatatype module is similar to th&kecord module, there are some important differ-
ences. Th®atatype init function does not start with the state of all the variants. Instead, a variant’s
state is added during processing so that only variants that have been encountered will have corresponding
state. For this reasoproject returns sstate option |, rather than atate . This design is essential
for supporting recursive datatypes as trying to initialize the state for all possible variants of the datatype
would cause théit function to loop infinitely.

The following code snippet gives the signature of the traversal functor as it would appear in the signature
S from Section 2.3.

module Traverse (Tool : Generic_tool.S) :

sig

val init : unit -> Tool.state
val traverse : rep -> pd -> Tool.state -> Tool.state

end
The functor takes a generic tool generator and produces a format-specific tool with two furicitonsto
create the initial state for the tool, atrdverse , which traverses the representation and parse descriptor

for the type and updates the given tool state.

2.4.2 Example Tools

We have used this framework to implement a variety of tools useful for processing ad hoc data, including
anxMmL formatter, an accumulator tool for generating statistical overviews of the data, and a data printer

for debugging. We briefly describe these tools to illustrate the flexibility of the framework.

30

<Order_header size="13" status="GOOD">
<order_num><val>9153</val></order_num>
<att_order_num><val>9153</val></att_order_num>
<ord_version><val>1</val></ord_version>
<service_tn>
<Something><val>0</val></Something>
</service_tn>
<billing_tn>
<Something><val>0</val></Something>
</billing_tn>
<nlp_service_tn>
<Something><val>0</val></Something>
</nlp_service_tn>
<nlp_billing_tn>
<Something><val>0</val></Something>
</nlp_billing_tn>
<zip_code><Nothing><val></val></Nothing></zip_code>
<ramp><Ramp><val>152268</val></Ramp></ramp>
<order_sort><val>LOC_6</val></order_sort>
<order_details><val>0</val></order_details>
<unused><val>FRDW1</val></unused>
<stream><val>DUO</val></stream>
</Order_header>

Figure 2.14: A fragment of themL output for Sirius.

31

The xML formatter converts any data withraDS/ML description into a canonicalmL format. This
conversion is useful because it allows analysts to exploit the many useful tools that exist for manipulating
data inxML. Figure 2.14 shows a sample portion of the output of this tool when run on the Sirius data in
Figure 2.1. Appendix E contains a complete listing of the source code aiMbeformatter.

The accumulator tool provides a statistical summary of data. Such summaries are useful for developing
a quick understanding of data quality. In particular, after receiving a new batch of data, analysts might
want to know the frequency of errors, or which fields are the most corrupted. The accumulator tool tracks
the distribution of the top distinct legal values and the percentage of errors. It operates over data sources
whose basic structure is a series of records of the same type, providing a summary based on viewing
many records in the data source. More complex accumulator programs and a humber of other statistical
algorithms, like clustering and histogram generation, can easily be implemented using the tool generation
infrastructure.

Finally, as an aid in debuggingaps/mML descriptions, we have implemented a simple printing tool.

In contrast to the printer generated by t#hveDs/ML compiler, the output of this tool corresponds to the
in-memory representation of the data rather than its original format, which may have concrete syntax or
unusual encodings that are not retained in the representation. This format, therefore, is often more readable

than the raw data.

2.5 Future Implementation Work and Conclusions

PADS/ML is already an effective, working system for data description and processing. However, there are a
number of ways we plan to make it even better.

First, there are a number of properties of data descriptions a programmer might want to infer or verify.
For example, it is not hard to write a nonterminating data description by accident. It is also possible to
write a description with completely redundant subparts (dead parser code). While these problems might be
caught through testing, we would prefer to catch them at compile time. Consequently, we plan to explore
development ®ADS/ML “type checker” to infer description properties and catch obvious errors.

A second long-term goal is to build a collection of higher-level, format-independent data analysis tools.
By “higher-level” tools, we mean tools that perform semantic data analysis as opposed to simpler, low-

level syntactic transformation (such @®L conversion) and analysis. Tools in this category include tools

32

for content-based search, clustering, statistical data modeling, data generation and machine learning. We
believe that if we can automatically generate stand-alone, end-to-end tools that perform these functions over
arbitrary data, we can have a substantial impact on the productivity of many researchers in fields ranging
from computational biology to networking. We hope to provide access to these tools through LaunchPADS,
our data visualization environment [DEB6b, DFF-06a], which currently only interfaces wittnps/c.

Third, as mentioned in Section 2.1, ad hoc data sources are often very large scale. Large data volumes
often require that the data be processed without loading it into main memory all at oncerAdHe
language accommodates efficient processing of very large-scale data [FG05] by supporting multiple-entry
point parsing, which permits a user to write tools that have fixed memory requirements and that can yield
a result in one scan of the data source. Fa@s/ML language similarly supports multiple-entry point
parsing, but has not yet been tested for performance.

Finally, we hope the@ADS/ML system can serve as a stimulating and practical test case for researchers
studying functional programming language design and implementation. In particular, our “types as mod-
ules” compilation strategy pushes up against the very limits of modern module system desigramt’s
experimental recursive modules do not allow us to implement recursive types as recursive modules in the
way we envision. In addition, futureaps/MmL programs might be phrased extremely elegantly as (de-
pendently) type-directed programs, but mainstream languages lack either dependent types or type-directed
programming features, or, most commonly, both. Lastly, rather than erasing dependent typing information
upon translation oPADS/ML into O’ CAML, it would be ideal to preserve the dependency and to verify
that data processors preserve necessary data invariants. Unfortunately, sufficiently practical and powerful
dependent type systems do not currently exist. So while functional languages are clearly the “program-
ming tools of choice for discriminating hackers,” many challenges remain in the domain of ad hoc data

processing.

33

Chapter 3

A Theory of Data Description

Languages

The languages people use to communicate with computers differ in their intended aptitudes,
towards either a particular application area, or a particular phase of computer use (high level
programming, program assembly, job schedulietg,). They also differ in physical appear-
ance, and more important, in logical structure. The question arises, do the idiosyncrasies reflect
basic logical properties of the situations that are being catered for? Or are they accidents of
history and personal background that may be obscuring fruitful developments? This question

is clearly important if we are trying to predict or influence language evolution.

To answer it we must think in terms, not of languages, but of families of languages. That
is to say we must systematize their design so that a new language is a point chosen from a

well-mapped space, rather than a laboriously devised construction.
— P. J. LandinThe Next 700 Programming Languagé&9866 [Lan66].
Landin asserts that principled programming language design involves thinking in terms of “families
of languages” and choosing from a “well-mapped space.” However, when it comes to the domain of

processing ad hoc data, there is no well-mapped space and no systematic understanding of the family of

languages one might be dealing with.

34

We discovered this problem when we first attempted to specify the semante®sefc. Fisher and
Gruber designed and implementedps/c [FGO05], but specified its semantics only informally, in the
PADS/C manual [Pad] and the comments in the source code. When we attempted to formally specify
the semantics oPADS/C, we found that there were no existing frameworks suitable for the task. We
therefore developed the data description calcolos to capture the core features ips/c [FMWO6].
However, our work omDC resulted in more than just a semantics#aps/c. It also enabled us to formally
understand other data description languages,Hk@KETTYPESand DATASCRIPT(discussed in detail in
Section 3.4). Given the broad applicability obc®, we decided to use it to guide our development of
PADS/ML. However, the polymorphic types that we wished to includedAns/mML could not be formalized
with bbc. Therefore, we extendeanbc with abstractions over types to creaec®. In the process, we
also improved th®Dbc® theory, as noted in Section 3.2. Then, we used*as a basis for the design and
implementation oPADS/ML.

In the previous chapter, we discussgds/ML. In this chapter, we will begin to understand the family
of ad hoc data processing languages, of wiisbs/ML and PADS/C are but two members. We do so,
as Landin did, by developing a semantic framework for defining, comparing, and contrasting languages
in our domain. This semantic framework revolves around the definition of the data description calculus
DDC®. This calculus uses types from a dependent type theory to describe various forms of ad hoc data:
base types to describe atomic pieces of data and type constructors to describe richer structures. We show
how to give a denotational semanticstpc® by interpreting types as parsing functions that map external
representations (bits) to data structures in a typedlculus. More precisely, these parsers produce both
internal representations of the external data and parse descriptors that pinpoint errors in the original source.

For many domains, researchers have a solid understanding of what makes a “reasonable” or “unrea-
sonable” language. For instance, a reasonable typed language is one in which values of a given type have
a well-defined canonical form and “programs don’t go wrong.” On the other hand, when we began this
research, it was not at all clear how to decide whether our data description language and its interpretation
were “reasonable” or “unreasonable.” A conventional sort of canonical forms property, for instance, is not
relevant as the input data source is not under system control, and, as mentioned in Chapter 1, is frequently
buggy. Consequently, we have had to define and formalize a new correctness criterion for the language.

Briefly, rather than requiring input data be error-free, we require that the internal data structures produced

35

by parsing satisfy their specification wherever the parse descriptor reports them to be free of errors. Our
invariant allows data consumers to rely on the integrity of internal data structures marked as error-free.

To study and compare the\Ds languages and/or other data description languages, we advocate elab-
orating these languages intmc®. The elaboration decomposes the relatively complex, high-level con-
structs of the language in question into a composition of lower-lepel® constructs. We have done this
decomposition fonPADS, an idealized version of theaps/C language that captures the essence of the
actual implementation. We have also analyzed key featuresm$/ML, PACKETTYPESandDATASCRIPT
using our model. The process of giving semantics to these languages highlighted features that were am-
biguous or ill-defined in the documentation we had available to us. For example, we have given a semantics
to one of the features ®ACKETTYPES its overlays not found inPADS.

The process of developingbc® delivered additional benefits, beyond the immediate benefit of ob-
taining a semantics fopADS/C and its relatives. Most significantly, the semantics served as a clear and
effective guide in implementingabs/ML. In addition, since we defined the semantics by reviewing the
existingPADS/C implementation, we found (and fixed!) a couple of subtle bugs. Finally, the semantics has
also raised several design questions that we are continuing to study.

In summary, this chapter discusses following theoretical and practical contributions:

¢ We define a semantic framework for understanding and comparing data description languages such
asPADS/C, PADS/ML, PACKETTYPESandDATASCRIPT. Prior to our work (first published in POPL

'06 [FMWO06]), no one had given a formal semantics to any of these languages.

e At the center of the framework iBDC®, a calculus of data descriptions based on dependent type
theory. We give a denotational semanticoc® by interpreting types both as parsers and, more
conventionally, as classifiers for parsed data. By “classfiers,” we mean “types” in the usual sense for

programming languages.

e We define an important correctness criterion for our language, stating that all errors in the parsed

data are reported in the parse descriptor. We poave”™ parsers maintain this property.

e We definePADS, an idealized data description language that captures the essential features of a num-
ber of real data description languages includags/c, PADS/ML, PACKETTYPESandDATASCRIPT.
We show how to givePADS a semantics by elaborating it inbmc®. As Landin asserts, this process

helps us understand the families of languages in this domain and the totality of their features, so that

36

we may engage in principled language design as opposed to falling prey to “accidents of history and

personal background.”

e We usedDcC* to experiment with a definition and implementation strategy for recursive and poly-
morphic types, features not found in any prior ad hoc data description language of which we are
aware. Recursive types are essential for representing tree-shaped hierarchical data [Con, Newa] and
polymorphic types allow descriptions to be more concise and more easily reused. We have integrated
recursion intaPADS/C, and included recursion and polymorphisnPikDS/ML, using our theory as a

guide.

Sections 3.1, 3.2 and 3.3 explain the syntax, semantics and metathemrgtf Section 3.4 introduces
theiPADS language and demonstrates with it how to give semantics to high-level data description languages
by elaborarting them intobc®. Section 3.5 explains a number of ways in which we have made use of our

semantics in practice.

3.1 A Data Description Calculus

At the heart of our work is a data description calculne¢®), containing simple, orthogonal type con-
structors designed to capture the core features of data description languages. Consequently, the syntax of
DDC is at a significantly lower level of abstraction than thapabs/mL. Like PADS/ML, howeverpDc®

presents a type-based model.

Informally, we may divideDDc® into types and type operators. Eazhc® type describes the external
representation of a piece of data and implicitly specifies how to transform that external representation into
an internal one. The internal representation includes both the transformed valugarss: aescriptor
that characterizes the errors that occurred during parsing. Type operators provide for description reuse by
abstracting over types.

Syntactically, the primitives of the calculus are similar to the types found in many dependent type
systems, with a number of additions specific to the domain of data description. We base our calculus on
a dependent type theory because expressions frequently appear within types in data description languages.
However, unlike other dependent type systebptsc® is not part of a programming language. Therefore,
there is no “obvious” choice for an expression language from which to draw the expressions that appear in

DDC® types.

37

Kinds &
Types T

Tlo—k|T—k

unit | bottom | C'(e) | \x.7 | Te
YSerr|rt+7|v&T | {r:T|e} | Tseq(T,€,7T)
al|paT| et |TT

compute(e:o) | absorb(7) | scan(r)

Figure 3.1:pDDC® syntax

However, data description languages tend to draw their expressions fronhtiseitanguage- the
programming language in which their generated software artifacts are encoded. The host language of
PADS/ML, for example, i90’ cAML. Therefore, we mimic this design bbc“and choose a single language
— a variant ofF,,— for expressing both the expressions embedded in types and the interpretatiocs of

This host language is discussed further in Section 3.1.2.

3.1.1 DDC® Syntax

Figure 3.1 shows the syntax bbc®. Expressiong and typesr belong to the host language. We use kinds
k to classify types so that we can ensure their well-formedness. Kidldssifies types that describe data.
Kindso — x andT — & describe functions from values to types and type to types, respectively.

The most basic types ammit andbottom. The former describes the empty string while the latter
describes no string. The syntéXe) denotes a base tygge parameterized by expressien

We provide abstractionx.7 and applicationr e so that we may parameterize types by expressions.
Dependent product typész: 7 .75 describe a sequence of values in which the second type may refer to the
value of the first. Sum types + = express flexibility in the data format, as they describe data matching
eitherr; or 5. Unlike regular expressions or context-free grammars, which allow nondeterministic choice,
sum-type parsers are deterministic, transforming the data according/ten possible andnly attempting
to users if there is an error in;. Intersection types; & = describe data that match bathandr,. They
transform a single set of bits to produce a pair of values, one from each type. Constraineftypes
transform data according to the underlying typand then check that the constrainholds whenz is
bound to the parsed value.

The typer seq(7s, e, 7¢) represents a sequence of values of typ&he typer, specifies the type of
the separator found between elements of the sequence. For sequences without separatots)iweagse

the separator type. Expressiois a boolean-valued function that examines the parsed sequence after each

38

element is read to determine if the sequence has completed. For example, a function that checks if the
sequence hakl0 elements would terminate a sequence when it reaches léa@thThe typer; is used

when data following the array will signal termination. Commonly, constrained types are used to specify
that a particular value terminates the sequence. For example, théatypehar |z =';’ } specifies that a
semicolon terminates the array. However, if no particular value or set of values terminates the array, then a
type that never succeeds (likettom) could be used to ensure that the array is not terminated based on

Type variablesy are abstract descriptions; they are introduced by recursive types and type abstractions.
Recursive typega.r describe recursive formats, like lists and trees. Type abstraktionand application
77 allow us to parameterize types by other types. Type variabkdsvays have kind'. Note that we call
functions from types to typegpe abstractionin contrast tovalue abstractionswhich are functions from
values to types.

DDC® also has a number of “active” types. These types describe actions to be taken during parsing
rather than strictly describing the data format. Typepute(e:o) allows us to include an element in the
parsed output that does not appear in the data stream (although it is likely dependent on elements that do),
based on the value of expressi@nin contrast, typexbsorb() parses data according to typeout does
not return its result. This behavior is useful for data that is important for parsing, but uninteresting to users
of the parsed data, such as a separator. The last of the “active” typesi), which scans the input for
data that can be successfully transformed according this type provides a form of error recovery as it

allows us to discard unrecognized data until the “synchronization” tyigdound.

3.1.2 Host Language

In Figure 3.2, we present the host languagemE®, a straightforward extension &f, with recursiort and
a variety of useful constants and operators. We use this host language both to encode the parsing semantics
of bbc* and to write the expressions that can appear witlng® itself.

As the calculus is largely standard, we highlight only its unusual features. The constants include bit-
strings B; offsetsw, representing locations in bitstrings; and error codieserr, andfail, indicating
success, success with errors and failure, respectively. We use the canstatd indicate a failed parse.

Because of its specific meaning, we forbid its use in user-supplied expressions appeanity itypes.

1The syntax foffold andunfold , particularly the choice of annotatinmfold with a type, is based on the presentation of
recursive types in Pierce [Pie02]

39

Bits B
Constants c

|0B|1B

()| true | false |0 1| —1]...
none | B |w | ok | err | fail]...
clfun fz=e]| (v,v)

inl v | inr v | [7]

Values v

Operators op =|<|not|...
Expressions ¢ clx|ople)|fun fa=c|ee
Aae | e 7]

letz=eine|if ethenecelsece
(e,e) | mie|inle|inre

case e of (inlx = e| inrz =€)
@le@e]el]

fold[uw.7] e | unfold[ua.7]e
unit | bool | int | none

bits | offset | errcode

Base Types «a

Types o alalo—o|oxo|o+o
oseq|Va.o | pa.o | da.o|oo
Kinds K T|lk—k

Figure 3.2: The syntax of the host language, an extensiafi,ofvith recursion and a variety of useful
constants and operators.

Our expressions include arbitrary length sequerigessequence apperd@ e’, and sequence indexing
ee'].

The typenone is the singleton type of the constaiine. Typeserrcode andoffset classify error
codes and bit string offsets, respectively. The remaining types have standard meanings: function types,
product types, sum types, sequence typesef), type variablesd), polymorphic typesY«.o), and re-
cursive typesga.o).

We extend the formal syntax with some syntactic sugar for use in the rest of the paper. anonymous
functionsAz.e for fun f x = e, with f ¢ FV(e); function bindingsletfun f x = e in €’ for let f =
fun f x = e in €’; span for offset x offset. We often use pattern-matching syntax for pairs in place
of explicit projections, as il\(B,w).e andlet (w,r,p) = e in ¢’. Although we have no formal records
with named fields, we use a (named) dot notation for commonly occuring projections. For example, for a
pair z of representation and parse descriptor, weaisep andx.pd for the left and right projections af,
respectively. Also, sums and products are right-associative. Hence, for example,c is shorthand for

ax* (bxc).

40

The static semanticd(- e : o), operational semantice (— ¢’), and type equivalence (= o') are
those ofF,, extended with recursive functions and iso-recursive types and are entirely standard. See, for
example, Pierce [Pie02].

We only specify type abstraction over terms and application when we feel it will clarify the presentation.
Otherwise, the polymorphism is implicit. We also omit the usual type and kind annotations on functions,

with the expectation the reader can construct them from context.

3.2 DDC® Semantics

The primitives ofbbc® are deceptively simple. Each captures a simple concept, often familiar from type
theory. However, in reality, each primitive is multifaceted. Except for abstractions, each type simulta-
neously describes a collection of valid bit strings, two datatypes in the host language — one for the data
representation itself and one for its parse descriptor — and a transformation from bit strings, including
invalid ones, into data and corresponding metadata.

We give semantics toDC® types using three semantic functions, each of which precisely conveys a
particular facet of a type’s meaning. The functi(ﬁnﬂrep and[- |pp describe theepresentation semantics
of DDC?, detailing the types of the data’s in-memory representation and parse descriptor. The flujgtion
describes th@arsing semanticef bbc®, defining a host language function for each type that parses bit
strings to produce a representation and parse descriptor. We define the set of valid bit strings for each type
to be those strings for which the PD indicates no errors when parsed.

DDC® abstractions are a special casepafc® types in that they do not directly describe data, but
rather are conventional functions that enable the writing of more concise data descriptions. Therefore, their
meaning, and that of application, can be expressed independently of any particular semantic interpretation
of bbc®. We do so with a small-staprmalizationudgmentr — 7’. However, despite our assigning them
a semantics with the normalization judgment, we still interpret them in the other semantic interpretations
of bbc®. We do so because the implementationembs/c andPADS/ML do not normalize types before
translating them, but, rather, translate abstraction and application directly into the host language. The role
of normalization, then, is only to provide users with a simple and direct explanation of the meaning of

abstraction and application.

41

A;T'F7:k typekinding

T—T type normalization

T]]rep =0 representation-type interpretation afbc*

Tlep=0 parse-descriptor type interpretation afDc®

popb = ¢ Ppd-body type interpretation abpc®

p=2¢ parsing semantics oabbc®

k]pr =0 F, type of specified type’s parsing function (parser-type)
Alpr=T parser-type interpretation lifted to entire context

A] r, =1 F,image ofbbCc” type context

Alp=T representation-type variables fi\]

Alpp =T parse-descriptor type variables fi\] .

Table 3.1:Dbc* Functions and judgments defined in this section.

F T ok well-formed contexts
I'ko:k well-formed types
c=o' type equivalence
I'ke:o expression typing
e— e expression evaluation

Table 3.2:F,, judgments referenced in this section.

42

l—[[A]]Fw,Fok [[A}]Fw,Fl—e:a

F Al T ok F[A]g, T ok Bkind(C) =0 — T
AT Fumie T YT AT potton T BOTTOM ATICET Const

ATHE7:0—k [A]lp,T'Fe:o
ABS =
A;T'HrTe:k

AT zob7110 K
APP

A;THMeT:0— kK

ATHET:T A;F,x:[[T]]rep* [lpp F 7T
AT ESars T

DEPSUM

A;THET:T A;FI—T':TS A;THET:T A;FI—T/:TI
NTERSECTION
ATHr4+7:T UM ATHT&T T SECTIO

ATET:T [Alg,, T a:[r]ep* [T]pp - € : bool
AT HA{zr|e}: T con

A;THET:T A;TE7s: T A7 . T
[Als ,TFe: [[Tm]]rep* [Tmlpp — bool (Tm = T seq(7s, €, 7¢))
= SE
A;T ¢ 7seq(7s,e,7) 0 T Q

F[[A]]varc’k O‘:TEAT v AT, TF7:T AaT, 71k TVA
A;THa: T YVAR AT E par: T EC A;THAMT: T >k YABS
ATk :T—=xr A;I‘FT2:TTA }—[[A]]FW,Fok [[A}]Fw,Fl—e:a [[A]]repl—J::TCOMPUTE
ATFTimk YAPP A;T F compute(e:o) : T

A;THET:T

ABSORB ATFH scan(T) T SCAN

ATET:T
A;T F absorb(r) : T

Figure 3.3:bDc® kinding rules

We begin with a kinding judgment that checks if a type is well formed. We then specify the normaliza-
tion semantics after which we formalize the three-fold semanticoaf™ types. For reference, Table 3.1

lists all the functions and judgments defined in this section and a brief description of each. Additionally,

Table 3.2 lists all of the,, judgments that we reference.

43

3.2.1 bpDC® Kinding

The kinding judgment defined in Figure 3.3 determines well-formed® types. We use two contexts to

express our kinding judgment:
r

| T, z:0
A =] AT
ContextI" is a finite partial map that binds expression variables to their types. When appearing in
F,, judgments, such contexts may also contain type-variable bindings of thedform ContextA is a
finite partial map that binds type variables to their kinds. We provide the following mappingfoat

contextsA to F,, contextsl.

[[']]rep:' [[']]PD:'
[A, a:T]ep = [Al e Orep: T [A, a:T]pp = [Alpps @pon:: T

Translation[A] , simply combines the two[Q\] ;= [A], [Alpp). These translations are used when
checking the well-formedness of contektsind typesr with open type variables.

As the rules are mostly straightforward, we highlight just a few of them. In rulsEBwe use the
function Bying to assign kinds to base types. Base types must be fully applied to arguments of the right
type. Once fully applied, all base types have kihdRule DEPSUM, for dependent sums, shows that the
name of the first component is bound to a pair of a representation and corresponding PD. The semantic
functions defined in the next section determine the type of this pair. Type abstractions and recursive types
(rules TrABs and ReC) restrict their type variable to kindl. This restriction simplifies the metatheory
of bbc*with little practical impact. Finally, with the introduction of potentially open host types, we must
now check in rule © MPuUTEthat the only (potentially) open type variablessiare the representation-type
variables bound (implicitly) im\.

At the beginning of this chapter, we mentioned that® is an extension and improvement of our prior
work onbbc. The improvements relate to changes in the kinding rules. In particular, we have replaced
the contextM of bbc, which mapped recursive-type variables to their definitions, with a simpler context
A which merely assigns a kind (alway9 to open type variables. The type variables bound by recursive

types are now treated as abstract, just like the type variables bound by type abstractions. Correspondingly,

44

Normal v == unit |bottom|C(e) | Az.7 | Za:T.T
Types | 747 |7&7 | {2:7]e} | Tseq(T,e,T)
| pat | At
| compute(e:o) | absorb(r) | scan(7)
Types T u= v|Te|TT |

Figure 3.4: RevisedDC® Syntax

T— T e— e
Te—Te ve—ove (Ar.T)v— T[v/2]

/
T — T T— 7

T —mT vr—vr (Aar)v—Tv/ad]

Figure 3.5:DDc* weak-head normalization

the rule for type variables (MVAR) now has a standard form, and the premise of the rule for recursive

types (ReC) is now nearly identical to the premise of the rule for type abstractioms €E).

3.2.2 DDCc® Normalization

To specify the rules of normalization, we must first refactor the syntaoaf* by distinguishing the subset
of weak-head normal typesg) from all typesr, as shown in Figure 3.4. In addition, we must define type
and value substitution fanbc®. The notationr’[7/«] denotes standard capture-avoiding substitution of
types into types, except for constructs that contaitkarexpressiore or typeos. For those constructs, the
alternative substitutiof{7] e,/ crep][[7]ppy/eos] is applied to the subcomponent expression or type. For

example,

compute(e:o)[r/a] = compute(e|[7]ep/ Arep][[T]ppn/ @pon] : o [[7]rep/ Arep][[TIppn/ tenn))-

This definition of substitution derives from the kinding ruleoofc®. In a judgmenth, a:T;T" - 7 : k, the

DDC* type variablen implicitly binds the F,, type variablesy,., andasp, for any types inl’. Therefore,

when replacingy in a bbc* type, we must also make sure to replace all type variablgs and app,

in constituentF,, expressions and types in a consistent manner. We denote standard capture-avoiding
substitution of terms imDc® types with7[v/z]. Similarly, x[oc/«] denotes standard capture-avoiding

substitution ofF, types intobbc®* kinds.

45

[7] rep = 9

[[unlt]]rep = unit
[bottom],, = none

[[C<e)]]rep = Btype(c) +none
[[)‘I'T]]rep = [[Tﬂrep

[e]]rep = [[Tﬂrep

[Ez:m '7-2]]rep = [[Tlﬂrep * [[7—2]]rep
[[Tl + T2Hrep = [[Tlﬂrep + [[7—2]]rep
[[7'1 & TQHrep = [[Tlﬂrep * [[7—2]]rep
[{z:7| e}]]rep = [[Tﬂrep + [[Tﬂrep
[seq(7sep €, Term)]ep = int * ([7],epseq)
[[O‘]]rep = COrep

[[uoz.T]]rep = uarep.[[T]]rep
[Aa.7] rep = Azep-[7] rep
[7172] rep = [n] rep[[TQH rep
[compute(e:a)]ep = o

[absorb(7)] e, = unit + none
[scan(7)]ep = [r]iep+none

Figure 3.6: Representation-type interpretation function.

Normalization ofbbc® is based on a standard call-by-value small-step semantics of the lambda calcu-

lus. We present the rules of the normalization judgment in Figure 3.5.

3.2.3 Representation Semantics

In Figure 3.6, we present the representation type of eaatt* primitive. While the primitives are depen-
dent types, the mapping to the host language erases the dependency because the host language does not
have dependent types. Fobc® types in which expressions appear, the translation drops the expressions
to remove the dependency. With these expressions gone, variables become useless, so we drop variable
bindings as well, as in product and constrained types. Similarly, as value abstraction and application are
only relevant for dependency, we translate them according to their underlying types.

In more detail, theoDC* type unit consumes no input and produces only thet value. Corre-
spondinglybottom consumes no input, but uniformly fails, producing the valuge. The functionBype
maps each base type to a representation for successfully parsed data. Note that this representation does not
depend on the argument expression. As base type parsers can fail, we sum this typmaithproduce

the actual representation type. Intersection types produce a pair of values, one for each sub-type, because

46

[unit]pp = pd_hdr *unit

[bottom]pp = pd_hdr *xunit

[C(e)lpp = pd_hdr *xunit

[\2.7]pp = [rlep

[T elpp = [rleo

[Xz:71.72]pp = pd.-hdr * [71]pp * [T2]pp

[71 + 72]pp = pd-hdr * ([71]pp + [72]pp)

[71 & 72]pp = pd-hdr « [7]pp * [2]pp

[{2:7 | e}]pp = pd-hdr «[7]pp

[7seq(Tsep €, Tterm)|pp = pd-hdr * ([7]pp arr_pd)

lalpp = pd_hdr * appy

[7po — pdhdr * jscens-[7lpo

[Av.7]pp = Ao [T]pp

[71 72lpp = [mlep [72]pop

[compute(e:o)]pp = pd_hdr *xunit

[absorb(7)]pp = pd_hdr xunit

[scan(7)]pp = pd.hdr * ((int * [7]pp) + unit)
[lppp =0

[7lppy = o where[r]pp = pd-hdr * o

Figure 3.7: Parse-descriptor type interpretation function

the representations of the subtypes need not be identical nor even compatible. Constrained types produce
sums, where a left branch indicates the data satisfies the constraint and the right indicates it does not. In the
latter case, the parser returns the offending data rathemthtanbecause the error is semantic rather than
syntactic. Sequences produce a host language sequence paired with its length.

A type variablea in DDC® is mapped to a corresponding type variablg, in F,. Recursive types
generate recursive representation types with the type variable named appropriately. Polymorphic types and
their application becomeg,, type constructors and type application, respectively. The outputefipute
is exactly the computed value, and therefore shares its type. The outpbt@fb is a sum indicating
whether parsing the underlying type succeeded or failed. The type=afis similar, but also returns an
element of the underlying type in case of success.

In Figure 3.7, we give the parse descriptor type for eaplt® type. Each PD type has a header and
body. This common shape allows us to define functions that polymorphically process PDs based on their
headers. Each header stores the number of errors encountered during parsing, an error code indicating the

degree of success of the parse — success, success with errors, or failure — and the span of data described by

47

[7:T]pr = bitsxoffset — offset * 7], * [T]pp
[r:0 — K]pr = 0 — [re:k]py, foranye
[7T — &lpr = Vorep.Voros. [T]pr — [rouk]pr

(Qtrep, vy € FTV (k) UFTV(7))
Figure 3.8:F types for parsing functions.

the descriptor. Formally, the type of the headet fdr) is int * errcode * span. Each body consists of
subdescriptors corresponding to the subcomponents of the representation and any type-specific metadata.
For types with neither subcomponents nor special metadata, watis@s the body type.

We discuss a few of the more complicated parse descriptors in detail. The parse descriptor body for
sequences contains the parse descriptors of its elements, the number of element errors, and the sequence
length. Note that the number of element errors is distinct from the number of sequence errors, as sequences
can have errors that are not related to their elements (such as errors reading separators). We introduce an
abbreviation for array PD body typesrr_pd ¢ = int * int * (0 seq). Thecompute parse descriptors
have no subelements because the data they describe is not parsed from the data soutisgorbheD
type isunit as with its representation. We assume that just as the user does not want the representation to
be kept, so too the parse descriptor. Elken parse descriptor is eithenit, in case no match was found,
or records the number of bits skipped before the type was matched along with the type’s corresponding
parse descriptor.

Like other typespDcC® type variablesy are translated into a pair of a header and a body. The body has
abstract typewsp,. This translation makes it possible for polymorphic parsing code to examine the header
of a PD, even though it does not know thec® type it is parsing.oDC® abstractions are translated into
F,, type constructors that abstract the body of the PD (as opposed to the entire RiD)Gthdpplications
are translated inté, type applications where the argument type is the PD-body type.

It is important to note that the PD interpretation is not defined for all types. The problem lies with the
interpretation of type applicatior£; m2]pp = [71]pp [m2]ppp- The interpretation requires thit] -, be
defined, which, in turn, requires thpt], = pd-hdr * o, for someo. Yet, this requirement is not met by

all types; for exampleda.r.

48

3.2.4 Parsing Semantics of thepc®

The parsing semantics of a typevith kind T is a function that transforms some amount of input into a pair

of a representation and a parse descriptor, the types of which are determined oy parsing semantics

for types with higher kind are functions that construct parsers, or functions that construct functions that
construct parsers, and so forth. Figure 3.8 specifies the host-language types of the functions generated
from well-kindedDbDc* types. For each (unparameterized) type, the input to the corresponding parser is a
bit string to parse and an offset at which to begin parsing. The output is a new offset, a representation of
the parsed data, and a parse descriptor.

Figure 3.9 shows the parsing semantics function. For each type, the input to the corresponding parser is
a bit string and an offset which indicates the point in the bit string at which parsing should commence. The
output is a new offset, a representation of the parsed data, and a parse descriptor. As the bit string input is
never modified, it is not returned as an output. In addition to specifying how to handle correct data, each
function describes how to transform corrupted bit strings, marking detected errors in a parse descriptor.
The semantics function is partial, applying only to well-fornmamic® types.

For any type, there are three steps to parsing: parse the subcomponents of the type (if any), assemble
the resultant representation, and tabulate metadata based on subcomponent meta-data (if any). For the sake
of clarity, we have factored the latter two steps into separate representation and PD constructor functions
which we define for many of the types. For some types, we additionally factor the PD header construction
into a separate function. For example, the representation and PD constructarstf@reRy, ;. andPyy;+,
respectively, and the header constructor for dependent suls iBhe constructor functions are shown
in Figure 3.11 and Figure 3.12. We have also factored out some commonly occuring code into auxiliary
functions, explained as needed and defined formally in Figure 3.10.

The PD constructors determine the error code and calculate the error count. There are three possible er-
ror codesiok, err, andfail, corresponding to the three possible results of a parse: it can succeed, parsing
the data without errors; it can succeed, but discover errors in the process; or, it can find an unrecoverable
error and fail. Note that the purpose of theil code is to indicate to any higher level elements that some
form of error recovery is required. Hence, the whole parse is marked as failed exactly when the parse ends
in failure. The error count is determined by subcomponent error counts and any errors associated directly
with the type itself. If a subcomponent has errors then the error count is increased by one; otherwise it is

not increased at all. We use the functipts, which maps all positive numbers to 1 (leaving zero as is),

49

[[unlt]]P =)\(B W) (W Runit() Punit (w))
[bottom]p = A(B,w).(w, Root (), Poot (w))
[C(e)]p = A(B,w).Bimp(C) (€) (B,w)
7] = Az.[7]p
[relo = [lpe
[Ezrr]p=
A(B,w)
let (W', r,p) = [7]p (B,w) in
let x = (r,p) in
let (W, r',p’) = [7']p (B,w') in
(W/) RE(ra I‘,), Py (pv pl))
[r+7]p=
A(B,w)
let (W', r,p) = [7]p (B,w) in

if isOk(p) then

(W', Rytest(T), Priess(P))
else let (u',r,p) = [7']p (B,w) in
(W', Ryrignt (r), Porignt(p))

[r&']p =
A(B,w).
let (W', r,p) = [7]p (B,w) in
let (W”,r’,p’) = [7]p (B,w) in
(max(w’,w"),Re(r, '), Pe (P, P'))
[{a:r|et]p =
A(B,w).
let (W', r,p) = [7]p (B,w) in

let x = (r,p) in
letc=ein
(w/7 R'Con(c7 r)7 PCOn(C’ p))

[[T seq(TSa €, Tt)]]P =
A(B,w).
letfun isDone (w,r
EoF(B,w) or e (r
let (w',r',p") =
is0k(p’)
in
letfun continue (w,w’,r,p) =
if w = ' or isDone (w r,p) then (W', r,p)
else let (ws,Ts,ps) = [7s]p (B,w') in
let (Wevrevpe) - [[]] (Baws)
continue (w,we, Rseq(ra Te), Pseq(PvPs»Pe»
in
let r = Rgeq init() in
let pP= Pseq,init (w) in
if isDone (w,r,p) then (w,r,p)
else let (we, Te,Pe) = [7]p (B,w) in
continue (W', We, Rseq(T; Te), Pseq (P, Punit (w), Pe))
[a]p = parse,
[pa.r]p =
fun parse, (B:bits,w:offset):
offset * [ua.7] g [a.m]pp =
let (W', 1,p) =
IIT]]P[ILU‘OL'T]]rep/O‘reP] [[[,LLO(-THPDb/aPDb] (B7 w)
in
(o, £01a[[101.7],) 7. (52, 201011071)
[A.7]p = Aczep.- Acvppp.)\parse(,.[[r]]p
[ri72]p = [11lp [[72liepl [[m2]ponl [72]p
[compute(e:o)]p =
)‘(B7 W) . (wa R-compute(e); Pcc:mpute (W))
[absorb(7)]p =
A(B,w).
let (W', r,p) = [7]p (B,w) in
(w/a Rabsorb (P) absorb (P)
[scan(r)]p =
A(B,w).
letfuntry i =
let (W',r,p) = [7]p B,w+1i) in
if is0k(p) then
(@', Rscan(T), Pscan(i, sub(B,w, i + 1), p))
else if EoF(B,w + i) then
(w7 Rscan,err()7 Pscan_err (w))
else try (i+1)
intry O

,p) =
7)0
[7]p(B,w) in

Figure 3.9:dbDC® parsing semantics

50

Eof : bits * offset — bool

scanMax : int

funmax (m,n) = if m > n thenmelsen
funposn=if n =0thenOelsel
fun is0k p = pos(p.h.nerr) =0

fun isErr p = pos(p.h.nerr) =1

fun max_ec (ecq,ecy) =
if ec; = fail or ecy, = fail then fail
else if ec; = err or ecy, = err then err
else ok

Figure 3.10: Auxiliary functions. The type of PD headersiis x errcode x span. We refer to the
projections using dot notation asrr, ec andsp, respectively. A span is a pair of offsets, referred to as
begin andend, respectively.

to assist in calculating the contribution of subcomponents to the total error count. Errors at the level of the
element itself - such as constraint violation in constrained types - are generally counted individually.

With this background, we can now discuss the semaniicst andbottom do not consume any input.
Hence, the output offset is the same as the input offset in the parsers for these constructs. A look at their
constructors shows that the parse descriptofufart always indicates no errors and a correspondikg
code, while that obottom always indicates failure with an error count of one andftiel error code. The
semantics of base types applies the implementation of the base type’s parser, provided by theipction
to the appropriate arguments. Abstraction and application are defined directly in terms of host language
abstraction and application. Dependent sums read the first elemeandtthen the secondat, the offset
returned from parsing the first element. Notice that we bind the pair of the returned representation and parse
descriptor to the variable before parsing the second element, implicitly mappingathe® variablez to
the host language varialtdan the process. Finally, we combine the results using the constructor functions,
returningw” as the final offset of the parse.

Sums first attempt to parse according to the left type, returning the resulting value if it parses without
errors. Otherwise, it parses according to the right type. Intersections read both types starting at the same
offset. They advance the stream to the maximum of the two offsets returned by the component parsers. The
construction of the parse descriptor is similar to that of products. For constrained types, we call the parser

for the underlying type-, bindx to the resulting rep and PD, and check whether constraint is satisfied. The

51

fun Runie () = ()

fun Punit w = ((07 Ok7 (w7w))7 ())

fun Ryot () = none

fun Pyor w = ((la fai17 (w7w))7 ())

fun Ry (r1,r2) = (r17r2)

fun Hy (hl, h2) =
let nerr = pos(h;.nerr) + pos(hy.nerr) in
let ec = if hy.ec = fail then fail
else max_ec hy.ec hy.ec in
let sp = (hy.sp.begin, hy.sp.end) in
(nerr, ec, sp)

fun Py (p1,p2) = (Hz(p1-h, p2-h), (P1,P2))

funRijese r=1inlr

funRipjgne r=inrr

fun Hy h = (pos(h.nerr), h.ec,h.sp)
fun Pyjese p = (Hy p.h,inl p)

fun Pyrigne p = (H4 p.h,inr p)

funRg (r,1’) = (7,)

fun Hg, (hy,hy) =
let nerr = pos(h;.nerr) + pos(hy.nerr) in
let ec = if hy.ec = fail and hy.ec = fail then fail
else max_ec hy.ec hy.ec in
let sp = (hy.sp.begin,max(h;.sp.end, hy.sp.end)) in
(nerr, ec, sp)

fun Py (p1,p2) = (Hg (p1-h,p2-h), (p1,p2))

Figure 3.11: Constructor functions, part 1. The type of parse descriptor headetsdgrrcode * span.
We refer to the projections using dot notatiomasr, ec andsp, respectively. A span is a pair of offsets,
referred to adegin andend, respectively.

52

fun Reon (¢, r) = if c then inl r else inrr

fun Peoy (c,p) =
if c then ((pos(p.h.nerr),p.h.ec,p.h.sp),p)
else ((1 + pos(p.h.nerr),max_ec err p.h.ec,p.h.sp),p)

fun Reeqinit () = (0,])
fun Pseq,init w = ((Oa ok, (wa w))a (07 0, H))
fun Reeq (r,re) = (r.len+ 1,r.elts Q [r,])

fun Hgeq (h, hg, he) =

let eerr = if h.neerr = 0 and h.nerr > 0
then 1 else 0 in

let nerr = h.nerr + pos(hg.nerr) + eerr in

let ec = if ho.ec = fail then fail
else max_ec h.ec he.ec in

let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)

fun Pseq (pvpmpe) =

(Hseq (P-h7 Ps-h, Pe-h)a
(p-neerr + pos(pe.h.nerr),p.len+ 1,p.elts @ [p.]))

fun Reompute T =T

fun Pcompute w = ((07 ok, (wvw))v ())

fun Rapsorp p = if is0k(p) then inl () else inr none

fun Pabsorb P= (ph? ())

fun Rgeqp r = inlr

fun Pgean (i,p) =
let nerr = pos(i) + pos(p’.h.nerr) in
let ec = if nerr = 0 then ok else err in
let hdr = (nerr, ec, (p.sp.begin — i, p.sp.end)) in
(hdr, inl (i,p))

fun Rscanerr () = inr none
fun Pscanerr w = let hdr = (1, fail, (w,w)) in
(hdr, inr ())

Figure 3.12: Constructor functions, part 2.

53

result indicates whether the data has a semantic error and is used in constructing the representation and PD.
For example, the PD constructor will add one to the error count if the constraint is not satisfied. Notice that
we advance the stream independent of whether the constraint was satisfied.

Sequences have the most complicated semantics because the number of subcomponents depends upon
a combination of the data, the termination predicate, and the terminator type. Consequently, the sequence
parser uses mutually recursive functiar®one andcontinue to implement this open-ended semantics.
FunctionisDone determines if the parser should terminate by checking whether the end of the source has
been reached, the termination conditiohas been satisfied, or the terminator type can be read from the
stream without errors at. Functioncontinue takes four arguments: two offsets, a sequence representa-
tion, and a sequence PD. The two offsets are the starting and ending offset of the previous round of parsing.
They are compared to determine whether the parser is progressing in the source, a check that is critical to
ensuring that the parser terminates. Next, the parser checks whether the sequence is finished, and if so, ter-
minates. Otherwise, it attempts to read a separator followed by an element and then continues parsing the
sequence with a call teontinue. Then, the body of the parser creates an initial sequence representation
and parse descriptor and then checks whether the sequence described is empty. If not, it reads an element
and creates a new rep and PD for the sequence. Note that it passes thexuRDx fior place of a separator
PD, as no separator is read before the first element. Finally, it continues reading the sequence with a call to
continue.

Because of the iterative nature of sequence parsing, the representation and PD are constructed incre-
mentally. The parser first creates an empty representation and PD and then adds elements to them with
each call tocontinue. The error count for an array is the sum of the number of separators with errors plus
one if there were any element errors. Therefore, in funatiQp we first check if the element is the first
with an error, settingerr to one if so. Then, the new error count is a sum of the old, potentially one for
a separator error, angerr. In Ps.q we calculate the element error count by unconditionally adding one if
the element had an error.

A type variable translates to an expression variable whose name corresponds directly to the name of
the type variable. These expression variables are bound in the interpretations of recursive types and type
abstractions. We interpret each recursive type as a recursive function whose name corresponds to the name

of the recursive type variable. For clarity, we annotate the recursive function with its type.

54

We interpret type abstraction as a function over other parsing functions. Because those parsing func-
tions can have arbitranypc® types (of kindT), the interpretation must be a polymorphic function, param-
eterized by the representation and PD-body type obthe* type parameter. For clarity, we present this
type parameterization explicitly. Type applicationr simply becomes the application of the interpreta-
tion of 7, to the representation-type, PD-body type, and parsing interpretations of

Thescan type attempts to parse the underlying type from the stream at an increasing scanfaifeet
the original offsetv, until success is achieved or the end of the file is reached. In the semantics we give here,
offsets are incremented one bit at a time — a practical implementation would choose some larger increment
(for example, 32 bits at a time). Note that, upon succeisspassed to the PD constructor function, which
both records it in the PD and sets the error code based on it. It is considered a semantic error for the value
to be found at a positive whereas it is a syntactic error for it not to be found at all.

Notice that the upper-bound on the running timesefn is at least linear in the size of the data,
depending on the particular argument type. More precisely, if the running time of a tig€(f(n)),
wheren is the size of the data, then the running timeseén(7) is O(n f(n)). While such a running time
is potentially high, it is reasonable if it is only incurred for erroneous data, in which case it is not incurred
on the “fast path” of processing good data; orf {f2) is 1 andscan consumes all of the scanned data, in
which case it is linear in the amount of data consumed, which is the best running time achievable without
skipping data. However, we cannot guarantee that either of these conditions are meta#ditgpe can
legally appear in branches of sums, in which case the cost could be incurred for valid data (that matches a
different branch) without consuming any of the data scanned.

In PADS/C and PADS/ML, we control the potentially high cost &fcan in two ways. First, we only
scan for literals, thereby bounding the running time to linear in the size of the data source. Second, we set
a data-source independent maximum on the number of bits scanned for any particular instatwae of
rather than potentially scanning until end of the data source. Together, these factors reduce the running time
of scanning taJ(1). However, the second factor implies thrtps/c andPADS/ML, unlike bbc®, do not
guarantee to find the targets of scans, even if they are present in the data source. This difference between
DDC®* and therPADS languages could have a significant impact an any guarantees we might make about
error recovery based anbc® alone. We leave for future work the development of a more sophisticated

semantics foscan that accounts for the unreliable nature of scansans/c andPADS/ML.

55

Returning to our discussion of the semanticoofc®, we note thatompute only calls the compute
constructors without performing any parsing. The representation constructor returns the value computed by
e, while the PD records no errors and reports a span of length 0, as no data is consumed by the computation.
The absorb parser first parses the underlying type and then calls the absorb constructors, passing only
the PD, which is needed by the rep constructor to determine whether an error occured while parsing the
underlying type. If so, the value returned imiéne. Otherwise, it isunit. The absorb parse descriptor

duplicates the error information of its underlying type.

3.3 Metatheory

One of the most difficult, and perhaps most interesting, challenges of our wank ot was determin-
ing what properties we wanted to hold. What are the “correct” invariants of data description languages?
While there are many well-known desirable invariants for programming languages, the metatheory of data
description languages has been uncharted.

We present the following two properties as critical invariants of our theory. We feel that they should

hold, in some form, for any data description language.

e Parser Type Correctness For abbc® type 7, the representation and PD output by the parsing

function of 7 will have the types specified by], and[7]pp, respectively.

rep

e Canonical Forms of Parsed Data We give a precise characterization of the results of parsers by
defining thecanonical formsof representation-parse descriptor pairs associated with a dependent
DDC? type. Of particular relevance to data description, we show that the errors reported in the parse

descriptor will accurately reflect the errors present in the representation.

The aim of this section is to formally state and prove that these critical properties hold fobatr
theory. However, before we can do so, we must establish some basic properties of our semantics. We
begin with a number of properties that we expect to hold for variable names. First, all variable names
introduced by the parsing semantics function should be considered taken from a separate syntactic domain
than variables that may appear in ordinary expressions. Therefore, they are by definition “fresh” with
respect to any expressions that can be written by the user. Second, for those types with bound variables,

the potential alpha-conversion when performing a substitution on the type exactly parallels any alpha-

56

T — 7_l 7_l — 7_Il

=0T Tk 7

e—e ¢ — e

e =o€ e —py1 €’
Figure 3.13: K-steps normalization and evaluation judgments

conversion of the same variable where it appears in the translation of the type. Last, all constructors,
support functions and base-type parsers are closed with respect to user-defined variable names.

Next, we require thabbc® base types satisfy the properties that we desire to hold of the rest of the
calculus. Below is a formal statement of these requirements. Note that by condition 3, base type parsers
must be closed.

Condition 1 (Conditions on Base-types)

1. dom(Bkmd) = dom(l’)’,-mp).
2. If Biina(C') = 0 — T then Bopy (C') = 0 — [C(e):T] py (for any e of type o).
3. F Bimp(C) : Bopiy(C).

The evaluation off, terms and the normalization ofbc® types are both defined with a small-step
semantics. However, it is useful to be able to reason about terms and types that are related by arbitrary
many) steps in these semantics, rather than just one. To this end, in Figure 3.3, we define two judgments
that respectively generalize evaluation and normalizatiégrsteps. Next, we state some properties of these

judgments.

Lemma 2 (Properties of K-step Evaluation)

1. If e; — €} then ey ea — €] es.

2. If eg —y, €} thenv es — v e,

3. If e = € thene[o] — €' [o].

4. If eq —; ez and ez —; e3 then ey —(;44) €3.

Proof: By induction on the number of steps in evaluation relation. |

57

Lemma 3 (Properties of K-step Normalization)

1.

If 7\ —, 71 then Ty T2 —p Ty To.
If 79 — 7 then v 79 —y v T4.
If 71 —, 7] then Ty e —, 71 €.
If e = e thenve — ve.

If 71 —; 72 and T3 —; T3 then 71 —(;4j) T3.

Proof: By induction on the number of steps in evaluation relation. |

Lemma 4 (K-step Evaluation Inversion)

1.

If e1e3 —p vthenk > 0and 34, j,v1,v2 s.t. 1 —; vy and ep —; vo, Withi + j < k.
If e[o] = vthen3i,v s.t. e —; v, withi < k.

If (fun f x =€) v — V' thene[(fun f z = e)/f][v/x] —k—1 V.

If let v =eine —; vthen3 1,0 s.t. e —; v withi < k.

If if e then e else ey — v and e —* true then 3 i s.t. e; —; v withi < k.

If if e then e else ey — v and e —* false then 3 i s.t. eo —; v withi < k.

Proof: By induction on the number of steps in the evaluation relation. |

Lemma 5 (Confluence of Evaluation)

Ife -, vande —; € thene' —p_; v.

Proof: By induction on the height of the first derivation, using determinacy of single-step evaluation as

needed. [|

A number ofbbc® properties involve reasoning about terms that are equivalent up-to equivalent typing

annotations. Therefore, we now define this equivalence and state some of its properties.

58

Definition 6 (Expression Equivalence)
e = ¢ iff e is syntactically equal to ¢’ modulo alpha-conversion of bound variables and equivalence of
typing annotations.
Lemma 7 (Properties of Expression Equivalence)
1. Ife=¢ ande — ey then3 €] s.t. ¢/ — €] and ey = €.
2. Ife=¢ thenejle/z] = e1]e’ /x].
3. Ifo = o' thene[o/a] = e[o’/a].

4. e=e.

5. Ife=¢€ thene' =e.

6. Ife=¢"ande’ =€’ thene =e" .

Proof: Part 1. By induction on the number of steps in the evaluation relation. Note that evaluatign in
is not influenced by typing annotations. Part 2: By induction on sizg ofart 3: By induction on size
of e and definition of expression equivalence. Parts 4, 5, 6: By reflexivity, symmetry and transitivity of

expression equality and type equivalence. |

Next, we state two properties &f, type equivalence that are needed later.
Lemma 8 (Properties of F,, Type Equivalence)

I1.IfTFo:kando =o' thenT F o’ :: k.
2. If I,z:0,1V+e:0yando = o' thenT', x:0", I" - e : 0y.

Next, we show that substitution commutes with all of the semantic interpretatiatsasf. For clarity,

we first introduce two substitution-related abbreviations:

(r/a) = [[7)iep/ @rep]l[T]ppn/ teon]
{r/a} = [[r]iep/ arepll[Tlpon/ aene][[7]p/parse,]

Lemma 9 (Commutativity of Substitution and Semantic Interpretation)
L (7' fell ey = (7] ep(T' /).

2. AT 72k then [r[r' /o], = [T]epllee 7] e/ rep)-

59

3.0f 3o st [rlpp = o and 3o st [7']p, = pdhdr + o then [r[r'/allpp = [Flpp(r'/a) =
[pol 7] pop/ topn]-

4. If Jo st [r]pp = 0 and o s.t. [']pp = pd_hdr # o then [r[r' /a]]p = [7],{'/a}.

50w/l ep = [7]rep-

6. [r[v/z]lpp = [71pp-

7. Irlv/x)]p = [r1plv/x].

Proof: Parts 1,3-7: By induction on structure of types. For part 3, the most interesting case is for the
type «, which is shown in detail in Appendix A. Part 2 is proven by induction on the height of the kinding
derivation. The most interesting casetsnpute, as it is the only construct in which a variable of the form
appp, Might appear. However, as the type is well-formed, we know from the kinding rules that the only type
variables allowed i are of the forma,..,. For part 4, note that variables of the fopﬂrserep cannot
appear in any- — they can only be introduced by the parsing semantics function. A number of the more
challenging cases are shown in detail in Appendix A. For part 6, note that the open variapigs ane

exactly those that are opendiritself, as none are introduced in the translation. |

Next, we prove a similar commutativity result for tfie: - | . function.
Lemma 10

If 30 s.t.[7]pp =0 and Fo s.t. [7']pp, = pd-hdr * o then [7[7'/a]:k(T" /)] pr = [T:E] pp(T’ /).

Proof: By induction on the size of the kind, using Lemma 9 Tocase. |

Lemma 11

The function [- |, is total.

rep

Proof: By induction on the structure of types. |

Next we present some standard type-theoretic resultsdar kinding and normalization.

Lemma 12 (Obc* Preservation)

If -7:kandT —* vthent v : k.

60

Proof: By induction on the kinding derivation. |

Lemma 13 ODc® Inversion)

All kinding rules are invertable.

Proof: By inspection of the kinding rules. |

Lemma 14 obc® Canonical Forms)

If + v : k then either
e x=T,o0r
e k=0 —kandT = \z.7’, or

e k=T —=kandT = \a.7’.

Proof: By kinding rules and grammar of normalized types |

Finally, we state the substitution lemmas that we assume to hold of the various undé})yudgments

followed by a substitution lemma faroc®.

Lemma 15 (F,, Substitution)

I If FT,0:T,TV okandT' o :: T thenT',TV[o /] ok.

2. If Tyax:Tko:kandT F oy :: TthenT - ofoy/a] = T.

3. If T,a:T,I"Fe:oandT F oy :: T thenT,TV[o1/a] b e[o1/a] : oloy/al.
4. If T,az:0'Fe:oandT v : o' thenT - efv/x] : o

Proof: These are standard propertiesihf. They are all proven by induction on the height of the first

derivation. m
Lemma 16 Obc* Substitution)

L IfA;T z:o =71k and [A]p ;T Fov:othen A;T = r[v/z] @ k.

2. IfAN, ;TN T o kand A;T F 7/ 0 T then AT, TV [7 /o) = 77! /o]« k[T /al.

61

Proof: For both parts, by induction on the first derivation, using Lemma 15 as needed. |

Finally, we state another commutativity property for the semantic functions. In essence, it says that
evaluation (aka. normalization, type equivalence) commutes with semantic interpretation. This result has
inherent value for reasoning abamc®, as it allows one to reason about the semanticsoaf* functions
directly in terms of the stated normalization rules, rather than indirectly through semantic interpretation
and the evaluation/equivalence rules of the semantic domain. Note that the premise of the lemma involves
parser evaluation because that is what is needed for later use. We posit without proof that this lemma would

be equally true if the second premise were switched with the first conclusion.

Lemma 17 (Commutativity of Evaluation and Semantic Interpretation)

If =7 :kand[7]p —* v then

Proof: By induction on the number of steps in the evaluation. Within the induction, we proceed using a

case-by-case analysis of the possible structures oftyphe complete proof is shown in Appendix A.H

3.3.1 Type Correctness

Our first key theoretical result is that the various semantic functions we have defined are coherent. In
particular, we show that for any well-kindedc typer, the corresponding parser is well typed, returning
a pair of the corresponding representation and parse descriptor.

Demonstrating that generated parsers are well formed and have the expected types is nontrivial primar-
ily because the generated code expects parse descriptors to have a particular shape, and it is not completely
obvious they do in the presence of polymorphism. Hence, to prove type correctness, we first need to

characterize the shape of parse descriptors for arbitragy* types.

62

The particular shape required is that every parse descriptor be a pair of a header and an (arbitrary) body.
The most straightforward characterization of this property is too weak to prove directly, so we instead
characterize it as a logical relation in Definition 18. Lemma 22 establishes that the logical relation holds of
all well-formedbbc® types by induction on kinding derivations, and the desired characterization follows
as a corollary.

Definition 18

e H(7:T)iff 3o s.t. [7]pp = pd-hdr x 0.
e H(7: T — k) iff 3o s.t. [7]pp = o and whenever H(7' : T), we have H(T 7’ : k).

e H(7:0 — k) iff 30’ s.t. [7]pp = 0’ and H(7 e : k) for any expression e.
Lemma 19

IfH(r : T) then 3o s.t.[1] pp = ©.

Proof: Follows immediately from definition dfi(r : T).]

Note that we implicitly demand thdt [is well defined in the hypothesis of the lemma. We cannot
assume that it is well-defined, even for well-formegds that is part of what we are trying to prove.
Lemma 20

If[7]pp = [7']pp then H(7 : T) iff H(7' : T).

Proof: By induction on the structure of the kind. |
Lemma 21

IfH(7 : k) and H(7' : T) then H(7[7" /] : k).

Proof: By induction on the structure of the kind. The proof is detailed in Appendix A. |
Lemma 22

IfA;T 7k then H(T : K).

Proof: By induction on the height of the kinding derivation. A number of the more challenging cases are

shown in Appendix A. |

63

Corollary 23
o IfA;T'F 7: k then Jo.[T]pp, = 0.

o IfA;T'F 7: T then 30.[7]pp = pd-hdr * 0.

Proof: Immediate from definition oH(7 : k) and Lemma 22. []

We can now prove a general result stating that if a type is well formed, then its type interpretations will
be well formed, and that the kind of the type will correspond to the kinds of its interpretations. We first

state this correspondence formally and then state and prove the lemma.
Definition 24 (bbc® Kind Interpretation in F)
e K(T)=T

o K(o0 — k) =K(k)

e K(T—k)=T— K(k)
Lemma 25 (Representation-Type Well Formedness)

IfFA;T 7 : K then

o [Alp - [T]ep 32 K(%)

rep rep -

o [Alpp F [7]pp 2 K (k)

o Ifk =T then [A]pp F [T]ppy i T-

Proof: By induction using Lemma 22 and Lemma 8, part 1. |

We continue by stating and proving that parsers are type correct. However, to do so, we must first
establish some typing properties of the representation and parse-descriptor constructors, as at least one of
them appears in most parsing functions. In particular, we prove that each constructor produces a value

whose type corresponds to its namesake type. For clarity, we abbreviaigl_hdr * o aso pd.

Lemma 26 (Types of Constructors)

® Runit : unit — unit

® Puni¢ : offset — pd_hdr xunit

64

Rpottom : UNit — none

Poottom : 0Offset — pd_hdr * unit

Ry :Va,b.ax 3 — ax

Py : Vo, B.apdx Bpd — (apd* [Spd)pd

Ritest : Va,B.a — a+

Rirignt : Vo, 8.0 — a+ 3

Piiess : Vo, B.apd — pd_hdr x (apd + [pd)
Pirignt : Vo, 8.0 pd — pd_hdr * (apd + [pd)
Rg :Va,B.axf— axf

Pg : Vo, f.apd * Bpd — pd-hdr * (apd * Bpd).
Reon @ Va.bool x ¢ — a0 + «

Peon : Va.bool * apd — pd_hdr * apd

Rseq.init : Vounit — int * aseq

Pgeq init : Va.offset — pd_hdr * (orpd arr_pd)
Rseq : Vou.(int * arseq) x @ — int x a seq

Pseq : Veit, Qsep-(pd-hdr * (e pd arr_pd)) * rgep pd * Qtery pd —

pd_hdr #* (e pd arr_pd)

Reompute © Va.oo — «

Pcompute : 0ffset — pd-hdr xunit
Rabsorb © Va.apd — unit + none
Pabsorb : Va.apd — pd_hdr * unit

Rscan : V.o — o + none

65

® P.cap : Vauint *x apd — pd_hdr * ((int * apd) 4 unit)
® Rocanerr : Younit — a + none
® Pocanerr @ Va.offset — pd_hdr * ((int * o) + unit)

Proof: By typing rules ofF,,,. |

With our next lemma, we establish the type correctness of the generated parsers. We prove the lemma
using a general induction hypothesis that applies to open types. This hypothesis must account for the fact
that any free type variables inpc® type r will become free function variables ifr],. To that end, we
define the functioffA], which maps type-variable contextsin thebbc® to value-variable contexts

in F,,.

[-lpr=- [A, o:T]pr = [A]py, parsea:[a:T]pr
Lemma 27 (Type Correctness Lemma)

IFA;T 70w then [A]p T [Alpp = [7]p ¢ [7:6]pr

Proof: By induction on the height of the kinding derivation. A number of the more challenging cases are

shown in Appendix A. |

Theorem 28 (Type Correctness of Closed Types)

Ifk 7 : Kk thent [7]p : [T:K] pp

A practical implication of this theorem is that it is sufficient to check data descriptionsgpc®
types) for well-formedness to ensure that the generated types and functions are well formed. This property
is sorely lacking in many common implementations of Lex and YACC, for which users must examine

generated code to debug compile-time errors in specifications.

3.3.2 Canonical Forms

DDC® parsers generate pairs of representations and parse descriptors designed to satisfy a number of in-
variants. Of greatest importance is the fact that when the parse descriptor reports that there are no errors in

a particular substructure, the programmer can count on the representation satisfying all of the syntactic and

66

semantic constraints expressed by the depermizot type description. When a parse descriptor and rep-
resentation satisfy these invariants and correspond properly, we say the pair of data strucaunesiczal
or in canonical form

For eachbDC* type, its canonical forms are defined via two (mutually recursive) relations. The first,
Canon, (r, p), defines the canonical form of a representati@md a parse descriptprat normal type. It
is defined for all closed normal typeswith base kindT. Types with higher kind such as abstractions are
excluded from this definition as they cannot directly produce representations and PDs.

A second definitionCanon* - (r, p) normalizesr to av, thereby eliminating outermost type and value
applications. Then, the requirementsware given byCanon, (r, p). For brevity, we writep.h.nerr as
p.nerr and usepos to denote the function that returns zero when passed zero and one when passed another
natural number.

Definition 29 (Canonical Forms 1)

Canon, (r, p) iff exactly one of the following is true:
e v =unit andr = () and p.nerr = 0.
e v = bottom and r = none and p.nerr = 1.
e v=_C(e) andr = inl c and p.nerr = 0.
e v =C(e) andr = inr none and p.nerr = 1.

o v=Yuxim.19andr = (r1,r2) and p = (h, (p1, p2)) and h.nerr = pos(p1.nerr) + pos(pz.nerr),

Canon*, (r1,p1) and Canon*,((y p) /] (72, P2)-
e yv=T1;+71andr = inl v’ and p = (h, inl p’) and h.nerr = pos(p’.nerr) and Canon*., (', p’).
e V=71 +71gandr = inr v’ and p = (h, inr p') and h.nerr = pos(p’.nerr) and Canon*, (r', p').

o v =n1&T9, r = (r1,r2) and p = (h,(p1,p2)), and h.nerr = pos(py.nerr) + pos(pa.nerr),

Canon*, (11, p1) and Canon*, (r2, p2).

v = {x:7|

el, v = inl v andp = (h,p’), and h.nerr = pos(p’.nerr), Canon*,.(r’,p’) and

e[(r',p)/x] —* true.

v={x:r"|e},r =inr " andp = (h,p’), and h.nerr = 1 + pos(p’.nerr), Canon*,(r’', p’) and

e[(r',p')/x] —* false.

67

o v=r1,s5eq(7s,,7%,), 7 = (len, [77]), p = (h, (neerr,len’, [pi])), neerr = Ziinl pos(p;.nerr),

len = len’, Canon*,_(r;,p;) (fori = 1...len), and h.nerr > pos(neerr).

/

e v = pot’, r = fold[[pa.T],|r', p = (h,fold[[ua.m']pplp’), p.nerr = p'.nerr and

I'Ep]

Canon* (6.7 /) (7', 0).
e v = compute(e:o) and p.nerr = 0.
e v = absorb(7’), r = inl (), and p.nerr = 0.
e v = absorb(7’), r = inr none, and p.nerr > 0.

e v = scan(7’), r = inl ¢/, p = (h,inl (4,p’)), h.nerr = pos(i) + pos(p’.nerr), and

Canon* . (r', p’).

e v =scan(7’), r = inr none, p = (h, inr ()), and h.nerr = 1.
Definition 30 (Canonical Forms Il)

Canon*, (r, p) iff T —* v and Canon, (1, p).

We first prove that the representation and parse-descriptor constructors, under the appropriate condi-

tions, produce values in canonical form.
Lemma 31 (Constructors Produce Values in Canonical Form)

L4 Canonunit (Rtrue ()) Ptrue (w))
L4 Canonbottom (Rfalse ()) Pfalse (w))

e If Canon™,, (71, p1) and Canon* . ((. /4] (72, p2) then

Canong T:T1.T2 (RE(rla rQ)a P): (pla p2))
e If Canon*,(r,p) then Canon, ./ (Ri1est(T), P11ese(P))-
e If Canon*,(r, p) then Canon,s 4+ (Ryrignt (r), P4rignt(p))-

e If Canon*,, (r1,p1) and Canon*,, (r2, p2) then

Canonﬁ & T2 (R&(r17 r2)7 P&(p17 PQ))

e If Canon*,(r,p) and e[(r,p)/x] —* c then

Canong,.; | e} (Rset (¢, T), Pset(C, P))

68

L4 CanonT seq(Ts,e,Tt) (Rseq,init ()7 Pseq,init (w)) .

If Canon, seq(r, e, (7, p) and Canon*,(+’, p’) then, for any p”,

CanonT seq(Ts,e,Tt) (Rseq(r7 IJ), Pseq(pa P”» P/))-
i Canoncompute(e:o) (R'Compute (e); Pcompute (LU))

L4 Canonabsorb(‘r) (Rabsorb (P) 5 Pabsorb (P)) .

If Canon* (7, p) then Canongcan (7 (Rscan(T), Pscan (1, P))-

b Canonscan(T) (Rscan,err()a Pscanerr (w))

Proof: By inspection of the constructor functions. |

In addition, we require that base type parsers produce values in canonical form:

Condition 32 (Base Type Parsers Produce Values in Canonical Form)

If oo, Bina(C) = 0 — T and Binp(C) v (B,w) —* (', 1, p) then Canonc () (7, p).

Lemma 33 states that the parsers for well-formed types (of base kind) will produce a canonical pair of
representation and parse descriptor, if they produce anything at all.
Lemma 33 (Parsing to Canonical Forms)

If -7 : T and 7], (B,w) —* (&, r,p) then Canon*,(r, p).

Proof: By induction on the height of the second derivation — that is, the number of steps taken to evaluate.
Within the induction, we proceed using a case-by-case analysis of the possible structuresof &/pe

number of the more challenging cases are shown in Appendix A. |

Corollary 34
If Canon* (7, p) and p.h.nerr = 0 then there are no syntactic or semantic errors in the representation data

structure 1.

This corollary is important as it ensures that a single check is sufficient to verify the validity of a data

structure. Only if the data structure is not valid will further checking of substructures be required.

69

3.4 EncodingDDLS in DDC?

We can better understand data description languages by elaborating their constructs into thebtypés of
We start by introducingeADS — an idealized data description language — and specifying its elaboration into
DDC®. We then discuss featuresefDS/C, PADS/ML, DATASCRIPT, andPACKETTYPESthat are not found

in IPADS. Finally, we briefly discuss some limitations obc*.

3.4.1 1PADS: An Idealized DDL

IPADS is an idealized version of theaDS/C language that captures many of the common feature®os.
The two essential differences betwesxbs/c andIPADS are that many of the compound constructs have
been replaced by simpler, orthogonal contstructs, and some of the subtler syntactic featupeg@have
been eliminated. Though the syntax differs, the structumesofs/c’s relativeSPADS/ML, PACKETTYPES
andDATASCRIPT are similar. HencelPADS serves as an effective idealization of these languages as well.
Some features, however, are particular to a given language, and are therefore introduced asmepsarate
extensions, later in this section.

IPADS data descriptions are types. ComplexDs descriptions are built by using type constructors to
glue together a collection of simpler types, with the simplest being base types like thesefL. A
completelPADS description is a sequence of type definitions terminated by a single type. This terminal
type describes the entirety of a data source, making use of the previous type definitions tarkDSO0.
type definitions can have one of two forms. The fon=£ ¢) introduces the type identifier and binds
it to IPADS typet. The type identifier may be used in subsequent types. The secondRoem (= t)
introduces a recursive type definition. In this casepay appear in.

Figure 3.14 summarizes the formal syntaxrsDs. As withDDC?, expressions and types are taken
from the host language, described in Section 3.1.2. Notice that we fesehost language variables and
« for IPADS type variables.C'(e) denotes a base type parameterized by a vahien introduces value-
parameterized types amtlit ¢ describes a literal in the data sourdestruct s describe sequences,
much like PADS/ML records. Punion is a simplified version oPADS/ML datatypes, supporting only
description of variance in the data sourd®array describes homogenous sequences likerikes/ML
built-in type Plist . However, the separator and terminatorRerray are specified as types rather

than literals. Pwhere specifies constraint®opt allows for an optional element, ariRfec introduces

70

Types t C(e) | Plit ¢

| Pfun(z:0)=t]|te

| Pstruct {Eﬁ} | Punion {Eﬁ} | Palt {Eﬁ}
| tPwhere xz.e | Popt t|tParray (¢,t)

| Pcompute e:o |« | Prec a.t

Programs p tla=t; p|Prec a=t;p

Figure 3.14: The syntax of theaDs data description langauge.

recursive typesPcompute is identical tocompute of DDC®. Palt is an intersection type; it describes

data that is described by all the branches simultaneously and produces a set of values - one from each type.

3.4.2 1PADS Elaboration

We specify the elaboration fromADS to bbc® with two judgmentsp || = prog indicates that theeADS
programp is encoded apDcC® typer, while ¢ |} 7 does the same foPADS typest. These judgments are
defined in Figure 3.15.

As much of the elaboration is straightforward, we mention only a few important points. Notice we add
bottom as the last branch of thebc® sum when elaboratinBunion so that the parse will fail if none
of the branches match rather than returning the result of the last branch. We base this behavior directly on
the actuabPADS/C language. In the elaboration Bfvhere , we only check the constraint if the underlying
value parses with no errors. FBarray s, we add simple error recovery by scanning for the separator
type. This behavior allows us to easily skip erroneous elements. We usedhdype in the same way
for Plit , as literals often appear as field separatof@struct s. We also absorb the literal, as its value
is known statically. We use the functidry(c) to determine the correct type for the particular literal. For

example, a string literal would requirePstring type.

3.4.3 BeyondPADS

We now give semantics to four features not founaPimDs: PADS/C switched unionspADS/ML polymor-

phic, recursive datatypeBATASCRIPT arrays, andPACKETTYPESoverlays.

PADS/C switched unions. A switched union, like &union , indicates variability in the data format with
a set of alternative formats (branches). However, instead of trying each branch in turn, the switched union

takes an expression that determines which branch to use. Typically, this expression depends upon data

71

thr plt/e] | 7 prog p[Prec a.t/a] |} + prog
¥ 7 prog PROG-ONE o=t plrprog PROG-DEF Prec a =t pl prog PROG-RECDEF

— 1~ —~ BASE A PFUN T A
C(e) | C(e) Pfun (z:0) =t | dz.7 tel e PP
i i\
L PSTRuCT - L PUNION
Pstruct {z1:t1... 250} Punion {zy:t1...2n:t,} |
YT X Xy 1 Th1-Tn T+ -+ T, + bottom
ti ll Ti t ll T
Palt {xi:t1...zpitn} I 1&... &7y PALT Popt ¢ | 7+ unit PoPT
tyr
PWHERE
t Pwhere z.e || {z:7|if is0k(z.pd) then e else true}
t7 tsep V75 tierm I ¢ (f = Ax.false) 5 b
t Parray (tsep,tierm) I 7seq(scan(rs), f,) ARRAY Pcompute e:o |} compute(e:o) COMPUTE
Ty(c) =7 tyr
Plit ¢ | scan(absorb({z:7 |z = c})) PLIT al a VAR Prec a.t| pa.r PREC

Figure 3.15: EncodingPADS in DDC®

72

read earlier in the parse. Each branch is preceded by a tag, and the first branch whose tag matches the
expression is selected. If none match then the default brigadb chosen. The syntax of a switched union
is Pswitch e {e = z:7 taer}.

To aid in our elaboration dPswitch , we define atypef e then ¢; else t, that allows us to choose

between two types conditionally:

ti1ym t2 72 (c=compute(if e then 1 else 2 :Pint))

if e then t; else t2 || ¢* ({z:unit |not e} + 7)) & ({xunit | e} + 72)

The computed value records which branch of the conditional is selected. If the condii@rtrue,c will
be 1, the left-hand side of the intesection will parseand the right will parse nothing. Otherwisewill

be 2, the left-hand side will parse nothing and the right

Now, we can encodBswitch as syntactic sugar for a series of cascading conditional types.

Pswitch e {
if e = e; then t; else
e1 = 1t

if e = e, then t; else
€n = Tn'ln

tdef
tdef}

Note that we can safely replicateas the host language is pure.

PADS/ML polymorphic, recursive datatypes.We have also developed an encodingeabs/mL’s poly-
morphic, recursive datatypes. We present this encoding in two steps. First, we stesdvith type
abstraction and application, and specify their elobarationimo®. Notice thatiPADS type abstractions

can have multiple parameters.

Types t == ..|PFun(a)=t|t(t)
tyr tdr tir

PFUN(@) =t Aar t(T) V77

Next, we extendPADS programs to include datatype bindings. Datatype bindings include the name of

the type,a, a list of type parametersa), a single value parameter and a body that consists of a list

73

of named variants. As witRrec bindings, we do not specify the meaning of datatype bindingsbia®
directly. Rather, we decompose a given datatype into a compewms type, which is then substituted

into the remainder of the program.

Programs p == .. |Pdatatype o (@)(z:0)={zit};p

p[t'/a] | Tprog (¢ = PFun (@)= Pfun (x:0) = Prec a.Punion {Eﬁ})
Pdatatype o (@) (z: o) = {z:4}; p |} 7 prog

There are two important points to notice about the decomposition. First, a datatype is decomposed into
no less than fourPADS (and, by extensiompbc®) types. Second, and more subtly, the recursive type is
nested inside of the abstractions, thereby preventing the definition of nonuniform datatypes. Indeed, the
name of the bound datatype, plays two distinct roles — within the recursive type, it is a monomorphic
type referring only to the recursive type itself, while within the rest of the program it is a polymorphic type
referring to the entire type abstraction.

Our choice to limitPADS/ML uniform datatypes was based on three factors: first, and foremost, we
lacked any compelling examples that demanded nonuniform datatypes; second, recursion over higher-order
types significantly complicates both the theorypafc® and the implementation asfaDs/ML; lastly, there

is no support iro’ cAML for polymorphic recursioR.

DATASCRIPT arrays. Next, we introduce®ATASCRIPT-style arrays for binary data,[length]. They are
parameterized by an optional length field, instead of a separator and terminator. If the user supplies the
length of the sequence, the array parser reads exactly that number of elements. Arrays with the length field
specfied can be encoded in a straightforward mannermitt?* sequences:

ty7 (f=A((len,elts),p).len = length)
t [length] | T seq(unit, f,bottom)

As these arrays have neither separators nor terminators, wentigsgalways succeeds, parsing nothing)

andbottom (always fails, parsing nothing), respectively, for separator and terminator. The fuificti&as

2The absence might be due to the fact that type inference for polymorphicly-recursive functions (without type annotations) is
undecidable [Hen93].

74

a pair of array representation and PD and compares the sequence length recorded in the representation to
length.

Arrays of unspecified length are more difficult to encode as they must check the next element for parse
errors without consuming it from the data stream. A termination predicate cannot encode this check as they
cannot perform lookahead. Therefore, we must use the terminator type to look ahead for an element parse

error. For this purpose, we construct a type which succeeds whails and fails where succeeds:

{z:7 + unit | case z.rep of (inl _ = false| inr_= true)}

Abbreviatednot(7), this type attempts to parseraOn success, the representation will be a left injection.
The constraint in the constrained type will therefore fail. If aannot be parsed, the sum will default to
unit, the rep will be a right injection, and the constraint will succeed. The use of the sum in the underlying
type is critical as it allows the constrained type to be error free even when parfiilg.

With not, we can encode the unboundearAscrIPT array as follows:

tyr
t [length] |} T seq(unit, Ax.false,not(7))

Note that the termination predicate is trivially false, as we use the lookahead-terminator exclusively to

terminate the array.

PACKETTYPES overlays. Finally, we consider theverlayconstruct found ilrPACKETTYPES An overlay

allows description authors “to merge two type specifications by embedding one within the other, as is
done when one protocol encapsulatedvithin another. Overlay[s] introduce additional substructure to

an already existing field.” [MCO0Oa]. For example, consider a network packet from a fictional protocol FP,
where the packet body is represented as a simple byte-array.

FPPacket = Pstruct {
header : FPHeader;
body . Pbyte Parray (Pnosep, Peof);

}

IPinFP = Poverlay FPPacket.body with IPPacket

75

TypePnosep indicates that there are no separators between elements of the byte array. It can be encoded
asPcompute (():unit) , as this type consumes no data and produces a unit value without errors. The
overlay creates a new typRinFP where the body field is aliPPacket rather than a simple byte array.

We have developed a elaboration of the overlay syntaxbmo®. In essence, overlays are syntactic
sugar: overlaying a subfield of a given type replaces the type of that subfield with a new type. However,
despite the essentially syntactic nature of overlays, we discovered a critical subtlety of semantic signifi-
cance, not mentioned by tmaCKETTYPESauthors. Any expressions in the original type that refer to the
overlayed field may no longer be well typed after applying the overlay. For example, consider extending
FPPacket with a field that is constrained to be equal to the checksum of the body:

FPPacket = Pstruct {
header : FPHeader;
body . Pbyte Parray (Pnosep, Peof);
checksum : Pint Pwhere cs.cs = checksum(body);

The checksum function requires thabody be abyte array. Therefore, if we overlagody with a
structured type likdPPacket , thenbody will no longer be a byte array and, so, the application of
checksum to body will be ill-formed. We thought to disallow such expressions in the overlayed type.
However, we found this to be a difficult, if not impossible task. More importantly, such a restriction is
unnecessary. Instead, the new type can be checked for well formedness after the overlay process, an easy
task in theobc® framework.

At this point, we have described the elaborations of some of the more interesting features of the lan-
guages that we have studied. However, to give a fuller sense of what is possible, we briefly list additional

features oDATASCRIPTandPACKETTYPESfor which we have found encodings bbc®:
e PACKETTYPES arrays, where clauses, structures, overlays, and alternation.

e DATASCRIPT. constrained types (enumerations and bitmask sets), value-parameterized types (which

they refer to as “type parameters”), arrays, constraints, and (monotonically increasing) labels.

We know of a couple of features from data description languages that we cannot implementin
as it stands. First, we cannot support a label construct that permits the user to rewind the input. Second,
DATASCRIPT allows the element type of an array to reference the representation of the array itself [Bac02]

(see, in particular, the example in Figure 5). This feature can be useful, for example, if the element type

76

needs the index of the array element that is currently being processar does not support this kind
of element-type parameterization. However, we do not view such limitations as particularly troublesome.
Like the A-calculus orr-calculus,DDC? is intended to capture many common language features, while

providing a convenient and effective basis for extension with new features.

3.5 Applications of the Semantics

The development obpc® and definition of a semantics foPADS has had a substantial impact on the
PADS/C andPADS/ML implementations. It has helped improve the implementations in a number of distinct

ways, which we now discuss.

3.5.1 Bug Hunting

Thebbc® was developed, in part, through a line-by-line analysis of key portions a¢fthe/c implemen-
tation, to uncover implicit invariants in the code. In the process of trying to understand and formalize these
invariants we realized that our error accounting methodology was inconsistent, particularly in the case of
arrays. When we realized the problem, we were able to formulate a clear rule to apply universally: each
subcomponent adds 1 to the error count of its parent if and only if it has errors. If we had not tried to
formalize our semantics, it is unlikely we would have made the error accounting rule precise, leaving our
implementation buggy and inconsistent.

The semantics also helped us avoid potential nontermination of array parsers. In the original imple-
mentation ofPADS/C arrays, it was possible to write nonterminating arrays, a bug that was only uncovered

when it hung a real program. We have fixed the bug and used the semantics to verify dur fix.

3.5.2 Principled Language Implementation

Unlike the rest ofPADS/C, the semantics of recursive types preceded the implementation. We used the
semantics to guide our design decisions in the implementation. Perhaps more significantly, the semantics
was used in its entirety to guide the implementatiorabs/ML. The semantics of type abstractions were

particularly helpful, as they are a new feature not foune@Ams/c. Before working through the formal

3The typenothing array(nothing,eof) where typenothing consumes no input, would not terminate in the orignal
system. A careful read of thepc® semantics of arrays, which has now been implementeehivs/c, shows that array parsing
terminates after an iteration in which the array parser reads nothing.

77

semantics, we struggled to disentangle the invariants related to polymorphism. After we had defined the
calculus, we were able to implement type abstractions’asML functors in approximately a week. We

hope the calculus will serve as a guide for implementatiors\ofs in other host languages.

3.5.3 Distinguishing the Essential from the Accidental

In his 1965 paper, P.J. Landin asks “Do the idiosyncracies [of a language] reflect basic logical properties
of the situations that are being catered for? Or are they accidents of history and personal background that
may be obscuring fruitful developments?”

The semantics helped us answer this question with regard ®dimt andPcompute qualifiers of
PADS/C. Originally, these qualifiers were only intended to be used on fields wiltktruct s. By an
accident of the implementation, they appeareBumion s as well, but spread no further. However, when
designingpbc®, we followed theprinciple of orthogonality which suggests that every linguistic concept
be defined independently of every other. In particular, we observed that “omitting” data from, or including
(“computing”) data in, the internal representation is not dependent upon the idea of structures or unions.
Furthermore, we found that developing these concepts as first-class constsbetars andcompute in
DDc“ allowed us to encode the semantics of otk s/C features elegantly (literals, for example). In this
case, then, thebpc® highlighed that the restriction dfomit andPcompute to mere type qualifers for
Punion andPstruct fields was an “accident of history,” rather than a “basic logical property” of data
description.

We conclude with an example of another feature to which Landin’s question applies, but for which
we do not yet know the answer. TIRanion construct chooses between branches by searching for the
first one without errors. However, this semantics ignores situations in which the correct branch in fact has
errors. Often, this behavior will lead to parsing nothing and flagging a panic, rather than parsing the correct
branch to the best of its ability. The process of developing a semantics brought this fact to our attention and

it now seems clear we would like a more robBsiion , but we are not currently sure how to design one.

3.6 Future Work and Conclusions

In the spirit of Landin, we have taken the first steps toward specifying a semantics for the family of data

description languages by defining the data description cal@apas'. This calculus, which is a dependent

78

type theory with a simple set of orthogonal primitives, is expressive enough to describe the features of
PADS/C, PADS/ML, DATASCRIPT, andPACKETTYPES In keeping with the spirit of the data description
languages, our semantics is transformational: instead of simply recognizing a collection of input strings,
we specify how to transform those strings into canonical in-memory representations annotated with error
information. Furthermore, we prove that the error information is meaningful, allowing analysts to rely on
the error summaries rather than having to revet the data by-hand.

We have already used the semantics to identify bugs in the implementatramsfc and to guide the
implementation ofPADS/ML. In addition, when various biological data sources [Newa, Con] motivated
adding recursion teaps/c and PADS/ML, we usedbDcC® for design guidance. After adding recursion,
both PADS languages can now describe the biological data sources. Furthermops ¢heframework
has repeatedly proved useful for sketching the design of new tools before implementing trems/imL .

For example, we sketched both thebs/ML printers and traversal functors fobc® before implementing
them forPADS/ML. This sketching is possible as many tools can be thought of as an interpretation of the
DDC® types, much like the parser.

Our work onbbc?® has suggested a number of possible directions for future work, of which we will
briefly describe two. First, we have begun work on studying the semantics of data printers. We have for-
malized our printer semantics as a semantic interpretatiomof (based on the printer sketches discussed
above), and we have stated and proven some of their basic properties {BB]WiVe have also begun to
consider which properties we might expect to hold of the interaction between the parser and printer of any
given description.

Second, we would like to enhance our support for expressing error recovery mechanispis*in
The scan type provides a very simple error recovery mechanism that is similar tot¢akerror recovery
mechanisms of many early versions of ttrecC parser generator [App98]. These mechanisms operate, in
essence, by deleting input tokens until a particsharchronizingoken is found. However, the choice of
where and when to attempt error recovery, and which synchronizing tokens to use, is hot made automati-
cally, but must be specified within the grammar itself with special error recovery rules. Yet, more advanced
error recovery mechanisms exist that take a substantially different approach to error recovery. For example,
global error repair“finds the smallest set of insertions and deletions that would turn the source string into

a syntactically correct string, even if the insertions or deletions are not at a point where an LL or LR parser

79

would first report an error” [App98]. In addition, global error repair does not depend on explicit error
recovery rules, but instead uses a single, uniform mechanism for the entire grammar.

We would like to support such global error repair in thec® framework. However, adding a new set
of type constructors tobc® would be insufficient, as it would still require that error recovery be specified
as part of the description and would be limited to local recovery due to the orthogonal nature of types.
Instead, support for a global mechanism would likely require that we parameterize the parsing semantics
itself by an error recovery mechanism. Furthermore, as the exact operation of the error repair, including
the choice of which tokens to insert or delete, depends on the particular description, we hypothesize that

the error recovery mechanism itself should be specified as an interpretaboc®f

80

Chapter 4

Related Work and Conclusions

In this thesis we have described thebs/ML data description language andc®, a low-level, data de-
scription calculus with which we can specify the semanticearfs/mL and other data description lan-

guages. We now review a selection of the related work and offer some concluding remarks.

4.1 Related Work

To give an overview of the related work, it is important to distinguish betweas/ML — a real, imple-
mented data description language, amt — a formalism for understanding data description languages.
We will begin our discussion with an overview of work related to #a®s/ML language, followed by an

overview of the work related tobce.

41.1 PADS/ML

As we discussed in a number of places in this thesigys/mML evolved from prior work by Fisher and
Gruber onrPaDS/C [FGO5]. For the reader’s convenience, we review the differences between the two
languages here. FirstaDS/C is targeted at the language, whileeADS/ML is targeted at theiL family

of languages. UsingiL as the host language simplifies the implementation of many data processing tasks,
like data transformation, which benefit fromL’s pattern matching and high level of abstraction. Second,
unlike PADS/C types, PADS/ML types may be parameterized by other types, resulting in more concise

descriptions through code reuse. ML-style datatypes and anonymous nested tuples also help improve the

81

readability and compactness of descriptions. Third, the generic tool architectergefvL delivers a

number of benefits over the fixed architectur@abs/c. In PADS/C, all tools are generated from within the
compiler. Therefore, developing a new tool generator requires understanding and modifying the compiler.
Furthermore, the user selects the set of tools to generate when compiling the descrigtiars/ML, tool
generators can be developed independent of the compiler and they can be developed more rapidly because
the boilerplate code to traverse data need not be replicated for each tool generator. In addition, the user
can choose which tools to generate for a given data format on a program-by-program basis. This flexibility
is possible because tool generation is simply the composition of the desired generic tool modules with
the traversal functor. A final difference betweexbps/c andPADS/MLIS thatPADS/C is more mature than
PADS/ML. However, we are actively developimaDs/ML and expect that this will only be a temporary
difference.

Some of the oldest tools for describing data formats are parser generators for compiler construction
such asLeEx and yacc. While excellent for parsing programming languagesx and YACC are too
heavyweight for parsing many of the simpler ad hoc data formats that arise in areas like networking, the
computational sciences and finance. The user must learn both the lexer generator and the parser generator,
and then specify the lexer and the parser separately, in addition to the glue code to use them together. In
addition, LEx and YAcc do not support data-dependent parsing, do not generate internal representations
automatically, and do not supply a collection of value-added tools sueR@EML’S XML translator.

More modern compiler construction tools alleviate several of the problems of Lex and Yacc by provid-
ing more built-in programming support. For instanbEMETERSS class dictionaries [Lie88] can generate
parsers that construct internal parse trees as well as traversal functions, much like the traversal functions
generated bypAabs/ML. Similarly, theANTLR parser generator [PQ95] allows the user to add annotations
to a grammar to direct construction of a parse tree. However, all nodes in the abstract syntax tree have a
single type, hence the guidance is rather crude when compared with the richly-typed structures that can be
constructed usingADS/ML. The sABLE/cc compiler construction tool [Agn98] goes beyondTLR by
producing LALR(1) parsers along with richly-typed ASTs quite similar to thoseaafs/ML. Also like
PADS/ML, descriptions do not contain actions. Instead, actions are only performed on the generated ASTs.

Yet, for all of their advantages oveEx andYACC, DEMETER, ANTLR, SABLE/CC, and other such tools
differ from PADS/ML in a number of significant ways. None of these tools have dependent and polymorphic

data descriptions or a formal semantics. They are based around grammars, rather than types, which forces

82

users to familiarize themselves with a new formalism. They target only ASCIlI and UNICODE sources.
Finally, their error handling strategies are different than thoseaafs/ML and they do not provide the
programmer with programmatic access to errorgss/ML does with parse descriptors. That said, such

a laundry list of differences risks obscuring the more essential difference — that these tools are targeted at a
different domainPADS/C andPADS/ML generate tools specificly suited to processing ad hoc data (like the
accumulator), whereas the others generate tools suited to the processing and analysis of programs.

There are parallels betweenDs/ML types and some of the elements of parser combinator libraries
found in languages like Haskell [Bur75, HM98]. Likewise, there are libraries to help programmers generate
printers. Each of these technologies is very useful in its own domairpAna/mML is broader in its scope
than each of them: a singfaDs/ML description is sufficient to generatetha parser and a printer. And a
statistical error analysis, a format debuggerxan translator, and in the future, a query engine [FFGMO06],

a content-based search engine [LJ98, Oh06], more statistical analyses;. Combinator libraries are not
designed to generate such a range of artifacts from a single specification. Indeed, the proper way to think
about combinator libraries in relation F@Ds/ML is that they might serve as an alternative implementation
strategy for some of the generated tools.

The networking community has developed a number of domain-specific languages that are substan-
tially closer toPADS/ML than either compiler-construction tools or combinator libraries. These include
PACKETTYPES[MCO0O0a], DATASCRIPT[Bac02] and Bro's [Pax99] packet processing language for parsing
and printing binary data. LikeAbs/c and PADS/ML, these languages have a type-directed approach to
describing ad hoc data and permit the user to define semantic constraints. In contrast to our work, these
systems handle only binary data and assume the data is error-free or halt parsing if an error is detected.
Not only are ASCII formats a common part of many software monitoring systems, parsing nonbinary data
poses additional challenges because of the need to handle delimiter values and to express richer termination
conditions on sequences of data. PacketTypes and DataScript also focus exclusively on the parsing/printing
problem, whereas our work exploits the declarative nature of our data descriptions to automatically generate
other useful tools and programming libraries.

Our support for generic tools is related to generic programming [JJ96, Hin00, LP03] and design patterns
like the visitor. Both are technologies that can facilitate the implementation of type-directed data structure
traversals. Lammel and Peyton Jones’ original “scrap your boilerplate” article [LP0O3] provides a detailed

summary of the trade-offs between different techniques. We investigated using one of these techniques

83

before implementing the generator fxds/ML traversal functors. However, we found that most advanced
techniques for functional programming languages require features, like type classes, that are only presentin
variants of Haskell. The generatedDs/ML traversal functors are less flexible than some of these traversal
techniques, but they suffice for helping us program the tools we have implemented, and for many more
tools for ad hoc data that we are considering implementing. In addition, these techniques support only
standard functional-programming types, whereass/ML consists of dependent types (specialized to the
domain of ad hoc data processing). However, at this point, this distinction is more in priniciple than in
practice, as we currently provide only minimal support#aps/mML’s dependent type constructors in the
generic tool interface.

Perhaps one of the most closely related works on generic programming is that of van Wetelden
al [VWSPO05], as it relates to the generated parser and printers, rather than only to the generic tool support.
The authors investigate the use of polytypic programming to produce a parser for a language based only
on the specification of its AST type(s). In this way, the AST types themselves serve as the grammar
for the language. They also investigate applying this approach to other compiler-related analyses, like
scope checking and type inference. However, while their “types-as-grammar” approach is clearly related
to PADS/ML, they are using standard functional-programming types, and they are targeting the domain of
programming languages. Dependent types like thosep&/mML and support for ad hoc data processing
are beyond the scope of their work.

There are a number of tools designed to deal with converting ad hoc data formatsiinand various
related tasks. For instance, XSugar [BMSO05] allows users to specify an alternativevnosyntax for
XML languages using a context-free grammar. This tool automatically generates conversion tools between
XML and nonxML syntax. The Binary Format Description language (BFD) [MCO0O0b] is a fragment of
XML that allows programmers to specify binary and ASCII formats. BFD is able to convert the raw data
into XML -tagged data where it can then be processed ugingprocessing tools. While both these tools
are useful for many tasks, conversiondmL is not always the answer. Such conversion often results in
an 8-10 times blowup in data size over the native formbDs/ML, on the other hand, avoids this blowup
by processing data in its native form. The conversion process also does not directly help programmers get
their hands on the data.

DFDL is a data format specification language withyanL -based syntax and type structure [Dat05,

BWO04]. pDFDL is a languagepecification not an entire system or an implementation. Like ph@Ss/ML

84

languagepFDL has a rich collection of base types and supports a variety of ambient codings. In terms of
expressiveness, we believe thiebL consortium has added dependency and semantic constraints to match
the expressiveness eADS/C. However, because the specification is still under development, we cannot

give a more detailed comparison at this point.

A somewhat different class of languages includes ASN.1 [Dub01] and ASDL [WAKS97]. Both of
these systems specify thagical in-memory representation of data and then automatically genepdigsa
ical on-disk representation. Although useful for many purposes, this technology does not help process data
that arrives in predetermined, ad hoc formats. Another language in this category is the Hierarchical Data
Format 5 (HDF5) [Hie]. This file format allows users to store scientific data, but it does not help users deal
with legacy ad hoc formats likeaDs/ML does.

XDTM [MZF T05, ZDFr05] usesxmL Schema to describe the locations of a collection of sources
spread across a local file system or distributed across a network of computers. However, XDTM has
no means of specifying the contents of files, so XDTM aads/ML solve complementary problems.

The METS schema [METO03] is similar to XDTM as it describes metadata for objects in a digital library,
including a hierarchy such objects.

Commercial database products provide support for parsing data in external formats so the data can
be imported into their database systems, but they typically support a limited number of formats. Also,
no declarative description of the original format is exposed to the user for their own use, and they have
fixed methods for coping with erroneous data. For these reasans/ML is complementary to database
systems. We strongly believe that in the future, commercial database systems could and should support a

PADS-like description language that allows users to import information from almost any format.

4.1.2 pbpC”

To the best of our knowledge, our work omc® is the first to provide a formal interpretation of dependent

types as parsers and to study the properties of these parsers including error correctness and type safety.
Of course, there are other formalisms for defining parsers, most famously, regular expressions and contex-
free grammars. In terms of recognition power, these formalisms differ from our type theory in that they
have nondeterministic choice, but do not have dependency or constraints. We have found that dependency
and constraints are absolutely essential for describing most of the ad hoc data sources we have studied.

Perhaps more importantly though, unlike standard theories of context-free grammars, we do not treat our

85

type theory merely as a recognizer for a collection of strings. Our type-based descriptionsbdéiine
external data formatandrich invariants on the internal parsed data structures. This dual interpretation of
types lies at the heart of tools suchra®S, DATASCRIPT andPACKETTYPES

Parsing Expression GrammafREGS), studied in the early 70s [BU73] and revitalized more recently by
Ford [For04], evolved from context-free grammars but have deterministic, prioritized choiceDld® as
opposed to nondeterministic choice. Though PEGs have syntactic lookahead operators, they may be parsed
in linear time through the use of “packrat parsing” techniques [For02, Gri06]. Once again, our multiple
interpretations of types inDc® makes our theory substantially different from the theory of PEGs.

As with PADS/ML, there are many parallels betweebc® andparser combinator§Bur75, HM98]. In
particular,pDc®’s dependent sum construct is reminiscent of the bind operator in the monadic formulation

of parser combinators. Indeed, we can model dependent sums in Haskell as:

sigma i P s -> (s>P t) > P (st)
sigma m g = do {X <- m; y <- q x; return (x,y)}

Parser combinators, however, are a general approach to specifying recursive descent parsing, whereas we
have targetedbDc® to the more-specific domain of parsing ad hoc data. This focus leads to many fea-
tures not found in parser combinators, including the implicit type/value correspondence, the error response
mechanism, and arrays. Each of these features is as fundamentattcas dependent sums. These two
approaches demonstrate the idea of a spectrum of domain-specificity in languages. The relationship be-
tween parser combinators andc? is like the relationship between a general purpose language and parser
combinators themselves. That is, while parser combinators form an (embedded) domain-specific language,

DDC® constructs form a language that is even more domain-specific.

4.2 Concluding Remarks

Ad hoc data presents its users with a great number of challenges and can be found in a wide variety of
disciplines. The general rule seems to be that if an area involves some form of data processing, then
there are ad hoc data formats to be found. The problems of ad hoc data processing, therefore, are not a
niche interest, but an essential problem in computer science. Moreover, they are not likely to go away
anytime soon. The existence of ad hoc data formats is not caused by the shortsightedness or inexperience
of data format designers. Rather, new discoveries and new applications often legitimately demand new

data formats, yet format standardization is a slow and difficult process. Whiles an extremely flexible

86

and standardized format, it is not appropriate for all data sources, particularly very large ones. For these
data sources, the blow-up in data size and the performance hit of processixgithean make its use
untenable.

We hope that our work on data description languages, as described in this thesis, will make a significant
contribution both to data analysts in need of tools k@ s/ML and to computer scientists eager to tackle
the many challenges of ad hoc data. Our goal in preseming/ML was not only to describe what we
have accomplished, but to inspire and guide other researchers in building versramsddr their favorite
programming languages. Similarly, our aim in presentimg® was not only to provide a semantics to
a number of existing data description languages, but to pave the way for a clear understanding of the
semantics of future data description languages. We hope that there will be many.

However, our vision for theADs/ML andPADS/C languages does not stop there. Ultimately, we think
that every data source should carry with it its own description. That description would be written in a low-
level language (perhaps likebc®), into which descriptions from many other, higher-level descriptions
could be compiled. Furthermore, going beyond#hes/c andPADS/ML languages themselves, we want
to allow data consumers to access their data with high-level, intuitive tools that require no programming
and free them to focus on their goals. If we can enable 1000 cancer researchers to become just 1% more
effective in their work, then we will have “created” (in terms of time) the equivalent of 10 new researchers.
Of course, we don'tintend to be satisfied with helping just 1000 cancer researchers. Given the large quantity
and near ubiquity of existing ad hoc data, we strive to improve the data access of millions of people and for

many years to come.

87

Appendix A

Proofs of Selected Lemmas and

Theorems

Proof: Lemma 9, part 3.
Casea’: dost[d]pp=0 Jo s.t.[7']pp = pd-hdr x 0.

If o/ = athen[d/[7"/a]]pp = [7']pp- From premise, we know

[7']pp = pd-hdr * [7'] pp, = (pd-hdr * appy) [T] ppp/@eob] = [Tppl[7 1ppn/ @pos]-

So, [o/[7"/a]]pp = []ppll™ Ippy/eps)- As no variables of the form..., appear, the result is equal to
[o'Tpoll7" Trep/ rep][I Tpon/ o)

Proof: Lemma 9, part 4.
Casere:

[relp{r'/a} = [T]p{7'/a} e{7’/a}. Ase cannot contairparse , e{7’/a} = e(r’/a). By induction,

[7]p{7’/a} = [7|7’ /a]]p. Taken together, we have

[7le{7"/a} e{7’/a} = [7[7'/a]lp ell7"] ep/ xep] [T Tpon/ o],

which, by the definition of substitution is equalftae)[7'/a]]p.

88

Case 72!

[r mele{ ' /a} = [nlp{7'/a} ([raliep{7’ /e [[r2lpon{7’ /o[l p{7'/ar}

By part 2,[1a] o 7'/} = [ralr” /]l ep and|[relppe{ ™' /}] = [r2lr" /allppp, SO, by Lemma 7, part 3,

[rle{7"/a} [l ep{™’ /e [[mdpo{ " /o [mlp{r’ /a}
= [nlp{7'/a} [[ralr' /)2l / dlporl [Tl {7/} (A1)

The remainder of this case is analogous to the previous case. It is proven by applying the induction hypoth-

esis to the subcomponent types.

Case pa.T:

Analagous tar; 5. We use part 2 of the lemma for the type annotations.
Proof: Lemma 17.
Case all but App and TyApp: Aq7], is a value and is normal, result is immediate.
Case App: T=me [relp—rv
Friw [rie]p = [n]pe

By Lemma 13,7, : ¢ — k ande : 0. By Lemma 4,[r1], —; v1 ande —; vo, Withi 4+ j < k. By

induction,

T =" v, (A.2)
v1 = []p, (A.3)
[71]rep =[] ep (A.4)
[71]po = [1]pp (A.5)

By (A.2) andbDcC® Preservation (Lemma 12); : 0 — . So, by Lemma 14y, = A\z.7;.

By Lemma 2 and (A.3)[71 e]p = [11]p € —(i1j) v1v2 = [11]p vo.

89

By Lemma 5u, vy —4 v, Wherek’ = k —i — j. By Lemma 7, part 1[v1]p vo —p v’ andv’ = v.

Now, asv; = Az.7;, we have[v, |, = Az.[7;]p. By evaluation rules\z.[7;], vo — [7;]p[v2/2] Which, by

Lemma 9= [7;[v2/z]]p. SO, by Lemma 5[7;[va/2]]p — (1 —1) V'

By Lemma 3 andbDc* normalization,

T1e =" vy vy = Ax.T; v — Ti[ve/x].

So, bybbc* Preservation (Lemma 12, 7;[v2 /2] : &.

By induction,

Tilva/x] =" v, (A.6)

v' = [V]ps (A.7)
[rilv2/2]]ep = [V]repy (A.8)
[riv2/2]lpp = [Vpo- (A.9)

Now, we prove the four necessary conlcusions in order. First, by Lemma 3, pait 5;* v. Second, as
v' = v, by Lemma 7 5p = [v]p. Third[rie]op = [T1]iep = [V1]iep = [N2-Tilep = [Tilep Which, by
Lemma 9,= [r;[v2/z]] e SO, by transitivity of type equivalencgrie] o, = [7i[v2/2]]ep = [V]ep LASE,

by the same argumeriizi e]pp = [7:[v2/2]]pp = [V]pp

CaseTyApp: 7=7m7 [nm]p—kv

Friks o [mme]p = [mlpllre] el (2] popl [72]p
The proof for TyApp is similar to App, but more complex due to the more complicated parsing semantics

of TyApp. As before, we start by proving our induction hypothesis for the subcomponenttypadr,.

ByLemma 13, : T — kandry : T.

90

By Lemma 4 parts 1 & 2[r]p —; vi and[ra]p —; v2, , Withi + j < k. By induction,

T —" v, (A.10)
v1 = [r1]ps (A.11)
H’rl]]rep = Hyl]]repa (A12)
[[Tl]]PD = [[Vl]]pD- (A.13)
and

T2 =" vy, (A.14)
v = [va]p, (A.15)
HTQ]]rep = HVQ]]repa (A16)
[72]pp = [v2]pp- (A.17)

By DDC* Preservation (Lemma 12),
vi:T =k (A.18)
vo: T. (A.19)

So, by Lemma 14y, = Aa.7;. By definition of[- [, and (A.17),[72]ppp, = [V2]ppp-

Now, by Lemma 2, part 1, and (A.11),

[r172]p = [mlpllme] el [2]poul [2]
=i vi[[72]epl [[T2]lpppl [T2]p = [V1]pl[7eliepl [[m2]popl [72]p - (A.20)

By Lemma 5,01 [[72] gl ([72lppnl [T2]p — (5-i) v By Lemma 7 1a.Jv1 (7] epl[[m2]ponl [T2]p — (ki) ¢

andv’ = v.

91

Now, asv; = Aa.7;, [11]p = Adrep.Aappn.Aparse,,.[7;]p. By the evaluation rules,

(Aarep- Aappy-Aparse,, . [7i]p) [[T2] gl [[72]ponl [T2]p
— (Aawpy.Aparse,,.[7:]p) [[72]rep/ arep][[m2]ppel [T2]p
= (Aapps-Aparse,, [Tilp[[72]ep/ rep]) ([T2]pprl [2]p
— (Aparse,,.[Ti]p[[72]ep/ Arep)) [[T2] po/ appo] [T2]p

= ()‘parsea'[[Ti]]PH[TQ]]rep/areP] [[[TQ]]PDb/aPDbD[[TQ]]P

As [r2]p —j v2,

—j (/\Parsea'[[Ti]]P[[[TQ]]rep/areP][[[TQHPDb/aPDb]) U2

= [milpllme)iep/ arepl[[T2lpon/ o] [v2/Parse,]

By Lemma 7.2,

= [[Ti]]PH[TQ]]rep/arep} H[TQ]]PDb/aPDb] H[VQ]]P/Parsea]

By Lemma 7.3,

= [rilpllvaliep/ xepl [[v2]pon/ evo] [[v2]p/Parse,,]

By bbc® Inversion (Lemma 13):T; - F 7; : &, SO by (A.19) and Lemma 22](7; : k) andH(7y : T).
By definition ofH, 3o s.t. [7;]pp = pd-hdr * 0 and3 o s.t. [7]pp = pd-hdr * 0. so, by Lemma 9,
(A.19) = [r[va/a]lp.
By Lemma 5,

[7ilp(l72]iep/ wen) ([T2] ppn/ cpon][v2/Parse] — (k—i—(j+3)) V'

By Lemma 7 la.,

—

[rilv2/al]p = (—i—j—s) v" andv” = v’

92

As 11 —* 11 andry, —* 15, by Lemma 3 andbc® normalization,

T1 T2 —* V1 Vg =)\Oé.Ti Vg — Ti[l/g/a}.

So, bypbc?® Preservation (Lemma 12, 7;[v2/q] : &.

By induction,

7','[1/2/04] —* v,
V" = [V]p,
[7: [VQ/QH]rep = [v] rep

[rilv2/]]pp = [V]pp

Now, we prove the four necessary conlcusions in order. First, by Lemma 3, part,5-* v
Second, as” = v andv’ = v, by Lemma 7 5p = [v]p.

Third,

[T2]]rep = [[Tlﬂrep[[72]]rep
= [[Vlﬂrep[[VQHrep
= [[)‘a'Ti]]rep[[V2]]rep

= [7ilepl[val rep/ ixep]

which, by Lemma 9,

=[n [VQ/a]]]rep

By transitivity of type equivalence,

[TQHrep =[n [VQ/a]]]rep = HV]]rep'

93

(A.21)
(A.22)
(A.23)

(A.24)

Last,

[T172]pp = [[Tl]]PDHTQ]]PDb
= [[VlﬂPD [[V2]]PDb
= [Aa.i]pp [V2]ppp

= [rilppllve]ppb/ @ws]

which, by Lemma 9,

= [nfve/a]lpp

By transitivity of type equivalence,

[m172lpp = [7ilve/allpp = [Vpp

Proof: Lemma 21.
Casex=T: H(7:T) H(r":T)

By definition of H, 3o s.t. [7]pp = pd-hdr * 0 and3 o s.t. [7']pp = pd-hdr * 0. Unpacking the first
existential with an arbitrary, we have[7],p = pd-hdr * 0. By Lemma 9,[7[7/a]]pp = [T]pp(T’/).
By Pierce, Lemma 30.3.4 (Type Substitutiofy]pn(7’/a) = (pd-hdr * o)(7'/a), SO, by transitivity,
[7[7"/a]lpp = (pd-hdr * 0)(7'/a) = pd-hdr * (7’ /c). The last equation is possible a8 hdr is
closed. Usingr(7'/a) as a witness, we géto’ s.t. [7[7'/al]pp = pd-hdr * ¢’. This result gives us

H(r[r"/a] : T).

Casex=T— k" H(r:T—k) H(r':T)

We know thaB o s.t.[7']op = pd-hdr+o, and3 o s.t. [7]pp = o and forall, s.t. H(m, : T), H(7 7 : &).

Want to prove3 o s.t. [7[7’/a]]pp = o and for allry s.tH(m : T), H(7[7"/a] 72 : &').

Part 1 (the "exists”) uses same argument as gaser .

94

Part 2: Assuméi(r, : T) for some arbitrary». WLOG, we can assume ¢ FTV(r), as, if it is, we
can alwaysa-vary it. From givenH(r 72 : «’) By induction,H((7 72)[7'/a] : k') As a &€ FTV(1),

To[7'/a] = T2 SO we haveH(7[r'/a] 12 : k).

Casexk =0 — K':

Analogous to above.
Proof: Lemma 22.

CaseAbs: A;T'FXx7:0—k AT o710k

We want to prove thal(\z.7 : ¢ — &). By induction,H(7 : k), so[r]pp exists, by which we know
[Ax.7]pp exists. Next, for arbitrary, we wish to prove thatl((Az.7)e : k). Now, [(Az.7)e]pp =

[(Az.7)]pp = [Me.T]pp = [T]pp- SO, [(Az.T)e]pp = [T]pp- By Lemma 20, andl(7 :), H((Az.7)e : k).

CaseRec: A;T'F par:T AaT:TEr:T

We wish to prove thatl(pua.7 : T), thatis3o s.t. [ua.7]pp = pd-hdr * 0. That is,3o s.t. pd_hdr *
pappy.[T]pp = pd-hdr x 0. By IH, H(7 : T) So,3¢’ s.t. [7]pp = o’. Unpacking the existential with

arbitraryo’, o = papp,.0’ serves as a witness for our desired result.

CaseTyAbs: A;T'FXa7: T —« AaT;T'F7:k

We wish to prove thatl(Aa.7 : T — k), thatis3o s.t. [Aa.7]pp = o and for all7’ s.t. H(7' : T),
H((Aow.7)7’ @ k). First, let's prove thaB o s.t. [Aa.7]pp = o. From derivationA, a:T;T' F 7 : k. By
induction,H(7 :), so3o’ s.t. [1]pp = 0’. As [Aa.T]pp = Awps.[T]pp, WE haves = Aapp,.0” as a
witness. Next, let’s prove that for aif s.t. H(7' : T), H((Aa.7) 7 : k). AssumeH(7’ : T) for some

arbitrary7’. By earlier induction and Lemma 2H(7[7'/a] : k).

Now, if we can prove thafr[7’/a]]pp = [(Aa.7) 7']pp, then we can use Lemma 20 to obtain our result.
By definition of H, 3¢ s.t. [7']pp = pd-hdr * 0, so, by Lemma 9[7[7'/a]]pp = [7]pp(T’/a) =

[7]poll7lpps/apon]. By Q-AppADbS, [T]pp[[[ppn/cpos] = (Aaeos-[7]pp) [T]ppr SO, [7[7/]lpp
(Aapow-[T]pp) []ppp = [(A.T)]ppl™ Ippy = [(A.T) T']pp. SO, by Lemma 20 anH(7[7"/a] : k), we

haveH((Aa.7) 7' : K).

95

Proof: Lemma 27.
CaseRec: A;T'F par:T AT, T'Er:T
We wish to prove thafA] , T, [Alpr F [peet]p : [pa.m:T]pr

By induction,

[Al g, rep = Tyampy =2 T,T, [Alpr, parse [Tlpr = [7]p : [7:T]pr

From derivation and Lemma 25,

[Alg,, T [Alpr B [[[LO(.T]]rep =T (A.25)
[Alp U [Alpr F [poet]pp = T (A.26)
[Alg, T [Alpr b [peerlppy = T (A.27)

Let [S] = (pa.7/a). By Type Substitution, TAPL Lemma 30.3.4, part 3:
[Al g, T[S], [A] 7S], parse, :[o:T]pr[S] F [71p[S] : [7:T]p1[S] (A.28)

w

From the derivation and Lemma 2Hua.7 : T). By definition ofH, 3o s.t. [ua.7]pp = pd-hdr * o

From this result, (A.26), and Lemma 10,

[a:T]pr[S] = [afpa.m/a]:T]pr = [poT:T]py

This result, (A.28) and Lemma 8, part 2, give us

[[A]]Fw TS, [A]pr[S], parse,:[po.m:T]pr F [7]p[S] : [7:T]plS]

As a ¢ FTV(A;T) (can alwaysy-vary to ensure this),

ﬂAﬂFw,F, [Alpr, parse :[ua.m:T]pr F [7]p[S] : [7:Tlp[S]

96

which is equivalent to:

[A]g,, T, [Alpr, parse,:[ua.m:T]pr = [7]p[S] : bits x offset — offset * [7],,[S] * [7]pp[S]

By typing (and expanding oyf]),

[Alg,, T [Alpr Fw : offset (A.29)
[[A]] F.,» L, [[A]] PT Fr [[T]]rep[[[:ua-ﬂ] rep/arep7 [[MO"T]]PDb/aPDb] (A.30)
[Alg,, Ty [Alpr o [7]ppllpa. 7] ep/ ctrep, [1er-T]ppp/ ceob]- (A.31)

By Rep. Type Well-Formedness Lemnfa\] o, I' - [7] o, = T @nd[A]pp, I' = [7]pp = T.

rep’

S0, 0ppp & FTV([7]1ep): 0zep & FTV([7]pp) and, therefore,

[Alg, T [Alpr = 7 - [T]epllicr-T]ep/ crrepl, and (A-32)

[Al g T, [Alpr B p o [T]ppllpa-Tlppp/ apo)- (A.33)

As [[/‘O"Tﬂrep = :uarep'[[T]]rep'
[A] g, T [Alpr F fold[[ua.T]ieg 7 ¢ prorep [T]1ep(= [t T] ep)-

As [po.]ppp = 10y [T]pps

[A]g,, T, [A]pr b fold[[ua.T]ppy) p : paeps. [T]pp(= [T]ppp)-

Case TyApp:

Analagous to Rec, in that it relies on Lemma 9.
Proof: Lemma 33.

Caseunit: wunit:T [unit]p(B,w) — (W', 7, p)

97

We wish to prove thaCanon*,;+(r, p). Thatis,unit —* v andCanon, (r,p). ASunit is normal, it
suffices to prove thatanon,;« (r, p). By the definition oflunit],, we have: = Ry () andp = Pyni (w).

By Lemma 31, then, we know th&tanon,,;« (7, p).

Caserimy: TiT2: T [72]p(B,w) =k (W', 7,p)

We wish to prove tha€anon*,, ., (r, p). Thatis,r; 72 —* v andCanon,, (r,p). We prove each clause in
order. First, by Lemma 4, part {51 2], —; v, withi < k. By Lemma 4, part 1, we know that> 0. By
Lemma 17;7; 7» —* v andv = [v],. Now, we wish to prove the second clause by applying the induction
hypothesis to the normal type We therefore aim to show thét],(B,w) —; (', r,p), for somej < k.
Now, by Lemma 2][; 72]p(B,w) —; v (B,w), so, by Lemma % (B,w) ——; (v, r,p). Together
with Lemma 7, part 1, we havp’[o(B, w) ——q) v¢ andv; = (', 7, p), which is nearly what we want.
But, as(w’, r, p) contains no type annotations, = (w’, r, p), so, indeed[v],(B,w) —; (', ,p), with

k —i < k, asi > 0. By Lemma 12 we know that : T, so, by induction, we hav€anon*,, (r, p). Asv is

normal, this result implies th&anon, (r, p).

Casepa.m: pa.t:T [pa.t]p(B,w) =% (W', 7, p)

By definition of [.c..7], and Evaluation Uniqueness (Lemma 5),

[nar]p(B,w)
— let (w',7y,py) = [7]p{pa.7/a} (B,w) in (...)

—(k—1) (w/a TaP)

By Lemma 4, part 3[r]{na.7/a}(B,w) —; v/, withi < k — 1. As pa.7 : T and bypDc® Inversion
(Lemma 13),:T;- + 7 : T, Lemma 22 gives u$l(r : T) andH(pua.7 : T). By Lemma 19,30 s.t.
[7]pp = o and by definition o], 3o s.t. [pa.7]pp = pd-hdr * 0. So, by Commutativity of Substitution
(Lemma 9) [7]p{pc.7/a} = [7[pe.T/]]p. Therefore, by Lemma 7, part Iz [ua.7/a]]p(B, w) —; v”,
withi < k — 1.

98

Next, we seek to establish the shape/6f By bbc® Substitution (Lemma 16)[ua.7/a] : T. By Type

Correctness (Theorem 28),

[rlpa.r/a]]p : bits x offset — offset x [Tuc.7/al]op* [T[pna.T/a][pp.

By F,, typing,

[rpot/a)]p(B,w) : offset « [1[uc./a]]gp * [T[ponT /] pp.

So, by F, preservationy” : offset * [r[uc.7/a]] g, * [T[na.7/a]]lpp. and by theF,, canonical forms

lemma,” = (wy,r1,p1).

Putting these conclusions together, we haiex.7/a] : T and[r[po.7/a]]p(B, w) —; (w1,71,p1), With
i < k — 1. So, by inductionCanon*;(,.a.r/a] (11, p1). By définition of [ua.7]p, 7 = £old[[uc. 7] 1
andp = (p1.h,fold[[ua.7]ppy p1). By definition of canonical formsCanon,,q.-(r,p). As pa.7 is

normal, we hav&anon*,,, - (r, p).

99

Appendix B

Complete PADS/ML Grammar

Below is a complete EBNF grammar of the syntaxpebs/ML. Terminals appear in the standard font,
nonterminals are iitalics, keywords appear ihold typewriter font, and concrete syntax appears in

bold typewriter font, surrounded by quotes.

100

exprlit
hlexpr
compty

pat

recomit

recfield

tas

tp

dtbranch

dtdefault

dt

sdtbranch

sdt

tps

decl

description

int | char| string | regexpr

exprlit | ":" mlexpr":"

tp | hlexpr

int | char| string| """ | id
hlexpr | tp

omitfd | id":" tp | id"=" hlexpr

| ("l)"

tas? tid hlexpr?

compty" *" compty(" *" compty*

"{" recfield("; " recfielg* "; " 2" }"
“Ttid":" tp"] " mlexpr'] "

uid of hlexpr | uidof tp | uidof omit tp
with pdefault uid?of tp (" =" hlexpn?
"| " ?dtbranch("| " dtbranch* dtdefaul®

uid of hlexpr | uidof tp ("=" hlexpn?

uid of omit tp

"|" ?pat"->" sdtbranch(" | " pat"->" sdtbranch*

tid | (" tid (", " tid)y*)"
ptype tps? tid ("(" id":" mity")")? =tp?
pdatatype tps? tid (" (" id"
pdatatype tps? tid" (" id"

Pmatch mlexprwith sdt

(dec)+

101

" mity")")?" =" dt

" mity") " 2" ="

/I expression literals
/I host language expression
/I compound type

/Il patterns

// omitted record fields

/I record fields

I/l type arguments

/I type application
I tuples

/I records

/ constraints

/l datatype branch
[/l datatype default
/l datatype body

/I switched datatype branch

I/l switched datatype body

/I type parameters

/I type declaration

/I datatype declaration
/I switched-datatype

/! declaration

Appendix C

PADS/ML Runtime Interface

Below is a listing of theo’ camL interface of thePads module, which contains theabs/mML runtime

system.

102

type pos = int64
type span = pos * pos
type error_code = Good | Maybe | Nest | Syn | Sem
type corrupted = string
type error_info = No_info | Error_span of span | Corrupted_data of corrupted
type pd_header = {
nerr Lint;

error_code : error_code;
error_info : error_info;

span : span;
}

(* Abstract handle for PADS/ML state. *)
type handle

type ’'a pd = pd_header * 'a

type (‘a,’b) parser
type (‘a,’b) printer

handle -> 'a * ('b pd)
'a -=> (‘b pd) -> handle -> unit

type base_pd_body = unit
type base_pd = base_pd_body pd

exception Runtime_error
val get pd hdr : 'a *'b -> 'a

(* Check whether a pd describes an error-free parse. *)
val pd_is_ ok : 'a pd -> bool

103

(*
* Scan for char literal. If the literal is found, returns
* the number of bytes skipped.

)

val p_char_lit_scanl : handle -> char -> int option
val p_str_lit_scanl : handle -> string -> int option
val p_int_lit scanl : handle -> int -> int option

(* Get the current position in the data source. *)
val get_current_pos : handle -> pos

(* Compare two positions. Compatible with Pervasives.compare*)
val comp_pos: pos -> pos -> int

(* Compare two positions for equality. *)
val eq_pos: pos -> pos -> bool

(* Create span with identical start and end positions. *)
val make_empty span : handle -> span

(* Create a valid pd header with an empty span. *)
val make_empty pd : handle -> base_pd

(* Create a valid pd header given a span. *)
val mk_valid_pd_hdr : span -> pd_header

(* Valid pd header with span set to (0,0). *)
val spanless_pd_hdr : pd_header

(* An initialized base pd for use with base-type gen_pd functions. *)
val gen_base _pd : base_pd

(* Initialize the system, relying on defaults. *)
val open_handle : unit -> handle option

(*
* Initialize the system, specifying that the data source does
* not use records.

")

val open_handle_norec : unit -> handle option

(* Cleanup the system. *)
val close_handle : handle -> unit option

104

module 10 : sig
(* Open a file for 10. The second argument is the file name. *)
val open_file : handle -> string -> unit option

(* Close the 10 system for this pads handle. *)
val close : handle -> unit option

(*

* Check whether current parse is speculative. Speculative parses are
* used by datatypes to try out the different variants.

")

val is_speculative : handle -> bool

(* Raise when an error is encounterd during a speculative parse. *)
exception Speculation_failure
end

* The remaining modules are intended only for generated tools.

module Record : sig
(* Update an existing hdr with the pd from a subcomponent. *)
val update_pd_hdr : pd_header -> pd_header -> pd_header

val parse_first : ('a,’b) parser -> handle -> 'a * (b pd) * pd_header
val parse_next : (‘a,’b) parser -> pd_header -> handle
-=>'a * (b pd) * pd_header
val absorb_first : (‘a,’b) parser -> handle -> pd_header
val absorb_next : (‘a,’b) parser -> pd_header -> handle -> pd_header

val absorb_first_char : char -> handle -> pd_header
val absorb_next_char : char -> pd_header -> handle -> pd_header

val absorb_first_string : string -> handle -> pd_header
val absorb_next_string : string -> pd_header -> handle -> pd_header

val absorb_first_int : int -> handle -> pd_header
val absorb_next_int : int -> pd_header -> handle -> pd_header

(*
* Generate a valid parse-descriptor header for a record based
* on a previous header and the parse descriptor of a record
* element.
* For convenience, returns (unmodified) element parse descriptor
* in addition to the new header.
*
)
val gen_pd : pd_header -> 'a pd -> 'a pd * pd_header
end

105

module Compute : sig

(* Make a parsing function from a computed value and gen_pd function.

val generate_parser : 'a -> (‘la -> 'b pd) -> ('a,’b) parser
end

module Where : sig
val gen_pd : 'a pd -> bool -> (a pd) pd
val make pd : 'a pd -> bool -> handle -> ('a pd) pd
val parse_underlying : ('a,’b) parser -> ('a -> bool)
-> (a,(’b pd)) parser
end

module Datatype : sig
val parse_variant : (‘a,’b) parser -> handle -> (a * (b pd)) option
val absorb_variant : ('a,’b) parser -> handle -> span option

val absorb_char_variant : char -> handle -> span option
val absorb_string_variant : string -> handle -> span option
val absorb_int_variant int -> handle -> span option

val parse_case : (‘a,’b) parser -> (a -> 'c) -> (b pd -> 'd)
-> ('c, 'd) parser
val absorb_case : (a’b) parser -> 'c -> 'd -> ('c, 'd) parser

val absorb_char_case : char -> 'a -> 'b -> ('a, 'b) parser
val absorb_string_case : string -> 'a -> 'b -> ('a, 'b) parser
val absorb_int_case cint -=> 'a -> b -> ('a, 'b) parser

(* args: gen_rep genpd_fn rep_constructor pd_constructor *)
val gen_case : 'a -> (la -> b pd) -> (a -> 'c) -> (b pd -> 'd)
-> ('c,’d) parser

val make_pd_hdr : pd_header -> pd_header
val make rep : 'a -> 'a
val make_pd : pd_header * 'a -> 'a pd

val make_err_pd : handle -> 'a -> 'a pd
(* If speculative, raise exception. Otherwise, return pd. *)
val handle_error_variant : handle -> 'a -> 'a pd

val make_gen_pd : handle -> 'a -> 'a pd
val make_absorb_pd : span -> 'a -> 'a pd

(*
* Generate a valid parse descriptor for a datatype given
* the parse descriptor of the variant and a function to generate
* the datatype’s pd body from the variant’'s pd.
*
)
val gen_pd :'a pd -> (a pd -> 'b) -> b pd
(* Generate the pd when the variant has no subcomponent. *)
val gen_pd_empty : 'b -> 'b pd
end

106

")

Appendix D

Generic-Tool Interface

Below is a listing of thed’ cAML interface of theGeneric _tool module, which containS, the signature

of generic tools.

107

(* Common signature of generic tool base type modules. *)

module type BaseType = sig

(* type of value of this base type. *)

type t

(* type of tool state for this base type. *)
type state

(* Generate initial state for value of type t. *)
I unit -> state

val init

(* Process a value of type t. *)
val process

end

(* Interface with which generic tools must comply. *)

module type

S = sig

. state -> t option -> Pads.pd_header -> state

(* Data structure built by generic tool during data traversal. *)
type state

(* Raise to indicate error condition in the execution of a tool *)
Tool_error of state * string

exception

(* Initialize the tool. *)

val init :

module
module
module
module

unit -> unit
Int . BaseType
Char . BaseType
String : BaseType

Unit

. BaseType

with type
with type
with type
with type

— - o~

108

int
char
string
unit

and type
and type
and type
and type

State
State
state
State

State
State
state
state

(* Functions for tuples and records. *)
module Record : sig
(* Intermediate data used for record processing *)
type partial_state

(*

* Generate initial state of record given states of all

* components. Component state is labeled with the field name.
")

val init : (string * state) list -> state

(* Begin processing the record. *)
val start : state -> Pads.pd_header -> partial_state

(* Retrieve state of named field, given state of record. *)
val project : state -> string -> state

(* Process named field, given record state and field state. *)
val process_field : partial_state -> string -> state -> partial_state

(* Finish processing record. *)
val finish : partial_state -> state
end

module Constraint : sig
(* Intermediate data used for constraint processing. *)
type partial_state

(* Generate initial state from state of constrained element. *)
val init : state -> state

(* Start processing a constraint. *)
val start : state -> Pads.pd_header -> partial_state

(* Retrieve the state of constrained element. *)
val project : state -> state

(* Process constraint given constraint state and element state. *)

val process : partial_state -> state -> state
end

109

module Datatype : sig
(* Intermediate data used for datatype processing. *)
type partial_state

(*

* Generate initial state of datatype without any state for the
* branches. Branch state will be added dynamically.

)

val init : unit -> state

(* Start processing datatype *)
val start : state -> Pads.pd_header -> partial_state

(*

* Retrieve state of named variant. Returs None if no state
* exists for that variant.

*)

val project : state -> string -> state option

(* Process named variant, given datatype state and variant state. *)
val process_variant : partial_state -> string -> state -> state

(* For variants that have no contents. *)
module Empty : sig
(* Generate initial state for empty variant. *)
val init : unit -> state

(* Process an empty variant. *)
val process : state -> state
end
end
end

110

111

Appendix E

Generic XML Conversion Tool

(* * *
* XML formatter tool: formats arbitrary data representation as XML.
* This tool uses the MotionTwin XML-Light library.

* * * * * n)

(* State: Collects data values into an Xml.xml structure *)
type state = Xml.xml list
type global_state = state

(*

* Wrap up top-level list of XML elements into single xml element.
* This function is specific to the XML formatter and is not specified
* in the generic tool interface.

")

let wrap elements name = Xml.Element(hame,[],elements)
exception Tool_error of state * string

(* No initialization needed for this tool. *)
let init) = ()

(* Convert an error code to a string representation. *)
let ec_to_string (ec : Pads.error_code) =

match ec with

Pads.Good -> "GOOD"

| Pads.Maybe -> "MAYBE"

| Pads.Nest -> "NEST"

| Pads.Syn -> "SYN"

| Pads.Sem -> "SEM"

(* Convert a parse descriptor header to an XML representation. *)
let hdr_to_xml (h : Pads.pd_header) =
Xml.Element ("pd",],
[Xml.Element("nerr",[],
[Xml.PCData (string_of_int h.Pads.nerr)]);
Xml.Element("error_code",[],
[Xml.PCData (ec_to_string h.Pads.iriozr_code)])])

(* Decide whether or not to include the PD header in the XML.*)
let process_hdr pd_hdr =
match pd_hdr.Pads.error_code with
Pads.Good ->]
| _ -> [hdr_to_xml pd_hdr]

let process_base result base to_string pd_hdr =
match result with
Pads.Ok r -> [Xml.Element ("val", [], [Xml.PCData(base_to_string r)])]
| Pads.Error -> [hdr_to_xml pd_hdr]

module Int = struct

type t = int

type state = global_state

let init _ =]

let process _ result pd_hdr = process_base result string_of_int pd_hdr
end

module Char = struct

type t = char

type state = global_state

let init _ =]

let process _ result pd_hdr = process_base result (String.make 1) pd_hdr
end

module String = struct

type t = string

type state = global_state

let init _ =]

let process _ result pd_hdr = process_base result (fun s -> s) pd_hdr
end

module Unit = struct

type t = unit

type state = global_state

let init) =]

let process _ result pd_hdr = process_base result (fun () -> ™) pd_hdr
end

113

module Record = struct
type partial_state = state

let init named_states = []
let start state pd_hdr = process_hdr pd_hdr

(* Project is a no-op becuase this tool ignores previous state.*)
let project state field_name = []

(* Build up list in **reverse** order *)
let process_field fields field_name state =
(Xml.Element (field_name, [], state)):fields

let finish state = List.rev state
end

module Datatype = struct
type partial_state = state

let init) =
let start state pd_hdr = process_hdr pd_hdr
let project state variant_name = None

let process_variant state variant_name variant =
state @ [Xml.Element (variant_name, [], variant)]

module Empty = struct
let init) =[]
let process state = state
end
end

module Constraint = struct
type partial_state = state

let init _ =[]
let start _ pd_hdr = process_hdr pd_hdr
let project state = []

let process state sub_state = state @ sub_state
end

114

Bibliography

[Agn98]

[App98]

[Aut05]

[Bac02]

[BMS05]

[BU73]

[Bur75]

[BWO4]

Etienne Agnon. SableCC: An object oriented compiler framework. Master’s thesis, School of

Computer Science, McGill University, Montreal, 1998.

Andrew W. Appel. Modern Compiler Implementation in MLCambridge University Press,

New York, NY, USA, 1998.

Options Price Reporting Authority. Data recipient interface specification, version 1.6.

http://www.opradata.com, December 2005.

Godmar Back. DataScript - A specification and scripting language for binary d&@ankr-
ative Programming and Component Engineeriaglume 2487, pages 66—77. Lecture Notes

in Computer Science, 2002.

Claus Brabrand, Anders Mgller, and Michael I. Schwartzbach. Dual syntax for XML lan-
guages. InTenth International Symposium on Database Programming Languagisme

3774 ofLecture Notes in Computer Scienpages 27—-41. Springer-Verlag, August 2005.

Alexander Birman and Jeffrey D. Ullman. Parsing algorithms with backtrdeformation

and Contro] 23(1), August 1973.
William Burge. Recursive Programming Techniquesddison Wesley, 1975.

Mike Beckerle and Martin Westhead. GGF DFDL primehttp://www.ggf.org/
Meetings/GGF11/Documents/DFDL_Primer_v2.pdf , May 2004. Global Grid Fo-

rum.

115

[CFP+04]

[Con]

[Dat05]

[DFF+064a]

[DFF+06b]

[Dre05]

[DubO01]

[FFGMO6]

[FGO5]

[FMWO6]

Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers, and Frederick Smith. Han-
cock: A language for analyzing transactional data stre#&@#$4 Trans. Program. Lang. Syst.

26(2):301-338, 2004.
Gene Ontology Consortium. Gene ontology project. http://www.geneontology.org.

Data format description language (DFDL) a Proposal, Working Draft, Global Grid Forum,
Aug 2005. https:/fforge.gridforum.org/projects/dfdl-wg/document/
DFDL_Proposal/en/%2

Mark Daly, Mary Ferandez, Kathleen Fisher, Robert Gruber, Yitzhak Mandelbaum, David
Walker, and Xuan Zheng. PADS: An end-to-end system for processing ad hoc dB@mm
paper for the 2006 ACM SIGMOD International Conference on Management of Date
2006.

Mark Daly, Mary Ferandez, Kathleen Fisher, Yitzhak Mandelbaum, and David Walker.
LaunchPADS: A system for processing ad hoc data.Dé&mo paper for the Workshop on
Programming Language Technologies for XNManuary 2006.

Derek DreyerUnderstanding and Evolving the ML Module SystdthD thesis, CMU, May
2005. CMU-CS-05-131.

Olivier Dubuisson.ASN.1: Communication between heterogeneous systeimgan Kauf-

mann, 2001.

Mary F. FerAndez, Kathleen Fisher, Robert Gruber, and Yitzhak Mandelbaum. PADX:
Querying large-scale ad hoc data with XQuery.Piogramming Language Technologies for

XML, January 2006.

Kathleen Fisher and Robert Gruber. PADS: A domain specific language for processing ad
hoc data. InProceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementatippages 295-304. ACM Press, June 2005.

Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. The next 700 data description
languages. IMACM Symposium on Principles of Programming Languagegies 2 — 15,
January 2006.

116

[For02]

[For04]

[Gri06]

[Hen93]

[Hie]

[HIn00]

[HJ03]

[HMO8]

[JJ96]

[KRO1]

[Lan66]

Bryan Ford. Packrat parsing:: simple, powerful, lazy, linear time AOM International

Conference on Functional Programmingages 36—47. ACM Press, October 2002.

Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundahGM In
Symposium on Principles of Programming Languagegjes 111-122. ACM Press, January
2004.

Robert Grimm. Better extensibility through modular syntax. A@M Conference on Pro-
gramming Language Design and Implementatipages 38-51, New York, NY, USA, 2006.
ACM Press.

Fritz Henglein. Type inference with polymorphic recursi?é@M Transactions on Progam-

ming Languages and Systern§(2):253-289, 1993.

Hierarchical data format 5. National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign (UIUC)http://hdf.ncsa.uiuc.edu/
HDF5/.

Ralf Hinze. A new approach to generic functional programming. AGM Symposium on

Principles of Programming Languaggsages 119-132, January 2000.

Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory. Technical Report UU-

CS-2003-015, Institute of Information and Computing Sciences, Utrecht University, 2003.

Graham Hutton and Erik Meijer. Monadic Parsing in Haskelburnal of Functional Pro-

gramming 8(4):437-444, July 1998.

J. Jeuring and P. Jansson. Polytypic programmindsebrond International School on Ad-
vanced Functional Programmingolume 1129 of_ecture Notes in Computer Scienpages

68-114, August 1996.

Balachander Krishnamurthy and Jennifer Rexfoi¥eb Protocols and Practice Addison

Wesley, 2001.

P. J. Landin. The next 700 programming langua@ssnmunications of the ACM(3):157 —
166, March 1966.

117

[Lie8s]

[LIWT06]

[LPO3]

[MCO00a]

[MCOOb]

[METO3]

[MFW+08]

[MHS+05]

[MZF+05]

[Net]

[Newa]

Karl Lieberherr. Object-oriented programming with class dictionarieisp and Symbolic

Computation1:185-212, 1988.

Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Ferret: A toolkit for

content-based similarity search of feature-rich dateEuroSys2006April 2006.

Ralf Lammel and Simon Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. IACM Workshop on Types in Language Design and Implementation

pages 26—37. ACM Press, March 2003.

Peter McCann and Satish Chandra. PacketTypes: Abstract specification of network protocol
messages. IACM Conference of Special Interest Group on Data Communicatipages

321-333. ACM Press, August 2000.

J. Myers and A. Chappell. Binary format definition (BFDjttp://collaboratory.

emsl.pnl.gov/sam/bfd/ , 2000.

METS: An overview and tutorial. http://www.loc.gov/standards/mets/

METSOverview.v2.html , 2003.

Yitzhak Mandelbaum, Kathleen Fisher, David Walker, Mary Bedez, and Artem Gleyzer.
PADS/ML: A functional data description language. Technical Report TR-761-06, Princeton
University, July 2006.

R. Mandelbaum, C. M. Hirata, U. Seljak, J. Guzik, N. Padmanabhan, C. Blake, M. R. Blanton,
R. Lupton, and J. Brinkmann. Systematic errors in weak lensing: application to SDSS galaxy-
galaxy weak lensing.Monthly Notices of the Royal Astronomical Socied§1:1287-1322,
August 2005.

Luc Moreau, Yong Zhao, lan Foster, Jens Voeckler, and Micael Wilde. XDTM: The XML

data type and mapping for specifying datasetuinopean Grid Conferen¢005.

Cisco NetFlow. http://www.cisco.com/warp/public/732/Tech/nmp/

netflow/index.shtml

The Newick tree format. PHYLIP (the PHYLogeny Inference Package) web Isitp:

/levolution.genetics.washington.edu/phylip/newicktree.html

118

[Newb] Tree formats. Workshop on Molecular Evolution web sitehttp://workshop.

molecularevolution.org/resources/fileformats/tree_forma%ts.

php.

[Oh06] Jin Oh. PADS and CASS utilization for beta coefficient estimation with the single-index

model. Princeton University Undergraduate Senior Independent Work, May 2006.
[Pad] PADS manualhttp://www.padsproj.org

[Pax99] Vern Paxson. A system for detecting network intruders in real-tim€omputer Networks

December 1999.
[Pie02] Benjamin C. Piercelypes and Programming Languagd$e MIT Press, February 2002.

[PQ95] T.J. Parr and R. W. Quong. ANTLR: A predicaté(k) parser generatoSoftware — practice
and experience?5(7):789-810, July 1995.

[VWSPO05] Arjen van Weelden, Sjaak Smetsers, and Rinus Plasmeijer. Polytypic syntax tree operations. In
Implementation and Application of Functional Languages, 17th International Workshop, IFL
2005, Revised Selected Paperslume 4015 oL ecture Notes in Computer Scieng&aublin,
Ireland, September 2005. Springer.

[WAKS97] Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and Christopher S. Serra. The Zephyr
abstract syntax description language. WS$ENIX Conference on Domain-Specific Lan-
guages October 1997. http://ncstrl.cs.princeton.edu/expand.php?id=
TR-554-97 .

[ZDFT05] Yong Zhao, Jed Dobson, lan Foster, Luc Moreau, and Micael Wilde. A notation and system for
expressing and executing cleanly typed workflows on messy scientific A&tsl SIGMOD

Record 34(3):37-43, 2005.

119

