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Abstract

Massive amounts of useful data are stored and processed in ad hoc formats for which critical tools like

parsers and formatters do not exist. Ad hoc data formats are often poorly documented, and the data itself

can be very large scale with a significant number of errors, like missing or malformed data and out-of-range

values. Traditional databases and XML systems provide rich infrastructure for processing well-behaved

data, but are of little help when dealing with data in ad hoc formats.

In this thesis, we discuss our attempts to address the challenges of ad hoc data. We explain the design

and implementation ofPADS/ML , a new language and system that facilitates generation of data processing

tools for ad hoc formats. ThePADS/ML design includes features such as dependent, polymorphic and recur-

sive datatypes, which allow programmers to describe the syntax and semantics of ad hoc data in a concise,

easy-to-read notation. ThePADS/ML implementation compiles these descriptions intoML structures and

functors that include types for parsed data, functions for parsing and printing, and auxiliary support for

user-specified, format-dependent and format-independent tool generation.

In addition, we present a general theory of data description languages likePADS/C, PADS/ML ,

DATASCRIPT, and PACKETTYPES. In the spirit of Landin, we present a calculus of dependent types to

serve as the semantic foundation for this family of languages. In the calculus, each type describes the phys-

ical layout and semantic properties of a data source. In the semantics, we interpret types simultaneously as

the in-memory representation of the data described and as parsers for the data source. The parsing func-

tions are robust, automatically detecting and recording errors in the data stream without halting parsing.

We show the parsers are type-correct, returning data whose type matches the simple-type interpretation of

the specification. We also prove the parsers are “error-correct,” accurately reporting the number of physical

and semantic errors that occur in the returned data. We use the calculus to describe the features of various

data description languages. Finally, we discuss how the semantics has impacted thePADS/C andPADS/ML

implementations.
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Chapter 1

Introduction

1.1 The Challenge of Ad hoc Data

XML. HTML. CSV. JPEG. MPEG. These data formats represent vast quantities of industrial, governmental,

scientific, and private data. Because they have been standardized and are widely used, many reliable,

efficient, and convenient tools for processing data in these formats are readily available. For instance,

mainstream programming languages typically have libraries for parsing XML and HTML as well as reading

and transforming images in JPEG or movies in MPEG. Query engines are available for querying XML

documents. Widely-used applications like Microsoft Word and Excel automatically translate documents

between HTML and other standard formats. In an ideal world, all data would be in such formats. In reality,

however, we are not nearly so fortunate.

Vast amounts of data are maintained inad hoc data formats– nonstandard data formats that lack readily-

available tools for common data processing tasks, such as parsing, querying, analysis, or transformation.

Every day, network administrators, financial analysts, computer scientists, biologists, chemists, and physi-

cists deal with ad hoc data in a myriad of complex formats. Since off-the-shelf tools for processing these

ad hoc data formats do not exist or are not readily available, talented scientists, data analysts, and program-

mers must waste their time on low-level chores like parsing and format translation to extract the valuable

information they need from their data.

At AT&T alone, analysts work with numerous data sources, including call detail data [CFP+04],

web server logs [KR01], netflows capturing Internet traffic [Net], log files characterizing Internet back-
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Name: Use Representation Processing Problems

Gene Ontology (GO) [Con]: Variable-width White-space ambiguities
Gene Product Information ASCII records
SDSS/Reglens Data [MHS+05]: Floating point numbers, Repeated multiplicative error
Weak gravitational lensing analysisamong others
Web server logs (CLF): Fixed-column Race conditions on log entry
Measuring web workloads ASCII records Unexpected values
AT&T provisioning data (Sirius): Variable-width ASCII records Unexpected values
Monitoring service activation Corrupted data feeds
AT&T call detail data: Fixed-width Undocumented data
Phone call fraud detection binary records
AT&T billing data: Cobol Unexpected values
Monitoring billing process Corrupted data feeds
IP backbone data (Regulus) ASCII Multiple missing-value repre-
Monitoring network performance sentations. Undocumented data
Netflow Data-dependent number of Missed packets
Monitoring network performance fixed-width binary records
Newick Standard: Immune Fixed-width ASCII records No known problems
system response simulation in tree-shaped hierarchy
OPRA: Mixed binary & ASCII records 100-page informal
Options-market transactions with data-dependent unions documentation
Palm PDA: Mixed binary & character No high-level
Device synchronization with data-dependent constraintsdocumentation available

Figure 1.1: Selected ad hoc data sources.

bone resource utilization, amd wire formats for legacy telecommunication billing systems. Biologists

manipulate their own data formats, including phylogenies [Newa] (evolutionary trees describing the an-

cestor/descendent relationships between organisms) and gene ontologies [Con] (shared vocabularies for

attributes of genes and gene products). In the financial community, the Options Price Reporting Author-

ity (OPRA) provides financial institutions with last sale information (information about options sales) and

current options quotations (up-to-date option price listings) [Aut05].

Figure 1.1 summarizes some of the salient characteristics of these sources and others to give a partial

sense of the range and pervasiveness of ad hoc data. It describes ad hoc data formats from several different

domains ranging from genomics to cosmology to networking to finance to internal corporate billing infor-

mation. They include ASCII, binary, and Cobol data formats, with both fixed and variable-width records,

ranging in size from relatively small files through network applications which process over a gigabyte per

second. Figures 1.2, 1.3, 1.4 and 1.5 provide data fragments from a number of these data sources to provide

the user with concrete examples of ad hoc data.
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format-version: 1.0
date: 11:11:2005 14:24
auto-generated-by: DAG-Edit 1.419 rev 3
default-namespace: gene_ontology
subsetdef: goslim_goa "GOA and proteome slim"

[Term]
id: GO:0000001
name: mitochondrion inheritance
namespace: biological_process
def: "The distribution of mitochondria \, including the mitochondrial
genome\, into daughter cells after mitosis or meiosis \, mediated by
interactions between mitochondria and the cytoskeleton."
[PMID:10873824,PMID:11389764, SGD:mcc]
is_a: GO:0048308 ! organelle inheritance
is_a: GO:0048311 ! mitochondrion distribution

Figure 1.2: Ad hoc data in biology. Shown here is a fragment of the Gene Ontology [Con] encoded in the
OBO format, including the file header and the first entry in the ontology. The Gene Ontology describes
gene products and links genes known to be related.

HA00000000START OF TEST CYCLE
aA00000001BXYZ U1AB0000040000100B0000004200
HL00000002START OF OPEN INTEREST
d 00000003FZYX G1AB0000030000300000
HM00000004END OF OPEN INTEREST
HE00000005START OF SUMMARY
f 00000006NYZX B1QB00052000120000070000B000050000000520000

00490000005100+00000100B00000005300000052500000535000
HF00000007END OF SUMMARY
k 00000008LYXW B1KB0000065G0000009900100000001000020000
HB00000009END OF TEST CYCLE

Figure 1.3: Ad hoc data in finance. The Options Price Reporting Authority (OPRA) provides last sale
information and current options quotations to customers in its own proprietary format. Here we provide
an example data fragment – adapted from the OPRA format’s manual [Aut05] – describing a simple test
transaction.

3



207.136.97.49 - - [15/Oct/1997:18:46:51 -0700]
"GET /tk/p.txt HTTP/1.0" 200 30

tj62.aol.com - - [16/Oct/1997:14:32:22 -0700]
"POST /scpt/dd@grp.org/confirm HTTP/1.0" 200 941

234.200.68.71 - - [15/Oct/1997:18:53:33 -0700]
"GET /tr/img/gift.gif HTTP/1.0 200 409

240.142.174.15 - - [15/Oct/1997:18:39:25 -0700]
"GET /tr/img/wool.gif HTTP/1.0" 404 178

188.168.121.58 - - [16/Oct/1997:12:59:35 -0700]
"GET / HTTP/1.0" 200 3082

214.201.210.19 ekf - [17/Oct/1997:10:08:23 -0700]
"GET /img/new.gif HTTP/1.0" 304 -

Figure 1.4: Ad hoc data from web server logs. Shown here is a six-entry fragment of a web server log,
encoded in the Common Log Format. Each entry has been broken into two lines for readability.

00000000: 9192 d8fb 8480 0001 05d8 0000 0000 0872 ...............r
00000010: 6573 6561 7263 6803 6174 7403 636f 6d00 esearch.att.com.
00000020: 00fc 0001 c00c 0006 0001 0000 0e10 0027 ...............’
00000030: 036e 7331 c00c 0a68 6f73 746d 6173 7465 .ns1...hostmaste
00000040: 72c0 0c77 64e5 4900 000e 1000 0003 8400 r..wd.I.........
00000050: 36ee 8000 000e 10c0 0c00 0f00 0100 000e 6...............
00000060: 1000 0a00 0a05 6c69 6e75 78c0 0cc0 0c00 ......linux.....
00000070: 0f00 0100 000e 1000 0c00 0a07 6d61 696c ............mail
00000080: 6d61 6ec0 0cc0 0c00 0100 0100 000e 1000 man.............
00000090: 0487 cf1a 16c0 0c00 0200 0100 000e 1000 ................
000000a0: 0603 6e73 30c0 0cc0 0c00 0200 0100 000e ..ns0...........
000000b0: 1000 02c0 2e03 5f67 63c0 0c00 2100 0100 ......_gc...!...
000000c0: 0002 5800 1d00 0000 640c c404 7068 7973 ..X.....d...phys
000000d0: 0872 6573 6561 7263 6803 6174 7403 636f .research.att.co

Figure 1.5: Ad hoc data in computer networking. Shown here is a fragment of a DNS packet, as displayed
by the hexdump program. The left-most column provides byte numbers (in hexadecimal), the center
eight columns display the contents in hexidecimal, and the remaining columns display the same content in
ASCII, using a ’.’ when the corresponding byte is unprintable.
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Ad hoc data poses a number of challenges to its users. In addition to the inconvenience of having to

build custom processing tools from scratch, the nonstandard nature of ad hoc data frequently leads to other

difficulties. First, documentation for the format may not exist, or it may be out of date. For example,

a common phenomenon is for a field in a data source to fall into disuse. After a while, a new piece of

information becomes interesting, but compatibility issues prevent data suppliers from modifying the shape

of their data, so instead they hijack the unused field, often failing to update the documentation to reflect the

change.

Second, such data frequently contain errors, for a variety of reasons: malfunctioning equipment, pro-

gramming errors, nonstandard values to indicate “no data available,” human error in entering data, and

unexpected data values caused by the lack of good documentation. Detecting errors is important, because

otherwise they can corrupt valid data. The appropriate response to such errors depends on the applica-

tion. Some applications require the data to be error free: if an error is detected, processing needs to stop

immediately and a human must be alerted. Other applications can repair the data, while still others can

simply discard erroneous or unexpected values. For some applications, errors in the data can be the most

interesting part because they can signal where two systems are failing to communicate.

Today, many programmers tackle the challenge of ad hoc data by writing scripts in languages like Perl.

Unfortunately, this process is slow, tedious, and often unreliable. Error checking and recovery in these

scripts is frequently minimal or nonexistent because, when present, such error-handling code swamps the

main-line computation. The program itself is often unreadable by anyone other than the original authors

(and usually not even them in a month or two) and consequently cannot stand as documentation for the

format. Processing code can end up intertwined with parsing code, making it difficult to reuse the parsing

code for different analyses. In general, while makeshift programs suffice for short-term use, their benefits

come at a high cost. Yet, the cost in time and effort of systematically developing analysis software is well

beyond what most analysts can afford.

1.2 PADS/C and PADS/ML

We have designed thePADS/ML language to address the challenges of ad hoc data.PADS/ML has evolved

from prior work by Fisher and Gruber onPADS/C 1 [FG05]. BothPADS/ML and PADS/C are high-level

1We refer to the originalPADS language asPADS/C to distinguish it fromPADS/ML .
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languages for declaratively describing data sources such that descriptions can be used to automatically

generate a suite of tools for processing the data source. Each language supports the description of the phys-

ical format of a data source and its semantic constraints. Such constraints might specify ranges on fields

in the data source, or relationships between fields. Both languages are general-purpose data description

languages, not focused on any particular data encoding or application domain. They support a variety of

data encodings: ASCII formats used by financial analysts, medical professionals and scientists; EBCDIC

formats used in Cobol-based legacy business systems; binary data from network applications; and mixed

encodings as well.

For bothPADS/C and PADS/ML , authors describe data sources declaratively using type declarations.

PADS/C types are based on the types of theC programming language and thePADS/C compiler generates

tools as libraries ofC source code.PADS/ML types are based on the types of theML language and the

PADS/ML compiler generates tools asML modules.PADS/ML goes beyondPADS/C in a number of ways,

most notably with improved support for reusing descriptions and for extending the suite of generated tools.

Both of these languages can describe a wide range of real data formats, including all of those mentioned in

Table 1.1.

A key benefit of our approach is the high return-on-investment that analysts can derive from describing

their data declaratively. While the suite of tools generated from a description varies betweenPADS/C and

PADS/ML (PADS/C currently produces more tools because of its greater maturity), the core tools produced

by the compilers for both languages are a parser and a printer for the associated data source. The parser

maps raw data into two data structures: a canonicalrepresentationof the parsed data and aparse descriptor,

a metadata object detailing properties of the corresponding data representation, including any errors that

may have occured during parsing. Parse descriptors provide applications with programmatic access to this

meta data. The printer inverts the process, mapping internal data structures and their corresponding parse

descriptors back into raw data. In addition, both compilers can generate tools to convert the data into

XML , print the data in human-readable form, check whether the data meets its semantic constraints, and

summarize the data.

As an example, Figure 1.6 illustrates howPADS/C andPADS/ML parsers are generated and used. In the

diagram, a data analyst constructs a typeT to describe the syntax and semantic properties of the format in

question. A compiler converts this description into parsing code, which maps raw data into an in-memory

6



Generated 
Parser

Description
Compiler

Data Description
(Type T)

010010100100..

Parse 
Descriptor 
for Type T

Representation 
for Type T

(Generic) 
User 
Code

Figure 1.6: Illustration of generation and use ofPADS/C andPADS/ML parsers.

representation and parse descriptor. A host-language program (user written or compiler generated) can then

analyze, transform or otherwise process the data representation and parse descriptor.

The architecture ofPADS/ML and PADS/C helps programmers face the challenges of ad hoc data in

multiple ways. Both languages allow programmers to describe both the physical layout of data as well as

its deeper semantic properties. Yet, despite this expressiveness, format specifications are easier to write

than the equivalent low-levelPERL script or C parser, as we will see in Chapter 2. The domain-specific

constructs of the language simultaneously ease the programming burden for the user while restricting the

range of expressable programs, and, hence, expressable bugs. Once written, such specifications serve as

high-level documentation that is more easily read and maintained. For example, if a data source changes,

as they frequently do, by extending a record with an additional field or new variant, one often only needs to

make a single local change to the declarative description to keep it up-to-date. Furthermore, as modifying

the description is the most effective way to update the generated tools, the documentation and tools are

necessarily maintained together.

PADS/C and PADS/ML address the particular challenges of error-handling in two ways. First, both

compilers automatically include systematic error handling code in the generated tools. For example, the

generated parsers check all possible error cases: system errors related to the input file, buffer, or socket;

syntax errors related to deviations in the physical format; and semantic errors in which the data violates

user constraints. Yet, because these checks appear only in generated code, they do not clutter the high-level

declarative description of the data source. Moreover, since tools are generated automatically by a compiler

rather than written by hand, they are far more likely to be robust and far less likely to have dangerous

7



vulnerabilities such as buffer overflows. Second,PADS/C andPADS/ML parsers return parse descriptors so

that application-writers can respond to errors in application-specific ways. Based on the parse descriptors,

for example, programmers can choose to fix or remove erroneous data, or even halt parsing entirely.

Another benefit of thePADS languages is their basis in type theory, which is especially helpful as

ordinary programmers have built up strong intuitions about types. We have exploited these intuitions in

the design ofPADS/ML andPADS/C to make the syntax and semantics of descriptions particularly easy to

understand, even for beginners. For instance, an array type is used to describe sequences of data objects.

Similarly, union types are used to describe alternatives in the data source.

Finally, we support large data sources by generatingmultiple-entry point parsers, which provide a

separate point to begin parsing for each type declaration in the description. In this way, programmers can

choose the granularity at which to parse the data source. For example, a data source that consists of a

sequence of records could be parsed in (at least) two ways. The programmer could use the entry point that

corresponds to the description of the entire source, in which case the parser would return after parsing the

entire source. Or, the programmer could parse the source one record at a time, by using the entry point that

corresponds to the description of a single record. Notice that the former strategy might be appropriate for a

small data source that would fit entirely into main memory, whereas the latter strategy might be appropriate

for a large data source where only one record, or group of records, could fit in memory at once.

As an aside, although the syntax of everyday programming languages might be considered ad hoc, we

explicitly exclude programming language syntax from our domain of interest. The challenges related to

programming languages are different than those of the kind of data with which we are concerned. For

example, programming languages can be (nearly always) described with context-free grammars, whereas

other data sources often cannot. It is rarely, if ever, worth compiling a program with errors in it, while we

quite often need to be able to process data sources with errors. The tools that we produce from descriptions,

like the summary tool and theXML converter, would not be useful for processing a program. Perhaps most

importantly, a great deal of work has gone into addressing the challenges of processing programming

language syntax, while the challenges presented by other forms of ad hoc data have been largely neglected.

8



1.3 Thesis Overview

In this thesis, we will discuss the design and implementation ofPADS/ML followed by a general theory of

data description languages. Chapter 2 presents thePADS/ML language, discusses the process of compiling

a PADS/ML description into useful tools, provides example uses of these tools, and discussesPADS/ML ’s

tool development framework. Chapter 3 focuses on the semantics of data description languages. We define

the syntax and semantics of a formal data description language, called theData Description Calculusor

DDCα. We designed the constructs of this language for simplicity and orthogonality, each intended to serve

a single purpose. We define the semantics ofPADS/C through an elaboration of the complex constructs of

PADS/C into the simpler constructs ofDDCα. Finally, we discuss howDDCα can be used more broadly to

define the semantics of other data description languages. We conclude with a discussion of related work

for both PADS/ML andDDCα. Note that we will not discussPADS/C in this thesis, except as it relates to

our work onPADS/ML and our theory of data description languages, because the design and development

of PADS/C were done largely independently of the work presented in this thesis.

The bulk of this thesis is based on two previous works. Chapter 2 is based on the technical re-

port “PADS/ML : A Functional Data Description Language,” by Yitzhak Mandelbaum, Kathleen Fisher,

David Walker, Mary Ferńandez, and Artem Gleyzer [MFW+06]. Chapter 3 is based on the published

paper “The Next 700 Data Description Languages,” by Kathleen Fisher, Yitzhak Mandelbaum and David

Walker [FMW06]. Both of these works were edited and expanded considerably for this thesis. At an aes-

thetic level, we have attempted to unify the works into a coherent whole and we have expanded and revised

the explanatory text in numerous places. At a technical level, Chapter 3 extends and revises the theory

and metatheory presented in “The Next 700 Data Description Languages” based on new work presented

in “ PADS/ML : A Functional Data Description Language.” The main innovation of the technical report is

the ability to define functions from types to types, which are needed to modelPADS/ML ’s polymorphic

datatype. In addition, we simplify the overall semantics by making a couple of subtle technical changes.

We have eliminated the complicated “contractiveness” constraint from our earlier work, and we now treat

recursive type variables as abstract, rather than storing their unfoldings in the kinding context. We have

also restated our “error correlation” theorem as a canonical forms lemma. Finally, this thesis contains two

important contributions that are not found in either of the other works: first, we include the statements of all
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essential lemmas for the meta-theory ofDDCα, in addition to proofs and proof sketches, where appropriate;

second, we specify the formal semantics ofPADS/ML polymorphic, recursive datatypes inDDCα.
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Chapter 2

PADS/ML: A Functional Data

Description Language

2.1 Introduction

PADS/ML is a domain-specific language designed to improve the productivity of data analysts, be they

computational biologists, physicists, network administrators, healthcare providers, financial analysts, or

others. The design of thePADS/ML language was inspired by the type structure of functional programming

languages. Specifically,PADS/ML provides dependent, polymorphic recursive datatypes, layered on top of

a rich collection of base types, to specify the syntactic structure and semantic properties of data formats.

Together, these features enable analysts to write concise, complete, and reusable descriptions of their data.

We describe thePADS/ML language using examples from several domains in Section 2.2.

A key benefit of our approach is the high return-on-investment that analysts can derive from describing

their data inPADS/ML . In particular,PADS/ML makes it possible to produce automatically a collection of

data analysis and processing tools from each description. As a start, thePADS/ML compiler generates from

each description a parser and a printer for the associated data source. The parser maps raw data into two

data structures: a canonicalrepresentationof the parsed data and aparse descriptor, a metadata object

detailing properties of the corresponding data representation. Parse descriptors provide applications with
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programmatic access to errors detected during parsing. The printer maps data representations back into raw

data, guided by the corresponding parse descriptors.

We have implementedPADS/ML by compiling descriptions intoO’ CAML code. We use a “types as

modules” implementation strategy in which eachPADS/ML type becomes a module and eachPADS/ML

type constructor becomes a functor. We choseML as the host language because we believe that functional

languages lend themselves to data processing tasks more readily than imperative languages such asC or

JAVA. In particular, constructs such as pattern matching and higher-order functions make expressing data

transformations particularly convenient. Section 2.3 describes our “types as modules” strategy and shows

how PADS/ML -generated modules together with functionalO’ CAML code can concisely express common

data-processing tasks such as error filtering and format transformation.

In addition to generating parsers and printers, our framework permits developers to add

format-independent, orgeneric, tools without modifying thePADS/ML compiler. A new tool need only

match a generic interface, specified as anML signature. Correspondingly, for eachPADS/ML description,

the PADS/ML compiler generates a metatool (a functor) that takes a generic tool and specializes it for use

with the particular description. Section 2.4 describes the tool framework and gives examples of three

generic tools that we have implemented: a data printer useful for description debugging, an accumulator

that keeps track of error information for each type in a data source, and a formatter that maps data into

XML .

PADS/ML has evolved from previous work onPADS/C [FG05], butPADS/ML differs from PADS/C in

three significant ways. First, it is targeted at theML family of languages. UsingML as the host language

simplifies the implementation of many data processing tasks, like data transformation, which benefit from

ML ’s pattern matching and high level of abstraction. Second, unlikePADS/C types,PADS/ML types may

be parameterized by other types, resulting in more concise descriptions through code reuse. ML-style

datatypes and anonymous nested tuples also help improve the readability and compactness of descriptions.

Third, PADS/ML provides significantly better support for the development of format-independent tools

with its generic interface against which such tool can be written. InPADS/C, format-independent tools

are written as code generators within the compiler, and, therefore, developing a format-independent tool

requires understanding and modifying the compiler.

In summary, this chapter discusses the following contributions:
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• We have designed and implementedPADS/ML , a novel data-description language that includes de-

pendent polymorphic recursive datatypes. This design allows data analysts to express the syntactic

structure and semantic properties of data formats from numerous application domains in a concise

and easy-to-read notation.

• Our PADS/ML implementation employs an effective and general “types as modules” compilation

strategy that produces robust parser and printer functions as well as auxiliary support for user-

specified tool generation.

2.2 Describing Data in PADS/ML

A PADS/ML description specifies the physical layout and semantic properties of an ad hoc data source.

These descriptions are composed of types: base types describe atomic data, while structured types de-

scribe compound data built from simpler pieces. Examples of base types include ASCII-encoded, 8-bit un-

signed integers (Puint8 ) and 32-bit signed integers (Pint32 ), binary 32-bit integers (Pbint32 ), dates

(Pdate ), strings (Pstring ), zip codes (Pzip ), phone numbers (Pphone ), and IP addresses (Pip ). Se-

mantic conditions for such base types include checking that the resulting number fits in the indicated space.

For example,Pint16 checks that any integers that it parses fit into 16-bits.

Base types may be parameterized byML values. This mechanism reduces the number of built-in

base types and permits base types to depend on values in the parsed data. For example, the base type

Puint16_FW(3) specifies an unsigned, two-byte integer physically represented by exactly three charac-

ters, and the base typePstring takes an argument indicating the character in the source that immediately

follows the string, which is called theterminator character.

To describe more complex data,PADS/ML provides a collection of type constructors derived from the

type structure of functional programming languages like Haskell and ML. We explain these structured types

in the following subsections using examples drawn from data sources that we have encountered in practice.

However, we do not cover every detail ofPADS/ML in this section. For a complete listing of the syntax,

please see Appendix B.
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0|1005022800
9153|9153|1|0|0|0|0||152268|LOC_6|0|FRDW1|DUO|LOC_CRTE|1001476800|LOC_OS_10|1001649601
9152|9151|1|9735551212|0||9085551212|07988|no_ii152272|EDTF_6|0|APRL1|DUO|10|1000295291

Figure 2.1: Sirius data used to monitor billing in telecommunications industry.

2.2.1 Simple Structured Types

The bread and butter of aPADS/ML description are the simple structured types: tuples and records for

specifying ordered data; lists for specifying homogeneous sequences of data; sum types for specifying

alternatives; and singletons for specifying the occurrence of literal characters in the data. We describe each

of these constructs as applied to the Sirius data presented in Figure 2.1.

Sirius data summarizes orders for phone service placed with AT&T. Each Sirius data file starts with a

timestamp followed by one record per phone service order. Each order consists of a header and a sequence

of events. The header has 13 pipe separated fields: the order number, AT&T’s internal order number, the

order version, four different telephone numbers associated with the order, the zip code of the order, a billing

identifier, the order type, a measure of the complexity of the order, an unused field, and the source of the

order data. Many of these fields are optional, in which case nothing appears between the pipe characters.

The billing identifier may not be available at the time of processing, in which case the system generates a

unique identifier, and prefixes this value with the string “noii” to indicate that the number was generated.

The event sequence represents the various states a service order goes through; it is represented as a newline-

terminated, pipe-separated list of state, timestamp pairs. There are over 400 distinct states that an order

may go through during provisioning. The sequence is sorted in order of increasing timestamps. From this

description, it is apparent that English is a poor language for describing data formats!

Figure 2.2 contains thePADS/ML description for the Sirius data format. The description is a se-

quence of type definitions. Type definitions precede uses, therefore the description should be read bot-

tom up. The typeSource describes a complete Sirius data file and denotes an ordered tuple contain-

ing a Summary_header value followed by anOrders value. Other tuple types are defined in the

Summary_header , Event , andOrder types.

The typeOrders uses the list type constructorPlist to describe a homogenous sequence of values

in a data source. ThePlist constructor takes three parameters: on the left, the type of elements in the list;

on the right, a literalseparatorthat delimits elements in the list, and a literalterminator. In this example,
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ptype Summary_header = "0|" * Ptimestamp * ’\n’

pdatatype Dib_ramp =
Ramp of Pint

| GenRamp of "no_ii" * Pint

ptype Order_header = {
order_num : Pint;

’|’; att_order_num : [i:Pint | i < order_num];
’|’; ord_version : Pint;
’|’; service_tn : Pphone Popt;
’|’; billing_tn : Pphone Popt;
’|’; nlp_service_tn : Pphone Popt;
’|’; nlp_billing_tn : Pphone Popt;
’|’; zip_code : Pzip Popt;
’|’; ramp : Dib_ramp;
’|’; order_sort : Pstring(’|’);
’|’; order_details : Pint;
’|’; unused : Pstring(’|’);
’|’; stream : Pstring(’|’);
’|’
}

ptype Event = Pstring(’|’) * ’|’ * Ptimestamp
ptype Events = Event Plist(’|’, ’\n’)

ptype Order = Order_header * Events
ptype Orders = Order Plist(’\n’, peof )
ptype Source = Summary_header * Orders

Figure 2.2:PADS/ML description of Sirius provisioning data.
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ptype BranchLength = ’:’ * Pfloat32

pdatatype Tree =
Interior of ’(’ * Tree Plist(’,’,’)’) * ’)’ * BranchLength

| Leaf of Pstring(’:’) * BranchLength

Figure 2.3:PADS/ML description of Newick format.

the typeOrders is a list ofOrder elements, separated by a newline, and terminated bypeof , a special

literal that describes theend-of-file marker. Similarly, theEvents type denotes a sequence ofEvent

values separated by vertical bars and terminated by a newline.

Literal characters in type expressions denote singleton types. For example, theEvent type is a string

terminated by a vertical bar, followed by a vertical bar, followed by a timestamp. The singleton type’|’

means that the data source must contain the vertical bar character at this point in the input stream. String,

character, and integer literals can be embedded in a description and are interpreted as singleton types. For

example, the singleton type"0|" in theSummary_header type denotes the “0| ” string literal.

The typeOrder_header is a record type, which is essentially a tuple type in which each field may

have an associated name. The named fieldatt_order_num illustrates two other features ofPADS/ML :

dependencies and constraints. Here,att_order_num depends on the previous field,order_num , and

is constrained to be less than that value. In practice, constraints may be complex, have multiple dependen-

cies, and can specify, for example, the sorted order of records in a sequence. Constrained types have the

form [x:T | e] wheree is an arbitrary pure boolean expression1. Data satisfies this description if it

satisfiesT and booleane evaluates to true when the parsed representation of the data is substituted forx .

If the boolean expression evaluates to false, the data contains asemanticerror.

The datatype definition ofDib_ramp specifies two alternatives for a data fragment, either one integer

or the fixed string"no_ii" followed by one integer. The order of alternatives is significant, that is, the

parser attempts to parse the first alternative and only if it fails, will it attempt to parse the second alternative.

This semantics differs from similar constructs in regular expressions and context-free grammars, which

nondeterministically choose between alternatives.

1While PADS/ML requires that the expression be pure, the implementation does not yet enforce this requirement.
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(((erHomoC:0.28006,erCaelC:0.22089):0.40998,(erHomoA:0.32304,(erpCaelC:0.58815,((erHomoB: \
0.5807,erCaelB:0.23569):0.03586,erCaelA:0.38272):0.06516):0.03492):0.14265):0.63594, \
(TRXHomo:0.65866,TRXSacch: 0.38791):0.32147,TRXEcoli:0.57336)

Figure 2.4: Simplified tree-shaped data in Newick Standard format [Newb]. Each ‘\’ indicates a newline
that we inserted to improve legibility.

2:3004092508||5001|dns1=abc.com;dns2=xyz.com|c=slow link;w=lost packets|INTERNATIONAL
3:|3004097201|5074|dns1=bob.com;dns2=alice.com|src_addr=192.168.0.10;dst_addr= \
192.168.23.10;start_time=1234567890;end_time=1234568000;cycle_time=17412|SPECIAL

Figure 2.5: Simplified network-monitoring data. The ‘\’ in the second line indicates a newline that we
inserted to improve legibility.

2.2.2 Recursive Types

PADS/ML can describe data sources with recursive structure. One example of recursive data is the Newick

Standard format, a flat representation of trees used by biologists [Newa] that employs properly nested

parentheses to specify a tree’s hierarchy. An interior tree node is represented by a matched pair of paren-

theses containing a (possibly empty) sequence of children nodes separated by commas. An exterior node is

represented by its name. Additionally, every node is annotated with the length of the branch that separates

the node from its parent.

Figure 2.3 contains a concise description of Newick Standard. Notice that branch lengths are described

as floating point numbers and node names are described as strings terminated by colons. Figure 2.4 contains

a small fragment of example data. In this example, the string labels are gene names and the branch length

denotes the number of mutations that occur in the antibody receptor genes of B lymphocytes. Steven

Kleinstein provided this data. He used similar data in his study of the proliferation of B lymphocytes

during an immune response.

2.2.3 Polymorphic Types and Advanced Datatypes

The Regulus project at AT&T monitors network links, sending out alarms when problems are encountered.

In Figure 2.5, we show a small fragment of example Regulus data. Each entry records a particular alarm

sent out by Regulus. The data in each alarm is encoded largely in name-value pairs. For example, in Line 1

of Figure 2.5, the name-value pair “dns1=abc.com ” tells us that the domain name of the source of the

network link is “abc.com .” Because of the prevalence of name-value pairs, we would like to describe

name-value pairs with a type definition that could be used throughout the description of the Regulus data.
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However, while the names in such pairs are always strings, the types of the values can differ. Also, for

some pairs, a particular name is specified by the format, while for others, any name is valid. It would seem

that we need to define a separate type for each different kind of name-value pair in the data source.

Polymorphictypes enable analysts to define reusable descriptions by abstracting type definitions over

type and value parameters. Reusable descriptions, in turn, allow for more concise descriptions, because

common description elements can be written once and then referenced by name in the remainder of the

description. In Figure 2.6, we show aPADS/ML description of the Regulus data format that uses poly-

morphic types to concisely describe the many kinds of name-value pairs that appear in Regulus data. In

particular, we define the polymorphic typePnvp , which abstracts over the type of the value, as a basis for

all name-value pair variants. For all polymorphic type definitions, type parameters appear to the left of the

type name, as is customary inML ; value parameters and theirML types appear to the right of the type name.

In the definition of typePnvp , there is a single type parameter namedAlpha and no value parameters.

Informally, Pnvp describes a name-value pair where the value has typeAlpha .

We usePnvp twice in the Regulus description. First, we define the polymorphic typeNvp that uses

Pnvp to define a name-value pair whose name must match the string argumentname, but whose value

can have any type. Later in the description, the type parameter toNvp is instantiated with IP addresses,

timestamps, integers, and strings. Second, we reuse the typePnvp in the definition of theGeneric

variant of theInfo type. We applyPnvp to the typeSVString to describe a name-value pair whose

value is a string terminated by a semicolon or vertical bar.

To appreciate the utility of polymorphic types, it is helpful to compare thePADS/ML Regulus description

in Figure 2.6 with thePADS/C description in Figures 2.2.3 and 2.2.3. In particular, notice that thePADS/C

description of this format must define a different type for each variant.

The Regulus description also illustrates the use ofswitcheddatatypes. A switched datatype selects a

variant based on the value of a user-specifiedO’ CAML expression, which typically references parsed data

from earlier in the data source. For example, the switched datatypeInfo chooses a variant based on the

value of itsalarm_code parameter. More specifically, if the alarm code is5074 , the format specification

given by theDetails constructor will be used to parse the current data. Otherwise, the format given by

theGeneric constructor will be used to parse the current data.
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(* Pstring terminated by semicolon or vertical bar. *)
ptype SVString = Pstring_SE("/;|\\|/")

(* Generic name value pair. *)
ptype (Alpha) Pnvp = Pstring(’=’) * ’=’ * Alpha

(* Name value pair with name specified. *)
ptype (Alpha) Nvp(name:string) = [nvp: Alpha Pnvp | fst nvp = name]

ptype Details = {
source : Pip Nvp("src_addr");

’;’; dest : Pip Nvp("dest_addr");
’;’; start_time : Ptimestamp Nvp("start_time");
’;’; end_time : Ptimestamp Nvp("end_time");
’;’; cycle_time : Puint32 Nvp("cycle_time")

}

pdatatype Info(alarm_code : int) =
match alarm_code with

5074 -> Details of Details
| _ -> Generic of (SVString Pnvp) Plist(’;’,’|’)

pdatatype Service =
DOMESTIC of "DOMESTIC"

| INTERNATIONAL of "INTERNATIONAL"
| SPECIAL of "SPECIAL"

ptype Alarm = {
alarm : [a : Puint32 | a = 2 or a = 3];

’:’; start : Ptimestamp Popt;
’|’; clear : Ptimestamp Popt;
’|’; code : Puint32;
’|’; src_dns : SVString Nvp("dns1");
’;’; dest_dns : SVString Nvp("dns2");
’|’; info : Info(code);
’|’; service : Service

}

ptype Source = Alarm Plist(’\n’, peof )

Figure 2.6:PADS/ML description of Regulus data.
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/* Pstring terminated by ’;’ or ’|’ */
Ptypedef Pstring_SE(:"/;|\\|/":) SVString;

Pstruct Nvp_string(: char * s:){
s; "="; SVString val;

};

Pstruct Nvp_ip(: char * s:){
s; "="; Pip val;

};

Pstruct Nvp_timestamp(: char * s:){
s; "="; Ptimestamp val;

};

Pstruct Nvp_Puint32(: char * s:){
s; "="; Puint32 val;

};

Pstruct Nvp_a{
Pstring(:’=’:) name;

’=’; SVString val;
};

Pstruct Details{
Nvp_ip(:"src_addr":) source;

’;’; Nvp_ip(:"dst_addr":) dest;
’;’; Nvp_timestamp(:"start_time":) start_time;
’;’; Nvp_timestamp(:"end_time":) end_time;
’;’; Nvp_Puint32(:"cycle_time":) cycle_time;

};

Parray Nvp_seq{
Nvp_a [] : Psep (’;’) && Pterm (’|’);

};

Punion Info(: int alarm_code:){
Pswitch (alarm_code){

Pcase 5074: Details details;
Pdefault : Nvp_seq generic;

}
};

Penum Service {
DOMESTIC,
INTERNATIONAL,
SPECIAL

};

Figure 2.7:PADS/C description of Regulus data, part 1.
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Pstruct Alarm {
Puint32 alarm : alarm == 2 || alarm == 3;

’:’; Popt Ptimestamp start;
’|’; Popt Ptimestamp clear;
’|’; Puint32 code;
’|’; Nvp_string(:"dns1":) src_dns;
’;’; Nvp_string(:"dns2":) dest_dns;
’|’; Info(:code:) info;
’|’; Service service;

};

Psource Parray Source {
Alarm[];

};

Figure 2.8:PADS/C description of Regulus data, part 2.

The last feature of interest in the Regulus description is the use of literals as datatype branches. In the

Service datatype, the string literals in each branch specify to parse the string literal, but omit it from the

internal data representation, because the literal can be determined by the datatype constructor.

2.3 From PADS/ML to O’CAML

PADS/ML descriptions are compiled intoO’ CAML modules that can be used by anyO’ CAML program. The

contents of the generated modules include a parser and printer, a functor to specialize generic tools to the

given data source, and type declarations to describe the in-memory representation of the data source and

its corresponding parse-descriptor. In this section, we describe the generated modules and their contents in

detail, and illustrate their use.

2.3.1 Types as Modules

We use theO’ CAML module system to structure the libraries generated by thePADS/ML compiler. Each

PADS/ML base type is implemented as anO’ CAML module. For eachPADS/ML type in a description, the

PADS/ML compiler generates anO’ CAML module containing the types, functions, and nested modules that

implement thePADS/ML type. All the generated modules are grouped into one module that implements

the complete description. For example, aPADS/ML description namedsirius.pml containing three
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type pd_header = {
nerr : int;
error_code : error_code;
error_info : error_info;
span : span;

}

Figure 2.9: TheO’ CAML type of parse-descriptor headers. The typeserror_code , error_info , and
span are defined in Appendix C.

named types results in theO’ CAML file sirius.ml defining the moduleSirius , which contains three

submodules, each corresponding to one named type.

Namespace management alone is sufficient motivation to employ a “types as modules” approach, but

the power of theML module system provides substantially more. We implement polymorphicPADS/ML

types as functors from (type) modules to (type) modules. Ideally, we would like to map recursivePADS/ML

types into recursive modules. Unfortunately, this approach currently is not possible, becauseO’ CAML

prohibits the use of functors within recursive modules, and the output of thePADS/ML compiler includes a

functor for each type. Instead, we implement recursive types as modules containing recursive datatypes and

functions. As there is no theoretical reason to prevent recursive modules from containing functors [Dre05],

we pose our system as a challenge to implementers of module systems.

More precisely, a module generated for a monomorphicPADS/ML type matches the signatureS:

module type S = sig
type rep
type pd_body
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
(* Functor for tool generator ... *)
module Traverse ...

end

The representation(rep ) type describes the in-memory representation of parsed data, while theparse-

descriptor(pd) type describes metadata collected during parsing. Every parse descriptor contains a header

and a body. The header includes the number of subcomponents that contain errors, an error code that

classifies the errors encountered during parsing (if any), an expanded description of the errors encountered,

and the span – the start and end locations – of the raw data in the data source. The body contains the parse

descriptors for subcomponents of the corresponding representation. Parse descriptors for base types have a

body of typeunit .
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Theparse function converts the raw data into an in-memory representation and parse descriptor for

the representation. Theprint function converts a data representation into a string of data in the original,

raw format. The printing is guided by a parse descriptor that corresponds to the data representation. In

particular, any data marked by the parse descriptor as syntactically invalid is omitted from the generated

string. Other data, though, is printed in its original form or an equivalent, depending on the particular base

types included in the description. The moduleTraverse is a functor that takes a format-independent tool

and specializes it to the data format described with thePADS/ML type; we defer a description of this functor

to Section 2.4.

The modulePads contains the built-in types and functions that occur in base-type and generated mod-

ules. For example,Pads.pd_header , shown in Figure 2.9, is the type of all parse-descriptor headers

andPads.handle is an abstract type containing the private data structuresPADS/ML uses to manage data

sources. A complete listing of thePads interface is provided in Appendix C.

The structure of the representation and parse-descriptor types resembles the structure of the corre-

spondingPADS/ML type, making it easy to see the correspondence between parsed data, its internal repre-

sentation, and corresponding metadata. For example, given thePADS/ML type of a character and integer

separated by a vertical bar:

ptype Pair = Pchar * ’|’ * Pint

the compiler generates a module with the signature:

module type Pair_sig = sig
type rep = Pchar.rep * Pint.rep
type pd_body = Pchar.pd * Pint.pd
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
...

end

The signature for a polymorphicPADS/ML type uses the signatureS, defined above. For example, given

the polymorphicPADS/ML typeABPair :

ptype (Alpha,Beta) ABPair = Alpha * ’|’ * Beta

the compiler generates a module with the signature:
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module type ABPair_sig (Alpha : S) (Beta : S) =
sig

type rep = Alpha.rep * Beta.rep
type pd_body = Alpha.pd * Beta.pd
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
...

end

2.3.2 Using the Generated Libraries

Next, we presentO’ CAML programs that demonstrate how to usePADS/ML modules to compute properties

of ad hoc data, to filter it, and to transform it.

Example: Computing Properties

Given thePADS/ML type:

ptype IntTriple = Pint * ’|’ * Pint * ’|’ * Pint

the followingO’ CAML expression computes the average of the three integers:

let ((i1,i2,i3), (pd_hdr, pd_body)) =
Pads.parse_source IntTriple.parse "input.data"

in match pd_hdr with
{error_code = Pads.Good} -> (i1 + i2 + i3)/3

| _ -> raise Pads.Bad_file

Theparse_source function takes a parsing function and a file name, applies the parsing function to the

data in the specified file, and returns the resulting representation and parse descriptor. To ensure that the

data is valid, the error code in the parse-descriptor header is examined. The error codeGood indicates that

the data is syntactically and semantically valid. Other error codes includeNest , indicating an error in a

subcomponent,Syn, indicating that a syntactic error occurred during parsing, andSem, indicating that the

data violates a semantic constraint. The expression above raises an exception if it encounters any of these

error codes.

Checking the top-level parse descriptor for errors is sufficient to guarantee that there are no errors in

any of the subcomponents. This property holds for all representations and corresponding parse descriptors.

This design supports a “pay-as-you-go” approach to error handling. The parse descriptor for valid data

need only be consulted once, no matter the size of the corresponding data, and user code only needs to

traverse the nested parse descriptors if more precise information about an error is required.
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open Pads

let classify_order order (pd_hdr, pd_body) (good, bad)=
match pd_hdr with

{error_code = Good} -> (order::good, bad)
| _ -> (good, order::bad)

let split_orders orders (orders_pd_hdr,order_pds) =
List.fold_right2 classify_order orders order_pds []

let ((header, orders),(header_pd, orders_pd)) =
parse_source Sirius.parse "input.txt"

let (good,bad) = split_orders orders orders_pd

Figure 2.10: Error filtering of Sirius data

Example: Filtering

Data analysts often need to “clean” their data, by removing or repairing data containing errors, before load-

ing the data into a database or other application.O’ CAML ’s pattern matching and higher-order functions

can simplify these tasks. For example, the expressions in Figure 2.10 partition Sirius data into valid orders

and invalid orders.

Example: Transformation

Once a data source has been parsed and cleaned, a common task is to transform the data into formats

required by other tools, like a relational database or a statistical analysis package. Transformations include

removing extraneous literals, inserting delimiters, dropping or reordering fields, and normalizing the values

of fields – for example, by converting all times into a specified time zone.

Because relational databases typically cannot directly store fields whose content type varies, one com-

mon transformation is to convert such fields into a form that such systems can handle. One option is to

partition or “shred” the data into several relational tables, one for each variant of the field. A second option

is to create a universal table, with one column for each variant of any field. If a given variant does not occur

in a particular field, its value is marked as missing.

In Figure 2.11, we show a partial listing ofRegulusNormal.pml , a normalized version of the Reg-

ulus description from Section 2.2. In this shredded version,Alarm has been split into two top-level types

D_alarm andG_alarm . The typeD_alarm contains all the information concerning alarms with the de-
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...
ptype Header = {

alarm : [ a : Puint32 | a = 2 or a = 3];
’:’; start : Ptimestamp Popt;
’|’; clear : Ptimestamp Popt;
’|’; code: Puint32;
’|’; src_dns : Nvp("dns1");
’;’; dest_dns : Nvp("dns2");
’|’; service : Service

}

ptype D_alarm = {
header : Header;

’|’; info : Details
}

ptype G_alarm = {
header : Header;

’|’; info : (SVString Pnvp) Plist(’;’,’|’)
}

Figure 2.11: Partial Listing ofRegulusNormal.pml , a normalized format for Regulus data. All named
types not explicitly included in this figure are unchanged from the original Regulus description.

tailed payload, whileG_alarm contains the information for generic payloads. In the original description,

the info field identified the type of its payload. In the shredded version, the two different types of records

appear in two different data files. Since neither of these formats contains a union, they can be easily loaded

into a relational database.

The code fragment in Figure 2.12 shreds Regulus data in the format described byRegulus.pml into

the format described inRegulusNormal.pml . It uses theinfo field of Alarm records to partition

the data. In the process, we also reorder the fields, putting theservice field into the commonheader .

Notice that the code invokes theprint functions generated for theG_alarm andD_alarm types to

output the shredded data.

2.4 The Generic Tool Framework

An essential benefit ofPADS/ML is that it can provide users with a high return-on-investment for describing

their data. While the generated parser and printer alone are enough to justify the user’s effort, we aim to

increase the return by enabling users to easily construct data analysis tools. However, there is a limit, both

in resources and expertise, to the range of tool generators that we can develop. Indeed, new and interesting
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open Regulus
open RegulusNormal
module A = Alarm
module DA = D_alarm
module GA = G_alarm
module Header = H

type (’a,’b) Sum = Left of ’a | Right of ’b

let splitAlarm a =
let h =

{H.alarm=a.A.alarm; H.start=a.A.start;
H.clear=a.A.clear; H.code=a.A.code;
H.src_dns=a.A.src_dns;
H.dest_dns=a.A.dest_dns;
H.service=a.A.service}

in match a with
{info=Details(d)} ->
Left {DA.header = h; DA.info = d}

| {info=Generic(g)} ->
Right {GA.header = h; GA.info = g}

let process_alarm pads [pads_D; pads_G] =
let a,a_pd = A.parse pads in

match (split_alarm a, split_alarm_pd a_pd) with
(Left da, Left da_p) -> DA.print da da_p pads_D

|(Right ga, Right ga_p) -> GA.print ga ga_p pads_G
| _ -> ... (* Bug! *)

let _ = process_source process_alarm
"input.data" ["d_out.data";"g_out.data"]

Figure 2.12: Shredding Regulus data based on theinfo field.
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data analysis tools are constantly being developed, and we have no hope of integrating even a fraction of

them into thePADS/ML system ourselves. Therefore, it is essential that we provide a simple framework for

others to develop tool generators.

The techniques of type-directed programming, known variously asgeneric[Hin00] or polytypic[JJ96]

programming, provide a convenient conceptual starting point in designing a tool framework. In essence,

any tool generator is a function from a description to the corresponding tool. AsPADS/ML descriptions are

types, a tool generator is a type-directed program.

Support for some form of generic programming over data representations and parse descriptors is an es-

sential first step in supporting the development of tool generators. While a full-blown generic programming

system like Generic Haskell [HJ03] would be useful in this context,O’ CAML lacks a generic programming

facility. Yet, we can still achieve some of the benefits of generic programming even without such a facility,

as a number of useful data processing tools can be specified genericly using only thePADS/ML compiler

and theO’ CAML module system.

In particular, many of the tools we have encountered perform their computations in a single pass over

the representation and corresponding parse descriptor, visiting each value in the data with a pre-, post-, or

in-order traversal. This paradigm arises naturally as it scales to very large data sets. It can be abstracted

in a manner similar to the generic functions of Lammel and Peyton-Jones [LP03]. For each format de-

scription, we generate a format-dependent traversal mechanism that implements a generalized fold over the

representation and parse descriptor corresponding to that format. Then, tool developers can write a format-

independent,generic toolby specifying the behavior of the tool for eachPADS/ML type constructor. The

traversal mechanism interacts with generic tools through a signature that every generic tool must match.

The generic tool architecture ofPADS/ML delivers a number of benefits over the fixed architecture of

PADS/C. In PADS/C, all tools are generated from within the compiler. Therefore, developing a new tool

generator requires understanding and modifying the compiler. Furthermore, the user selects the set of tools

to generate when compiling the description. InPADS/ML , tool generators can be developed independent of

the compiler and they can be developed more rapidly because the boilerplate code to traverse data need not

be replicated for each tool generator. In addition, the user can choose which tools to generate for a given

data format on a program-by-program basis. This flexibility is possible because tool generation is simply

the composition of the desired generic tool modules with the traversal functor.
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module type S = sig
type state
...
module Int = sig

val init : unit -> state
val process : state -> int option -> Pads.pd_header -> state

end

module Record : sig
type partial_state
val init : (string * state) list -> state
val start : state -> Pads.pd_header -> partial_state
val project : state -> string -> state
val process_field : partial_state -> string -> state -> partial_state
val finish : partial_state -> state

end

module Datatype : sig
type partial_state
val init : unit -> state
val start : state -> Pads.pd_header -> partial_state
val project : state -> string -> state option
val process_variant : partial_state -> string -> state -> partial_state
val finish : partial_state -> state

end
...

end

Figure 2.13: Excerpt of generic-tool interfaceGeneric tool.S . TheInt module is a simplified version
of the actualInt module inGeneric tool.S . A complete listing is provided in Appendix D.

2.4.1 The Generic-Tool Interface

The interface between format-specific traversals and generic tools is specified as anO’ CAML signature.

For each essentialO’ CAML built-in type (int , char , string , andunit ) and for every type constructor

in PADS/ML , the signature describes a sub-module that implements the generic tool for that type or type

constructor. In addition, it specifies an (abstract) type for auxiliary state that is threaded through the traver-

sal. Figure 2.13 contains an excerpt of the signature that includes the signatures of theInt , Record , and

Datatype modules. The signatures of other modules are quite similar. A complete listing of the interface

is provided in Appendix D.

The Int module contains two functions:init to create initialstate data for an integer field, and

process to process an integer field based on a parse descriptor and previous state. Notice that the integer

argument toprocess is wrapped in an option. This wrapping is necessary because the integer value might
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not exist if the parse failed. As the possibility of failure is not limited to integers, theprocess function

for all base types receives an optional value argument.

The Record module includes a typepartial_state that allows tools to represent intermediate

state in a different form than the general state. Theinit function forms the state of the record from

the state of its fields. Thestart function receives the PD header for the data element being traversed

and begins processing the element. Functionproject takes a record’s state and the name of a field and

returns that field’s state. Functionprocess_field updates the intermediate state of the record based on

the name and state of a field, andfinish converts the finished intermediate state into general tool state.

Note that any of these functions could have side effects.

Although theDatatype module is similar to theRecord module, there are some important differ-

ences. TheDatatype init function does not start with the state of all the variants. Instead, a variant’s

state is added during processing so that only variants that have been encountered will have corresponding

state. For this reason,project returns astate option , rather than astate . This design is essential

for supporting recursive datatypes as trying to initialize the state for all possible variants of the datatype

would cause theinit function to loop infinitely.

The following code snippet gives the signature of the traversal functor as it would appear in the signature

S from Section 2.3.

module Traverse (Tool : Generic_tool.S) :
sig

val init : unit -> Tool.state
val traverse : rep -> pd -> Tool.state -> Tool.state

end

The functor takes a generic tool generator and produces a format-specific tool with two functions:init , to

create the initial state for the tool, andtraverse , which traverses the representation and parse descriptor

for the type and updates the given tool state.

2.4.2 Example Tools

We have used this framework to implement a variety of tools useful for processing ad hoc data, including

an XML formatter, an accumulator tool for generating statistical overviews of the data, and a data printer

for debugging. We briefly describe these tools to illustrate the flexibility of the framework.
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<Order_header size="13" status="GOOD">
<order_num><val>9153</val></order_num>
<att_order_num><val>9153</val></att_order_num>
<ord_version><val>1</val></ord_version>
<service_tn>

<Something><val>0</val></Something>
</service_tn>
<billing_tn>

<Something><val>0</val></Something>
</billing_tn>
<nlp_service_tn>

<Something><val>0</val></Something>
</nlp_service_tn>
<nlp_billing_tn>

<Something><val>0</val></Something>
</nlp_billing_tn>
<zip_code><Nothing><val></val></Nothing></zip_code>
<ramp><Ramp><val>152268</val></Ramp></ramp>
<order_sort><val>LOC_6</val></order_sort>
<order_details><val>0</val></order_details>
<unused><val>FRDW1</val></unused>
<stream><val>DUO</val></stream>

</Order_header>

Figure 2.14: A fragment of theXML output for Sirius.

31



The XML formatter converts any data with aPADS/ML description into a canonicalXML format. This

conversion is useful because it allows analysts to exploit the many useful tools that exist for manipulating

data inXML . Figure 2.14 shows a sample portion of the output of this tool when run on the Sirius data in

Figure 2.1. Appendix E contains a complete listing of the source code of theXML formatter.

The accumulator tool provides a statistical summary of data. Such summaries are useful for developing

a quick understanding of data quality. In particular, after receiving a new batch of data, analysts might

want to know the frequency of errors, or which fields are the most corrupted. The accumulator tool tracks

the distribution of the topn distinct legal values and the percentage of errors. It operates over data sources

whose basic structure is a series of records of the same type, providing a summary based on viewing

many records in the data source. More complex accumulator programs and a number of other statistical

algorithms, like clustering and histogram generation, can easily be implemented using the tool generation

infrastructure.

Finally, as an aid in debuggingPADS/ML descriptions, we have implemented a simple printing tool.

In contrast to the printer generated by thePADS/ML compiler, the output of this tool corresponds to the

in-memory representation of the data rather than its original format, which may have concrete syntax or

unusual encodings that are not retained in the representation. This format, therefore, is often more readable

than the raw data.

2.5 Future Implementation Work and Conclusions

PADS/ML is already an effective, working system for data description and processing. However, there are a

number of ways we plan to make it even better.

First, there are a number of properties of data descriptions a programmer might want to infer or verify.

For example, it is not hard to write a nonterminating data description by accident. It is also possible to

write a description with completely redundant subparts (dead parser code). While these problems might be

caught through testing, we would prefer to catch them at compile time. Consequently, we plan to explore

development aPADS/ML “type checker” to infer description properties and catch obvious errors.

A second long-term goal is to build a collection of higher-level, format-independent data analysis tools.

By “higher-level” tools, we mean tools that perform semantic data analysis as opposed to simpler, low-

level syntactic transformation (such asXML conversion) and analysis. Tools in this category include tools
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for content-based search, clustering, statistical data modeling, data generation and machine learning. We

believe that if we can automatically generate stand-alone, end-to-end tools that perform these functions over

arbitrary data, we can have a substantial impact on the productivity of many researchers in fields ranging

from computational biology to networking. We hope to provide access to these tools through LaunchPADS,

our data visualization environment [DFF+06b, DFF+06a], which currently only interfaces withPADS/C.

Third, as mentioned in Section 2.1, ad hoc data sources are often very large scale. Large data volumes

often require that the data be processed without loading it into main memory all at once. ThePADS/C

language accommodates efficient processing of very large-scale data [FG05] by supporting multiple-entry

point parsing, which permits a user to write tools that have fixed memory requirements and that can yield

a result in one scan of the data source. ThePADS/ML language similarly supports multiple-entry point

parsing, but has not yet been tested for performance.

Finally, we hope thePADS/ML system can serve as a stimulating and practical test case for researchers

studying functional programming language design and implementation. In particular, our “types as mod-

ules” compilation strategy pushes up against the very limits of modern module system design —O’ CAML ’s

experimental recursive modules do not allow us to implement recursive types as recursive modules in the

way we envision. In addition, futurePADS/ML programs might be phrased extremely elegantly as (de-

pendently) type-directed programs, but mainstream languages lack either dependent types or type-directed

programming features, or, most commonly, both. Lastly, rather than erasing dependent typing information

upon translation ofPADS/ML into O’ CAML , it would be ideal to preserve the dependency and to verify

that data processors preserve necessary data invariants. Unfortunately, sufficiently practical and powerful

dependent type systems do not currently exist. So while functional languages are clearly the “program-

ming tools of choice for discriminating hackers,” many challenges remain in the domain of ad hoc data

processing.
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Chapter 3

A Theory of Data Description

Languages

The languages people use to communicate with computers differ in their intended aptitudes,

towards either a particular application area, or a particular phase of computer use (high level

programming, program assembly, job scheduling,etc.). They also differ in physical appear-

ance, and more important, in logical structure. The question arises, do the idiosyncrasies reflect

basic logical properties of the situations that are being catered for? Or are they accidents of

history and personal background that may be obscuring fruitful developments? This question

is clearly important if we are trying to predict or influence language evolution.

To answer it we must think in terms, not of languages, but of families of languages. That

is to say we must systematize their design so that a new language is a point chosen from a

well-mapped space, rather than a laboriously devised construction.

— P. J. Landin,The Next 700 Programming Languages, 1966 [Lan66].

Landin asserts that principled programming language design involves thinking in terms of “families

of languages” and choosing from a “well-mapped space.” However, when it comes to the domain of

processing ad hoc data, there is no well-mapped space and no systematic understanding of the family of

languages one might be dealing with.
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We discovered this problem when we first attempted to specify the semantics ofPADS/C. Fisher and

Gruber designed and implementedPADS/C [FG05], but specified its semantics only informally, in the

PADS/C manual [Pad] and the comments in the source code. When we attempted to formally specify

the semantics ofPADS/C, we found that there were no existing frameworks suitable for the task. We

therefore developed the data description calculusDDC to capture the core features ofPADS/C [FMW06].

However, our work onDDC resulted in more than just a semantics forPADS/C. It also enabled us to formally

understand other data description languages, likePACKETTYPESand DATASCRIPT(discussed in detail in

Section 3.4). Given the broad applicability ofDDCα, we decided to use it to guide our development of

PADS/ML . However, the polymorphic types that we wished to include inPADS/ML could not be formalized

with DDC. Therefore, we extendedDDC with abstractions over types to createDDCα. In the process, we

also improved theDDCα theory, as noted in Section 3.2. Then, we usedDDCαas a basis for the design and

implementation ofPADS/ML .

In the previous chapter, we discussedPADS/ML . In this chapter, we will begin to understand the family

of ad hoc data processing languages, of whichPADS/ML and PADS/C are but two members. We do so,

as Landin did, by developing a semantic framework for defining, comparing, and contrasting languages

in our domain. This semantic framework revolves around the definition of the data description calculus

DDCα. This calculus uses types from a dependent type theory to describe various forms of ad hoc data:

base types to describe atomic pieces of data and type constructors to describe richer structures. We show

how to give a denotational semantics toDDCα by interpreting types as parsing functions that map external

representations (bits) to data structures in a typedλ-calculus. More precisely, these parsers produce both

internal representations of the external data and parse descriptors that pinpoint errors in the original source.

For many domains, researchers have a solid understanding of what makes a “reasonable” or “unrea-

sonable” language. For instance, a reasonable typed language is one in which values of a given type have

a well-defined canonical form and “programs don’t go wrong.” On the other hand, when we began this

research, it was not at all clear how to decide whether our data description language and its interpretation

were “reasonable” or “unreasonable.” A conventional sort of canonical forms property, for instance, is not

relevant as the input data source is not under system control, and, as mentioned in Chapter 1, is frequently

buggy. Consequently, we have had to define and formalize a new correctness criterion for the language.

Briefly, rather than requiring input data be error-free, we require that the internal data structures produced
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by parsing satisfy their specification wherever the parse descriptor reports them to be free of errors. Our

invariant allows data consumers to rely on the integrity of internal data structures marked as error-free.

To study and compare thePADS languages and/or other data description languages, we advocate elab-

orating these languages intoDDCα. The elaboration decomposes the relatively complex, high-level con-

structs of the language in question into a composition of lower-levelDDCα constructs. We have done this

decomposition forIPADS, an idealized version of thePADS/C language that captures the essence of the

actual implementation. We have also analyzed key features ofPADS/ML , PACKETTYPESandDATASCRIPT

using our model. The process of giving semantics to these languages highlighted features that were am-

biguous or ill-defined in the documentation we had available to us. For example, we have given a semantics

to one of the features ofPACKETTYPES, its overlays, not found inPADS.

The process of developingDDCα delivered additional benefits, beyond the immediate benefit of ob-

taining a semantics forPADS/C and its relatives. Most significantly, the semantics served as a clear and

effective guide in implementingPADS/ML . In addition, since we defined the semantics by reviewing the

existingPADS/C implementation, we found (and fixed!) a couple of subtle bugs. Finally, the semantics has

also raised several design questions that we are continuing to study.

In summary, this chapter discusses following theoretical and practical contributions:

• We define a semantic framework for understanding and comparing data description languages such

asPADS/C, PADS/ML , PACKETTYPESandDATASCRIPT. Prior to our work (first published in POPL

’06 [FMW06]), no one had given a formal semantics to any of these languages.

• At the center of the framework isDDCα, a calculus of data descriptions based on dependent type

theory. We give a denotational semantics toDDCα by interpreting types both as parsers and, more

conventionally, as classifiers for parsed data. By “classfiers,” we mean “types” in the usual sense for

programming languages.

• We define an important correctness criterion for our language, stating that all errors in the parsed

data are reported in the parse descriptor. We proveDDCα parsers maintain this property.

• We defineIPADS, an idealized data description language that captures the essential features of a num-

ber of real data description languages includingPADS/C, PADS/ML , PACKETTYPESandDATASCRIPT.

We show how to giveIPADS a semantics by elaborating it intoDDCα. As Landin asserts, this process

helps us understand the families of languages in this domain and the totality of their features, so that
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we may engage in principled language design as opposed to falling prey to “accidents of history and

personal background.”

• We usedDDCα to experiment with a definition and implementation strategy for recursive and poly-

morphic types, features not found in any prior ad hoc data description language of which we are

aware. Recursive types are essential for representing tree-shaped hierarchical data [Con, Newa] and

polymorphic types allow descriptions to be more concise and more easily reused. We have integrated

recursion intoPADS/C, and included recursion and polymorphism inPADS/ML , using our theory as a

guide.

Sections 3.1, 3.2 and 3.3 explain the syntax, semantics and metatheory ofDDCα. Section 3.4 introduces

theIPADS language and demonstrates with it how to give semantics to high-level data description languages

by elaborarting them intoDDCα. Section 3.5 explains a number of ways in which we have made use of our

semantics in practice.

3.1 A Data Description Calculus

At the heart of our work is a data description calculus (DDCα), containing simple, orthogonal type con-

structors designed to capture the core features of data description languages. Consequently, the syntax of

DDCα is at a significantly lower level of abstraction than that ofPADS/ML . Like PADS/ML , however,DDCα

presents a type-based model.

Informally, we may divideDDCα into types and type operators. EachDDCα type describes the external

representation of a piece of data and implicitly specifies how to transform that external representation into

an internal one. The internal representation includes both the transformed value and aparse descriptor

that characterizes the errors that occurred during parsing. Type operators provide for description reuse by

abstracting over types.

Syntactically, the primitives of the calculus are similar to the types found in many dependent type

systems, with a number of additions specific to the domain of data description. We base our calculus on

a dependent type theory because expressions frequently appear within types in data description languages.

However, unlike other dependent type systems,DDCα is not part of a programming language. Therefore,

there is no “obvious” choice for an expression language from which to draw the expressions that appear in

DDCα types.
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Kinds κ ::= T | σ → κ | T → κ
Types τ ::= unit | bottom | C(e) | λx.τ | τ e

| Σ x:τ.τ | τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)
| α | µα.τ | λα.τ | τ τ
| compute(e:σ) | absorb(τ) | scan(τ)

Figure 3.1:DDCα syntax

However, data description languages tend to draw their expressions from theirhost language– the

programming language in which their generated software artifacts are encoded. The host language of

PADS/ML , for example, isO’ CAML . Therefore, we mimic this design inDDCαand choose a single language

– a variant ofFω– for expressing both the expressions embedded in types and the interpretations ofDDCα.

This host language is discussed further in Section 3.1.2.

3.1.1 DDCα Syntax

Figure 3.1 shows the syntax ofDDCα. Expressionse and typesσ belong to the host language. We use kinds

κ to classify types so that we can ensure their well-formedness. KindT classifies types that describe data.

Kindsσ → κ andT → κ describe functions from values to types and type to types, respectively.

The most basic types areunit andbottom. The former describes the empty string while the latter

describes no string. The syntaxC(e) denotes a base typeC parameterized by expressione.

We provide abstractionλx.τ and applicationτ e so that we may parameterize types by expressions.

Dependent product typesΣ x:τ1.τ2 describe a sequence of values in which the second type may refer to the

value of the first. Sum typesτ1 + τ2 express flexibility in the data format, as they describe data matching

eitherτ1 or τ2. Unlike regular expressions or context-free grammars, which allow nondeterministic choice,

sum-type parsers are deterministic, transforming the data according toτ1 when possible andonlyattempting

to useτ2 if there is an error inτ1. Intersection typesτ1 & τ2 describe data that match bothτ1 andτ2. They

transform a single set of bits to produce a pair of values, one from each type. Constrained types{x:τ | e}

transform data according to the underlying typeτ and then check that the constrainte holds whenx is

bound to the parsed value.

The typeτ seq(τs, e, τt) represents a sequence of values of typeτ . The typeτs specifies the type of

the separator found between elements of the sequence. For sequences without separators, we useunit as

the separator type. Expressione is a boolean-valued function that examines the parsed sequence after each
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element is read to determine if the sequence has completed. For example, a function that checks if the

sequence has100 elements would terminate a sequence when it reaches length100. The typeτt is used

when data following the array will signal termination. Commonly, constrained types are used to specify

that a particular value terminates the sequence. For example, the type{x:Pchar |x =′;′ } specifies that a

semicolon terminates the array. However, if no particular value or set of values terminates the array, then a

type that never succeeds (likebottom) could be used to ensure that the array is not terminated based onτt.

Type variablesα are abstract descriptions; they are introduced by recursive types and type abstractions.

Recursive typesµα.τ describe recursive formats, like lists and trees. Type abstractionλα.τ and application

τ τ allow us to parameterize types by other types. Type variablesα always have kindT. Note that we call

functions from types to typestype abstractionsin contrast tovalue abstractions, which are functions from

values to types.

DDCα also has a number of “active” types. These types describe actions to be taken during parsing

rather than strictly describing the data format. Typecompute(e:σ) allows us to include an element in the

parsed output that does not appear in the data stream (although it is likely dependent on elements that do),

based on the value of expressione. In contrast, typeabsorb(τ) parses data according to typeτ but does

not return its result. This behavior is useful for data that is important for parsing, but uninteresting to users

of the parsed data, such as a separator. The last of the “active” types isscan(τ), which scans the input for

data that can be successfully transformed according toτ . This type provides a form of error recovery as it

allows us to discard unrecognized data until the “synchronization” typeτ is found.

3.1.2 Host Language

In Figure 3.2, we present the host language ofDDCα, a straightforward extension ofFω with recursion1 and

a variety of useful constants and operators. We use this host language both to encode the parsing semantics

of DDCα and to write the expressions that can appear withinDDCα itself.

As the calculus is largely standard, we highlight only its unusual features. The constants include bit-

stringsB; offsetsω, representing locations in bitstrings; and error codesok, err, andfail, indicating

success, success with errors and failure, respectively. We use the constantnone to indicate a failed parse.

Because of its specific meaning, we forbid its use in user-supplied expressions appearing inDDCα types.

1The syntax forfold andunfold , particularly the choice of annotatingunfold with a type, is based on the presentation of
recursive types in Pierce [Pie02]
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Bits B ::= · | 0 B | 1 B
Constants c ::= () | true | false | 0 | 1 | −1 | . . .

| none | B | ω | ok | err | fail | . . .
Values v ::= c | fun f x = e | (v, v)

| inl v | inr v | [~v]
Operators op ::= = | < | not | . . .
Expressions e ::= c | x | op(e) | fun f x = e | e e

| Λα.e | e [τ ]
| let x = e in e | if e then e else e
| (e, e) | πi e | inl e | inr e
| case e of (inlx ⇒ e | inrx ⇒ e)
| [~e] | e @ e | e [e]
| fold[µα.τ ] e | unfold[µα.τ ] e

Base Types a ::= unit | bool | int | none
| bits | offset | errcode

Types σ ::= a | α | σ → σ | σ ∗ σ | σ + σ
| σ seq | ∀α.σ | µα.σ | λα.σ | σ σ

Kinds κ ::= T | κ → κ

Figure 3.2: The syntax of the host language, an extension ofFω with recursion and a variety of useful
constants and operators.

Our expressions include arbitrary length sequences[~e], sequence appende @ e′, and sequence indexing

e [e′].

The typenone is the singleton type of the constantnone. Typeserrcode andoffset classify error

codes and bit string offsets, respectively. The remaining types have standard meanings: function types,

product types, sum types, sequence types (τ seq), type variables (α), polymorphic types (∀α.σ), and re-

cursive types (µα.σ).

We extend the formal syntax with some syntactic sugar for use in the rest of the paper: anonymous

functionsλx.e for fun f x = e, with f 6∈ FV(e); function bindingsletfun f x = e in e′ for let f =

fun f x = e in e′; span for offset ∗ offset. We often use pattern-matching syntax for pairs in place

of explicit projections, as inλ(B,ω).e andlet (ω, r, p) = e in e′. Although we have no formal records

with named fields, we use a (named) dot notation for commonly occuring projections. For example, for a

pairx of representation and parse descriptor, we usex.rep andx.pd for the left and right projections ofx,

respectively. Also, sums and products are right-associative. Hence, for example,a ∗ b ∗ c is shorthand for

a ∗ (b ∗ c).
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The static semantics (Γ ` e : σ), operational semantics (e → e′), and type equivalence (σ ≡ σ′) are

those ofFω extended with recursive functions and iso-recursive types and are entirely standard. See, for

example, Pierce [Pie02].

We only specify type abstraction over terms and application when we feel it will clarify the presentation.

Otherwise, the polymorphism is implicit. We also omit the usual type and kind annotations on functions,

with the expectation the reader can construct them from context.

.

3.2 DDCα Semantics

The primitives ofDDCα are deceptively simple. Each captures a simple concept, often familiar from type

theory. However, in reality, each primitive is multifaceted. Except for abstractions, each type simulta-

neously describes a collection of valid bit strings, two datatypes in the host language – one for the data

representation itself and one for its parse descriptor – and a transformation from bit strings, including

invalid ones, into data and corresponding metadata.

We give semantics toDDCα types using three semantic functions, each of which precisely conveys a

particular facet of a type’s meaning. The functions[[ · ]]rep and[[ · ]]PD describe therepresentation semantics

of DDCα, detailing the types of the data’s in-memory representation and parse descriptor. The function[[ · ]]P
describes theparsing semanticsof DDCα, defining a host language function for each type that parses bit

strings to produce a representation and parse descriptor. We define the set of valid bit strings for each type

to be those strings for which the PD indicates no errors when parsed.

DDCα abstractions are a special case ofDDCα types in that they do not directly describe data, but

rather are conventional functions that enable the writing of more concise data descriptions. Therefore, their

meaning, and that of application, can be expressed independently of any particular semantic interpretation

of DDCα. We do so with a small-stepnormalizationjudgmentτ → τ ′. However, despite our assigning them

a semantics with the normalization judgment, we still interpret them in the other semantic interpretations

of DDCα. We do so because the implementations ofPADS/C andPADS/ML do not normalize types before

translating them, but, rather, translate abstraction and application directly into the host language. The role

of normalization, then, is only to provide users with a simple and direct explanation of the meaning of

abstraction and application.

41



∆; Γ ` τ : κ type kinding

τ → τ ′ type normalization

[[τ ]]rep = σ representation-type interpretation ofDDCα

[[τ ]]PD = σ parse-descriptor type interpretation ofDDCα

[[τ ]]PDb = σ pd-body type interpretation ofDDCα

[[τ ]]P = e parsing semantics ofDDCα

[[τ :κ]]PT = σ Fω type of specified type’s parsing function (parser-type)

[[∆]]PT = Γ parser-type interpretation lifted to entire context

[[∆]]Fω
= Γ Fω image ofDDCα type context

[[∆]]rep = Γ representation-type variables in[[∆]]Fω

[[∆]]PD = Γ parse-descriptor type variables in[[∆]]Fω

Table 3.1:DDCα Functions and judgments defined in this section.

` Γ ok well-formed contexts

Γ ` σ :: κ well-formed types

σ ≡ σ′ type equivalence

Γ ` e : σ expression typing

e → e′ expression evaluation

Table 3.2:Fω judgments referenced in this section.
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∆;Γ ` τ : κ

` [[∆]]Fω
, Γ ok

∆;Γ ` unit : T
UNIT

` [[∆]]Fω
, Γ ok

∆;Γ ` bottom : T
BOTTOM

` [[∆]]Fω
, Γ ok [[∆]]Fω

, Γ ` e : σ

Bkind(C) = σ → T

∆;Γ ` C(e) : T
CONST

∆;Γ, x:σ ` τ : κ

∆;Γ ` λx.τ : σ → κ
ABS

∆;Γ ` τ : σ → κ [[∆]]Fω
, Γ ` e : σ

∆;Γ ` τ e : κ
APP

∆;Γ ` τ : T ∆;Γ, x:[[τ ]]rep ∗ [[τ ]]PD ` τ ′ : T

∆;Γ ` Σ x:τ.τ ′ : T
DEPSUM

∆;Γ ` τ : T ∆;Γ ` τ ′ : T

∆;Γ ` τ + τ ′ : T
SUM

∆;Γ ` τ : T ∆;Γ ` τ ′ : T

∆;Γ ` τ & τ ′ : T
INTERSECTION

∆;Γ ` τ : T [[∆]]Fω
, Γ, x:[[τ ]]rep ∗ [[τ ]]PD ` e : bool

∆;Γ ` {x:τ | e} : T
CON

∆;Γ ` τ : T ∆;Γ ` τs : T ∆;Γ ` τt : T
[[∆]]Fω

, Γ ` e : [[τm]]rep ∗ [[τm]]PD → bool (τm = τ seq(τs, e, τt))

∆; Γ ` τ seq(τs, e, τt) : T
SEQ

` [[∆]]Fω
, Γ ok α:T ∈ ∆

∆;Γ ` α : T
TYVAR

∆, α:T; Γ ` τ : T

∆;Γ ` µα.τ : T
REC

∆, α:T; Γ ` τ : κ

∆;Γ ` λα.τ : T → κ
TYABS

∆;Γ ` τ1 : T → κ ∆;Γ ` τ2 : T

∆;Γ ` τ1 τ2 : κ
TYAPP

` [[∆]]Fω
, Γ ok [[∆]]Fω

, Γ ` e : σ [[∆]]rep ` σ :: T

∆;Γ ` compute(e:σ) : T
COMPUTE

∆;Γ ` τ : T

∆;Γ ` absorb(τ) : T
ABSORB

∆;Γ ` τ : T

∆;Γ ` scan(τ) : T
SCAN

Figure 3.3:DDCα kinding rules

We begin with a kinding judgment that checks if a type is well formed. We then specify the normaliza-

tion semantics after which we formalize the three-fold semantics ofDDCα types. For reference, Table 3.1

lists all the functions and judgments defined in this section and a brief description of each. Additionally,

Table 3.2 lists all of theFω judgments that we reference.

43



3.2.1 DDCα Kinding

The kinding judgment defined in Figure 3.3 determines well-formedDDCα types. We use two contexts to

express our kinding judgment:

Γ ::= · | Γ, x:σ

∆ ::= · | ∆, α:T

ContextΓ is a finite partial map that binds expression variables to their types. When appearing in

Fω judgments, such contexts may also contain type-variable bindings of the formα::κ. Context∆ is a

finite partial map that binds type variables to their kinds. We provide the following mappings fromDDCα

contexts∆ to Fω contextsΓ.

[[ · ]]rep = · [[ · ]]PD = ·

[[∆, α:T]]rep = [[∆]]rep, αrep::T [[∆, α:T]]PD = [[∆]]PD, αPDb::T

Translation[[∆]]Fω
simply combines the two ([[∆]]Fω

= [[∆]]rep, [[∆]]PD). These translations are used when

checking the well-formedness of contextsΓ and typesσ with open type variables.

As the rules are mostly straightforward, we highlight just a few of them. In rule BASE, we use the

functionBkind to assign kinds to base types. Base types must be fully applied to arguments of the right

type. Once fully applied, all base types have kindT. Rule DEPSUM, for dependent sums, shows that the

name of the first component is bound to a pair of a representation and corresponding PD. The semantic

functions defined in the next section determine the type of this pair. Type abstractions and recursive types

(rules TYABS and REC) restrict their type variable to kindT. This restriction simplifies the metatheory

of DDCαwith little practical impact. Finally, with the introduction of potentially open host types, we must

now check in rule COMPUTE that the only (potentially) open type variables inσ are the representation-type

variables bound (implicitly) in∆.

At the beginning of this chapter, we mentioned thatDDCα is an extension and improvement of our prior

work on DDC. The improvements relate to changes in the kinding rules. In particular, we have replaced

the contextM of DDC, which mapped recursive-type variables to their definitions, with a simpler context

∆ which merely assigns a kind (alwaysT) to open type variables. The type variables bound by recursive

types are now treated as abstract, just like the type variables bound by type abstractions. Correspondingly,
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Normal
Types

ν ::= unit | bottom | C(e) | λx.τ | Σ x:τ.τ
| τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)
| µα.τ | λα.τ
| compute(e:σ) | absorb(τ) | scan(τ)

Types τ ::= ν | τ e | τ τ | α

Figure 3.4: RevisedDDCα Syntax

τ → τ ′

τ e → τ ′ e
e → e′

ν e → ν e′ (λx.τ) v → τ [v/x]

τ1 → τ ′1
τ1 τ2 → τ ′1 τ2

τ → τ ′

ν τ → ν τ ′ (λα.τ) ν → τ [ν/α]

Figure 3.5:DDCα weak-head normalization

the rule for type variables (TYVAR) now has a standard form, and the premise of the rule for recursive

types (REC) is now nearly identical to the premise of the rule for type abstractions (TYABS).

3.2.2 DDCα Normalization

To specify the rules of normalization, we must first refactor the syntax ofDDCα by distinguishing the subset

of weak-head normal types (ν) from all typesτ , as shown in Figure 3.4. In addition, we must define type

and value substitution forDDCα. The notationτ ′[τ/α] denotes standard capture-avoiding substitution of

types into types, except for constructs that contain anFω expressione or typeσ. For those constructs, the

alternative substitution[[[τ ]]rep/αrep][[[τ ]]PDb/αPDb] is applied to the subcomponent expression or type. For

example,

compute(e:σ)[τ/α] = compute(e[[[τ ]]rep/αrep][[[τ ]]PDb/αPDb] : σ[[[τ ]]rep/αrep][[[τ ]]PDb/αPDb]).

This definition of substitution derives from the kinding rules ofDDCα. In a judgment∆, α:T; Γ ` τ : κ, the

DDCα type variableα implicitly binds theFω type variablesαrep andαPDb for any types inΓ. Therefore,

when replacingα in a DDCα type, we must also make sure to replace all type variablesαrep andαPDb

in constituentFω expressions and types in a consistent manner. We denote standard capture-avoiding

substitution of terms inDDCα types withτ [v/x]. Similarly, κ[σ/α] denotes standard capture-avoiding

substitution ofFω types intoDDCα kinds.
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[[τ ]]rep = σ

[[unit]]rep = unit
[[bottom]]rep = none
[[C(e)]]rep = Btype(C) + none
[[λx.τ ]]rep = [[τ ]]rep

[[τ e]]rep = [[τ ]]rep

[[Σ x:τ1.τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep

[[τ1 + τ2]]rep = [[τ1]]rep + [[τ2]]rep

[[τ1 & τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep

[[{x:τ | e}]]rep = [[τ ]]rep + [[τ ]]rep

[[τ seq(τsep, e, τterm)]]rep = int ∗ ([[τ ]]repseq)
[[α]]rep = αrep

[[µα.τ ]]rep = µαrep.[[τ ]]rep

[[λα.τ ]]rep = λαrep.[[τ ]]rep

[[τ1τ2]]rep = [[τ1]]rep[[τ2]]rep

[[compute(e:σ)]]rep = σ

[[absorb(τ)]]rep = unit + none
[[scan(τ)]]rep = [[τ ]]rep + none

Figure 3.6: Representation-type interpretation function.

Normalization ofDDCα is based on a standard call-by-value small-step semantics of the lambda calcu-

lus. We present the rules of the normalization judgment in Figure 3.5.

3.2.3 Representation Semantics

In Figure 3.6, we present the representation type of eachDDCα primitive. While the primitives are depen-

dent types, the mapping to the host language erases the dependency because the host language does not

have dependent types. ForDDCα types in which expressions appear, the translation drops the expressions

to remove the dependency. With these expressions gone, variables become useless, so we drop variable

bindings as well, as in product and constrained types. Similarly, as value abstraction and application are

only relevant for dependency, we translate them according to their underlying types.

In more detail, theDDCα type unit consumes no input and produces only theunit value. Corre-

spondingly,bottom consumes no input, but uniformly fails, producing the valuenone. The functionBtype

maps each base type to a representation for successfully parsed data. Note that this representation does not

depend on the argument expression. As base type parsers can fail, we sum this type withnone to produce

the actual representation type. Intersection types produce a pair of values, one for each sub-type, because
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[[τ ]]PD = σ

[[unit]]PD = pd hdr ∗ unit
[[bottom]]PD = pd hdr ∗ unit
[[C(e)]]PD = pd hdr ∗ unit
[[λx.τ ]]PD = [[τ ]]PD
[[τ e]]PD = [[τ ]]PD
[[Σ x:τ1.τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[τ1 + τ2]]PD = pd hdr ∗ ([[τ1]]PD + [[τ2]]PD)
[[τ1 & τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[{x:τ | e}]]PD = pd hdr ∗ [[τ ]]PD
[[τ seq(τsep, e, τterm)]]PD = pd hdr ∗ ([[τ ]]PD arr pd)
[[α]]PD = pd hdr ∗ αPDb

[[µα.τ ]]PD = pd hdr ∗ µαPDb.[[τ ]]PD
[[λα.τ ]]PD = λαPDb.[[τ ]]PD
[[τ1 τ2]]PD = [[τ1]]PD [[τ2]]PDb
[[compute(e:σ)]]PD = pd hdr ∗ unit
[[absorb(τ)]]PD = pd hdr ∗ unit
[[scan(τ)]]PD = pd hdr ∗ ((int ∗ [[τ ]]PD) + unit)

[[τ ]]PDb = σ

[[τ ]]PDb = σ where[[τ ]]PD ≡ pd hdr ∗ σ

Figure 3.7: Parse-descriptor type interpretation function

the representations of the subtypes need not be identical nor even compatible. Constrained types produce

sums, where a left branch indicates the data satisfies the constraint and the right indicates it does not. In the

latter case, the parser returns the offending data rather thannone because the error is semantic rather than

syntactic. Sequences produce a host language sequence paired with its length.

A type variableα in DDCα is mapped to a corresponding type variableαrep in Fω. Recursive types

generate recursive representation types with the type variable named appropriately. Polymorphic types and

their application becomeFω type constructors and type application, respectively. The output of acompute

is exactly the computed value, and therefore shares its type. The output ofabsorb is a sum indicating

whether parsing the underlying type succeeded or failed. The type ofscan is similar, but also returns an

element of the underlying type in case of success.

In Figure 3.7, we give the parse descriptor type for eachDDCα type. Each PD type has a header and

body. This common shape allows us to define functions that polymorphically process PDs based on their

headers. Each header stores the number of errors encountered during parsing, an error code indicating the

degree of success of the parse – success, success with errors, or failure – and the span of data described by

47



[[τ :κ]]PT = σ

[[τ :T]]PT = bits ∗ offset→ offset ∗ [[τ ]]rep ∗ [[τ ]]PD

[[τ :σ → κ]]PT = σ → [[τe:κ]]PT, for any e.

[[τ :T → κ]]PT = ∀αrep.∀αPDb.[[α:T]]PT → [[τα:κ]]PT

(αrep, αPDb 6∈ FTV(κ) ∪ FTV(τ))

Figure 3.8:Fωtypes for parsing functions.

the descriptor. Formally, the type of the header (pd hdr) is int ∗ errcode ∗ span. Each body consists of

subdescriptors corresponding to the subcomponents of the representation and any type-specific metadata.

For types with neither subcomponents nor special metadata, we useunit as the body type.

We discuss a few of the more complicated parse descriptors in detail. The parse descriptor body for

sequences contains the parse descriptors of its elements, the number of element errors, and the sequence

length. Note that the number of element errors is distinct from the number of sequence errors, as sequences

can have errors that are not related to their elements (such as errors reading separators). We introduce an

abbreviation for array PD body types,arr pd σ = int ∗ int ∗ (σ seq). Thecompute parse descriptors

have no subelements because the data they describe is not parsed from the data source. Theabsorb PD

type isunit as with its representation. We assume that just as the user does not want the representation to

be kept, so too the parse descriptor. Thescan parse descriptor is eitherunit, in case no match was found,

or records the number of bits skipped before the type was matched along with the type’s corresponding

parse descriptor.

Like other types,DDCα type variablesα are translated into a pair of a header and a body. The body has

abstract typeαPDb. This translation makes it possible for polymorphic parsing code to examine the header

of a PD, even though it does not know theDDCα type it is parsing.DDCα abstractions are translated into

Fω type constructors that abstract the body of the PD (as opposed to the entire PD) andDDCα applications

are translated intoFω type applications where the argument type is the PD-body type.

It is important to note that the PD interpretation is not defined for all types. The problem lies with the

interpretation of type application ([[τ1 τ2]]PD = [[τ1]]PD [[τ2]]PDb). The interpretation requires that[[τ2]]PDb be

defined, which, in turn, requires that[[τ2]]PD ≡ pd hdr ∗ σ, for someσ. Yet, this requirement is not met by

all types; for example,λα.τ .
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3.2.4 Parsing Semantics of theDDCα

The parsing semantics of a typeτ with kind T is a function that transforms some amount of input into a pair

of a representation and a parse descriptor, the types of which are determined byτ . The parsing semantics

for types with higher kind are functions that construct parsers, or functions that construct functions that

construct parsers, and so forth. Figure 3.8 specifies the host-language types of the functions generated

from well-kindedDDCα types. For each (unparameterized) type, the input to the corresponding parser is a

bit string to parse and an offset at which to begin parsing. The output is a new offset, a representation of

the parsed data, and a parse descriptor.

Figure 3.9 shows the parsing semantics function. For each type, the input to the corresponding parser is

a bit string and an offset which indicates the point in the bit string at which parsing should commence. The

output is a new offset, a representation of the parsed data, and a parse descriptor. As the bit string input is

never modified, it is not returned as an output. In addition to specifying how to handle correct data, each

function describes how to transform corrupted bit strings, marking detected errors in a parse descriptor.

The semantics function is partial, applying only to well-formedDDCα types.

For any type, there are three steps to parsing: parse the subcomponents of the type (if any), assemble

the resultant representation, and tabulate metadata based on subcomponent meta-data (if any). For the sake

of clarity, we have factored the latter two steps into separate representation and PD constructor functions

which we define for many of the types. For some types, we additionally factor the PD header construction

into a separate function. For example, the representation and PD constructors forunit areRunit andPunit,

respectively, and the header constructor for dependent sums isHΣ. The constructor functions are shown

in Figure 3.11 and Figure 3.12. We have also factored out some commonly occuring code into auxiliary

functions, explained as needed and defined formally in Figure 3.10.

The PD constructors determine the error code and calculate the error count. There are three possible er-

ror codes:ok, err, andfail, corresponding to the three possible results of a parse: it can succeed, parsing

the data without errors; it can succeed, but discover errors in the process; or, it can find an unrecoverable

error and fail. Note that the purpose of thefail code is to indicate to any higher level elements that some

form of error recovery is required. Hence, the whole parse is marked as failed exactly when the parse ends

in failure. The error count is determined by subcomponent error counts and any errors associated directly

with the type itself. If a subcomponent has errors then the error count is increased by one; otherwise it is

not increased at all. We use the functionpos, which maps all positive numbers to 1 (leaving zero as is),
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[[τ ]]P = e

[[unit]]P = λ(B, ω).(ω, Runit(), Punit(ω))
[[bottom]]P = λ(B, ω).(ω, Rbot(), Pbot(ω))
[[C(e)]]P = λ(B, ω).Bimp(C) (e) (B, ω)
[[λx.τ ]]P = λx.[[τ ]]P
[[τ e]]P = [[τ ]]P e

[[Σ x:τ.τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
let x = (r, p) in
let (ω′′, r′, p′) = [[τ ′]]P (B, ω′) in
(ω′′, RΣ(r, r′), PΣ(p, p′))

[[τ + τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
if isOk(p) then

(ω′, R+left(r), P+left(p))
else let (ω′, r, p) = [[τ ′]]P (B, ω) in
(ω′, R+right(r), P+right(p))

[[τ & τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
let (ω′′, r′, p′) = [[τ ′]]P (B, ω) in
(max(ω′, ω′′), R&(r, r′), P&(p, p′))

[[{x:τ | e}]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
let x = (r, p) in
let c = e in
(ω′, Rcon(c, r), Pcon(c, p))

[[τ seq(τs, e, τt)]]P =
λ(B, ω).
letfun isDone (ω, r, p) =
EoF(B, ω) or e (r, p) or
let (ω′, r′, p′) = [[τt]]P(B, ω) in
isOk(p′)

in
letfun continue (ω, ω′, r, p) =
if ω = ω′ or isDone (ω′, r, p) then (ω′, r, p)
else let (ωs, rs, ps) = [[τs]]P (B, ω′) in
let (ωe, re, pe) = [[τ ]]P (B, ωs) in
continue (ω, ωe, Rseq(r, re), Pseq(p, ps, pe))

in
let r = Rseq init() in
let p = Pseq init(ω) in
if isDone (ω, r, p) then (ω, r, p)
else let (ωe, re, pe) = [[τ ]]P (B, ω) in
continue (ω′, ωe, Rseq(r, re), Pseq(p, Punit(ω), pe))

[[α]]P = parseα

[[µα.τ ]]P =
fun parseα (B:bits, ω:offset) :

offset ∗ [[µα.τ ]]rep ∗ [[µα.τ ]]PD =
let (ω′, r, p) =

[[τ ]]P[[[µα.τ ]]rep/αrep][[[µα.τ ]]PDb/αPDb] (B, ω)
in

(ω′, fold[[[µα.τ ]]rep] r, (p.h, fold[[[µα.τ ]]PDb] p))
[[λα.τ ]]P = Λαrep.ΛαPDb.λparseα.[[τ ]]P
[[τ1τ2]]P = [[τ1]]P [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]P
[[compute(e:σ)]]P =

λ(B, ω).(ω, Rcompute(e), Pcompute(ω))
[[absorb(τ)]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
(ω′, Rabsorb(p), Pabsorb(p))

[[scan(τ)]]P =
λ(B, ω).
letfun try i =
let (ω′, r, p) = [[τ ]]P (B, ω + i) in
if isOk(p) then

(ω′, Rscan(r), Pscan(i, sub(B, ω, i + 1), p))
else if EoF(B, ω + i) then

(ω, Rscan err(), Pscan err(ω))
else try (i + 1)

in try 0

Figure 3.9:DDCα parsing semantics
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Eof : bits ∗ offset→ bool

scanMax : int

fun max (m, n) = if m > n then m else n

fun pos n = if n = 0 then 0 else 1

fun isOk p = pos(p.h.nerr) = 0

fun isErr p = pos(p.h.nerr) = 1

fun max ec (ec1, ec2) =
if ec1 = fail or ec2 = fail then fail
else if ec1 = err or ec2 = err then err
else ok

Figure 3.10: Auxiliary functions. The type of PD headers isint ∗ errcode ∗ span. We refer to the
projections using dot notation asnerr, ec andsp, respectively. A span is a pair of offsets, referred to as
begin andend, respectively.

to assist in calculating the contribution of subcomponents to the total error count. Errors at the level of the

element itself - such as constraint violation in constrained types - are generally counted individually.

With this background, we can now discuss the semantics.unit andbottom do not consume any input.

Hence, the output offset is the same as the input offset in the parsers for these constructs. A look at their

constructors shows that the parse descriptor forunit always indicates no errors and a correspondingok

code, while that ofbottom always indicates failure with an error count of one and thefail error code. The

semantics of base types applies the implementation of the base type’s parser, provided by the functionBimp,

to the appropriate arguments. Abstraction and application are defined directly in terms of host language

abstraction and application. Dependent sums read the first element atω and then the second atω′, the offset

returned from parsing the first element. Notice that we bind the pair of the returned representation and parse

descriptor to the variablex before parsing the second element, implicitly mapping theDDCα variablex to

the host language variablex in the process. Finally, we combine the results using the constructor functions,

returningω′′ as the final offset of the parse.

Sums first attempt to parse according to the left type, returning the resulting value if it parses without

errors. Otherwise, it parses according to the right type. Intersections read both types starting at the same

offset. They advance the stream to the maximum of the two offsets returned by the component parsers. The

construction of the parse descriptor is similar to that of products. For constrained types, we call the parser

for the underlying typeτ , bindx to the resulting rep and PD, and check whether constraint is satisfied. The
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fun Runit () = ()

fun Punit ω = ((0, ok, (ω, ω)), ())

fun Rbot () = none

fun Pbot ω = ((1, fail, (ω, ω)), ())

fun RΣ (r1, r2) = (r1, r2)

fun HΣ (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = if h2.ec = fail then fail
else max ec h1.ec h2.ec in

let sp = (h1.sp.begin, h2.sp.end) in
(nerr, ec, sp)

fun PΣ (p1, p2) = (HΣ(p1.h, p2.h), (p1, p2))

fun R+left r = inl r

fun R+right r = inr r

fun H+ h = (pos(h.nerr), h.ec, h.sp)

fun P+left p = (H+ p.h, inl p)

fun P+right p = (H+ p.h, inr p)

fun R& (r, r′) = (r, r′)

fun H& (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = if h1.ec = fail and h2.ec = fail then fail
else max ec h1.ec h2.ec in

let sp = (h1.sp.begin, max(h1.sp.end, h2.sp.end)) in
(nerr, ec, sp)

fun P& (p1, p2) = (H& (p1.h, p2.h), (p1, p2))

Figure 3.11: Constructor functions, part 1. The type of parse descriptor headers isint ∗ errcode ∗ span.
We refer to the projections using dot notation asnerr, ec andsp, respectively. A span is a pair of offsets,
referred to asbegin andend, respectively.
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fun Rcon (c, r) = if c then inl r else inr r

fun Pcon (c, p) =
if c then ((pos(p.h.nerr), p.h.ec, p.h.sp), p)
else ((1 + pos(p.h.nerr), max ec err p.h.ec, p.h.sp), p)

fun Rseq init () = (0, [])

fun Pseq init ω = ((0, ok, (ω, ω)), (0, 0, []))

fun Rseq (r, re) = (r.len + 1, r.elts @ [re])

fun Hseq (h, hs, he) =
let eerr = if h.neerr = 0 and he.nerr > 0
then 1 else 0 in

let nerr = h.nerr + pos(hs.nerr) + eerr in
let ec = if he.ec = fail then fail
else max ec h.ec he.ec in

let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)

fun Pseq (p, ps, pe) =
(Hseq (p.h, ps.h, pe.h),
(p.neerr + pos(pe.h.nerr), p.len + 1, p.elts @ [pe]))

fun Rcompute r = r

fun Pcompute ω = ((0, ok, (ω, ω)), ())

fun Rabsorb p = if isOk(p) then inl () else inr none

fun Pabsorb p = (p.h, ())

fun Rscan r = inl r

fun Pscan (i, p) =
let nerr = pos(i) + pos(p′.h.nerr) in
let ec = if nerr = 0 then ok else err in
let hdr = (nerr, ec, (p.sp.begin− i, p.sp.end)) in

(hdr, inl (i, p))

fun Rscan err () = inr none

fun Pscan err ω = let hdr = (1, fail, (ω, ω)) in
(hdr, inr ())

Figure 3.12: Constructor functions, part 2.
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result indicates whether the data has a semantic error and is used in constructing the representation and PD.

For example, the PD constructor will add one to the error count if the constraint is not satisfied. Notice that

we advance the stream independent of whether the constraint was satisfied.

Sequences have the most complicated semantics because the number of subcomponents depends upon

a combination of the data, the termination predicate, and the terminator type. Consequently, the sequence

parser uses mutually recursive functionsisDone andcontinue to implement this open-ended semantics.

FunctionisDone determines if the parser should terminate by checking whether the end of the source has

been reached, the termination conditione has been satisfied, or the terminator type can be read from the

stream without errors atω. Functioncontinue takes four arguments: two offsets, a sequence representa-

tion, and a sequence PD. The two offsets are the starting and ending offset of the previous round of parsing.

They are compared to determine whether the parser is progressing in the source, a check that is critical to

ensuring that the parser terminates. Next, the parser checks whether the sequence is finished, and if so, ter-

minates. Otherwise, it attempts to read a separator followed by an element and then continues parsing the

sequence with a call tocontinue. Then, the body of the parser creates an initial sequence representation

and parse descriptor and then checks whether the sequence described is empty. If not, it reads an element

and creates a new rep and PD for the sequence. Note that it passes the PD forunit in place of a separator

PD, as no separator is read before the first element. Finally, it continues reading the sequence with a call to

continue.

Because of the iterative nature of sequence parsing, the representation and PD are constructed incre-

mentally. The parser first creates an empty representation and PD and then adds elements to them with

each call tocontinue. The error count for an array is the sum of the number of separators with errors plus

one if there were any element errors. Therefore, in functionHseq we first check if the element is the first

with an error, settingeerr to one if so. Then, the new error count is a sum of the old, potentially one for

a separator error, andeerr. In Pseq we calculate the element error count by unconditionally adding one if

the element had an error.

A type variable translates to an expression variable whose name corresponds directly to the name of

the type variable. These expression variables are bound in the interpretations of recursive types and type

abstractions. We interpret each recursive type as a recursive function whose name corresponds to the name

of the recursive type variable. For clarity, we annotate the recursive function with its type.
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We interpret type abstraction as a function over other parsing functions. Because those parsing func-

tions can have arbitraryDDCα types (of kindT), the interpretation must be a polymorphic function, param-

eterized by the representation and PD-body type of theDDCα type parameter. For clarity, we present this

type parameterization explicitly. Type applicationτ1 τ2 simply becomes the application of the interpreta-

tion of τ1 to the representation-type, PD-body type, and parsing interpretations ofτ2.

Thescan type attempts to parse the underlying type from the stream at an increasing scan-offseti from

the original offsetω, until success is achieved or the end of the file is reached. In the semantics we give here,

offsets are incremented one bit at a time – a practical implementation would choose some larger increment

(for example, 32 bits at a time). Note that, upon success,i is passed to the PD constructor function, which

both records it in the PD and sets the error code based on it. It is considered a semantic error for the value

to be found at a positivei, whereas it is a syntactic error for it not to be found at all.

Notice that the upper-bound on the running time ofscan is at least linear in the size of the data,

depending on the particular argument type. More precisely, if the running time of a typeτ is O(f(n)),

wheren is the size of the data, then the running time ofscan(τ) is O(nf(n)). While such a running time

is potentially high, it is reasonable if it is only incurred for erroneous data, in which case it is not incurred

on the “fast path” of processing good data; or, iff(n) is 1 andscan consumes all of the scanned data, in

which case it is linear in the amount of data consumed, which is the best running time achievable without

skipping data. However, we cannot guarantee that either of these conditions are met. Thescan type can

legally appear in branches of sums, in which case the cost could be incurred for valid data (that matches a

different branch) without consuming any of the data scanned.

In PADS/C and PADS/ML , we control the potentially high cost ofscan in two ways. First, we only

scan for literals, thereby bounding the running time to linear in the size of the data source. Second, we set

a data-source independent maximum on the number of bits scanned for any particular instance ofscan,

rather than potentially scanning until end of the data source. Together, these factors reduce the running time

of scanning toO(1). However, the second factor implies thatPADS/C andPADS/ML , unlike DDCα, do not

guarantee to find the targets of scans, even if they are present in the data source. This difference between

DDCα and thePADS languages could have a significant impact an any guarantees we might make about

error recovery based onDDCα alone. We leave for future work the development of a more sophisticated

semantics forscan that accounts for the unreliable nature of scans inPADS/C andPADS/ML .
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Returning to our discussion of the semantics ofDDCα, we note thatcompute only calls the compute

constructors without performing any parsing. The representation constructor returns the value computed by

e, while the PD records no errors and reports a span of length 0, as no data is consumed by the computation.

The absorb parser first parses the underlying type and then calls the absorb constructors, passing only

the PD, which is needed by the rep constructor to determine whether an error occured while parsing the

underlying type. If so, the value returned is anone. Otherwise, it isunit. The absorb parse descriptor

duplicates the error information of its underlying type.

3.3 Metatheory

One of the most difficult, and perhaps most interesting, challenges of our work onDDCα was determin-

ing what properties we wanted to hold. What are the “correct” invariants of data description languages?

While there are many well-known desirable invariants for programming languages, the metatheory of data

description languages has been uncharted.

We present the following two properties as critical invariants of our theory. We feel that they should

hold, in some form, for any data description language.

• Parser Type Correctness: For a DDCα type τ , the representation and PD output by the parsing

function ofτ will have the types specified by[[τ ]]rep and[[τ ]]PD, respectively.

• Canonical Forms of Parsed Data: We give a precise characterization of the results of parsers by

defining thecanonical formsof representation-parse descriptor pairs associated with a dependent

DDCα type. Of particular relevance to data description, we show that the errors reported in the parse

descriptor will accurately reflect the errors present in the representation.

The aim of this section is to formally state and prove that these critical properties hold for ourDDCα

theory. However, before we can do so, we must establish some basic properties of our semantics. We

begin with a number of properties that we expect to hold for variable names. First, all variable names

introduced by the parsing semantics function should be considered taken from a separate syntactic domain

than variables that may appear in ordinary expressions. Therefore, they are by definition “fresh” with

respect to any expressions that can be written by the user. Second, for those types with bound variables,

the potential alpha-conversion when performing a substitution on the type exactly parallels any alpha-
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τ →0 τ

τ → τ ′ τ ′ →k τ ′′

τ →k+1 τ ′′

e →0 e

e → e′ e′ →k e′′

e →k+1 e′′

Figure 3.13: K-steps normalization and evaluation judgments

conversion of the same variable where it appears in the translation of the type. Last, all constructors,

support functions and base-type parsers are closed with respect to user-defined variable names.

Next, we require thatDDCα base types satisfy the properties that we desire to hold of the rest of the

calculus. Below is a formal statement of these requirements. Note that by condition 3, base type parsers

must be closed.

Condition 1 (Conditions on Base-types)

1. dom(Bkind) = dom(Bimp).

2. If Bkind(C) = σ → T then Bopty(C) = σ → [[C(e):T]]PT (for any e of type σ).

3. ` Bimp(C) : Bopty(C).

The evaluation ofFω terms and the normalization ofDDCα types are both defined with a small-step

semantics. However, it is useful to be able to reason about terms and types that are related by arbitrary

many (k) steps in these semantics, rather than just one. To this end, in Figure 3.3, we define two judgments

that respectively generalize evaluation and normalization tok steps. Next, we state some properties of these

judgments.

Lemma 2 (Properties of K-step Evaluation)

1. If e1 →k e′1 then e1 e2 →k e′1 e2.

2. If e2 →k e′2 then v e2 →k v e′2.

3. If e →k e′ then e [σ] →k e′ [σ].

4. If e1 →i e2 and e2 →j e3 then e1 →(i+j) e3.

Proof: By induction on the number of steps in evaluation relation. �
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Lemma 3 (Properties of K-step Normalization)

1. If τ1 →k τ ′1 then τ1 τ2 →k τ ′1 τ2.

2. If τ2 →k τ ′2 then ν τ2 →k ν τ ′2.

3. If τ1 →k τ ′1 then τ1 e →k τ ′1 e.

4. If e →k e′ then ν e →k ν e′.

5. If τ1 →i τ2 and τ2 →j τ3 then τ1 →(i+j) τ3.

Proof: By induction on the number of steps in evaluation relation. �

Lemma 4 (K-step Evaluation Inversion)

1. If e1 e2 →k v then k > 0 and ∃ i, j, v1, v2 s.t. e1 →i v1 and e2 →j v2, with i + j < k.

2. If e [σ] →k v then ∃ i, v′ s.t. e →i v′, with i < k.

3. If (fun f x = e) v →k v′ then e[(fun f x = e)/f ][v/x] →k−1 v′.

4. If let x = e in e′ →k v then ∃ i, v′ s.t. e →i v′ with i < k.

5. If if e then e1 else e2 →k v and e →∗ true then ∃ i s.t. e1 →i v with i < k.

6. If if e then e1 else e2 →k v and e →∗ false then ∃ i s.t. e2 →i v with i < k.

Proof: By induction on the number of steps in the evaluation relation. �

Lemma 5 (Confluence of Evaluation)

If e →k v and e →i e′ then e′ →k−i v.

Proof: By induction on the height of the first derivation, using determinacy of single-step evaluation as

needed. �

A number ofDDCα properties involve reasoning about terms that are equivalent up-to equivalent typing

annotations. Therefore, we now define this equivalence and state some of its properties.
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Definition 6 (Expression Equivalence)

e ≡ e′ iff e is syntactically equal to e′ modulo alpha-conversion of bound variables and equivalence of

typing annotations.

Lemma 7 (Properties of Expression Equivalence)

1. If e ≡ e′ and e →k e1 then ∃ e′1 s.t. e′ →k e′1 and e1 ≡ e′1.

2. If e ≡ e′ then e1[e/x] ≡ e1[e′/x].

3. If σ ≡ σ′ then e[σ/α] ≡ e[σ′/α].

4. e ≡ e.

5. If e ≡ e′ then e′ ≡ e.

6. If e ≡ e′ and e′ ≡ e′′ then e ≡ e′′ .

Proof: Part 1. By induction on the number of steps in the evaluation relation. Note that evaluation inFω

is not influenced by typing annotations. Part 2: By induction on size ofe1. Part 3: By induction on size

of e and definition of expression equivalence. Parts 4, 5, 6: By reflexivity, symmetry and transitivity of

expression equality and type equivalence. �

Next, we state two properties ofFω type equivalence that are needed later.

Lemma 8 (Properties ofFω Type Equivalence)

1. If Γ ` σ :: κ and σ ≡ σ′ then Γ ` σ′ :: κ.

2. If Γ, x:σ,Γ′ ` e : σ1 and σ ≡ σ′ then Γ, x:σ′,Γ′ ` e : σ1.

Next, we show that substitution commutes with all of the semantic interpretations ofDDCα. For clarity,

we first introduce two substitution-related abbreviations:

〈τ/α〉 = [[[τ ]]rep/αrep][[[τ ]]PDb/αPDb]

{τ/α} = [[[τ ]]rep/αrep][[[τ ]]PDb/αPDb][[[τ ]]P/parseα]

Lemma 9 (Commutativity of Substitution and Semantic Interpretation)

1. [[τ [τ ′/α]]]rep = [[τ ]]rep〈τ ′/α〉.

2. If ∆; Γ ` τ : κ then [[τ [τ ′/α]]]rep = [[τ ]]rep[[[µα.τ ]]rep/αrep].
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3. If ∃σ s.t. [[τ ]]PD = σ and ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ then [[τ [τ ′/α]]]PD ≡ [[τ ]]PD〈τ ′/α〉 =

[[τ ]]PD[[[τ ]]PDb/αPDb].

4. If ∃σ s.t. [[τ ]]PD = σ and ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ then [[τ [τ ′/α]]]P ≡ [[τ ]]P{τ ′/α}.

5. [[τ [v/x]]]rep = [[τ ]]rep.

6. [[τ [v/x]]]PD = [[τ ]]PD.

7. [[τ [v/x]]]P = [[τ ]]P[v/x].

Proof: Parts 1,3-7: By induction on structure of types. For part 3, the most interesting case is for the

typeα, which is shown in detail in Appendix A. Part 2 is proven by induction on the height of the kinding

derivation. The most interesting case iscompute, as it is the only construct in which a variable of the form

αPDb might appear. However, as the type is well-formed, we know from the kinding rules that the only type

variables allowed inσ are of the formαrep. For part 4, note that variables of the formparserep cannot

appear in anyτ – they can only be introduced by the parsing semantics function. A number of the more

challenging cases are shown in detail in Appendix A. For part 6, note that the open variables in[[τ ]]P are

exactly those that are open inτ itself, as none are introduced in the translation. �

Next, we prove a similar commutativity result for the[[ · : · ]]PT function.

Lemma 10

If ∃σ s.t. [[τ ]]PD = σ and ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ then [[τ [τ ′/α]:κ〈τ ′/α〉]]PT = [[τ :κ]]PT〈τ ′/α〉.

Proof: By induction on the size of the kind, using Lemma 9 forT case. �

Lemma 11

The function [[ · ]]rep is total.

Proof: By induction on the structure of types. �

Next we present some standard type-theoretic results forDDCα kinding and normalization.

Lemma 12 (DDCα Preservation)

If ` τ : κ and τ →∗ ν then ` ν : κ.
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Proof: By induction on the kinding derivation. �

Lemma 13 (DDCα Inversion)

All kinding rules are invertable.

Proof: By inspection of the kinding rules. �

Lemma 14 (DDCα Canonical Forms)

If ` ν : κ then either

• κ = T, or

• κ = σ → κ and τ = λx.τ ′, or

• κ = T → κ and τ = λα.τ ′.

Proof: By kinding rules and grammar of normalized typesν. �

Finally, we state the substitution lemmas that we assume to hold of the various underlyingFω judgments

followed by a substitution lemma forDDCα.

Lemma 15 (Fω Substitution)

1. If ` Γ, α::T,Γ′ ok and Γ ` σ :: T then ` Γ,Γ′[σ/α] ok.

2. If Γ, α::T ` σ :: κ and Γ ` σ1 :: T then Γ ` σ[σ1/α] :: T.

3. If Γ, α::T,Γ′ ` e : σ and Γ ` σ1 :: T then Γ,Γ′[σ1/α] ` e[σ1/α] : σ[σ1/α].

4. If Γ, x:σ′ ` e : σ and Γ ` v : σ′ then Γ ` e[v/x] : σ

Proof: These are standard properties ofFω. They are all proven by induction on the height of the first

derivation. �

Lemma 16 (DDCα Substitution)

1. If ∆; Γ, x:σ ` τ : κ and [[∆]]Fω
; Γ ` v : σ then ∆; Γ ` τ [v/x] : κ.

2. If ∆, α:T; Γ,Γ′ ` τ : κ and ∆; Γ ` τ ′ : T then ∆; Γ,Γ′[τ ′/α] ` τ [τ ′/α] : κ[τ ′/α].
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Proof: For both parts, by induction on the first derivation, using Lemma 15 as needed. �

Finally, we state another commutativity property for the semantic functions. In essence, it says that

evaluation (aka. normalization, type equivalence) commutes with semantic interpretation. This result has

inherent value for reasoning aboutDDCα, as it allows one to reason about the semantics ofDDCα functions

directly in terms of the stated normalization rules, rather than indirectly through semantic interpretation

and the evaluation/equivalence rules of the semantic domain. Note that the premise of the lemma involves

parser evaluation because that is what is needed for later use. We posit without proof that this lemma would

be equally true if the second premise were switched with the first conclusion.

Lemma 17 (Commutativity of Evaluation and Semantic Interpretation)

If ` τ : κ and [[τ ]]P →∗ v then

1. τ →∗ ν,

2. v ≡ [[ν]]P,

3. [[τ ]]rep ≡ [[ν]]rep, and

4. [[τ ]]PD ≡ [[ν]]PD.

Proof: By induction on the number of steps in the evaluation. Within the induction, we proceed using a

case-by-case analysis of the possible structures of typeτ . The complete proof is shown in Appendix A.�

3.3.1 Type Correctness

Our first key theoretical result is that the various semantic functions we have defined are coherent. In

particular, we show that for any well-kindedDDCα typeτ , the corresponding parser is well typed, returning

a pair of the corresponding representation and parse descriptor.

Demonstrating that generated parsers are well formed and have the expected types is nontrivial primar-

ily because the generated code expects parse descriptors to have a particular shape, and it is not completely

obvious they do in the presence of polymorphism. Hence, to prove type correctness, we first need to

characterize the shape of parse descriptors for arbitraryDDCα types.
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The particular shape required is that every parse descriptor be a pair of a header and an (arbitrary) body.

The most straightforward characterization of this property is too weak to prove directly, so we instead

characterize it as a logical relation in Definition 18. Lemma 22 establishes that the logical relation holds of

all well-formedDDCα types by induction on kinding derivations, and the desired characterization follows

as a corollary.

Definition 18

• H(τ : T) iff ∃σ s.t. [[τ ]]PD ≡ pd hdr ∗ σ.

• H(τ : T → κ) iff ∃σ s.t. [[τ ]]PD ≡ σ and whenever H(τ ′ : T), we have H(τ τ ′ : κ).

• H(τ : σ → κ) iff ∃σ′ s.t. [[τ ]]PD ≡ σ′ and H(τ e : κ) for any expression e.

Lemma 19

If H(τ : T) then ∃σ s.t.[[τ ]]PD = σ.

Proof: Follows immediately from definition ofH(τ : T). �

Note that we implicitly demand that[[τ ]]PD is well defined in the hypothesis of the lemma. We cannot

assume that it is well-defined, even for well-formedτ , as that is part of what we are trying to prove.

Lemma 20

If [[τ ]]PD ≡ [[τ ′]]PD then H(τ : T) iff H(τ ′ : T).

Proof: By induction on the structure of the kind. �

Lemma 21

If H(τ : κ) and H(τ ′ : T) then H(τ [τ ′/α] : κ).

Proof: By induction on the structure of the kind. The proof is detailed in Appendix A. �

Lemma 22

If ∆; Γ ` τ : κ then H(τ : κ).

Proof: By induction on the height of the kinding derivation. A number of the more challenging cases are

shown in Appendix A. �
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Corollary 23

• If ∆; Γ ` τ : κ then ∃σ.[[τ ]]PD = σ.

• If ∆; Γ ` τ : T then ∃σ.[[τ ]]PD ≡ pd hdr ∗ σ.

Proof: Immediate from definition ofH(τ : κ) and Lemma 22. �

We can now prove a general result stating that if a type is well formed, then its type interpretations will

be well formed, and that the kind of the type will correspond to the kinds of its interpretations. We first

state this correspondence formally and then state and prove the lemma.

Definition 24 (DDCα Kind Interpretation in Fω)

• K(T) = T

• K(σ → κ) = K(κ)

• K(T → κ) = T → K(κ)

Lemma 25 (Representation-Type Well Formedness)

If ∆; Γ ` τ : κ then

• [[∆]]rep ` [[τ ]]rep :: K(κ)

• [[∆]]PD ` [[τ ]]PD :: K(κ)

• If κ = T then [[∆]]PD ` [[τ ]]PDb :: T.

Proof: By induction using Lemma 22 and Lemma 8, part 1. �

We continue by stating and proving that parsers are type correct. However, to do so, we must first

establish some typing properties of the representation and parse-descriptor constructors, as at least one of

them appears in most parsing functions. In particular, we prove that each constructor produces a value

whose type corresponds to its namesakeDDCα type. For clarity, we abbreviatepd hdr ∗ σ asσ pd.

Lemma 26 (Types of Constructors)

• Runit : unit→ unit

• Punit : offset→ pd hdr ∗ unit
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• Rbottom : unit→ none

• Pbottom : offset→ pd hdr ∗ unit

• RΣ : ∀α, β.α ∗ β → α ∗ β

• PΣ : ∀α, β.α pd ∗ β pd→ (α pd ∗ β pd) pd

• R+left : ∀α, β.α → α + β

• R+right : ∀α, β.β → α + β

• P+left : ∀α, β.α pd→ pd hdr ∗ (α pd + β pd)

• P+right : ∀α, β.β pd→ pd hdr ∗ (α pd + β pd)

• R& : ∀α, β.α ∗ β → α ∗ β

• P& : ∀α, β.α pd ∗ β pd→ pd hdr ∗ (α pd ∗ β pd).

• Rcon : ∀α.bool ∗ α → α + α

• Pcon : ∀α.bool ∗ α pd→ pd hdr ∗ α pd

• Rseq init : ∀α.unit→ int ∗ α seq

• Pseq init : ∀α.offset→ pd hdr ∗ (α pd arr pd)

• Rseq : ∀α.(int ∗ α seq) ∗ α → int ∗ α seq

• Pseq : ∀αelt, αsep.(pd hdr ∗ (αelt pd arr pd)) ∗ αsep pd ∗ αelt pd→

pd hdr ∗ (αelt pd arr pd)

• Rcompute : ∀α.α → α

• Pcompute : offset→ pd hdr ∗ unit

• Rabsorb : ∀α.α pd→ unit + none

• Pabsorb : ∀α.α pd→ pd hdr ∗ unit

• Rscan : ∀α.α → α + none
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• Pscan : ∀α.int ∗ α pd→ pd hdr ∗ ((int ∗ α pd) + unit)

• Rscan err : ∀α.unit→ α + none

• Pscan err : ∀α.offset→ pd hdr ∗ ((int ∗ α) + unit)

Proof: By typing rules ofFω. �

With our next lemma, we establish the type correctness of the generated parsers. We prove the lemma

using a general induction hypothesis that applies to open types. This hypothesis must account for the fact

that any free type variables in aDDCα typeτ will become free function variables in[[τ ]]P. To that end, we

define the function[[∆]]PT which maps type-variable contexts∆ in the DDCα to value-variable contextsΓ

in Fω.

[[ · ]]PT = · [[∆, α:T]]PT = [[∆]]PT, parseα:[[α:T]]PT

Lemma 27 (Type Correctness Lemma)

If ∆; Γ ` τ : κ then [[∆]]Fω
,Γ, [[∆]]PT ` [[τ ]]P : [[τ :κ]]PT

Proof: By induction on the height of the kinding derivation. A number of the more challenging cases are

shown in Appendix A. �

Theorem 28 (Type Correctness of Closed Types)

If ` τ : κ then ` [[τ ]]P : [[τ :κ]]PT.

A practical implication of this theorem is that it is sufficient to check data descriptions (i.e., DDCα

types) for well-formedness to ensure that the generated types and functions are well formed. This property

is sorely lacking in many common implementations of Lex and YACC, for which users must examine

generated code to debug compile-time errors in specifications.

3.3.2 Canonical Forms

DDCα parsers generate pairs of representations and parse descriptors designed to satisfy a number of in-

variants. Of greatest importance is the fact that when the parse descriptor reports that there are no errors in

a particular substructure, the programmer can count on the representation satisfying all of the syntactic and
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semantic constraints expressed by the dependentDDCα type description. When a parse descriptor and rep-

resentation satisfy these invariants and correspond properly, we say the pair of data structures iscanonical

or in canonical form.

For eachDDCα type, its canonical forms are defined via two (mutually recursive) relations. The first,

Canonν(r, p), defines the canonical form of a representationr and a parse descriptorp at normal typeν. It

is defined for all closed normal typesν with base kindT. Types with higher kind such as abstractions are

excluded from this definition as they cannot directly produce representations and PDs.

A second definition,Canon∗τ (r, p) normalizesτ to aν, thereby eliminating outermost type and value

applications. Then, the requirements onν are given byCanonν(r, p). For brevity, we writep.h.nerr as

p.nerr and usepos to denote the function that returns zero when passed zero and one when passed another

natural number.

Definition 29 (Canonical Forms I)

Canonν(r, p) iff exactly one of the following is true:

• ν = unit and r = () and p.nerr = 0.

• ν = bottom and r = none and p.nerr = 1.

• ν = C(e) and r = inl c and p.nerr = 0.

• ν = C(e) and r = inr none and p.nerr = 1.

• ν = Σx:τ1.τ2 and r = (r1, r2) and p = (h, (p1, p2)) and h.nerr = pos(p1.nerr) + pos(p2.nerr),

Canon∗τ1(r1, p1) and Canon∗τ2[(r,p)/x](r2, p2).

• ν = τ1 + τ2 and r = inl r′ and p = (h, inl p′) and h.nerr = pos(p′.nerr) and Canon∗τ1(r
′, p′).

• ν = τ1 + τ2 and r = inr r′ and p = (h, inr p′) and h.nerr = pos(p′.nerr) and Canon∗τ2(r
′, p′).

• ν = τ1 & τ2, r = (r1, r2) and p = (h, (p1, p2)), and h.nerr = pos(p1.nerr) + pos(p2.nerr),

Canon∗τ1(r1, p1) and Canon∗τ2(r2, p2).

• ν = {x:τ ′ | e}, r = inl r′ and p = (h, p′), and h.nerr = pos(p′.nerr), Canon∗τ ′(r′, p′) and

e[(r′, p′)/x] →∗ true.

• ν = {x:τ ′ | e}, r = inr r′ and p = (h, p′), and h.nerr = 1 + pos(p′.nerr), Canon∗τ ′(r′, p′) and

e[(r′, p′)/x] →∗ false.
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• ν = τe seq(τs, e, τt, ), r = (len, [~ri]), p = (h, (neerr, len′, [~pi])), neerr =
∑len

i=1 pos(pi.nerr),

len = len′, Canon∗τe
(ri, pi) (for i = 1 . . . len), and h.nerr ≥ pos(neerr).

• ν = µα.τ ′, r = fold[[[µα.τ ′]]rep] r
′, p = (h, fold[[[µα.τ ′]]PD] p′), p.nerr = p′.nerr and

Canon∗τ ′[µα.τ ′/α](r′, p′).

• ν = compute(e:σ) and p.nerr = 0.

• ν = absorb(τ ′), r = inl (), and p.nerr = 0.

• ν = absorb(τ ′), r = inr none, and p.nerr > 0.

• ν = scan(τ ′), r = inl r′, p = (h, inl (i, p′)), h.nerr = pos(i) + pos(p′.nerr), and

Canon∗τ ′(r′, p′).

• ν = scan(τ ′), r = inr none, p = (h, inr ()), and h.nerr = 1.

Definition 30 (Canonical Forms II)

Canon∗τ (r, p) iff τ →∗ ν and Canonν(r, p).

We first prove that the representation and parse-descriptor constructors, under the appropriate condi-

tions, produce values in canonical form.

Lemma 31 (Constructors Produce Values in Canonical Form)

• Canonunit(Rtrue(), Ptrue(ω)).

• Canonbottom(Rfalse(), Pfalse(ω)).

• If Canon∗τ1(r1, p1) and Canon∗τ2[(r,p)/x](r2, p2) then

CanonΣ x:τ1.τ2(RΣ(r1, r2), PΣ(p1, p2)).

• If Canon∗τ (r, p) then Canonτ+τ ′(R+left(r), P+left(p)).

• If Canon∗τ (r, p) then Canonτ ′+τ (R+right(r), P+right(p)).

• If Canon∗τ1(r1, p1) and Canon∗τ2(r2, p2) then

Canonτ1 & τ2(R&(r1, r2), P&(p1, p2)).

• If Canon∗τ (r, p) and e[(r, p)/x] →∗ c then

Canon{x:τ | e}(Rset(c, r), Pset(c, p))
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• Canonτ seq(τs,e,τt)(Rseq init(), Pseq init(ω)).

• If Canonτ seq(τs,e,τt)(r, p) and Canon∗τ (r′, p′) then, for any p′′,

Canonτ seq(τs,e,τt)(Rseq(r, r
′), Pseq(p, p′′, p′)).

• Canoncompute(e:σ)(Rcompute(e), Pcompute(ω)).

• Canonabsorb(τ)(Rabsorb(p), Pabsorb(p)).

• If Canon∗τ (r, p) then Canonscan(τ)(Rscan(r), Pscan(i, p)).

• Canonscan(τ)(Rscan err(), Pscan err(ω)).

Proof: By inspection of the constructor functions. �

In addition, we require that base type parsers produce values in canonical form:

Condition 32 (Base Type Parsers Produce Values in Canonical Form)

If ` v : σ, Bkind(C) = σ → T and Bimp(C) v (B,ω) →∗ (ω′, r, p) then CanonC(v)(r, p).

Lemma 33 states that the parsers for well-formed types (of base kind) will produce a canonical pair of

representation and parse descriptor, if they produce anything at all.

Lemma 33 (Parsing to Canonical Forms)

If ` τ : T and [[τ ]]P (B,ω) →∗ (ω′, r, p) then Canon∗τ (r, p).

Proof: By induction on the height of the second derivation – that is, the number of steps taken to evaluate.

Within the induction, we proceed using a case-by-case analysis of the possible structures of typeτ . A

number of the more challenging cases are shown in Appendix A. �

Corollary 34

If Canon∗τ (r, p) and p.h.nerr = 0 then there are no syntactic or semantic errors in the representation data

structure r.

This corollary is important as it ensures that a single check is sufficient to verify the validity of a data

structure. Only if the data structure is not valid will further checking of substructures be required.
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3.4 EncodingDDLs in DDCα

We can better understand data description languages by elaborating their constructs into the types ofDDCα.

We start by introducingIPADS – an idealized data description language – and specifying its elaboration into

DDCα. We then discuss features ofPADS/C, PADS/ML , DATASCRIPT, andPACKETTYPESthat are not found

in IPADS. Finally, we briefly discuss some limitations ofDDCα.

3.4.1 IPADS: An Idealized DDL

IPADS is an idealized version of thePADS/C language that captures many of the common features ofDDLs.

The two essential differences betweenPADS/C and IPADS are that many of the compound constructs have

been replaced by simpler, orthogonal contstructs, and some of the subtler syntactic features ofPADS/C have

been eliminated. Though the syntax differs, the structure ofPADS/C’s relativesPADS/ML , PACKETTYPES

andDATASCRIPT are similar. Hence,IPADS serves as an effective idealization of these languages as well.

Some features, however, are particular to a given language, and are therefore introduced as separateIPADS

extensions, later in this section.

IPADS data descriptions are types. ComplexIPADS descriptions are built by using type constructors to

glue together a collection of simpler types, with the simplest being base types like those ofPADS/ML . A

completeIPADS description is a sequence of type definitions terminated by a single type. This terminal

type describes the entirety of a data source, making use of the previous type definitions to do so.IPADS

type definitions can have one of two forms. The form (α = t) introduces the type identifierα and binds

it to IPADS type t. The type identifier may be used in subsequent types. The second form (Prec α = t)

introduces a recursive type definition. In this case,α may appear int.

Figure 3.14 summarizes the formal syntax ofIPADS. As with DDCα, expressionse and typesσ are taken

from the host language, described in Section 3.1.2. Notice that we usex for host language variables and

α for IPADS type variables.C(e) denotes a base type parameterized by a value.Pfun introduces value-

parameterized types andPlit c describes a literal in the data source.Pstruct s describe sequences,

much like PADS/ML records. Punion is a simplified version ofPADS/ML datatypes, supporting only

description of variance in the data source.Parray describes homogenous sequences like thePADS/ML

built-in type Plist . However, the separator and terminator ofParray are specified as types rather

than literals.Pwhere specifies constraints,Popt allows for an optional element, andPrec introduces
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Types t ::= C(e) | Plit c
| Pfun (x : σ) = t | t e

| Pstruct {−→x:t} | Punion {−→x:t} | Palt {−→x:t}
| t Pwhere x.e | Popt t | t Parray (t, t)
| Pcompute e:σ | α | Prec α.t

Programs p ::= t | α = t; p | Prec α = t; p

Figure 3.14: The syntax of theIPADS data description langauge.

recursive types.Pcompute is identical tocompute of DDCα. Palt is an intersection type; it describes

data that is described by all the branches simultaneously and produces a set of values - one from each type.

3.4.2 IPADS Elaboration

We specify the elaboration fromIPADS to DDCα with two judgments:p ⇓ τ prog indicates that theIPADS

programp is encoded asDDCα typeτ , while t ⇓ τ does the same forIPADS typest. These judgments are

defined in Figure 3.15.

As much of the elaboration is straightforward, we mention only a few important points. Notice we add

bottom as the last branch of theDDCα sum when elaboratingPunion so that the parse will fail if none

of the branches match rather than returning the result of the last branch. We base this behavior directly on

the actualPADS/C language. In the elaboration ofPwhere , we only check the constraint if the underlying

value parses with no errors. ForParray s, we add simple error recovery by scanning for the separator

type. This behavior allows us to easily skip erroneous elements. We use thescan type in the same way

for Plit , as literals often appear as field separators inPstruct s. We also absorb the literal, as its value

is known statically. We use the functionTy(c) to determine the correct type for the particular literal. For

example, a string literal would require aPstring type.

3.4.3 BeyondIPADS

We now give semantics to four features not found inIPADS: PADS/C switched unions,PADS/ML polymor-

phic, recursive datatypes,DATASCRIPT arrays, andPACKETTYPESoverlays.

PADS/C switched unions. A switched union, like aPunion , indicates variability in the data format with

a set of alternative formats (branches). However, instead of trying each branch in turn, the switched union

takes an expression that determines which branch to use. Typically, this expression depends upon data
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prog ⇓ τ prog

t ⇓ τ

t ⇓ τ prog
PROG-ONE

p[t/α] ⇓ τ prog
α = t; p ⇓ τ prog

PROG-DEF
p[Prec α.t/α] ⇓ τ prog
Prec α = t; p ⇓ τ prog

PROG-RECDEF

t ⇓ τ

C(e) ⇓ C(e)
BASE

t ⇓ τ

Pfun (x : σ) = t ⇓ λx.τ
PFUN

t ⇓ τ

t e ⇓ τ e
APP

ti ⇓ τi

Pstruct {x1:t1 . . . xn:tn} ⇓
Σ x1:τ1. · · ·Σ xn−1:τn−1.τn

PSTRUCT
ti ⇓ τi

Punion {x1:t1 . . . xn:tn} ⇓
τ1 + · · ·+ τn + bottom

PUNION

ti ⇓ τi

Palt {x1:t1 . . . xn:tn} ⇓ τ1& . . .&τn
PALT

t ⇓ τ

Popt t ⇓ τ + unit
POPT

t ⇓ τ

t Pwhere x.e ⇓ {x:τ | if isOk(x.pd) then e else true}
PWHERE

t ⇓ τ tsep ⇓ τs tterm ⇓ τt (f = λx.false)
t Parray (tsep, tterm) ⇓ τ seq(scan(τs), f, τt)

PARRAY
Pcompute e:σ ⇓ compute(e:σ)

PCOMPUTE

Ty(c) = τ

Plit c ⇓ scan(absorb({x:τ |x = c})) PLIT
α ⇓ α

VAR
t ⇓ τ

Prec α.t ⇓ µα.τ
PREC

Figure 3.15: EncodingIPADS in DDCα
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read earlier in the parse. Each branch is preceded by a tag, and the first branch whose tag matches the

expression is selected. If none match then the default branchtdef is chosen. The syntax of a switched union

is Pswitch e {−−−−−→e ⇒ x:t tdef}.

To aid in our elaboration ofPswitch , we define a typeif e then t1 else t2 that allows us to choose

between two types conditionally:

t1 ⇓ τ1 t2 ⇓ τ2 (c = compute(if e then 1 else 2 :Pint))

if e then t1 else t2 ⇓ c ∗ ({x:unit | not e}+ τ1)& ({x:unit | e}+ τ2)

The computed valuec records which branch of the conditional is selected. If the conditione is true,c will

be 1, the left-hand side of the intesection will parseτ1 and the right will parse nothing. Otherwise,c will

be 2, the left-hand side will parse nothing and the rightτ2.

Now, we can encodePswitch as syntactic sugar for a series of cascading conditional types.

Pswitch e {

e1 ⇒ x1:t1

. . .

en ⇒ xn:tn

tdef}

=

if e = e1 then t1 else

. . .

if e = en then t1 else

tdef

Note that we can safely replicatee as the host language is pure.

PADS/ML polymorphic, recursive datatypes.We have also developed an encoding ofPADS/ML ’s poly-

morphic, recursive datatypes. We present this encoding in two steps. First, we extendIPADS with type

abstraction and application, and specify their elobaration intoDDCα. Notice thatIPADS type abstractions

can have multiple parameters.

Types t ::= ... | PFun (−→α ) = t | t (
−→
t )

t ⇓ τ

PFun(−→α ) = t ⇓
−−→
λ α.τ

t ⇓ τ
−−→
t ⇓ τ

t (
−→
t ) ⇓ τ −→τ

Next, we extendIPADS programs to include datatype bindings. Datatype bindings include the name of

the type,α, a list of type parameters (−→α ), a single value parameterx, and a body that consists of a list
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of named variants. As withPrec bindings, we do not specify the meaning of datatype bindings inDDCα

directly. Rather, we decompose a given datatype into a compoundIPADS type, which is then substituted

into the remainder of the program.

Programs p ::= ... | Pdatatype α (−→α )(x : σ) = {−→x:t}; p

p[t′/α] ⇓ τ prog (t′ = PFun (−→α ) = Pfun (x : σ) = Prec α. Punion {−→x:t})
Pdatatype α (−→α ) (x : σ) = {−→x:t}; p ⇓ τ prog

There are two important points to notice about the decomposition. First, a datatype is decomposed into

no less than fourIPADS (and, by extension,DDCα) types. Second, and more subtly, the recursive type is

nested inside of the abstractions, thereby preventing the definition of nonuniform datatypes. Indeed, the

name of the bound datatype,α, plays two distinct roles – within the recursive type, it is a monomorphic

type referring only to the recursive type itself, while within the rest of the program it is a polymorphic type

referring to the entire type abstraction.

Our choice to limitPADS/ML uniform datatypes was based on three factors: first, and foremost, we

lacked any compelling examples that demanded nonuniform datatypes; second, recursion over higher-order

types significantly complicates both the theory ofDDCα and the implementation ofPADS/ML ; lastly, there

is no support inO’ CAML for polymorphic recursion2.

DATASCRIPT arrays. Next, we introduceDATASCRIPT-style arrays for binary data,t [length]. They are

parameterized by an optional length field, instead of a separator and terminator. If the user supplies the

length of the sequence, the array parser reads exactly that number of elements. Arrays with the length field

specfied can be encoded in a straightforward manner withDDCα sequences:

t ⇓ τ (f = λ((len, elts), p).len = length)
t [length] ⇓ τ seq(unit, f, bottom)

As these arrays have neither separators nor terminators, we useunit (always succeeds, parsing nothing)

andbottom (always fails, parsing nothing), respectively, for separator and terminator. The functionf takes

2The absence might be due to the fact that type inference for polymorphicly-recursive functions (without type annotations) is
undecidable [Hen93].
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a pair of array representation and PD and compares the sequence length recorded in the representation to

length.

Arrays of unspecified length are more difficult to encode as they must check the next element for parse

errors without consuming it from the data stream. A termination predicate cannot encode this check as they

cannot perform lookahead. Therefore, we must use the terminator type to look ahead for an element parse

error. For this purpose, we construct a type which succeeds whereτ fails and fails whereτ succeeds:

{x:τ + unit | case x.rep of (inl ⇒ false | inr ⇒ true)}

Abbreviatednot(τ), this type attempts to parse aτ . On success, the representation will be a left injection.

The constraint in the constrained type will therefore fail. If aτ cannot be parsed, the sum will default to

unit, the rep will be a right injection, and the constraint will succeed. The use of the sum in the underlying

type is critical as it allows the constrained type to be error free even when parsingτ fails.

With not, we can encode the unboundedDATASCRIPT array as follows:

t ⇓ τ

t [length] ⇓ τ seq(unit, λx.false, not(τ))

Note that the termination predicate is trivially false, as we use the lookahead-terminator exclusively to

terminate the array.

PACKETTYPES overlays. Finally, we consider theoverlayconstruct found inPACKETTYPES. An overlay

allows description authors “to merge two type specifications by embedding one within the other, as is

done when one protocol isencapsulatedwithin another. Overlay[s] introduce additional substructure to

an already existing field.” [MC00a]. For example, consider a network packet from a fictional protocol FP,

where the packet body is represented as a simple byte-array.

FPPacket = Pstruct {
header : FPHeader;
body : Pbyte Parray ( Pnosep , Peof );

}

IPinFP = Poverlay FPPacket.body with IPPacket
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TypePnosep indicates that there are no separators between elements of the byte array. It can be encoded

asPcompute (():unit) , as this type consumes no data and produces a unit value without errors. The

overlay creates a new typeIPinFP where the body field is anIPPacket rather than a simple byte array.

We have developed a elaboration of the overlay syntax intoDDCα. In essence, overlays are syntactic

sugar: overlaying a subfield of a given type replaces the type of that subfield with a new type. However,

despite the essentially syntactic nature of overlays, we discovered a critical subtlety of semantic signifi-

cance, not mentioned by thePACKETTYPESauthors. Any expressions in the original type that refer to the

overlayed field may no longer be well typed after applying the overlay. For example, consider extending

FPPacket with a field that is constrained to be equal to the checksum of the body:

FPPacket = Pstruct {
header : FPHeader;
body : Pbyte Parray ( Pnosep , Peof );
checksum : Pint Pwhere cs.cs = checksum(body);

}

The checksum function requires thatbody be abyte array. Therefore, if we overlaybody with a

structured type likeIPPacket , thenbody will no longer be a byte array and, so, the application of

checksum to body will be ill-formed. We thought to disallow such expressions in the overlayed type.

However, we found this to be a difficult, if not impossible task. More importantly, such a restriction is

unnecessary. Instead, the new type can be checked for well formedness after the overlay process, an easy

task in theDDCα framework.

At this point, we have described the elaborations of some of the more interesting features of the lan-

guages that we have studied. However, to give a fuller sense of what is possible, we briefly list additional

features ofDATASCRIPT andPACKETTYPESfor which we have found encodings inDDCα:

• PACKETTYPES: arrays, where clauses, structures, overlays, and alternation.

• DATASCRIPT: constrained types (enumerations and bitmask sets), value-parameterized types (which

they refer to as “type parameters”), arrays, constraints, and (monotonically increasing) labels.

We know of a couple of features from data description languages that we cannot implement inDDCα

as it stands. First, we cannot support a label construct that permits the user to rewind the input. Second,

DATASCRIPT allows the element type of an array to reference the representation of the array itself [Bac02]

(see, in particular, the example in Figure 5). This feature can be useful, for example, if the element type
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needs the index of the array element that is currently being processed.DDCα does not support this kind

of element-type parameterization. However, we do not view such limitations as particularly troublesome.

Like the λ-calculus orπ-calculus,DDCα is intended to capture many common language features, while

providing a convenient and effective basis for extension with new features.

3.5 Applications of the Semantics

The development ofDDCα and definition of a semantics forIPADS has had a substantial impact on the

PADS/C andPADS/ML implementations. It has helped improve the implementations in a number of distinct

ways, which we now discuss.

3.5.1 Bug Hunting

TheDDCα was developed, in part, through a line-by-line analysis of key portions of thePADS/C implemen-

tation, to uncover implicit invariants in the code. In the process of trying to understand and formalize these

invariants we realized that our error accounting methodology was inconsistent, particularly in the case of

arrays. When we realized the problem, we were able to formulate a clear rule to apply universally: each

subcomponent adds 1 to the error count of its parent if and only if it has errors. If we had not tried to

formalize our semantics, it is unlikely we would have made the error accounting rule precise, leaving our

implementation buggy and inconsistent.

The semantics also helped us avoid potential nontermination of array parsers. In the original imple-

mentation ofPADS/C arrays, it was possible to write nonterminating arrays, a bug that was only uncovered

when it hung a real program. We have fixed the bug and used the semantics to verify our fix.3

3.5.2 Principled Language Implementation

Unlike the rest ofPADS/C, the semantics of recursive types preceded the implementation. We used the

semantics to guide our design decisions in the implementation. Perhaps more significantly, the semantics

was used in its entirety to guide the implementation ofPADS/ML . The semantics of type abstractions were

particularly helpful, as they are a new feature not found inPADS/C. Before working through the formal

3The typenothing array(nothing,eof) where typenothing consumes no input, would not terminate in the orignal
system. A careful read of theDDCα semantics of arrays, which has now been implemented inPADS/C, shows that array parsing
terminates after an iteration in which the array parser reads nothing.

77



semantics, we struggled to disentangle the invariants related to polymorphism. After we had defined the

calculus, we were able to implement type abstractions asO’ CAML functors in approximately a week. We

hope the calculus will serve as a guide for implementations ofPADS in other host languages.

3.5.3 Distinguishing the Essential from the Accidental

In his 1965 paper, P.J. Landin asks “Do the idiosyncracies [of a language] reflect basic logical properties

of the situations that are being catered for? Or are they accidents of history and personal background that

may be obscuring fruitful developments?”

The semantics helped us answer this question with regard to thePomit andPcompute qualifiers of

PADS/C. Originally, these qualifiers were only intended to be used on fields withinPstruct s. By an

accident of the implementation, they appeared inPunion s as well, but spread no further. However, when

designingDDCα, we followed theprinciple of orthogonality, which suggests that every linguistic concept

be defined independently of every other. In particular, we observed that “omitting” data from, or including

(“computing”) data in, the internal representation is not dependent upon the idea of structures or unions.

Furthermore, we found that developing these concepts as first-class constructorsabsorb andcompute in

DDCα allowed us to encode the semantics of otherPADS/C features elegantly (literals, for example). In this

case, then, theDDCα highlighed that the restriction ofPomit andPcompute to mere type qualifers for

Punion andPstruct fields was an “accident of history,” rather than a “basic logical property” of data

description.

We conclude with an example of another feature to which Landin’s question applies, but for which

we do not yet know the answer. ThePunion construct chooses between branches by searching for the

first one without errors. However, this semantics ignores situations in which the correct branch in fact has

errors. Often, this behavior will lead to parsing nothing and flagging a panic, rather than parsing the correct

branch to the best of its ability. The process of developing a semantics brought this fact to our attention and

it now seems clear we would like a more robustPunion , but we are not currently sure how to design one.

3.6 Future Work and Conclusions

In the spirit of Landin, we have taken the first steps toward specifying a semantics for the family of data

description languages by defining the data description calculusDDCα. This calculus, which is a dependent
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type theory with a simple set of orthogonal primitives, is expressive enough to describe the features of

PADS/C, PADS/ML , DATASCRIPT, andPACKETTYPES. In keeping with the spirit of the data description

languages, our semantics is transformational: instead of simply recognizing a collection of input strings,

we specify how to transform those strings into canonical in-memory representations annotated with error

information. Furthermore, we prove that the error information is meaningful, allowing analysts to rely on

the error summaries rather than having to revet the data by-hand.

We have already used the semantics to identify bugs in the implementation ofPADS/C and to guide the

implementation ofPADS/ML . In addition, when various biological data sources [Newa, Con] motivated

adding recursion toPADS/C and PADS/ML , we usedDDCα for design guidance. After adding recursion,

both PADS languages can now describe the biological data sources. Furthermore, theDDCα framework

has repeatedly proved useful for sketching the design of new tools before implementing them inPADS/ML .

For example, we sketched both thePADS/ML printers and traversal functors forDDCα before implementing

them forPADS/ML . This sketching is possible as many tools can be thought of as an interpretation of the

DDCα types, much like the parser.

Our work onDDCα has suggested a number of possible directions for future work, of which we will

briefly describe two. First, we have begun work on studying the semantics of data printers. We have for-

malized our printer semantics as a semantic interpretation ofDDCα (based on the printer sketches discussed

above), and we have stated and proven some of their basic properties [MFW+06]. We have also begun to

consider which properties we might expect to hold of the interaction between the parser and printer of any

given description.

Second, we would like to enhance our support for expressing error recovery mechanisms inDDCα.

Thescan type provides a very simple error recovery mechanism that is similar to thelocal error recovery

mechanisms of many early versions of theYACC parser generator [App98]. These mechanisms operate, in

essence, by deleting input tokens until a particularsynchronizingtoken is found. However, the choice of

where and when to attempt error recovery, and which synchronizing tokens to use, is not made automati-

cally, but must be specified within the grammar itself with special error recovery rules. Yet, more advanced

error recovery mechanisms exist that take a substantially different approach to error recovery. For example,

global error repair“finds the smallest set of insertions and deletions that would turn the source string into

a syntactically correct string, even if the insertions or deletions are not at a point where an LL or LR parser
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would first report an error” [App98]. In addition, global error repair does not depend on explicit error

recovery rules, but instead uses a single, uniform mechanism for the entire grammar.

We would like to support such global error repair in theDDCα framework. However, adding a new set

of type constructors toDDCα would be insufficient, as it would still require that error recovery be specified

as part of the description and would be limited to local recovery due to the orthogonal nature of types.

Instead, support for a global mechanism would likely require that we parameterize the parsing semantics

itself by an error recovery mechanism. Furthermore, as the exact operation of the error repair, including

the choice of which tokens to insert or delete, depends on the particular description, we hypothesize that

the error recovery mechanism itself should be specified as an interpretation ofDDCα.
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Chapter 4

Related Work and Conclusions

In this thesis we have described thePADS/ML data description language andDDCα, a low-level, data de-

scription calculus with which we can specify the semantics ofPADS/ML and other data description lan-

guages. We now review a selection of the related work and offer some concluding remarks.

4.1 Related Work

To give an overview of the related work, it is important to distinguish betweenPADS/ML – a real, imple-

mented data description language, andDDCα – a formalism for understanding data description languages.

We will begin our discussion with an overview of work related to thePADS/ML language, followed by an

overview of the work related toDDCα.

4.1.1 PADS/ML

As we discussed in a number of places in this thesis,PADS/ML evolved from prior work by Fisher and

Gruber onPADS/C [FG05]. For the reader’s convenience, we review the differences between the two

languages here. First,PADS/C is targeted at theC language, whilePADS/ML is targeted at theML family

of languages. UsingML as the host language simplifies the implementation of many data processing tasks,

like data transformation, which benefit fromML ’s pattern matching and high level of abstraction. Second,

unlike PADS/C types, PADS/ML types may be parameterized by other types, resulting in more concise

descriptions through code reuse. ML-style datatypes and anonymous nested tuples also help improve the
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readability and compactness of descriptions. Third, the generic tool architecture ofPADS/ML delivers a

number of benefits over the fixed architecture ofPADS/C. In PADS/C, all tools are generated from within the

compiler. Therefore, developing a new tool generator requires understanding and modifying the compiler.

Furthermore, the user selects the set of tools to generate when compiling the description. InPADS/ML , tool

generators can be developed independent of the compiler and they can be developed more rapidly because

the boilerplate code to traverse data need not be replicated for each tool generator. In addition, the user

can choose which tools to generate for a given data format on a program-by-program basis. This flexibility

is possible because tool generation is simply the composition of the desired generic tool modules with

the traversal functor. A final difference betweenPADS/C andPADS/ML is thatPADS/C is more mature than

PADS/ML . However, we are actively developingPADS/ML and expect that this will only be a temporary

difference.

Some of the oldest tools for describing data formats are parser generators for compiler construction

such asLEX and YACC. While excellent for parsing programming languages,LEX and YACC are too

heavyweight for parsing many of the simpler ad hoc data formats that arise in areas like networking, the

computational sciences and finance. The user must learn both the lexer generator and the parser generator,

and then specify the lexer and the parser separately, in addition to the glue code to use them together. In

addition,LEX andYACC do not support data-dependent parsing, do not generate internal representations

automatically, and do not supply a collection of value-added tools such asPADS/ML ’s XML translator.

More modern compiler construction tools alleviate several of the problems of Lex and Yacc by provid-

ing more built-in programming support. For instance,DEMETER’s class dictionaries [Lie88] can generate

parsers that construct internal parse trees as well as traversal functions, much like the traversal functions

generated byPADS/ML . Similarly, theANTLR parser generator [PQ95] allows the user to add annotations

to a grammar to direct construction of a parse tree. However, all nodes in the abstract syntax tree have a

single type, hence the guidance is rather crude when compared with the richly-typed structures that can be

constructed usingPADS/ML . The SABLE/CC compiler construction tool [Agn98] goes beyondANTLR by

producing LALR(1) parsers along with richly-typed ASTs quite similar to those ofPADS/ML . Also like

PADS/ML , descriptions do not contain actions. Instead, actions are only performed on the generated ASTs.

Yet, for all of their advantages overLEX andYACC, DEMETER, ANTLR, SABLE/CC, and other such tools

differ from PADS/ML in a number of significant ways. None of these tools have dependent and polymorphic

data descriptions or a formal semantics. They are based around grammars, rather than types, which forces
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users to familiarize themselves with a new formalism. They target only ASCII and UNICODE sources.

Finally, their error handling strategies are different than those ofPADS/ML and they do not provide the

programmer with programmatic access to errors, asPADS/ML does with parse descriptors. That said, such

a laundry list of differences risks obscuring the more essential difference – that these tools are targeted at a

different domain.PADS/C andPADS/ML generate tools specificly suited to processing ad hoc data (like the

accumulator), whereas the others generate tools suited to the processing and analysis of programs.

There are parallels betweenPADS/ML types and some of the elements of parser combinator libraries

found in languages like Haskell [Bur75, HM98]. Likewise, there are libraries to help programmers generate

printers. Each of these technologies is very useful in its own domain, butPADS/ML is broader in its scope

than each of them: a singlePADS/ML description is sufficient to generatebotha parser and a printer. And a

statistical error analysis, a format debugger, anXML translator, and in the future, a query engine [FFGM06],

a content-based search engine [LJW+06, Oh06], more statistical analyses,etc.Combinator libraries are not

designed to generate such a range of artifacts from a single specification. Indeed, the proper way to think

about combinator libraries in relation toPADS/ML is that they might serve as an alternative implementation

strategy for some of the generated tools.

The networking community has developed a number of domain-specific languages that are substan-

tially closer toPADS/ML than either compiler-construction tools or combinator libraries. These include

PACKETTYPES[MC00a], DATASCRIPT [Bac02] and Bro’s [Pax99] packet processing language for parsing

and printing binary data. LikePADS/C and PADS/ML , these languages have a type-directed approach to

describing ad hoc data and permit the user to define semantic constraints. In contrast to our work, these

systems handle only binary data and assume the data is error-free or halt parsing if an error is detected.

Not only are ASCII formats a common part of many software monitoring systems, parsing nonbinary data

poses additional challenges because of the need to handle delimiter values and to express richer termination

conditions on sequences of data. PacketTypes and DataScript also focus exclusively on the parsing/printing

problem, whereas our work exploits the declarative nature of our data descriptions to automatically generate

other useful tools and programming libraries.

Our support for generic tools is related to generic programming [JJ96, Hin00, LP03] and design patterns

like the visitor. Both are technologies that can facilitate the implementation of type-directed data structure

traversals. Lammel and Peyton Jones’ original “scrap your boilerplate” article [LP03] provides a detailed

summary of the trade-offs between different techniques. We investigated using one of these techniques
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before implementing the generator forPADS/ML traversal functors. However, we found that most advanced

techniques for functional programming languages require features, like type classes, that are only present in

variants of Haskell. The generatedPADS/ML traversal functors are less flexible than some of these traversal

techniques, but they suffice for helping us program the tools we have implemented, and for many more

tools for ad hoc data that we are considering implementing. In addition, these techniques support only

standard functional-programming types, whereasPADS/ML consists of dependent types (specialized to the

domain of ad hoc data processing). However, at this point, this distinction is more in priniciple than in

practice, as we currently provide only minimal support forPADS/ML ’s dependent type constructors in the

generic tool interface.

Perhaps one of the most closely related works on generic programming is that of van Weeldenet

al [vWSP05], as it relates to the generated parser and printers, rather than only to the generic tool support.

The authors investigate the use of polytypic programming to produce a parser for a language based only

on the specification of its AST type(s). In this way, the AST types themselves serve as the grammar

for the language. They also investigate applying this approach to other compiler-related analyses, like

scope checking and type inference. However, while their “types-as-grammar” approach is clearly related

to PADS/ML , they are using standard functional-programming types, and they are targeting the domain of

programming languages. Dependent types like those ofPADS/ML and support for ad hoc data processing

are beyond the scope of their work.

There are a number of tools designed to deal with converting ad hoc data formats intoXML and various

related tasks. For instance, XSugar [BMS05] allows users to specify an alternative non-XML syntax for

XML languages using a context-free grammar. This tool automatically generates conversion tools between

XML and non-XML syntax. The Binary Format Description language (BFD) [MC00b] is a fragment of

XML that allows programmers to specify binary and ASCII formats. BFD is able to convert the raw data

into XML -tagged data where it can then be processed usingXML -processing tools. While both these tools

are useful for many tasks, conversion toXML is not always the answer. Such conversion often results in

an 8-10 times blowup in data size over the native form.PADS/ML , on the other hand, avoids this blowup

by processing data in its native form. The conversion process also does not directly help programmers get

their hands on the data.

DFDL is a data format specification language with anXML -based syntax and type structure [Dat05,

BW04]. DFDL is a languagespecification, not an entire system or an implementation. Like thePADS/ML
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language,DFDL has a rich collection of base types and supports a variety of ambient codings. In terms of

expressiveness, we believe theDFDL consortium has added dependency and semantic constraints to match

the expressiveness ofPADS/C. However, because the specification is still under development, we cannot

give a more detailed comparison at this point.

A somewhat different class of languages includes ASN.1 [Dub01] and ASDL [WAKS97]. Both of

these systems specify thelogical in-memory representation of data and then automatically generate aphys-

ical on-disk representation. Although useful for many purposes, this technology does not help process data

that arrives in predetermined, ad hoc formats. Another language in this category is the Hierarchical Data

Format 5 (HDF5) [Hie]. This file format allows users to store scientific data, but it does not help users deal

with legacy ad hoc formats likePADS/ML does.

XDTM [MZF +05, ZDF+05] usesXML Schema to describe the locations of a collection of sources

spread across a local file system or distributed across a network of computers. However, XDTM has

no means of specifying the contents of files, so XDTM andPADS/ML solve complementary problems.

The METS schema [MET03] is similar to XDTM as it describes metadata for objects in a digital library,

including a hierarchy such objects.

Commercial database products provide support for parsing data in external formats so the data can

be imported into their database systems, but they typically support a limited number of formats. Also,

no declarative description of the original format is exposed to the user for their own use, and they have

fixed methods for coping with erroneous data. For these reasons,PADS/ML is complementary to database

systems. We strongly believe that in the future, commercial database systems could and should support a

PADS-like description language that allows users to import information from almost any format.

4.1.2 DDCα

To the best of our knowledge, our work onDDCα is the first to provide a formal interpretation of dependent

types as parsers and to study the properties of these parsers including error correctness and type safety.

Of course, there are other formalisms for defining parsers, most famously, regular expressions and contex-

free grammars. In terms of recognition power, these formalisms differ from our type theory in that they

have nondeterministic choice, but do not have dependency or constraints. We have found that dependency

and constraints are absolutely essential for describing most of the ad hoc data sources we have studied.

Perhaps more importantly though, unlike standard theories of context-free grammars, we do not treat our
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type theory merely as a recognizer for a collection of strings. Our type-based descriptions defineboth

external data formatsand rich invariants on the internal parsed data structures. This dual interpretation of

types lies at the heart of tools such asPADS, DATASCRIPT andPACKETTYPES.

Parsing Expression Grammars(PEGs), studied in the early 70s [BU73] and revitalized more recently by

Ford [For04], evolved from context-free grammars but have deterministic, prioritized choice likeDDCα as

opposed to nondeterministic choice. Though PEGs have syntactic lookahead operators, they may be parsed

in linear time through the use of “packrat parsing” techniques [For02, Gri06]. Once again, our multiple

interpretations of types inDDCα makes our theory substantially different from the theory of PEGs.

As with PADS/ML , there are many parallels betweenDDCα andparser combinators[Bur75, HM98]. In

particular,DDCα’s dependent sum construct is reminiscent of the bind operator in the monadic formulation

of parser combinators. Indeed, we can model dependent sums in Haskell as:

sigma :: P s -> (s->P t) -> P (s,t)
sigma m q = do {x <- m; y <- q x; return (x,y)}

Parser combinators, however, are a general approach to specifying recursive descent parsing, whereas we

have targetedDDCα to the more-specific domain of parsing ad hoc data. This focus leads to many fea-

tures not found in parser combinators, including the implicit type/value correspondence, the error response

mechanism, and arrays. Each of these features is as fundamental toDDCα as dependent sums. These two

approaches demonstrate the idea of a spectrum of domain-specificity in languages. The relationship be-

tween parser combinators andDDCα is like the relationship between a general purpose language and parser

combinators themselves. That is, while parser combinators form an (embedded) domain-specific language,

DDCα constructs form a language that is even more domain-specific.

4.2 Concluding Remarks

Ad hoc data presents its users with a great number of challenges and can be found in a wide variety of

disciplines. The general rule seems to be that if an area involves some form of data processing, then

there are ad hoc data formats to be found. The problems of ad hoc data processing, therefore, are not a

niche interest, but an essential problem in computer science. Moreover, they are not likely to go away

anytime soon. The existence of ad hoc data formats is not caused by the shortsightedness or inexperience

of data format designers. Rather, new discoveries and new applications often legitimately demand new

data formats, yet format standardization is a slow and difficult process. WhileXML is an extremely flexible
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and standardized format, it is not appropriate for all data sources, particularly very large ones. For these

data sources, the blow-up in data size and the performance hit of processing theXML can make its use

untenable.

We hope that our work on data description languages, as described in this thesis, will make a significant

contribution both to data analysts in need of tools likePADS/ML and to computer scientists eager to tackle

the many challenges of ad hoc data. Our goal in presentingPADS/ML was not only to describe what we

have accomplished, but to inspire and guide other researchers in building versions ofPADS for their favorite

programming languages. Similarly, our aim in presentingDDCα was not only to provide a semantics to

a number of existing data description languages, but to pave the way for a clear understanding of the

semantics of future data description languages. We hope that there will be many.

However, our vision for thePADS/ML andPADS/C languages does not stop there. Ultimately, we think

that every data source should carry with it its own description. That description would be written in a low-

level language (perhaps likeDDCα), into which descriptions from many other, higher-level descriptions

could be compiled. Furthermore, going beyond thePADS/C andPADS/ML languages themselves, we want

to allow data consumers to access their data with high-level, intuitive tools that require no programming

and free them to focus on their goals. If we can enable 1000 cancer researchers to become just 1% more

effective in their work, then we will have “created” (in terms of time) the equivalent of 10 new researchers.

Of course, we don’t intend to be satisfied with helping just 1000 cancer researchers. Given the large quantity

and near ubiquity of existing ad hoc data, we strive to improve the data access of millions of people and for

many years to come.
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Appendix A

Proofs of Selected Lemmas and

Theorems

Proof: Lemma 9, part 3.

Case α′: ∃σ s.t. [[α′]]PD = σ ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ.

If α′ = α then[[α′[τ ′/α]]]PD = [[τ ′]]PD. From premise, we know

[[τ ′]]PD ≡ pd hdr ∗ [[τ ′]]PDb = (pd hdr ∗ αPDb)[[[τ ′]]PDb/αPDb] = [[α′]]PD[[[τ ′]]PDb/αPDb].

So, [[α′[τ ′/α]]]PD ≡ [[α′]]PD[[[τ ′]]PDb/αPDb]. As no variables of the formαrep appear, the result is equal to

[[α′]]PD[[[τ ′]]rep/αrep][[[τ ′]]PDb/αPDb].

Proof: Lemma 9, part 4.

Case τ e:

[[τ e]]P{τ ′/α} = [[τ ]]P{τ ′/α} e{τ ′/α}. As e cannot containparseα, e{τ ′/α} = e〈τ ′/α〉. By induction,

[[τ ]]P{τ ′/α} ≡ [[τ [τ ′/α]]]P. Taken together, we have

[[τ ]]P{τ
′/α} e{τ ′/α} ≡ [[τ [τ ′/α]]]P e[[[τ ′]]rep/αrep][[[τ ′]]PDb/αPDb],

which, by the definition of substitution is equal to[[(τ e)[τ ′/α]]]P.
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Case τ1 τ2:

[[τ1 τ2]]P{τ
′/α} = [[τ1]]P{τ

′/α} [[[τ2]]rep{τ
′/α}][[[τ2]]PDb{τ

′/α}][[τ2]]P{τ
′/α}

By part 2,[[τ2]]rep{τ ′/α} ≡ [[τ2[τ ′/α]]]rep and[[[τ2]]PDb{τ ′/α}] ≡ [[τ2[τ ′/α]]]PDb. So, by Lemma 7, part 3,

[[τ1]]P{τ
′/α} [[[τ2]]rep{τ

′/α}][[[τ2]]PDb{τ
′/α}][[τ2]]P{τ

′/α}

≡ [[τ1]]P{τ
′/α} [[[τ2[τ ′/α]]]rep][[[τ2[τ ′/α]]]PDb][[τ2]]P{τ

′/α}. (A.1)

The remainder of this case is analogous to the previous case. It is proven by applying the induction hypoth-

esis to the subcomponent types.

Case µα.τ :

Analagous toτ1 τ2. We use part 2 of the lemma for the type annotations.

Proof: Lemma 17.

Case all but App and TyApp: As[[τ ]]P is a value andτ is normal, result is immediate.

Case App: τ = τ1 e [[τ1 e]]P →k v

` τ : κ [[τ1e]]P = [[τ1]]Pe

By Lemma 13,τ1 : σ → κ ande : σ. By Lemma 4,[[τ1]]P →i v1 ande →j v2, with i + j < k. By

induction,

τ1 →∗ ν1, (A.2)

v1 ≡ [[ν1]]P, (A.3)

[[τ1]]rep ≡ [[ν1]]rep, (A.4)

[[τ1]]PD ≡ [[ν1]]PD. (A.5)

By (A.2) andDDCα Preservation (Lemma 12),ν1 : σ → κ. So, by Lemma 14,ν1 = λx.τi.

By Lemma 2 and (A.3),[[τ1 e]]P = [[τ1]]P e →(i+j) v1v2 ≡ [[ν1]]P v2.

89



By Lemma 5,v1 v2 →k′ v, wherek′ = k − i− j. By Lemma 7, part 1,[[ν1]]P v2 →k′ v′ andv′ ≡ v.

Now, asν1 = λx.τi, we have[[ν1]]P = λx.[[τi]]P. By evaluation rules,λx.[[τi]]P v2 → [[τi]]P[v2/x] which, by

Lemma 9,= [[τi[v2/x]]]P. So, by Lemma 5,[[τi[v2/x]]]P →(k′−1) v′.

By Lemma 3 andDDCα normalization,

τ1 e →∗ ν1 v2 = λx.τi v2 → τi[v2/x].

So, byDDCα Preservation (Lemma 12),̀τi[v2/x] : κ.

By induction,

τi[v2/x] →∗ ν, (A.6)

v′ ≡ [[ν]]P, (A.7)

[[τi[v2/x]]]rep ≡ [[ν]]rep, (A.8)

[[τi[v2/x]]]PD ≡ [[ν]]PD. (A.9)

Now, we prove the four necessary conlcusions in order. First, by Lemma 3, part 5,τ1 e →∗ ν. Second, as

v′ ≡ v, by Lemma 7 5,v ≡ [[ν]]P. Third,[[τ1e]]rep = [[τ1]]rep ≡ [[ν1]]rep = [[λx.τi]]rep = [[τi]]rep, which, by

Lemma 9,= [[τi[v2/x]]]rep. So, by transitivity of type equivalence,[[τ1e]]rep ≡ [[τi[v2/x]]]rep ≡ [[ν]]rep. Last,

by the same argument,[[τ1e]]PD ≡ [[τi[v2/x]]]PD ≡ [[ν]]PD

Case TyApp: τ = τ1 τ2 [[τ1τ2]]P →k v

` τ : κ [[τ1τ2]]P = [[τ1]]P[[[τ2]]rep][[[τ2]]PDb][[τ2]]P

The proof for TyApp is similar to App, but more complex due to the more complicated parsing semantics

of TyApp. As before, we start by proving our induction hypothesis for the subcomponent typesτ1 andτ2.

By Lemma 13,τ1 : T → κ andτ2 : T.
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By Lemma 4 parts 1 & 2,[[τ1]]P →i v1 and[[τ2]]P →j v2, , with i + j < k. By induction,

τ1 →∗ ν1, (A.10)

v1 ≡ [[ν1]]P, (A.11)

[[τ1]]rep ≡ [[ν1]]rep, (A.12)

[[τ1]]PD ≡ [[ν1]]PD. (A.13)

and

τ2 →∗ ν2, (A.14)

v2 ≡ [[ν2]]P, (A.15)

[[τ2]]rep ≡ [[ν2]]rep, (A.16)

[[τ2]]PD ≡ [[ν2]]PD. (A.17)

By DDCα Preservation (Lemma 12),

ν1 : T → κ (A.18)

ν2 : T. (A.19)

So, by Lemma 14,ν1 = λα.τi. By definition of[[ · ]]PDb and (A.17),[[τ2]]PDb ≡ [[ν2]]PDb.

Now, by Lemma 2, part 1, and (A.11),

[[τ1τ2]]P = [[τ1]]P[[[τ2]]rep][[[τ2]]PDb][[τ2]]P

→i v1[[[τ2]]rep][[[τ2]]PDb][[τ2]]P ≡ [[ν1]]P[[[τ2]]rep][[[τ2]]PDb][[τ2]]P (A.20)

By Lemma 5,v1[[[τ2]]rep][[[τ2]]PDb][[τ2]]P →(k−i) v By Lemma 7 1a.,[[ν1]]P[[[τ2]]rep][[[τ2]]PDb][[τ2]]P →(k−i) v′

andv′ ≡ v.
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Now, asν1 = λα.τi, [[ν1]]P = Λαrep.ΛαPDb.λparseα.[[τi]]P. By the evaluation rules,

(Λαrep.ΛαPDb.λparseα.[[τi]]P)[[[τ2]]rep][[[τ2]]PDb][[τ2]]P

→ (ΛαPDb.λparseα.[[τi]]P)[[[τ2]]rep/αrep][[[τ2]]PDb][[τ2]]P

= (ΛαPDb.λparseα.[[τi]]P[[[τ2]]rep/αrep])[[[τ2]]PDb][[τ2]]P

→ (λparseα.[[τi]]P[[[τ2]]rep/αrep])[[[τ2]]PDb/αPDb][[τ2]]P

= (λparseα.[[τi]]P[[[τ2]]rep/αrep][[[τ2]]PDb/αPDb])[[τ2]]P

As [[τ2]]P →j v2,

→j (λparseα.[[τi]]P[[[τ2]]rep/αrep][[[τ2]]PDb/αPDb]) v2

→ [[τi]]P[[[τ2]]rep/αrep][[[τ2]]PDb/αPDb][v2/parseα]

By Lemma 7.2,

≡ [[τi]]P[[[τ2]]rep/αrep][[[τ2]]PDb/αPDb][[[ν2]]P/parseα]

By Lemma 7.3,

≡ [[τi]]P[[[ν2]]rep/αrep][[[ν2]]PDb/αPDb][[[ν2]]P/parseα]

By DDCα Inversion (Lemma 13),α:T; · ` τi : κ, so by (A.19) and Lemma 22,H(τi : κ) andH(τ2 : T).

By definition of H, ∃σ s.t. [[τi]]PD ≡ pd hdr ∗ σ and∃σ s.t. [[τ2]]PD ≡ pd hdr ∗ σ. so, by Lemma 9,

(A.19) ≡ [[τi[ν2/α]]]P.

By Lemma 5,

[[τi]]P[[[τ2]]rep/αrep][[[τ2]]PDb/αPDb][v2/parseα] →(k−i−(j+3)) v′.

By Lemma 7 1a.,

[[τi[ν2/α]]]P →(k−i−j−3) v′′ andv′′ ≡ v′.
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As τ1 →∗ ν1 andτ2 →∗ ν2, by Lemma 3 andDDCα normalization,

τ1 τ2 →∗ ν1 ν2 = λα.τi ν2 → τi[ν2/α].

So, byDDCα Preservation (Lemma 12),̀τi[ν2/α] : κ.

By induction,

τi[ν2/α] →∗ ν, (A.21)

v′′ ≡ [[ν]]P, (A.22)

[[τi[ν2/α]]]rep ≡ [[ν]]rep, (A.23)

[[τi[ν2/α]]]PD ≡ [[ν]]PD (A.24)

Now, we prove the four necessary conlcusions in order. First, by Lemma 3, part 5,τ1 τ2 →∗ ν

Second, asv′′ ≡ v′ andv′ ≡ v, by Lemma 7 5,v ≡ [[ν]]P.

Third,

[[τ1τ2]]rep = [[τ1]]rep[[τ2]]rep

≡ [[ν1]]rep[[ν2]]rep

= [[λα.τi]]rep[[ν2]]rep

≡ [[τi]]rep[[[ν2]]rep/αrep]

which, by Lemma 9,

= [[τi[ν2/α]]]rep

By transitivity of type equivalence,

[[τ1 τ2]]rep ≡ [[τi[ν2/α]]]rep ≡ [[ν]]rep.
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Last,

[[τ1τ2]]PD = [[τ1]]PD[[τ2]]PDb

≡ [[ν1]]PD [[ν2]]PDb

= [[λα.τi]]PD [[ν2]]PDb

≡ [[τi]]PD[[[ν2]]PDb/αPDb]

which, by Lemma 9,

≡ [[τi[ν2/α]]]PD

By transitivity of type equivalence,

[[τ1τ2]]PD ≡ [[τi[ν2/α]]]PD ≡ [[ν]]PD

Proof: Lemma 21.

Case κ = T: H(τ : T) H(τ ′ : T)

By definition ofH, ∃σ s.t. [[τ ]]PD ≡ pd hdr ∗ σ and∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ. Unpacking the first

existential with an arbitraryσ, we have[[τ ]]PD ≡ pd hdr ∗ σ. By Lemma 9,[[τ [τ ′/α]]]PD ≡ [[τ ]]PD〈τ ′/α〉.

By Pierce, Lemma 30.3.4 (Type Substitution),[[τ ]]PD〈τ ′/α〉 ≡ (pd hdr ∗ σ)〈τ ′/α〉, so, by transitivity,

[[τ [τ ′/α]]]PD ≡ (pd hdr ∗ σ)〈τ ′/α〉 = pd hdr ∗ σ〈τ ′/α〉. The last equation is possible aspd hdr is

closed. Usingσ〈τ ′/α〉 as a witness, we get∃σ′ s.t. [[τ [τ ′/α]]]PD ≡ pd hdr ∗ σ′. This result gives us

H(τ [τ ′/α] : T).

Case κ = T → κ′: H(τ : T → κ′) H(τ ′ : T)

We know that∃σ s.t. [[τ ′]]PD ≡ pd hdr∗σ, and∃σ s.t. [[τ ]]PD ≡ σ and for allτ2 s.t.H(τ2 : T), H(τ τ2 : κ′).

Want to prove:∃σ s.t. [[τ [τ ′/α]]]PD ≡ σ and for allτ2 s.t.H(τ2 : T), H(τ [τ ′/α] τ2 : κ′).

Part 1 (the ”exists”) uses same argument as caseκ = T.
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Part 2: AssumeH(τ2 : T) for some arbitraryτ2. WLOG, we can assumeα 6∈ FTV(τ2), as, if it is, we

can alwaysα-vary it. From given,H(τ τ2 : κ′) By induction,H((τ τ2)[τ ′/α] : κ′) As α 6∈ FTV(τ2),

τ2[τ ′/α] = τ2 So we have,H(τ [τ ′/α] τ2 : κ′).

Case κ = σ → κ′:

Analogous to above.

Proof: Lemma 22.

Case Abs: ∆; Γ ` λx.τ : σ → κ ∆; Γ, x:σ ` τ : κ

We want to prove thatH(λx.τ : σ → κ). By induction,H(τ : κ), so [[τ ]]PD exists, by which we know

[[λx.τ ]]PD exists. Next, for arbitrarye, we wish to prove thatH((λx.τ)e : κ). Now, [[(λx.τ)e]]PD =

[[(λx.τ)]]PD = [[λx.τ ]]PD = [[τ ]]PD. So,[[(λx.τ)e]]PD ≡ [[τ ]]PD. By Lemma 20, andH(τ : κ), H((λx.τ)e : κ).

Case Rec: ∆; Γ ` µα.τ : T ∆, α:T; Γ ` τ : T

We wish to prove thatH(µα.τ : T), that is∃σ s.t. [[µα.τ ]]PD ≡ pd hdr ∗ σ. That is,∃σ s.t. pd hdr ∗

µαPDb.[[τ ]]PD ≡ pd hdr ∗ σ. By IH, H(τ : T) So,∃σ′ s.t. [[τ ]]PD ≡ σ′. Unpacking the existential with

arbitraryσ′, σ = µαPDb.σ
′ serves as a witness for our desired result.

Case TyAbs: ∆; Γ ` λα.τ : T → κ ∆, α:T; Γ ` τ : κ

We wish to prove thatH(λα.τ : T → κ), that is∃σ s.t. [[λα.τ ]]PD ≡ σ and for allτ ′ s.t. H(τ ′ : T),

H((λα.τ)τ ′ : κ). First, let’s prove that∃σ s.t. [[λα.τ ]]PD ≡ σ. From derivation,∆, α:T; Γ ` τ : κ. By

induction,H(τ : κ), so∃σ′ s.t. [[τ ]]PD ≡ σ′. As [[λα.τ ]]PD = λαPDb.[[τ ]]PD, we haveσ = λαPDb.σ
′ as a

witness. Next, let’s prove that for allτ ′ s.t. H(τ ′ : T), H((λα.τ) τ ′ : κ). AssumeH(τ ′ : T) for some

arbitraryτ ′. By earlier induction and Lemma 21,H(τ [τ ′/α] : κ).

Now, if we can prove that[[τ [τ ′/α]]]PD ≡ [[(λα.τ) τ ′]]PD, then we can use Lemma 20 to obtain our result.

By definition of H, ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ, so, by Lemma 9,[[τ [τ ′/α]]]PD ≡ [[τ ]]PD〈τ ′/α〉 =

[[τ ]]PD[[[τ ′]]PDb/αPDb]. By Q-AppAbs, [[τ ]]PD[[[τ ′]]PDb/αPDb] ≡ (λαPDb.[[τ ]]PD)[[τ ′]]PDb. So, [[τ [τ ′/α]]]PD ≡

(λαPDb.[[τ ]]PD)[[τ ′]]PDb = [[(λα.τ)]]PD[[τ ′]]PDb = [[(λα.τ) τ ′]]PD. So, by Lemma 20 andH(τ [τ ′/α] : κ), we

haveH((λα.τ) τ ′ : κ).
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Proof: Lemma 27.

Case Rec: ∆; Γ ` µα.τ : T ∆, α:T; Γ ` τ : T

We wish to prove that[[∆]]Fω
,Γ, [[∆]]PT ` [[µα.τ ]]P : [[µα.τ :T]]PT.

By induction,

[[∆]]Fω
, αrep :: T, αPDb :: T,Γ, [[∆]]PT, parseα:[[α:T]]PT ` [[τ ]]P : [[τ :T]]PT

From derivation and Lemma 25,

[[∆]]Fω
,Γ, [[∆]]PT ` [[µα.τ ]]rep :: T (A.25)

[[∆]]Fω
,Γ, [[∆]]PT ` [[µα.τ ]]PD :: T (A.26)

[[∆]]Fω
,Γ, [[∆]]PT ` [[µα.τ ]]PDb :: T (A.27)

Let [S] = 〈µα.τ/α〉. By Type Substitution, TAPL Lemma 30.3.4, part 3:

[[∆]]Fω
,Γ[S], [[∆]]PT[S], parseα:[[α:T]]PT[S] ` [[τ ]]P[S] : [[τ :T]]PT[S] (A.28)

From the derivation and Lemma 22,H(µα.τ : T). By definition ofH, ∃σ s.t. [[µα.τ ]]PD ≡ pd hdr ∗ σ

From this result, (A.26), and Lemma 10,

[[α:T]]PT[S] ≡ [[α[µα.τ/α]:T]]PT = [[µα.τ :T]]PT

This result, (A.28) and Lemma 8, part 2, give us

[[∆]]Fω
,Γ[S], [[∆]]PT[S], parseα:[[µα.τ :T]]PT ` [[τ ]]P[S] : [[τ :T]]PT[S]

As α 6∈ FTV(∆; Γ) (can alwaysα-vary to ensure this),

[[∆]]Fω
,Γ, [[∆]]PT, parseα:[[µα.τ :T]]PT ` [[τ ]]P[S] : [[τ :T]]PT[S]
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which is equivalent to:

[[∆]]Fω
,Γ, [[∆]]PT, parseα:[[µα.τ :T]]PT ` [[τ ]]P[S] : bits ∗ offset→ offset ∗ [[τ ]]rep[S] ∗ [[τ ]]PD[S]

By typing (and expanding out[S]),

[[∆]]Fω
,Γ, [[∆]]PT ` w : offset (A.29)

[[∆]]Fω
,Γ, [[∆]]PT ` r : [[τ ]]rep[[[µα.τ ]]rep/αrep, [[µα.τ ]]PDb/αPDb] (A.30)

[[∆]]Fω
,Γ, [[∆]]PT ` p : [[τ ]]PD[[[µα.τ ]]rep/αrep, [[µα.τ ]]PDb/αPDb]. (A.31)

By Rep. Type Well-Formedness Lemma,[[∆]]rep,Γ ` [[τ ]]rep :: T and[[∆]]PD,Γ ` [[τ ]]PD :: T.

So,αPDb 6∈ FTV([[τ ]]rep), αrep 6∈ FTV([[τ ]]PD) and, therefore,

[[∆]]Fω
,Γ, [[∆]]PT ` r : [[τ ]]rep[[[µα.τ ]]rep/αrep], and (A.32)

[[∆]]Fω
,Γ, [[∆]]PT ` p : [[τ ]]PD[[[µα.τ ]]PDb/αPDb]. (A.33)

As [[µα.τ ]]rep = µαrep.[[τ ]]rep,

[[∆]]Fω
,Γ, [[∆]]PT ` fold[[[µα.τ ]]rep] r : µαrep.[[τ ]]rep(= [[µα.τ ]]rep).

As [[µα.τ ]]PDb = µαPDb.[[τ ]]PD,

[[∆]]Fω
,Γ, [[∆]]PT ` fold[[[µα.τ ]]PDb] p : µαPDb.[[τ ]]PD(= [[µα.τ ]]PDb).

Case TyApp:

Analagous to Rec, in that it relies on Lemma 9.

Proof: Lemma 33.

Case unit: unit : T [[unit]]P(B,ω) →k (ω′, r, p)
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We wish to prove thatCanon∗unit(r, p). That is,unit →∗ ν andCanonν(r, p). As unit is normal, it

suffices to prove thatCanonunit(r, p). By the definition of[[unit]]P, we haver = Runit() andp = Punit(ω).

By Lemma 31, then, we know thatCanonunit(r, p).

Case τ1τ2: τ1τ2 : T [[τ1 τ2]]P(B,ω) →k (ω′, r, p)

We wish to prove thatCanon∗τ1 τ2(r, p). That is,τ1 τ2 →∗ ν andCanonν(r, p). We prove each clause in

order. First, by Lemma 4, part 1,[[τ1 τ2]]P →i v, with i < k. By Lemma 4, part 1, we know thati > 0. By

Lemma 17,τ1 τ2 →∗ ν andv ≡ [[ν]]P. Now, we wish to prove the second clause by applying the induction

hypothesis to the normal typeν. We therefore aim to show that[[ν]]P(B,ω) →j (ω′, r, p), for somej < k.

Now, by Lemma 2,[[τ1 τ2]]P(B,ω) →i v (B,ω), so, by Lemma 5,v (B,ω) →(k−i) (ω′, r, p). Together

with Lemma 7, part 1, we have[[ν]]P(B,ω) →(k−i) vt andvt ≡ (ω′, r, p), which is nearly what we want.

But, as(ω′, r, p) contains no type annotations,vt = (ω′, r, p), so, indeed,[[ν]]P(B,ω) →j (ω′, r, p), with

k − i < k, asi > 0. By Lemma 12 we know thatν : T, so, by induction, we haveCanon∗ν(r, p). As ν is

normal, this result implies thatCanonν(r, p).

Case µα.τ : µα.τ : T [[µα.τ ]]P(B,ω) →k (ω′, r, p)

By definition of[[µα.τ ]]P and Evaluation Uniqueness (Lemma 5),

[[µα.τ ]]P(B,ω)

→ let (ω′, r, p) = [[τ ]]P{µα.τ/α} (B, ω) in (. . .)

→(k−1) (ω′, r, p)

By Lemma 4, part 3,[[τ ]]P{µα.τ/α}(B,ω) →i v′, with i < k − 1. As µα.τ : T and byDDCα Inversion

(Lemma 13),α:T; · ` τ : T, Lemma 22 gives usH(τ : T) andH(µα.τ : T). By Lemma 19,∃σ s.t.

[[τ ]]PD = σ and by definition ofH, ∃σ s.t. [[µα.τ ]]PD ≡ pd hdr ∗ σ. So, by Commutativity of Substitution

(Lemma 9),[[τ ]]P{µα.τ/α} ≡ [[τ [µα.τ/α]]]P. Therefore, by Lemma 7, part 1,[[τ [µα.τ/α]]]P(B,ω) →i v′′,

with i < k − 1.
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Next, we seek to establish the shape ofv′′. By DDCα Substitution (Lemma 16),τ [µα.τ/α] : T. By Type

Correctness (Theorem 28),

[[τ [µα.τ/α]]]P : bits ∗ offset→ offset ∗ [[τ [µα.τ/α]]]rep ∗ [[τ [µα.τ/α]]]PD.

By Fω typing,

[[τ [µα.τ/α]]]P(B,ω) : offset ∗ [[τ [µα.τ/α]]]rep ∗ [[τ [µα.τ/α]]]PD.

So, byFω preservation,v′′ : offset ∗ [[τ [µα.τ/α]]]rep ∗ [[τ [µα.τ/α]]]PD. and by theFω canonical forms

lemma,v′′ = (ω1, r1, p1).

Putting these conclusions together, we haveτ [µα.τ/α] : T and[[τ [µα.τ/α]]]P(B,ω) →i (ω1, r1, p1), with

i < k − 1. So, by induction,Canon∗τ [µα.τ/α](r1, p1). By definition of[[µα.τ ]]P, r = fold[[[µα.τ ]]rep] r1

and p = (p1.h, fold[[[µα.τ ]]PDb] p1). By definition of canonical forms,Canonµα.τ (r, p). As µα.τ is

normal, we haveCanon∗µα.τ (r, p).
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Appendix B

Complete PADS/ML Grammar

Below is a complete EBNF grammar of the syntax ofPADS/ML . Terminals appear in the standard font,

nonterminals are initalics, keywords appear inbold typewriter font, and concrete syntax appears in

bold typewriter font, surrounded by quotes.
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exprlit ::= int | char | string | regexpr // expression literals

hlexpr ::= exprlit | " : " mlexpr" : " // host language expression

compty ::= tp | hlexpr // compound type

pat ::= int | char | string | " " | id // patterns

recomit ::= hlexpr | tp // omitted record fields

recfield ::= omitfd | id " : " tp | id " =" hlexpr // record fields

tas ::= tp | " ( " tp (" , " tp)* " ) " // type arguments

tp ::= tas? tidhlexpr? // type application

| compty" * " compty(" * " compty)* // tuples

| " {" recfield(" ; " recfield)* " ; " ? " }" // records

| " [ " id " : " tp " | " mlexpr" ] " // constraints

dtbranch ::= uid of hlexpr | uid of tp | uid of omit tp // datatype branch

dtdefault ::= with pdefault uid? of tp (" =" hlexpr)? // datatype default

dt ::= " | " ? dtbranch(" | " dtbranch)* dtdefault? // datatype body

sdtbranch ::= uid of hlexpr | uid of tp (" =" hlexpr)? // switched datatype branch

| uid of omit tp

sdt ::= " | " ? pat " -> " sdtbranch(" | " pat " -> " sdtbranch)* // switched datatype body

tps ::= tid | " ( " tid (" , " tid)* " ) " // type parameters

decl ::= ptype tps? tid (" ( " id " : " mlty " ) " )? = tp? // type declaration

| pdatatype tps? tid (" ( " id " : " mlty " ) " )? " =" dt // datatype declaration

| pdatatype tps? tid " ( " id " : " mlty " ) " ? " =" // switched-datatype

Pmatch mlexprwith sdt // declaration

description ::= (decl)+
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Appendix C

PADS/ML Runtime Interface

Below is a listing of theO’ CAML interface of thePads module, which contains thePADS/ML runtime

system.
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type pos = int64

type span = pos * pos

type error_code = Good | Maybe | Nest | Syn | Sem

type corrupted = string

type error_info = No_info | Error_span of span | Corrupted_data of corrupted

type pd_header = {
nerr : int;
error_code : error_code;
error_info : error_info;
span : span;

}

(* Abstract handle for PADS/ML state. *)
type handle

type ’a pd = pd_header * ’a

type (’a,’b) parser = handle -> ’a * (’b pd)
type (’a,’b) printer = ’a -> (’b pd) -> handle -> unit

type base_pd_body = unit
type base_pd = base_pd_body pd

exception Runtime_error

val get_pd_hdr : ’a * ’b -> ’a

(* Check whether a pd describes an error-free parse. *)
val pd_is_ok : ’a pd -> bool
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(*
* Scan for char literal. If the literal is found, returns
* the number of bytes skipped.
*)

val p_char_lit_scan1 : handle -> char -> int option

val p_str_lit_scan1 : handle -> string -> int option

val p_int_lit_scan1 : handle -> int -> int option

(* Get the current position in the data source. *)
val get_current_pos : handle -> pos

(* Compare two positions. Compatible with Pervasives.compare*)
val comp_pos: pos -> pos -> int

(* Compare two positions for equality. *)
val eq_pos: pos -> pos -> bool

(* Create span with identical start and end positions. *)
val make_empty_span : handle -> span

(* Create a valid pd header with an empty span. *)
val make_empty_pd : handle -> base_pd

(* Create a valid pd header given a span. *)
val mk_valid_pd_hdr : span -> pd_header

(* Valid pd header with span set to (0,0). *)
val spanless_pd_hdr : pd_header

(* An initialized base pd for use with base-type gen_pd functions. *)
val gen_base_pd : base_pd

(* Initialize the system, relying on defaults. *)
val open_handle : unit -> handle option

(*
* Initialize the system, specifying that the data source does
* not use records.
*)

val open_handle_norec : unit -> handle option

(* Cleanup the system. *)
val close_handle : handle -> unit option
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module IO : sig
(* Open a file for IO. The second argument is the file name. *)
val open_file : handle -> string -> unit option

(* Close the IO system for this pads handle. *)
val close : handle -> unit option

(*
* Check whether current parse is speculative. Speculative parses are
* used by datatypes to try out the different variants.
*)

val is_speculative : handle -> bool

(* Raise when an error is encounterd during a speculative parse. *)
exception Speculation_failure

end

(*****************************************************************
* The remaining modules are intended only for generated tools.
*****************************************************************)

module Record : sig
(* Update an existing hdr with the pd from a subcomponent. *)
val update_pd_hdr : pd_header -> pd_header -> pd_header

val parse_first : (’a,’b) parser -> handle -> ’a * (’b pd) * pd_header
val parse_next : (’a,’b) parser -> pd_header -> handle

-> ’a * (’b pd) * pd_header
val absorb_first : (’a,’b) parser -> handle -> pd_header
val absorb_next : (’a,’b) parser -> pd_header -> handle -> pd_header

val absorb_first_char : char -> handle -> pd_header
val absorb_next_char : char -> pd_header -> handle -> pd_header

val absorb_first_string : string -> handle -> pd_header
val absorb_next_string : string -> pd_header -> handle -> pd_header

val absorb_first_int : int -> handle -> pd_header
val absorb_next_int : int -> pd_header -> handle -> pd_header

(*
* Generate a valid parse-descriptor header for a record based
* on a previous header and the parse descriptor of a record
* element.
* For convenience, returns (unmodified) element parse descriptor
* in addition to the new header.
*)

val gen_pd : pd_header -> ’a pd -> ’a pd * pd_header
end
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module Compute : sig
(* Make a parsing function from a computed value and gen_pd function. *)
val generate_parser : ’a -> (’a -> ’b pd) -> (’a,’b) parser

end

module Where : sig
val gen_pd : ’a pd -> bool -> (’a pd) pd
val make_pd : ’a pd -> bool -> handle -> (’a pd) pd
val parse_underlying : (’a,’b) parser -> (’a -> bool)

-> (’a,(’b pd)) parser
end

module Datatype : sig
val parse_variant : (’a,’b) parser -> handle -> (’a * (’b pd)) option
val absorb_variant : (’a,’b) parser -> handle -> span option
val absorb_char_variant : char -> handle -> span option
val absorb_string_variant : string -> handle -> span option
val absorb_int_variant : int -> handle -> span option

val parse_case : (’a,’b) parser -> (’a -> ’c) -> (’b pd -> ’d)
-> (’c, ’d) parser

val absorb_case : (’a,’b) parser -> ’c -> ’d -> (’c, ’d) parser
val absorb_char_case : char -> ’a -> ’b -> (’a, ’b) parser
val absorb_string_case : string -> ’a -> ’b -> (’a, ’b) parser
val absorb_int_case : int -> ’a -> ’b -> (’a, ’b) parser

(* args: gen_rep genpd_fn rep_constructor pd_constructor *)
val gen_case : ’a -> (’a -> ’b pd) -> (’a -> ’c) -> (’b pd -> ’d)

-> (’c,’d) parser

val make_pd_hdr : pd_header -> pd_header
val make_rep : ’a -> ’a
val make_pd : pd_header * ’a -> ’a pd

val make_err_pd : handle -> ’a -> ’a pd
(* If speculative, raise exception. Otherwise, return pd. *)
val handle_error_variant : handle -> ’a -> ’a pd

val make_gen_pd : handle -> ’a -> ’a pd
val make_absorb_pd : span -> ’a -> ’a pd

(*
* Generate a valid parse descriptor for a datatype given
* the parse descriptor of the variant and a function to generate
* the datatype’s pd body from the variant’s pd.
*)

val gen_pd : ’a pd -> (’a pd -> ’b) -> ’b pd
(* Generate the pd when the variant has no subcomponent. *)
val gen_pd_empty : ’b -> ’b pd

end
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Appendix D

Generic-Tool Interface

Below is a listing of theO’ CAML interface of theGeneric tool module, which containsS, the signature

of generic tools.
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(* Common signature of generic tool base type modules. *)
module type BaseType = sig

(* type of value of this base type. *)
type t

(* type of tool state for this base type. *)
type state

(* Generate initial state for value of type t. *)
val init : unit -> state

(* Process a value of type t. *)
val process : state -> t option -> Pads.pd_header -> state

end

(* Interface with which generic tools must comply. *)
module type S = sig

(* Data structure built by generic tool during data traversal. *)
type state

(* Raise to indicate error condition in the execution of a tool *)
exception Tool_error of state * string

(* Initialize the tool. *)
val init : unit -> unit

module Int : BaseType with type t = int and type state = state
module Char : BaseType with type t = char and type state = state
module String : BaseType with type t = string and type state = state
module Unit : BaseType with type t = unit and type state = state
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(* Functions for tuples and records. *)
module Record : sig

(* Intermediate data used for record processing *)
type partial_state

(*
* Generate initial state of record given states of all
* components. Component state is labeled with the field name.
*)

val init : (string * state) list -> state

(* Begin processing the record. *)
val start : state -> Pads.pd_header -> partial_state

(* Retrieve state of named field, given state of record. *)
val project : state -> string -> state

(* Process named field, given record state and field state. *)
val process_field : partial_state -> string -> state -> partial_state

(* Finish processing record. *)
val finish : partial_state -> state

end

module Constraint : sig
(* Intermediate data used for constraint processing. *)
type partial_state

(* Generate initial state from state of constrained element. *)
val init : state -> state

(* Start processing a constraint. *)
val start : state -> Pads.pd_header -> partial_state

(* Retrieve the state of constrained element. *)
val project : state -> state

(* Process constraint given constraint state and element state. *)
val process : partial_state -> state -> state

end
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module Datatype : sig
(* Intermediate data used for datatype processing. *)
type partial_state

(*
* Generate initial state of datatype without any state for the
* branches. Branch state will be added dynamically.
*)

val init : unit -> state

(* Start processing datatype *)
val start : state -> Pads.pd_header -> partial_state

(*
* Retrieve state of named variant. Returs None if no state
* exists for that variant.
*)

val project : state -> string -> state option

(* Process named variant, given datatype state and variant state. *)
val process_variant : partial_state -> string -> state -> state

(* For variants that have no contents. *)
module Empty : sig

(* Generate initial state for empty variant. *)
val init : unit -> state

(* Process an empty variant. *)
val process : state -> state

end
end

end
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Appendix E

Generic XML Conversion Tool

(********************************************************************
* XML formatter tool: formats arbitrary data representation as XML.
* This tool uses the MotionTwin XML-Light library.
********************************************************************)

(* State: Collects data values into an Xml.xml structure *)
type state = Xml.xml list
type global_state = state

(*
* Wrap up top-level list of XML elements into single xml element.
* This function is specific to the XML formatter and is not specified
* in the generic tool interface.
*)

let wrap elements name = Xml.Element(name,[],elements)

exception Tool_error of state * string

(* No initialization needed for this tool. *)
let init () = ()

(* Convert an error code to a string representation. *)
let ec_to_string (ec : Pads.error_code) =

match ec with
Pads.Good -> "GOOD"

| Pads.Maybe -> "MAYBE"
| Pads.Nest -> "NEST"
| Pads.Syn -> "SYN"
| Pads.Sem -> "SEM"

(* Convert a parse descriptor header to an XML representation. *)
let hdr_to_xml (h : Pads.pd_header) =

Xml.Element ("pd", [],
[Xml.Element("nerr",[],

[Xml.PCData (string_of_int h.Pads.nerr)]);
Xml.Element("error_code",[],

[Xml.PCData (ec_to_string h.Pads.error_code)])])
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(* Decide whether or not to include the PD header in the XML.*)
let process_hdr pd_hdr =

match pd_hdr.Pads.error_code with
Pads.Good -> []

| _ -> [hdr_to_xml pd_hdr]

let process_base result base_to_string pd_hdr =
match result with

Pads.Ok r -> [Xml.Element ("val", [], [Xml.PCData(base_to_string r)])]
| Pads.Error -> [hdr_to_xml pd_hdr]

module Int = struct
type t = int
type state = global_state
let init _ = []
let process _ result pd_hdr = process_base result string_of_int pd_hdr

end

module Char = struct
type t = char
type state = global_state
let init _ = []
let process _ result pd_hdr = process_base result (String.make 1) pd_hdr

end

module String = struct
type t = string
type state = global_state
let init _ = []
let process _ result pd_hdr = process_base result (fun s -> s) pd_hdr

end

module Unit = struct
type t = unit
type state = global_state
let init () = []
let process _ result pd_hdr = process_base result (fun () -> "") pd_hdr

end
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module Record = struct
type partial_state = state

let init named_states = []

let start state pd_hdr = process_hdr pd_hdr

(* Project is a no-op becuase this tool ignores previous state.*)
let project state field_name = []

(* Build up list in **reverse** order *)
let process_field fields field_name state =

(Xml.Element (field_name, [], state))::fields

let finish state = List.rev state
end

module Datatype = struct
type partial_state = state

let init () = []

let start state pd_hdr = process_hdr pd_hdr

let project state variant_name = None

let process_variant state variant_name variant =
state @ [Xml.Element (variant_name, [], variant)]

module Empty = struct
let init () = []
let process state = state

end
end

module Constraint = struct
type partial_state = state

let init _ = []

let start _ pd_hdr = process_hdr pd_hdr

let project state = []

let process state sub_state = state @ sub_state
end
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