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ABSTRACT
Sketches are tiny data structures that can be used to effi-
ciently perform filtering high-dimensional data for similarity
search. To design real systems with sketching techniques, an
important design decision is the choice of sketch size given
the targeted dataset size and desired filtering quality. Such
design decisions need to be made without the dataset, or at
least without the whole dataset. This paper provides an-
alytical and experimental results to help system designers
make such design decisions. We first show that the `1 dis-
tances between data objects in these datasets fits lognormal
distributions well. We then present a rank-based filtering
model for the sketching algorithm that uses Hamming dis-
tance to approximate `1 distance. Our experimental results
show that the model gives conservative and good prediction
for image, audio and 3D shape datasets. Finally, we show
that the parameters of the model can be set with a small
sample dataset and the resulting model can make good pre-
dictions for a large dataset.

1. INTRODUCTION
Content-based similarity search for massive amounts of feature-
rich (non-text) data is difficult because such data is noisy
and their feature vectors are high dimensional. Recent stud-
ies show that a promising approach is to use sketches con-
structed from feature vectors as compact metadata for a
similarity search engine. At search time, sketches are used
by a filtering step to quickly filter out unlikely answers, re-
sulting in a much smaller candidate set which is then used
for final ranking.

Filtering by itself is a useful mechanism for designing a sim-
ilarity search engine for two main reasons. The first is that
although recent studies have suggested indexing data struc-
tures such as Cover Tree[1] for k-Nearest-Neighbor (KNN)
search of high-dimensional data, these data structures work
well only with datasets that have low intrinsic dimensional-
ity. In other words, the “curse of dimensionality” problem

is still far from being solved. For data with high intrinsic di-
mensionality, filtering metadata can often be more efficient.
The second is that content-based similarity search capabil-
ity is often integrated with attribute-based (or annotation-
based) search. A typical integration method is to perform an
attribute-based search to produce an intermediate dataset
which can be filtered efficiently into a candidate set for final
ranking. The intermediate dataset size may not be large
enough for any indexing method.

Properly sized sketches can greatly reduce the storage re-
quirement for metadata and speed up similarity search while
maintaining good search quality. An important design deci-
sion is sketch size in bits, given the desired filtering quality
and the dataset size for a specific data type. Choose too few
bits, and the distance estimates computed from the sketches
will be inaccurate. Choose too many bits, and the sketches
will needlessly waste storage space and CPU time.

Another parameter is the candidate set size after filtering.
If the candidate set is too small, some good answers may
not be included in the candidate set and search quality is
poor. If the candidate set is too large, time is wasted on
bad answers. To make the problem even worse, a system
designer would ideally be able to determine these parame-
ters at system initialization time when she knows only the
proposed type of data with a small sample set and eventual
target dataset size.

This paper presents three analytical and experimental re-
sults to help systems designers make such design decisions.
The first result is to study how to model the distance dis-
tributions of various feature-rich datasets. We show that
lognormal distribution models the `1 distance distributions
of all our datasets (images, audio and 3D shape data) quite
well and it fits much better than other common models such
as the normal distribution. This result allows us to use log-
normal distribution to model the distance distribution of a
specific dataset.

The second set of results is to model the parameters of the
sketching technique that uses Hamming distance to approx-
imate `1 distance. This sketching technique has been shown
to be useful and efficient to filter several kinds of data for
similarity search. We present a rank-based filtering model
for the sketch construction. We have shown, by experiment-
ing with image, audio, and 3D shape datasets, that the
model can conservatively predict the required sketch size,



given desired filtering quality, target dataset size, and filter-
ing result size. This result can also be used to determine the
filtering result size given other parameters.

Our final study is to investigate how to use the rank-based
filtering model to help systems designers make design deci-
sions without the whole dataset. By conducting experiments
with the three real datasets, our results show that the rank-
based filtering model can perform well, yielding useful, con-
servative predictions for a large dataset if the parameters of
the model are set with a small sample dataset. This result
allows systems designers to build the model into a software
tool.

Existing work on nearest neighbor search can be broadly
classified into two categories: theoretical work based on
worst-case analysis and empirical work based upon perfor-
mance on actual datasets. Our work takes a middle road: we
use information about the dataset to accurately model the
performance of the filtering algorithm for nearest neighbor
search. We are not aware of any previous work that incor-
porates such distance modeling into the analysis of these
algorithms.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the similarity search problem, sketching,
the filtering technique using sketches, and the questions
faced by system designers when using such techniques. Sec-
tion 3 presents our ranked-based filtering model for ana-
lyzing and predicting system performance as a function of
model parameters. Section 4 describes the methodology and
datasets we have used to evaluate our analytical model ex-
perimentally. Section 5 compares the analytical and experi-
mental results for parameter selection and extrapolation for
each of the datasets. Finally, Section 6 summarizes related
work and Section 7 concludes the paper.

2. FILTERING FOR SIMILARITY SEARCH
This section describes the similarity search problem, sketch-
ing algorithm, and filtering method using sketches that are
considered in our analytical and experimental study.

2.1 Similarity Search
Informally, similarity search refers to searching a collection
of objects to find objects similar to a query object. The
objects we will be interested in are noisy, high-dimensional
objects such as audio recordings and images. Here, simi-
larity between objects refers to a human-perceived notion
of similarity. This informal notion of similarity search is
made concrete as follows: objects are represented by high-
dimensional feature vectors and similarity is defined in terms
of a distance metric on the underlying space of features.
Given a query object, q, in this setting, the goal is to find
nearby objects, r, such that the distance d(q, r) is small. In
particular, we may ask for all objects r within some chosen
distance of the query point, or more often, we may ask for
the k nearest neighbors of the query point. This latter for-
mulation of the search problem is commonly referred to as
the k-nearest neighbor (k-NN) problem.

Although the choice of how to extract features and which
distance function to use are domain specific, it is frequently
the case in practice that objects are represented by D-dimensional

real-valued vectors and the perceptual distance between ob-
jects is modeled by one of the `p norms. For a pair of points
X = (X1, . . . , XD) and Y = (Y1, . . . , YD), these distance
functions have the form:

d(X, Y ) =

0@ X
1≤i≤D

(Xi − Yi)
p

1A1/p

2.2 Sketching
The formalization of similarity search in terms of domain-
specific feature extraction and k-nearest neighbor search al-
lows for a simple mathematical description of the similarity
search problem. However, domain-specific feature extrac-
tion algorithms for noisy, feature-rich data typically produce
feature vectors in a high-dimensional vector space and near-
est neighbor search in such spaces is notoriously difficult.
Thus, it is necessary to attack the “curse of dimensional-
ity” problem in order to design a practical similarity search
engine for feature-rich data.

Inspired by dimension reduction ideas recently developed in
the theory community, novel techniques have been proposed
to convert high-dimensional feature vectors into compact
representations called sketches. Sketches have two salient
properties: their small size and the ability to estimate the
distance between two feature vectors from their sketches.
Given two feature vectors x and y and their sketches, s(x)
and s(y), with respect to a distance function, d, there is an
algorithm for computing an estimate of the distance d(x, y)
from s(x) and s(y) alone. When a sketch algorithm exists
for a particular feature representation and domain-specific
distance function, it allows a similarity search engine im-
plementation to store much less metadata per object while
retaining efficient and accurate similarity search. By design,
the distance estimation algorithm on sketches is much faster
than the exact distance calculation on the original feature
vectors.

In this paper, we focus on a recently proposed sketching
technique [15], which constructs sketches as bit vectors from
the original feature vectors such that the Hamming distance
between bit vectors approximates the `1 distance between
the original feature vectors. In fact, the sketch is designed
to have higher resolution for smaller distances, making it
suitable for nearest neighbor search. This sketching tech-
nique has proved useful in several application domains.

Briefly, the sketch algorithm works as follows. Let wi be the
“weight” (or importance) assigned by the domain-specific
feature extraction algorithm to dimension i and let ui be
the maximum value for the i-th coordinate over all observed
feature vectors. Likewise, let li be the minimum value for
the i-th coordinate. Let D be the dimension of the feature
vector, B be the final sketch size in bits, and H be the
block size. At system startup time, B × H random (i, ti)
pairs are generated using Algorithm 1. At run time, the D-
dimensional feature vector, x is converted into a B-bit bit
vector using algorithm 2. For further details and a proof of
correctness, we refer the reader to [15].

2.3 Filtering using Sketches



Algorithm 1 Generate B ×H Random (i, ti) Pairs

input: B, H, D, l[D], u[D], w[D]
output: p[D], rnd i[B][H], rnd t[B][H]
pi = wi × (ui − li); for i = 0, . . . , D − 1
normalize pi s.t. Σd−1

i=0 pi = 1.0
for (b = 0; b < B; b + +) do

for (h = 0; h < H; h + +) do
pick random number r ∈ [0, 1)
find i s.t. Σi−1

j=0 pi <= r < Σi
j=0 pi

rnd i[b][h] = i
pick random number ti ∈ [li, ui]
rnd t[b][h] = ti

end for
end for

Algorithm 2 Convert Feature Vector to B-Bit Vector

input: v[D], B, H, rnd i[B][H], rnd t[B][H]
output: bits[B]
for (b = 0; b < B; b + +) do

x = 0
for (h = 0; h < H; h + +) do

i = rnd i[b][h]; ti = rnd t[b][h]
y = (vi < ti ? 0 : 1)
x = x

L
y

end for
bitsb = x

end for

Since sketches require little storage space and since the dis-
tance between query objects can be estimated from sketches
efficiently, sketches can be used to implement a filtering
query processor for similarity search. A filtering query pro-
cessor first constructs a candidate set of result objects for
a given query object on the basis of sketch distance. The
candidate set size is chosen to be large enough such that it
is likely to contain the k-nearest neighbors under the orig-
inal distance on feature vectors. In effect, the construction
of the candidate set “filters out” the vast majority of ob-
jects in the system that are far from the query object while
still capturing the objects close to the query. Since sketches
are small and distance estimation on sketches are very ef-
ficient, a simple, yet practical approach for generating this
candidate set is a linear scan through the set of all sketches.

The second step in a filtering query processor is the rank-
ing of the candidate set by the original distance metric on
the original feature vector. This exact computation need
only be carried out once for each point in the candidate
set. The k-nearest neighbors in the candidate set under the
original distance metric is then taken as the query result set.
The underlying assumption in a filtering query processor is
that the k-nearest neighbors in the candidate set is an ac-
curate estimate of the k-nearest neighbors in the full data
set. In practice, one must choose the candidate set to be
large enough that it captures a sufficiently large fraction of
the k-nearest neighbors under the original distance, but not
so large that it adversely affects search engine performance.
If the candidate set is too small, the query processor will
be fast, but the search quality may be poor. On the other
hand, if the candidate set is too big, the processor will waste
time and resources on unlikely candidates. We can capture

this inherent tradeoff between search quality and filter set
size by asking what filter ratio is necessary to achieve a par-
ticular quality goal. If k is the number of results to return,
a filter with filter ratio t will return a candidate set of size
t × k. A filtering query processor seeks to optimize t for a
given fraction of the k-nearest neighbors in the final result
set.

A system designer who adopts the filtering approach to sim-
ilarity search must choose not only a particular domain-
specific feature representation and distance function, but
also an appropriate sketching algorithm and a set of param-
eters for sketching and filtering. More specifically, we are
interested in answering the following questions:

• What is an appropriate choice for the sketch size, B?

• What is the best H value for XORing when construct-
ing sketches?

• What filter ratio, t, should the filter have?

• How do the preceding parameters change as the input
data set size grows?

The rest of the paper presents our analytical and experiment
results to answer these questions.

3. ANALYTICAL MODEL
We use the following notation:

• B: sketch size in bits

• k: number of similar objects to return

• t: filter ratio – i.e. filtered set size is k × t

• H: XOR block size in bits for sketching

• S: the set of domain-specific feature vectors

• D: the dimensionality of vectors in S

• d(x, y): the domain-specific distance function on x, y ∈
S

• s0(x): the H ×B-bit sketch of x ∈ S before XORing

• s(x): the B-bit sketch of the feature vector x ∈ S

• ds(x, y): the sketch distance between x, y ∈ S

We now describe a simple analytical model for filtering using
the `1 sketch of Section 2.2. This model provides a basis for
system designers to choose appropriate parameter values for
a sketch-based filtering similarity search query processor. In
particular, for a given data set size, N , and result set size,
k, the model predicts the relationship between recall, filter
ratio (t), sketch size (B), and XOR block size (H). Thus,
the model allows a system designer to choose the system
parameters in anticipation of future growth.

In the following description let S be a set of N objects, each
represented by a D-dimension feature vector. Given objects



q and r, let d(q, r) be the feature distance between q and
r, s(q) and s(r) be the sketches of q and r, respectively,
and ds(q, r) the sketch distance between q and r. We define
the rank of r given q to be the number of points in S that
precede r when objects are ordered in increasing order of
feature distance from q. For a fixed query q, let ri denote
the ith object in S in this ordering. Similarly, we define
the sketch rank of r to be the number of points in S that
precede r when objects are ordered in increasing order of
sketch distance to q.

The goal is for the analytical model to answer the question:
Given N , k fixed, as a function of t, B, and H, what fraction
of the points p ∈ S with rank at most k have sketch rank
at most k × t? We develop the model in a series of steps.
First, we describe how we model the distribution of feature
distances in the data set. Second, we obtain an expression
for the distribution of the sketch distance as a function of
the feature distance. Next, we model the distribution of the
sketch rank of an object r ∈ S for a query q as a function
of its feature distance from q. This uses the distribution of
feature distances in the data set and distribution of sketch
distances. Finally, we use this model for the sketch rank
to estimate the recall for a given filter ratio value. Each of
these steps is described in the subsections that follow.

3.1 Distance Distribution
Since the sketch distance between two objects is related to
the original feature vector distance, we first study the distri-
bution of feature vector distances. For one particular query
object, we calculate the feature vector distances of all the
other objects in the dataset to this query object. The his-
togram of all the object feature distances forms the feature
vector distance distribution for that particular query object.
With the feature distance distribution known, we will be
able to predict the sketch distance between the query object
and rest of the objects using the analytic model described
in the next section.

One of the goals for our approach is to predict the sketch
performance when the dataset size changes. In order to do
this, we predict the distribution of object distances in a data
set using the distribution of distances in a smaller sample.
The basis for this is the hypothesis that every data type is
associated with an underlying object distance distribution.
The particular distances observed in a specific data set can
be viewed as a sample of the distribution associated with
the data type. For example, in Figure 1, we compare the
distance distribution with the full dataset with that of a
uniformly sampled dataset with only one-tenth of the data
points.

One subtlety in modeling distances is that the distribution
of distances from different query objects can be different and
using a single distribution for them can lead to errors. The
distance distributions for different query objects have simi-
lar shapes but are peaked at different points. Since our data
objects have a natural bound on each dimension, the objects
are contained in a high dimensional rectangle. The location
of the query object in this high dimensional rectangle will
affect the peak of the feature distance distribution. In or-
der to model this variation, we pick a random sample of 100
query objects and use their distance distributions to approx-

imate the overall distance distributions. We compared this
approach with using a single average distance distribution.
The latter did not perform as well as the approach that ex-
plicitly models the variation in object distance distributions.

Further, we approximate the empirical individual query ob-
ject distance distributions by a distribution with a closed
form expression. The details of this appear in Section 5.1.

3.2 Sketch Distance Distribution
Given a dataset S, let wi, ui, li be the weight, upper bound
and lower bound of the i-th dimension, respectively. Let T =P

i wi× (ui− li). Using the sketch algorithm of Section 2.2,
for every object r ∈ S, we construct the initial bit vector
s0(r) of length B × H. For a fixed query point q, consider
object r ∈ S and let x = d(q, r)/T . The probability that
s0(q) disagrees with s0(r) in the j-th bit is:

Pr[s0
j (q) 6= s0

j (r)] = d(q, r)/T = x

After XORing contiguous H-bit blocks of s0 to produce the
final B-bit sketch, the probability that the two sketches dif-
fer in bit j is:

Pr[sj(q) 6= sj(r)] = p(x) =
1

2

“
1− (1− 2x)H

”
(1)

Thus, the probability that the two B-bit sketches s(q) and
s(r) differ in exactly b bits is given by the binomial distri-
bution:

Pr[ds(q, r) = b] = p(x, b) =

 
B

b

!
p(x)b (1− p(x))B−b (2)

where p(x) is given by equation (1). This formula gives the
probability distribution of the sketch distance as a function
of the feature distance.

3.3 Rank Distribution
Consider an object r ∈ S. We would like to estimate the
sketch rank of r, i.e. the number of objects that precede r
when we order all objects in S in increasing order of sketch
distance to query object q. A key assumption in this calcu-
lation is that the sketch distances are independent of each
other. While this assumption is not completely accurate,
it is a reasonable approximation. As we discuss later, this
leads to a conservative estimate on the quality of the filter-
ing results. We also assume that in the ordering by sketch
distances, objects with the same sketch distance are ordered
randomly, that is, for two objects with the same sketch dis-
tance, the probability that one precedes the other is exactly
1/2.

The sketch rank of r is dependent on the sketch distance
ds(q, r). Consider the event ds(q, r) = b. Note that the
probability of this event is a function of the feature distance
d(q, r) and is calculated in (2). Consider an object r′ ∈ S
such that d(q, r′)/T = x and let s = ds(q, r

′) be the sketch
distance of r′. Let P (x, b) be the probability that r′ is ranked
lower (i.e. closer to q) than r when ds(q, r) = b. Note that
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Figure 1: Compare Distance Distribution of Full Dataset and 1/10 of Dataset.

this is a function of x = d(q, r′)/T and the value b of ds(q, r).

P (x, b) = Pr[s < b] +
1

2
Pr[s = b]

=

b−1X
i=0

Pr[s = i] +
1

2
Pr[s = b] (3)

=

b−1X
i=0

p(x, i) +
1

2
p(x, b) (4)

Let rank (r) denote the sketch rank of r. rank (r) is the
sum of indicator random variables Y (ri, r), one for every
object ri ∈ S. The indicator variable Y (ri, r) for ri ∈ S
corresponds to the event that ri precedes r in the ordering by
sketch distance. Our independence assumption implies that
given a value for ds(q, r), all these variables are independent.
Let xi = d(q, ri)/T . Note that Pr[Y (ri, r) = 1|ds(q, r) =
b] = P (xi, b) computed in (4). The expected value and
variance of rank (r) are given by

E(rank (r) |ds(q, r) = b) =

NX
i=1

P (xi, b)

Var(rank (r) |ds(q, r) = b) =

NX
i=1

P (xi, b)− [P (xi, b)]
2

When we use the feature distance distribution model, let
f(x) to be the probability density function for the distances,
i.e.

R x2
x1

f(x)dx is the fraction of points r′ ∈ S such that

d(q, r′)/T ∈ [x1, x2]. We can replace the summation over all
data points with an integration over the distance distribu-
tion:

E(rank (r) |ds(q, r) = b) = N

Z 1

0

P (x, b)f(x)dx

Var(rank (r) |ds(q, r) = b) = N

Z 1

0

(P (x, b)− P (x, b)2)f(x)dx

Given the fact that N is usually of the order of hundreds of
thousands, the distribution of rank (r) (for a specific value of
ds(q, r)) is approximately normal by the Central Limit Theo-
rem. The normal distribution parameters can be determined
by E(rank (r) |ds(q, r) = b) and Var(rank (r) |ds(q, r) = b).
Thus the probability that rank (r) is at most M can be ex-

pressed as

Pr[rank (rk) ≤ M |ds(q, r) = b] =

Z M

0

f(y; µb, σb)dy

where

µb = E[rank (r) |ds(q, r) = b]

σb =
p

Var[rank (r) |ds(q, r) = b]

f(y; µ, σ) =
1

σ
√

2π
e−(y−µ)2/2σ2

Now, we can write the distribution of rank (r) as a mixture
of normal distributions, one for each value of ds(q, r). The
distribution for b is weighed by Pr[ds(q, r) = b]. This gives
us the distribution of rank (r) and allows us to calculate the
probability that rank (r) is at most M as follows:

Pr[rank (r) ≤ M ] =

BX
b=0

Pr[ds(q, r) = b]

Z M

0

f(y; µb, σb)dy

We overload the notation somewhat and use rank (x) for
x ∈ [0, 1] to denote the sketch rank of an object r ∈ S such
that ds(q, r)/T = x. Note that Pr[ds(q, r) = b] = p(x, b).
Using the previous expression for Pr[rank (r) ≤ M ], we get

Pr[rank (x) ≤ M ] =

BX
b=0

p(x, b)

Z M

0

f(y; µb, σb)dy

3.4 Search Quality Estimation
Once we have an expression for the rank distribution for
objects r ∈ S, for a given filter set size M , the expected
fraction of the k nearest neighbors being included in the
filtered set (i.e. the recall) can be computed as:

Recall =
1

k

kX
j=1

Pr[rank (rj) ≤ M ]

When the feature distance distribution is used, the recall
can be calculated as:

Recall =
N

k

Z x0

0

Pr[rank (x) ≤ M ]f(x)dx

where x0 can be derived from:

k = N

Z x0

0

f(x)dx



Note that the sketch distributions and rank distributions are
computed based on a single query object q. As a result, the
search quality estimate (recall) could vary a lot for different
query points. To ensure that the results are representative of
the entire data set, we use multiple representative query ob-
jects to model the distance distribution. To estimate overall
search quality, we average the recall value computed using
the distance distributions for each of these query objects.

4. EVALUATION
We have employed three kinds of feature-rich datasets to
validate our models. To evaluate the filtering quality, we
have used average recall in which the gold standard is the
results computed with the original distance function.

4.1 Datasets
We have studied three kinds of data: images, audio, and
3D shapes. Table 1 provides a summary of the dataset sizes
and the number of dimensions in the domain-specific feature
vector representations.

Dataset Number of Feature Vectors Dimension
image 662,317 14
audio 54,387 192

3D shape 28,775 544

Table 1: Dataset Sizes and Dimensions.

4.1.1 Image Data
The image dataset used in our study is drawn from the
Corel image collection [4] which contains about 60,000 im-
ages. The main reason to choose this dataset is that it has
become a standard data set for evaluating content-based im-
age retrieval algorithms.

We used the Region-Based Image Retrieval (RBIR) approach [19]
to segment each image into multiple homogeneous regions
based on color and texture. Each image region is repre-
sented by a 14-dimensional feature vector: nine dimensions
for color moments and five dimensions for bounding box
information. The bounding box is the minimum rectan-
gle covering a segment and is characterized by five features:
aspect ratio (width/height), bounding box size, area ratio
(segment size/bounding box size), and segment centroids.
We use weighted `1 distance on the 14-dimensional feature
vectors to determine similarity. The images in the collection
are segmented into about 660,000 regions, each of which is
represented by a feature vector.

4.1.2 Audio Data
Our audio dataset is drawn from the DARPA TIMIT collec-
tion [8]. The TIMIT collection is an audio speech database
that contains 6,300 English sentences spoken by 630 differ-
ent speakers with a variety of regional accents. We chose
this dataset also because it is available to the research com-
munity.

We break each sentence into smaller segments and extract
features from each segment. For each audio segment, we use
the Marsyas library [20] to extract feature vectors. We begin
by using a 512-sample sliding window with variable stride
to obtain 32 windows for each segment and then extract the

first six MFCC parameters from each window to obtain a
192 dimensional feature vector for each segment. We use
weighted `1 distance on the 192-dimensional feature vectors
to determine similarity. As a result, the sentences of the
dataset are into about 54,000 word segments, and extract
one feature vector per word segment.

4.1.3 3D Shape Models
We have chosen to use the Princeton Shape Benchmark
as our 3D shape dataset [18] and the Spherical Harmonic
Descriptor (SHD) proposed by Princeton Shape Retrieval
and Analysis group as the domain-specific feature [12]. The
Princeton Shape Benchmark dataset is a mixture of about
29,000 3D polygonal models gathered from commercial view-
point models, De Espona Models, Cacheforce models and
from the Web. Each model is represented by a single fea-
ture vector, yielding about 29,000 feature vectors in total.

Each 3D model in the Princeton Shape Benchmark is repre-
sented by an Object File Format file with the polygonal sur-
face geometry of the model. The models are first normalized,
then placed on a 64× 64× 64 axial grid. Thirty-two spheres
of different diameters are used to decompose each model.
Up to order 16 spherical harmonic coefficients are derived
from the intersection of model with each of the 32 spherical
shells. By concatenating all the spherical descriptors of a
3D model in a predefined order, we get a 32 × 17 = 544-
dimensional shape descriptor for each 3D model. Although
the original SHD algorithms used `2 distance as the similar-
ity metric, we have found that `1 distance delivers similar
search quality. As a result, in this study we use `1 distance
on the 544-dimensional feature vector.

4.2 Evaluation Metrics and Method
We have conducted two types of experimental studies in
this paper: distribution model fitting and filtering model
validation.

For distribution model fitting, we use some common distri-
bution functions to fit the distance distribution and compare
the fitted distance function with the real distribution. In
order to validate the fit, we compare the residuals after the
least squared fitting and also plot the result for visual inspec-
tion. Moreover, we put each fitted distribution function into
our model and compare their results with the result using
real distance distribution to determine the best distribution
function.

For filtering model validation, we compare the filtering re-
sults predicted by the model with those by an implemen-
tation of the sketch-based filtering algorithm. The filter-
ing qualities are measured against the gold standard of each
dataset, which are computed by a brute-force approach over
the entire dataset using the original distance function. Specif-
ically, we compare the recall value at filter ratio t predicted
by our model with that computed experimentally. The re-
call at filter ratio t is the fraction of the k nearest neighbors
to the query point that appear in the first t × k objects
found by the filtering search algorithm. An ideal filtering
algorithm will have a recall value of 1.0 at a filter ratio of 1.
In practice, a good filter is one that achieves a satisfactory
recall with a small filter ratio.



The method used in our experimental evaluation is to pick
one hundred objects uniformly at random from each dataset
as queries. For each query object, we use the domain-specific
feature vector distance to compute the k nearest neighbors.
We then fix the size of the sketch produced by the sketch-
ing algorithm and for each object in the dataset generate a
sketch of that size, and use the sketches to compute the fil-
tered candidate set of t×k objects and calculate the fraction
of the k nearest neighbors appearing in this set. Since the
sketching algorithm is itself randomized, we take the average
recall over ten instances of the sketch algorithm. Finally, for
each sketch size, we report the average recall value at a fixed
filter ratio t over the one hundred randomly chosen query
objects and compare that recall to the recall predicted by
our model.

5. EXPERIMENTAL RESULTS
We are interested in answering the following three questions:

• What distribution model approximates the distance
distributions of real datasets well?

• How well can the analytical model help system design-
ers choose design parameters such as sketch size and
filter ratio?

• How well can the analytical model predict for large
dataset if its parameters are set with a small sample
dataset?

This section reports the experimental answers to these ques-
tions.

5.1 Distance Distribution Model
In this section, we explore the possibility of using a simple
distance distribution to model the real data distance dis-
tribution. This way, we can model the system with fewer
parameters (typically two) rather than the full distance dis-
tribution. And we can also reuse the model distribution
when the dataset size grows.

We have tried several common distance distributions to model
the observed real distance distribution from the dataset.
The distributions we have tried include: normal and lognor-
mal distributions and polynomial functions. Since sketches
can approximate the raw distance well, objects that are
much further away than the k-th nearest neighbor have
much less impact on the overall search quality than the ones
that are closer. As a result, the distance distribution close
to the k nearest neighbors are the most important in the
overall result.

In our experiments, we use the first 2 × k × t data points
in the full distance distribution to fit the statistical models,
and then use the models to extrapolate to the full set of dis-
tances. We use nonlinear least-squares fitting to find the fit
parameters. Using this method, the lognormal distribution
gives us the smallest residuals among the fitting functions
under consideration. As shown in Figure 2, the lognormal
distribution fits the data, even when extrapolated to the full
dataset.

We have also validated the choice of the distribution model
by comparing the filtering result generated from the real
distance distribution with that generated by the model dis-
tribution. In Figure 3, we showed the filtering result using
different distribution model together with the real distance
distribution. We can see that the lognormal distribution
generates the closest trend to the real distance distribution.

Our results show that it is possible to model the real distance
distribution with the lognormal distribution. The extrapo-
lated lognormal distribution fits the real distribution well,
and the modeling results also confirm the choice of lognor-
mal distribution.

5.2 Choosing Filtering Parameters
The goal of the analytical model is to help systems designers
choose design parameters properly. The following reports
our experimental results to see how well the model can help
systems designers choose sketch size B, XOR block size H,
filter ratio t, and result size k.

Choosing Sketch SizeB
Sketch size in bits B is perhaps the most crucial parameter
in a sketch-based filtering mechanism for similarity search.
Finding a good sketch size for a real system with a given ex-
pected dataset size will deliver high filter quality with min-
imal storage requirement.

Figure 4 shows the trend of filtering quality for different
sketch sizes. The recall at a filter ratio of 10 is used to
compare the experimental result with our analytical model.
As expected, using more bits in a sketch leads to higher
filtering quality.

Suppose we wish to build a system that achieves a recall of
0.9. Our results show that the sketch sizes must be about
160 bits, 256 bits and 128 bits for the image, audio, and 3D
shape dataset respectively. The amount of storage required
for sketch storage are substantially smaller than the feature
vector storage requirement. We use these sketch sizes in the
following experiments.

Notice that our analytical model conservatively predicts the
average recall in all cases and the predicted trend is con-
sistent with the experimental results. This implies that the
model is appropriate for conservative estimates for real sys-
tems designs. We will discuss the reasons for the consistent
underestimation in Section 3.3.

Choosing XOR BitsH
Choosing the right H is important, because a better H value
could give better filtering quality without increasing the
sketch size and thus the storage requirement. Although the
best H value is data type dependent, our analytical model
can help choose the value without experimenting with real
data.

Figure 5 shows that our analytical model predicts similar H
values to the experimental results. For the image dataset,
both predicted and experimental results indicate the the
best H value is 3. For audio dataset, the model predicts
that the best H value is 3 and the experimental results show



 0

 5

 10

 15

 20

 0  0.1  0.2  0.3  0.4  0.5

Pr
ob

ab
ilit

y 
Di

st
rib

ut
io

n

Distance (dist/T)

Image

Real distance distribution
Polynomial distribution

Normal distribution
Lognormal distribution

 0

 5

 10

 15

 20

 0  0.1  0.2  0.3  0.4  0.5

Pr
ob

ab
ilit

y 
Di

st
rib

ut
io

n

Distance (dist/T)

Audio

Real distance distribution
Polynomial distribution

Normal distribution
Lognormal distribution

 0

 5

 10

 15

 20

 0  0.1  0.2  0.3  0.4  0.5

Pr
ob

ab
ilit

y 
Di

st
rib

ut
io

n

Distance (dist/T)

3D shape

Real distance distribution
Polynomial distribution

Normal distribution
Lognormal distribution

Figure 2: Compare the Real Distance Distribution with Different Distribution Models
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Figure 3: Filter Quality with Different Distribution Models. (H = 3, k = 100, t = 10)

that the best is 2. For 3D shape data both indicate that the
best H value is 4. As before, the model predictions are
consistently conservative.

Choosing Filter Ratiot
In a real system, filter ratio may have a great impact on the
system performance. The smaller the filter ratio a search
system needs, the fewer data objects it must rank with the
original, more expensive distance function. A good filtering
mechanism achieves a high recall with t as close as possible
to 1.

Figure 6 shows the results of using the analytical model to
estimate the filter quality using different filter ratio for k =
100. The results show that the analytical model predicts the
filtering quality quite well. Our analytical model predicts
the same or similar knee points for all datasets. The knee
points are all around a filter ratio of 5, although there is a
larger gap between the predicted and experimental results
for the 3D shape dataset.

Choosing Result Set Sizek
Since different systems may need to return different num-
bers of results for each query, it is important to understand
how recall varies as a function of the result set size k given
a fixed filter ratio t. In real systems, the result set sizes typ-
ically depend on the user interface. For example, an image
search system may return 20 thumbnails per page, whereas
an audio search system might return 10 results per page.

Figure 7 shows the average recall results predicted by our an-
alytical model and those of experimental results with t = 10.
The results show that the model predicts the filtering qual-
ity conservatively, while the trend by the model is consistent

with the experimental results. Since the gap between the ex-
perimental result and model remains almost constant, the
model can help the system designer to estimate the loss of
recall when smaller result set size is used. In both cases, the
filtering qualities are not very sensitive to different result set
sizes for a fixed filter ratio.

5.3 Extrapolating to Larger Dataset Size
When building a real system, it is common not to have the
full dataset available at the initial deployment. It is im-
portant to be able to choose system parameters with only
a small sample dataset, and have some performance and
quality guarantees as the dataset size grows. Our analytical
model is useful in this scenario since the system designer
cannot conduct full-scale experiments to figure out the pa-
rameters to be used.

In order to validate our model’s prediction, we conducted an
experiment that simulates dataset growth. For each dataset,
we used a small subset of the full dataset to configure our
model: that is, we only use one tenth of the total data ob-
jects to model the distance distributions and then use the
model parameters derived from small dataset to predict the
filter quality when dataset size grows. The result is com-
pared with the experimental results, where more and more
data points in the dataset are included in each experiment
to simulate the growing dataset.

Figure 8 shows the filtering quality with different dataset
sizes. In each plot, the first data point corresponds to the
small sample dataset that we use to derive our model param-
eters; the following data points labeled as “lognormal dis-
tribution model” are the projected results using the model.
The experimental results are also shown in the same plot.
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Figure 4: Filter Quality vs Sketch Size. (H = 3, k = 100, t = 10)
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Figure 5: Filter Quality vs XOR Block Size H. (k = 100, t = 10)

The results show that the filtering quality degrades grad-
ually as the dataset grows larger. The model can give a
good prediction on the degree of quality degradation as the
dataset size grows. The prediction works better when the
sample dataset size is reasonably large as seen in the im-
age dataset. For other datasets, the degradation prediction
is more conservative, but conservative estimates are more
acceptable than optimistic in real systems designs.

5.4 Discussion
For all the figures showing the recall value, we noticed a con-
sistent underestimate of the model result compared with the
experimental result. In fact the underestimate of the model
is largely due to the simplified independence assumption of
the model – i.e. the assumption the sketch distances of ob-
jects are independent of the k-th nearest neighbor’s sketch
distance.

In section 3.3, we assumed that the sketch distances for dif-
ferent objects r ∈ S are independent This assumption sim-
plifies the model, but in reality, there is some dependency
that the model ignores. In fact, when r’s sketch distance is
large, the other sketch distances are also likely to be large
and vice versa. In other words, there is a small positive cor-
relation between sketch distances. In order to understand
how such a correlation arises, it is instructive to consider
the 1-dimensional case. Consider objects r and r′ such that
d(q, r) ≤ d(q, r′). The algorithm to generate the bit vector
sketch picks random thresholds for a dimension and checks
if the coordinate in that dimension is above or below the
threshold. The bit thus generated for q and r is different if
the random threshold separates q and r. If this happens, it
also likely to separate q and r′. If the sketch distance of r

is large, then q and r must have been separated by several
such randomly picked thresholds. But then it is likely that
q and r′ are also separated by these thresholds. Thus, the
sketch distance of r′ is likely to be large.

The positive correlation between sketch distances results in
the rank of rk being lower than that predicted by the in-
dependent model. In order to understand this, consider the
extreme situation where the positive correlation is of the fol-
lowing form: for i randomly chosen in [0, 100], each sketch
distance is equal to the value at the i-th percentile of its
individual distribution. In this case, objects with higher
feature distance than the kth nearest neighbor rk will never
have their sketch distance lower than the sketch distance of
rk. The effect of positive correlation is similar, but less ex-
treme than the situation described above. In other words,
the positive correlation lowers the probability that objects
further than the kth nearest neighbor will have their sketch
distance lower than the sketch distance of rk.

We conducted an experiment with the real dataset which
clearly demonstrates such a dependence. In the experiment,
we repeated the sketch construction 100,000 times and ob-
served the relationship between sketch distance s of a par-
ticular data point r and the sketch distance sk of the kth
nearest neighbor rk. Figure 9 shows the result. The points
show the average value of s when sk takes different values
and the dashed line shows the constant s value expected
with independent model. We can see that there is a small
positive correlation between r’s sketch distance s and rk’s
sketch distance sk. Figure 10 further shows the experimental
result where the (empirically observed) probability distribu-
tions of r’s sketch distance is plotted for two different values
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Figure 6: Filter Quality vs Filter Ratio t. (H = 3, k = 100)
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Figure 7: Filter Quality vs Result Set Size k. (H = 3, t = 10)

of sk.

This data dependence affects the expected probability of r
overtaking rk. The experimental result shows that the prob-
ability of that particular data point r overtaking rk is 0.125
while our independent model’s prediction is 0.167 according
to Equation 4. The higher rank prediction of rk’s sketch
distance of our model will generate lower recall value in the
quality score at filter ratio t and cause a consistent under-
estimate to the experimental results.

In order to accurately model the dependence of data ob-
ject r’s sketch distance r on rk’s sketch distance rk, much
more information about the data set is needed: value distri-
butions on each dimension, data value dependence between
different objects on each dimensions, etc. While this might
give more accurate predictions, it is much harder to obtain
reliable estimates of such fine grained information about the
data set. Also it is unclear how well a model that incorpo-
rates such detailed information can be extrapolated to larger
data set sizes. We have decided to adopt a simpler model
in this paper that captures the essence of the experiment.
Although our model gives a consistently low estimate of re-
call, it matches the general trend of the experimental results
very well.

6. RELATED WORK
Similarity search is typically formulated as a k-nearest neigh-
bor search problem. The exact form of this problem suffers
from the “curse of dimensionality” – either the search time
or the search space is exponential in dimension d [6, 16].
As a result, researchers have instead focused on finding ap-
proximate nearest neighbors whose distances from the query

point are at most 1 + ε times the exact nearest neighbor’s
distance. Our filtering scheme for similarity search can be
seen as an approach to approximate nearest-neighbor search.
For a general overview of dimension reduction techniques,
see Imola Fodor’s survey [7].

Our filtering scheme for similarity search draws on a number
of recent advances in the theory community in the construc-
tion of compact data structures (“sketches”) and in general
dimension reduction. It is often possible to produce sketches
such that a particular distance function on the original data
may be quickly estimated from the corresponding sketches
with provable bounds on the error. The classical Johnson-
Lindenstrauss lemma [11] shows that any set of n points
in `2 can be mapped down to O(log n)/ε2 dimensions via
random projections such that all distances are preserved
within a factor of 1 + ε. This can be viewed as a sketch
construction for the `2 norm and has several applications.
The original proof of Johnson and Lindenstrauss was sub-
sequently simplified by a sequence of later papers. Early
work on sketches includes the min-wise independent permu-
tation sketches for filtering near-duplicate documents that
Broder et al. developed for the AltaVista search engine [3,
2]. Subsequent work by Indyk and Motwani [10, 9] intro-
duced the notion of locality-sensitive hash functions selected
so that the collision probability is higher for pairs of objects
that are closer in some suitable sense. Such families are
useful for constructing compact data structures for nearest-
neighbor search. The LSH functions described by Indyk and
Motwani are for the binary Hamming space. Kushilevitz,
Ostrovsky and Rabani [14] developed a hashing scheme to
distinguish between pairs of objects with `1 distances above
and below a given threshold – the sketch construction of
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[15] adapts some of their ideas. Datar et al. [5] have also de-
scribed a locality-sensitive hashing scheme for the `p norms
based upon p-stable distributions. Sketching techniques also
play an integral role in streaming algorithms, i.e. one-pass
algorithms for very large data sets that store a very small
amount of information. A survey of the work in this area is
outside the scope of this paper. We refer the reader to the
survey by Muthukrishnan [17]. The notions of doubling di-
mension and intrinsic dimensionality (see [13, 1]) have been
used previously to capture the inherent complexity of data
sets from the point of view of several algorithmic problems
including nearest neighbor search. However these notions do
not provide a fine-grained model for distance distributions
and do not have enough information to accurately estimate
the performance of filtering algorithms for nearest neighbor
search.

7. CONCLUSIONS
This paper reports the results of modeling the parameters of
using sketches to filter data for similarity search. The goal
of our study is to help systems designers choose key design
parameters such as sketch size and filtering result size. We
validated our model with three feature-rich datasets includ-
ing images, audio recordings, and 3D shape models. Our
study shows three main results for sketches that use Ham-
ming distance to approximate `1 norm distance:

• Lognormal distribution models the `1 distance distri-
butions of all our datasets (images, audio and 3D shape
data) quite well and it fits much better than other
known models such as exponential, normal and poly-

nomial distributions. This result allows us to use log-
normal distribution to model the distance distribution
of a specific dataset.

• We have proposed a rank-based filtering model for the
sketch construction to use Hamming distance to ap-
proximate `1 distance. We have shown, by experiment-
ing with image, audio, and 3D shape datasets, that this
model can conservatively predict the required sketch
size for required recall, given the dataset size and its
filtering candidate set size.

• Using the lognormal distribution with its parameters
derived from a small sample dataset, we show that
the rank-based filtering model can be used to perform
good predictions of sketch sizes for a large dataset.

Our experimental studies show that the rank-based filtering
model predicts results close to experimental results. Al-
though there are noticeable gaps between the predicted and
experimental results for certain systems parameters, the pre-
dicted trends are consistent with the experimental results.
Furthermore, the predictions from the model are consis-
tently conservative in all cases.

8. REFERENCES
[1] A. Beygelzimer, S. Kakade, and J. Langford. Cover

trees for nearest neighbor.
http://hunch.net/̃jl/projects/-
cover tree/icalp 3/icalp 1.ps.

[2] A. Broder, M. Charikar, A. Frieze, and
M. Mitzenmacher. Min-wise independent



permutations. Journal of Computer Systems and
Sciences, 60(3):630–659, 2000.

[3] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. In Proc. of
the Sixth Int. World Wide Web Conf., pages 391–404,
1997.

[4] http://www.fotosearch.com/corel.

[5] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the 20th annual
symposium on Computational geometry(SCG), pages
253–262, 2004.

[6] D. Dobkin and R. Lipton. Multidimensional search
problems. SIAM J. Computing, 5:181–186, 1976.

[7] I. K. Fodor. A survey of dimension reduction
techniques. Technical Report UCRL-ID-148494,
Lawrence Livermore National Laboratory, 2002.

[8] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G.
Fiscus, D. S. Pallett, and N. L. Dahlgren. DARPA
TIMIT acoustic-phonetic continuous speech corpus,
1993.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proc. of the
25th Int. Conf. on Very Large Databases, pages
518–529, 1999.

[10] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In Proc. of the 30th Annual ACM
Symposium on Theory of Computing, pages 604–613,
1998.

[11] W. B. Johnson and J. Lindenstrauss. Extensions of
lipschitz mapping into hilbert space. Contemporary
Mathematics, 26:189–206, 1984.

[12] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz.
Rotation invariant spherical harmonic representation
of 3D shape descriptors. In Proc. of the Eurographics
Symposium on Geometry Processing, 2003.

[13] R. Krauthgamer and J. R. Lee. Navigating nets:
Simple algorithms for proximity search. In Proc. of the
15th ACM Symposium on Discrete Algorithms, pages
798–807, 2004.

[14] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high
dimensional spaces. SIAM Journal of Computing,
30(2):457–474, 2000.

[15] Q. Lv, M. Charikar, and K. Li. Image similarity
search with compact data structures. In Proc. of the
13th ACM Conf. on Information and Knowledge
Management, pages 208–217, 2004.

[16] S. Meiser. Point location in arrangements of
hyperplanes. Information and Computation,
106(2):286–303, 1993.

[17] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[18] P. Shilane, M. Kazhdan, P. Min, and T. Funkhouser.
The Princeton shape benchmark. In Proc. of the Conf.
on Shape Modelling and Applications, 2004.

[19] A. W. Smeulders, M. Worring, S. Santini, A. Gupta,
and R. Jain. Content-based image retrieval at the end
of the early years. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(12):1349–1380,
2000.

[20] G. Tzanetakis and P. Cook. MARSYAS: A Framework
for Audio Analysis. Cambridge University Press, 2000.


	Introduction
	Filtering for Similarity Search
	Similarity Search
	Sketching
	Filtering using Sketches

	Analytical Model
	Distance Distribution
	Sketch Distance Distribution
	Rank Distribution
	Search Quality Estimation

	Evaluation
	Datasets
	Image Data
	Audio Data
	3D Shape Models

	Evaluation Metrics and Method

	Experimental Results
	Distance Distribution Model
	Choosing Filtering Parameters
	Extrapolating to Larger Dataset Size
	Discussion

	Related Work
	Conclusions
	References 

