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ABSTRACT
Locality Sensitive Hashing (LSH) by Indyk and Motwani is a
popular technique for designing indexing data structures for
approximate nearest neighbor search on high dimensional
data. However, its drawback is that a very large number of
hash tables are needed in order to achieve good approxima-
tion accuracy. As a result, the high space requirement makes
the approach impractical for large datasets. A recent (the-
oretical) result showed that a point perturbation technique
has the potential to reduce the space requirement of the LSH
approach at the cost of an increase in query time. This paper
proposes a new LSH method called hash-perturbation LSH
based on perturbing the hash values. Our evaluation with
an image dataset and an audio dataset shows that the pro-
posed approach is both time and space efficient. To achieve
similar search quality, the hash-perturbation LSH approach
has a similar time efficiency as the basic LSH approach while
reducing the space requirement by a factor of five. For image
dataset, its time efficiency is twice of the the point pertur-
bation approach.

1. INTRODUCTION
Similarity search (or query) in a high-dimensional space has
become increasingly important in database, data mining
and information retrieval systems, typically in the context
of content-based search of feature-rich data such as audio
recordings, digital photos, digital videos, and sensor data.
Although users may want to search some datasets such as
digital photos based on human-perceived similarity, most
search systems are designed to represent each object with
a set of high-dimensional feature vectors and to search k-
nearest neighbors (KNN) of a query object in a high- dimen-
sional space. Feature-rich datasets are typically very large
and the dimensions of their feature vectors are high. When
the dimension is high and dataset size is large, the search
problem is difficult and some call it curse of dimensionality.

The challenge is to efficiently perform indexing or similar-
ity search for query objects in a high-dimensional space.
Feature-rich data typically represent their features as points
in a high-dimensional space and use a distance metric (such
as Euclidean distance) to measure similarity of objects. The
dimensionality of such feature vectors ranges from tens to
thousands. For example, the number of features of an im-
age search system can sometimes be several hundreds [9,
11]. When the number of dimensions reaches certain level,
indexing methods based on space-partition (such as K-D
trees, R-trees and X-trees) will require substantial space and
time [24, 4], often less efficient than the brute-force linear
search approach. A recent study shows that in both theory
and practice, if the number of dimensions exceeds around 10,
linear scan outperforms all existing indexing data structures
for nearest-neighbor search [31].

For high-dimensional data, the known general method that
works faster than the linear scan approach in practice is
to perform approximate nearest-neighbor search using lo-
cality sensitive hashing (LSH) [15, 6]. The main idea of
the technique is to use a special family of hash functions
(called locality sensitive hash functions) to hash objects into
buckets, such that objects close to each other in their high-
dimensional space have a higher probability to be hashed
to the same bucket. To make this approach practical, mul-
tiple hash tables are typically used to create a candidate
result set and then rank the results by a linear scan. An
experimental study shows that the approach can approxi-
mate nearest neighbor search reasonably well but it require
many hash tables to cover most nearest neighbors and that
sometimes LSH may require over a hundred hash tables to
achieve reasonable accurate approximations [13]. Such space
requirements make this basic LSH approach impractical.

Recently, Panigrahy proposed a point-perturbation based
(also called entropy-based) LSH approach to reduce the space
requirement of the original LSH approach [21]. The ap-
proach generates some randomly “perturbed” objects in the
neighborhood of the query object, query them as well as
the query object, and return the union of all results as the
candidate result set. Although no experimental study has
been conducted to show the tradeoffs of this approach, the
potential of this approach is to trade time for space—spend
time on querying the perturbed objects in order to use fewer
number of hash tables than the originally proposed LSH
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approach to achieve similar search quality. The potential
disadvantage of this approach is that it may not be time
efficient.

This paper makes two main contributions. First, we have
proposed a novel perturbation-based LSH approach that is
efficient in both time and space. Instead of generating a
large number of perturbed objects, this approach perturb
the hash results to look up other buckets in the hash tables.
We call this approach hash-perturbation LSH approach. The
main rationale is that since the hash functions are locality
sensitive, most near neighbors of the query object either
have the same hash values as the query object or different
by only one or two hash values. By perturbing hash values,
we avoid looking at the overlapped buckets. The goal is
to achieve similar space efficiency to the point-perturbation
LSH approach and similar time efficiency to the basic LSH
approach.

Second, we have implemented all three approaches and eval-
uate them with an image dataset and an audio dataset.
The image dataset has 1.2 million images and the dimen-
sionality of the feature vectors is 64. The audio dataset
has over 2.6 million words and the dimensionality of the
feature vector is 192. Our evaluation shows the proposed
hash-perturbation LSH approach is indeed time and space
efficient. To achieve a similar search speed and quality, the
approach indeed achieves similar time efficiency to the ba-
sic LSH approach and the similar space efficiency to the
entropy-based LSH approach. It typically reduces the space
requirement of the basic LSH approach by a factor of five.
For image similarity search, it reduces the search time of the
entropy-based approach by a factor of two.

The rest of the paper is organized as follows: Section 2
introduces locality sentive hashing and two LSH methods
that have been proposed previously. Section 3 presents
the new LSH method we have have proposed, called hash-
perturbation based LSH. Section 4 describes the implementa-
tion details of the three LSH methods we have implemented.
Experimental results are presented in Section 5. Finally,
Section 6 summarizes the related work and Section 7 con-
cludes the paper.

2. PREVIOUS LSH METHODS
LSH stands for locality sensitive hashing (LSH). This is a
technique that has been proposed for approximate nearest-
neighbor search for high-dimensional data. We begin by in-
troducing the notion of locality sensitive hashing, and a par-
ticular LSH family based on p-stable distributions. Next, we
describe the basic LSH scheme for nearest neighbor search.
We then describe point-perturbation based (also called entropy-
based) LSH, a recent improvement on the basic LSH scheme.

Let S be the domain of objects and let each object be rep-
resented by a d-dimensional feature vector, i.e. a point in a
d-dimensional real vector space Rd. The distance function
we consider between two objects p and q is the Euclidean
distance:

d(p, q) =
“ dX

i=1

(pi − qi)
2
”1/2

(1)

2.1 Locality Sensitive Hashing (LSH)
Definition 1. A function family H = {h : S → U} is

called locality sensitive if for any two objects u and v, the
probability PrH[h(u) = h(v)] is strictly decreasing in d(u, v).
That is, the probability that u and v collide (hash to the same
value) decreases as d(u, v) increases.

The notion of locality sensitive hashing was first introduced
in [15]. It provides a dimension reduction technique which
projects objects in high-dimensional spaces to lower-dimensional
spaces while still preserving the relative distances among ob-
jects. Different LSH families can be used for different dis-
tance functions. The LSH technique proposed by Datar et
al. [6] uses p-stable distributions.

Definition 2. A distribution D over R is called p-stable,
if there exists p ≥ 0 such that for any n real numbers v1, . . . , vn

and i.i.d. variables X1, . . . , Xn with distribution D, the ran-
dom variable

P
i viXi has the same distribution as the vari-

able (
P

i |vi|p)1/pX, where X is a random variable with dis-
tribution D.

It is known that stable distributions exist for any p ∈ (0, 2] [32].
In particular:

• A Cauchy distribution DC , defined by the density func-
tion c(x) = 1

π
1

1+x2 , is 1-stable.

• A Gaussian (normal) distribution DG, defined by the

density function g(x) = 1√
2π

e−x2/2, is 2-stable.

In a LSH family using p-stable distribution, each hash func-
tion is indexed by a choice of random a and b where a is a d-
dimensional vector with entries chosen independently from a
p-stable distribution and b is a real number chosen uniformly
from the range [0, W ]. Each hash function ha,b : Rd → Z
maps a d-dimensional vector v onto the set of integers. For
a fixed a, b, the hash function ha,b is given by:

ha,b(v) =
ja · v + b

w

k
(2)

In our evaluations, we use the Gaussian distribution, which
is 2-stable and works for the Euclidean distance.

2.2 The Basic LSH Scheme
The basic LSH scheme for nearest neighbor search has been
used in [15, 13, 6]. Given a query object q, suppose we
want to find its nearest neighbors within distance R. Based
on the property of locality sensitive hashing, we know that
for two objects u and v, if d(q, u) ≤ R and d(q, v) > R,
then u is more likely to have the same hash value as q than
v. To amplify the gap between the collision probabilities
for the range [0, R] (where the nearest neighbors lie) and
the range [R,∞], we concatenate M such functions h ∈ H.
We define a function family G = {g : S → UM} such that
g(v) = (h1(v), . . . , hM (v)), where hi ∈ H. For an integer L
we choose L functions g1, . . . , gL from G, independently and
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Figure 1: Locality Sensitive Hashing: Basic Scheme

uniformly at random. Each of the L functions gj is used to
construct one hash table, resulting in L hash tables1.

Figure 1 shows how the basic LSH scheme works. When a
new object q is inserted into the system, for j = 1, . . . , L,
we compute its hash value gj(q) and store q in the bucket
that gj(q) points to in the j-th hash table. Since the total
number of buckets may be large, we retain only the non-
empty buckets by resorting to regular hashing. To find the k
nearest neighbors of a query object q, we search all buckets
g1(q), . . . , gL(q). For each object p found in one of these
buckets, we compute the distance d(q, p), and the k objects
whose distance are closest to q are returned2.

An experimental study [13] shows that the basic LSH ap-
proach can approximate nearest neighbor search reasonably
well but it requires many hash tables to cover most near-
est neighbors and that sometimes LSH may require over a
hundred hash tables to achieve reasonably accurate approx-
imations. Such space requirements make this basic LSH
approach impractical for large datasets.

2.3 Point-Perturbation Based LSH
Recently, Panigrahy proposed a point-perturbation (also called
entropy-based) LSH approach [21], which is an extension
of the basic LSH scheme designed to reduce the number
of hash tables required for good search quality and perfor-
mance. As shown in Figure 2, given a query object q, this
new approach generates several randomly “perturbed” ob-
jects in the neighborhood of the query object and uses the
perturbed objects (in addition to the query object itself)

1To achieve good search quality, different M and L values
are needed for different R values. In practice, multiple sets
of hash tables are used in order to cover different R values
(e.g., r, 2r, 4r, . . . ).
2A variation of this scheme is to find all objects that are
within distance R from query object q. Then, instead of
returning the k closest objects, each object p whose distance
d(q, p) ≤ R is returned.
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Figure 2: Point-Perturbation Based LSH

as input to the search process. The algorithm then takes
the union of the search results of the original query point
and the search results of the perturbed objects as the re-
sult of the query. Specifically, let q be the query object, let
R be the distance between q and its nearest neighbor, the
point-perturbation based LSH scheme “perturbs” q to gen-
erate random objects that are R distance away from q and
hashes these perturbed objects to locate buckets. Let T be
the number of perturbations, the new scheme checks T + 1
buckets per hash table, instead of just one bucket per hash
table in the basic LSH scheme.

Intuitively, since the perturbed objects are close to the query
object, their hash values are close to the hash values of
the query object, based on the property of locality sensi-
tive hashing. As a result, the buckets that these perturbed
objects are hashed to are likely to contain some of the query
object’s nearest neighbors. This is helpful in finding objects
that are nearest neighbors of the query object but are not
hashed to the same bucket as the query object. The end
goal of the point-perturbation based LSH scheme is to trade
time for space. That is, to achieve the same search quality,
it uses a smaller number of hash tables than the basic LSH
scheme, but needs to check more hash buckets.

The point-perturbation based LSH scheme is a good im-
provement on the basic LSH scheme. But it has several
issues:

• It is hard to choose the perturbation distance R for a
given query object q.

• The optimal perturbation distance R for different query
objects can be very different.

• It is hard to choose the number of perturbations needed.
More perturbations may give us better search quality,
but it also means more buckets to check, more objects
to compare, and thus longer search time. The author
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Figure 3: Hash-Perturbation Based LSH

of [21] gives some theoretical analysis based on entropy.
But that is hard to compute in practice.

• Multiple perturbed objects may hash to the same bucket.
It is wasteful to check the same bucket multiple times.
When the number of perturbation is large, this kind
of duplicate work unnecessarily slows down the query
process.

• The operations of perturbing points and computing
hash values (which involves computing dot products)
are not very fast. To answer a query, T point per-
turbations and T × L hash computations are needed.
This can slow down the query process quite a bit if T
is large.

3. HASH-PERTURBATION BASED LSH
We propose a new perturbation-based LSH method, called
hash-perturbation based LSH. Similar to the point pertur-
bation method, our method also checks multiple buckets for
each hash table. What is different is that our method per-
turbs directly on the computed hash values of the query ob-
ject, rather than perturbing the query object. As a result,
we avoid the overhead of perturbing objects and dot product
computations associated with each perturbation and each
hash function.

Given a query object q, let (h1, . . . , hM ) be the hash values of
q in a hash table. As in the basic LSH method, (h1, . . . , hM )
identifies the bucket that the query object q is hashed to.
Given the property of locality sensitive hashing, we know
that if an object is close to q but not hashed to the same
bucket as q, it is likely to be in a bucket that is “closeby”.
So our goal is to perturb the hash values of q in order to get
to buckets that are “closeby”, thus increasing our chance of
finding the objects that are close to q. We first consider 1-
step perturbation, i.e., we perturb only one hash value. Let
i(1 ≤ i ≤ M) be the position we want to perturb and di

be the “strength” with which we want to perturb, then the

hash values after 1-step perturbation are:

(h1, . . . , hi + di, . . . , hm)

Similarly, when considering 2-step perturbation, we pick two
positions i and j (1 ≤ i < j ≤ M)) and di and dj , then the
hash values after 2-step perturbation are:

(h1, . . . , hi + di, . . . , hj + dj , . . . , hm)

Figure 3 shows how the hash-perturbation based LSH scheme
works.

Again, based on the property of locality sensitive hashing,
we know that buckets that are one step away (i.e., only one
hash value is different from the M hash values of the query
object) are more likely to contain objects that are close to
the query object. So, in our hash perturbation method, we
always check buckets that are one step away before we check
buckets that are two steps away.

Now the question is what values we should use for di and
dj . Remember that the LSH functions we use are of the
format ha,b(v) = ba·v+b

W
c. If we pick W to be reasonably

large, with high probablilty, similar objects should fall into
adjacent buckets, i.e. their hash values only differ by 1. It
is then reasonable to pick di and dj to be either -1 or 1.

Figure 4 and Figure 5 shows the distribution of bucket dis-
tance for the top k(k = 20, 40, 60, 80, 100) nearest neighbors
of a query object, for the image data and audio data re-
spectively. In each figure, the plot on the left shows the
difference for a single hash value (di and dj values). The
plot on the right shows the number of hash values (out of
M per hash table) that differ from the hash values of the
query object (i.e., how many steps away). As we can see
from the plots, almost all of the individual hash values of
the top k nearest neighbors are either the same as the hash
values of the query object or differ by just -1 or 1. Also,
most of the top k nearest neighbors are hashed to buckets
that are within 2 steps away from the bucket that the query
object is hashed to.

Our hash-perturbation based LSH scheme improves on the
point-perturbation based LSH scheme in several ways:

• Faster perturbation To perturb the hash values, only
+1/-1 operations are needed, which is much faster
than the operations needed to perturb an object for
the point perturbation scheme.

• Easier parameter tuning Besides the parameters needed
by any LSH scheme (W, M, L), our hash perturbation
scheme introduces just one parameter: T , the number
of perturbations, which is easy to decide based on the
number of the buckets that are 1-step or 2-step away.

• No duplicate buckets Unlike the point perturbation scheme,
each hash perturbation points to a different bucket, so
no bucket is checked more than once.

4. IMPLEMENTATION DETAILS
We have implemented all the three LSH methods as specified
in previous subsections: LSH basic, LSH point, LSH hash.
All methods are implemented in C. At startup time, each
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Figure 4: Distribution of bucket distance for the top k(k = 20, 40, 60, 80, 100) nearest neighbors of a query
object. The plot on the left shows the difference for a single hash value. The plot on the right shows
the number of hash values (out of M per hash table) that differ from the hash values of the query object.
The numbers are averaged over the 100 query objects in the image benchmark. The parameters used are
W = 0.6, M = 16, L = 15.
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method reads in all the objects (each represented as a d-
dimentional feature vectors) and constructs hash tables ac-
cording to the parameters specified. At query time, each
method checks its L hash tables to generate a candidate set
and returns the k candidates that are closest to the query
object. Unlike the LSH basic method, which checks only
one bucket in each table, LSH point and LSH hash use point
perturbations and hash perturbations respectively to check
multiple buckets in each hash table.

Specifically, there are mainly three procedures provides by
the LSH schemes:

• lsh init(D, W, M, L) initializes the hash tables, using
the parameters specified: D is the dimentionality of
the feature vectors, W is the hash width for each single
locality sentive hash function, M is the number of hash
functions to use for each hash table, and L is the total
number of hash tables.

• lsh insert(rgn id) inserts a region into the hash ta-
bles. rgn id is a unique id for each region in the sys-
tem. It can be used to access a region’s feature vector
(or region sketch, when sketches are used), as well as
accessing the image that the region belongs to.

• lsh search(rgn id, k, max d, T, R) searches for the k
regions that are closest to the query region and their
distances to the query region are within max d. When
T is 0, the basic LSH scheme is used (i.e., checks only
one bucket in each hash table). When T > 0 and
R > 0, the point perturbation based LSH scheme is
used, using T point perturbations and the perturba-
tion distance is R. When T > 0 and R = 0, the hash
perturbation based LSH scheme is used, using T hash
perturbations.

The LSH functions we use are in the form ha,b(v) = ba·v+b
w

c,
where the entries of a is drawn independently from the Gaus-
sian (normal) distribution N(0, 1). As said previously, a
Gaussian distribution is 2-stable, so the LSH functions we
use approximate `2 distance. The a, b values are randomly
picked at startup time and are then used to compute the
hash values of each object.

In the LSH point method, to generate a perturbed object
p = (p1, . . . , pd) that is at distance R from query object
q = (q1, . . . , qd), we pick pi(i ∈ [1, d]) randomly from a nor-
mal distribution with mean µ = qi. See Algorithm 1, where
function Gaussian() returns a real number randomly picked
from the Gaussian distribution N(0, 1) (i.e. the distribu-
tion’s mean is 0 and variance is 1). The original point per-
turbation paper [21] only considers the single nearest neigh-
bor and sets R to be the exact distance of nearest neigh-
bor. Since we consider k nearest neighbors, we pick a fixed
R value that is slightly smaller than the average distance
of the k-th nearest neighbor. This R value is 0.04 for the
MIXED WEB image data set we use in our evaluations.

In the LSH hash method, let (h1, . . . , hi, . . . , hM ) be the
hash values of the query object, we first check the 1-step
perturbations:

(h1, . . . , hi + di, . . . , hM ) i = 1, . . . , M, di ∈ [−1, 1]

Next, we check the 2-step perturbations:

(h1, . . . , hi + di, . . . , hj + dj , . . . , hM )i

for 1 ≤ i < j ≤ M, . . . , di, dj ∈ [−1, 1]. We stop when we
have done the specified number of perturbations.

As a baseline comparison, we also implemented the brute
force method. At startup time, it reads in all the feature
vectors. Then, for each query object q, it goes through each
object p in the system, computes the `2 distance between q
and p, and returns the k nearest neighbors. This method is
also implemented in C.

Algorithm 1 Point Perturbation

Input query object q = (q1, . . . , qd)
perturbation distance R

Output perturbed object p = (p1, . . . , pd)

s = 0
for i ∈ [1, . . . , d] do

pi = Gaussian()
s = s + pi × pi

end for

s = R/sqrt(s)
for i ∈ [1, . . . , d] do

pi = qi + pi × s
end for

return p = (p1, . . . , pd)

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the three
locality sensitive hashing methods: LSH basic, LSH point
and LSH hash. We are interested in answering questions
about the space requirements, search time and search quality
tradeoffs for different LSH methods.

We experiment with the following parameters:

• W : hashing interval of an individual hash function

• M : number of hash functions used for each table

• L: number of hash tables to use

• T : number of perturbations, used by the point pertur-
bation method (LSH point) and the hash perturbation
method (LSH hash)

• R: perturbation distance, used by the point perturba-
tion method (LSH point)

For each method, we experiment with various parameter
settings and pick the one(s) that achieve certain recall.

5.1 Benchmarks
We have used two data sets in our evaluations:

Image Data The image dataset is obtained from Stanford’s
WebBase project [26]. It contains images crawled from
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Dataset #Objects Dimension Total Size
Image 1,312,581 64 336 MB
Audio 2,663,040 192 2.0 GB

Table 1: Evaluation Datasets.

the web. We only pick images that are of the JPEG
format and are larger than 64 × 64 in size. In total,
this gives us 1.3 million images. For each image, we
use the extractcolorhistogram tool from the FIRE im-
age search engine [27] to extract a 64-dimensional color
histogram.

Audio Data The audio dataset is extracted from the LDC
SWITCHBOARD-1 [10] collection. It is a collection of
about 2400 two-sided telephone conversations among
543 speaker from all areas of the United States. The
conversations are split into individual words based on
the human transcription. We have a total of about
2.6 million words. For each word segment, we then
use the Marsyas library [28] to extract feature vectors
by taking a 512-sample sliding window with variable
stride to obtain 32 windows for each word. For each
window, we extract the first six MFCC parameters to
obtain a 192 dimensional feature vector. The MFCC
feature vectors are known to be relatively insensitive
to variation of different human voice and dialects.

Table 1 lists the number of objects in each dataset and the
dimensionality of its feature vectors.

To evaluate the performance of similarity search, we have
created two benchmarks, one for each dataset. Each bench-
mark contains 100 query objects randomly picked from the
corresponding dataset. For each query object, we compute
its k nearest neighbors (not including the query object it-
self) using Euclidean distance. This is the groundtruth for
each query object.

5.2 Evaluation Metrics
Given the benchmarks above, for each query object, the goal
is to find as many its k nearest neighbors as possible, while
examining as fewer other objects as possible. For each query
qi, let si be the total number of objects examined (i.e. ob-
jects that are hashed to the same bucket as the query object
or the perturbed objects in at least one of the hash tables),
let mi be the number of nearest neighbors found that are ac-
tually in the benchmark. To measure search quality, we use
the following metric and report the average numbers over
all 100 queries in a benchmark.

Recall = mi/k

In the ideal case, the recall score is 1.0, which means all the
k nearest neighbors are returned.

To measure the search speed of a similarity search system,
we use the average query time of all the query objects in a
benchmark. Given a query object, its query time is the time
difference between when the query is submitted and when
the search results are returned.

To evalaute the space requirement of the LSH methods, we
use the number of hash tables needed in order to achieve

Recall Method Query #Hash Memory
Time (s) Tables Overhead

1.0 brute force 0.21

0.904 LSH basic 0.042 100 2.42 GB
0.900 LSH point 0.139 20 0.50 GB
0.908 LSH hash 0.036 15 0.34 GB

0.860 LSH basic 0.033 90 2.23 GB
0.859 LSH point 0.077 10 0.24 GB
0.861 LSH hash 0.021 10 0.23 GB

0.808 LSH basic 0.020 80 2.10 GB
0.807 LSH point 0.053 10 0.26 GB
0.807 LSH hash 0.019 10 0.24 GB

Table 2: Performance comparison on the image
dataset.

Recall Method Query #Hash Memory
Time (s) Tables Overhead

1.0 brute force 1.16

0.976 LSH basic 0.545 50 2.15 GB
0.975 LSH point 0.699 15 0.65 GB
0.975 LSH hash 0.681 15 0.64 GB

0.915 LSH basic 0.212 50 2.17 GB
0.913 LSH point 0.245 15 0.68 GB
0.911 LSH hash 0.228 15 0.66 GB

0.869 LSH basic 0.126 50 2.20 GB
0.868 LSH point 0.220 10 0.45 GB
0.862 LSH hash 0.212 10 0.44 GB

Table 3: Performance comparison on the audio
dataset.

certain search quality. We are also interested in how big the
total metadata size is and whether the metadata can all fit
into memory. This can be measured by the total amount of
memory used by each LSH method.

5.3 Experimental Results
The evaluation is done on a PC system with one dual-
processor Intel Xeon 3.2GHz CPU with 1024KB L2 cache.
The PC system has 6GB of DRAM and a 160GB 7,200RPM
SATA disk. It runs Linux with a 2.6.9 kernel. Since the LSH
methods use randomly picked hash functions, each experi-
ment is repeated multiple times and the average is reported.

Our main observations are:

• The new LSH hash method is both time and space
efficient.

• With similar search quality, LSH point and LSH hash
methods can reduce the space usage by a factor of 5
compare with the LSH basic method.

• LSH hash is faster than LSH point when number of
perturbations grows.

5.3.1 Performance Comparison of LSH Methods
Table 2 and table 3 show performance comparison of differ-
ent LSH methods on image and audio data. The tables show
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the extra space requirement (in terms of both the number of
hash tables used and extra memory consumed by these hash
tables) and search time for different LSH methods to achieve
certain recall scores. We can see that LSH hash method is
most efficient in terms of space and time usage while achiev-
ing similar recall score comparing with other methods.

We can make several observations on the results. First, LSH
methods can speed up the search time by an order of mag-
nitude by only losing 0.1 recall score. This is the main in-
centive of using LSH method compare with the brute force
approach.

Second, LSH hash method has both faster query time and
smaller space requirement of all LSH based methods for im-
age data. For audio data, its search time is similar to other
LSH methods but has much smaller space requirement com-
paring with LSH basic method.

5.3.2 Space Usage of Different LSH Methods
One of the key issues of using the basic LSH method is the
amount of hash table needed in order to achieve good search
quality. In our experiments, we have observed that in or-
der to get recall score about 0.9, we would need around 50
hash tables. This poses a system implementation problem
when one can have millions of objects and the memory re-
quirement for these hash tables can be very big. In our
experiments, they can take about 2GB or more of memory.

The perturbation-based methods (LSH point and LSH hash)
can reduce the space requirement by a large factor, com-
pared with the basic LSH method. Figure 6 shows the recall
scores in terms of the number of hash tables used. In order
to achieve similar recall score, perturbation based method
only need to use 1/5 amount of hash tables for both image
and audio data.

5.3.3 Search Time Comparison
Figure 7 shows search time used by LSH hash and LSH point
methods in terms of number of perturbations used. Usually
the more perturbation used, the better recall score we can
achieve. From the figure 7, we can see that the LSH hash
method uses less time than LSH point when the number of
perturbation used grows. It is an important attribute for the
LSH hash because this will give us better recall value when
we are allowed to use more perturbations for each query.

6. RELATED WORK
The similarity search problem is closely related to the near-
est neighbor search problem, which has been studied exten-
sively in the theory community. A number of data structures
have been devised for nearest neighbor searching; examples
include R-trees [14], K-D trees [1], and SR-trees [17]. These
data structures are capable of supporting similarity queries,
but do not scale satisfactorily to large, high-dimensional
data sets. The exact nearest neighbor problem suffers from
the “curse of dimensionality” – i.e. either the search time or
the search space is exponential in dimension d [7, 19]. As a
result, recent research has focused on the approximate near-
est neighbor problem. In this version of the problem, the
objective is to find points whose distance from the query
point is at most 1 + ε times the exact nearest neighbor’s

distance. Chávez et al. have written an extensive survey
of these and other techniques for searching and indexing in
metric spaces [5]. Recent work has attempted to improve
the complexity of nearest neighbor algorithms by taking ad-
vantage of the “intrinsic dimensionality” of datasets [16, 18,
3]. For an overview of dimension reduction techniques, see
Imola Fodor’s survey [12].

The notion of locality sensitive hashing (LSH) was first in-
troduced by Indyk and Motwani in [15] for approximate
nearest neighbor search. The key idea is to use hash func-
tions such that the collision probability is much higher for
objects that are close to other than objects that are far part.
The LSH functions of Indyk and Motwani [15, 13] are for the
binary Hamming space. More recently, Datar, Immorlica,
Indyk, and Mirrokni have proposed an LSH scheme for ap-
proximate nearest neighbor under the lp norms that is based
on p-stable distributions [6]. The newest development in lo-
cality sensitive hashing is the perturbation-based scheme of
Panigrahy [21], which perturbs the query object to generate
several random objects in the neighborhood of the query ob-
jects and hashes these perturbed objects to locate buckets
that may contain the query object’s nearest neighbors.

Domain specific methods for content-based similarity search
have been studied extensively. Usually they focus on ex-
tracting good feature vectors which can effectively measure
the similarity between objects. For image similarity search,
low-level features such as color, texture, and shape are usu-
ally used[8, 22, 25, 30, 23]. Previous work on audio similarity
has tended to focus on similarity search either for music [29,
2] or the spoken word. Some recent systems [20] have used
“phone”-based approaches for speech audio search.

7. CONCLUSIONS
Our experimental evaluation of the three LSH approaches
with two datasets shows several results:

• The proposed hash-perturbation LSH approach is both
time and space efficient. It is better than either the
basic LSH approach or the point-perturbation LSH ap-
proach.

• To achieve similar recall scores, the hash-perturbation
LSH approach typically achieves similar time efficiency
to the basic LSH approach while reducing the number
of hash tables by a factor of five.

• With the image dataset, the proposed approach im-
proves the time efficiency over the entropy-based LSH
approach by a factor of two, while having a similar
space efficiency.

The dataset sizes are chosen to allow the basic LSH ap-
proach to fit all hash tables into the main memory, in order
to compare all three LSH approaches. Although our ex-
perimental results also show that the LSH approaches are
an order-of-magnitude faster than the linear scan approach,
the performance gaps should be larger as the dataset sizes
increase.

Throughout the experiments, we learned a main limitation
of the LSH approaches with respect to real systems designs is
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to find the right set of parameters for both LSH approaches.
Without an accurate analytical model, it is difficult to exper-
imentally explore among many highly sensitive parameters
such as the number of hash tables, the number of hash func-
tions, the parameters of the hash functions, the parameters
of perturbations and the number of perturbations.
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